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2 Winter 2002
Problem. (W02:05)

Consider the 2-form on R3 \{(0,0,0)}

σ =
1

(x2 + y2 + z2)
3
2
(x dy∧dz− y dx∧dz+ z dx∧dy).

(a) Show that σ is closed in R3 \{(0,0,0)}.

(b) Show that the 2-form

ω = x dy∧dz− y dx∧dz+ z dx∧dy

is closed but not exact on S2.

(c) Find
´

S2 ω .

(d) Suppose M is compact (closed?), 2-dimensional, oriented embedded subman-
ifold of R3 \{(0,0,0)}. What are the possible values of

´
M σ?

Solution.

(a) Routine calculation.
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(b) Closed: all 2-forms are closed on S2. Exact: regard ω as the restriction of the
same form on B3, the closed unit ball in R3, with ∂B3 = S2. Then by Stokes’
theorem, ˆ

S2
ω =

ˆ
B3

dω =

ˆ
B3

3dx∧dy∧dz = 4π.

In particular, ω cannot be exact, because an exact form integrates to 0 over
S2.

(c) See part (b).

(d) Presumably this has something to do with Poincaré duality, but I’m not sure
how exactly.

3 Spring 2002
Problem. (S02:06)

(a) Show that if f : Sn→ Sn has no fixed points then deg f = (−1)n+1.

(b) Show that if X has S2n as its universal cover, then π1(X) = {1} or Z/2Z.

(c) Show that if X has S2n+1 as its universal cover, then X is orientable.

Solution.

(a) We claim that f is homotopic to the antipodal map x 7→ −x, which has degree
(−1)n+1. Indeed, the straight-line homotopy

Ft(x) =
(1− t) f (x)− tx
|(1− t) f (x)− tx|

is well-defined, because if x ∈ Sn, then |x|= | f (x)|= 1; if |(1− t) f (x)− tx|=
0, then necessarily

1− t = |(1− t) f (x)|= |tx|= t,

so t = 1
2 , but then we would have 1

2 f (x) = 1
2x, which is impossible because f

fixes no points.
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(b) Suppose S2n covers X . Then X = S2n/G, where G is the group of deck
transformations. We observe that since S2n is path connected, each non-
identity deck transformation g is a homeomorphism S2n → S2n that fixes no
points. Then degg = (−1)2n+1 = −1. But then it follows that G is either
trivial, or Z/2Z: for suppose G contains two nontrivial elements f and g.
Then deg( f g) = deg( f )deg(g) = 1. Then by our observation, it must be that
f g = idS2n , and so f = g−1, and g2 = idS2n , so f = g. Now, since S2n is simply
connected, we have

π1(X)∼= G,

and thus π1(X) is either trivial or Z/2Z.

(c) If S2n+1 covers X , then every nontrivial deck transformation has degree (−1)2n+2 =
1. By the Hopf degree theorem, every deck transformation is homotopic to
the identity. In particular every deck transformation is locally orientation-
preserving. Therefore the orientation on S2n+1 and the quotient map S2n+1→
S2n+1/G = X induces an orientation on X .

4 Fall 2003
Problem. (F03:09) If a closed manifold M has S2n+1 as a covering space, n≥ 1,
then M is orientable.

Solution. See S02:06.

5 Fall 2004
Problem. (F04:07) Let X1 = S1∨S2 and X2 = S1∨S1.

(a) Find π1(X1) and π1(X2).

(b) Find their universal coverings.

Solution.

(a) π1(X1) = π1(S1)∗π1(S2) = Z∗0 = Z. π1(X2) = Z∗Z.

(b) The universal cover of X1 is the following space:

R ∏( ∏

n∈Z(S
2)n
)
/∼,
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where for each n we identify a point xn ∈ (S2)n with n ∈ R. (Essentially a
string of S2-s attached at the integers.) The covering map is given by the
usual coverings R→ S1, and the identity on S2. The universal cover of X2 is
the Cayley graph of the free group on two generators.

6 Winter 2005
Problem. (W05:10)

(a) Find the Euler characteristic of X2
4 , the 2-skeleton of the 4-simplex.

(b) Give a reason why H2(X2
4 ) is free abelian and find its rank.

Solution.

(a) By the cellular definition of Euler characteristic, we can count the number of
k-cells in X2

4 , where k = 0,1,2, and take the alternating sum. Regarding X4 as
[v0, . . . ,v4], each k-cell is determined uniquely by choosing k of the vertices
in any order. Therefore the number of k-cells is

(5
k

)
. So

χ(X2
4 ) =

(
5
0

)
−
(

5
1

)
+

(
5
2

)
= 6.

(b) The long exact sequences for the pairs (X2
4 ,X

1
4 ) and (X1

4 ,X
0
4 ) give us the dia-

gram

0

0 H2(X2
4 ) H2(X2

4 ,X
1
4 ) H1(X1

4 ) 0

H1(X1
4 ,X

0
4 )

H0(X0
4 )

0
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where the vertical and horizontal sequences are exact. H2(X2
4 ,X

1
4 ) and H1(X1

4 ,X
0
4 )

are the second and first cellular chain groups, and hence are free abelian with
bases in correspondence with the 2-cells and 1-cells: therefore those are Z6

and Z5 respectively. X0
4 consists of 5 0-cells, so H0(X0

4 ) = Z5. Therefore
substituting the information about our homology groups, the diagram is

0

0 H2(X2
4 ) Z6 H1(X1

4 ) 0

Z5

Z5

0

By exactness of the vertical sequence, we find that H1(X1
4 )
∼= 0, and therefore

by exactness of the horizontal sequence H2(X2
4 )
∼= Z6.

7 Spring 2006
Problem. (S06:10) Let Sp and Sq be spheres of dimension p,q≥ 0. Compute the
homology groups Hn(Sp×Sq) for all n≥ 0.

Solution. We assign to Sn the standard CW structure: one 0-cell v, and one n-cell
en attached to v along the boundary. Denote the 0-cells of Sp and Sq by v and w
respectively, and the 1-cells by ep, eq. Then the product CW structure on Sp×Sq

consists of the following cells:

1. One 0-cell (v,w).

2. One p-cell (ep,w).

3. One q-cell (v,eq). (We could have p = q as well.)
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4. One (p+q)-cell (ep,eq).

The cellular boundary maps for Sn are ∂0v = 0, ∂nen = 0: for n 6= 1 this is because
there are no n−1-cells in the CW structure for Sn, and for n = 1 ∂1e1 = v−v = 0.
For the product, we therefore have the following cellular boundary maps:

∂0(v,w) = (∂v,w)+(−1)0(v,∂w) = 0;
∂p(ep,w) = (∂pep,w)+(−1)p(ep,∂0w) = 0;

∂q(v,eq) = (∂0v,eq)+(−1)0(v,∂qeq) = 0;
∂p+q(ep,eq) = (∂pep,eq)+(−1)p(ep,∂qeq) = 0.

Therefore in all cases, im ∂ = 0 and ker∂ is the whole group. Therefore homol-
ogy is isomorphic to the corresponding cellular chain complex, and it remains to
determine what those are.

(a) p = 0, q 6= 0. The cellular chain complex is

0 Z2
q

· · · Z2
0

0

(b) p = 0,q = 0: The cellular chain complex is

0 Z4
0

0

(c) p,q 6= 0, p > q: The cellular chain complex is

0 Z
p+q

· · · Z
p

· · · Z
q

· · · Z
0

0

(d) p,q 6= 0, p = q: The cellular chain complex is

0 Z
2p

· · · Z2
p

· · · Z
0

0
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8 Spring 2009
Problem. (S09:12) Let f : T → T = S1×S1 be a map of the torus inducing fπ :
π1(T )→ π1(T ) = Z⊕Z, and let F be a matrix representing fπ . Prove that the
determinant of F equals the degree of the map f .

Solution. Taking abelianizations, we note that the induced homomorphism on first
homology

f∗ : H1(T ;Z)→ H1(T ;Z) = Z⊕Z

is represented by precisely the same matrix F . Since the homology of T is free
and finitely generated, by universal coefficients we may dualize in all dimensions
to obtain maps on the integer cohomology ring

f ∗ : H∗(T )→ H∗(T ),

and the map f ∗ : H1(T )→ H1(T ) is represented by the transpose F∗ of F . Sup-
pose now that x,y are generators of H1(T ) for which F∗ is given by

F∗ =
[

a b
c d

]
.

Then x2 = y2 = 0 in H2(T ), and xy generates H2(T ). Then

f ∗(xy)= ( f ∗x)( f ∗y)= (ax+cy)(bx+dy)= abx2+adxy+bcyx+cdy2 =(ad−bc)xy.

So deg f = ad−bc = detF∗ = detF .

9 Spring 2010
Problem. (S10:01)

Let Mn be the space of n×n real matrices and let Sn be the subspace of symmetric
matrices. Consider the map F : Mn→ Sn : F(A) = AtA− I.

(a) Show that 0 is a regular value of F .

(b) Deduce that O(n), the orthogonal group, is a smooth submanifold of Mn.

(c) Find the dimension of O(n), and determine its tangent space at the identity as
a subspace of the tangent space of Mn, which is Mn itself.
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Solution.

(a) Mn is a linear space, so A+ sH is in Mn for all s ∈ R and all H ∈Mn. Sn can
be thought of as R(n+1)n/2, and so T0Sn can be identified with Sn. Then

F(A+ sH) = (A+ sH)t(A+ sH)− I
= (At + sHt)(A+ sH)− I

= AtA+ sAtH + sHtA+ s2HtH.

Then
1
s
(F(A+ sH)−F(A)) = AtH +HtA+ sHtH,

and
lim
s→0

1
s
(F(A+ sH)−F(A)) = AtH +HtA.

Therefore
dFA(H) = AtH +HtA ∈ Sn.

Now suppose F(A) = 0. Then AtA = I. We must show that dFA : Mn→ Sn is
surjective. Let B ∈ Sn; we must find H ∈Mn such that

B = AtH +HtA.

Take H = 1
2AB; then

AtH +HtA =
1
2
[
AtAB+(AB)tA

]
=

1
2
[
B+BtAtA

]
=

1
2
(B+Bt) = B.

Thus we have shown dFA is surjective whenever F(A) = 0, so 0 is a regular
value of F .

(b) This now follows directly from the regular preimage theorem.

(c) From the regular preimage theorem, we have codim O(n) = dimSn, so

dimO(n) = n2− (n+1)n
2

=
n2−n

2
.

Note that if H ∈ TIO(n), then c : s 7→ esH defines for short time s a curve on
O(n), with c(0) = I and c′(0) = H. Since esH ∈ O(n), we have

I = (esH)t(esH) = esHt
esH .
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Expanding each exponential by its series definition, taking the derivative in s,
and letting s→ 0, we obtain

0 = Ht +H.

So TIO(n) consists of those H ∈Mn with Ht +H = 0.

Problem. (S10:05) Explain why the following holds: if π : SN → M, N > 1 is
a (smooth?) covering space with M orientable, then every closed k-form on M,
1≤ k < N, is exact.

Solution. The covering map induces pullbacks π∗ : Λ∗(M)→ Λ∗(SN), and cor-
responding maps on de Rham cohomology. The pullback π∗ is induced by the
pullback of forms

π
∗
ω(X1, . . . ,Xn) = ω(π∗X1, . . . ,π∗Xn).

Since π is a covering map, it is a local diffeomorphism, and therefore π∗ is ev-
erywhere nonsingular. Suppose now that π∗ω = 0. Then since π∗ is everywhere
nonsingular, and the value of ωp(Y 1, . . . ,Y n) is determined only by Y 1

p , . . . ,Y
n
p ,

we may vary our choice of tangent vectors X1
p , . . . ,X

n
p to conclude that ω = 0.

Therefore π∗ : Λ∗(M)→ Λ∗(SN) is injective.

Now, let ω ∈ Λk(M) be a closed form, 1 ≤ k < N. We must exhibit a form
ω̂ ∈ Λk−1(M) with dω̂ = ω . Since Sn has zero cohomology in these dimen-
sions, π∗[ω] = [π∗ω] = 0 ∈ Hk

dR(S
N). Therefore there exists η ∈ Λk−1(SN) with

dη = π∗ω .

Define now η̂ ∈Λk−1(SN) by averaging over the group G of deck transformations:

η̂ =
1
|G| ∑g∈G

g∗η .

(|G| is finite because SN is a compact covering space.) This satisfies dη̂ = dη .
Now we claim η̂ = π∗ω̂ for some ω̂ ∈ Λk−1(M). To see this, we construct ω̂

pointwise. For p ∈ M, let {q1, . . . ,qn} = π−1{p}. Pick any i = 1, . . . ,n, and set
Di = (π∗ : TqiS

N → TpM); note that Di is a vector space isomorphism for each i,
because π∗ is a local diffeomorphism. Note also that for any g ∈ G, π ◦g = π . So
if g(qi) = q j, then D j ◦g∗ = Di. For X1, . . . ,Xk−1 ∈ TpM, define

ω̂p(X1, . . . ,Xk−1) = η̂qi((Di)
−1X1, . . . ,(Di)

−1Xk−1)
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for any i = 1, . . . ,n. This is well-defined, because of the equivariance of η̂ : if
g ∈ G is a deck transformation with g(qi) = q j, then since g∗η̂ = η̂ we see that

η̂qi((Di)
−1X1, . . . ,(Di)

−1Xk−1) = (g∗η̂)qi((Di)
−1X1, . . . ,(Di)

−1Xk−1)

= η̂q j(g∗(Di)
−1X1, . . . ,g∗(Di)

−1Xk−1)

= η̂q j((Di ◦ (g−1)∗)
−1X1, . . . ,(Di ◦ (g−1)∗)

−1Xk−1)

= η̂q j((D j)
−1X1, . . . ,(D j)

−1Xk−1).

Thus the definition is independent of the choice of i. Clearly with this definition,
π∗ω̂ = η̂ . Finally, to see that dω̂ = ω , we check:

π
∗dω̂ = dπ

∗
ω̂ = dη̂ = dη = π

∗
ω.

Since π∗ is injective on forms, dω̂ = ω . Thus ω is exact.

10 Fall 2010
Problem. (F10:07)

(a) Let G be a finitely presented group. Show that there is a topological space X
with fundamental group π1(X)∼= G.

(b) Give an example of X in the case G =Z∗Z, the free group on two generators.

(c) How many connected, 2-sheeted covering spaces does the space X from (b)
have?

Solution.

(a) Suppose G is presented in the form 〈a1, . . . ,an | r1, . . . ,rm〉 where a1, . . . ,an
are the generators and r1, . . . ,rm are the relations. The required space X is
constructed as follows: begin with a wedge Y of n circles C1, . . . ,Cn, with
each circle Ci corresponding to a generator ai. The fundamental group of this
space is the free group on a1, . . . ,an. For each generator ai, define the map
also denoted by ai to be the homeomorphism and loop ai : S1→Ci. Let a−1

i be
the loop corresponding to taking ai with opposite orientation, and for a given
word w in the free group define the corresponding map and loop w : S1→ Y
by concatenation of loops. To introduce the relations r1, . . . ,rm, for each j
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we attach a disk D2 to Y along the around ∂D2 = S1 by the word r j. Let the
resulting space be X . Since D2 deformation retracts to a point, the loop in
X corresponding to r j contracts to a point, so it is trivial in the fundamental
group, as desired.

(b) Take S1∨S1, the wedge of two circles.

(c) This amounts to counting the number of index two subgroups of Z∗Z. Note
that such a subgroup N is normal, and for each such subgroup there is a ho-
momorphism

φ : Z∗Z→ Z/2Z

with kernel N. Let a and b be the generators of Z∗Z. Regarding Z/2Z as the
additive group of integers modulo 2, there are four possible homomorphisms
Z∗Z→ Z/2Z we could define:

i. a,b 7→ 0. The kernel is kerφ = Z∗Z.

ii. a 7→ 1, b 7→ 0. The kernel is 〈a2,b,aba−1〉.
iii. a 7→ 0, b 7→ 1. The kernel is 〈a,b2,bab−1〉.
iv. a,b 7→ 1. The kernel is 〈a2,b2,ab〉.

Of these, ii, iii, and iv are index 2, while i is obviously not. ii and iii produce
isomorphic covers. (See Hatcher p.58 for some pictures.) Thus there are two
connected 2-sheeted covering spaces up to isomorphism.

Problem. (F10:08) Let G be a connected topological group. Show that π1(G) is
a commutative group.

Solution. (Remark: This is known as the Eckman-Hilton argument.)

Let us take e∈G to be the basepoint of G. For any two loops γ1,γ2 : S1→G based
at e, we define the loop γ1 ∗ γ2 by

γ1 ∗ γ2(t) = γ1(t) · γ2(t),

where · denotes the group multiplication. We claim that ∗ defines a group structure
on π1(G) that agrees with the standard group structure. This is because up to
equivalence of loops, we are free to reparametrize our loops γ1 and γ2. Parametrize
γ1 so that γ1(t) = e for t ∈ [1

2 ,1], and γ2 so that γ2(t) = e for t ∈ [0, 1
2 ]. Then

γ1 ∗ γ2 is the same as the concatenation of γ1 and γ2, that is, going around γ1
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first and γ2 second. Therefore taking equivalence classes of loops we find that
[γ1 ∗ γ2] = [γ1][γ2]. Clearly the constant loop acts as the identity under ∗ as well,
and the backwards oriented loop acts as inversion for ∗ by the same argument that
∗ is equivalent to concatenation.

To see that π1(G) is a commutative group, we note that we can just as well
reparametrize our loops in another way: take γ1(t) = e for t ∈ [0, 1

2 ], and γ2(t) = e
for t ∈ [1

2 ,1]. Then γ1 ∗ γ2 = γ2γ1, that is, going around γ2 first followed by γ1.
Thus we find that [γ2][γ1] = [γ1][γ2].

Problem. (F10:09) Show that if Rm and Rn are homeomorphic, then m = n.

Solution. If F : Rm→ Rn is a homeomorphism, then it is also a homeomorphism
Rm \ {0} → Rn \ {F(0)}. Each of these spaces is homotopy equivalent to Sm−1

and Sn−1 respectively. Therefore in homology we find that Hk(Sm−1)∼= Hk(Sn−1)
for all k. This can only be true if m = n.

Problem. (F10:10) Let Ng be the nonorientable surface of genus g, that is, the
connected sum of g copies of RP2. Find the fundamental group and homology
groups of Ng.

Solution.

(a) Fundamental group: Ng can be given the following cell structure:

i. One 0-cell v.

ii. g 1-cells a1, . . . ,ag each attached to v along endpoints.

iii. One 2-cell f attached to the edges along the word a2
1 · · ·a2

g.

Then for the fundamental group we have the presentation

π1(Ng) = 〈a1, . . . ,ag | a2
1 · · ·a2

g〉.

(b) We use cellular homology. The cellular chain complex is

0 Z〈 f 〉 ∼= Z Z〈a1, . . . ,ag〉 ∼= Zg Z〈v〉 ∼= Z 0
∂2 ∂1

H0(Ng) ∼= Z because Ng is connected. The cellular boundary maps are given
on the bases by

∂2( f ) = 2a1 + · · ·+2ag,

∂1(ai) = v− v = 0.
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So we see that ker∂2 = 0, hence H2(Ng) = 0. im ∂2 = 2Z〈a1, . . . ,ag〉, while
ker∂1 = Z〈a1, . . . ,ag〉. Therefore

H1(Ng) =
ker∂1

im ∂2
=

Z〈a1, . . . ,ag〉
2Z〈a1, . . . ,ag〉

.

To determine the structure of this quotient, we endow Z〈a1, . . . ,ag〉 with an
alternative basis, consisting of

a1, . . . ,ag−1,a1 + · · ·+ag.

Then the quotient collapses the free submodule generated by a1+ · · ·+ag and
leaves the rest alone, so

Z〈a1, . . . ,ag〉
2Z〈a1, . . . ,ag〉

∼= Zg−1⊕Z/2Z.

(Alternatively, apply the Hurewicz homomorphism and abelianize π1(Ng).)

11 Spring 2011
Problem. (S11:02)

(a) Demonstrate the formula
LX = diX + iX d,

where L is the Lie derivative and i is the interior product.

(b) Use this formula to show that a vector field X on R3 has a flow that (locally)
preserves volume if and only if the divergence of X is everywhere 0.

Solution.

(a) This is one of Cartan’s formulas. No tricks here, just careful writing of defi-
nitions; see Morita or Lee.

(b) Consider the standard volume form ω = dx∧ dy∧ dz on R3. We are being
asked to show that LX ω = 0 if and only if ÷X ≡ 0. By Cartan’s formula we
compute

LX ω = diX ω + iX dω = diX ω.
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Write X = f ∂x+g∂y+h∂z. By linearity, and the definitions for dx,dy,dz,∂x,∂y,∂z,
we have

iX ω(Y,Z) = f ω(∂x,Y,Z)+gω(∂y,Y,Z)+hω(∂z,Y,Z)
= f (dy(Y )dz(Z)−dz(Y )dy(Z))+g(dz(Y )dx(Z)−dx(Y )dz(Z))
+h(dx(Y )dy(Z)−dy(Y )dz(Z))

= f (dy∧dz)(Y,Z)+g(dz∧dx)(Y,Z)+h(dx∧dy)(Y,Z).

Thus iX ω = f dy∧dz+gdz∧dx+hdx∧dy, and so

diX ω = ( fx +gy +hz)dx∧dy∧dz.

We thus have
LX(dx∧dy∧dz) = div X ·dx∧dy∧dz.

From here it is clear that LX(dx∧dy∧dz) = 0 if and only if div X ≡ 0.

Problem. (S11:09)

(a) State the Lefschetz fixed point theorem.

(b) Show that the Lefschetz number of any map from CP2n to itself is nonzero,
and hence every map from CP2n to itself has a fixed point.

Solution.

(a) We state the homological version, which can be found in Hatcher.

Definition. Let A be a finitely generated abelian group with torsion subgroup
Tor. Let f : A→ A be a homomorphism. Then the trace of f , denoted tr( f ),
is defined to be the trace of f : A/Tor→ A/Tor.

Lefschetz fixed point theorem. Let X be a topological space whose ho-
mology groups are finitely generated and vanish for dimensions > N. For a
continuous map F : X → X define the Lefschetz number τ(F) by

τ(F) =
N

∑
n=0

(−1)ntr(F∗ : Hn(X)→ Hn(X))

where F∗ : Hn(X)→ Hn(X) is the induced map on homology. If τ(F) 6= 0,
then F has a fixed point.
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(b) Let F : CP2n → CP2n be a continuous map. The homology of CP2n is Z
in even dimensions, 0 in odd dimensions. Since the homology groups are
free and finitely generated, by universal coefficients the integer cohomol-
ogy groups are dual to the integer homology groups, and F∗ : Hk(CP2n)→
Hk(CP2n) is the transpose of F∗ : Hk(CP2n)→ Hk(CP2n). In particular, these
maps have the same trace. Therefore

τ(F) =
4n

∑
k=0

(−1)ktr(F∗ : Hk(CP2n)→ Hk(CP2n))

=
4n

∑
k=0

(−1)ktr(F∗ : Hk(CP2n)→ Hk(CP2n))

=
2n

∑
j=0

tr(F∗ : H2 j(CP2n)→ H2 j(CP2n)).

Now, we note that the cohomology ring of CP2n is generated by a generator of
H2(CP2n). Let a be such a generator, and let M be an integer with F∗a = Ma.
Then

F∗(a j) = (F∗a) j = M ja j,

and since each 2 j-th degree cohomology group is Z, this gives

tr(F∗ : H2 j(CP2n)→ H2 j(CP2n)) = M j.

Therefore

τ(F) =
2n

∑
j=0

M j.

In particular this number is never 0, for any choice of integer M: the only
choice that could possibly work is M = −1, but because there are an odd
number of terms this cannot add to 0.

12 Fall 2011
Problem. (F11:01) Let M be an (abstract) compact smooth manifold. Prove that
there exists some n∈Z+ such that M can be smoothly embedded in the Euclidean
space Rn.

16



Solution. The following is from Lee. Let dimM = N. Since M is compact, M
admits a finite cover by regular coordinate balls or half-balls B1, . . . ,Bk: that is,
for each i there is a coodinate domain B′i ⊃ Bi such that the coordinate map ϕi :
B′i→ RN restricts to a diffeomorphism of Bi to a compact subset of RN . For each
i, let ρi : M→ R be a smooth bump function that is 1 on Bi and supported in B′i.
Define F : M→ RNk+k by

F(p) = (ρ1(p)ϕ1(p), . . . ,ρk(p)ϕk(p),ρ1(p), . . . ,ρk(p))

where ρiϕi is extended by 0 outside of supp ρ . F is clearly smooth; we claim F is
an injective immersion. Since M is compact, an injective immersion is automati-
cally an embedding, so this suffices to prove the claim.

To see that F is injective, suppose F(p) = F(q). p lies in some Bi, so ρi(p) = 1.
Then ρi(q) = 1 as well. Then

ϕi(p) = ρi(p)ϕi(p) = ρi(q)ϕi(q) = ϕi(q).

Since we took ϕi to be diffeomorphisms on Bi, we see that p = q.

To see that F is an immersion, let p ∈M. Then p ∈ Bi for some i. Since ρi ≡ 1
on Bi, d(ρiϕi)p = d(ϕi)p, which is injective. From this it follows that dFp is also
injective.

Problem. (F11:03) Let M be a compact, simply connected smooth manifold of
dimension n. Prove that there is no smooth immersion f : M→ T n, where T n is
the n-torus.

Solution. Suppose f is a smooth immersion f : M→ T n. Since dimM = n, f must
be a submersion as well, hence a local diffeomorphism. Since M is compact, f (M)
is also compact, and in particular closed. Since f is a local diffeomorphism, f (M)
is also open. Therefore f (M) = T n, and f is surjective. Since M is compact,
the preimages of compact sets are compact, so f is a proper map. A surjective
proper local diffeomorphism from a compact manifold is a covering map (stack
of records theorem). But M is simply connected, while the universal cover of T n

is Rn. Since the universal cover is unique up to isomorphism, there must be a
covering space isomorphism Rn→ M. However, a covering space isomorphism
is in particular a homeomorphism, and M is compact while Rn is not, so in fact
there does not even exist a homeomorphism Rn→M, contradiction.

Problem. (F11:04) Give a topological proof of the Fundamental Theorem of Al-
gebra.
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Solution. Let p(z) = zn +an−1zn−1 + · · ·+a0. Suppose, aiming for contradiction,
that p has no zeros. In particular we may take a0 6= 0. Let CR denote the closed
curve p(Reiθ ), θ ∈ [0,2π], and let wR denote the winding number of CR around 0.
For |z| sufficiently large, we note that∣∣∣∣∣n−1

∑
i=0

aizi

∣∣∣∣∣� |z|n,
and therefore if R is sufficiently large than the winding number of CR is equal to
the winding number of the curve (Reiθ )n = Rneinθ around 0; thus wR = n for R
large. On the other hand, when R is sufficiently small, then the dominant term in
the polynomial is a0, and so for R small wR is equal to the winding number of the
constant curve at a0; hence wR = 0 for R small. But winding number is invariant
under admissible homotopies of the curve, and since p has no zeros by hypothesis
the radial homotopy provides an obvious admissible homotopy between all curves
CR. But then we conclude that wR = n = 0, contradiction for n≥ 1.

Problem. (F11:05) Let f : M→ N be a smooth map between two manifolds M
and N. Let α be a p-form on N. Show that d( f ∗α) = f ∗(dα).

Solution. It suffices to prove the claim in local coordinates. Let x be local coordi-
nates on N. Assume without loss of generality that

α = gdxi1 ∧·· ·∧dxip.

Then since d2 = 0,
dα = dg∧dxi1 ∧·· ·∧dxip.

Then

f ∗(dα) = ( f ∗dg)∧ ( f ∗dxi1)∧·· ·∧ ( f ∗dxip)

= d(g◦ f )∧ (d(xi1 ◦ f ))∧·· ·∧ (d(xip ◦ f ))

and using d2 = 0 again,

d( f ∗α) = d((g◦ f )d(xi1 ◦ f )∧·· ·∧d(xip ◦ f ))

= d(g◦ f )∧d(xi1 ◦ f )∧·· ·∧d(xip ◦ f )).

Problem. (F11:08)
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(a) Let M be a Möbius band. Using homology, show that there is no retraction
from M to ∂M.

(b) Let K be a Klein bottle. Show that there exist homotopically nontrivial simple
closed curves γ1 and γ2 on K such that K retracts to γ1, but does not retract to
γ2.

Solution.

(a) See F13:02 for a more general version not using homology. Suppose r : M→
∂M is a retract, and let ι be the inclusion map ι : ∂M ↪→ M. Then r and ι

induce maps on singular homology, and r∗ι∗ = idH∗(∂M). But notice that if
a ∈ H1(∂M) is the homology class of ∂M, then because ∂M goes around the
central circle of the Möbius band twice it follows that ι∗(a) = 2b, where b
is the class of the middle circle of H1(M). a generates H1(∂M) ∼= Z and b
generates H1(M)∼=Z. We thus find that a = r∗ι∗(a) = 2r∗(b). But this cannot
be, because r∗ is surjective, contradiction.

(b) ?

Problem. (F11:07) Consider the form

ω = (x2 + x+ y)dy∧dz

on R3. Let S2 ⊂ R3 be the unit sphere, and i : S2→ R3 the inclusion.

(a) Calculate
´

S2 ω .

(b) Construct a closed form α on R3 such that i∗α = i∗ω , or show that such a
form α does not exist.

Solution.

(a) We compute
dω = (2x+1)dx∧dy∧dz.

Let B3 denote the closed unit ball in R3. By Stokes’ theoremˆ
S2

i∗ω =

ˆ
B3

dω =

ˆ
B3
(2x+1)dx∧dy∧dz.

Noting that x is odd, by symmetry the integral of 2xdx∧ dy∧ dz over B3 is
zero. Therefore we obtainˆ

S2
i∗ω =

ˆ
B3

dω =

ˆ
B3

dx∧dy∧dz = Vol(B3).
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(b) Such a form cannot exist. For suppose α is such a form. By the Poincaré
lemma, every closed form on R3 is also exact, so α = dη for some 1-form η

on R3. Then ˆ
S2

i∗α =

ˆ
S2

di∗η =

ˆ
∂S2

i∗η =

ˆ
∅

i∗η = 0.

On the other hand we know from (a) that the integral of i∗ω over S2 is not
zero, contradiction.

Problem. (F11:09) Let X be the topological space obtained from a pentagon by
identifying its edges in a cycle (see actual exam for picture). Calculate the homol-
ogy and cohomology groups of X with integer coefficients.

Solution. The CW complex structure on X has one 0-cell v, one 1-cell e attached
to v along both ends, and one 2-cell f that is attached to the 1-skeleton along the
word e5. The cellular chain complex associated to this is

0 Z Z Z 05 0

and we end up with the homology groups

H0(X) = Z, H1(X) = Z/5Z, H2(X) = 0.

Dualizing the cellular chain complex gives us the cochain complex

0 Z Z Z 05 0

and we thus obtain cohomology groups

H0(X) = Z, H1(X) = 0, H2(X) = Z/5Z.

Problem. (F11:10) Let X ,Y be topological space and f ,g : X→Y two continuous
maps. Consider the space Z obtained from the disjoint union Y ∏

(X × [0,1]) by
identifying (x,0)∼ f (x) and (x,1)∼ g(x) for all x ∈ X . Show that there is a long
exact sequence of the form:

· · · Hn(X) Hn(Y ) Hn(Z) Hn−1(X) · · ·

Solution. See S15:09.
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13 Spring 2012
Problem. (S12:09)
Suppose a finite group Γ acts smoothly on a compact manifold M and that the
faction is free, i.e. γ(x) = x for some x ∈M if and only if γ is the identity element
of Γ.

(a) Show that M/Γ is a manifold (i.e. can be made a manifold in a natural way).

(b) Show that M→M/Γ is a covering space.

(c) If the k-th de Rham cohomology of M is 0, some particular k > 0, is the k-th
de Rham cohomology of M/Γ necessarily 0? Prove your answer.

Solution.
(a) and (b) are standard results about quotient manifolds, but the proof of (a) is
quite involved; see Lee Chapter 21. As for (c), suppose Hk

dR(M) = 0. We can
then follow the argument of S10:05 to show that every closed form in Ωk(M/Γ)
is exact. Therefore it follows that Hk

dR(M/Γ) = 0 as well.

14 Fall 2012
Problem. (F12:02) For n ≥ 1, construct an everywhere non-vanishing smooth
vector field on the odd-dimensional real projective space RP2n−1.

Solution. Odd-dimensional projective spaces are compact, orientable, and have
Euler characteristic zero. Therefore it suffices to show that all compact connected
orientable smooth manifolds with zero Euler characteristic admit a nonvanishing
smooth vector field. Let M be such a manifold of dimension N, and let X be any
smooth vector field on M with isolated zeros. By compactness there can only be
finitely many, and by the Poincaré-Hopf theorem we know that

∑
p:Xp=0

ind(X , p) = 0.

Since M is connected, there is a coordinate chart U containing all the zeros of X ,
and we may choose U such that ∂U ' SN−1. Then since X does not vanish on
∂U , there is an induced map f : SN−1→ SN−1 : p 7→ Xp/|Xp| (where we give M
a Riemannian structure, so that |Xp| is well-defined). The degree of f is equal
to the sum of the indices of the zeros of X contained in U ; since every zero of
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X is contained in U , f is a degree zero map. Therefore f extends to a map f :
U → SN−1: that is, there is a vector field Y on U such that |Yp| = 1 on U , and
Yp = Xp/|Xp| on ∂U . Then we may extend Yp to M by setting Yp = Xp/|Xp| for all
p /∈U , since Xp is nonvanishing outside of U . Then Yp is the desired nonvanishing
vector field on M.

Problem. (F12:03)
Let Mm ⊂ Rn be a smooth submanifold of dimension m < n− 2. Show that its
complement Rn \M is connected and simply connected.

Solution.
See F14:02 for the assertion that Rn \M is connected. Now suppose f : S1 →
Rn \M is a loop. By Whitney approximation we may suppose that f is smooth
up to homotopy. Since Rn is simply connected, there is a homotopy that contracts
f to a point; again, up to homotopy this homotopy is smooth. Finally, we may
perturb f via a small homotopy so that f is actually a smooth embedding. Then
the contraction of f to a point sweeps out a smooth surface S with boundary.
Since transversality is generic, we may smoothly perturb this homotopy so that S
intersects M transversely. Then by the dimension-counting argument of F14:02 , S
does not intersect M. Therefore we have produced a homotopy of f to the constant
loop that stays within Rn \M; this shows that Rn \M is simply connected.

Problem. (F12:04)

1. Show that for any n≥ 1 and k∈Z, there exists a continuous map f : Sn→ Sn

of degree k.

2. Let X be a compact, oriented n-manifold. Show that for any k ∈ Z, there
exists a continuous map f : X → Sn of degree k.

Solution.
We may as well prove (b) only. First take k ≥ 0. Let x1, . . . ,xk be distinct points
in X , and let B1, . . . ,Bk ⊂ X be small disjoint coordinate neighborhoods diffeo-
morphic to Dn around x1, . . . ,xk respectively. Let N and S denote the north and
south poles of Sn respectively. Then we construct f as follows. Define f (x) = S
for all x /∈

⋃
Bi. As for x ∈ Bi, let h : Dn → Sn be a map sending 0 to N and

mapping diffeomorphically onto Sn \{S}, preserving orientations. (This is easily
accomplished by, say, stereographic projection). Then arranging the coordinate
neighborhoods so that xi corresponds to 0 in each coordinate chart, we obtain a
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map Bi→ Sn sending xi to N and mapping the rest of Bi diffeomorphically onto
Sn \{N,S}. Let f be this map on

⋃
Bi. Then f has degree k. For

deg f = ∑
p∈ f−1(N)

sgnJ f (p).

f−1(N) consists of {x1, . . . ,xk}, and at each xi f is an orientation-preserving dif-
feomorphism, so deg f = k. To extend this to k negative, carry out the above
construction for−k, but map Dn to Sn in an orientation-reversing manner; this can
be done by precomposing a stereographic projection with a reflection. Then f is
orientation-reversing at each xi, so deg f =−(−k) = k.

Problem. (F12:05)
Assume that ∆ = {X1, . . . ,Xk} is a k-dimensional distribution spanned by vector
fields on an open set Ω ⊂ Mn in an n-dimensional manifold. For each open set
V ⊂Ω define

ZV = {u ∈C∞(V ) : X1u = · · ·= Xku = 0}.

Show that the following are equivalent:

(a) ∆ is integrable.

(b) For each x ∈Ω there exists an open neighborhood x ∈V ⊂Ω and n− k func-
tions u1, . . . ,un−k ∈ ZV such that the differentials du1, . . . ,dun−k are linearly
independent at each point of V .

Solution.
Suppose ∆ is integrable. Then through p ∈ Ω, ∆ has an integral submanifold
N =M∩V , whose tangent bundle is spanned by {Xi |V}. Since N has codimension
n−k, N is locally cut out as the locus of n−k functions u1, . . . ,un−k with linearly
independent differentials (implicit function theorem). Since ui are constant on N,
it follows that Xiu j = 0 for all i, j; this produces the desired functions.

Now suppose (b) holds. We claim that the ideal I(∆) of forms vanishing on ∆ is
a differential ideal; then the claim follows by Frobenius. Note that it suffices to
show this locally, and for this to hold in V 3 x it suffices to show that the ideal
generated by {du1, . . . ,dun−k} (where ui are as given by the hypothesis (b)) is
equal to I(∆): this is because if ω is a form generated by du1, . . . ,dun−k, i.e.

ω =
n−k

∑
i=1

θi∧dui,
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then

dω =
n−k

∑
i=1

dθi∧dui +(−1)degθiθi∧ddui =
n−k

∑
i=1

dθi∧dui

is also generated by du1, . . . ,dun−k. Thus this ideal is a differential ideal.

To see that the ideal J generated by du1, . . . ,dun−k coincides with I(∆), first sup-
pose ω ∈J , and write ω =∑

n−k
i=1 θi∧dui. Then ω vanishes on ∆, as a consequence

of the fact that dui(X j) = X j(ui) = 0. Thus J ⊂ I(∆). Equality now follows from
dimension-counting, because J and I(∆) are both generated by n− k linearly
independent 1-forms.

Problem. (F12:07) Let n ≥ 0 be an integer. Let M be a compact (closed?), ori-
entable smooth manifold of dimension 4n + 2. Show that dimH2n+1(M;R) is
even.

Solution.
Same problem as S15:10.

Problem. (F12:08)
Show that there is no compact three-manifold M whose boundary is the real pro-
jective space RP2.

Solution.
Suppose for contradiction that such M exists, and assume for now that M is ori-
entable. Then we may construct an orientable closed 3-manifold N by taking
taking the disjoint union M ∏M and gluing their boundaries along the identity
map id : RP2→ RP2. Then there exist open subsets M1,M2 ⊂ N that each retract
to a copy of M, and whose intersection M1∩M2 retracts to RP2 (basically take a
small neighborhood of each copy of M in N). Then for this open cover of N we
have the Mayer-Vietoris sequence

· · · Hn
dR(N) Hn

dR(M)⊕Hn
dR(M) Hn

dR(RP
2) · · ·

which implies χ(N)− 2χ(M)+ χ(RP2) = 0. By Poincaré duality, since N is a
closed connected orientable 3-manifold, it follows that χ(N) = 0, and thus we
find that χ(RP2) is even. But χ(RP2) = 1, contradiction. If N happens to be
nonorientable (which could arise when M is nonorientable), then we consider the
orientation double cover Ñ → N. Since this is a 2-fold cover, we have χ(Ñ) =
2χ(N). Since Ñ is a closed connected orientable 3-manifold, χ(Ñ)= 0, so χ(N)=
0 and the rest of the proof follows through.
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Problem. (F12:09) Consider the coordinate axes in Rn:

Li = {(x1, . . . ,xn) : x j = 0 for all j 6= i}.

Calculate the homology groups of the complement Rn \ (L1∪·· ·∪Ln).

Solution.
This is basically the same problem as S16:08 , and the same observation makes
this problem trivial.

Problem. (F12:10)

(a) Let X be a finite CW complex. Explain how the homology groups of X ×S1

are related to those of X .

(b) For each integer n ≥ 0, give an example of a compact smooth manifold of
dimension 2n+1 such that Hi(X) = Z for i = 0, . . . ,2n+1.

Solution.

(a) We use cellular homology. Let Sn = Xn \Xn−1 be the collection of n-cells of
X . Give S1 the standard CW structure with one 0-cell v and one 1-cell e. Then
the product X × S1 has the product CW complex structure, whose cells are
products of cells in X and S1. For any given n, the n-cells of X×S1 consist of
the following:

i. Products of n-cells in X and v, and:

ii. Products of n−1-cells in X and the e.

In general, given two CW complexes Y and Z, y an m-cell of Y , and z an n-cell
of Z, the boundary homomorphism on the product works like

∂m+n(y,z) = (∂my,z)+(−1)m(y,∂nz).

For S1, the boundary maps are

∂0(v) = 0, ∂1(e) = v− v = 0.

Therefore for n-cells in X×S1,

∂n(en,v) = (∂nen,v)+(−1)n(en,0) = (∂nen,v),
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∂n(en−1,e) = (∂n−1en−1,e)+(−1)n−1(en−1,0) = (∂n−1en−1,e).

Since the (en
α ,v) and (en−1

α ,e) generate the n-cells, the kernel of ∂n is gener-
ated by those n-cells that are 0 above. Therefore ker∂n is generated by pairs
(en

α ,v) and (en−1
α ,e) with ∂nen

α = 0 and ∂n−1en−1
α = 0. Similarly im ∂n is gen-

erated by those pairs (a,v) and (b,e) with a ∈ im ∂n+1 and b ∈ ∂n. Therefore

Hn(X×S1) =
Zn(X×S1)

Bn(X×S1)
∼=

Zn(X)⊕Zn−1(X)

Bn(X)⊕Bn−1(X)
∼= Hn(X)⊕Hn−1(X).

(b) CPn×S1 will do.

15 Spring 2013
Problem. (S13:01) Let Matm×n(R) be the space of m×n matrices with real valued
coefficients.

(a) Show that the subset S ⊂Matm×n(R) of rank 1 matrices form a submanifold
of dimension m+n−1.

(b) Show that the subset T ⊂Matm×n(R) of rank k matrices form a submanifold
of dimension k(m+n− k).

Solution. Same question as S15:01.

Problem. (S13:02) Let M be a smooth manifold and ω ⊂ Ω1(M) a smooth 1-
form.

(a) Define the line integral ˆ
c
ω

along piecewise smooth curves c : [0,1]→M.

(b) Show that ω = d f for a smooth function f : M→ R if and only if
´

c ω = 0
for all closed curves c : [0,1]→M.

Solution.
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(a) First, suppose c is smooth, injective, and regular, i.e. ċ(t) 6= 0 for all t. Then
c([0,1]) is an embedded 1-manifold with boundary. For such c,

´
c ω is defined

as follows: for each t ∈ [0,1], let Ut be a coordinate neighborhood of c(t). By
compactness there is a finite sequence 0= t0 < · · ·< tN = 1 so that Ut0, . . . ,UtN
cover c([0,1]). Let 1= f1+ · · ·+ fN be a smooth partition of unity subordinate
to the cover {Uti} of c([0,1]). Write Vi =Uti ∩ c([0,1]). We then define

ˆ
c
ω =

N

∑
i=1

fi

ˆ
c−1(Vi)

c∗ω.

For a general smooth c, reparametrize so that c is regular, and break c into
pieces on which c is injective. This misses finitely many points, but such
points contribute a set of measure zero, so they do not contribute to the inte-
gral. Define

´
c ω as the sum of the integral of ω over such pieces. Finally,

when c is merely piecewise smooth, define
´

c ω as the sum of the integral of
ω over the smooth pieces.

(b) If ω = d f , and then by Stokes’ theorem it follows that
ˆ

c
ω =

ˆ
c
d f =

ˆ
∂c

f =
ˆ
∅

f = 0.

Conversely, if
´

c ω = 0 for all closed curves c, then the line integral
´

c ω for
arbitrary piecewise smooth curves c depends only on the endpoints of c. We
may therefore define a function f as follows: fix a base point p, and set

f (q) =
ˆ

c(p,q)
ω,

where c(p,q) : [0,1]→ M is any piecewise smooth path with c(0) = p and
c(1) = q. (This, of course, requires that M is path-connected, but this should
be implicit in the problem statement anyway.) Then d f = ω . For if we choose
a coordinate neighborhood (U,x) of q, then by path independence we can take
c within this coordinate neighborhood to be a polygonal path that moves par-
allel to the coordinate directions. In particular, by taking a smaller coordinate
neighborhood if necessary, we can take c to be a coordinate curve c(t) = x1(t),
(x1(0), . . . ,xn(0)) = q, and then by the fundamental theorem of calculus

d fq =
d
dt

∣∣∣∣
t=0

ˆ
c(t)

ω = (x1)
′(0)ω(q) = ω(q).
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Problem. (S13:03) Let S1,S2 ⊂M be smooth embedded submanifolds.

(a) Define what it means for S1,S2 to be transversal.

(b) Show that if S1,S2 ⊂ M are transversal then S1 ∩ S2 is a smooth embedded
submanifold of dimension dimS1 +dimS2−dimM.

Solution.

(a) S1 and S2 are transversal if

TpS1 +TpS2 = TpM

for all p ∈ S1∩S2.

(b) Write dimM = m, dimS1 = s1, dimS2 = s2. Let F : S1→M be the embedding
of S1 into M. Let p = F(q) ∈ S1 ∩ S2. By the implicit function theorem,
near p we may write S2 as the zero locus of m− s2 independent functions
g1, . . . ,gm−s2 : U → R. Then in a neighborhood W of q, we may write W ∩
F−1(S2) ⊂ S1 ∩ S2 as the zero locus of gi ◦ F , i = 1, . . . ,m− s2. Let g =
(g1, . . . ,gm−s2) : S2→Rm−s2 . Then g is a submersion, and g◦F : W →Rm−s2

is another submersion (since F is an embedding). Therefore 0 is a regular
value of g ◦F , and (g ◦F)−1(0) = W is a submanifold of S1 of codimension
m−s2, i.e. of dimension s1+s2−m. Since a manifold structure is determined
locally, we conclude that S1∩S2 is a submanifold of S1 of dimension s1+s2−
m.

Problem. (S13:04) Let S⊂M be given as F−1(c) where F = (F1, . . . ,Fk) : M→
Rk is smooth and c ∈ Rk is a regular value for F . If f : M→ R is smooth, show
that its restriction f |C to a submanifold C ⊂M has a critical point at p ∈C if and
only if there exist constant λ1, . . . ,λk such that

d fp = ∑λidF i
p

where dgp : TpM→ R denotes the differential of a smooth function g.

Solution.
(Remark: this is the Lagrange multiplier theorem.)

The wording of this question makes no sense, because presumably something
about S and the regularity of c needs to be used, but the assertion to be proved
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makes no reference to either. We will therefore assume the examiners intended to
write C = S.

Write m = dimM, so that dimS = n− k. Let p ∈ S, and suppose p is critical for
f |S; that is, d( f |S)p : TpS→ R is the zero map. In particular, d f is a 1-form that
vanishes on TpS. Consider the vector space

V = {ω ∈ T ∗p M : TpS⊂ kerω}.

We claim that V has dimension k, and is in particular spanned by dF i
p, i = 1, . . . ,k.

That dF i
p ∈V is obvious, because F is constant on S, and therefore dF i

p acts triv-
ially on TpS. They are also linearly independent because S = F−1(c) and c is a
regular value of F . To see that dimV = k, we note that T S is a k-dimensional
distribution on M, and therefore the ideal of forms vanishing on T S is locally gen-
erated by n− (n− k) = k independent 1-forms. Thus it follows that dimV = k,
and the required assertion follows.

For the converse, suppose p ∈ S and d fp = ∑λidF i
p. Then as previously noted,

dF i
p is zero on TpS. So clearly d fp is also zero on TpS, which is to say p is critical

for f |S.

Problem. (S13:05) Let M be a smooth orientable compact manifold with bound-
ary ∂M. Show that there is no smooth retract r : M→ ∂M.

Solution. See also F13:02 for the case of general manifolds. Let n = dimM. Since
∂M is a closed orientable (n− 1)-manifold, ∂M has an orientation form ω . Via
the retraction r, we define an (n− 1)-form on M: η = r∗ω . Let ι : ∂M→M be
the inclusion: then r ◦ ι = id∂M. Thenˆ

∂M
ω =

ˆ
∂M

(r ◦ ι)∗ω =

ˆ
∂M

ι
∗r∗ω

=

ˆ
∂M

ι
∗
η =

ˆ
M

dη

=

ˆ
M

dr∗ω =

ˆ
M

r∗dω

=

ˆ
M

0 = 0.

But this contradicts the fact that ω is an orientation form.

Problem. (S13:09) Let F : M→ N be a finite covering map between closed man-
ifolds. Either prove or find counterexamples to the following questions.
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(a) Do M and N have the same fundamental groups?

(b) Do M and N have the same de Rham cohomology groups?

(c) When M is simply connected, do M and N have the same singular homology
groups?

Solution.
The same example works for all three parts: S2→ RP2.

16 Fall 2013
Problem. (F13:02) Let M be a connected compact manifold with boundary ∂M.
Show that M does not retract onto ∂M.

Solution. We will show there is no smooth retraction. See also S13:05 for the
orientable case using de Rham cohomology. Suppose r : M → ∂M is a smooth
retract. By Sard’s theorem, almost every point of ∂M is a regular value of r. If
p ∈ ∂M is a regular value, then r−1(p) is a submanifold of M of codimension
n− 1, i.e. dimension 1. Since M is compact, r−1(p) is also compact. By the
classification of compact 1-manifolds, r−1(p) consists of a finite disjoint union
of circles and closed intervals, and thus ∂ r−1(p) has even cardinality. However,
∂ r−1(p)⊂ ∂M, and r−1(p)∩∂M = {p}. So the only way ∂ r−1(p) can have even
cardinality is if r−1(p) has empty boundary. But certainly p must be a boundary
point of r−1(p), contradiction.

Problem. (F13:03) Let M,N ⊂ Rp+1 be compact smooth oriented submanifolds
of dimensions m and n, respectively, such that m+n= p. Suppose that M∩N =∅.
Consider the map

λ : M×N→ Sp : λ (x,y) =
x− y
|x− y|

.

The degree of λ is known as the linking number l(M,N).

(a) Show that l(M,N) = (−1)(m+1)(n+1)l(N,M).

(b) Show that if M is the boundary of an oriented submanifold W ⊂Rp+1 disjoint
from N, then l(M,N) = 0. (May require M to be compact and ∂N =∅.)

Solution.
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(a) Define the map

A : M×N→ N×M : A(x,y) = (y,x).

Define
λ1 : M×N→ Sp : λ1(x,y) =

x− y
|x− y|

and
λ2 : N×M→ Sp : λ2(y,x) =

y− x
|y− x|

.

Then
λ1(x,y) =−λ2(A(x,y)) = r ◦λ2 ◦A(x,y),

where r : Rp+1→ Rp+1 is given by r(z) =−z. Since degrees are multiplica-
tive across compositions,

deg(λ1) = deg(r)deg(λ2)deg(A).

deg(r) = (−1)p+1 = (−1)m+n+1, because r is the composition of p+ 1 re-
flections. As for A, note that A is a diffeomorphism. Fix (y,x) ∈ N×M, so
that

degA = sgn(dA(x,y)).

If B is an ordered basis of TxM, and B′ is an ordered basis of TyN, then dA(x,y)
sends the concatenated basis (B,B′) to (B′,B). Therefore the sign of dA(x,y)
is (−1)mn. Therefore

deg(λ1) = (−1)mn+1 deg(λ2).

Since deg(λ1) = l(M,N) and deg(λ2) = l(N,M), we have

l(M,N) = (−1)mn+m+n+1l(N,M) = (−1)(m+1)(n+1)l(N,M).

(b) If ∂N =∅, then ∂ (W ×N) = M×N. Note that if M = ∂W , then λ extends to
W×N by the same formula, because W ∩N =∅. Since degrees are defined as
intersection numbers, and intersection numbers are zero when a map extends
from the boundary to the whole manifold, it follows that deg(λ ) = l(M,N) =
0.

Problem. (F13:04) Let ω be a 1-form on a connected manifold M. Show that ω

is exact if and only if for all piecewise smooth closed curves c : S1→M it follows
that
´

c ω = 0.
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Solution. See S13:02.

Problem. (F13:05) Let ω be a smooth nowhere vanishing 1-form on a 3-manifold
M3.

(a) Show that kerω is an integrable distribution on M if and only if ω ∧dω = 0.

(b) Give an example of a codimension one distribution on R3 that is not inte-
grable.

Solution.

(a) Suppose kerω is an integrable distribution. The ideal of forms vanishing on
kerω , I(kerω), is generated by the 1-form ω in the sense that for all η ∈
I(kerω), there is a form θ such that η = θ ∧ω . By Frobenius, I(kerω) is
also a differential ideal, so dω ∈ I(kerω). Then dω = θ ∧ω for some form
θ . Then ω ∧dω = ω ∧θ ∧ω = 0.

Suppose ω ∧ dω = 0. We check that kerω is involutive. Let X ,Y be local
vector fields in kerω: we must show that [X ,Y ] ∈ kerω as well. We may
assume without loss of generality that X and Y are linearly independent. We
have

dω(X ,Y ) =−1
2

ω([X ,Y ]).

Now, let Z be another local vector field such that X ,Y,Z are linearly inde-
pendent; one exists because the tangent spaces are 3-dimensional. We then
compute:

0 = ω ∧dω(X ,Y,Z)
= ω(X)dω(Y,Z)−ω(Y )dω(Z,X)+ω(Z)dω(X ,Y )
= ω(Z)dω(X ,Y ).

But ω(Z) 6= 0, since kerω is 2-dimensional and X ,Y,Z are independent. There-
fore dω(X ,Y ) = 0. Therefore ω([X ,Y ]) = 0, and hence kerω is involutive.

(b) Take M = R3 and the plane field spanned by X = ∂x + y∂z, Y = ∂y. This
distribution fails to be involutive: one finds that [X ,Y ] =−∂z, which is not in
the span of X and Y .

Problem. (F13:07) Let M = T 2−D2 be the complement of a disk inside the two-
torus. Determine all connected surfaces that can be described as 3-fold covers of
M.
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Solution. Let M̃ be such a surface. Since M̃ is a finite covering of a compact space,
it follows that M̃ is compact. M is the genus 1 compact orientable surface with 1
hole, so χ(M) = 2−2 ·1−1 =−1. Then since M̃ is a 3-sheeted cover, we have

χ(M̃) =−3χ(M) =−3.

Finally, M̃ inherits the orientability of M. Choosing among compact orientable
surfaces with Euler characteristic −3, by classification of surfaces we have the
following choices for Σg,n (the compact orientable surface of genus g and n holes):

Σ2,1,Σ1,3,Σ0,5.

From here, we can rule out Σ0,5. This is because the covering map must send
boundary points to boundary points (since it is a local homeomorphism, and
boundary points have neighborhoods homeomorphic to a half-plane while non-
boundary points do not). If Σ0,5 were to cover Σ1,1, then the five boundary circles
of Σ0,5 would necessarily map to the one boundary circle of Σ1,1, and so on the
boundary the covering would be at least 5-fold. So our list of candidates is reduced
to

Σ2,1,Σ1,3.

Σ1,3 can be realized as a covering fairly easily: basically take three copies of the
standard CW structure for Σ1,1 and glue them side by side. For Σ2,1, one can
construct an irregular cover corresponding to a non-normal index 3 subgroup of
Z ∗Z, and examining the corresponding homomorphism into S3 induced by its
action on the fiber of the basepoint. (See http://math.stackexchange.com/

q/1901523/98602 for details.)

Problem. (F13:09) Let H ⊂ S3 be the Hopf link. Compute the fundamental
groups and homology of the complement S3−H.

Solution. First, regard S3 as the one-point compactification of R3. Consider R3−
S1. This space is the union of disjoint tori, forming increasing shells around S1 ⊂
R2 ⊂ R3, and the z-axis. Post-compactification, the z-axis compactifies to the
other circle S1 in H. Therefore S3− S1 can be thought of as R3−{z-axis}, and
S3−H can be thought of as R3−{z-axis}−S1. This deformation retracts to two
disjoint circles. Consequently the fundamental group is Z (regardless of choice
of basepoint) and the homology is Z2 in dimensions 0 and 1, and 0 for all other
dimensions.
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Problem. (F13:10) Let H= R⊕Ri⊕R j⊕Rk be the group of quaternions, with
relations i2 = j2 = −1, i j = ji = −k. The multiplicative group H∗ = H−{0}
acts on Hn−{0} by left multiplication. The quotient HPn−1 = (Hn−{0})/H∗ is
called the quaternionic projective space. Calculate its homology groups.

Solution. We claim that HPn−1 has a cell decomposition with one cell in every
fourth dimension, up to dimension 4n−4. From here it follows immediately that
H4k(HPn−1;Z) ∼= Z for 0 ≤ k ≤ n− 1, and H j(HPn−1;Z) = 0 otherwise. To see
that we have this cell structure, we will adapt the description of the cell structure
for CPn from Hatcher. Note first that the quotient is equivalent to taking the
quotient of S4n−1 ⊂ Hn ' R4n by the unit quaternions h ∈ H, i.e. h = (x,y,z,w)
with |h|2 = |x|2 + |y|2 + |z|2 + |w|2 = 1. Now, consider

S4n−1
+ = {(z,w) ∈Hn−1⊕H : (z,w) ∈ S4n−1,w ∈ R≥0} ' D4n−1.

By w ∈ R we mean w is a quaternion that is purely real, i.e. w = w+ 0i+ 0 j+
0k. Now, it is a fact that if h ∈ H−{0}, then there exists a unit quaternion u
such that uh ∈ R≥0 (by unique polar decomposition of quaternions, which the
exam writers apparently expect to be common knowledge). Also, all elements of
∂S4n−1

+ ' S4n−5 are related to one another by a unit quaternion, quaternions being
a division algebra. Thus HPn is formed by taking the quotient of D4n−1 by the
unit quaternions on the boundary, and the quotient of the boundary S4n−5 by unit
quaternions defines (after the obvious induction) an attaching map to HPn−2.

17 Spring 2014
Problem. (S14:01)
Let Γ⊂ R2 be the graph of of the function y = |x|.

(a) Construct a smooth function f : R→ R2 whose image is Γ.

(b) Can f be an immersion?

Solution.

(a) Set
f (t) = e−

1
t2 (t, |t|).

Then f is smooth. The only point of concern is t = 0, but here it suffices to

observe that |t|e−
1
t2 is smooth.
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(b) f cannot be an immersion. Write f = (g,h). If f were an immersion, then
d f = (g′,h′) would have to be nonvanishing. Clearly h cannot be monotone,
because the graph of h is that of |x| and this has a local minimum, so h′ cannot
be nonvanishing. Also g′ cannot be nonvanishing; because then g′(0) would
be nonzero, so g would be a local diffeomorphism about 0. Then h◦g−1 must
be smooth in a neighborhood of 0. But h(g−1(x)) = |x|, which cannot be
smooth.

Problem. (S14:02) Let W be a smooth manifold with boundary, and f : ∂W →Rn

a smooth map, for some n≥ 1. Show that there exists a smooth map F : W → Rn

such that F |∂W= f .

Solution.
By Whitney embedding, we may take W to be embedded in RN for some N suffi-
ciently large. Give RN and W the Riemannian structure induced by the Euclidean
inner product. Let NW denote the normal bundle of W . By the tubular neighbor-
hood theorem there exists a neighborhood U ⊂RN of ∂W that is the diffeomorphic
image under the map E : N∂W → RN : (p,v) 7→ p+ v of a set of the form

V = {(p,v) ∈ N∂W : |v|< δ (p)},

where δ : ∂W→ (0,∞) is some positive continuous function. Moreover, by choos-
ing δ to be a sufficiently small function, we may assume that each q ∈U has a
nearest point in ∂W , and the map q 7→ F(q) sending q to this nearest point is
a submersion F : U → ∂W . Now take a smooth compactly supported function
g : U → R that is equal to 1 on ∂W (one can be constructed by covering ∂W with
balls and using a partition of unity argument). Define the extension of f to U by

f (q) = f (F(q))g(q).

Since F(q) = q for q∈ ∂W , and g(q) = 1 on ∂W , this does indeed define a smooth
extension. Since g has compact support, we can now extend f by 0 to W \U , and
this produces a smooth extension of f to W .

Problem. (S14:03) Determine the values of n ≥ 0 for which the antipodal map
Sn→ Sn : x 7→ −x is isotopic to the identity.

Solution. The antipodal map on Sn can be achieved by n+1 reflections, along one
coordinate direction at a time. Each reflection is a map of degree −1 since it is
an orientation-reversing diffeomorphism. Therefore the antipodal map has degree
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(−1)n+1. By the Hopf degree theorem, this can only be homotopic to the identity
if n is odd. So at the minimum we require that n is odd. This is also sufficient,
because an even number of reflections can be obtained by rotations, which are
isotopies.

Problem. (S14:04) Let ω1, . . . ,ωk be 1-forms on a smooth n-manifold M. Show
that {ωi} are linearly independent if and only if

ω1∧·· ·∧ωk 6= 0.

Solution. See S15:03 for a related problem.

Assume that {ωi} are linearly independent. Let p ∈ M, and complete {ωi} to a
basis ω1, . . . ,ωn of T ∗p M. Then the k-fold wedge products ωi1∧·· ·∧ωik , i1 < · · ·<
ik, form a basis of the k-th exterior power

∧k(T ∗p M). Then clearly we must have
(ω1∧ ·· ·∧ωk)p 6= 0. Since p ∈M was arbitrary, we in fact see that ω1∧ ·· ·∧ωk
is nonvanishing.

Conversely, suppose ω1 ∧ ·· · ∧ωk 6= 0. Let p ∈ M with (ω1 ∧ ·· · ∧ωk)p 6= 0.
Suppose a1, . . . ,ak ∈ R such that

0 =
k

∑
i=1

ai(ωi)p.

Then wedging with
ω1∧·· ·∧ ω̂i∧·· ·∧ωk

(where the hat represents the omission of the corresponding 1-form) we find that

0 = (−1)i−1ai(ω1∧·· ·∧ωk)p.

for all i = 1, . . . ,k. Since (ω1∧·· ·∧ωk)p 6= 0 we conclude that ai = 0.

Problem. (S14:05) Let M = R2/Z2 be the 2-torus, L the line 3x = 7y in R2, and
S = π(L)⊂M where π : R2→M is the projection map. Find a differential form
on M that represents the Poincaré dual of S.

Solution. See F15:04 for essentially the same problem.

Problem. (S14:07) Let X = S1 ∨ S1. Give an example of an irregular covering
space X̃ → X .
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Solution. This amounts to finding a non-normal subgroup of π1(X)∼= Z∗Z. One
such example is the subgroup of 〈a,b〉 generated by ab; this does not contain the
conjugate

ba = (ba−1)(ab)(b−1a) = (ba−1)(ab)(ba−1)−1.

The connected covering space corresponding to this subgroup will be irregular.
See Hatcher p.58 ex. (13) for a picture.

Problem. (S14:08) For n ≥ 2, let Xn be the space obtained from a regular (2n)-
gon by identifying the opposite sides with parallel orientations. This produces a
cell decomposition of X .

(a) Write down the associated cellular chain complex.

(b) Show that Xn is a surface, and find its genus.

Solution.

(a) As can be verified from drawing a few examples, the edge identifications lead
to a cell structure with n edges, 1 face, and either 1 vertex if n is even, or 2
vertices if n is odd. The chain groups are free abelian on the basis of cells in
each dimension. Thus for the cellular chain complex we have two cases:

1. If n is even, then we have one 0-cell v, n 1-cells e1, . . . ,en, and one 2-cell
f . The chain complex is

0 Z〈 f 〉
2

Z〈e1, . . . ,en〉
1

Z〈v〉
0

0
∂2 ∂1

where the cellular boundary maps are as follows. For ∂2,

∂2( f ) = e1 + · · ·+ en− e1−·· ·− en = 0

according to the word e1 · · ·ene−1
1 · · ·e−1

n that defines the attaching map.
For ∂1,

∂1(ei) = v− v = 0.

2. If n is odd, then now we have two 0-cells v and w, and the remaining data
is the same. The chain complex is

0 Z〈 f 〉
2

Z〈e1, . . . ,en〉
1

Z〈v,w〉
0

0
∂2 ∂1
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We still have
∂2( f ) = 0,

but for ∂1 we have
∂1(ei) = v−w.

(b) The standard polygonal representation of a surface S is as the 2n-gon with
edges identified according to either the word [e1,e2][e3,e4] · · · [en−1,en] if S is
orientable, where [ei,e j] = eie je−1

i e−1
j is the commutator word, and e2

1e2
2 · · ·e2

n
if S is nonorientable. For Xn, the edge identifications give us instead the word
e1 · · ·ene−1

1 · · ·e−1
n . We must show that this is equivalent to either of the two

standard presentations. This uses techniques in the proof of classification of
surfaces, which we will not prove in this limited space, but we will at least
state the relevant results. (See any proof of classification of closed orientable
surfaces for rigorous proofs of the details; for example, Algebraic Topology:
A First Course by W. Fulton, Chapter 17.)

The basic rule is that if we have two letters α and β in the word so that they
appear in a sequence

· · ·α · · ·β · · ·α−1 · · ·β−1 · · · ,

then by a sequence of cuts and new edge relabelings there is an equivalent
word with the same number of letters (by which we mean a word whose edge
identifications produce a homeomorphic space) with α,β ,α−1,β−1 deleted,
an intact commutator [γ,δ ] added, and without disturbing other such com-
mutator sequences. Thus in the case of n even, we can successively match
pairs of distant commutator sequences until we are brought to the standard
presentation of the genus n

2 orientable surface. For n odd, this results in one
mismatched word of the form aa−1, which cancels itself, and thus in this
case we can delete the corresponding edge from the polygonal representation.
Thus in this case we have the genus n−1

2 orientable surface.

If we do not wish to go through this procedure, there is a easy way to find the
genus, provided we are willing to assume that Xn is indeed a surface. Taking
alternating sums of the number of k-cells, we find that χ(Xn) is 1− n+ 1 =
2− n when n is even, and 2− n+ 1 = 3− n when n is odd. Since the word
for the polygonal representation always introduces a letter a with its inverse
a−1, we know that the resulting surface will be orientable. Since all edges are
identified, the surface will also be closed. The closed orientable surface of
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genus g has Euler characteristic 2−2g. So for n even, we solve

2−2g = 2−n

to find g = n
2 , and for n odd we solve

2−2g = 3−n

to find g = n−1
2 , in agreement with our more involved approach.

Problem. (S14:09)

(a) Consider the space Y obtained from S2×[0,1] by identifying (x,0) with (−x,0)
and (x,1) with (−x,1) for all x ∈ S2. Show that Y is homeomorphic to the
connected sum RP3#RP3.

(b) Show that S2×S1 is a double cover of the connected sum RP3#RP3.

Solution.

(a) Y consists of the union of S2×(0,1) and RP2×{0,1}. This is homeomorphic
to RP3#RP3 in the following way. The connected sum can be formed by
deleting the top cells of each copy of RP3 (same as deleting a 3-ball), then
attaching the underlying 2-skeleton (which is RP2) to the 3-cylinder S2× [0,1]
to each end along the map S2→ RP2. This results in precisely the space Y as
described above.

(b) Take S1 as the unit circle in the complex plane. We give RP3#RP3 the struc-
ture from part (a). The cover goes as follows: S2×{1} covers RP2×{0}
by the standard covering map S2 → RP2. S2×{−1} covers RP2×{1} in
the same way. The remaining two arcs of S1 contribute spaces which are
homeomorphic to S2× (0,1), each singly cover S2× (0,1) (with the appro-
priate orientation on the arcs so that the map is continuous), so that each
S2×{t} ⊂ S2× (0,1) gets covered by two 2-spheres, one from each arc.

Problem. (S14:10) Let X be a topological space. Let SX , the suspension of X , be
the space obtained from X× [0,1] by collapsing X×{0} to a point and X×{1} to
another point. Determine the relationship between the homology of SX and of X .
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Solution. Write SX = A∪B, where

A = X× [0,
3
4
)/∼, B = X× (

1
4
,1]/∼ .

Then A and B are cones over X , and in particular they deformation retract to a
point. Their intersection is X × (1

4 ,
3
4), which deformation retracts to X . We thus

obtain a long exact sequence

· · · Hn(A∩B) Hn(A)⊕Hn(B) Hn(SX) Hn−1(A∩B) · · ·

which, after submitting our information about A, B, and A∩B becomes

· · · Hn(X) 0 Hn(SX) Hn−1(X) 0 · · ·

In particular, we obtain isomorphisms Hn(SX) ∼= Hn−1(X) for all n, and the iso-
morphism is given by the Mayer-Vietoris connecting homomorphism.

18 Fall 2014
Problem. (F14:01) Let f : M → N be a proper immersion between connected
(compact?) manifolds of the same dimension. Show that f is a covering map.

Solution. This is the stack of records theorem. We must show:

(a) f is surjective. Since f is an immersion, and dimM = dimN, f is a local dif-
feomorphism, and therefore an open map; thus f (M) is open in N. Provided
M is compact (or provided N is compact, which implies M is compact since
f is proper), f (M) is also closed. Since N is connected, f (M) = N.

(b) Every p∈N has a neighborhood U 3 p such that f−1(U) is the disjoint union
of open sets, each homeomorphic to U. Let p ∈ N. Since {p} is compact, and
f is proper, f−1(p) is compact. Since f is a surjective local diffeomorphism,
every point of N is a regular value of f , and therefore f−1(p) is a compact
submanifold of M of codimension dimN = dimM; hence f−1(p) is a compact
zero-dimensional submanifold, hence finite. Then for each q∈ f−1(p), by the
inverse function theorem there exist neighborhoods Vq 3 q and Uq 3 p such
that the restriction f : Vq → Uq is a C1 diffeomorphism. Moreover, since
f−1(p) is finite, we may pick the Vq so that they are all disjoint, and take
U =

⋂
q∈ f−1(p) f (Vq) so that each Vq is diffeomorphic through f to U . This

completes the proof.
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Problem. (F14:02)
Let Mm ⊂ Rn be a closed connected submanifold of dimension m.

(a) Show that Rn \Mm is connected when m≤ n−2.

(b) When m = n−1, show that Rn \Mm is disconnected by showing that the mod
2 intersection number I2( f ,M) = 0 for all smooth maps f : S1→ Rn.

Solution.
See also F12:03.

(a) Let x,y be distinct points in Rn\Mm. Let γ : I→Rn be a smooth path joining x
and y. Since transversality is generic, γ is smoothly homotopic to another path
γ̃ joining x and y that is transverse (both as a mapping and as a submanifold)
to M. But then γ̃ is a path in Rn that does not intersect M. For suppose for
contradiction that γ̃(t) = p is such an intersection. Then by transversality, we
have

dγ̃t(TtR)+TpM = Rn.

But TtR is one-dimensional, and M is m-dimensional; so the largest dimension
the above vector space sum can have is m+ 1 ≤ n− 1 < n, contradiction.
Therefore x and y can be joined by a path that does not intersect M, proving
that M is path connected.

(b) I choose not to do this part on the grounds that the Jordan-Brouwer separation
theorem is not a qual problem, but rather an exercise in sadism by the qual
committee. An outline of the proof is in Guillemin & Pollack.

Problem. (F14:03)
Let ω be an n-form on a closed connected non-orientable smooth manifold M and
let π :O→M be the orientation cover.

(a) Show that π∗ω is exact.

(b) Show that ω is exact.

Solution.

(a) SinceO is connected, closed, and orientable, its top cohomology is Hn
dR(O)∼=

R, with this isomorphism going as follows:

[θ ]←→
ˆ
O

θ ∈ R.
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In particular an n-form is zero in cohomology, i.e. exact, if and only if it
integrates to 0 over M. So we claim that

´
O π∗ω = 0.

Consider the group of covering transformations {id,F} where F is the unique
non-identity covering transformation. We observe that F is orientation-reversing.
For suppose F were orientation-preserving. Then we could define an orien-
tation on M, by first choosing an orientation on O, and using the action of π

to carry the orientation to M: for each p ∈ f−1(q), define the orientation at q
to be the one induced by the local diffeomorphism TpO → TqM. This gives
a well-defined orientation because F is orientation-preserving, so the induced
orientation does not depend on the choice of point in the fiber.

By definition of degree, we haveˆ
O

F∗π∗ω = degF
ˆ
O

π
∗
ω =−

ˆ
O

π
∗
ω,

where degF =−1 because F is an orientation-reversing diffeomorphism. On
the other hand, since F is a covering transformation, π ◦F = π , and therefore
F∗π∗ = π∗. Thereforeˆ

O
π
∗
ω =

ˆ
O

F∗π∗ω =−
ˆ
O

π
∗
ω,

and the claim is proved.

(b) Same argument as S10:05. Show that the covering map induces a pullback
that is injective on forms. Average the form obtained in (a) over the action of
the deck transformations and show that this can be used to define a form on
M. Show that this form is exact by leveraging the injectivity of the pullback.

Problem. (F14:04) Show that for n ≥ 1, any smooth map f : Sn−1→ Sn−1 has a
smooth extension F : Dn→ Dn.

Solution. Let ϕ : [0,∞)→ [0,1] be a smooth function supported in [1
2 ,

3
2 ] which is

1 on [3
4 ,

5
4 ]. (One can be constructed by convolving the indicator function of [3

4 ,
5
4 ]

with an appropriate smooth compactly supported mollifier.) Define Φ :Rn→ [0,1]
as the radially symmetric function with Φ(x) = ϕ(|x|); then Φ is supported in the
annulus {1

2 ≤ |x| ≤
3
2} and is 1 on the annulus {3

4 ≤ |x| ≤
5
4}. Define F : Dn→Dn

by

F(x) =

{
Φ(x) f (x/|x|) 0 < |x| ≤ 1,
0 x = 0.
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Then this is a smooth extension of f .

Problem. (F14:05) Let M be a smooth manifold and ω a nowhere-vanishing 1-
form on M. Show that ω is locally proportional to the differential of a function (i.e.
around each p ∈M there exists a neighborhood U 3 p and functions f ,λ : U→R
such that ω = λd f on U) if and only if ω ∧dω = 0.

Solution. Suppose ω is locally proportional to the differential of f at p. Then
since the exterior derivative can be computed purely locally, we have

dω = dλ ∧d f .

Then
ω ∧dω = λd f ∧dλ ∧d f = 0.

Conversely, suppose ω ∧dω = 0. Then kerω is an involutive distribution of codi-
mension 1; see F13:05. Therefore at every point p ∈ M, there is an immersed
integral submanifold N through p, that is, TpN = kerωp. An immersed subman-
ifold of codimension 1 can locally be expressed as the zero locus of a function,
so there is a neighborhood U 3 p so that N ∩U = {q ∈ U : f (q) = 0}. Then
d fq(X) = 0 for any X ∈ TqN = kerωq, so kerωq = kerd fq. Thus it follows that
d fq = λ (q)ωq for some λ (q) 6= 0, which proves the claim.

Problem. (F14:06) Recall that the rank of a matrix is the dimension of the span
of its row vectors. Show that the space of all 2× 3 matrices of rank 1 forms a
smooth manifold.

Solution. See S15:01.

Problem. (F14:08)
Consider the space X = M1∪M2, where M1 and M2 are Möbius bands and M1∩
M2 = ∂M1 = ∂M2.

(a) Determine the fundamental group of X .

(b) Is X homotopy equivalent to a compact orientable surface of genus g for some
g?

Solution.
Here is a solution that handles both parts at once. X is the space obtained by
taking two Möbius bands and attaching them to each other by a homeomorphism
along their boundaries. This is homotopy equivalent to the space obtained by
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taking a cylinder, equivalently a sphere with two holes punched out, and attaching
a Möbius band to each boundary circle along the boundary of the Möbius band.
This is precisely the description of the closed nonorientable surface of genus 2
from classification of surfaces. Therefore the fundamental group is 〈a,b | a2b2〉
and X cannot be homotopy equivalent to a compact orientable surface of genus
g, because the homology is invariant under homotopy equivalence. X has first
homology Z⊕Z/2Z and the closed surface of genus g has Z2g instead.

Problem. (F14:10) Let D be the unit disk in the complex plane, let S1 be the unit
circle in the complex plane. Consider the 2-torus T 2 and two discs D1 and D2. Let
X be the quotient of the disjoint union T 2 ∏D1

∏D2 by the equivalence relations

eiθ ∼ (eipθ ,1), eiφ ∼ (1,eiqφ )

where eiθ ∈ D1, eiφ ∈ D2, and p,q are integers > 1. Find the homology groups of
X .

Solution. X has the following CW structure:

1. One 0-cell v.

2. Two 1-cells a,b attached to v along their endpoints.

3. Three 2-cells α,β ,γ attached to the 1-cells along the following words:

α : aba−1b−1; β : ap; γ : bq.

This gives rise to the following cellular chain complex:

0 Z〈α,β ,γ〉 ∼= Z3 Z〈a,b〉 ∼= Z2 Z〈v〉 ∼= Z 0
∂2 ∂1

where the cellular boundary maps are given as follows:

∂2(α) = a+b−a−b = 0;
∂2(β ) = pa;
∂2(γ) = qb;
∂1(a) = ∂1(b) = v− v = 0.

From here we see that H0(X)∼= Z ∂3 : Z3→ Z2 is given by the matrix[
0 p 0
0 0 q

]
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and so im ∂3 has rank 2, ker∂3 has rank 1. So

H1(X) =
ker∂1

im ∂2
∼=

Z2

Z2 = 0,

H2(X) = ker∂2 ∼= Z.

19 Spring 2015
Problem. (S15:01) Let M(n,m,k)⊂M(n,m) denote the space of n×m matrices
of rank k. Show that M(n,m,k) is a smooth manifold of dimension nm− (n−
k)(m− k).

Solution. Let Z denote the set of all block matrices of the form

A =

[
B C
D E

]
where B is a k×k nonsingular matrix. Then Z is an open submanifold of M(n,m),
because M(n,m) ' Rnm and the nonsingularity of B is an open condition. Let
A ∈ Z be as above. Then right multiplying by the m×m block matrix

X =

[
idk×k −B−1C

0 id(m−k)×(m−k)

]
we obtain the n×m block matrix

AX =

[
B 0
D −DB−1C+E

]
Since X is nonsingular, A has rank k if and only if AX has rank k, which is true if
and only if −DB−1C+E = 0.

Define the map

F : Z→M(n− k.m− k) :
[

B C
D E

]
7→ −DB−1C+E.

F is clearly smooth. We claim that the zero matrix is a regular value of F . Let
Y ∈M(n− k.,m− k), and consider the path

γ(t) =
[

B C
D E + tY

]
.
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γ is a smooth curve in Z with γ ′(0) = Y . Then for any A ∈ Z,

dFA

[
0 0
0 Y

]
=

d
dt

∣∣∣∣
t=0

(F ◦ γ) =
d
dt

∣∣∣∣
t=0

(−DB−1C+E + tY ) = Y.

Therefore dFA : TAZ→ TF(A)M(n− k,m− k) ∼= M(n− k,m− k) is surjective, re-
gardless of whether F(A) = 0. We thus conclude that 0 is a regular value of F , and
hence F−1(0) is a codimension (n− k)(m− k) submanifold of Z, and therefore a
submanifold of M(n,m) of dimension nm− (n− k)(m− k).

Finally, we note that every element of M(n,m,k) is related through elementary
row operations to a matrix in Z. We form a cover of M(n,m,k) by sets of the form
E(Z), where E is an elementary row matrix. Noting that left multiplication by
an elementary row matrix E is a smooth operation (work in the usual Euclidean
coordinates), and the transition maps are also smooth for the same reasons, this
induces the smooth structure on M(n,m,k).

Problem. (S15:02) Assume that N ⊂ M is a codimension 1 properly embedded
submanifold. Show that N can be written as f−1(0), where 0 is a regular value of
a smooth function f : M→ R, if and only if there is a vector field X on M that is
transverse to N.

Solution. Let g be a Riemannian metric on M. First assume N = f−1(0) as above.
Define the gradient vector field ∇ f on M as the dual vector field to the 1-form d f :
i.e. d f (·) = g(∇ f , ·). Note that since f is constant on N, d f ≡ 0 on T N ⊂ T M.
Therefore ∇ f ⊥ T N. But note also that (∇ f )p 6= 0 for all p ∈ N, because 0 is a
regular value of f and therefore d f cannot vanish on N. Since N is codimension
1, it follows that TpN⊕ span(∇ f )p = TpM for all p ∈ N, so ∇ f is transverse to N.

The converse assertion is actually false; see the following MSE question/answer
(credit to Austin Christian for recognizing an opportunity to give up intelligently).

Problem. (S15:03) Consider two collections of 1-forms ω1, . . . ,ωk and φ1, . . . ,φk
on an n-dimensional manifold M. Assume that

ω1∧·· ·∧ωk = φ1∧·· ·∧φk

never vanishes on M. Show that there are smooth functions fi j : M→ R suc that

ωi =
k

∑
j=1

fi jφ j, i = 1, . . . ,k.
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Solution.
From S14:04 we know that {ωi} forms a linearly independent set of 1-forms, and
likewise for {φi}. Complete {φi} to a C∞(M)-module basis φ1, . . . ,φn of Ω1(M),
the space of smooth differential 1-forms on M. Then there exist smooth functions
fi j : M→ R such that

ωi =
n

∑
j=1

fi jφ j, i = 1, . . . ,k.

Then

ω1∧·· ·∧ωk =

(
n

∑
j=1

f1 jφ j

)
∧·· ·∧

(
n

∑
j=1

fk jφ j

)

= ∑
1≤ j1,..., jk≤n

(
k

∏
i=1

fi ji

)
φ j1 ∧·· ·∧φ jk

= φ1∧·· ·∧φk.

The k-fold wedge products φ j1 ∧ ·· · ∧ φ jk form a basis of Ωk(M). Therefore if
{ j1, . . . , jk} /∈ {1, . . . ,k}, then

k

∏
i=1

fi ji ≡ 0.

We conclude that fi j ≡ 0 if j /∈ {1, . . . ,k}. Therefore

ωi =
k

∑
j=1

fi jφ j.

Problem. (S15:04) Consider a smooth map F : RPn→ RPn.

(a) When n is even, show that F has a fixed point.

(b) When n is odd, give an example where F does not have a fixed point.

Solution.

(a) We define a map G : Sn → Sn as follows: let Dn
+ be the closed upper hemi-

sphere of Sn, obtained by taking the last coordinate positive, and Dn
− the

closed lower hemisphere. For each p ∈ RPn whose fiber does not lie in
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∂Dn
+ ' Sn−1, the fiber of p by the covering map π : Sn → RPn consists of

two points {p+,−p+}, where p+ ∈ Dn
+. We define G on Sn \∂Dn

+ by

G(p+) = (F(p))+, G(−p+) = (F(p))−.

We then extend G continuously to all of Sn to obtain a map Sn→ Sn; this can
be done by applying uniqueness of path liftings. Therefore we have obtained
a map G : Sn→ Sn with the property that π ◦G = F ◦π . Now, since n is even,
every map H : Sn→ Sn has a point x ∈ Sn with either H(x) = x or H(x) =−x.
For if H(x) 6= x for all x, then

Ht(x) =
(1− t)H(x)− tx
|(1− t)H(x)− tx|

provides a homotopy between H and −idSn , while if H(x) 6=−x for all x then

Ht(x) =
(1− t)H(x)+ tx
|(1− t)H(x)+ tx|

is a homotopy between H and idSn . But if n is even, then deg(idSn) = 1 and
deg(−idSn) = (−1)n+1 = −1, contradiction. Therefore G either has a fixed
point or maps a point to its antipode. In either case, call such a point p: then

F(π(p)) = π(G(p)) = π(±p) = π(p).

Then π(p) is the desired fixed point.

For a fancier way to do this proof, we can use cohomology rings. The integral
cohomology ring of RPn, n even, is

H∗(RPn)' Z[x]/〈2x,x
n
2+1〉,

where the coefficient ring is H0(RPn), x is the non-identity element of H2(RPn)'
Z/2Z, and xr is the non-identity element of H2r(RPn) for 1≤ r≤ n

2 . In partic-
ular the cohomology ring is generated in H2. If F : RP2→RP2 is a map, then
for 1 ≤ r ≤ n

2 the trace of F∗ : H2r(RPn)→ H2r(RPn) is zero, because these
cohomology groups are Z/2Z; and the trace of F∗ : Hk(RPn)→ Hk(RPn) is
zero for all odd k, since these cohomology groups are zero. Therefore the
Lefschetz number of F is

τ(F) = tr(F∗ : H0(RPn)→ H0(RPn)) = [F∗x]0 = (±1)0 = 1.

By the Lefschetz fixed point theorem it follows that F has a fixed point.
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(b) For n = 1, RP1 = S1, so an easy example is to take a rotation by a an angle
that is a non-integer multiple of 2π on S1.

Problem. (S15:05) Assume we have a codimension 1 distribution ∆⊂ T M.

(a) Show if the quotient bundle T M/∆ is trivial (or equivalently that there is a
vector field on M that never lies in ∆), then there is a 1-form ω on M such that
∆ = kerω everywhere on M.

(b) Give an example where T M/∆ is not trivial.

(c) With ω1 and ω2 as in (a) show that ω1 ∧ dω1 = f 2ω2 ∧ dω2 for a smooth
function f that never vanishes.

(d) If ω is as in (a) and ω ∧dω 6= 0, show that ∆ is not integrable.

Solution.

(a) Suppose T M/∆ is trivial, that is, T M/∆ = M×R. Define a 1-form ω as
follows: for p ∈M and Xp ∈ TpM, let

ω(Xp) = [Xp] ∈ TpM/∆p = R.

Since the value of a form on vector fields is entirely determined pointwise,
this gives rise to a smooth 1-form, and kerω = ∆ essentially by construction.

(b) ?

(c) Since ∆ is a codimension 1 distribution equal to kerω1, the ideal I(∆) of forms
vanishing on ∆ is generated by ω1, in the sense that every k-form in I(∆) can
be expressed as

η = θ ∧ω1

for a unique (k− 1)-form θ . In particular, ω2 = f ω1 for some smooth func-
tion f , and f is nonvanishing because kerω2 is a codimension 1 distribution:
if f (p) = 0 for some p, then (ω2)p : TpM → R would be zero, and hence
ker(ω2)p ⊂ TpM would fail to be codimension 1. Then

ω2∧dω1 = ( f ω1)∧d( f ω1) = f 2
ω1∧dω1 + f ω1∧d f ∧ω1 = f 2

ω1∧dω1.

(d) See F13:05.
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Problem. (S15:06) Let

ω =
xdy∧dz+ ydz∧dx+ zdx∧dy

(x2 + y2 + z2)
3
2

be a 2-form defined on R3 \ {0}. If i : S2 → R3 is the inclusion, then compute´
S2 i∗ω . Also compute

´
S2 j∗ω , where j : S2→ R3 maps (x,y,z)→ (3x,2y,8z).

Solution. For the first integral, note that

i∗ω = xdy∧dz+ ydz∧dx+ zdx∧dy.

We compute
di∗ω = 3dx∧dy∧dz.

Let B3 = {(x,y,z) ∈ R3 : x2 + y2 + z2 ≤ 1}. Then S2 = ∂B3. By Stokes’ theorem,ˆ
S2

i∗ω =

ˆ
B3

d(i∗ω) =

ˆ
B3

3dx∧dy∧dz = 3Vol(B3).

For j∗ω , note that j is an orientation-preserving diffeomorphism from S2 and its
interior to the ellipsoid

E = {(x,y,z) ∈ R3 :
(x

3

)2
+
(y

2

)2
+
( z

8

)2
= 1}

and its interior

V = {(x,y,z) ∈ R3 :
(x

3

)2
+
(y

2

)2
+
( z

8

)2
≤ 1}.

We compute

j∗ω = 48
xdy∧dz+ ydz∧dx+ zdx∧dy

((3x)2 +(2y)2 +(8z)2)
3
z

=
48

u(x,y,z)
3
2
(xdy∧dz+ ydz∧dx+ zdx∧dy),

where
u(x,y,z) = (3x)2 +(2y)2 +(8z)2.

Then

d j∗ω =− 72

u(x,y,z)
5
2
(x∂xu+ y∂yu+ z∂zu)(dx∧dy∧dz)

=
−72(18x+8y+128z)

((3x)2 +(2y)2 +(8z)2)
5
2

dx∧dy∧dz.
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Therefore by Stokes’ theorem, and the change of variables

F(u,v,w) = (x(u,v,w),y(u,v,w),z(u,v,w)) = (
u
3
,

y
2
,

z
8
),

we obtain ˆ
S2

i∗ j∗ω =

ˆ
B3

−72(18x+8y+128z)

((3x)2 +(2y)2 +(8z)2)
5
2

dxdydz

=

ˆ
V
−3

(3u+2v+8w)

(u2 + v2 +w2)
5
2

dudvdw.

Now we note that the integrand is an odd function of each variable. Therefore by
the reflection symmetries of the domain, it follows thatˆ

S2
i∗ j∗ω = 0.

Problem. (S15:07) Define the de Rham cohomology groups H i
dR(M) of a mani-

fold M and compute H i
dR(S

1), S1 = R/Z, i = 0,1, . . . directly from the definition.

Solution. Presumably the reader can define the de Rham groups. Since S1 is
1-dimensional, there are no 2-forms, so it suffices to determine H0

dR(S
1) and

H1
dR(S

1). We have the following complex of forms:

0 Ω0(S1) Ω1(S1) 0d

Ω0(S1) consists of smooth functions on S1, i.e. 1-periodic smooth functions.
Ω1(S1) consists of 1-forms f dθ , where f is a 1-periodic smooth function and
dθ is the usual angular coordinate 1-form. If f is a 0-form, then d f = ∂ f

∂θ
dθ .

Therefore H0
dR(S

1) = kerd ⊂ Ω0(S1) consists of those 1-periodic functions that
are constant in θ , and hence is isomorphic to the vector space of real constants R.
im d ⊂ Ω1(S1) consists of forms pt f

∂θ
dθ . Note that if ω = f dθ , f periodic, then

we can define a periodic function g with dg = ω by taking

g(θ) =
ˆ

θ

0
f (t) dt,

θ ∈ [0,1), and then extending periodically; this always works, provided that f
is not constant (because a constant c integrates to the function cθ , which does
not extend periodically). Therefore H1

dR(S
1) = Ω1(S1)/im d consists of constant

forms ω = cdθ , c ∈ R, and thus is isomorphic to R.
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Problem. (S15:08) Let X be a CW complex consisting of one vertex p, 2 edges a
and b attached to p along their boundaries, and 2 faces f1 and f2, attached along
ab2 and ba2 respectively.

(a) Find π1(X). Is it a finite group?

(b) Compute the homology groups Hi(X) of X .

Solution.

(a) The 1-skeleton of this CW complex is the wedge of 2 circles, oriented along a
and b respectively. This gives us two generators a and b for the presentation of
the group. Attaching f1 along ab2 introduces the relation ab2, and attaching
f2 along ba2 introduces the relation ba2. Therefore

π1(X) = 〈a,b | ab2,ba2〉.

From the relations we have

ab2 = e = ba2,

so
b = a.

So in fact the group is generated by one element, and we have

e = ab2 = a3,

so
π1(X) = 〈a | a3〉= Z/3Z,

which is of course finite.

(b) X has one connected component, so H0(X) ∼= Z. By the Hurewicz homo-
morphism H1(X) ∼= Z/3Z. It remains to determine H2(X), which we will
do by cellular homology. The group C2(X) of cellular 2-chains is generated
by f1, f2, while the group of 1-chains is generated by a,b. H2(X) is equal
to the kernel of the cellular boundary map ∂ : C2(X)→C1(X). The cellular
boundary map in this case gives

∂ ( f1) = a+2b, ∂ ( f2) = 2a+b.
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Therefore the cellular boundary can be regarded as a map ∂ : Z2→ Z2 repre-
sented by the matrix [

1 2
2 1

]
This matrix has trivial kernel. Therefore H2(X) = 0.

Problem. (S15:09) Let X ,Y be topological spaces and let f ,g : X →Y be contin-
uous maps. Consider the space Z obtained from the disjoint union (X× [0,1]) ∏Y
by identifying (x,0) ∼ f (x) and (x,1) ∼ g(x) for all x ∈ X . Show that there is a
long exact sequence of the form

· · · Hi(X) Hi(Y ) Hi(Z) Hi−1(X) · · ·a b c

Also describe the maps a,b,c.

Solution. Consider the map of pairs

q : (X× I,X×∂ I)→ (Z,Y )

given by the quotient. For each pair we have long exact sequences for relative
homology

· · · Hi+1(X× I,X×∂ I) Hi(X×∂ I) Hi(X× I) · · ·δ i∗ j∗

· · · Hi+1(Z,Y ) Hi(Y ) Hi(Z) · · ·δ i∗ j∗

where i∗ are induced by inclusions, j∗ are induced by quotients on the level of
chain complexes (in the usual way for relative homology of pairs), and δ are
the connecting homomorphisms arising from the long exact sequence from short
exact sequence of chain complexes construction. Then the map of pairs induces
the following diagram:

· · · Hi+1(X× I,X×∂ I) Hi(X×∂ I) Hi(X× I) · · ·

· · · Hi+1(Z,Y ) Hi(Y ) Hi(Z) · · ·

δ

q∗

i∗

q∗

j∗

q∗

δ i∗ j∗
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Note that X × ∂ I = X ×{0} ∪X ×{1}, and X × I retracts onto either X ×{0}
or X ×{1}. Therefore i∗ in the upper row is surjective. By exactness, j∗ = 0 in
the upper row, and δ is an isomorphism onto its image in the upper row. im δ =
ker i∗, and ker i∗ consists of pairs (α,−α) for α ∈ Hi(X). Therefore this kernel is
isomorphic to Hi(X), and the middle q∗ takes (α,−α) to f∗α−g∗α . The left q∗
is an isomorphism, because q induces a homeomorphism of quotient spaces

X× I
X×∂ I

∼=
Z
Y
.

Thus we may replace Hi+1(Z,Y ) with Hi+1(X × I,X × ∂ I), and this we may re-
place with ker i∗ ∼= Hi(X). This gives us the exact sequence

· · · Hi(X) Hi(Y ) Hi(Z) · · ·F i∗ j∗

Here i∗ and j∗ arise as before from the long exact sequence in relative homology.
F arises in the following way:

Hi+1(X× I,X×∂ I) ker i∗ ∼= Hi(X)

Hi+1(Z,Y ) Hi(Z)

δ ,∼=

q∗,∼= f∗−g∗

δ

The diagram commutes, so we may think of F as ( f∗−g∗)δq−1
∗ .

Problem. (S15:10) Let n ≥ 0 be an integer. Let M be a compact (closed?), ori-
entable smooth manifold of dimension 4n + 2. Show that dimH2n+1(M;R) is
even.

Solution. By the de Rham theorem, we may identify H2n+1(M;R) canonically
with H2n+1

dR (M). We define a bilinear form on H2n+1
dR (M) in the following way:

given [ω], [η ] ∈ H2n+1
dR (M), and ω ∈ [ω], η ∈ [η ] closed representatives,

([ω], [η ]) =

ˆ
M

ω ∧η .

(This map is well-defined, which is essentially the statement of Poincaré duality.)
This is a skew-symmetric form: ([ω], [η ]) =−([η ], [ω]). Then the linear map

[ω] 7→ ([η ] 7→ ([ω], [η ]))

is skew-symmetric, hence of even rank. But this is also precisely the isomorphism
given by Poincaré duality, H2n+1

dR (M)→ H2n+1(M;R). Therefore dimH2n+1
dR (M)

is even.
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20 Fall 2015
Problem. (F15:01) Let Mn(R) be the space of n× n matrices with real coeffi-
cients.

(a) Show that SL(n,R) = {A ∈ Mn(R) : detA = 1} is a smooth submanifold of
Mn(R).

(b) Show that SL(n,R) has trivial Euler characteristic.

Solution.

(a) We show that the map det : Mn(R) → R has 1 as a regular value. Since
Mn(R) is diffeomorphic to n2-dimensional Euclidean space, we may identify
TAMn(R)∼= Mn(R). Then note that for any A ∈Mn(R),

d(det)A(A) = lim
t→0

det(A+ tA)−det(A)
t

= lim
t→0

(1+ t)n−1
t

det(A) = ndet(A).

Therefore if det(A) 6= 0, then d(det)A : Mn(R)→ R is nonzero, and therefore
of full rank, and hence any nonzero real number is a regular value of det. In
particular 1 is a regular value of det.

(b) For any compact connected Lie group G, we can perform the following proof
to show that the Euler characteristic is zero. Let X ∈ TeG be a nonzero vector
field at the identity. We can produce a nonvanishing tangent vector field on G
by using the left action of G on itself to translate X to g∗X ∈ TgG. Then by the
Poincaré-Hopf theorem, it follows that χ(G) = 0. To adapt this to SL(n,R)
(which is not compact), it is enough to note that SL(n,R) retracts to SO(n),
which is a compact Lie group.

Another proof can be given in the same vein by the Lefschetz fixed point
theorem; in this case, we can use the fact that the left action on a compact Lie
group G gives us diffeomorphisms with no fixed points. Therefore if g : G→
G is the diffeomorphism given by the left action of g ∈ G, then τ(g) = 0. On
the other hand, if G is connected, drawing g back to e along a path from e to
g produces a smooth homotopy between g : G→ G and idG. Since Lefschetz
number is a homotopy invariant, we find that 0 = τ(g) = τ(idG) = χ(G).

Problem. (F15:02) Let f ,g : M→ N be smooth maps between smooth manifolds
that are smoothly homotopic. Prove that if ω is a closed form on N, then f ∗ω and
g∗ω are cohomologous.
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Solution.
We follow the presentation in Morita. We first demonstrate an easier proposition:

Proposition 1. Let M be a smooth manifold, π : M×R→M the projection onto
the first factor, and i : M→M×R : p 7→ (p,0). Consider the induced maps

π
∗ : H∗dR(M)→ H∗dR(M×R)

and
i∗ : HdR(M×R)→ H∗dR(M).

Then there exists a cochain homotopy

Φ : Ω
k(M×R)→Ω

k−1(M×R)

between id and π∗i∗: that is,

id−π
∗i∗ = dΦ+Φd on Ω

k(M×R).

In particular, π∗ is an isomorphism with inverse i∗.

Proof. Given an arbitrary k-form ω ∈Ωk(M×R), take local coordinates and write

ω = ∑
I

aI(x, t)dxI +∑
J

bJ(x, t)dt ∧dxJ

where the first sum is over increasing multi-indices I of length k and the second is
over increasing multi-indices J of length k−1. Define Φ by

Φω = ∑
J

(ˆ t

0
bJ(x,s) ds

)
dxJ.

We claim that
d(Φω)+Φ(dω) = ω−π

∗i∗ω.

By linearity, we may separate into the following cases: ω = a(x, t)dxI , and ω =
b(x, t)dt ∧dxJ . In the former case, Φω = 0 and

Φ(dω) =

(ˆ t

0

∂a
∂ s

ds
)

dxI

= (a(x, t)−a(x,0))dxI

= ω−π
∗i∗ω.
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In the latter case, i∗ω = 0, so (id−π∗i∗)ω = ω , and we compute:

d(Φω) = d
(ˆ t

0
b(x,s) ds

)
dxJ

= ω +
n

∑
m=1

(ˆ t

0

∂b
∂xm ds

)
dxm∧dxJ,

Φ(dω) = Φ

(
−

n

∑
m=1

∂b
∂xm dt ∧dxm∧dxJ

)

=−
n

∑
m=1

(ˆ t

0

∂b
∂xm ds

)
dxm∧dxJ.

Therefore d(Φω)+Φ(dω) = ω , and the claim is proved in local coordinates. But
the definition of Φ is independent of the choice of coordinates, since it only affects
the real coordinate. We have thus shown that id and i◦π induce chain homotopic
maps on the de Rham complex of M×R. It is now standard homological algebra
that π∗ is an isomorphism on cohomology with i∗ as its inverse.

Lastly, we need to show that f ∗ = g∗ on cohomology. Let F : M×R→ N denote
the homotopy between f and g, such that f = F(·,0) and g = F(·,1). Let i0, i1 :
M→M×R be given by i0(p) = (p,0) and i1(p) = (p,1). Then clearly f = F ◦ i0
and g = F ◦ i1. The proof of the previous proposition shows that i∗0 = i∗1 = (π∗)−1.
Therefore

f ∗ = (F ◦ i0)∗ = i∗0F∗ = i∗1F∗ = (F ◦ i1)∗ = g∗.

Problem. (F15:03) For two smooth vector fields X ,Y on a smooth manifold M,
prove the formula

[LX , iY ]ω = i[X ,Y ]ω,

where LX is the Lie derivative in the direction of X , iX is the interior product of X ,
and ω is a k-form for k ≥ 1.

Solution. There are no tricks to this problem: it is a matter of computing exactly
from the definitions. Recall the coordinate-independent formulas for Lie deriva-
tives and interior products: if θ is a k-form, then

LX θ(Z1, . . . ,Zk) = X(θ(Z1, . . . ,Zk))−
k

∑
i=1

θ([X ,Zi],Z1, . . . , Ẑi, . . . ,Zk)
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and
iY θ(Z1, . . . ,Zk−1) = θ(Y,Z1, . . . ,Zk−1).

We compute

i[X ,Y ]ω(Z1, . . . ,Zk−1) = ω([X ,Y ],Z1, . . . ,Zk−1),

and

[LX , iY ]ω(Z1, . . . ,Zk−1) = LX(iY ω)(Z1, . . . ,Zk−1)− iY (LX ω)(Z1, . . . ,Zk−1)

where

LX(iY ω)(Z1, . . . ,Zk−1) = X(iY ω(Z1, . . . ,Zk−1))−
k−1

∑
i=1

(iY ω)(Z1, . . . , [X ,Zi], . . . ,Zk−1)

= X(ω(Y,Z1, . . . ,Zk−1))−
k−1

∑
i=1

ω(Y,Z1, . . . , [X ,Zi], . . . ,Zk−1)

and

iY (LX ω)(Z1, . . . ,Zk−1) = (LX ω)(Y,Z1, . . . ,Zk−1)

= X(ω(Y,Z1, . . . ,Zk−1))−ω([X ,Y ],Z1, . . . ,Zk−1)

−
k−1

∑
i=1

ω(Y,Z1, . . . , [X ,Zi], . . . ,Zk).

Taking the difference now yields the identity.

Problem. (F15:04) Let M =R3/Z3 be the 3-torus and C = π(L), where L⊂R3 is
the oriented line segment from (0,1,1) to (1,3,5) and π : R3→M is the quotient
map. Find a differential form on M which represents the Poincaré dual of C.

Solution. L defines a cycle, hence an element of H1(M;R). Its Poincaré dual is
the unique element [η ] of H2

dR(M) such that the Poincaré dual map

PD([η ])(·) : H1
dR(M)→ R : [θ ] 7→

ˆ
M

η ∧θ

coincides with the dual of [L] through the map induced by the pairing

([L], ·) : H1
dR(M)→ R : [θ ] 7→ ([L], [θ ]) =

ˆ
L

θ .
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That is, we seek a 2-form η such thatˆ
L

θ =

ˆ
M

η ∧θ

for all 1-forms θ . L is a loop on T3 that wraps in the x-direction once, in the y-
direction 2 times, and in the z-direction 4 times. The de Rham cohomology of T 3

is generated as the exterior algebra over the coordinate 1-forms dx,dy,dz. From
our description of L, we then have thatˆ

L
(adx+bdy+ cdz) = a+2b+4c.

On the other hand, η is a 2-form, and can therefore be written as η = Adx∧dy+
Bdx∧dz+Cdy∧dz. Then

´
M η ∧θ isˆ

M
(Adx∧dy+Bdx∧dz+Cdy∧dz)∧ (adx+bdy+ cdz) =

ˆ
M
(Ac−Bb+Ca)dx∧dy∧dz

= (Ac−Bb+Ca)
ˆ

M
dx∧dy∧dz

= Ac−Bb+Ca.

Therefore we must solve

a+2b+4c = Ac−Bb+Ca,

for which we can choose C = 1, A = 4, and B =−2 to obtain

η = 4dx∧dy−2dx∧dz+dy∧dz.

Problem. (F15:05) Recall that the Hopf fibration π : S3→ S2 is defined as follows:
if we identify

S3 = {(z1,z2) ∈ C2 : |z1|2 + |z2|2 = 1}
and S2 = CP1 with homogeneous coordinates [z1,z2], then π(z1,z2) = [z1,z2].
Show that π does not admit a section, i.e. there exists no smooth map s : S2→ S3

with π ◦ s = idS2 .

Solution. This problem likely wins the prize for “largest ratio of irrelevant to rel-
evant information in a qual problem;” I suspect this is intentional, designed to
throw people off. It is enough to note that H2(S2) = Z, while H2(S3) = 0. If
such a map s were to exist, then the induced maps on homology would imply that
(idS2)∗ = π∗s∗. But (idS2)∗ on second homology is idZ, while π∗ and s∗ are both
zero, contradiction.

59



Problem. (F15:07) Show there is no smooth degree one map from S2×S2 to CP2.

Solution. First, let us determine the integer cohomology of S2× S2. Giving one
copy of S2 the standard cell structure with one 0-cell v and one 2-cell E, and the
other copy the structure with one 0-cell w and one 2-cell F , the cellular chain
complex is generated by:

i. One 0-cell v×w, with boundary ∂ (v×w) = 0;

ii. Two 2-cells v×F , E× v with boundaries ∂ (v×F) = ∂ (E×w) = 0;

iii. One 4-cell E×F with boundary ∂ (E×F) = 0.

Therefore

Hn(S2×S2;Z) =


Z n = 0,4,
Z2 n = 2,
0 n = 1,3.

On the other hand the cohomology of CP2 is

Hn(CP2;Z) =

{
Z n = 0,2,4,
0 n = 1,3.

Now, let f : S2×S2→ CP2 be a smooth map. Then f induces maps on cohomol-
ogy

f ∗ : H∗(CP2;Z)→ H∗(S2×S2;Z).

There is an element ω ∈ H2(CP2;Z) such that ω2 (by which we are referring to
the cup product structure) generates; H4(CP2), and naturally

deg f = f ∗(ω2) = ( f ∗ω)2.

Since H2(S2×S2;Z)∼=Z2, if we let α,β be generators then αβ generates H4(S2×
S2;Z) and there exist integers a,b with

f ∗ω = aα +bβ .

Then
( f ∗ω)2 = 2abαβ .

Therefore deg f = 2ab, and in particular there is no choice of integers a and b that
makes deg f = 1.
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Problem. (F15:08) Show that CP2n, n ≥ 1, is not a covering space of any space
other than itself.

Solution. In S11:09 we showed that the Lefschetz number of any map from CP2n

to itself is nonzero, and therefore every self-map of CP2n has a fixed point. Now
suppose π : CP2n→ X is a covering space, and consider the group of deck trans-
formations. Every non-identity deck transformation is a homeomorphism of CP2n,
and because deck transformations act freely on the cover, every non-identity deck
transformation has no fixed points. But then no non-identity deck transformation
can exist. Therefore the deck transformation group is trivial, and CP2n→ X is the
trivial cover CP2n→ CP2n.

Problem. (F15:09) Given a continuous map f : X→Y between topological spaces,
define

C f = ((X× [0,1]) ∏Y )/∼

where (x,1) ∼ f (x) for all x ∈ X and (x,0) ∼ (x′,0) for all x,x′ ∈ X . Show that
there is a long exact sequence

· · · Hi+1(X) Hi+1(Y ) H̃i+1(C f ) Hi(X) · · ·f∗ f∗

where f∗ is the homomorphism induced by f .

Solution.
This is a special case of S15:09.

Problem. (F15:10) Let RPn be the real projective space given by Sn/ ∼, where
Sn = {‖x‖= 1} ⊂ Rn+1 and x∼−x for all x ∈ Sn.

(a) Give a CW decomposition of RPn for n≥ 1.

(b) Use the CW decomposition to compute the homology groups Hk(RPn).

(c) For which values of n≥ 1 is RPn orientable? Explain.

Solution.

(a) The standard CW structure on RPn is built inductively in the following way.
For n = 0 we just have a point, RP0. For n ≥ 1, we attach the n-cell en to
the (n− 1)-skeleton, which is homeomorphic to RPn−1, along the boundary
∂en ∼= Sn−1 via the standard map Sn−1 → RPn−1. This is homeomorphic to
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the quotient of Sn in the following way: since the quotient map identifies
antipodal points of Sn, after identifying the lower hemisphere to the upper
hemisphere Sn/ ∼ is equivalent to the upper hemisphere ∼= Dn with antipo-
dal points of the boundary ∂Dn identified. Since ∂Dn ∼= Sn−1, and applying
the inductive hypothesis Sn−1/ ∼∼= RPn−1, we see precisely that Dn/ ∼ is
precisely en attached to RPn−1 along the boundary via Sn−1→ RPn−1.

(b) Example 2.42 of Hatcher.

(c) The easiest solution is via the homological characterization of orientability
for closed manifolds. RPn is orientable whenever n is odd, since in this case
Hn(RPn) = Z. On the other hand, if n is even, then Hn(RPn) = 0, so in this
case RPn is nonorientable.

21 Spring 2016
Problem. (S16:01) Consider the set of all straight lines in R2 (not necessarily
through the origin). Explain how to give it the structure of a smooth manifold. Is
it orientable?

Solution. Call this set M. Such a line can always be expressed in the form

ax+by+ c = 0,

where at least one of a and b is nonzero. The coefficients (a,b,c) are unique, up
to a nonzero multiplicative scalar. Therefore the set of all straight lines can be
described as the set

{(a,b,c) ∈ R3 : (a,b) 6= (0,0)}/R∗,

where R∗ = R \ {0} is the multiplicative group of nonzero real numbers, acting
on R3 by λ .(a,b,c) = λ (a,b,c) = (λa,λb,λc). Equivalently, by normalizing the
nonzero elements of R3, this as a set is

{(a,b,c) ∈ S2 ⊂ R3 : (a,b) 6= (0,0)}/{±1}= (S2 \{N,S})/{±1},

where N = (0,0,1) and S = (0,0,−1) are the north and south poles of S2. Thus
as a quotient space, this has the structure of RP2 = S2/{±1}, minus the orbits
of N and S, which is a single point in RP2. Since RP2 is a 2-manifold, and
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M = RP2 \{[N]} is an open subset of RP2, this determines a smooth 2-manifold
structure on M.

M is a connected surface. Orientability can be determined from classification
of surfaces: a compact surface is nonorientable if and only if it results from the
gluing of one or more Möbius bands to a sphere with holes along the boundary.
M deformation retracts to a sphere with two holes, along one of which is attached
a Möbius band (since RP2 is a sphere with one hole and a Möbius band attached
to the hole); therefore it is nonorientable.

Problem. (S16:02) Let X and Y be submanifolds of Rn. Show that for almost
every a ∈ R, the translate X +a intersects Y transversely.

Solution. We are looking to show that for each p ∈ (X +a)∩Y ,

Tp(X +a)+TpY = TpRn.

Define the map
F : X×Rn→ Rn : (x,a) 7→ x+a.

We claim that F tY . If F−1(Y ) =∅, then the claim holds trivially. Suppose now
that p ∈ F−1(Y ), i.e. p+ a ∈ Y . The tangent space Tp(X ×Rn) is isomorphic to
TpX⊕TpRn, and

dFp(TpX⊕TpRn) = Tp+aRn.

So the transversality condition holds trivially. By the transversality theorem, it
now follows that fa = F(·,a) is transverse to Y for almost every a, which is the
claim to be proved.

Problem. (S16:03) Consider the vector field X(z) = z2016 +2016z2015 +2016 on
C=R2, by which we mean identify TzC=C and write X(z)= z2016+2016z2015+
2016 ∈ TzC. Compute the sum of the indices of X over its isolated zeros.

Solution. First, X only has isolated zeros, by standard facts about roots of complex
polynomials. Around each zero z0, X is locally of the form

X(z) = a(z− z0)
m +H(z),

where m is the multiplicity of the root and H(z) is nonvanishing in a neighborhood
of z0. The local index is therefore given by the multiplicity of the root. Since the
multiplicities of the roots of a complex polyonimal sum to its degree, the sum of
the local indices is 2016.
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Problem. (S16:04) Let M be a compact odd-dimensional manifold with nonempty
boundary ∂M. Show that the Euler characteristics of M and ∂M are related by

χ(M) =
1
2

χ(∂M).

Solution. Let us write n = dimM. Consider two copies of M, say M1 and M2.
We form a compact n-dimensional manifold without boundary M̃ by smoothly
attaching M1 to M2 along their common boundary:

M̃ = M1∪∂M M2.

We now apply Mayer-Vietoris to M̃. There exist open sets U,V ⊂ M̃ with U,V
diffeomorphic to M and U ∩V deformation retracting onto ∂M. (One could, for
instance, embed into Euclidean space and invoke the tubular neighborhood theo-
rem to make this precise.) Then the Mayer-Vietoris sequence gives us the exact
sequence

· · · Hk
dR(M̃) Hk

dR(M)⊕Hk
dR(M) Hk

dR(∂M) · · ·

Since the sequence is exact and terminates on both ends, taking alternating sums
of dimensions gives us (by finite-dimensional linear algebra)

χ(M̃)−2χ(M)+χ(∂M) = 0.

Now we note that since M̃ is a compact odd-dimensional manifold without bound-
ary, χ(M̃) = 0. Therefore we have

−2χ(M)+χ(∂M) = 0,

and the claim is proved.

Problem. (S16:05) Let M be a compact oriented n-manifold with de Rham coho-
mology group H1

dR(M;R) = 0 and let T n be the n-torus. For which integers k does
there exist a smooth map f : M→ T n of degree k?

Solution. f induces a map on de Rham cohomology

f ∗ : H∗dR(T
n)→ H∗dR(M).
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We recall that if θ1, . . . ,θn are cohomology classes generating H1
dR(T

n), then
H∗dR(T

n) is the exterior algebra over θ1, . . . ,θn. In particular, since f ∗θi = 0 for
all i = 1, . . . ,n, we have

f ∗(θi1 ∧·· ·∧θik) = f ∗θi1 ∧·· ·∧ f ∗θik = 0

for all (i1, . . . , ik), and therefore f ∗ : Hk
dR(T

n)→ Hk
dR(M) is the zero homomor-

phism for all k ≥ 1. In particular, f ∗ : Hn
dR(T

n)→ Hn
dR(M) is the zero homomor-

phism, and therefore deg f = 0.

Problem. (S16:06) Let T 2 = R2/Z2 be the two-dimensional torus with coordi-
nates (x,y) ∈ R2 and let p ∈ T 2.

(a) Compute the de Rham cohomology of the punctured torus T 2−{p}.

(b) Is the volume form dx∧dy exact on T 2−{p}?

Solution.

(a) There is a quick solution from noting that the punctured torus deformation
retracts to a wedge of two circles, but here we do a Mayer-Vietoris argument
for practice. The de Rham cohomology of T 2 is

H i
dR(T

2) =


R i = 0,
R2 i = 1,
R i = 2.

Let U be a small neighborhood around {p} such that U is diffeomorphic to a
disc D'{q}, and let V = T 2−{p}. Then U∪V = T 2, and U∩V 'D−{p}'
S1. The Mayer-Vietoris sequence for this pair is then

0 H0
dR(T

2) H0
dR({q})⊕H0

dR(T
2−{p}) H0

dR(S
1)

H1
dR(T

2) H1
dR({q})⊕H1

dR(T
2−{p}) H1

dR(S
1)

H2
dR(T

2) H2
dR({q})⊕H2

dR(T
2−{p}) H2

dR(S
1) 0
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{q} has trivial de Rham cohomology, and S1 has 0 2nd cohomology, and R for
0-th and first cohomology. Since T 2−{p} is connected, H0

dR(T
2−{p}) =R.

Since T 2−{p} is orientable and noncompact, it has zero top cohomology.
Therefore the sequence above is

0 R R2 R

R2 H1
dR(T

2−{p}) R

R 0 0 0

Since the alternating sum of dimensions of an exact sequence of finite-dimensional
real vector spaces is zero, we then conclude that

1−2+1−2+dimH1
dR(T

2−{p})−1+1 = 0.

Thus dimH1
dR(T

2−{p}) = 2, and

H i
dR(T

2−{p})∼=


R i = 0,
R2 i = 1,
0 i = 2.

(b) Yes. Since 2 is the top dimension, every 2-form is closed, so ω is a closed
form. Because H2

dR(T
2−{p}) = 0, all closed 2-forms are exact. Therefore ω

is exact.

Problem. (S16:07) Exhibit a space whose fundamental group is Z/mZ ∗Z/nZ.
Exhibit another space whose fundamental group is Z/mZ×Z/mZ.

Solution. Let Xk be the space obtained by attaching a 2-cell to S1 as follows:
regarding D2 ⊂ C as the unit disc in the complex plane, and S1 as the unit circle,
attach D2 to S1 along ∂D2 via the map z 7→ zk. (Or, if you like, give S1 the usual
cell structure with 1 vertex and 1 oriented edge labeled a, and attach D2 to S1

along the word ak.) Then π1(Xk) = Z/kZ. Then Xm∨Xn witnesses the first group,
Xm×Xn the second.
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Problem. (S16:08) Let Lx be the x-axis, Ly the y-axis, Lz the z-axis in R3. Com-
pute

π1(R3−Lx−Ly−Lz).

Solution. This space deformation retracts onto S2 minus 6 points, which by stere-
ographic projection maps to R2 minus 5 points, which deformation retracts onto
a wedge of five circles. Therefore

π1(R3−Lx−Ly−Lz)∼= π1(
5∨

i=1

S1)∼= Z∗Z∗Z∗Z∗Z.

Problem. (S16:09) Let X be a topological space and p ∈ X . The reduced sus-
pension ΣX of X is the topological space obtained from X × [0,1] by contracting
X ×{0,1}∪{p}× [0,1] to a point. Describe the relation between the homology
of X and ΣX .

Solution. We describe the reduced suspension in another way. First, we quotient
X × I by only collapsing {p}× I to a point. The resulting space, say X̃ , deforma-
tion retracts onto X by drawing {x}× I down to {x}×{0} for x 6= p. Therefore X̃
has the same homology as X . We now take the suspension SX̃ of X̃ (see S14:10)
to obtain the reduced suspension: SX̃ = ΣX . Using the result of S14:10, we obtain

Hn(ΣX)∼= Hn(SX̃)∼= Hn−1(X̃)∼= Hn−1(X).

Problem. (S16:10) Consider the 3-form on R4 given by

α = x1dx2∧dx3∧dx4−x2dx1∧dx3∧dx4+x3dx1∧dx2∧dx4−x4dx1∧dx2∧dx3.

Let S3 be the unit sphere in R4 and let ι : S3→ R4 be the inclusion map.

(a) Evaluate ˆ
S3

ι
∗
α.

(b) Let γ be the 3-form on R4 \{0} given by

γ =
α

(x2
1 + x2

2 + x2
3 + x2

4)
k ,

k ∈ R. Determine the values of k for which γ is closed and those for which it
is exact.
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Solution.

(a) Since ι is inclusion, ι∗ is restriction. We observe that

dα = 4dx1∧dx2∧dx3∧dx4.

Let B4 denote the unit ball in R4. Then ∂B4 = S3. By Stokes’ theorem,
ˆ

S3
ι
∗
α =

ˆ
B4

dι
∗
α =

ˆ
B4

ι
∗dα = 4Vol(B4).

(b) If γ is closed and f = (x2
1 + x2

2 + x2
3 + x2

4)
−k, then

dγ = d f ∧α + f ∧dα

=−2k(x2
1 + x2

2 + x2
3 + x2

4)
−kdx1∧dx2∧dx3∧dx4

+4(x2
1 + x2

2 + x2
3 + x2

4)
−kdx1∧dx2∧dx3∧dx4.

Therefore we must have k = 2. If γ is exact, then γ must also be closed, so
γ can only be exact if k = 2. But because γ = α on S3, and

´
S3 i∗α 6= 0, it

follows that γ is not exact even for k = 2, so γ is not exact for any k ∈ R.

22 Fall 2016
Problem. (F16:01) Let M be a smooth manifold. Prove that for any two disjoint
closed subsets A and B of M, there exists a smooth function f : M→ R such that
f = 0 on A and f = 1 on B.

Solution.
For each x ∈ B, let Ux be an open coordinate neighborhood of x that does not
intersect A; this can be done by taking any coordinate neighborhood and taking
the intersection with M \ A. Then the collection {Ux : x ∈ B} ∪ {M \ B} is an
open cover of M. Let {ψx}∪{ψ} be a smooth partition of unity subordinate to
this cover: that is, supp ψx ⊂ Ux, supp ψ ⊂ M \B, and ψ +∑x∈B ψx ≡ 1. Set
f = ∑x∈B ψx. Then f = 1 on B, because ψ is supported outside of B and thus
ψ(x) = 0 if x ∈ B. Also, f = 0 on A, because for all x ∈ B ψx is supported outside
of A.

Problem. (F16:02) Let M ⊂ RN be a smooth k-dimensional submanifold. Prove
that M can be immersed into R2k.
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Solution.
We first show that if N > 2k + 1 and M is immersed into RN , then M can be
immersed into RN−1. This proof is found in Lee.

Consider the following family of linear maps: for v ∈ RN \ {0}, let πv : RN →
RN−1 be the projection onto the orthogonal complement of the span of v, which
we identify with RN−1 up to Euclidean isometry. We claim that for almost every
v ∈ RN \{0}, the restriction πv |M is an injective immersion M→ RN−1.

πv |M is injective if for all distinct p,q ∈M, p−q is not parallel to v. Noting that
πv is linear, and therefore the same as its differential, πv |M is an immersion if
for all p ∈M, TpM ⊂ RN does not contain any nonzero vectors parallel to v. Let
∆M = {(p, p) : p∈M} be the diagonal of M, and let M0 = {(p,0)∈ T M : p∈M}.
Define the following maps:

κ : M×M \∆M→ RPN−1 : (p,q) 7→ [p−q],

τ : T M \M0→ RPN−1 : (p,w) 7→ [w],

where for u ∈ RN \ {0} we denote the equivalence class of u in RPN−1 by [u].
These are smooth maps (because they are compositions of smooth maps), and
πv |M is an injective immersion if and only if [v] is not in the images of κ and τ .
κ and τ both have domains of dimension 2k < N− 1, and map into an (N− 1)-
dimensional manifold; therefore im κ and im τ have measure zero in RPN−1.
Therefore the set of v ∈ RN \{0} so that πv |M is an injective immersion is dense.
Choosing such a v, we obtain our desired immersion of M into RN−1.

Iteration now allows us to assume M is injectively immersed into R2k+1. Now we
show that this can be upgraded to an immersion (not necessarily injective) into
R2k. Give M the Riemannian structure induced by the Euclidean inner product.
Let |w| denote the length of a tangent vector w ∈ TpM. Define the unit tangent
bundle UM ⊂ T M:

UM = {(p,w) ∈ T M : |w|= 1}.
Now define

σ : UM→ RP2k : (p,w) 7→ [w].

Then σ is a smooth map taking UM (which is of dimension 2k− 1) to RP2k (of
dimension 2k). Therefore by Sard’s theorem, im σ has measure zero in RP2k, and
thus we may find [v] ∈ RP2k that is not in im σ . Then naturally [v] is also not in
im τ , where τ : T M\M0→RP2k is defined as above, since the map into projective
space depends only on the direction of w, not its length. So we obtain as before
an immersion M→ R2k.

69



Problem. (F16:03) Let U1, . . . ,Un be n bounded, connected, open subsets of Rn.
Prove there exists an (n− 1)-dimensional hyperplane H ⊂ Rn that bisects every
Ui: that is, if A and B are the two half-spaces that form Rn \H, then

volume(Ui∩A) = volume(Ui∩B)

for all i = 1, . . . ,n.

Solution.
(Remark: This is known as the ham sandwich theorem.)
Define a map g : Sn−1→Rn−1 as follows. A point v ∈ Sn−1 and s ∈R determines
a unique hyperplane H(s,v) with normal vector v and through the point sv. Let
A(s,v) be the half-space in on the side of H(s,v) toward which v points, and let
B(s,v) be the opposing half-space. Then define f = ( f1, . . . , fn) by

fi(s,v) = volume(Ui∩A(s,v))−volume(Ui∩B(s,v)).

We note that for fixed v, there exists at least one s ∈ R so that fn(s,v) = 0: this
follows from the intermediate value theorem. If there is more than one such s, then
the set of all such s lie in a compact interval [a,b] ⊂ R, because Un is compact
and therefore lies completely on one side of H(s,v) for sufficiently positive or
sufficiently negative s. Therefore we can pick a canonical hyperplane H(s,v) for
which fn(s,v) = 0 by taking s = a, the most negative value for which H(s,v)
bisects Un. Now define g = (g1, . . . ,gn−1) by

gi(v) = fi(s,v)

where s is the canonical value chosen above. Then g is a continuous map Sn−1→
Rn−1, and note moreover that g(−v) = −g(v). By the Borsuk-Ulam theorem,
g(v) = 0 for some v, which implies that the required hyperplane exists.

Problem. (F16:04) Show that

D = ker(dx3− x1dx2)∩ker(dx1− x4dx2)⊂ TR4

is a smooth distribution of rank 2, and determine whether D is integrable.

Solution. To show D is a smooth distribution of rank 2, it suffices to show that
ω = dx3− x1dx2 and θ = dx1− x4dx2 are everywhere linearly independent one-
forms; this is obvious since dx3 and dx1 are everywhere independent. We claim
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that D is not integrable. It is equivalent to show that there cannot exist 1-forms
η1,η2,η3,η4 such that

dω = η1∧ω +η2∧θ ,

dθ = η3∧ω +η4∧θ .

(That is, the integrability conditions for the system of Pfaffian equations ω = η =
0 on D cannot be satisfied.) We compute

dω =−dx1∧dx2, dθ =−dx4∧dx2

and thus the integrability conditions require us to solve

−dx1∧dx2 = η1∧ (dx3− x1dx2)+η2(dx1− x4dx2)

= η2∧dx1 +(−x1η1− x4η2)∧dx2 +η1∧dx3,

−dx4∧dx2 = η3∧ (dx3− x1dx2)+η4(dx1− x4dx2)

= η4∧dx1 +(−x1η3− x4η4)∧dx2 +η3∧dx3.

We now observe that no choice of η j allows us to solve the second equation. For
this amounts to solving the system

0 = η4∧dx1,

−dx4∧dx2 = (−x1η3− x4η4)∧dx2,

0 = η3∧dx3.

Then η3 and dx3 must be linearly dependent, i.e. η3 = f dx3, and similarly η4 =
gdx1. But then

(−x1η3− x4η4)∧dx2 =−x1 f dx3∧dx2− x4gdx1∧dx2,

and there is no hope of choosing f or g such that this is equal to −dx4∧dx2 since
the dxi∧dx j form a basis of the space of 2-forms.

Problem. (F16:07) Let X be a connected CW complex with finite fundamental
group. Show that any map F : X → (S1)n is nullhomotopic.

Solution. See also F11:03. Since π1((S1)n) = Zn, which has no finite subgroups,
it follows that F∗ : π1(X)→ π1((S1)n) is trivial. Therefore F lifts to a map to the
universal cover, F̃ : X → Rn. Since Rn is contractible, F̃ is nullhomotopic, and
therefore F = p◦ F̃ is nullhomotopic (here p : Rn→ (S1)n is the covering map).
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