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1 History
Poincare, Analysis Situs papers in 1895. Coined “homeomorphism”, defined homology, gave rigor-
ous definition of homotopy, established “method of invariants” and essentially kicked off algebraic
topology.

2 Motivation
Generalized Topological Poincare Conjecture: When is a homotopy sphere also a topological sphere?
i.e. when does π∗X ∼=Grp π∗Sn =⇒ X ∼=T op Sn?

• n = 1: True. Trivial
• n = 2: True. Proved by Poincare, classical
• n = 3: True. Perelman (2006) using Ricci flow + surgery
• n = 4: True. Freedman (1982), Fields medal!
• n = 5: True. Zeeman (1961)
• n = 6: True. Stalling (1962)
• n ≥ 7: True. Smale (1961) using h-cobordism theorem, uses handle decomposition + Morse

functions

Smooth Poincare Conjecture: When is a homotopy sphere a smooth sphere?

• n = 1: True. Trivial
• n = 2: True. Proved by Poincare, classical
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• n = 3: True. (Top = PL = Smooth)
• n = 4: Open
• n = 5: Zeeman (1961)
• n = 6: Stalling (1962)
• n ≥ 7: False in general (Milnor and Kervaire, 1963), Exotic Sn, 28 smooth structures on S7

It is unknown whether or not $ B^4 $ admits an exotic smooth structure. If not, the smooth
$ 4 $-dimensional Poincare conjecture would have an affirmative answer.

Current line of attack: Gluck twists on on S4. Yield homeomorphic spheres, suspected not to
be diffeomorphic, but no known invariants can distinguish smooth structures on S4.

Relation to homotopy: Define a monoid Gn with

• Objects: smooth structures on the n sphere (identified as oriented smooth n-manifolds which
are homeomorphic to Sn)

• Binary operation: Connect sum

For n 6= 4, this is a group. Turns out to be isomorphic to Θn, the group of h-cobordism classes of
“homotopy Sns”

Recently (almost) resolved question: what is Θn for all n?

Application: what spheres admit unique smooth structures?

• Define bPn+1 ≤ Θn the subgroup of spheres that bound parallelizable manifolds (define in a
moment).

• The Kervaire invariant is an invariant of a framed manifold that measures whether the man-
ifold could be surgically converted into a sphere. 0 if true, 1 otherwise.

• Hill/Hopkins/Ravenel (2016): = 0 for n ≥ 254.
• Kervaire invariant = 1 only in 2, 6, 14, 30, 62. Open case: 126.
• Punchline: there is a map Θn/bPn+1 → πS

n /J , (to be defined) and the Kervaire invariant
influences the size of bPn+1. This reduces the differential topology problem of classifying
smooth structures to (essentially) computing homotopy groups of spheres.

• Open question: is there a manifold of dimension 126 with Kervaire invariant 1?

Parallelizable/framed: Trivial tangent bundle, i.e. the principal frame bundle has a smooth
global section. Parallelizable spheres S0, S1, S3, S7 corresponding to R,C,H,O.

• Framed Bordism Classes of manifolds – Ωfr
n

∼= πS
n > Note: bordism is one of the coarsest

equivalence relations we can put on manifolds. Hope to understand completely!
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3 Background
Definition (Homotopy) Given two paths P1, P2 : I → X (where we identify the paths with their
images under these maps), then a homotopy from P1 to P2 is a function

H : I → (I → X)

H(0, · ) = x0

H(1, · ) = x1

H( · , 0) = P1( · )

H( · , 1) = P2( · )

such that the associated “partially applied” function Ht : I → X is continuous.

Definition (Homotopic Maps) Given two maps f, g : X → Y , we say f is homotopic to g and
write f ∼ g if there is a homotopy

H : I → (X → Y )

H(0, · ) = f( · )

H(1, · ) = g( · )

such that Ht : X → Y is continuous.

Can think of this as a map from the cylinder on X into Y , or deformations through continuous
functions.

Note: This is an equivalence relation. If f : X → Y is a map, we write [X, Y ] to denote the
homotopy classes of maps X to Y .

Definition (Fundamental Group)

π1(X) := [S1, X].

Note that this actually measures homotopy classes of loops in X.

Example: π1T 2 = Z
∗2, a free abelian group of rank 2.

Definition (Higher Homotopy Groups)

πn(X) := [Sn, X].

Introduced by Cech in 1932, Alexandrov reportedly told him to withdraw because it couldn’t
possibly be the right generalization due to the following theorem:

Theorem:

n ≥ 2 =⇒ [Sn, X] ∈ Ab.

3



In words, higher homotopy groups are abelian. We have a complete classification of abelian groups,
so we know πn(X) = F ⊕ T for some free and torsion parts.

Theorem (Hopf, 1931):

[S3, S2] = Z 6= 0

Recall that homology vanishes above the dimension of a given manifold!

This group is generated by the Hopf fibration, and provides infinitely many ways of “wrapping” a
3-sphere around a 2-sphere nontrivially! This was surprising and unexpected

Definition (CW Complex) A CW complex is any space built from the following inductive
process:

Denote Xn the n-skeleton.

• Let X0 by a discrete set of points.

• Let Xn+1 be obtained from Xn by taking a collection of n- balls and glue them to Xn by
maps

φ : ∂Bn → Xn

.

• If infinitely many stages, let X =
∪

Xn with the weak topology

(i.e. a set A ⊂ X is open iff A
∩

Xn is open for all n)

Example: Every graph is a 1-dimensional CW complex

Example: Identification polyhedra for surfaces

Example: Sn = e0 + en by gluing Bn+1 to a point by a map φ : ∂Bn+1 → {pt}, i.e. Bn+1/Bn ∼= Sn.
Can also attach two hemispheres at each i ≤ n to get Sn = e0 + e1 + 2e2 + · · · + 2en.

Note: Cellular homology is very easy to compute!

Note: Replacing φ with a homotopic map yields an equivalent CW complex. So understanding
CW complexes boils down to understanding [Sn, Sm] for m < n, i.e. higher homotopy groups
of spheres.

Definition (Cellular Map) A map between f : X → Y between CW complex is cellular if
f(X(k)) ⊆ Y(k) for every k.

Theorem (Cellular Approximation): Any map f : X → Y is homotopic to a cellular map.

Application: πkSn = 0 if k < n. Use f ∈ πkSn ⇐⇒ f ∈ [Sk, Sn], deform f to be cellular,
then f(Sk

(k)) →֒ Sn

(k) = {pt}, so f ≃ c0, a constant map.

Definition (Homotopy Equivalence) Two spaces X, Y are said to be homotopy equivalent if
there exists a maps f : X → Y and f−1 : Y → X such that

f ◦ f−1 ≃ idY

f−1 ◦ f ≃ idX
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Definition (Weak Equivalence) A continuous map

f : X → Y

is called a weak homotopy equivalence if the induced map

f∗ : π∗(X) → π∗(Y )

is a graded isomorphism.

Note that this is a strictly weaker notion than homotopy equivalence – we don’t require an
explicit inverse.

Note that a weak homotopy equivalence also induces isomorphisms on all homology and co-
homology.

Theorem (Whitehead): If f : X → Y is a weak equivalence between CW complexes, then it is
a homotopy equivalence.

Corollary (Relative Whitehead): If f : X → Y between CW complexes induces an isomor-
phism H∗X ∼= H∗Y , then f is a weak equivalence.

Theorem (CW Approximation): For every topological space X, there exists a CW complex X̃
and a weak homotopy equivalence f : X → X̃.

Note: Weak equivalences = equivalences for CW complexes, which means we can essentially
throw out the distinction!

Note: This says that if we understand CW complexes, we essentially understand the category
hoTop completely. Moreover, we only have to understand spaces up to weak equivalence,
i.e. we just need to check induced maps on π∗ instead of checking for inverse maps.

Definition (Connectedness): A space is said to be n-connected if π≤nX = 0.

Recall that a space is simply connected iff π1X = 0.

Theorem (Hurewicz): Given a fixed space X, any map f ∈ πkX = [Sk, X] has the type
f : Sk → X. This induces a map f∗ : H∗Sk → H∗X. Since HkSk ∼= Z ∼= 〈µ〉, define a family of
maps

hk : πkX → HkX

[f ] 7→ f∗(µ)

If n ≥ 2 and X is n − 1 connected, then hk is an isomorphism for all k ≤ n.

Note: If k = 1, then h1 is the abelianization of π1.

3.1 Application
If X a simply connected, closed 3-manifold is a homology sphere, then it is a homotopy sphere.

• H0X = Z since X is path-connected
• H1X = 0 since X is simply-connected
• H3X = Z since X is orientable
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• H2X = H1X by Poincare duality. What group is this?
– 0 → Ext1

Z (H0(X;Z),Z) → H1(X;Z) → HomZ (H1(X;Z),Z) → 0 yields
– 0 → Ext1

Z (Z,Z) → H1(X;Z) → HomZ (0,Z) → 0
– Then Ext1

Z (Z,Z) = 0 because Z is a projective Z-module, so H1X = 0.
• So H∗(X) = [Z, 0, 0,Z, 0, · · · ]
• So h3 : π3X → H3X is an isomorphism by Hurewicz. Pick some f ∈ π3X ∼= Z. By partial

application, this induces an isomorphism H∗S3 → H∗X.
• Taking CW approximations for S3, X, we find that f is a homotopy equivalence.

4 Other Topics
Theorem (Freudenthal Suspension): If X is an n-connected CW complex, then there is a map

Σ : πiX → πi+1ΣX

which is an isomorphism for i ≤ 2n and a surjection for i = 2n + 1.

Note: [Sk, X] 7→ [ΣSk, ΣX] = [Sk+1, ΣX]

Application: π2S2 = π3S3 = · · · since 2 is already in the stable range.

A consequence: π1X → π2ΣX → π3Σ2X → · · · is eventually constant, we say the homotopy groups
stabilize. So define the *stable homotopy groups

πS
i := lim

k→∞
πi+kX

X = Sn yields stable homotopy groups of spheres, ties back to initial motivation.

Noting that ΣSn = Sn+1, we could alternatively define S := limk ΣkS0, then it turns out that
πnS = πS

n .

This object is a spectrum, which vaguely resembles a chain complex with a differential:

X0
Σ
−→ X2

Σ
−→ X3

Σ
−→ · · ·

Spectra represent invariant theories (like cohomology) in a precise way. For example,

HG :=
(

K(G, 1)
Σ
−→ K(G, 2)

Σ
−→ · · ·

)

then Hn(X; G) ∼= [X, K(G, 1)], and we can similarly extract H∗(X; G) from (roughly) π∗HG :=
[S, HG

∧

X].

Note: this glosses over some important details! Also, smash product basically just looks like
the tensor product in the category of spectra.

A modern direction is cooking up spectra that represent extraordinary cohomology theories. There
are Eilenberg–Steenrod axioms that uniquely characterize homology on spaces; if we drop H∗{pt} =
0, we get generalized alternatives.
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Figure 1: Image

5 Other Topics
• The homotopy hypothesis
• Generalized Cohomology theories
• Stable Homotopy Theory
• Infinity Categories
• Higher Homotopy Groups of Spheres
• Eilenberg Mclane and Moore Spaces

• Below jagged line: Zero by cellular approximation, or stable by Freudenthal suspension.
• Above line: Unstable range. Need to throw everything in the book at these guys to compute!
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