Some useful p-adic formulas

Lemma. Write $n_{0}+n_{1} p+n_{2} p^{2}+\ldots$ for the p-adic expansion of an integer $n \geqslant 1$. Then we have the following statements about p-adic valuations and residues:
(1) The valuation of n ! is

$$
v(n!)=\sum_{k \geqslant 1}\left\lfloor\frac{n}{p^{k}}\right\rfloor=\frac{n-\left(n_{0}+n_{1}+n_{2}+\ldots\right)}{p-1} .
$$

(2) If $v=v(n!)$ then the leading term in the p-adic expansion of n ! is

$$
(-1)^{v} n_{0}!n_{1}!n_{2}!\ldots p^{v} .
$$

(3) The valuation of the binomial coefficient $\binom{n}{k}$ is the sum of the carry overs in the addition of k and $n-k$.
(4) If $\binom{n}{k}$ is prime to p then its mod p residue is $\binom{n_{0}}{k_{0}}\binom{n_{1}}{k_{1}}\binom{n_{2}}{k_{2}} \ldots$
(5) The valuation of the binomial coefficient $\binom{p^{n}}{k}$ is $n-v(k)$, for $k \geqslant 1$.

Proof: (1) Say that $n=n_{0}+n_{1} p+\cdots+n_{r} p^{r}$. There are $\left\lfloor n / p^{k}\right\rfloor$ integers $m \leqslant n$ divisible by p^{k} and $\left\lfloor n / p^{k}\right\rfloor-\left\lfloor n / p^{k+1}\right\rfloor$ integers $m \leqslant n$ of valuation k. It follows that

$$
v(n!)=\sum_{k \geqslant 1} k\left(\left\lfloor\frac{n}{p^{k}}\right\rfloor-\left\lfloor\frac{n}{p^{k+1}}\right\rfloor\right)=\sum_{k \geqslant 1}\left\lfloor\frac{n}{p^{k}}\right\rfloor .
$$

Using the fact that $\left\lfloor n / p^{k}\right\rfloor=\sum_{i \geqslant k} n_{i} p^{i-k}$, we derive the formula

$$
v(n!)=\frac{n-\left(n_{0}+n_{1}+\cdots+n_{r}\right)}{p-1} .
$$

(2) See also [Ha], chapter 17, § 3. For a finite set M of positive integers, let M ! be the product of the elements of M and write the p-adic leading term of $M!$ in the form $\mu(M) p^{v(M!)}$. Thus, we want to prove that $\mu(\{1, \ldots, n\})=(-1)^{v(n!)} n_{0}!\ldots n_{r}$!. For this, it is enough to produce a partition $\{1, \ldots, n\}=A_{0} \sqcup \cdots \sqcup A_{r}$ such that

$$
\mu\left(A_{i}\right)=(-1)^{n_{i} \frac{p^{i}-1}{p-1}} n_{i}!.
$$

Call A_{i} the set of integers $m \in\{1, \ldots, n\}$ such that $m_{i+1}=n_{i+1}, \ldots, m_{r}=n_{r}$ and either $v(m)=i$ or $m_{i}<n_{i}$. This is a partition because n is in $A_{v(n)}$ and no other, while if $m<n$, there is a maximal i such that $m_{i}<n_{i}$ and then m is in A_{i} and no other. The integers $m \in A_{i}$ with valuation i are determined by their i-th digit which satisfies $1 \leqslant m_{i} \leqslant n_{i}$ and they contribute to $\mu\left(A_{i}\right)$ by a factor n_{i} !. The integers $m \in A_{i}$ with valuation $k<i$ are determined by their k-th to i-th digits which satisfy $1 \leqslant m_{k} \leqslant p-1,0 \leqslant m_{j} \leqslant p-1$ for $k<j<i$, and $0 \leqslant m_{i} \leqslant n_{i}-1$. Using the fact that $(p-1)!\equiv-1 \bmod p$, an immediate computation shows that these m contribute to $\mu\left(A_{i}\right)$ by a factor $(-1)^{n_{i} p^{i-k-1}}$. Finally the value for $\mu\left(A_{i}\right)$ is as announced.
(3) Let $k=k_{0}+k_{1} p+\cdots+k_{r} p^{r}$ and $l=n-k=l_{0}+l_{1} p+\cdots+l_{r} p^{r}$. Run the p-adic addition algorithm to add up k and l :

$$
\begin{array}{ll}
k_{0}+l_{0}=n_{0}+\delta_{0} p & \text { with } \delta_{0} \in\{0,1\} \\
k_{1}+l_{1}+\delta_{0}=n_{1}+\delta_{1} p & \text { with } \delta_{1} \in\{0,1\} \\
\vdots & \vdots \\
k_{r}+l_{r}+\delta_{r-1}=n_{r}+\delta_{r} p & \text { with } \delta_{r} \in\{0,1\}, \\
n_{r+1}=\delta_{r} &
\end{array}
$$

where $\delta_{0}, \ldots, \delta_{r}$ are the carry overs. Then the formula in (1) implies that ($p-1$) times the valuation of $\binom{n}{k}=\frac{n!}{k!l!}$ is equal to

$$
n-\left(n_{0}+\cdots+n_{r+1}\right)-k+\left(k_{0}+\cdots+k_{r}\right)-l+\left(l_{0}+\cdots+l_{r}\right)=(p-1)\left(\delta_{0}+\cdots+\delta_{r}\right)
$$

(4) By what we have just proved, $\binom{n}{k}$ is prime to p if and only if there are no nonzero carry overs. If this holds, then $n_{i}=k_{i}+l_{i}$ for all i. Then the leading term in the p-adic expansion of the binomial coefficient, which in the present case is also the p-adic residue, is

$$
\frac{n_{0}!\ldots n_{r}!}{k_{0}!\ldots k_{r}!l_{0}!\ldots l_{r}!}=\binom{n_{0}}{k_{0}} \ldots\binom{n_{r}}{k_{r}}
$$

(5) If $k=p^{n}$, the result is clear. If $1 \leqslant k \leqslant p^{n}$, we have $v\left(p^{n}-k\right)=v(k)$. So taking valuations in the equality

$$
k!\binom{p^{n}}{k}=p^{n}\left(p^{n}-1\right) \ldots\left(p^{n}-(k-1)\right)
$$

gives $v(k!)+v\left(\binom{p^{n}}{k}\right)=n+v((k-1)!)$, whence the result.

References

[Ha] H. Hasse, Number theory, Classics in Mathematics, Springer-Verlag (2002).

