--- created: 2023-03-26T11:58 updated: 2024-04-14T15:14 aliases: links: --- # Definitions $$\begin{aligned} \mathbf{S L}(n, \mathbf{R}) & =\{A \in \mathbf{G} \mathbf{L}(n, \mathbf{R}) \mid \operatorname{det}(A)=1\} \quad \text { (real special linear group) } \\ \mathbf{S L}(n, \mathbf{C}) & =\{A \in \mathbf{G L}(n, \mathbf{C}) \mid \operatorname{det}(A)=1\} \quad \text { (complex special linear group) } \\ \mathbf{U}(n) & =\left\{A \in \mathbf{G L}(n, \mathbf{C}) \mid A A^*=I\right\} \quad \text { (unitary group) } \\ \mathbf{S O}(n) & =\{A \in \mathbf{O}(n) \mid \operatorname{det}(A)=1\} \quad \text { (special orthogonal group) } \\ \mathbf{S U}(n) & =\{A \in \mathbf{U}(n) \mid \operatorname{det}(A)=1\} \quad \text { (special unitary group) } \end{aligned}$$ # Dimensions - $\dim \GL_n(\RR) = n^2$ - $\dim \Orth_n(\RR) = {1\over 2}n(n-1)$ since $\Orth_n(\RR) = \ker\qty{M\mapsto M^t M}$. - Regard as $\dim \GL_n(\RR) - \dim S_n(\RR) = n^2 - {1\over 2}n(n+1)$ where $S_n$ is the space of symmetric matrices, the image of the above map. - $\dim \SO_n(\RR) = {1\over 2}n(n-1)$. - $\dim \SL_n(\RR) = \dim \GL_n(\RR) - 1 = n^2 - 1$ since $\SL_n(\RR) = \ker \det$. - $\dim_\CC \U_n(\CC) = n^2$ - $\dim_\CC \SU_n(\CC) = n^2-1$. - $\dim \Sp_{2n}(\RR) = n(2n+1)$. - $\dim \PGL_n(\RR) = n^2-1$. - $\dim \PSL_n(\RR) = n^2-1$ since $\PSL_n = \SL_n/\gens{\pm I}$, a quotient by a finite group.