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Preface

The field of mirror symmetry has exploded onto the mathematical scene in recent

years. This is a part of an increasing connection between quantum field theory and

many branches of mathematics.

It has sometimes been said that quantum field theory combines 20th century

physics with 21st century mathematics. Physicists have gained much experience

with mathematical manipulations in situations which have not yet been mathe-

matically justified. They are able to do this in part because experiment can help

them differentiate between which manipulations are feasible, and which are clearly

wrong. Those manipulations that survive all known tests are presumed to be valid

until evidence emerges to the contrary.

Based on this evidence, physicists are confident about the validity of mirror

symmetry. One of the tools they use with great virtuosity is the Feynman path in-

tegral, which performs integration with complex measures over infinite dimensional

spaces, such as the space of C*° maps from a Riemann surface to a Calabi-Yau

threefold. This is not rigorous mathematics, yet these methods led to the 1991

paper of Candelas, de la Ossa, Green and Parkes [CdGP] containing some aston-

ishing predictions about rational curves on the quintic threefold. These predictions

went far beyond anything algebraic geometry could prove at the time.

The challenge for mathematicians was to understand what was going on and,

more importantly, to prove some of the predictions made by the physicists. In this

book, we will see that algebraic geometers have made substantial progress, though

there is still a long way to go. The process of creating a mathematical foundation

for aspects of mirror symmetry has given impetus to new fields of algebraic geom-

etry. Examples include quantum cohomology, Kontsevich’s definition of a stable

map, the complexified Kihler moduli space of a Calabi-Yau threefold, Batyrev’s du-

ality between certain toric varieties, and Givental’s notion of quantum differential

equations. Mirror symmetry has also led to advances in deformation theory leading

to the theory of the virtual fundamental class, as well as a previously unknown

connection between algebraic and symplectic deformation theory. Even though we

still don’t know what mirror symmetry really “is”, the predictions that mirror sym-

metry makes about Gromov-Witten invariants can now be proved mathematically

in many cases.

Goal of the Book

Perhaps the greatest obstacle facing a mathematician who wants to learn about

mirror symmetry is knowing where to start. Currently, many references are scat-

tered throughout journals, and many mathematical ideas exist solely in the physics

literature, which is difficult for mathematicians to read. Our primary goal is to give

an introduction to the algebro-geometric aspects of mirror symmetry. We include
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sufficient detail so that the reader will have the major ideas and definitions spelled

out, and explicit references to the literature when space constraints prohibit more

detail. We explain both the rigorous mathematics as well as the intuitions bor-
rowed from physics which are not yet theorems. We do this because we have two

primary target audiences in mind: mathematicians wanting to learn about mirror

symmetry, and physicists who know about mirror symmetry wanting to learn about

the mathematical aspects of the subject.

Mirror symmetry is connected to several branches of mathematics (and there

are even broader connections between physical theories in various dimensions and

many areas of mathematics). We focus on the connection between algebraic ge-

ometry and mirror symmetry, although we discuss closely related areas such as

symplectic geometry. By restricting our focus in this way, we hope to give a rea-

sonably self-contained introduction to the subject.

The book begins with a general introduction to the ideas of mirror symmetry in
Chapter 1. Then Chapter 2 discusses the quintic threefold and explains how mirror

symmetry leads to the enumerative predictions of [CAGP]. Chapter 3 reviews toric

geometry, and Chapter 4 describes mirror constructions due to Batyrev, Batyrev-

Borisov, and Voisin-Borcea. The next four chapters (Chapters 5, 6, 7 and 8) flesh

out the mathematics needed to formulate a precise version of mirror symmetry.

These chapters cover maximally unipotent monodromy, Yukawa couplings, com-

plex and Kihler moduli, the mirror map, Gromov-Witten invariants, and quantum
cohomology. This will enable us to state some Mirror Conjectures at the end of

Chapter 8.

The next three chapters (Chapters 9, 10 and 11) are dedicated to proving some
instances of mirror symmetry. Equivariant cohomology and localization play a cru-

cial role in the proofs, so that these are reviewed in Chapter 9. These methods also

give powerful tools for computing Gromov-Witten invariants. In order to explain

Givental’s approach to the Mirror Theorem, we need the gravitational correlators
and quantum differential equations discussed in Chapter 10. Finally, Chapter 11 de-

scribes the work of Lian, Liu and Yau [LLY] and Givental [Givental2, Givental4]

on the Mirror Theorem.

The mathematics discussed in Chapters 1-11 is wonderful but highly nontrivial.

Later in the preface we will give some guidance for how to read these chapters.

The bock concludes with Chapter 12, which brings together all of the open
problems mentioned in earlier chapters and discusses some of the many aspects of

mirror symmetry not covered in the text. Finally, there are appendices on singular

varieties and physical theories.

We tried to make the bibliography fairly complete, but it has been difficult to

keep up with the amazing number of high-quality papers being written on mirror
symmetry and related subjects. We apologize to our colleagues for the many recent

papers not listed in the bibliography.

Relation to Physics

For mathematicians, one frustration of mirror symmetry is the difficulty of
getting insight into the physicist’s intuition. There is no question of the power of

this intuition, for it is what led to the discovery of the mirror phenomenon. But
getting access to it requires a substantial study of quantum field theory. A glance at

Appendix B, which discusses sorne of the physical theories involved, will indicate the
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magnitude of this task. Understanding the physics literature on mirror symmetry

requires an extensive background, more than provided in this book. Appendix B

has the more modest goal of introducing the reader to some of the topics in the

physics literature which are relevant to mirror symmetry.

‘While this book was written to address the mathematics of mirror symmetry,

we also hope to show how the mathematics reflects the spirit of the physics. With

this thought in mind, we begin Chapter 1 with a discussion of the physics which

led to mirror symmetry. We use terminology from physics freely, though we don’t

assume that the reader knows any quantum field theory. The idea is to convey

the sense that mirror symmetry is completely natural from the point of view of

certain conformal field theories. This is the most “physical” chapter of the book.

Subsequent chapters will concentrate on the mathematics, though we will pause

occasionally to comment on the relationship between the mathematics and the

physics.

An important aspect of the role of physics is that mathematically sophisti-

cated physicists helped discover the mathematical foundation for mirror symmetry.

Algebraic geometers can take pride in the wonderful theories they created to ex-

plain parts of mirror symmetry, but at the same time we should also recognize

that physicists provided more than just predictions—they often suggested the ap-

propriate objects to study, accompanied in some cases by mathematically rigorous

descriptions. This will become clear by checking the references given in the text—

a surprising number, even in the purely mathematical parts of the book, refer to

physics papers. There is no question of the debt we owe to our colleagues in physics.

How to Read the Book

Mirror symmetry is a wonderful story, but its telling requires lots of details in

many different areas of algebraic geometry. It is easy to get lost, especially if you

try to read the book cover-to-cover. Fortunately, this isn't the only way to read

the book.

OQur basic suggestion is that you should begin with Chapters 1 and 2. As al-

ready mentioned, Chapter 1 explains some of the physics, and it also introduces

two key ideas, the A-model of a Calabi-Yau manifold V', which encodes the enu-

merative information we want, and the B-model of the mirror V°, which we can

compute using Hodge theory. Then Chapter 2 shows what this looks like in the

case of the quintic threefold ¥V < P* and in the process derives the enumerative

predictions made in [CdAGP). This chapter ends with a preview of the proofs of

mirror symmetry from Chapter 11.

After reading the first two chapters, there are various ways you can proceed,

depending on your mathematical interests and expertise. To help you choose, here

is a description of some of the highlights of the remaining chapters:

Chapter 3. Readers familiar with toric geometry can skip most of this chapter.

Section 3.5 introduces reflexive polytopes, which are used in the Batyrev mirror

construction.

Chapter 4. Section 4.1 describes the Batyrev mirror construction and gives

some evidence for the mirror relation. Section 4.2 explains how this applies to the

quintic threefold. K3 surfaces are used in Section 4.4 to construct some interesting

mirror pairs of Calabi-Yau threefolds.
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Chapter 5. Maximally unipotent monodromy is an important part of mirror

symmetry and is defined in Section 5.2. Readers interested in computational tech-

niques for projective hypersurfaces, toric hypersurfaces and hypergeometric equa-

tions should look at Sections 5.3, 5.4 and 5.5, while those interested in the Hodge

theory of Calabi-Yau threefolds should read Section 5.6 very carefully.

Chapter 6. We consider complex moduli in Section 6.1 and Kéhler moduli in

Section 6.2. The two discussions are interwoven because of the relation between

the two predicted by mirror symmetry. The main example we work out concerns

toric hypersurfaces, so that the reader will need the Batyrev mirror construction

from Chapter 4. Readers interested in moduli of Calabi-Yau manifolds, Kihler

cones, and the global aspects of mirror symmetry will want to read these sections

carefully. Section 6.3 discusses the mirror map and has more on hypergeometric

equations, which are used to construct the mirror map in the toric case.

Chapter 7. With the exception of some examples, Chapter 7 is independent

of the earlier chapters. The main objects of study are Gromov-Witten invariants.

Sections 7.1.1, 7.1.2 and 7.3.1 are essential reading. Otherwise:

e The discussion of the virtual fundamental class in Sections 7.1.3-7.1.6 is

more technical and can be skipped at the first reading. The one exception is

Example 7.1.6.1, which gives an important formula for some Gromov-Witten

invariants of the quintic threefold. The virtual fundamental class is used in

various places in Chapters 9, 10 and 11.

* Readers interested in symplectic geometry should read Sections 7.2 and 7.4.4

carefully.

¢ Readers interested in enumerative geometry will want to look at Section 7.4.

Some of the examples given here will be revisited in Chapter 8.

One surprise in Section 7.4.4 is the subtle relation between the instanton number

nyo and the number of degree 10 rational curves on the quintic threefold.

Chapter 8. This chapter uses the Gromov-Witten invariants of Chapter 7 to

define the two flavors of quantum cohomology, small and big. Everyone should read

Section 8.1.1 for the small quantum product and Section 8.1.2 for some examples.

Also, some knowledge of the Gromov-Witten potential is also useful. This is covered

in Sections 8.2.2, 8.3.1 and 8.3.3. Then:

¢ Readers interested in enumerative geometry should read Sections 8.1, 8.2

and 8.3 carefully.

¢ Readers interested in Hodge theory will want to look at Section 8.5, which

uses quantum cohomology to construct the A-variation of Hodge structure

on the cohomology of a Calabi-Yau manifold.

A highlight of the chapter is Section 8.6, which formulates various Hodge-theoretic

versions of the mirror conjecture.

Chapter 9. Sections 9.1 and 9.2.1 are required reading for anyone wanting

to understand the proofs of mirror symmetry given in Chapter 11. This especially

includes Example 9.2.1.3, which computes the Gromov-Witten invariant (I5o4)

using an equivariant version of the formula given in Example 7.1.6.1. Sections 9.2.2

and 9.2.3 prove some of the assertions about Gromov-Witten invariants of Calabi-

Yau threefolds made in Section 7.4.4 and require a detailed knowledge of the virtual

fundamental class.
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Chapter 10. Readers only interested in the [LLY] approach to the Mirror

Theorem can skip this chapter. For Givental’s approach, however, the reader will

need to read about gravitational correlators (Section 10.1.1-10.1.3), flat sections of

the Givental connection (Section 10.2.1), and the J-function and quantum differ-

ential equations (Section 10.3). For readers with an interest in Hodge theory, the

A-model variation of Hodge structure is discussed in Sections 10.2.2 and 10.3.2.

This leads to a nice connection between Picard-Fuchs operators and relations in

quantum cohomology.

Chapter 11. Here we discuss the recent proofs of the Mirror Theorem. There

are two approaches to consider:

e The [LLY] approach to the Mirror Theorem for the quintic threefoid is

covered in Section 11.1. This requires knowledge of the essential sections of

Chapters 7, 8 and 9 mentioned earlier.

e For Givental’s version of the Mirror Theorem, one needs in addition the

sections of Chapter 10 indicated above. In Sections 11.2.1, 11.2.3 and 11.2.4,

we discuss the Mirror Theorem for nef complete intersections in P*, and

then in Section 11.2.5 we consider what happens when the ambient space is

a smooth toric variety.

In particular, we explain how both of these approaches prove all of the predic-

tions for the quintic threefold made in Chapter 2. Another very interesting case

is presented in Example 11.2.5.1, which concerns Calabi-Yau threefolds which are

minimal desingularizations of degree 8 hypersurfaces in P(1,1,2,2,2). This exam-

ple of a toric hypersurface makes numerous appearances in Chapters 3, 5, 6 and 8,

so that the reader will need to look back at these earlier examples in order to fully

appreciate what we do in Example 11.2.5.1.

‘We should also mention that in many cases, our proofs are not complete, for

we often refer to the literature for certain details of the argument. The same

applies to background material. For some topics (such as equivariant cohomology

in Chapter 9) we review the basic facts, while for others (such as algebraic stacks

in Chapter 7) we give references to the literature. We hope that this unevenness in

the level is not too unsettling to the reader.
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Notation

Here is some of the notation we will use in the book.

General Notation:

M Complex or symplectic manifold

X and V Algebraic variety and Calabi-Yau variety

©x and Tx Tangent sheaf and bundle of X

wx and Kx Canonical bundle and divisor of X

fi‘)’( Zariski p-forms on an orbifold X

M(X) Mori cone of effective 1-cycles on X

Ar(X) k*TM Chow group of X

{a,b) or g(a,b) Cup product pairing on cohomology

PTM and P(go,--- ;qn) Projective space and weighted projective space

Toric Varieties and Polytopes (Chapter 3):

T and Z(1) Fan and its 1-dimensional cones

A and A° Polytope and its polar (or dual) polytope

L(A) Laurent polynomials with exponents in A

X5 and Pa Toric variety of the fan ¥ and the polytope A

cpl(T) Cone of convex support functions on 2

Hodge Theory and Yukawa Couplings (Chapter 5):

vV =y Gauss-Manin connection

F* and W, Hodge and weight filtrations

H and Hz Hodge bundle F® and its integer subsheaf

T; and V; Monodromy transformation and its logarithm

(3 o 30) = Yigk Normalized Yukawa coupling or B-model correlation

function
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Complex and Kahler Moduli (Chapter 6):

M and M Complex moduli and a compactification

Mpaly and Mpaly Polynomial moduli and a compactification

Meimp and Miimp Simplified moduli and a compactification

K(V) and K(V)¢ Kihler cone and complexified Kahler space

KM and KM Kihler moduli and a compactification

KMizoric and KMoric Toric Kihler moduli and a compactification

Gromov-Witten Invariants and Quantum Cohomology (Chapters 7 and 8):

My n(X,8) and Coarse moduli space and fine moduli stack of

Mg (X, B) n-pointed genus g stable maps of class 3

My n(X,B)] Virtual fundamental class

Ignplar,...,a,) and Gromov-Witten class and invariant

(Ig,n,fixala e van)

ng and ngy Instanton number in general and for the quintic

threefold

Ng = (Ioo,g) and 0-pointed genus 0 Gromov-Witten invariant in

Ng = (Ipp,q) general and for the quintic threefold

*smail and * Small and big quantum product (*syay is sometimes

denoted =)

(a,b,c) Three-point function or A-model correlation

function

3(v) Genus 0 Gromov-Witten potential

V =V A-model connection

Chern Classes and Equivariant Cohomology (Chapter 9):

c;(€) and T (£) Chern class and equivariant Chern class of £

Euler(£) and Eulerr(£) Euler class and equivariant Euler class of £

J P ) Equivariant integral

Ags--- ,An and A Ring generators of H*(BT'} and H*{BC*), which

generate H*(BG) for G =C* x T, T = (C*)"*!

H and p Hyperplane class and equivariant hyperplane class

q0,---:9n Fixed points of standard T-action on P*
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Gravitational Correlators and the J-Function (Chapter 10):

(le’Ylv R} Tdn'Yn)y.B

{715+ - ,'Yn)g,,f:’

UTay M1, - 1 TdaTn)) g

25 ()

*grav

V9 and V9

55

T,

({52200

J=Jx

Gravitational correlator

Alternate notation for (I, n.g)(71,..- ,7n)

Genus g gravitational coupling

Genus g gravitational Gromov-Witten potential

Gravitational quantum product

Givental connection and dual Givental connection

Flat section of the Givental connection

Symbolic notation for 3°°° o A= "V (1, T,, Ty) o

Givental J-function of the smooth variety X

The Mirror Theorem (Chapter 11):

V=& 0p(a:)

Vi and Vg

Md and lVd

Dir

K

Rt and Rg

P and Q

HG[BI(t)

L(t)

IV and JV

V&.k,l

*X

Ty

It and Jr

Z’L,V

Vector bundle used in the Mirror Theorem

Bundle on Mo(P", d) and Mg x(P", d) induced

by V

Compact notation for Mo o(P* x P",(1,d)) and

P(HO (P, Op1(d))**?)

Fixed points of G-action on Ny, G =C* x T

Equivariant hyperplane class in H5(Ny)

Field of fractions of H*(BT) and H*(BG)

Important Euler data

Cohomology-valued function of B = {By}

The mirror map

Givental’s cohomology-valued functions

A certain subbundle of V; used in defining Jy

Modified quantum product on H*(P") determined

by a complete intersection X C P

Cohomology-valued function used in the Quantum

Hyperplane Section Principle

Equivariant versions of Iy, and Jy

A collection of functions for 0 < 7 < n which

determine Jr uniquely

Our conventions for citations are explained at the beginning of the Bibliography.





CHAPTER 1

Introdu(;tion

Mirror symmetry has made some surprising predictions in algebraic geometry,

ranging from the number of rational curves on a quintic threefold to the structure of

certain moduli spaces. These are wonderful problems to work on and, as indicated

in the preface, have led to some very interesting mathematics. Yet to understand

where these predictions come from, the algebraic geometer must plunge into the

language of physics, which is unfamiliar and sometimes frustratingly nonrigorous.

Hence, to begin our survey of the algebraic geometry of mirror symmetry, we will

start with the motivations for mirror symmetry and a discussion of what mirror

symmetry means in physics. Our treatment will be somewhat incomplete, since it

will involve many terms from physics which may be new to the reader. Nevertheless,

we hope to convey some of the intuition behind this- remarkable phenomenon.

We will then discuss three-point functions (which are crucial to the enumerative

predictions of mirror symmetry) and the physical reasons why Calabi-Yau manifolds
appear in the theory. Finally, at the end of the chapter, we will return to the

more familiar world of mathematics and give the reader a preview of the algebraic

geometry to be explored in the remaining chapters of the book.

1.1. The Physics of Mirror Symmetry

The goal of this section is to give the reader a feeling for why mirror symmetry

should occur and what it should imply. From the point of view of physics, mirror

symmetry arises naturally from standard constructions in supersymmetric string

theory, and our discussion will begin with some elementary remarks about strings

and supersymmetry. The reader should be assured that no previous knowledge of

physics is assumed! Our aim is to convey the flavor of these physical theories and in

the process enhance the reader’s intuition for the resulting mathematics. A detailed

understanding of the physics is not necessary, though later chapters will refer to

the physics presented in this chapter. As general references for string theory, the

reader can consult [GSW, Polchinski2].

In string theory, physical processes are described by the propagation of a string

in spacetime. A propagating string traces out a surface, called the world sheet T of

the string. Classical fields can be described as functions, sections of bundles, etc. on

the world sheet, and quantizing leads to a two-dimensional quantum field theory.

This theory has a generalized Hilbert space of states, together with a collection of

observables, which become self-adjoint operators on the space of states. The other

key ingredients of the theory are the action S obtained by integrating a Lagrangian

over the world sheet T, and the correlation functions

(1) (@(z1), ., B(5a)) = / (Dlé(z1) - -. B(za)eS®,
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where ¢ is an observable. This Feynman integral is over all possible world sheets

and is mathematically undefined at present. We discuss such theories in more detail

in Appendix B. For now, let’s concentrate on their general features.

String theories are nice because they eliminate some of the problems which

occur when a particle splits into two particles. As the following picture shows,

representing the particle by a point leads to a singularity, while the string repre-

sentation is a smooth 2-manifold with boundary:

time time
—— —_—

«— singularity world sheet =

particle splitting, particle splitting,

represented as a point represented as a string

However, string theories still have some undesirable features, including many infini-

ties which require renormalization. A remarkable discovery in recent times is that

supersymmetry can eliminate many of these difficulties. Supersymmetry transforms

bosons (particles with integer spins and symmetric wavefunctions) into fermions

(particles with half-integer spins and antisymmetric wavefunctions) and vice-versa.

Although supersymmetry has not been experimentally verified to date, supersym-

metric theories have become very important in theoretical physics because of their

nice behavior.

Another ingredient we need is that the world sheet ¥ has a conformal struc-

ture, and our supersymmetric string theory needs to be equivalent under conformal

equivalence. Hence this theory is a superconformal field theory (SCFT for short).

The Lie algebra of the symmetry group of such a theory is a superconformal alge-

bra. This algebra contains the conformal algebra (the Lie algebra of the group of

conformal transformations of the world sheet) as a subalgebra, and it also contains

the supersymmetry transformations.

The superstring theories come in four basic types: type I, type IIA, type 1IB,

and, of greatest interest to us, heterotic. Heterotic string theory is an N = 2 SCFT

because there are two supersymmetries. In such a theory, the equations of motion

for the fermions decouple into left- and right-moving solutions, which means that

there are actually four supersymmetries, two left-moving and two right-moving.

For this reason, heterotic string theories are more properly called (2, 2) theories, as

there are two independent supersymmetries in each of the left- and right-moving

sectors of the theory.

The N = 2 superconformal algebra contains two copies of the usual supercon-
formal algebra, and hence has two u(1) subalgebras, one in the right-moving sector

of the theory which infinitesimally rotates the two supersymmetries, and the other

in the left-moving sector which acts similarly. A noncanonical choice of generator

for each u(1) can be made by ordering the two supersymmetry transformations. If

the order of the supersymmetries is reversed, the result is to change the sign of the

generator of the u(1). The respective generators of these subalgebras are denoted
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by (Q, Q) and are only well-defined up to sign. We regard (@, Q) as operators on

the Hilbert space of states, which decomposes into eigenspaces under the action of
u(1) x u(l). As we will see, these eigenspaces can be very interesting.

So far, we've discussed heterotic string theories in the abstract. The next step

is to actually construct a such a theory, which is where algebraic geometry enters

the picture. There are several ways this can be done, but for us, the most important

is the nonlinear sigma model (sigma model for short) determined by a Calabi-Yau

threefold! V and a complerified Kdhier class w = B+1iJ on V. Here, B and J are

elements of H2(V,R), with J a Kahler class.

From the input data (V,w), there is a geometric construction of an N = 2

SCFT which explicitly gives distinct roles for the various supersymmetries; hence

in this context there is a canonical choice for (@, Q). This gives an explicit choice

of the u(1) x u(1) representation on our Hilbert space, and one can compute that

for p, g > 0, (@, Q) bas eigenspaces:

(p,q) eigenspace = HI(V, \PTy)

12) (—p,q) eigenspace ~ H(V, Q%)

Appendix B.2 describes more fully what it means to be a nonlinear sigma model

and Section 1.3 explains how the Calabi-Yau condition arises from the physics.

The most important fields in a heterotic string theory are associated to ele-

ments of H(V, Ty) and H'(V,Q},), corresponding to eigenvalues (1, 1) and (-1,1)

respectively. The operators corresponding to elements in these spaces are called

marginal operators. These are important partly because they are closely related to

the moduli of sigma models coming from (V,w). Intuitively, SCFT moduli are ob-

tained by simultaneously varying the complex structure on V and the complexified

Kihler class w = B +iJ, although there are extra discrete SCFT identifications on

the moduli spaces which we will ignore for the moment. While readers should be

familiar with the complex moduli, the idea of “complexified Kihler moduli” may

be new. We will describe this in more detail in Section 1.4.

1t follows from this description that the SCFT moduli space has two foliations,

one of whose leaves can be described as “V' constant”, while the leaves of the other

are “w constant.” This leads to the following picture:

fi -—V constanh
w varies

(1.3)

t
w constant,

V varies J

SCFT moduli near (V,w)

1For now, a Calabi-Yau threefold is a smooth compact connected threefold with vanishing

first Betti number and trivial canonical class. Later, we will allow certain singularities.



4 1. INTRODUCTION

In spite of this picture, we should emphasize that the SCFT moduli space is

not a product of the complex structure and Kahler structure moduli spaces, not

even locally. In fact, the Kahler moduli space of w can depend on the complex

structure of V' [Wilson2]. In general, this is only well-defined if we have in mind

a fixed complex structure on V. On the other hand, it follows from [Wilson2]

that for a sufficiently generic Calabi-Yau threefold V, the Kihler moduli of w is

independent of the complex structure of V. These issues will be discussed in more

detail in Chapter 6. Hence, although the above picture is useful at a conceptual

level, it does not reflect the subtleties of the SCFT moduli space.

Now that we have a better idea of how Calabi-Yau threefolds and complexified

Kabhler classes gives interesting physical theories, it is time to explain where mirror

symmetry comes from. The basic starting point lies in the sign indeterminacy of

(@,Q). We mentioned above that (Q,Q) are only well-defined up to sign, yet the
sigma model coming from (V,w) makes a very specific choice. If we changed Q to

—Q and left Q as is, we would interchange the (p,q) and (—p, ¢) eigenspaces, which
by (1.2) would interchange H9(V, APTy) and H9(V,%,). This is not possible since

these are vector spaces of different dimensions in general. Yet from the physical

point of view, such a sign change is reasonable. This asymmetry suggests that

maybe the sign change corresponds to the sigma model arising from a different

pair (V°,w®). If such a pair (V°,w®) exists, we say that (V,w) and (V°,w°) are a

mirror pair. More formally, we have the following definition from physics.

Prysics DEFINITION 1.1.1. (V,w) and (V°,w®) form a mirror pair if their

sigma models induce isomorphic superconformal field theories whose N = 2 super-

conformal representations are the same up to the above sign change.

Note that this is not a mathematical definition since the SCFT associated to

(V,w) is not rigorously defined. However, in Chapter 8, we will give a careful

definition of a mathematical mirror pair. This definition will incorporate many of

the properties predicted by mirror symmetry.

1t is these properties to which we now turn our attention. If (V,w) and (V°,w®)
are a mirror pair, then we get isomorphic SCFT’s. But what does this mean

about the mathematics? One of the major goals of this book is to understand the

mathematical consequences of mirror symmetry.

To see what mirror symmetry tells us about V and V°, first note that if we
combine (1.2) with the eigenvalue change (p, ¢) — (—p, q), we get isomorphisms

HY(V,NPTy) > HY(V°,Qf.)

HY(V, Q) ~ HY(V° APTys).

Since V' is Calabi-Yau, it has a nonvanishing holomorphic 3-form €2, and cup product

with ( gives a (noncanonical) isomorphism H¢(V, APTy ) = HI(V, Q?,_ P). The same

is true for V°, so that (1.4) can be written as

‘ HY(V,Qy7%) ~ HY(V°,0F.)

HIV, Q%) ~ HY(V°,0557).
These isomorphisms have a nice interpretation in terms of the Hodge diamond.

Since V is a smooth threefold, its Hodge numbers h*9(V) = dim H9(V, Q%) have

the symmetries A79(V) = h??(V) = p3-P3-9(V) = A3~93-P(V), and since V is
Calabi-Yau, we also have b, (V) = 0 and Qf, ~ Oy.. This implies that A10(V) = 0

and A*9(V) = 1. Furthermore, h®2(V) = dim H2(V, Ov) = dim H (V,0v) =

(1.4)

(1.5)

e esen ety



1.1. THE PHYSICS OF MIRROR SYMMETRY 
5

RO1(V) = 0, where the second equality follows from Serre duality and 0 ~ Oy,

Thus the Hodge diamond of V is as follows:

1

0 0

0 LYV 0

1 h21 (V) rY V) 1

0 ALYV 0

0 0

1

If we now compare the Hodge diamonds of a mirror pair V' and Ve, (1.5)

implies that h?4(V) = h3~P9(V°), which shows that the Hodge diamond of V° is

the reflection (or mirror image) of the Hodge diamond of V about a 45° line. This

is where the name “mirror symmetry” comes from.

The isomorphisms (1.4) and (1.5) are actually the first of a series of increasingly

impressive consequences of mirror symmetry. The next interesting implication of

being a mirror pair concerns moduli spaces. To see where moduli enter the picture,

note that (1.4) gives isomorphisms H(V,Ty) =~ H' (Ve,0b.) and HY(V, Q) =

HY(V°,Ty.). This naturally identifies the tangent space to the complex moduli

of V with the tangent space to the Kihler moduli of w® (see Section 1.4 for a

definition), and similarly identifies the tangent space to the Kahler moduli of w

with the tangent space to the complex moduli of V°. Thus the complex moduli

space of V is locally isomorphic to the Kihler moduli space of w®, and similarly the

complex moduli space of V° is locally isomorphic to the Kihler moduli space of w.

These local isomorphisms are collectively called the mirror map. In Chapter 6, we

will study complex and Kahler moduli in more detail and give a careful definition

of the mirror map.

Recall from our (slightly inaccurate) picture (1.3) that the SCFT moduli space

of (V,w) has two foliations, one where the leaves are “V constant” and the other

with leaves “w constant.” This means that if (V,w) and (V°,w®) are a mirror pair,

then we get the following local isomorphism of SCFT moduli spaces:

R

(1.6)

~ vw constant, ° constant,

V varies / v“ varies 4/

SCFT moduli near (V,w) SCFT moduli near (V°,w®)

This picture also clarifies why it makes no sense to speak of “the” mirror manifold of

a Calabi-Yau manifold V: given V, we can vary w freely in one leaf of the foliation

of the SCFT moduli space, which on the mirror side would cause w° to.be fixed

and V° to vary freely. So if anything, “the mirror of V" should be the class w°,
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together with the moduli space of those deformations of V° on which w° makes

sense as a complexified Kihler class.

In addition to what we've discussed so far, the existence of a mirror pair has
further consequences, not all of which are understood yet. The basic idea is that

any quantity that can be defined in terms of the SCFT can in principle be computed

using two different constructions for the SCFT. In the best cases, these quantities
can be computed in terms of the geometry of V and V°. Note that due to the

sign change in @ and the fact that H9(V,Q%) corresponds to H(V°, APTy.), it

is expected that the geometric calculations will be different for the different mod-

els. The best example is given by the correlation functions of the SCFT, already
mentioned in (1.1). These will be discussed in more detail in Section 1.2 and are

the key to the enumerative predictions made by mirror symmetry. We will see that
a computation on the mirror family can yield amazing results about the original

Calabi-Yau manifold.

In the physics literature, mirror symmetry is a rich phenomenon. In addition to

the mirror symmetry for nonlinear sigma models discussed so far, mirror symmetry
has also been observed for some non-geometric types of SCFT’s, including minimal

models and Landau-Ginzbury orbifolds. To explain how mirror symmetry works in
these cases, one needs to take the “orbifold” of a SCFT by a finite group. This

begins with the subtheory consisting of invariant fields, but since the resulting

subtheory is not stable under the flow of time (i.e., is not unitary), extra fields
are added to get a unitary theory which is again a SCFT (actually, the physics

is a bit more subtle—see Appendix B.4 for the details). If we quotient out by a

carefully chosen group action, we get the same physical theory we started with, but
with a change in the sign of the Q eigenvalues. This version of “mirror symmetry”

predates the discovery of mirror symmetry for nonlinear sigma models.

Early evidence for mirror symmetry of Calabi-Yau threefolds was given by lists

of Calabi-Yau hypersurfaces in weighted projective spaces (or their quotients by
finite groups). The Hodge numbers of these hypersurfaces exhibited a striking {but
far from perfect) symmetry. For some of these hypersurfaces, mirror symmetry
was demonstrated in [GP1] by first showing mirror symmetry for certain Landau-
Ginzburg theories (as mentioned above) and then relating these theories to the
sigma models of the hypersurfaces. As we will see in Chapter 4, all of these weighted

projective hypersurfaces are a subclass of those that arise from Batyrev’s reflexive

polytope construction [Batyrevd], as observed in [CdK]. It is conjectured (and

widely believed) that Calabi-Yau threefolds coming from reflexive polytopes are

mirror symmetric, and more generally, that the larger class of toric complete inter-

sections [Borisov1] is mirror symmetric. Much evidence has been given in the last
few years [CdGP, Font, Morrisonl, CdFKM, HKTY1, CFKM, HKTY?2,

BK1, AGML1, ES1, BKK, Kontsevich2, MP1, Givental2, Giventald, LLY].

In Chapter 11, we will outline two related approaches to the Mirror Theorem, which
establishes the equality of certain correlation functions of Calabi-Yau toric complete

intersections and their conjectured mirrors.

1.2. Three-Point Functions

The correlation functions defined in (1.1) are objects of intrinsic interest in
a SCFT. In physics, they arise naturally in the study of successive generations
of particles. The most common correlation function is the three-point function,
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which describes interactions between particles from three generations, not neces-

sarily distinct. In the Standard Model of elementary particle physics, a generation

of particles is a collection of particles with particular types of interactions under

the electric, weak nuclear, and strong nuclear forces. Experiments indicate that

there are 3 generations of particles. One of these generations includes the most

familiar particles, namely the electron and its accompanying neutrino, and the up

and down quarks (which are the constituents of the proton and the neutron). The

other known generations contain the more exotic quarks and leptons.

We will consider three-point functions for the nonlinear sigma model coming

from a Calabi-Yau threefold V and a complexified Kéhler class w. The most inter-

esting three-point functions are the Yukawa couplings, which come from the mar-

ginal operators discussed in the previous section. These correspond to H LV, Q)

and H!(V,Ty), which gives two types of Yukawa coupling to consider.

We begin with the Yukawa coupling coming from H LV, 04,). To each element

of H(V,0},), the sigma model associates a 27-dimensional vector space of fields,

which form an irreducible representation of Eg. In order to connect string theory

to the physical world, this vector space is presumed to contain a generation of ele-

mentary particles. The Yukawa coupling between three generations corresponding

to elements w; of H1(V,Q4), ¢ = 1,2, 3, is a physically important coupling between

three particles, one from each of the respective generations of particles.

In this situation, the Yukawa coupling is calculated by Feynman path integral

techniques to be

(w;,ug,u3)=/w1 Nws Aws +
v

(17 eZm;j'Bw

;}"fifa“’l Jowz Jgws T—mlse

where the sum is over homology classes § € H(V,Z) and ng is naively the number

of rational curves in the homology class 3. A careful definition of ng requires an

understanding of Gromou-Witten invariants, which will be discussed in detail in

Chapter 7. The theory predicts that the ng don’t change if we deform V', so that

this Yukawa coupling depends on w but not on V. In Chapter 8, we will see that

the coupling (1.7) is closely related to the quantum cohomology ring of V.

The Yukawa coupling just described is sometimes called the A-model correla-

tion function. The latter terminology arises from the A-model described in Appen-

dix B.2. This is a “twisted” version of the SCFT, which means that certain fields
are locally the same as in the sigma model, but globally are sections of certain twists

of the bundles that they were originally sections of. These couplings are identified

with the corresponding three-point functions in the A-model.

Let us also say a few words about where (1.7) comes from. Notice that the first

term of this formula is just cup product:

(1.8) / wy A w2 A ws.
v

From the physics point of view, two things happen in going from (1.8) to the A-

model correlation function (1.7). The first is a non-renormalization theorem, which

says that from a perturbative point of view, there are no quantum corrections

needed. As mentioned in the previous section, this is one of the nice consequences of

supersymmetry. However, there are also world sheet non-perturbative corrections
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to be considered, which in this case are the holomorphic instantons. These are

nonconstant holomorphic maps ¥ — V, where T is a compact Riemann surface.

When we treat the A-model correlation function more carefully in Chapters 7 and 8,

we will see that ¥ can have nodal singularities and more than one component. In

the A-model correlation function, the only instantons needed are those where L has

genus 0. Naively, these are what the ng count in formula (1.7). In the terminology

of Chapter 7, we call ng an instenton number.

The second Yukawa coupling to consider comes from H!(V, Ty). Here, elements

of H*(V,Ty) correspond to the conjugate 27-dimensional representation of Eg, and

we get a Yukawa coupling associated to three generations corresponding to elements

6; of H*(V,Ty), i = 1,2,3. The Yukawa coupling in this case is given by

(1.9) (61,82, 85) =f QA (B 0205 Q),
14

where Q is a holomorphic 3-form on V. The expression 6, - 02 - 83 - is defined by

the composition

SEHY(V,Tv) ® HO(V, Q%) — H3(V, ATy @ Q3) =~ H3(V, Ov) =~ HO3(V).

Alternatively, one can think of this as

/‘; QA (Ve Vi, Vi, Q),

where V is the Gauss-Manin connection.? Note that (6;,6,,63) is not yet well-

defined, since §2 can be multiplied by any constant. There is however a natural

normalization which we will describe later. This Yukawa coupling is clearly inde-

pendent of the complexified Kahler class w but depends on the complex structure

of V' (since § is a holomorphic 3-form).

The Yukawa coupling (1.9) is sometimes called the B-model correlation func-

tion, since it is identical with the corresponding three-point function in a different

twisted theory, the B-model described in Appendix B.2.

To explain where the formula (1.9) comes from, we proceed as in the A-model

case. Beginning with the “cup product”

(1.10) /‘; QA (01 -0y -03 - Q),

the same non-renormalization theorem applies, and we have the same holomorphic

instantons as before. The crucial observation is that these instantons enter via cup

product. In the A-model case, w; appears in (1.7) via |, 3 Wi, which can be thought

of as the cup product gg Uw; € H%(V,C) =~ C, where gg € HYV,C) = H>*(V)

is the Poincaré dual of 8. But in the B-model case, we have 6, € H(V,Ty) ~

HY(V, Q%) = H*Y(V), and since gg € H>2(V), their cup product gg U ; lies in
H4%3(V) =0. Hence the instantons don’t interact with (1.10), which is the crude
reason why (1.10) equals the B-model correlation function (1.9).

2This is how the Yukawa coupling appears in [CAGP]. As we will see in Proposition 5.6.1,
Hodge theory leads us to introduce an additional minus sign into the definition of the Yukawa

coupling. There are also physical reasons for adding a minus sign, as discussed in [Cd]. Since

can be multiplied by an arbitrary constant, the sign is of little concern for now. On the other

hand. in Section 5.6.4, we will fix a choice of {2 so will have to be careful about the sign. Qur

definition of the normalized Yuk coupling will include this sign.P
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The absence of instanton corrections in (1.9) is extremely important. It means

that we can compute the B-model Yukawa coupling ezactly using standard methods

of algebraic geometry. This procedure will be explained in Chapter 5.

Suppose now that (V,w) and (V°,w°) are a mirror pair, i.e., the sigma model

associated to {V,w) gives the same SCFT as the sigma model associated to (V°,w®)

with the appropriate sign change. This gives a natural isomorphism H!(V, Q)
H!(V?°,Ty.), and since three-point functions are intrinsic to the SCFT, it should

follow that the A-model correlation function arising from the sigma model on (V, w)

coincides with the (appropriately normalized) B-model correlation function arising

from the sigma model on (V°,w®). This is one of the major mathematical conse-

quences of mirror symmetry. The actual details of this identification are a bit more

complicated because of the role of the mirror map, but this equality of A-model

and B-model correlation functions is certainly plausible.

Note that the properties of the correlation functions are consistent with mirror

symmetry. We have already observed that the A-model correlation function asso-

ciated to (V,w) depends on w but not on V. It follows from mirror symmetry and

the local identification of moduli spaces discussed above that the B-model correla-

tion function associated to (V°,w®) should depend on V° but not on w°. As noted

above, the B-model does indeed have this property.

As we will see with the example of the quintic threefold, being able to identify

the three-point function of the A-model with the three-point function of the B-

model of its mirror was used in [CAGP] to make some remarkable predictions for

numbers of rational curves on the quintic threefold. This example is discussed in

detail in the next chapter. In general, some of the most important consequences of

mirror symmetry arise from the combination of the two following facts:

e The equality of the A-model and B-model correlation functions.

e The ability to compute the B-model function exactly.

Together, these allow one to compute Gromov-Witten invariants on Calabi~Yau
threefolds, which in turn give a wealth of enurnerative information. All of this, of

course, depends on our ability to prove mathematically that these physical conse-

quences are indeed correct.

What we have just described can be thought of as the “classical” approach

to the consequences of mirror symmetry, where the A-model and B-model corre-

lation functions are the primary objects of interest. However, in the years since

the discovery of mirror symmetry, the focus has shifted a bit. In particular, the

relation between the B-model correlation function and the Gauss-Manin connection

is much better understood, which on the A-model side has led to the development

of quantum cohomology and the A-variation of Hodge structure. Also, the work of

Givental and of Lian, Liu, and Yau on the Mirror Theorem has introduced other

new objects of interest—we will see that equivariant cohomology and localization

play an important role in the proofs of the Mirror Theorem. We will address all of

these ideas in subsequent chapters.

We close this section with a final observation about the formulas (1.7) and (1.9).

They seem asymmetric since the first is much more complicated than the second.

Fortunately, mirror symmetry easily accounts for this discrepancy. We noted above

that the A-model correlation function should vary with complexified Kahler class

w, while the B-model function should vary with complex structure on V. Since the

cup product in (1.8) is a purely topological invariant, it is clear that other terms

are needed if we are to have a nontrivial dependence on w. On the other hand,
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the cup product in (1.10) already depends on the complex structure, since Q is a

holomorphic 3-form on V. So it is conceivable that no further terms are needed.

1.3. Why Calabi-Yau Manifolds?

Our next task is to explain why mirror symmetry applies only to Calabi-Yau

manifolds, especially Calabi-Yau threefolds. A full explanation of why nonlinear

sigma models need Calabi-Yau manifolds would require a considerable detour into

physics. We give a partial treatment of this topic in Appendices B.2 and B.3.

For now, we will content ourselves with sketching some of the ideas. The starting

point is the assumption that space-time should be a 10-dimensional manifold with

a semi-Riemannian metric of signature (9,1). This manifold should locally be a

product Mz, x V, where M3, is the usual space-time of special relativity, and V

is a compact 6-dimensional Riemannian manifold. The basic intuition is that V is

too small to be seen at macroscopic scales but is essential for the quantum aspects

of the theory. In any dimension other than 10, the conformal symmetry discussed

earlier in the section does not survive the process of quantization.

As usual, the physics is nontrivial and involves some unfamiliar terms. The idea

is to approach a nonlinear sigma model by first considering other theories which are

more elementary from the physics point of view. In particular, one starts with an

N = 1 supergravity theory in the low energy limit. This gets rid of the fermionic

fields, and then supersymmetry and other consistency requirements impose strong

conditions on the metric on Riemannian manifold V. In particular, one finds that

the holonomy group of the metric equals SU(3). This has some nice consequences:

o (differential geometry) The metric on V is Ricci flat, i.e., its Ricci curvature

tensor vanishes identically. This implies b, (V) = 0.

e (algebraic geometry) V' has a complex structure such that ¢;(V) = 0, and

the metric is Kahler for this complex structure.

Hence we see that V is Calabi-Yau, as desired.

So far, we only have N = 1 supersymmetry in spacetime. After some further

work, this theory can be reinterpreted as an N = 2 SCFT on the world sheet,

although to preserve superconformal invariance, we need to deform the above Ricci

flat metric. A precise description of this deformation is not known (this is still an

open question in physics), but one can show that the new metric lies in the same

Kihler class as the old one, so that we still have a Calabi-Yau threefold.

For a more complete description of how the Ricci curvature arises (from the

physics point of view) and references to the literature, the reader should consult

Chapter 0 of [Hiibsch).

1.4. The Mathematics of Mirror Symmetry

From a mathematical point of view, the formulation of mirror symmetry given

in Section 1.1 poses serious problems. For example, the definition of an N = 2

SCFT involves integrals over the space of all maps £ — V. Such integrals have

yet to be defined rigorously. So a mathematical proof of mirror symmetry would

involve an isomorphism between objects (the sigma models of (V,w) and (V°,w®))

which aren’t well-defined mathematically. Even the N = 2 SCFT moduli spaces

pictured in Section 1.1 are not well-defined!

What are mathematicians to do in this situation? One approach would be to

avoid SCFT’s altogether by concentrating on careful definitions of Kihler moduli
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spaces, Gromov-Witten invariants, etc. and then trying to prove that these objects

behave as predicted by mirror symmetry. Another approach would be to embrace

the physics and use its intuitions to see more deeply into the algebraic geometry,

notably in the predictions mirror symmetry makes concerning the Gromov-Witten

invariants of Calabi- Yau toric complete intersections. A third would be to formulate

a purely mathematical version of mirror symmetry. For example, [Kontsevich3]

proposes that the mirror of a complex manifold V is a certain symplectic manifold

V° and that mirror symmetry might be forinulated as an equivalence of derived

categories relating coherent sheaves on V' to a category built from Lagrangian sub-

manifolds of V°. Another fascinating although still somewhat speculative approach
is to attempt to geometrically construct the mirror manifold as a moduli space of

special Lagrangian submanifolds [SYZ].? In practice, all of these approaches have

been used, which is why mirror symmetry is such an exciting field.

In this book, we will follow mainly the first approach, with occasional comments

on the physics of the situation. Thus, our goal is to discuss the algebraic geometry

involved in understanding the mathematical aspects of Sections 1.1 and 1.2. One

difference is that, unlike the physical theories, we will work with Calabi-Yau man-

ifolds of arbitrary dimension, not just dimension three. However, when we try to

formulate a mathematical definition of mirror pair in Chapter 8, we will be most

successful in the case of Calabi-Yau threefolds.

We begin with a careful definition of Calabi-Yau. Since the mirror symmetry

constructions to be studied in Chapter 4 sometimes produce singular varieties, we

need a definition which allows certain types of singularities.

DEFINITION 1.4.1. A Calabi-Yau variety is a d-dimensional normal compact

variety V which satisfies the following conditions:

(i) V has at most Gorenstein canonical singularities.

(ii) The dualizing sheaf of V is trivial, i.e., Q% ~ Ov.

(i) HY(V,0v) =--- = H"}(V,0v) = {0}.
If in addition V has at most Gorenstein Q-factorial terminal singularities, we say

that V is a minimal Calabi-Yau variety.

In Appendix A, we review the dualizing sheaf 3¢ and the definitions of Goren-

stein, canonical and terminal singularities. The Calabi-Yau threefolds considered

in Section 1.1 certainly satisfy this definition.

Some other terms used in Section 1.1 deal with moduli of various sorts. The

space of all complex structures on a given manifold V is a well known object in

algebraic geometry, but the idea of Kdhler moduli may be unfamiliar. Recall from

Section 1.1 that we had a Calabi-Yau threefold V with a complexified Kéhler class

w = B +iJ € H*(V,C) such that J was Kahler. However, if we change w by an

integral class, we don’t change the physical theory, since the definition of nonlinear

sigma model only uses exp(2mi [ ¢"(w)) for maps ¢ : ¥ — V.4 This quantity is

. unchanged if we change w by an element of H*(V,Z). Thus, in defining Kihler

moduli, we should mod out by the image of H%(V,Z). This leads to the following

definition (which as before allows some singularities).

31n general, symplectic geometry plays an important role in mirror symmetry, though we will

concentrate more on the algebro-geometric aspects.

4You can see this in the A-model correlation function (1.7). The full details can be found in

Appendix B.2.
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DEFINITION 1.4.2. Let V' be a projective orbifold with h*%(V) = 0. Then:

(i) The Kihler cone is the subset K(V) C H*(V,R) = HY(V,R) consisting of

all Kdhler classes.

(#) The complexified Kihler space is the quotient

Kc(V) = {w € B*(V,C) : Im(w) € K (V)}/im H*(V, Z),
where im H?(V, Z) is the image of the natural map H*(V,Z) — H2(V,C).

(#2) The complexified Kihler moduli space is the quotient Kc(V)/Aut(V).

Actually, the Kahler moduli space® as it arises in SCFT differs from this slightly.

The Kahler moduli space as we have defined it receives guantum corrections which

will modify its properties slightly. In particular, the theory may not converge for all

w, and so we will be forced to restrict our attention to complexified Kahler classes

w = B +iJ where J is sufficiently positive. Nevertheless, the larger space that we

defined here is mathematically interesting and will be one our primary objects of

study. We will consider some of the related subtleties in Chapter 6.

In Appendix A, we will review the definitions of orbifold and Kihler class

on an orbifold. Since A%? = 0, the Kihler cone K (V) is an open convex cone in
H?(V,R). This tells us that the complexified Kihler space K c(V) is a well-behaved
object. However, in order to determine the structure of the Kahler moduli space

Kc(V)/Aut(V), we need to know how the automorphism group Aut(V') acts on the

Kahler cone. We will return to this subject in Chapter 6.

Notice that Definitions 1.4.1 and 1.4.2 seem to involve slightly different types

of singularities. Fortunately, by a result of [Reidl], a Gorenstein orbifold has

canonical singularities. This means that any orbifold satisfying the second and

third parts of Definition 1.4.1 is automatically Calabi-Yau. Hence, for the purposes

of mirror symmetry, Calabi- You orbifolds are a natural class to work with.

1.5. What’s Next?

We now describe how the next ten chapters will take us from here to a proof

of the Mirror Theorem. We begin in Chapter 2 with a careful description of the

mirror of a smooth quintic threefold V ¢ P4. By carrying out the strategy outlined

in Section 1.2, we will get Some explicit predictions for the number of rational curves

on V of given degree. We will revisit this example several times during subsequent

chapters as we develop more mathematical background and eventually justify all of

the computations which appear in Chapter 2.

In trying to generalize the example of the quintic, it was soon realized that toric

geometry had an important role to play in mirror symmetry. Hence Chapter 3 will

explore various ways of describing toric varieties, and then Chapter 4 will describe

the known mirror symmetry constructions, many of which use toric geometry. This

will give us a large supply of examples which should satisfy mirror symmetry and

provide a good testing ground for the mathematics. We should also mention that

there are even physical theories (the gauged linear sigma models of [Witten5) to be

described in Appendix B.5) which explicitly use toric varieties. Support for mirror

symmetry in the context of the gauged linear sigma mode} is given in [MP1].

Our next task is to describe and compute the B-model Yukawa coupling. This

will be done in Chapter 5. It turns out that finding the correct coordinates for

5In discussing the Kahler moduli space, we frequently drop the adjective “complexified” when
the meaning is clear from context.
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calculating this Yukawa coupling requires a good understanding of the moduli space

at certain boundary points. Hence, in Chapter 6 we will study the structure and

compactifications of these moduli spaces. As mentioned above, we will also consider

Kihler moduli. In fact, we will see that certain basic facts about Kahier moduli

give insight into what the compactification of the usual moduli space should look

like. In Chapter 7, we will discuss Gromov-Witten invariants. Definitions have

been given in both the symplectic and algebraic categories, and either can be used

to give a mathematical definition of the A-model Yukawa coupling.

By the end of Chapter 7, we will have everything needed to give a precise

formulation of “classical” mirror symmetry, which asserts that certain correlation

functions are compatible via the mirror map. But starting in Chapter 8, we will

explore a deeper understanding of the subject. Two new ingredients are guantum

cohomology, which can be thought of as working out the algebraic and enumerative

implications of Gromov-Witten invariants, and the A-model veriation of Hodge

structure, which is a natural consequence of quantum cohomology. The basic idea

is that mirror symmetry really involves an isomorphism, via the mirror map, of

two variations of Hodge structure: one on the B-model (the usual VHS coming

from complex moduli), and the other on the A-model (the A-variation of Hodge

structure). This version of the Mirror Theorem will be formulated at the end of

Chapter 8. It turns out that the desired equality of correlation functions follows

immediately from this isomorphism of variations of Hodge structure.

The Mirror Theorem, when formulated using variations of Hodge structure, is

still an open question, although recent work of Givental [Givental2, Giventald4|

and Lian, Liu and Yau [LLY] represents substantial progress toward proving this

form of the theorem. We will discuss the ideas of these papers in Chapter 11. As

we will see, this will require the introduction of new techniques and new objects of

study. In particular, equivariant cohomology and locaiization will play an important

role in the proof. In Chapter 9, we will review some of the basic definitions and

theorems, and we will use these methods to prove some interesting results about

Gromov-Witten invariants. Then Chapter 10 discusses an extension of Gromov-

Witten invariants called gravitational correlators. These invariants will enable us to

describe the flat sections of the A-model connection. We will also define the Givental

J-function and explain its relation to guantum differential equations. Finally, in

Chapter 11, we will discuss the Mirror Theorems stated in [Givental2, Givental4]

and [LLY]. A brief preview of what is involved will be given at the end of Chapter 2,

and then the full details for the quintic threefold will be presented in Chapter 11.

These chapters cover a lot of mathematics, and reading them straight through

would be a somewhat daunting task. We suggest that the reader start with Chap-

ter 2. From here, there are several ways to proceed, depending on the reader’s

interests. The preface offers some guidance for what to read, and a glance at the

table of contents may also be useful. Our hope is that once you start reading, the

intrinsic interest of the subject will draw you in. Mirror symmetry is a fascinating

story, and it is fun to see how the various pieces fit together.





CHAPTER 2

The Quintic Threefold

The quintic threefold was the first example for which mirror symmetry was

used to make enumerative predictions [CAGP). In this chapter, we will review this

example, following the approach of [CdGP], with some modifications based on the

more mathematical exposition of [Morrison2]. In Section 2.6 we will give two al-

ternative methods for calculating the same enumerative data based on [Givental2]

and [LLY]. We will also revisit the quintic threefold several times in later chapters

to illustrate the various methods used to study mirror symmetry.

2.1. The A-Model Correlation Function of the Quintic Threefold

It is well known that a smooth quintic hypersurface V C P* is Calabi-Yau

(this also follows from the theory to be developed in Chapter 4). We consider the

nonlinear sigma model associated to (V,w), where w = B+ ¢J is a complexified

Kihler class on V. If H denotes the hyperplane class, then the A-model correlation

function (1.7) from Chapter 1 simplifies to give the formula

= a= 3(2.1) (H,H,H)=5+Y nad et
d=1

Naively, n4 is the number of rational curves of degree d contained in V, and ¢ =

e?TMiJew where £ is a line in V. The formula for ¢ can be written ¢ = e it if we

put w = tH. We will see in the next section that ¢ is actually a local coordinate

on the compactified Kahler moduli space. Furthermore, as explained in Chapter 1,

this formula depends on w but not on the complex structure of V, since it is an

A-model correlation function.

When algebraic geometers first learned of (2.1), it seemed a bit strange. For

one thing, we don’t even know a general quintic threefold has finitely many rational

curves of a given degree d. According to the Clemens conjecture, this should be

true, but so far the conjecture is known only for ¢ < 9 [JK1]. Yet (2.1) seems to

assume the conjecture for all d. This unsettling beginning is then compounded by

mirror symmetry, which claims to give an explicit formula for the number ng of

such curves, and it-does this for all d > 1.

We will give a firm foundation for (2.1) in Chapter 7. The key player is the

Gromov- Witten invariant (Io 3 4)(H, H, H). This invariant can be defined in a vari-

ety of ways. From the symplectic point of view, one considers C® maps f : P! = V'

which obey an appropriately deformed Cauchy-Riemann equation. Imposing ap-

propriate conditions on the image of 3 points in P!, it can be shown that there are

only finitely many such curves in each homology class. Then {lo3q4)(H,H,H) is

defined to be the total number of such curves, counted with sign according to orien-

tation (there is no longer a preferred orientation coming from a complex structure).

18
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There are actually several ways to make this precise, all of which will be reviewed

in Section 7.2.

A different approach to defining ny has been proposed in [Kontsevich2)] using

the moduli space of stable maps f : C — V, where C has genus 0 (but need

not be irreducible). The resulting definition of Gromov-Witten invariant is rather

sophisticated, involving algebraic stacks and virtual fundamental classes. These

topics will be discussed in Section 7.1.

Once we have a rigorous definition of the Gromov-Witten invariant, we can

then define the A-model correlation function to be the formal sum

(H,H,H)y = (Ioa4)(H, H H) g%
d=1

To see how this relates to (2.1), fix d and suppose that k|d. If C C V is a smooth

rational curve of degree k with normal bundle Oy (—1) & Oy (—1), then a map

f P! — C of degree d/k gives a stable map of the sort counted by {lo3,4)(H,H, H).
We will see in Chapter 7 that the family of such f's contributes a factor of k3 to

(fo,3,4)(H, H, H). Since this happens for each C of degree k|d, it makes sense that

(2:2) (fosa)(H,H,H) = npk®

kid

when ¢ > 1. Given this equation and the above definition of (H, H, H}, (2.1) follows

by easy power series manipulations.

Unfortunately, this argument is far from complete and seems to assume the

Clemens conjecture. So to make everything rigorous, we will define the ny using

equation (2.2). Then the question becomes, how do the n, relate to rational curves

in V? In Section 7.4.4, we will prove that for d < 9, ng is precisely the number

of rational curves of degree d on the quintic threefold. This is less obvious than it

seems, for although the Clemens Conjecture is true for d < 9, some rational curves

in V are singular. In particular, V contains 17,601,000 6-nodal rational curves of

degree 5 [Vainsencher], and some care is required to see how they enter into ns.

For a long time, people expected that once the Clemens Conjecture was proved,

it would follow immediately that in (2.2), nq should be the number of rational curves

of degree d in V. However, it was recently observed by R. Pandharipande that even

if the Clemens Conjecture is true for d = 10, the number n1o defined by (2.2) does
not give the number of degree 10 rational curves on V. The reason is that double

covers of the 6-nodal rational curves of degree 5 contribute more than the expected

factor of 53. We will prove this carefully in Chapters 7 and 11. As a consequence, we
will no longer refer to ny as “the number of rational curves of degree d”. Rather, in

the terminology of Chapter 7, we adopt the more neutral name instanton number.

Our discussion of nyq reflects one of the themes of Chapter 7, which is the subtle

interplay between Gromov-Witten invariants and enumerative geometry. But in

spite of the difficulties which can arise, we will see in Chapter 7 that Gromov-Witten

invariants contain a lot of enumerative information and that mirror symmetry has

stimulated a flurry of activity in enumerative algebraic geometry.

In this chapter, we will use mirror symmetry to compute the A-model corre-

lation function (2.1) of the quintic threefold V, guided by the strategy outlined

in Chapter 1. The following sections contain some wonderful computations which
will culminate in explicit predictions for the ny. Our discussion will be somewhat

unsatisfying since we use nonrigorous physical theories to compute numbers whose
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enumerative meaning is unclear. But we will see in subsequent chapters that ev-

ery step of the computation can be made rigorous. In particular, we will prove in

Chapter 11 that if we define ng using (2.2) and the symplectic or algebraic defini-

tion of {Io,3,4)(H, H, H), then the predictions for nq made by mirror symmetry are

straightforward corollaries of the Mirror Theorem.

2.2. The Quintic Mirror

Since A%!(V) = 1 holds for the quintic threefold V, its mirror should satisfy

dim H'(V°,Tys) = 1. The mirror of the quintic is therefore a one-parameter

family of Calabi-Yau manifolds. Greene and Plesser [GP]] describe the mirror as

a resolution of singularities of a family of hypersurfaces in P*/G. Here, G is the

group

(23) G={(ay,...,a5) € Z§ : T, a; = 0 mod 5}/Zs,

where the Z5 is embedded diagonally, and g = (a,,... ,as5) € G acts on Pt as

g-(x1,-..,25) = (u*z1,... , u*7s),

where p = ¢2TM'/5 is a primitive fifth root of unity.

Using % as a parameter, the hypersurfaces are defined by the equation

(2.4) 22 + 23 + 25 + 25 + T3 + ¥ T1ZoxazeTs = 0,

which is invariant under the action of G and hence defines a family of hypersurfaces

in P4/G. (In [CAGP], this equation is written with ~5¢ in place of ¢.) The

quotient P4/G is singular, and the hypersurfaces (2.4) inherit these singularities.

However, as long as ¥ # —5u', 0 < i < 4, the hypersurface is a Calabi-Yau

orbifold in P*/G. Even better, we can resolve singularities (simultaneously for all

1) without destroying the Calabi-Yau property—this is straightforward to establish
locally. Thus, we define V° to be the family of resolved hypersurfaces coming from

(24). To emphasize that we have a one-parameter family of varieties, we will

sometimes denote the mirror family by V.

This construction of V;} is due to Greene and Plesser and involves the super-

conformal field theories discussed in Chapter 1. However, we will see in Chapter 4

that Batyrev gave a purely mathematical description of V;; which generalizes to

Calabi-Yau hypersurfaces in toric varieties.

As noted above, the equation (2.4) defines a singular variety. Since we are

dealing with a threefold, there is no canonical resolution of singularities for (2.4).

An explicit choice of resolution is given in [Morrison2], but there are many others.

Fortunately, different choices still have the same complex moduli and in addition

have the same B-model correlation function. We will let V? refer to any one of these

choices. (In Chapter 6 we will learn that the different choices reflect the Kahler

moduli of the mirror. In terms of physics, they gives different “phases” in the same

physical theory.)

Our next task is to flesh out the strategy discussed in Section 1.2 for computing

(2.1) in terms of the mirror V. The first step is to understand the moduli spaces

involved. For the complex moduli of the mirror, notice that the map (z,..., T5)

(u~'z1, T2, ... ,%s) induces an isomorphism V ~ V:w.l Hence 1° is well-defined

LThis is obvious for the hypersurfaces in P*/G, and one can show that the isomorphism

extends to the resolution—see [Morrison2].
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on the complex structure moduli space of V2, so that

=13

is a local coordinate for the complex moduli (we will soon see the reason for this

choice of z). Furthermore, one can check that singularities of V¢ occur for ¢ =

~But, 0 < i < 4 (noted earlier) and also for ¥ = oco. In terms of the moduli

coordinate z, this means that the complex moduli space has boundary points z =

—5"% and z = 0.

According to mirror symmetry, the complex moduli of V° should correspond

to the Kahler moduli of the quintic threefold V. Since H generates H*(V,Z) ~ Z,

we can write w = tH, and since H is Kihler, w = tH is a complexified Kahler

class precisely when ¢t is in the upper half plane. According to Definition 1.4.2,

the Kahler space Kc(V) is the quotient of the complexified Kihler classes modulo

H2(V,Z). It follows that ¢ = 2TM induces an isomorphism

q: Kc(V) = A"

Thus g is a local parameter for Kihler moduli space, with ¢ = 0 as a boundary

point. An important but easy observation is that if £ is a line in V/, then ¢ can be

written

(25) g = €27t = ¢2mi Jew

Thus the A-model correlation function (2.1) is naturally a function in the local

parameter ¢ for Kidhler moduli.

Assuming mirror symmetry, we get a local isomorphism between the Kahler

moduli of V and the complex moduli of V°. In terms of the illustration (1.6),

the “V constant, w varies” slice maps locally to the “w® constant, V° varies” slice

on the mirror side. However, the key word is “local”: we need appropriate local

coordinates for each moduli space. For the Kihler moduli of V, this coordinate is

clearly q since the three-point function (2.1) is a power series in ¢. Since q is a local

coordinate at a boundary point, the same should be true on the mirror side.

For the complex moduli of V°, we have two boundary points to choose from,

z =0and z = =575 We claim that z = 0 corresponds to g = 0, so that z

is the desired local coordinate. The reason is as follows. Back on the quintic

threefold V', cup product with H gives an endomorphism UH of ef,=0HP'P(V)

which is maximally nilpotent (meaning (UH)3 # 0 but (UH)* = 0). We will see

in Chapters 5 and 6 that under mirror symmetry, we expect UH to correspond to

the logaritbm of the monodromy about the point of the complex moduli space of

V*® corresponding to ¢ = 0. Hence, mirror symmetry tells us to look for mazimally

unipotent monodromy, and of the above boundary points, this occurs only at z = 0.

Chapter 5 will give a careful definition of maximally unipotent monodromy.

In order to compute the A-model correlation function (2.1), we have two re-

maining tasks:

e The local coordinates ¢ and z describe corresponding boundary points of

the Kahler and complex moduli spaces, but the local isomorphism given by

mirror symmetry is not ¢ = z. From the physics point of view, there are

quantum corrections to take into account. Hence we need to compute z as a

function of ¢, and vice versa. Once this is done, we will have an explicit local

mapping between the complex moduli space of V° and the Kihler moduli

space of V. This is usually called the mirror map.
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e We have to compute and correctly normalize the B-model correlation func-

tion, and then use the mirror map to write it as a function of ¢. This will

give an explicit formula for (2.1).

We now turn our attention to the first of these tasks.

2.3. The Mirror Map

One way to think of the mirror map is that g is a canonically chosen coordinate

on the Kihler moduli space of V. Thus we want to find a “canonical” coordinate on

the moduli space of V°. As will be explained in Chapter 6, we can do this because

the monodromy at z = 0 is maximally unipotent. Following [Morrison2], there

is a minimal integral vanishing cycle v near z = 0, so that o is invariant under

monodromy. Furthermore, there is a minimal integral cycle v transforming under

monodromy about z = 0 as v, — 71 + mYp for some m € Z. In the case of the

quintic, we have m = 1 [Morrison2]. It follows that for a holomorphic 3-form {2 on
ve, 1i;he quantity [ Q/ [, © transforms under monodromy into ( [0 [, +1,

so that

exp (2mif, 9/ [, Q)

is a well-defined function in a neighborhood of z = 0. Furthermore, Yo is unique up

to sign, and 1 is unique up to the same sign and an integer multiple of Yo. Hence

the above quantity is canonically determined on the moduli space of V°, and we

also see that it is independent of since V° is Calabi-Yau. It is then natural to

assert that the mirror map is given by ¢t = fm Q/ fflm Q and

(2.6) g=-exp (2mif Q/ [ Q).

A physics argument for this assertion is given in {BCOV?2]. This mirror map can be

mathematically proven to be the correct one (Theorem 11.1.1 or Theorem 11.2.2).

To express [ Q and [ Q explicitly as functions of z, we will follow the ap-

proach of [Morrisonl]. For any 3-cycle ¥ on V°, the integral y = /. . Q is a period

of the family. It is well known that the periods satisfy the Picard-Fuchs equation,

which for a threefold with #3(V°) = 4 is a differential equation of the form

yllll+f1ylll+f2yll+ f3y, +f4y =0,

where the f; depend on the moduli coordinate z and differentiation is with respect

to z. In general, Picard-Fuchs equations can be calculated by several methods:

explicit calculation of the periods [CAGP}, the Griffiths-Dwork method of reduction

of pole order [Morrisonl, Font, KT1], generalized hypergeometric equations as in

[BvS, HKTY1], or finally, by an explicit formula for toric complete intersections

according to an assertion in [Giventald]. The last three of these methods will

be discussed in Chapter 5. Alternative ways of organizing the data together with

proofs of different versions of the mirror theorem are given in Chapter 11. We will

give a sneak preview of these approaches in Section 2.6.

If we choose for 2 the 3-form

- Y Adzs —Q—R,es( ? g - s(zldszdx3Adx4 5

(2.7) Todz) A dx3 Adzyq A dzs + T3dzy A dza Adzy Adzs —

Tadz1 A dz A dzy Adzs + Tsdzy A dTz A das A dzs)),
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then the methods of Chapter 5 give the Picard-Fuchs equation

0= (z—d—)4y+ 2.55g (z—d-)3y+ 7-54z (z—d—)2y

(2.8) dz 14552\ dz 1+ 5% \"dz
) +2-5%: (z_d_) +24-5:z

1+5z @/ T 155547

This equation has a regular singular point at £ = 0. Note also that there is a
singularity at the other boundary point z = —5-5.

The periods yy = fy0 Q and y; = f_w Q satisfy this equation, and the mon-

odromy properties of yo and +y; imply that y, and 21y, —(log z)yo are single-valued

at £ = 0. Then, using standard methods for solving (2.8), we find that yo and y,

are determined uniquely up to

yo — by

n o~ by + by,

where by, b; € C and by 5 0 (this is similar to the uniqueness for -y, 71 except that
we have lost the integer lattice). It follows that we can compute

g= e21ri 1 /vo

up to a constant ¢; = exp(2mi by/by). The result is that the mirror map is

(29) q=Cl($—770$2+"'),

with inverse

_ 4 ‘A(2.10) :z——+770(—) ool
(51 Cy

In Section 2.5, we will use mirror symmetry to show that ¢; = —1. There are
other ways to arrive at this normalization, for example this is a natural choice in
implementing the method of Frobenius in the solution of generalized hypergeometric

functions. This idea appears in [BvS], and we will return to this point in Chapter 6
when we discuss the mirror map in general.

Using methods for solving generalized hypergeometric equations, it is possible
to get closed forms for many of these formulas. For example, up to a constant, Yo
is given by

= (5n)!
(2.11) Yo = 1§) TiE (-1)"z" =1-120z +---,

and the mirror map can be shown to be (assuming ¢, = -1)

5 X (5n)l e 1(2.12 g= —z exp ( = (-1 "z").) w2 2 3]

The details of this derivation will appear in Section 6.3. We will see another ap-
proach in Section 2.6. Using (2.12) and Dwork’s theory of p-adic hypergeometric
series, one can prove that ¢ is a power series in = with integer coefficients [LY2).
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2.4. The B-Model Correlation Function

‘We now turn to the problem of computing the Yukawa coupling on V°. The

crucial but elementary observation is that the Yukawa coupling also satisfies a linear

differential equation, which can easily be derived from the Picard-Fuchs equations.

By formula (1.9) from Section 1.2, we have

(2.13) (s zd, i) =f,.QAQ",

where the prime denotes ZE' Here, we assume that Q is given by (2.7). We could
replace Q@ with its multiple by any nonvanishing function of z. Which multiple

to choose is the normalization problem, which we will postpone until later in the

section. As noted in the footnote in Section 1.2, normalization will also insert a

minus sign on the right hand side of (2.13). This will be explained in Section 5.6.4.

We claim that the Yukawa coupling Y = fi,, Q A Q' satisfies the differential

equation

d ~5%z

To see this, first observe that by Griffiths transversality, (' and 2 have no (0, 3)

component. Hence

(2.15) / QAQ = Q/\Q’ QAR =0.
o VQ

Differentiating the last equality twice gives

(2.16) QAQ" +2 [ Q@ AQ"=0.
Ve Ve

On the other hand, Y = [,,, QAQ" gives Y/ = [, @' AQ" + [, QA Q" Using

(2.16), we conclude that Y' = % fV° QA Q7. However, the Picard-Fuchs equation

(2.8) implies that

oy 2:5%z . 7-5%¢c , 2.5%¢ , 24.5z
. = Q !217) 0=0"+ 5 Y T T35z T 155 T I5a

in cohomology. The result (2.14) now follows by wedging Q2 with the right hand

side of (2.17) and using (2.15).

The solution of (2.14) is

(2.18)
T 1455z

where ¢; is a constant which will be determined in the next section. Thus we know

the Yukawa coupling up to a constant. Notice that it is singular at the boundary

point z = —575, as might be expected.

However, we are not done, for we still need to normalize the Yukawa coupling,

since the formula (2.7) for Q can be multiplied by any nonvanishing function of z.

A natural way to normalize (2 is by demanding that fw Q =1 after normalization.

With the choice of § from (2.7), we use the period

yo(:l:) = Q

Yo

and replace £ by Q/yo(x). This achieves the desired normalization. Because of

(2.15), one easily shows that the effect of this normalization on the Yukawa coupling
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Y is to replace Y by Y/yo(z)?. Hence, for this choice of 2, we get the normalized

Yukawa coupling

4o opdy 2(2.19) (zf .z, zE) AT Som@)?

Note that this expression is essentially unaffected by the introduction of the minus

sign mentioned above, since the sign can be incorporated into the choice of ¢;. This

may be the reason why this sign has not to our knowledge appeared in the math-

ematics literature before now. Chapter 5 will give general methods for computing

the normalized Yukawa coupling and discuss its surprisingly strong connection to

the Gauss-Manin connection.

SIS2.5. Putting It ANl Together

We can now use the formulas from the previous two sections to compute the

A-model correlation function of the quintic threefold. Under mirror symmetry, we

get an isomorphism
VRS

HYV,Qy) ~ HY(V°, Tye) &
which is compatible with the A-model and B-model correlation functions. Thus,

if @ € H'(V°,Ty) corresponds to H € HY(V,Q,) via mirror symmetry, then as g
explained in Chapter 1, we should have ‘

(H,H,H) = (6,0,6).

We find 6 as follows. Thinking of H'(V,Q},) as the tangent space to the Kahler

moduli, H is a vector field on the Kahler moduli space of V. Writing a general

complexified K&hler class as tH, this vector field is identified w1th d/dt. In terms

of the local coordinate ¢ = ez’"' for Ka.hler moduli, we have £ % = 2mig 3 dq Under

the mirror map ¢ = ¢(z), <2 % maps to 4 - .le and it follows that

H-qu% — G_ZWIqu—i-

Then (H, H, H) = (8,0, 6) gives the equation

_ d d d gdz d(2.20) (H,H,H) = (21rzqa—q-) (o) = (2 ) (z = dx z ).

This assertion, which is the equality of the A-model and B-model correlation func-

tions via the mirror map, is mirror symmetry for the quintic threefold.

To make this equation more explicit, note that we calculated (z-£ £, d.:c’ z-& )

in (2.19). Hence, using (2.19), the mirror map (2.9) and (2.10), and the formula

for yo(z) given in (2.11), we obtain

C2 g dz\3

(I +52)yo(2)2 (’"g?da) =
3

(21ric1(1 — 770z +---)(1 + 1540 + )) .
a4

(H,H,H) =

C2

(1+552)(1 — 120z + - - - )2

Converting wholly to g coordinates via (2.10), this simplifies to

(2m5)3¢ 
3

(2.21)
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We next determine the constants ¢; and c2. The basic idea is to choose them

so that the above power series agrees with what we know about the formula
o

H,H Hy=5 3(2:22) { ) +;n4d T

given in (2.1). First, since the constant term of this series is 5, comparison with

(2.21) shows that

qd

=5+2875q+--
-¢¢

= 5

27 2my3

Second, we claim that ¢; = ~1. This is because with the above choice of ¢z, (2.21)

gives a power series expansion

(H,H,H) =5 - 28752 +
1

It is known classically that the generic quintic threefold contains 2875 lines, which

is why ny = 2875 in (2.22). Hence, in order for these series to be equal, we must

have ¢; = —1. This assertion is not mere wishful thinking, for the desired value

¢; = —1 follows from the original calculation in [CAGP]. As mentioned earlier, we

will give a systematic method for determining ¢, when we study the mirror map in

Chapter 6.

Given these choices for ¢, and ¢z, we can summarize mirror symmetry for the

quintic threefold V as follows. First, by (2.11),

(223) =3 (n,)5
n-—O

is the unique (up to & constant) holomorphic solution of the Picard-Fuchs equation

(2.8) of the mirror V°. There is also the solution

228 (2 = po(x)og(-z) +5 Z (5 [ $ Y carar
!(nlP Lo i

with a logarithmic singularity, and by (2.12), the mirror map is

(2.25) g = exp(y1/%0) = —T exp (yo(z Z ('n’)5 [ Z ;] (—1)"1'")-
j=n+l1

Then mirror symmetry for the quintic threefold, as stated in (2.20), asserts that

2.26 S g L 5 gdzy?
. 5+;"“ l—qd‘(1+55z)yo(z)2(5d'q)'
Recall the left hand side is the A-model correlation function of V and the right hand

side is the B-model correlation function of V°, given by the normalized Yukawa

coupling regarded as a function of g.

If we expand the right hand side of this equation, we obtain

oo 4 2

: q
(2.27) 5+ :ndd"lz ” =5+2875I—E—; +609250-2~°'1_q2 Feee,

d=1

so that mirror symmetry implies that no = 609250. Computing additional terms

of this series, we get the following predictions for the instanton numbers ny of the
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quintic threefold:

| na
| 2875

609250

317206375

242467530000

229305888887625

The first four entries agree with known enumerative results: n; = 2875 is classical

(as noted earlier), ny = 609250 has been shown in [Katz2], ng = 317206375 has

been shown in [ES1], and n, = 24246753000 has been shown in [Kontsevich2].

These numbers are computed for all d < 10 in [CAGP).

For general d, equation (2.26) asserts that the numbers 2875, 609250, ... ap-

pearing in the series on the right hand side of (2.27) are precisely the instanton

numbers ng, which are defined in terms of the Gromov-Witten invariants of the

quintic threefold by (2.2). We will prove in Section 7.4.4 that for d < 9, the

numbers ny are indeed equal to the number of rational curves of degree d on a

generic quintic threefold. For d > 10, we still have the numbers ny, but as already

indicated, their relation to the rational curves of degree d is more subtle.

The numbers in the above table suggest that the n, should have some remark-

able divisibility properties. It is easy to see that the ng are rational, but it is

unknown if they are integers (though this is true for all that have been computed).

However, if we assume that the ny are integral, then one can prove that 5%|n, for

all d not divisible by 5 [LY1]. It is conjectured that 53|n, is true for all d.

So far, we have said nothing about how to prove (2.26). This is the essential

content of the Mirror Theorem, which is our next topic of discussion.

Do W N A

2.6. The Mirror Theorems

The equation (2.26) given in the preceding sections is based on the “classical”

formulation of mirror symmetry, where the primary goal is to prove that certain

correlation functions can be identified via the mirror map. In order to justify these

calculations, one needs to prove a Mirror Theorem. In this section, we will introduce

three different versions of the Mirror Theorem, all of which imply “classical” mirror

symmetry for the quintic threefold. Rather than state the theorems in general, we

will instead discuss what they look like for the quintic threefold V and its mirror

V°. Complete statements will appear in Chapters 8 and 11.

2.6.1. Hodge Theory. The mirror map constructed in Section 2.3 expresses

the Kahler parameter g of the quintic threefold V as an explicit function of the

moduli parameter = of the mirror V°. This allows us to use ¢ as a new local

parameter for the moduli of V°. Then, in Section 2.4, we determined the normalized

Yukawa coupling (2.19). In Chapter 5, this normalized coupling will be denoted Y.

The enumerative predictions of the previous section came by expressing Y in terms

of g and equating it with the A-model correlation function (2.22).

However, we will learn in Chapter 5 that once we express Y in terms of ¢, we

also completely determine the variation of Hodge structure on H3(V° C). More

precisely, in the proof of Propositior 5.6.1, we will see that in an appropriate basis,

s
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the Gauss-Manin connection V of V° has connection matrix

0 0 00

1 0 00
(2.28) 0Y 0 0

0 010

provided we use g as moduli parameter.

This shows that the normalized B-model correlation function Y is not just

some strange function suggested by physics, but rather is integral to the Hodge

structure of the mirror family. Furthermore, since Y is supposed to correspond to

the A-model correlation function, this suggests that there should be a variation of

Hodge structure on the A-model side. This is our first hint that mirror symmetry

can be formulated in terms of variations of Hodge structure. We will develop this

idea more fully in Chapter 8 when we define the A-variation of Hodge structure.

The associated connection, called the A-model connection, is constructed by means

of quantum cohomology. In particular, for the quintic threefold V', we will see in

Example 8.5.4.1 that the A-model connection has (2.28) as its connection matrix,

provided Y is the A-model correlation function (2.22).

Chapter 8 will give a careful definition of a mathematical mirror pair. For the

quintic threefold and its mirror, this means that the A-variation of Hodge structure

of V should be isomorphic, via the mirror map, to the variation of Hodge structure

coming from the mirror family V°. In Chapter 8, we will show that this version of

mirror symmetry is equivalent to the equality of A-model and B-model correlation

functions given in (2.26).

Proving mirror symmetry, either in its classical form or the more sophisticated

Hodge-theoretic version just discussed, is not easy. In particular, the proof requires

the introduction of some new objects of study. As we will now explain, these new

objects lead in turn to new versions of the Mirror Theorem.

2.6.2. Givental’s I and J Functions. In Givental’s approach to the Mirror

Theorem, a key role is played by two cohomology-valued formal functions denoted

Iy and Jy. Let’s first discuss Jy,. This function is defined in terms of gravitational

correlators, which can be thought of as generalizations of Gromov-Witten invari-

ants. We actually begin with the Givental J-function. In Section 10.3.2, we will

see that for the quintic threefold, J is given by the formula

(2:29) J = eltorti /R (1 + B2 Nygldl — 273 Nug® pt),
d>0 d>0

where ¢ = ef?, £ is the class of a line in V, pt is the class of a point, and

(2-30) Ny=(Iooa) =y _ngkTM>.
kid

Here, the ng/;, are the instanton numbers we want to compute. Earlier in the

chapter, we mentioned the Gromov-Witten invariant (lo,3.4)(H, H, H). Properties

of Gromov-Witten invariants from Chapter 7 imply (Io3,q)(H, H, H) = d*(Ip0,4),

so that the above formula for Ny is equivalent to (2.2).

The J-function plays a central role in Givental’s theory of quantum differential

operators from Section 10.3.1. For our immediate purposes, the key feature of

(2.29) is that J contains all of the enumerative information we’re interested in.
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The function J takes values in the cohomology ring of V. However, in order

to compare this to the function Iy, described below, we need something that takes

values in H*(P*). We can do this by defining Jy = 4t(J), where i : V — P* is the
inclusion map and i: is the Gysin map. In terms of the formula (2.29) for J, one

easily obtains

(2.31) Jy = elto+taf)/Ag5pr (1 + K2y " Nag?dH? — 2573 Nyg? §H3).
d>0 >0

(In Chapter 11, we will take a slightly different approach to defining J,,.) Here, the

important fact is that the n, are uniquely determined by Jy.

The second of Givental’s functions is Iy, which is also a cohomology-valued

function. For the quintic threefold V, the formula for Iy from Example 11.2.1.3 is

I, = e(t0+t1H)/h5Hi edtl (5H + fi') i (SH + Sdi)
im0 ((H +R):--(H + dR))

Although I, takes values in the cohomology of P, one of Givental’s observations

is that I, is determined by the periods of the mirror V°. Thus [y, contains the

moduli information for the mirror, and Givental’s version of the Mirror Theorem

states that Iy, and Jy are related in an especially nice way. Our explanation of the

proof uses the Quantum Hyperplane Section Principle, which involves localization

formulas for equivariant cohomology on moduli spaces of stable maps. All of this

will be discussed in Chapter 11.

In order to see how this relates to the computations done in earlier sections,
let’s simplify the above formula for I, by taking to = 0 and A = 1. This gives

oo s5d

23 by = e S g Lo G £ m)
i e (H+m)

We can expand Iy, writing

(2.33) Iy = 5H (yo(t1) + y1(t1) H + 2 (t1) H? + y3(t1) H®) .

After the change of variables z = —e®', we will show in Chapter 5 that I, satisfies

the Picard-Fuchs equation of the mirror V°, as given in (2.8). In fact, using the

Frobenius method, we will show in Chapter 6 that yo,%:,y2,ys form a basis of

solutions. Furthermore, yo is the series from (2.23), and similarly y; is (2.24). Hence

the mirror map (2.25) arises naturally in Givental’s formulation as ¢ = exp(y /yo)-

Givental’s version of the Mirror Theorem is equivalent to the assertion that

Jv = Iv/yo after changing coordinates via the mirror map (see Theorem 11.2.2).

Since Jy involves the ng by (2.30) and (2.31) and Iy is giver by the explicit formula

(2.32), it follows that we can compute as many instanton numbers ny as desired.

However, to complete the circle of ideas, we should explain how this relates to

correlation functions. We first note that the normalized Yukawa coupling Y of V°

from Section 2.5 arises naturally from Iy. To see why, consider Iy, /3. If we expand

up to terms containing e'! times a polynomial in ¢,, we obtain

2

LIy /yo = 5H (1 + (t1 + 770e* +-- ) H + (321— + 770te’ + 575€" + .- ) H?
t3

+ (G +385t5e"s +575t1" — 150" 4 ) H®).
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If we write this in terms of ¢, we get

2 3

Iv/yo = 5H (1+3H+ (%+575q+--«)H2+(%+5755q— 1150q+~~)H3),

where s = logg. Thus, if ’ denotes % = q-fq, one computes that

(Iv/yo)" =5(1 +575¢ +---)H® +5(s +575s¢ + - -- ) H*
(2-34) = (5+2875q+--)(H3 + sH?).

Notice that the first factor in the bottom line begins 3 + 2875 + - - -, which agrees

with the normalized Yukawa coupling Y, at least up to terms of degree one in

¢q. In fact, this factor is precisely the normalized coupling ¥'—this is Givental’s

observation that I, is determined by the periods of the mirror. To prove this, we

use the connection matrix (2.28), which implies that the normalized Picard-Fuchs

equation can be written in the form

P (Pylds?y _

ds? Y -

One easily sees that this equation has solutions fo, f1, f2, f3 such that fy = 1,

fi=s, f¥ =Y and f{/ = Ys. In (2.33), we wrote down solutions yo, 1, ¥2,ys of

the unnormalized Picard-Fuchs equation (2.8). Normalizing means dividing by yo,

so that we have solutions ¥o/% = 1, ¥1/¥%0 = S, ¥2/¥o and ¥s/yo. The wonderful

fact is that yo/yo and ys/yo are essentially f, and f3. More formally, we have the

identities i

5 & oy d® y3
(2.35) o o Y, 5d32 o Ys.

To prove the first equation, note that y2/yo = a + bs + cf2 + df; for some constants

a,b,c,d, so that (y2/y0)" = cfy +df{ = cY + dYs. By (2.34), we have (y2/0)" =

1+575¢ + ---, and since ¥ = 5 + 2875¢ + - - -, it follows that c=1/5and d = 0.

This proves the first equation, and argument for the second is similar.

Using (2.35), we see that (I),/yo)” =Y (H3+sH*), and we will prove similarly

in Proposition 10.3.4 that J = (H, H, H)(H?® + sH*). Hence Theorem 11.2.2, as

described above, implies (H, H, H) =Y, which proves the desired equality (2.26) of

A-model and B-model correlation functions. This gives “classical” mirror symmetry

for the quintic threefold.

2.6.3. Euler Data and the Gromov-Witten Potential. A different ap-

proach to the Mirror Theorem is presented in [LLY]. This paper, which contains

a complete proof of mirror symmetry for the quintic threefold, will be discussed in

Chapter 11. Here is a small preview of what’s involved.

The paper [LLY] introduces several objects of interest for us to consider. The

first is Euler data. This is a compatible collection of elements in the equivariant

cohomology of certain projective spaces which “linearize” the mfioduli spaces of

stable maps. There are two special sets of Euler data, denoted and P, which

roughly speaking code the information for the A-model and B-model correlation

functions respectively.

From Euler data, one can construct certain cohomology-valued functions, where

the values are now in equivariant cohomology. For example, the Euler data P for
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the quintic threefold gives the function

MoeoBp=mh) g,

420 Hd =1 H:_—.O(P = Ak — mh)
(see the discussion following Definition 11.1.8). Here, p is the equivariant hyper-

plane section and the A; are certain equivariant cohomology classes. If we let

Ar = 0 (in Chapter 9, we will call this the “nonequivariant limit”), then we get or-

dinary cohomology. Thus p becomes H, and then setting i = —1 gives the formula

for I, given in (2.32). In particular, (2.33) becomes

(2.36) F_E})HG[I(P)]@]) = Iy = 5H (yo(t1) + n1(81)H + va(t1) H? + y3(t1 ) H?) .

HG[I(P)](tl) = e Pha/h

As before, this allows us to write the mirror map as ¢ = exp(y1/y0). We will use

¥(t1) to denote the quotient y, /yg, so that the mirror map is ¢ = exp(¥(t,)). If

we let ¢ = €, then the mirror map is s = ¥(t;) = 1"—’{'—‘%
yolt

So far, we’ve been dealing with the Euler data P which describes the complex

moduli of V°. There is also the Euler data @ which is determined by the Gromov-

Witten invariants of V. The easiest way to understand this is via the Gromov-

Witten potential, which is defined by

(2.37) ®(s) = g S+ Nag= g S+ (Tooa) ¢,
d==1 d=1

where Ny is given by (2.30) (and ¢ = e°®). The function ®(s) is a close cousin of

the A-model correlation function, and in fact one sees easily that (2.22) is 7“%@(5).

We will study the Gromov-Witten potential in detail in Chapter 8.

Now consider the Euler data . This gives the equivariant cohomology-valued

function HG[I(Q)](S), and in Section 11.1, we will show that

5

where ’ is d%. (The version of this formula given in Chapter 11 has an % which

as above we have set to —1.) This formula reflects the above comment that ¢ is

determined by Gromov-Witten invariants.

Then the key step in the proof is to show that after the substitution s = ¥(¢;)

coming from the mirror map, the limit (2.38) coincides with the limit (2.36), up to

a factor of yp. More precisely, Lemma 11.1.15 will prove that

lim HGIZ(Q))(¥(t1)) = i lim HGZ(P))(1).

/ ’ —_

(2.38) lim HGZ(Q)](s) = 5H (1 +sH + %PP + Mfis) ,

Combining this with the formulas (2.38) and (2.36) and comparing coefficients, one

easily (_)bta.ins the identity

5/thy: s(2.39) B(T(t1)) 5 (yo ” y())'

This is the Mirror Theorem for the quintic threefold as presented in [LLY].

Since ®(s) is the Gromov-Witten potential (2.37), formula (2.39) enables us

to compute nq for arbitrary d. But how does this relate to three-point functions?

We've already noted that di:gé is the A-model correlation function. Mirror sym-
metry for the quintic threefold says that under the mirror map, this equals the
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B-model correlation function Y. Hence the formulation of mirror symmetry given

in (2.26) follows from (2.39), provided we can show that

35y y:s)
—_—— g7 2= - Y'

(2.40) ds® 2 (yo ¥ Yo
(where as usual the y; are functions of s via the mirror map).

To prove this, one first uses (2.35) to show that

25 <21_&_.yg) _4#5 <5&_2§> _sdm
ds22\yy 1w,/ ds?*2\w w/ '

We leave the straightforward proof to the reader. Then, differentiating a third

time and using (2.35) again, (2.40) follows immediately. This completes the proof

of mirror symmetry for the quintic threefold, modulo some substantial work to be

done between here and Chapter 11.

In this approach to the Mirror Theorem, notice that the normalized Yukawa

coupling Y appears only at the end of the computation—all of the intermediate

steps involve new objects to study. The same thing happens in Givental's approach,

though the intermediate objects are slightly different. Hence, as we develop the

mathematics needed to formulate mirror symmetry in Chapters 3 through 8, the

reader should keep in mind that some fundamentally new ideas will be needed in

Chapter 11 in order to prove mirror symmetry. This will involve a lot of work, but

the wonder of the final result will more than justify the effort.





CHAPTER 3

Toric Geometry

This chapter will explore the theory of toric varieties over the complex num-

bers. We will assume some familiarity with the classical way of describing toric

varieties in terms of cones and fans, as in [Danilov, Fulton3, Oda}, though we

will also describe more recent constructions of toric varieties which use polytopes

and homogeneous coordinates. We will also discuss those aspects of toric geometry

most relevant to mirror symmetry, including Kihler cones, symplectic reduction,

the GKZ decomposition, Fano toric varieties and reflexive polytopes, and automor-

phism groups. The chapter will end with some examples.

3.1. Cones and Fans

We begin with a summary of toric varieties, mostly to fix notation and termi-

nology. Proofs can be found in {Danilov, Fulton3, Oda].

Let M ~ ZTM be a free Abelian group of rank n, and let N = Hom(M, Z) be its

dual. The pairing between m € M and v € N is given by (m,v) € Z. A rational

polyhedral cone o C Ng = N ® R is a subset of the form

o= {Z:=1'\i“i A > 0}

where u1,...,us € N. We say that o is strongly convez if o N (—o) = {0}. The

dimension of ¢ is the dimension of the subspace of Ny spanned by o. Every cone

o has a dual cone & defined by

g={meMg: (m,v) >0forall veo}

Standard theory shows that & is also a rational polyhedral cone. Given m € M N4,

the subset

r={veog:(mv)=0}Co

is a face of o. Every face of o is again a rational polyhedral cone and a face of a

face is a face.

A fan T in Ny consists of a finite collection of strongly convex rational poly-

hedral cones in Ny satisfying:

e If o € T, then every face of o is also in L.

o If 5,7 € I, ther o N T is a face of each.

The set |Z| = Uyezo C Ny is the support of . For each d, £(d) denotes the set of

d-dimensional cones of Z.

The 1-dimensional cones, sometimes called the I-skeleton of the fan, are espe-

cially important. We reserve the letter p to stand for elements of X(1). For each p,

let v, be the unique generator of the semigroup g N. Using these generators, a

cone o € XL can be written

o= {¥ ,corotp i Ap 2 0}

~1
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The v, € o are the generators of o. A standard abuse of notation is to identify p

with v,. Thus we may write v, € £(1). H r = |£(1)| is the number of 1-dimensional

cones, we sometimes denote the v,’s by v1,...,v,.

We next recall the classical definition of toric variety. Given a fan X, each cone

o € I gives the affine toric variety

X, = Spec(C[M N &]),

where C[M N &) is the C-algebra with generators xTM for each m € M N & and

relations xTMxTM = xTM*+TM. The toric variety Xy is obtained from these affine
pieces by gluing together X, and X, along X,..

If £ is a fan in Ng ~ R", then the toric variety Xz is a Cohen-Macaulay

algebraic variety of dimension n. Since the affine toric variety corresponding to the

trivial cone {0} is the torus Ty = N ® C* = Spec(C[M]), we see that T is an

affine open subset of Xs. The action of the torus on itself extends to an algebraic

action of Ty on Xyx. This is where the name toric variety comes from. When there

is no danger of confusion, we will write X instead of Xgx.

The torus action on X has only finitely many orbits, and there is an inclusion-

reversing one-to-one correspondence between orbit closures and cones of £. In

particular, each p € (1) corresponds to an irreducible Tn-invariant divisor D, C

X. Furthermore, m € M gives a character xTM : Ty — C*, and regarding xTM as a

rational function on X, we have

(3.1) div(xTM) = 3 ,(m, v,) D,.

The properties of the fan T strongly affect the geometry of the toric variety X.

For example:

¢ X is complete (i.e., compact) if and only if |E} = Ng. Such a fan is called

complete.

e X is smooth (ie., nonsingular) if and only if for every cone in ¥, its gener-

ators are part of a Z-basis of N. Such a fan is called smooth.

e X is an orbifold (i.e., a V-manifold) if and only if the generators of every cone

in ¥ are linearly independent over R. We say that £ and X are simplicial.

A general toric variety has only mild singularities (being Cohen-Macaulay), though

we will sometimes require that X be simplicial. As explained in Appendix A, a

simplicial toric variety behaves like a manifold in many ways.

The Chow group A,_;(X) of Weil divisors modulo linear equivalence can be

computed directly from the fan. We will always assume that the 1-dimensional

cones span Ng. Then, using (3.1), we get an exact sequence

(3.2) 0 M—Z%V 4, _(X)—0

where m € M maps to ({(m,v,)) € ZE®) and (a,) € ZEY) maps to the divisor class

of 3°,a,D,. Thus A,_;(X) has rank r — n.

Sitting inside the Chow group A,_;(X) is the Picard group Pic(X), which

consists of Cartier divisors modulo linear equivalence. A Weil divisor D =3_ a,D,

is Cartier if and only if for each o € I, there is m, € M such that (m,,v,) = —a,

whenever p C . The function ¢p : |Z| — R, defired by ¢p(v) = (m,,v) for v € o,

is the support function of D.

If X is smooth, then Pic(X) = A,_(X). In the simplicial case, the Picard

group has finite index in the Chow group. The Picard group is always torsion free

when X is complete, while A,_1(X) can have torsion, even if X is simplicial.
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If X is complete and the divisor D = 3 a,D, is Cartier, we can determine

whether D is ample or generated by global sections as follows:

o D is generated by global sections & (my,v,) > —a, whenever p Z 7.

e D is ample & (m,,v,) > —a, whenever p ¢ ¢ and o is n-dimensional.

We say that ¢p is upper convez in the first case, and strictly upper convez in the

second. In the next section, we will interpret these conditions in terms of certain

polytopes.

3.2. Polytopes and Homogeneous Coordinates

The classical definition of toric variety, as presented in the previous section,

involves gluing together affine toric varieties. Recently, other ways of creating toric

varieties have been discovered, and this section will explore two of these alternate

constructions, one coming from polytopes and the other generalizing the usual ho-

mogeneous coordinates of P*. A third construction, involving symplectic reduction,

will be discussed in Section 3.3.3.

3.2.1. Polytopes. We begin by setting terminology. A polytope & C My is

the convex hull of a finite set of points. The dimension of A is the dimension of

the subspace spanned by the differences {m, —my : m;,m2 € A}. We say that A

is integral if the vertices of A lie in M (equivalently, A is the convex hull of a finite
subset of M). Finally, a facet is a codimension one face of A.

Given polytopes Aj,...,Ax in Mg, we can create new polytopes in several

ways. For example, the convex hull of A, U---U Qg is denoted

Conv(Ay,...,Ay).

We can also define their Minkowski sum, which is the set

A+ + O, ={my+--+mp:m; € A}

If kA = A +---+ A (k times), note that kA = {km : m € A} by convexity.

The mirror symmetry constructions discussed in Section 4.3 make essential use of

convex hulls and Minkowski sums.

Polytopes arise naturally when dealing with toric varieties. For example, when

X is complete and D = 3°, a,D, is Cartier, then

Ap ={m € Mg : (m,v) > ¢p(v) for all v € Ny}
(3.3) ={me My : (m,up) > —ap for all p}

is a polytope.! One also has Ayp = kAp, Apidivixm) = Ap — TM, and

e D is generated by global sections & Ap is the convex hull of the set {ms :

o€ L(n)}.

e D is ample & m, # m, for o # 7 in I(n) and Ap is an n-dimensional

polytope with vertices {m, : o € E(n)}.

In either case, Ap is an integral polytope. Furthermore, wher D is ample, there

is a bijective correspondence between nonempty faces of Ap and cones of I. In

particular, facets of A correspond to elements of E(1). Proofs of these assertions

can be found in [Danilov, Fulton3, Oda].

LThe second equality can still be used to define Ap even if D is not Cartier.
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Another useful observation is that Ap N M is naturally identified with the T

eigenvectors of H°(X,O(D)). In other words, there is a Ty-equivariant map

(3.4) H(X,0D)~ € CxTM

meELpNM

To see why this is true, think of sections of O(D) as rational functions f on X such

that (f) + D 2 0. By (3.1), div(xTM) + D > 0 is equivalent to (m,v,) > —a, for all

#, and the isomorphism now follows easily (see [Fulton3, Section 3.4] for details).

3.2.2. Toric Varieties via Polytopes. We now describe how to start with

an n-dimensional integral polytope and comstruct a toric variety. We will follow

the approach of [Batyrevd]. Given A, consider “monomials” t§xTM where m € kA.

These monomials multiply by the rule t§fxTM - thxTM = t&+'xTM+m' since m € kA
and m' € A imply m +m’ € (k +I)A. The C-algebra generated by the tExTM is

denoted Sa, and this ring is graded by declaring that

deg(t5xTM) = k.
We call Sa the polytope ring of A. Then let

P45 = Proj(Sa)

be the corresponding projective variety. We will write P instead of P, if the context

is clear.

To describe P = P, as a toric variety, we need to exhibit its fan in Ng. Given

a nonempty face F C A, consider the cone

&p:{,\(m—m'):meA, m'EF, /\ZO}CMR.

Its dual is a cone o C Ng. Putting these cones together gives the fan {or :

F is a nonempty face of A}, which we call the normal fan of the polytope A. This

is a complete fan in Ng, and one can prove that P is the toric variety determined

by the normal fan {Batyrev4].

When the origin is an interior point of A, the normal fan is especially easy to

visualize. First define the polar polytope

A°={ve Ng:(m,v) > ~1forallme A} C Ng.

The polytope A° contains the origin as an interior point and {A°)° = A. Further-

more, each i-dimensional face F' of A corresponds to a (n — 1 — i)-dimensional face

F° of A°, determined by the condition that (m’,v) = —1 when m’/ &€ F and v € F°.

Using the polytope A°, we can describe P as follows.

LeEmMa 3.2.1. The fan in Ny obtained from the cones over the proper faces of

A° is the normal fan of A and hence gives the toric variety P = P,

ProoF. It suffices to show that or = {Av : v € F°, A > 0} for every proper

face F' of A. First observe that v € o if and only if (m,v) > (m/,v) forallme A

and m’ € F. Also note that v # 0 implies (m’,v) < 0, since otherwise, we would

have {(m,v) > 0 for all m € A. This is impossible since 0 is an interior point of A.

If v € F°, then (m,v) > (m/,v) = —1, so that Av € oF follows easily. Going

the other way, suppose (m,v) > (m’,v) for all m € A and m’ & F. We can assume

v # 0. For a fixed m’ in the relative interior of F, (m/,v) is negative (as noted

above), so that we can write v = Mo’ where A > 0 and {m, v’} > (m',v') = —1 for

all m € A. Hence v’ € A°, and then {m’,v'} = —1 implies v’ € F° since m’ is in

the relative interior of F. a
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It follows from Lemma 3.2.1 that in Pa, the Tiv orbit closures are in one-to-

one correspondence with the proper faces of A°, hence by the polar duality are in

one-to-one correspondence with the nonempty faces F of A. This correspondence

can in fact be seen directly in terms of the polytope rings as follows.

Let F* C A be a face. There is a canonical surjection of polytope rings 7p :

Sa — S defined by

tixTM m e kF

me(tXTM) = {o m € kA ~ kF
This surjection induces a patural inclusion of toric varieties Pr < PA. There is a

particularly simple description of this inclusion if Sa is generated by ANM. In that

case, we can think of Pa as embedded in a projective space whose homogeneous

coordinates are in one-to-one correspondence with the points of AN M. Then Pr

is obtained from Pa by setting to zero all the coordinates corresponding to points

of (A—F)NM.

If we start from an integral polytope A containing the origin in its interior,

the polar A° need not be integral. In Section 3.5, we will study a particular class

of polytopes, the reflezive polytopes of Batyrev, where the polar is integral. These

polytopes play an important role in many mirror symmetry constructions.

Returning to the case of an arbitrary n-dimensional integral polytope A, we

observe that the toric variety P = Pa comes equipped with an ample line bundle.

This is because P = Proj(Sa) has the ample bundle Op(1). From the toric point of

view, we describe this line bundle as follows. Consider the function ¢a : Ng - R

defined by

da(v) = gxeig(m, v).

One can prove that ¢a is the support function of a divisor Da on P. Furthermore,

ba is strictly upper convex, Op(Da) = Op(1), and the polytope A p, associated to

D, is exactly A (see [Batyrev4, Oda]). Hence, when a toric variety comes from

a polytope, it is a projective variety with a specific choice of ample divisor.

One way to see Pa and its projective embedding more concretely is to choose

a basis for M. This corresponds to picking coordinates ti, ..., t, for the torus T .

Then, if m € M is written m = (a1, ...,@n), we have xTM = 7% ,tH, so we can write

tTM instead of xTM. Now, given a polytope A, pick k so that kDa is very ample.

The lattice points KANM = {m1, ..., m,} give monomials tTM, which define a map

Ty — P*~! by sending t € T to (tTM,...,tTM). Then P, is the closure of the

image of this map in P*~1.

Also, for any k > 0, we have the vector space of Laurent polynomials

(35) L(kA) = {f : f = Zpnexanm@mtTM am € C}.

Each f € L(kA) gives the affine hypersurface Zy C T defined by f = 0, and its

closure Z ¢+ C Pa is the corresponding divisor. Thus, by thinking of elements of M

as exponent vectors of Laurent monomials, we can work with P» using coordinates.

In some situations, one starts with a Laurent polynomial f and defines A to be the

convex hull of its exponent vectors (this is the Newton polytope of f). We will use

the following notation: .

I(kA) = kAN M| = dim{L(kA))

(36) I*(kA) = |{m € kAN M : m is not in any facet of kA N M}|.
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The numbers I(kA) and I*(kA) have many interesting properties and appear in

various contexts in mirror symmetry.

We conclude with some remarks about the polytope ring S defined above.

First observe that the polynomials t&f, for f € L(kA), are precisely the elements

of degree k in Sa. This gives isomorphisms

3.7) (Sa)k = L(kA) > HO(P,Op(kDa)),

where the second isomorphism follows from (3.4).

We can also interpret Sp as an affine coordinate ring. Namely, let 54 C R x Mg

be the cone over {1} x A. Note that {k,m) € §a N (Z x M) if and only if m € kA.

Thus, if oa C R x Ny is the dual of &4, it follows that Sp is the coordinate

ring of the affine toric variety given by 0. By [Danilov], this implies that S, is

Cohen-Macaulay.

3.2.3. Homogeneous Coordinate Rings. In the discussion immediately

before (3.5), we introduced coordinates ti,...,t, on the torus of a toric variety.

These coordinates are very useful, but it would also be nice to have global coordi-

nates, similar to homogeneous coordinates on projective space. With this goal in

mind, we define the homogeneous coordinate ring of a toric variety.

If X = Xz is given by a fan ¥ in Ng, introduce a variable z, for each p € (1),
and consider the polynomial ring

5 =Clz,: p € Z(1)].

A monomial in § is written z° = I,z;*, where D = 3" a,D,, is an effective torus-

invariant divisor on X (this uses the correspondence p « D,), and we say that z©

has degree

deg(z”) = [D] € Ap—1(X).

Thus, S is graded by the Chow group A,_1(X). Given a divisor class & € An_(X),

S, derotes the graded piece of S of degree . We often write the variables as
y,...,Z,, where T, corresponds to the cone generator v; and r = |Z(1)|. Then

§=Clzy,...,z.)

DEFINITION 3.2.2. The ring S, together with the grading defined above, is the

homogeneous coordinate ring of X.

For P*, we will see in Section 3.7 that the homogeneous coordinate ring is
Clzo, . . .,%,] with the usual grading. Also, for P® x PTM_ the coordinate ring is the
appropriate graded ring of bihomogeneous polynomials. In the physical theories

associated with mirror symmetry, the variables z, € S correspond to certain ob-

servables, though the observables by themselves have no physical meaning. Rather,

one uses certain monomials in the observables, which are taken modulo an ideal of

S—this is the chiral ring.

Note that the graded ring S deperds only on the 1-skeleton of £. Thus there
are potentially many fans with the same 1-skeleton, and hence many toric varieties

with the same coordinate ring. This will be amplified in Section 3.4.

To represent the full fan I in 5, we use the ideal B(X) defined as follows. Giver
aconeo € X, let

.’f:o» = Hp¢al‘p

e
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be the product of the variables “not in” o, and then define the ideal

BX)=(%,:0€L)CS.

For P, this ideal is just the “irrelevant” ideal (To,---,Zn).- In general, B(X)

determines ¥ uniquely.

The graded pieces of S have a nice cohomological interpretation. If a divisor

D=3 " a,D, is not Cartier, it won’t determine a line bundle, but we still get a

reflexive sheaf Ox (D). This sheaf is the subsheaf of the sheaf of rational functions

on X whose sections over an open set U C X are rational functions with poles

on U of order at most the order specified by D. (For more details on the sheaves

determined by Weil divisors, see [Reidl, Appendix to §1].) As we saw in (3.7),

there is an isomorphism

H%(X,0x(D)) =~ L(Ap),

where Ap is defined by the second line of (3.3). From here, it is easy to see that the

map sending the Laurent monomial tTM to ,zTM"** induces an isomorphism

(3.8) H%(X,0x(D)) = Sa,

where o = [D} € A,_1(X).

In the projective case, we can combine this with the isomorphism (3.7), and it

follows easily that if D is ample and o = [D], then we get a ring isomorphism

SAD s @:c,:oskon

where Sa, the polytope ring from Section 3.2.1. Thus S contains the polytope

rings Sa, coming from all possible ample divisors D on X.

We can also describe differential forms on X in terms of the homogeneous

coordinates. This will be done in Chapter 5 when we compute the Yukawa coupling

for ample hypersurfaces in X.

3.2.4. Toric Varieties via Homogeneous Coordinates. We next show

how the usual construction P* = (CTM*+! — {0})/C" of projective space generalizes

to an arbitrary toric variety. As in Section 3.1, assume that the 1-dimensional cones

of £ span Ng (this is automatically true if £ is complete). Define the group

G = Homz(A4,-1(X),C").

If we apply Homgz(—,C") to the exact sequence (3.2), we get an exact sequence

(3.9) , 1— G — (C)ZV Ty — 1.

We have used the fact that Homgz(M,C*) = N ® C* = Ty. Thus G is isomorphic

to (C*)TMTM times a finite cyclic group (this finite group is present precisely when

An_1(X) has torsion). Then G — (C*)=(!) gives an action of G on C*() = Spec(5),

where a = (a,) € CE) and g € G map to

g-a=(9([Dy]) ap)

(remember g : A,_1(X) — C* by the definition of G). Also, the ideal B(X) C S

defines a variety Z(Z) C CE()). This data determines X as follows.

THEOREM 3.2.3. If the 1-dimensional cones of & span N, then:

(i) X is the categorical quotient of CE(1) — Z(Z) by G.

(i8) X is the geometric quotient of C=(V) — Z(X) by G if and only if X is sim-

plicial.
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This result was first proved in [Audin] in the simplicial case, though the idea

of this construction arose independently several times (see [Cox] for a proof and

list of references).

The description of X given in Theorem 3.2.3 yields a simple description of the

inclusion-reversing correspondence between orbit closures and cones of ¥ that was

mentioned in Section 3.1. Namely, to each o € £ we associate the linear subspace

{zeCZM |z, =0forall p o}

This subspace descends to a subvariety of Xz which is easily checked to be the

orbit closure corresponding to . In particular, the toric divisor D; associated to

the edge v; is simply the hypersurface defined by z; = 0.

The variety Z(X) in Theorem 3.2.3 has a simple structure. A subset S C (1)

is a primitive collection if S is not the set of 1-dimensional cones of some cone

o € I but every proper subset of S is contained in some cone in the fan. Then

(3.10) Z(Z) =UsV(5),

where the union is over all primitive collections S and V(S) is the subspace defined

by z, = 0 for p € S (see [BC] for a proof).

If X is simplicial, Theorem 3.2.3 tells us that we really have homogeneous

coordinates: a point of X has coordinates a = (a,) € CZ) - Z(Z), and b €

CE=® — Z(X) gives the same point of X if and only if b= g-a for some g € G. In
particular, if f € S is homogeneous (meaning f € S, for some a), then the equation

f = 0 gefines a hypersurface in X. More generally, any homogeneous ideal I C S

defines a subvariety V(I) C X. The toric ideal-variety correspondence is explored

in [Cox].

In the non-simplicial case, the relation between C=(!) — Z(Z) and X is not

as direct, though homogeneous ideals of S still determine subvarieties of X. One

interesting thing that can happen (even in the simplicial case) is that a hypersurface

Y C X given by a homogeneous equation f = 0 need not be Cartier. This means

that although Y is defined globally by f = 0, it need not be defined by a single

equation locally on X.

3.3. Kihler Cones and Symplectic Geometry

This section will describe the Kiahler cone of a simplicial toric variety and

explain how symplectic geometry can be used to construct toric varieties.

3.3.1. The Kihler Cone of a Toric Variety. For a smooth projective toric

variety X, we have A,_;(X) =~ H?(X,Z), which implies H*(X,R) = HL1(X R).

More generally, if X is simplicial and projective, we have 4,_,(X)®R ~ H2(X,R),

so that H2(X,R) = H*3(X,R) still holds. Recall from Chapter 1 that the Kahler
cone in H!(X,R) consists of all Kshler classes on X (see Appendix A for the
definition of Kahler in the orbifold case). Under the above isomorphism, we get a

cone in Ap—1(X) ® R, which we also call the Kihler cone.

Let A7 1(X) ® R be the cone generated by the divisor classes [D;], where

v;i — D; fori=1,...,r. The Kéhler cone sits inside A7_,(X)® R and is described

as follows. Let a = Y ,_, a;[D:] € A}_;(X) ® R. Since X is simplicial, for each

¢ € I, we can find m, € Mg with (m,,v;) = —a, when v, € . We say that a is
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convez if (Mg, v;) = —a; for o € T and 1 <4 <r. Then define

(3.11) epl(E) = {a € A7_,(X) ® R : a is convex}.

Since X is projective and simplicial, cpl(Z) is an (r — n)-dimensional convex core.

Furthermore, a is in the interior of cpl(X) if and only if a is strictly convex, which

means (m,,v;) > —a; whenever o is n-dimensional and v; ¢ o (see [OdP]). We

can now describe the Kihler cone of X as follows:

PROPOSITION 3.3.1. If X = Xg is projective and simplicial, then the Kdhier

cone of X equals the interior of the cone cpl(Z) defined in (3.11).

PRrOOF. The Kihler cone is contained in the interior of cpl(Z) by [Baily2],

and the opposite inclusion is proved in [AGM1, Section 4]. ]

Since cpl(Z) is a strongly convex polyhedral cone, this proposition shows that

the Kahler cone of a projective simplicial toric variety has an especially nice struc-

ture.

3.3.2. The Mori Cone. If X5 is simplicial and complete, its Mori cone

M(Xg) is the cone of effective 1-cycles in 4;(Xx) ® R = H2(X5,R). This cone is

sometimes denoted NE(Xg)r or NE(Xsx)r. For our purposes, we are interested in

M (Xg) because it is dual to the Kahler cone, so that by Proposition 3.3.1, cpl(T)

and M(Xx) are dual.

As might be expected, we can describe M (Xz) explicitly in terms of the toric

data of the fan &. To see how this can be done, let o € I(n — 1) be a cone of

dimension n— 1, so that the corresponding orbit closure C, C X is a curve. By an

observation of Reid [Reid3, Prop. 1.6], M(Xg) is the cone generated by the C,.

We can turn this into something more explicit as follows. Let vy,...,vn—1

be the integral gemerators of o, and note that o is contaired in precisely two n-

dimensional cones. The first of these cones is the span of o and one more primitive

integral generator v,, and similarly the second cone is spanned by o and some other

generator vn.;- It follows that we get a linear relation

n+1

(3.12) > hw =0
i=1

In this relation, we may assume that Aj,... , Ans1 are relatively prime integers

with An, Ans1 > O since v, and vny; lie on opposite sides of . Hence the \; give

a relation A, in

(3.13) AQ = {(’\P)pe):(l) : Ap 3 Q, Zp/\pvp = 0}

Taking the dual of (3.2) and tensoring with @ gives a natural isomorphism

A1 (Xs) ®@Q > Ag.

Under this isomorphism, we can relate the curve C, € A;(Xz) ® Q to the relation

Ao € Ag as follows.

LEMMA 3.3.2. Let o € S(n—1). Then there is a positive constant ¢, such that

under the above isomorphism, C, corresponds to c,\,, where A, is the relation

determined by (3.12).
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PROOF. First observe that 4, (X5)®Q is dual to A4,,.; (X5 )®Q via intersection
product, while Ag is dual to A,-,(Xz)® Q via dot product on Q=) (using (3.2)
and (3.13)). Since the isomorphism A;(Xy) ® Q ~ Ag is compatible with these
dualities, it suffices to find ¢, > 0 such that

D,-C,=c¢oD,- A, forall peX(l).

If p is not one of the v;’s, then one easily sees that both sides of this equation are
0. On the other hand, if p is one of the v; (as usual, we identify p with the unique
generator of p N N), then D,, - A, = A;. But [Reid8, Prop. 2.7) shows that

(3.14) ADy -Co=X\Dy,-Cpy 1<i,j<n+1.

We've already seen that An41 > 0, and since o and v,,,.; determine an n-dimensional
cone of I, it follows that D, , N C, consists of a single point (= the fixed point
corresponding to the n-dimensional cone). Thus D, ,, - C» > 0, so that ¢, =

Ant1/(Dyny, - Co) is positive. Using (3.14), one sees easily that ¢, has the desired
property. O

Note that if Xz is smooth in a neighborhood of C,, then ¢, = 1 in Lemma 3.3.2
by [Fulton3, p. 99].

One nice consequence of Lemma 3.3.2 is the following ampleness criterion.

COROLLARY 3.3.3. A divisor D = 3 sex(1) oDy is ample if and only if it is

Cartier and satisfies (8,)pex(1) - Ao > 0 forall o € E(n — 1).

PROOF. Suppose that D is Cartier. Since the C, generate the Mori cone, it
follows that D is ample if and only if D-C, > Q for all & € 2(n —1). The corollary
now follows immediately from Lemma 3.3.2. O

When Xy is smooth, there is a second description of the Mori cone M (Xzg)
which involves the primitive collections defined in Section 3.2.4. The details can
be found in [Batyrevl], and the corresponding ampleness criterion appears in
[Batyrev2].

3.3.3. Symplectic Geometry. Symplectic geometry plays an important role
in mirror symmetry. Here, we will review some of the basic definitions. A good
reference for symplectic geometry is [Audin].

A symplectic manifold is a real manifold endowed with a closed, nondegenerate
2-form w. The symplectic structure converts functions into vector fields as follows:
if f is a C* function on the manifold, then there is a unique vector field X ¢ on the
manifold with the property that w(X, X;) = X(f) for any vector field X. We call
Xy the Hamiltonian of f.

For us, the most important example is C” endowed with the symplectic form
w = 3°7_; dz; Ady;, Where z;, = z; +iy;. A special feature of C” is that the natural
action of U(1)" = (S')" on C" is symplectic, which means that ¢g*w = w for all
g€ U(1)".

In fact, the action of U(1)" is Hamiltonian, which means the following. The Lie
algebra of U(1)” is R", where A = (Ay,...,A;) € R” maps under the exponential
map to exp(il) = (exp(idi),...,exp(iX,.)) € U(1)". Given A, we get the flow
v — exp(itA) - v on C" with vector field

XA=;/\i(-yia—i; +$iaiyi)-
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Then being Hamiltonian means that for all A in the Lie algebra, the vector field

X, is the Hamiltonian of some function on C".

We will prove this using the moment map

Iy C" — (]Rr)n

defined by u(z1,...,z) = (1/2)(|z21}%, . .., |2-?) (this uses the basis of (R")* dual

to the standard basis of RTM). The key point is that A = (Ay,...,A;) € R" can be

regarded as a map A : (R")* — R, and composing this with the moment map gives

Aoy :C" — R. An easy calculation shows that

X A= X Aouy

which proves that we have a Hamiltonian action.

In general, moment maps and Hamiltonian actions play an important role in

symplectic geometry. In Chapter 7, we will discuss other aspects of symplectic

geometry when we give the symplectic definition of Gromov-Witten invariant.

3.3.4. Toric Varieties via Symplectic Reduction. We next explain how

soric varieties are related to symplectic geometry by the process known as symplectic

reduction. Let X = Xg be determined by the fan ¥ in Ng =~ RTM. Then, as in

Section 3.2.3, we have the group G = Homgz(An-1(X), C*). The maximal compact

subgroup of G is

Gr = Homgz(A.—1(X), U(1)},

with Lie algebra gg = Homz(An—1(X),R). Thus gg = An-1(X) ®R.

If we let » = |E(1)], the inclusion G C (C*)" induces Gg C U(1)". This gives

a Hamiltonian action of Gg on C” whose moment map is easily seen to be the

composition

pr: C o (R7)" 2 gp = An1(X) @R >R,

where y is the moment map for U(1)" and p comes from the exact sequence

(3.15) 0 — Mg — (RT)* 2 Ap 1 (X)OR ~— 0

obtained from (3.2) by tensoring with R. The map sy is easy to describe explicitly.

First note that in (3.15), (b1,-..,b-) € R” annihilates the image of Mg if and only

if S°7_, byv; = 0in Ng. All such (bs,...,b,) form a subspace Agx C R” of dimension

r—n (note Ag = Ag®R, where Ag is from (3.13)). If we pick a basis (b1,;, ..., br,;)s

1 < j < r—mn, of Ag, then we get an isomorphism An-1(X) ® R ~ R"TM" such that

p becomes -

p(zl, e ,I,-) = (Z:=1bi’1z,;, ey Z::lb‘i,r—nzi)‘

It follows that ux is given by the formula

(316) ,U):(Zl, R Z?‘) = (1/2) (Z:=1b‘i,llzi|21 ey Z::)_b‘l',r-—nlzilz)'

We also see that uy is constant on Gr-orbits.

When X is simplicial, we saw above that A,_1(X) ® R~ HV(X,R), and by

Proposition 3.3.1, the Kihler cone of X can be identified with the interior of the

cone ¢pl(X) C An—1(X) ® R. We can then construct X as follows.

THEOREM 3.3.4. If the toric variety X = Xg is projective and simplicial and

@ € An_1(X) ®R is Kihler, then ug'(a) C C" — Z(X), and the natural map

pz'(a)/Gr — (C" - Z(X))/G=X
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is an orbifold diffeomorphism. Furthermore, the symplectic form w on C", when

restricted to uz'(a), descends to a symplectic form on 7 1(a)/Gr whose cohomology

class is identified with a € H*(X,R) via the above diffeomorphism.

ProOOF. In the statement of the theorem, note that w is not symplectic when

restricted to ugl(a). Going to the quotient is exactly what is needed to make it

nondegenerate. This process is called symplectic reduction. Since Gg can have

finite stabilizers, the quotient ug 1{a)/Gr has the natural structure of a symplectic

orbifold (see Appendix A).

‘We will use the notation of (3.11), where a € A,,_;(X)®R is written in the form

a =Y, a;[D;]. Since a is Kahler, Proposition 3.3.1 tells us a is in the interior of

cpl(T), i.e., a is strictly convex. Then consider the convex set A < Mg defined by

{m,v;) 2 —a;. Although A need not be integral (or even rational), the key point

is that the strict convexity of a implies that the polytope A is combinatorially dual

to X, which means that the proper faces of A are given by {m € A : {m,v;) =

—a; for v; € g} as o ranges over the cones of £. When the a; are integral, this is

one of the properties of ampleness discussed in Section 3.2.1. The case when the

a; are rational follows easily, and then the general case is proved using a continuity

argument.

Once we know that the fan of X is combinatorially dual to A, we can use The-

orem 1.4 of [Guillemin, Appendix 1] to conclude that ugZ'(a)/Gr ~ X. Further-

more, the final assertion of the theorem follows from equation (1.6) of [Guillemin,

Appendix 2] (the A; Guillemin uses are —a; in our notation). Guillemin’s arguments

are given in the smooth case, but can be modified to work when X is simplicial. [

The construction of toric varieties by means of symplectic reduction has some

interesting consequences for physics. In particular, there are certain physical the-

ories, called gauged linear sigma models, which take as their starting point a toric

variety as described by symplectic reduction. Details can be found in Appendix B.5.

3.4. The GKZ Decomposition

When we study Kahler moduli in Chapter 6, we will see that we need to enlarge

the Kihler moduli space defined in Chapter 1. The rough idea is that two Calabi-

Yau manifolds related by a flop have “adjacentTM Kihler cones, which will enable us

to glue together the corresponding Kihler moduli spaces.

In the toric context, the idea of “adjacent” Kihler cones arises naturally in

the GKZ decomposition. To see where this comes from, note that by (3.2), the

Chow group A,—1(X) of a toric variety X = X5 depends only on the set £(1) of

1-dimensional cones of £. Thus two toric varieties with the same 1-dimensional

cones have canonically isomorphic Chow groups of divisors. We can then ask how

their respective Kihler cones sit inside the Chow group tensored with R.

3.4.1. The Decomposition. To make this idea precise, fix a finite set of

strongly convex rational 1-dimensional cones = in Ng, and let & be a fan with

(1) = Z. Since A,_1(X) ® R depends only on =, we will write this vector space

as A(Z). Similarly, the effective divisor classes form the cone 4} _,(X) ® R which

also depends only on =. This will be denoted A+ (=Z). It follows that A*(Z) is a

cone in A(Z) ~ R"TMTM (where r = |Z]).



3.4. THE GKZ DECOMPOSITION 43

If T is a projective simplicial fan with 3(1) = =, then by Proposition 3.3.1,

the closure of its Kahler cone is cpl(X). Using the above notation, we get the

(r - n)-dimensional cone cpl(Z) C A*(Z).

Now suppose we vary over all possible such I's. This gives a collection of cones

lying in A*(Z). The naive hope would be that these cones fill out all of A*(Z). In

practice, this doesn’t happen, and to get what remains, we must consider projective

simplicial fans with £(1) C Z. Here, An—1(Xx) ® R may differ from A(Z), but we

can still define a cone cpl(T£) C A+(Z) as follows. Given a = 3_|_, a;[D;] € A*(Z),

for o € &, we can find m, € Mg such that (m,,v;) = —a; whenever v; € o and v;

generates an element of £(1). We say that a is L-convez if (m,,v;) > —a; for all

g€ and 1 <z <r. Then, as in (3.11), we define

cpl(E) = {a € AT (Z) : a is T-convex}.

This cone again has dimension r — n by [OdP]. The remarkable fact is that these

cones fill up A*(Z) in a very nice manner, giving what [OdP] call the Gelfand-

Kapranov-Zelevinsky (or GKZ) decomposition. A precise description is as follows.

THEOREM 3.4.1. Let = be a finite set of strongly convez rational 1-dimensional

cones in Ngp. As X ranges over all projective simplicial fans with (1) C Z, the

cones cpl(Z) and their faces form a fan in A(Z) whose support is A¥(Z).

In Section 3.7, we will give an example of a GKZ decomposition consisting of

two cones cpl(Z) and cpl(L') such that £(1) == and T'(1) G =.

In general, one can ask when two cones in the GKZ decomposition have a

common face of codimension one. The answer is very nice: this happens when the

corresponding fans in Ng are related by subdividing (adding or subtracting a single

1-dimensional cone) or by a “flop”—see [OdP)] for the details. We will discuss flops

in Section 6.2.3. We should also mention that non-simplicial fans correspond to

certain cones of dimension < 7 —~ n in the GKZ decomposition.

3.4.2. Secondary Fans and Gale Transforms. The GKZ decomposition

can be enlarged to give a complete fan whose support is all of A(Z). This can

be done as follows. First identify = with a subset of Ng by associating to each

1-dimensional cone in = its primitive integral generator. Then define the subset

Zt C Ng xR to be

(3.17) =+ =(=u {o}) x {1}.

The fan of interest is the secondary fan of =*. Its definition is analogous to that

of the GKZ decomposition. We replace the projective simplicial fans occurring in

the GKZ decomposition by regular triangulations T of the convex hull Conv(=+).

The vertices of the simplices in 7 must be elements of =+, and regularity means

that T can be defined by a strictly convex function in a manner analogous to the

way that a projective simplicial fan ¥ can be defined by a strictly convex support

function a € c¢pl(E). To T is associated the cone C(7T) C A(Z) of strictly convex

support functions which define the same triangulation 7. The cones C(T) are the

maximal cones of the secondary fan, which is a complete fan in A(Z).

Given a triangulation 7, the cone C(T) has an alternate description as follows.

Using (3.2), one sees that =+ C Ng x R gives

(3.18) 0 — Mg®R — RZ" — 4A(Z) — 0.
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To each v € =+ we associate the element e, € A(Z) which is the image under the

surjection in (3.18) of the standard basis element of R®" corresponding to v. The
set of elements {e : v € =7} is called the Gale transform of Z*. The reader can

check that if £(1) = = and v = (p,1) € E+ — {(0,1)}, then €} = [D,] is the class of

the toric divisor corresponding to p € £(1) in A(Z) = An—1(Xg) ®R.

Now suppose 7 is a regular triangulation of Conv(E*) as described above.

Then each simplex o € T gives a cone C(o) C A(Z) whose generators are e} for

those v which are not vertices of o, and one can show that

CT) = NoerClo)-

If (0,1) is one of the vertices of the triangulation 7, then since (0,1) € Conv(=¥) C

Ng x {1} = Ng is an interior point, we get a complete fan £ whose cones are equal

to the cones formed from the vertex (0,1) over the faces of the simplices o € 7.

The resulting fan T satisfiles £(1) € = and C(7) = cpl(Z). This process can be

reversed, and it follows that the secondary fan contains the GKZ fan as a subfan.

A more complete description of the secondary fan can be found in [GKZ2], and its

relation to the GKZ decomposition is given in [OdP].

Using (3.18), we see that the dual space A(Z)" is

AG) ={A=() ERT : T czedo v =0}

This is the vector space of linear relations among elements of =% (and is analogous

to Ag defined in (3.13)). Note that A(Z)* has an obvious integer lattice consisting

of those relations with integer coefficients. Furthermore, each €} € A(Z) in the

Gale transform is a linear functional on A(Z)*, and one easily calculates that it is

given by eX()\) = . In Chapter 6, we will use this as follows. Fix a basis of A(ZE)".
Then, regarding each basis vector as a row X = (),), the basis gives a matrix, and

the columns of this matrix give the e}, provided we use the dual basis of A(Z).

This description of the e!, makes the Gale transform easy to work with.

An especially nice case is when |=+| = n+3 (n is the rank of the lattices N and

M). Here, A(Z) has dimension 2, and the Gale transform {ej} is a set of vectors

in the plane. The secondary fan in this case is easily seen to be the complete 2-

dimensional fan whose 1-dimensional cones are spanned by the vectors of the Gale

transform, as noted explicitly in [DHSS].

3.4.3. Relation to Symplectic Reduction. We conclude this section by

examining the relation between the moment map and the GKZ decomposition.

First observe that the moment map uy depends only on X(1), since the exact

sequence (3.15) is determined by £(1). Thus we can write the moment map as

p=: CE — A(Z). Its image is A*(Z), so that

p=: CF — AT (D).

Since the group G acting on C= depends only on =, we write this group as G(Z).

Now suppose we have an (r — n)-dimensional cone cpl(Z) C A*(Z) in the GKZ

decomposition. We can take a in its interior and form the quotient

uz'(a)/G(E)r.

If £(1) = = and ¥ is projective and simplicial, this is Xt by Theorem 3.3.4. When

(1) is a proper subset of =, the theorem no longer applies, but the following

generalization tells us that we still get Xx.
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THEOREM 3.4.2. If £ is a projective simplicial fan with £(1) C Z and a €

A+ (Z) is in the interior of cpl(X), then there is a natural orbifold diffeomorphism

pz'(0)/G(Er = Xx.

PROOF. Besides the group G(Z) and the moment map uz, we have G(Z) and

ux coming from . To relate these, let C = = — I(1), so that Z= = 72*M g ZC.

The projection ZE — Z=() induces an exact sequence

(3.19) 1—G(E) — GE) — (C)° — 1

such that relative to CZ = CTM) o C%, G(Z) acts trivially on the second factor.

Furthermore, we can relate the moment maps through the following commutative

diagram

uz : C= — RE A(Z)

] !

pp CEQ —, RED . A4, (Xs)®R,

where the vertical arrows are the natural projections.

If a = 3__, a;[Dy] is in the interior of cpl(Z), then the proof of [OdP, Propo-

sition 3.1] shows that a is strictly convex, which means (m,, v;) > —a; whenever

o € ¥ is n-dimensional and v; is not a generator of 0. Let ag be the image of a in

A,-1(Xz)®R. It follows that ag is also strictly convex. By Theorem 3.3.4, it thus

suffices to show that

43 (a0)/G(E)r > pz ' (a)/G(E)e.

Since X is complete, each v; € C (as usual, we blur the distinction between

1-dimensional cones and their generators) lies in some n-dimensional cone o € %,

so that v; = Z]. cijvj, where ¢;; > 0 and the summation is over those j for which

v; is a generator of o (this convention will apply for the rest of this proof). Then

the strict convexity condition (m,,v;) > —a; gives the inequality

a; > ch,-ja.j for v; € C.

Let the coordinates of CZ be zy, ..., 2, and choose indices so that vy, ..., v €

(1) and vk41,-- -,V € C. Then one can show without difficulty that (z1,... ,Zr) €

p='(a) if and only if (z1,...,2x) € pg'(a0) and

(3.20) %|z1]2 = % jc,-j!zjr" +a;— Z].c,-ja.]- fork+1<i<r.

Now define a map ¢ : pz'(ao) — uZ'(a) by sending (z1,...,2x) € pst(ao) to

(21,.-.,2) € u3'(a), where zz41,-..,2 are the positive real numbers satisfying

{3.20) (the right hand side is positive by the above inequality). Then ¢ is equivariant

with respect to the actions of G(Z)r and G(Z)r, and every G{Z)r orbit meets the

image of ¢ by (3.19). Finally, suppose g#(z) = ¢(w) for z,w € ,u.El(a.o) and

g € G(E)r. Since g doesn’t affect absolute values, (3.20) shows that g acts trivially

on Zgy1,.-., 2. Furthermore, these numbers are nonzero, which implies g € G(D)r

by (3.19). We conclude that ¢ induces a bijection on orbits, which is easily seen to

be an orbifold diffeomorphism. m|

Theorem 3.4.2 shows that the moment map uz can be used to construct not

just one toric variety but all projective simplicial toric varieties Xr with (1) C Z.

This is related to the phenomenon of multiple mirrors, which will be explored

in Chapter 4. The gauged linear sigma models of (Witten5] are also related to
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this. In these models, an element a € A(Z) is a parameter, and one gets different

physical theories depending on where a lies. If 4 is in the interior of a cone cpl(Z),

then the theory involves the corresponding toric variety Xs, while if it lies outside

A*(E), one gets quite different theories (e.g., Landau-Ginzburg theories). This

phenomenon is called phases in the physics literature—see, for example, [MP1].

3.5. Fano Varieties and Reflexive Polytopes

The anticanonical class of projective space is ample, and more generally, any

smooth complete variety with this property is said to be Fano. For the purposes

of mirror symmetry, we need to consider singular Fano varieties as well. To define

this, recall from Appendix A that a Cohen-Macaulay variety V has a dualizing

sheaf 7, where n = dim(V'), and that 7, is a line bundle if and only if V' is
Gorenstein.

Being Fano means that the dual of the dualizing sheaf is ample. In particular,

this indicates that we might want fi"', to be a line bundle, so that such a variety is
Gorenstein. Hence we have the following definition.

DerFINITION 3.5.1. A complete n-dimensional Gorenstein variety V is Fano if

the dual of the line bundle Q} is ample.

For a toric variety, we can characterize these ideas as follows. First recall that

the dualizing sheaf on an arbitrary toric variety X has the simple description

o~

7T

x = Ox ( - ZpDP)
(see [Danilov, Fulton3, Odal). In terms of the canonical divisor Kx, this means

that Kx = —ZP D,. 1t follows that X is Gorenstein if and only if ZP D, is

Cartier. Then Fano toric varieties can be characterized as follows.

LEMMA 3.5.2. A complete toric variety X of dimension n is Fano if and only

if > o Do 18 Cartier and ample.

Since every ample divisor comes from a polytope, the ample divisor —K x on a

Fano toric variety determines a polytope A, which has some very special properties.

This is where we encounter Batyrev’s notion of a reflexive polytope [Batyrev4].

Here is the precise definition.

DEFINITION 3.5.3. A n-dimenstonal integral polytope A C Mg ~ R"TM is reflex-

ive if the following two conditions hold:

(i) Al facets T of A are supported by an affine hyperplane of the form {m €

Mg : {m,vr) = -1} for somewvr € N.

(i) Int(A)N M = {0}.

Reflexive polytopes have a very pretty combinatorial duality. Let A be an

integral polytope, and let A° be the polar polytope defined in Section 3.2.1. Besides

(A°)° = A, [Batyrev4] shows that the basic duality between A and A° is as

follows.

LeMMA 3.5.4. A is reflezive if and only if A° is reflezive.

Reflexive polytopes are interesting in this context because of the following re-

sult, which characterizes when P, is Fano.

PROPOSITION 3.5.5. A is reflexive if and only if Pa is Fano.
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ProoFr. Let A be reflexive. Then the vr in Definition 3.5.3 are precisely the

cone generators of the fan of Pa. It follows easily that the support function ¢a

takes the value —1 on each vr. The corresponding ample divisor on Pj is thus

Zp D,, which means that P is Fano. The converse is equally easy to prove. 0O

The simplest example of a Fano toric variety is P*. The next case to consider

is weighted projective space, where the answer is slightly more interesting.

LEMMA 3.5.6. Let X = P(go,--. ,qn) be a weighted projective space, and let

g= S0 o@. Then X is Fano if and only if q:|q for all i.

ProoF. The fan of X = P(qo,---,gn) has cone generators v, ... ,v, which

satisfy $_n @ = 0 in the n-dimensional lattice N, and the maximal cones of

the fan are generated by the n-element subsets of {vo, ... ,v,}. We first determine

when the divisor D = ¥, D: is Cartier.

For each ¢, one easily sees that there is a unique m; € M ® Q such that

(m;,vj) = —1 for all j 5 4. Then the divisor D is Cartier if and only if m; € M for

all i. However, the relation Y ;. , ;% = 0 implies that

Zj;éi q; =92 _ 1

% q:

Since vg, . . . , vn generate N, we see that m; € M if and only if g:|q for all i. Once

we know that D is Cartier, the ampleness criterion of Section 3.1 reduces to the

inequality (m;,v;) > ~1, which is certainly true in this case. O

(mfyvi) =

Section 3.7 will give further examples of toric Fano varieties. In any given

dimension, there are only finitely many reflexive polytopes up to unimodular trans-

formation, which means that there are only finitely many toric Fano varieties of

dimension n up to isomorphism (see [Batyrev4]). Smooth toric Fano varieties

have been classified in low dimensions (see [Batyrev6, Oda]), and attempts are

underway to classify all 4-dimensional reflexive polytopes (see [KS3, Skarke]).

Since reflexive polytopes come in pairs A, A°, we get toric Fano varieties P4,

Pao which are in some sense dual. In Chapter 4, we will use these toric varieties to

create “dual” families of Calabi-Yau hypersurfaces which are important in mirror

symmetry.

3.6. Automorphisms of Toric Varieties

This section will describe the automorphism group of a.complete simplicial

toric variety X. These results are due to Demazure [Demazure], who computed

Aut(X) when X was smooth. In [Cox], it was shown that Demazure’s description

of Aut(X) also holds in the simplicial case.

If X is given by the fan ¥, Theorem 3.2.3 gives the quotient representation X =

(CEM) — Z(%))/G, where G = Homz(An,—1(X),C*). Also recall the homogeneous

coordinate ring § = C[z, : p € £(1)], which is graded by 4,-1(X).

We will construct automorphisms of X = (CE(!) — Z(X))/G by finding auto-

morphisms of CE(1) — Z(Z) which commute with the action of G. One obvious class

of such automorphisms is given by elements of the “big torus” (C*)=(1), The exact

sequence (3.9)

1—G— (€)Y =Ty —1
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shows that this class gives the automorphisms of X coming from the torus, i.e.,
Ty C Aut(X).

The next class of automorphisms comes from roots. A root of X consists of a
pair (z,,z°) where z, is one of our variables and z” € S is a monomial distinct
from z, of the same degree, i.e., deg(z”) = deg(z,) in An_;(X). Note that z,
cannot divide 2P, since otherwise =2 /z, would be a nontrivial monomial of degree
0, which can’t exist since X is complete.

The root (z,,z”) determines an automorphism of C¥1) as follows. Write a
point of CF(1) a5 (zp,x), where X is the vector indexed by £(1) — {g}. Then we get
the 1-parameter family of automorphisms

(3.21) y)\(mp»x) = (zp + )‘xD,x),

where A € C and x? is the monomial z° evaluated at x, which makes sense since
%, doesn’t divide z°. One can prove that yy is an automorphism of CE()) — Z(%))
which commutes with the action of G and hence descends to give an element of
Aut(X).

The final class of automorphisms comes from symmetries of the fan Z, i.e., auto-
morphisms of N which permute the cones of X. In particular, such automorphisms
permute the 1-dimensional cones and hence give automorphisms of CZ() — Z (%)

which commute with the action of G.

THEOREM 3.6.1. If X is a simplicial complete toric variety, then the three
classes of automorphisms coming from the torus, roots, and fan symmetries gen-
erate Aut(X). Furthermore, the first two classes coming from the torus and roots
generate the connected component of the identity of Aut(X), and

dim(Aut(X)) = n + number of roots = n + 2, (dim(Sueg(z,)) — 1).

For example, the homogeneous coordinate ring of P" is the usual graded Ting
Clzo, - .. ,Zn]. This implies that the roots are all pairs (zi,z;) for i # j. There are
(n+1)?—(n+1) such pairs, so dim(Aut(PTM)) = (n+1)2—1 by Theorem 3.6.1. This,
of course, is the dimension of PGL(n + 1,C). The references [Cox, Demazure,
Oda] give more details about the structure of Aut(X) as an algebraic group.

We next describe a geometric method, due to [AGM1], for computing the
dimension of Aut(X). Suppose that the simplicial toric variety X is Gorenstein.
Hence the anticanonical class ~Kx = 5 " D, is Cartier, which gives the polytope

A=Ak, ={meMr:(m,v,) >~1}.

Note that 0 is in the interior of A, so that dim(A) = n (but A need not be integral).

PROPOSITION 3.6.2. If X is simplicial and Gorenstein, and A is as above, then

dim(Aut(X)) = n + 3 pI7(D),

where the sum is over all facets T’ C A.

PROOF. Recall from (3.6) that [*(T") is the number of lattice points in the
relative interior of the facet I'. To prove the proposition, let (xp,:z:D ) be a root,

and write 2P = H,,/#,,z;f'. By the exact sequence (3.2), we know that deg(z,) =
deg(zP) if and only if there is M € M such that

(m,v,) = -1
(3.22) ~ )

(M, vy) =ay for p’ #p.
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Since A is defined by the inequalities (m,v,) > —1 and (m,vy) > —1 for p’ # p,

the inequalities (3.22) tell us that 7 € A since ay > 0 > —1 for p' # p. In fact,

the latter inequalities and (,v,) = —~1 imply that m is in the interior of the facet

of A defined by (m,v,) = —1. Conversely, given 7 in the interior of this facet, one

easily checks that (z,,z”) is a root when z? = H,,f;epzf,’,n’"”'Hl. O

For an example of how this works, note that P* is Fano, so that P* = P4,

where A = A_g,, is reflexive. We know the automorphism group Aut(P*), but

what about the automorphisms of X° = P., where A° is the dual polytope of A?

In Section 4.2, we will see that the vertices of the simplex A° are given by

(-1,-1,-1,~1)

(1,0,0,0)

(0,1,0,0)

(0,0,1,0)

(0,0,0,1).

Observe that the facets of this polytope have no interior points. Since A° is the

polytope coming from the anticanonical class on X°, we see that X° has no roots

by Proposition 3.6.2. It follows that the connected component of the identity of

Aut(X°) is precisely the torus of X°. In particular, although the original toric

variety X = P* has a large automorphism group, the automorphism group of its

dual X° is relatively small.

3.7. Examples

This section will present three examples which illustrate various aspects of the

theory of toric varieties discussed so far. Working out the details of the examples

is a good exercise for readers less familiar with toric geometry.

Example 3.7.1. The most basic example of a toric variety is P*. Here, N =Z",

and the 1-dimensional cones are the standard basis e;,...,e, and ey = — Z?=1 e;
{as usual, we make no distinction between 1-dimensional cones and their gener-

ators). This gives a smooth fan with cones generated by all proper subsets of

{ea,. .-, en}. The exact sequence (3.2) becomes

. 0—>Z"—>Z"‘“ —»Z-—»O,

where (ag,...,an) € Z*"! maps to ag + - - - + 6. Thus, the homogeneous coordi-

nate ring is C[zo, - . ., T»] with the usual grading, and the construction of P* from

Theorem 3.2.3 is the usual P* = (C*! - {0})/C*.

The moment map is given by u(zo, - - -, 2n) = (1/2) Torp 2|2, so that ' (r) is
a sphere, and the construction of Theorem 3.3.4 is the Hopf fibration S+ — P"

with fiber S*.

Finally, the divisor Dy corresponding to ey is ample, and the associated poly-

tope is the simplex

ADO 2{(01,...,0",):61: 20’ ci+--+Cn S 1}‘

Example 3.7.2. Our next example involves a weighted projective space and its

toric resolution. In N = Z*, consider the vectors

v =(-1,-2,-2, -2), vi=e1, vy =e€2, U3 =e€3, Us=eé
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These vectors satisfy the relation vp + v; + 2vg + 2v3 4+ 2v4 = 0. Using the fan

formed by proper subsets of {vg, v1, v, v3,v4}, we get the weighted projective space

P(1,1,2,2,2), which is Fano by Lemma 3.5.6. The exact sequence (3.2) is

0—2% —2° —Z-—09,

where (ag, 61, a2,63,64) € Z% maps to ag + a; + 262 + 2a3 + 2a4. Thus, the ho-

mogeneous coordinate ring is Clzo, Z1, 22, 23, 24, where 7o, 71 have degree 1 and

T9,Z3, 24 have degree 2.

To resolve the singularities of P(1, 1, 2,2, 2), we take the singular cone generated

by vg,v; and add the generator

vs = (1/2)(vo +n) = (0,-1,-1,~1).

This gives a new fan £ where each 4-dimensional cone of the original fan containing

v, V1 gets split into two cones of . Then T is smooth, so that the corresponding

toric variety X = Xg is a resolution of singularities of P(1,1,2, 2, 2).

For X, one sees that the group G = (C*)? acts on CZ(1) = CS via

()‘a N)(-’Eo, I),T2,%3,T4, 25) = ()‘101 A T1, T2, b T3, K Ty, )‘-2/1' 1:5).

Furthermore, the only two primitive collections are {vg,v1} and {vg, vs,v4,vs}. By

(8.10), Z(X) = {zo = 21 = 0} U {za = 3 = 74 = 75 = 0}. Thus

X = (C°~ Z(2))/(C")~.
We can also describe the moment map and GKZ decomposition. Since the

relations among vo, v1, U2, V3, v4, U5 are generated by vy + va + v4 + v5 = 0 and

vp + v — 2vs = 0, (3.16) shows that the moment map is given by

px(z0, 21, 22, 23, 24, 25) = 5 (|22 + |z3|® + 24| + |25)%, 20|? + |21]* — 2|25[?).

The GKZ decomposition of A7 (Xz) ® R C A3(Xt) ® R = R? is especially simple

since there are only two projective simplicial fans with generators contained in

£(1): the fan £ of X, and the original fan £’ of the weighted projective space

P(1,1,2,2,2). We leave it as an exercise for the reader to verify that the GKZ

decomposition of A (Xz) ® R is as follows:

T2

Lol | - -

T

Turning to the secondary fan, note that Z = {vy, ... ,vs}, so that by (3.17), =+

consists of the seven points (vp,1),...,{vs,1),(0,1). A basis of all relations among
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these is given by the rows of the matrix

00111 1 -4

11000 -2 0/

It follows from Section 3.4.2 that in terms of the dual basis of A(Z) ~ R?, the
columns of this matrix give the generators of the edges of the secondary fan. In

fact, we see from (3.23) that the first six columns of the above matrix give the GKZ

decomposition, and the last column enlarges it to a complete fan by inserting an

edge along the negative rq-axis.

Example 3.7.3. Let M = 73, and consider the cube A C Mg centered at the origin

with vertices (£1,£1, £1). This gives the toric variety X = Pa. To describe the fan

of X, note that the polar A° C Ng is the octahedron with vertices %e,, ez, xes.

Thus the normal fan is formed from the faces of the octahedron, giving a fan ¥ whose

3 dimensional cones are the octants of R®. It follows easily that X =P x P! xPL
Furthermore, the divisor Ox (1) coming from A is the anticanonical divisor —Kx.

In particular, X is Fano.

We have the following pictures of A and A°:

i/ N
4

Ac My A" Ny

It is easy to check that the cube A C Mg and the octahedron A° C Ng are

dual reflexive polytopes in the sense of Section 3.5. In particular, A° gives a “dual”

toric variety X° = Pae, which is determined by the normal fan of A° (= the fan

in Mg formed by cones over the faces of the cube A). Hence we have a pair of

«dual” toric varieties, X and X°. It is interesting to observe that X is smooth

while X° is rather singular. In fact, the 3-dimensional cones of £° are not even

simplicial—they're all infinite pyramids. However, since A° is reflexive, we know

that X° is Fano and that A° C Ng is the polytope associated to the anticanonical

divisor —Kxe .

Note that A and A° also have quite different numbers and geometries of lattice

points. For A°® C Ng, the only lattice points in NV are the origin and vertices, while
A C Mg has many more since the midpoints of the edges and the centers of the

faces lie in M.
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We can also describe the GKZ decomposition of X°. The maximal cones of
the decomposition correspond to projective simplicial fans whose cone generators
lie in £°(1) = {vertices of the cube}. It is clear that the only way to do this is to
subdivide each face of the cube into two triangles along a diagonal. For each face,
this can be done in two ways, so that the GKZ decomposition has 26 = 64 cones.
However, in Chapter 4, we will see that for the purposes of mirror symmetry, we
need to form the GKZ decomposition using projective simplicial fans whose cone
generators lie in A N M, which is much larger than just the vertices of the cube.
Hence, the resulting GK Z decomposition has many more than 2% cones.

This example shows how we can start with a smooth toric variety (such as
P! x P! x P') and by a process of “duality” wind up with something singular. It
is no accident that the same sort of thing happened in Chapter 2 with the quintic
threefold and its mirror. Chapter 4 will explore this phenomenon in detail.



CHAPTER 4

Mirror Symmetry Constructions

This chapter will describe various constructions of mirror manifolds. Most (but

not all) of the constructions involve toric varieties, and in particular we will give a

toric interpretation of mirror symmetry for the quintic hypersurface.

4.1. The Batyrev Mirror Construction

In Chapter 1, we discussed why mirror symmetry is reasonable from the point

of view of superconformal field theory, but we didn’t explain how to find the mirror

of a given Calabi-Yau threefold. The first explicit examples of mirror manifolds

in physics were given by Greene and Plesser [GPI], who obtained the mirror as a

quotient of a Fermat hypersurface in a weighted projective space. An example of

this construction is the mirror of the quintic threefold given in Chapter 2. Roan
observed that toric geometry provides a natural framework within which to describe

this class of mirrors [Roanl}, and later, Batyrev found a beautiful toric description

which greatly generalizes the Greene-Plesser construction.

Batyrev’s construction makes essential use of reflexive polytopes, which were

introduced in Section 3.5. There, we saw that reflexive polytopes & correspond to

toric Fano varieties and that A has a dual A° which is also reflexive. In this section,

we will explain how the duality between A and A° results in a duality between

families of Calabi-Yau hypersurfaces in certain toric varjeties closely related to Py

and P A

4.1.1. Calabi-Yau Toric Hypersurfaces. The first step in Batyrev’s con-

struction is to observe that Calabi-Yau hypersurfaces in toric varieties arise natu-

rally from reflexive polytopes. A reflexive polytope A gives the toric variety Pa.

For the purposes of mirror symmetry, however, P4 may be too singular. We need

something where we can do Hodge theory, and for this purpose we will use simpli-

cial fans which refine the fan of Pa. Recall that the fan of P4 is the normal fan of

A, which consists of the cones over proper faces of A° C Ng. Furthermore, since

A is reflexive, it follows that the cone generators of the normal fan are the vertices

of A°, which lie in A° N N — {0}. We will consider the following fans in Ng.

DEFINITION 4.1.1. Given a reflezive polytope A C Mg, a fan & in N is a

projective subdivision if it has the following properties:

e I refines the normal fan of A.

e Z(1) C A°NN - {0}

e Xy is projective and simplicial.

Purthermore, we say that £ is maximal if £(1) = A° NN — {0}

Maximal projective subdivisions £ can be shown to exist {OdP]. There are

several choices for such a ¥, and as indicated in Section 3.4, each choice gives a
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We can also describe the GKZ decomposition of X°. The maximal cones of
the decomposition correspond to projective simplicial fans whose cone generators
lie in £°(1) = {vertices of the cube}. It is clear that the only way to do this is to
subdivide each face of the cube into two triangles along a diagonal. For each face,
this can be done in two ways, so that the GKZ decomposition has 26 = 64 cones.
However, in Chapter 4, we will see that for the purposes of mirror symmetry, we
need to form the GKZ decomposition using projective simplicial fans whose cone
generators lie in A N M, which is much larger than just the vertices of the cube.
Hence, the resulting GK Z decomposition has many more than 25 cones.

This example shows how we can start with a smooth toric variety (such as
P! x P! x P!) and by a process of “duality” wind up with something singular. It
is no accident that the same sort of thing happened in Chapter 2 with the quintic
threefold and its mirror. Chapter 4 will explore this phenomenon in detail.



CHAPTER 4

Mirror Symmetry Constructions

This chapter will describe various constructions of mirror manifolds. Most (but

not all) of the constructions involve toric varieties, and in particular we will give a

toric interpretation of mirror symmetry for the quintic hypersurface.

4.1. The Batyrev Mirror Construction

In Chapter 1, we discussed why mirror symmetry is reasonable from the point

of view of superconformal field theory, but we didn’t explain how to find the mirror

of a given Calabi-Yau threefold. The first explicit examples of mirror manifolds

in physics were given by Greene and Plesser [GPI], who obtained the mirror as a

quotient of a Fermat hypersurface in a weighted projective space. An example of

this construction is the mirror of the quintic threefold given in Chapter 2. Roan

observed that toric geometry provides a natural framework within which to describe

this class of mirrors [Roanl}, and later, Batyrev found a beautiful toric description

which greatly generalizes the Greene-Plesser construction.

Batyrev’s construction makes essential use of reflexive polytopes, which were

introduced in Section 3.5. There, we saw that reflexive polytopes & correspond to

toric Fano varieties and that A has a dual A° which is also reflexive. In this section,

we will explain how the duality between A and A° results in a duality between

families of Calabi-Yau hypersurfaces in certain toric varieties closely related to Pa

and IPAc .

4.1.1. Calabi-Yau Toric Hypersurfaces. The first step in Batyrev’s con-

struction is to observe that Calabi-Yau hypersurfaces in toric varieties arise natu-

rally from reflexive polytopes. A reflexive polytope A gives the toric variety Ps.

For the purposes of mirror symmetry, however, Ps may be too singular. We need

something where we can do Hodge theory, and for this purpose we will use simpli-

cial fans which refine the fan of Pa. Recall that the fan of P is the normal fan of

A, which consists of the cones over proper faces of A® C Ni. Furthermore, since

A is reflexive, it follows that the cone generators of the normal fan are the vertices

of A°, which lie in A° NN — {0}. We will consider the following fans in Ng.

DEFINITION 4.1.1. Given a reflezive polytope A C Mg, a fan T in Ng 5 a

projective subdivision if it has the following properties:

e T refines the normal fan of A.

e L(1)c A° NN — {0}

e Xy is projective and simplicial.

Purthermore, we say that £ is maximal if £(1) = A° NN — {0}.

Maximal projective subdivisions I can be shown to exist [OdP]. There are

several choices for such a I, and as indicated in Section 3.4, each choice gives a
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different cone in the GKZ decomposition (and a distinct phase in a related gauged

linear sigma model—see Appendix B). This will be discussed in more detail in

Section 4.1.4.

Given a projective subdivision X, we get a toric variety Xg and a birational

morphism f : Xg — P45 which have the following nice properties.

LEMMA 4.1.2. If T is a projective subdivision, then:

(1) Xx is a Gorenstein orbifold.

(#) A is the polytope associated to —Kx,.

(#t) ~Kx, is semi-ample, meaning that —Kx, is generated by global sections

and (-Kxz)" > 0.

() The map f: Xz — Py is crepant, meaning that f*(Kp,) = Kxy-

Furthermore, if £ is a mazimal projective subdivision, then Xy has terminal sin-

gularities.

Proor. Since A° is reflexive, each facet I'° of A° is defined by (m,v) = —1

for some m = mpo € M. Then {m,v,) = —1 when v, € I'°, and it easily follows

that —Kx, = 3, D, is Cartier by the criterion given in Section 3.1. Hence X =

Xg is Gorenstein, and it is an orbifold since T is simplicial. Also, the equation

{m,v,) = —1 shows that the polytope associated to the divisor —Kx is exactly A.

By duality, the m’s are the vertices of A, and it follows from Section 3.2.1 that —Kx

is generated by global sections. Finally, by [Fulton3, Sect. 5.3], the intersection

number (—Kxz)" is nlvol(A), which is positive since A is n-dimensional.

To prove the remaining parts of the lemma, we will study how adding new cone

generators to affects the canonical class of X. Recall from the discussion following

Definition 3.5.1 that for any toric variety, Kx is the Weil divisor — 3 peT(1) D,.

Let o € ¥ be a cone, and let X' be the toric variety obtained by adding a new cone

generator v € N which lies in the interior of . We know that the generators v, of

o lie on some facet I'° of A°, so that (m,v,) = —1 (where m = mr- is as above).

The key calculation is that if g : X’ — X is the natural map, then

(4.1) Kx = g"(Kx) - ((m,v') + )D".

where D’ is the divisor on X’ corresponding to v’. This equality is to be interpreted

as a linear equivalence of Weil divisors. Equation (4.1) can be proved, for example,

using the techniques of [Reid4, Section 4]. We just have to examine the coefficient

of D' in (4.1). For this, note that on the affine open X, C X, Kx coincides with

div(xTM), and therefore the coefficient of D' in ¢*Kx is (m,v').

If ¥' € A° N N, then v’ lies in the facet I'°, which implies (m, ') = ~1, and

Kx' = g"(Kx) follows immediately from (4.1). Since £(1) € A°N N, Xz is

obtained from P5 by adding a succession of new vertices in A° NN, and Kx, =

f*(Kp,) follows easily.

On the other hand, if T is maximal, then £(1) = A° 01 N — {0}. Hence any

new cone generator v’ we add must lie outside of A° (since 0 is the only interior

point by the definition of reflexive), which implies (m,v’) + 1 < 0 in (4.1). By the

discussion in Appendix A, we see that X has terminal singularities. O

‘We now show how to create Calabi-Yau varieties using the anticanonical linear

system on Xy and Pj.
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PROPOSITION 4.1.3. If A is a reflerive polytope of dimension n, then the gen-

eral member V € |— Kp.| is a Calabi- Yau variety of dimension n—1. Furthermore,

if T 18 a projective subdivision and X = Xz, then:

(i) The general member V € | — Kx| is a Calabi-Yau orbifold.

(i) If T is mazimal, then the general member V' € | — Kx| is a minimal Calabi-
Yau orbifold.

PROOF. We first consider V. By the definition of Calabi-Yau variety given in

Section 1.4, we must show that ¥ has canonical singularities, a trivial canonical

sheaf, and vanishing cohomology H*(V,05)=0for0<k<n-1.

Since the Fano toric variety P is Gorenstein, it has at most canonical singu-

larities (see [Batyrevd4]). Then a version of the Bertini theorem guarantees that

the general member V € | ~ Kp, | also has at most canonical singularities [Reid1,

Theorem 1.13]. Also, note that

Q?/_l ~ Q;"A("Kfl’a) R0y ~ Oy,

where the first isomorphism is the adjunction formula (which holds since P4 is

Cohen-Macaulay and —Kp, is Cartier). The final step is to show that & kV,0p) =

0for 0 < k < n—1. Since Op, (—V) ~ Op, (Kp,) = fi,{,’a, we get an exact sequence

0—*@}; — Op, — Op — 0,

which gives the long exact sequence

o+ H¥(Pa, Op,) — H(V,05) — H**'(Pa,08,) — -
However, H*(P,,0p,) = 0 for k > 0 and, by Serre-Grothendieck duality, we have

HE+Y(Pa, 03, ) & B *~1(Pa,Op,)* =0 for k < n— 1. This implies the desired

vanishing of H*(V, Oy ), and we conclude that V' is Calabi-Yau.

Now let be a projective subdivision and set X = Xg. Since —Kx is semi-

ample by Lemma 4.1.2, the linear system | — Kx| has no basepoints. Furthermore,

X is an orbifold since % is simplicial, and then the Bertini theorem (applied to

the fixed loci of the local quotients defining X as an orbifold) guarantees that the

general member V € | — Kx| is a suborbifold of X. Everything we did above

remains true, and it follows that V' is a Calabi-Yau orbifold.

Finally, suppose that ¥ is maximal. According to Definition 1.4.1, Vis a

minimal Calabi-Yau provided it has Gorenstein Q-factorial terminal singularities.

Since V is already a Gorenstein orbifold, it automatically has Gorenstein Q-factorial

singularities. Hence, we need only show that V has terminal singularities. However,
the ambient space X is terminal by Lemma 4.1.2, so we are done by using Bertini

as in the proof of [Reid1, Theorem 1.13}. a

Since f : Xz — Pa is crepant, it follows that the Calabi-Yau hypersurfaces

V C Xy constructed above are the proper transforms via f of general anticanonical

hypersurfaces ¥ < P5. One can also show that the induced map V — V is crepant.

When T is a maximal projective subdivision, the variety V C Xz is a minimal

model (in the sense of Mori theory) of V C P,. Batyrev calls V a mazimal projective

crepant partial desingularization of V', or MPCP-desingularization for short.

The situation is especially nice when V is a threefold. Since 3-dimensional

Gorenstein orbifold terminal singularities are smooth by Appendix A, it follows that

for a maximal projective subdivision, the minimal Calabi-Yau threefolds V' C Xz

constructed in Proposition 4.1.3 are smooth.
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4.1.2. The Mirror of a Calabi-Yau Toric Hypersurface. We can now
describe the Batyrev mirror construction. Fix a reflexive polytope A, and let £ be
a maximal projective subdivision of its normal fan, as in Definition 4.1.1. This gives
the family of Calabi-Yau hypersurfaces V ¢ Xy for V e |- Kxy|, and as explained
m Chapter 1, each member of this family comes equipped with a complexified
Kéhler cone, so that we obtain a family {(V, w)} consisting of all possible pairs of
a Calabi-Yau hypersurface and a complexified Kihler class.

However, A reflexive implies that A° is reflexive, so that we can repeat the
above construction using A°. Thus, for a maximal projective subdivision £° of the
normal fan of A° in Mg, | - K Xgo| yields a family of Calabi-Yau hypersurfaces
V® C Xgo. When we add in the complexified Kihler cones, we get a family
{(V°,w°)} called the Batyrev mirror of the original family {(V,w)}.

In physics, it is believed that these families are mirror pairs in the sense of
Physics Definition 1.1.1. More precisely, we have the following conjecture:

PHYSICS CONJECTURE 4.1.4. The families {(V,w)} and {(V°,w°)} induce iso-
morphic superconformal field theories whose N = 2 superconformal representations
are the same, up to the sign change discussed in Section 1.1.

Another way to say this is that the families {(V,w)} and {(V°,w)} each rep-
resent open subsets of the same component of the moduli space of N = 2 super-
conformal field theories (SCFTs). Strictly speaking, the conjecture only applies to
the case when V' and V° are threefolds (so A has dimension four), although the
Batyrev mirror construction applies to reflexive polytopes of arbitrary dimension.

This mirror symmetry conjecture has not been proved in physics (but see [MP2]
for an attempt). The Greene-Plesser [GPY] construction gives a physics proof that
{(V,w)} and {(V°,w°)} form a mirror pair in the special case of Fermat hypersur-
faces of the appropriate degree in certain weighted projective spaces. The general
case is still open.

Given the lack of a rigorous foundation for SCFTs, Physics Conjecture 4.1.4 is
not a conjecture in the standard mathematical sense. But it is possible to formulate
precise mathematical consequences of this equality of SCFTs. In particular, we saw
in Chapter 1 that mirror symmetry implies that the following should be true:

* The cohomology group H'!(V) (resp. H}(V°)) should be isomorphic to
H"=21(V°) (resp. H*"21(V)). (Recall that V and V° have dimension n—1,
where 7 = dim(A).)

¢ According to the picture (1.6) of mirror symmetry, the Kihler moduli of V
(resp V°) should be locally isomorphic (via the mirror map) to the complex
moduli of V° (resp V).

¢ The A-model correlation function of V' (resp V°) should correspond (via the
mirror map) to the suitably normalized B-model correlation function of V°
(resp V).

The challenge for mathematicians is to prove these consequences. Substantial
progress has been made when V° is the Batyrev mirror of V. In Section 4.1.3,
we will dispose of the first bullet, and the second will be addressed in Chapter 6
when we study the complex and Kihler moduli of a Calabi-Yau toric hypersurface.
The third bullet will have to wait until Chapter 8, where we will define mathe-
matical mirror pairs and formulate the Hodge-Theoretic Toric Mirror Conjecture.
Chapter 11 will discuss the proofs of special cases.
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4.1.3. Hodge Numbers of Batyrev Mirrors. In order to show that two

finite dimensional vector spaces are isomorphic, it suffices to show that they have
the same dimension. Hence the first bullet above asks us to compare the Hodge

aumbers of a Calabi-Yau toric hypersurface V' and its Batyrev mirror V°.

As above, we will assume that A is an n-dimensional reflexive polytope and that

V is a general anticanonical hypersurface in X5, where £ is a maximal projective

subdivision of the normal fan of A. This process, applied to A°, gives the Batyrev

mirror family V°. As proved in [Batyrev4, AGM1], the Hodge numbers of V' and

1/° are related as follows:

THEOREM 4.1.5. If V° is the Batyrev mirror of V, then

hl,l(V) - hn—2.1(vo) and hn—Z,I(V) = hl,l(vo).

PROOF. We will begin by defining some interesting subspaces of H}(V) and

H"-21(V). For each v; € (1), let D; C Xx be the corresponding Tn-invariant

divisor. These divisors restrict to divisors D} on the hypersurface V' C Xz whose

cohomology classes generate a subspace (over C) denoted

(4.2) Hyl (V) C HYN(V).

Turning our attention to HTM~%!(V) ~ H(V,Tv), first note that although V' may

be singular, it is a Gorenstein orbifold with at worst terminal singularities, so that

HY(V, Ty) classifies the infinitesimal deformations of V' by Proposition A42 Then

the infinitesimal deformations determined by the hypersurfaces V' € | — Kx,| give

a subspace denoted

(4.3) Ho 2H(V) ¢ HP (V).

We claim that the dimensions of these subspaces can be computed in terms of A

and A° as follows:

(44) hegmie(V) = UA%) = n = 1 = Tad*(T%)

(4.5) hgae (V) =U(48) =n — 1= Tl (D),

where the sums are over all facets I'° and T of A° and A respectively. Here, [ and

I* are as defined in (3.6). Once this claim is proved, the equations

hl,l (V) = hn-—?,l(Vo) and hn—2.1(V) = hl,l (Vo)

toric poly toric poly

follow immediately since changing from V to V° interchanges the roles of & and

A° in (4.4) and (4.5). We should also mention that it is possible to construct a

natural isomorphism Hph (V) = :;yz,l (V°) called the monomial-divisor mirror

map (see [AGM1]).

We first prove (4.4). Suppose that v; € £(1) is an interior point of a facet of

A°. Then the standard description of toric blowups shows that f(D;) is a point,

where f : Xg — P, is the natural map. It follows immediately that in X5, D;

is disjoint from a general V € | — Kx,,|. Thus, these elements don's contribute to

HEL (V), so that if we set

£(1)' = {»; € (1) : v; is not in the interior of a facet of A°},

then H1L (V) is generated by Dj for v; € Z(1)’. To see what the relations between
ori

the D/ are, note that m € M gives a character xTM of Ty, hence a rational function
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on Xy. By (3.1), we know the divisor of xTM, and if we restrict this formula to V/,
we obtain a linear equivalence

(4.6) Zv.-ez(l)' {m,v;) D} ~ 0.

In [AGM1], it is shown that these are the only relations between the D, which

implies

Hyn (V) = (ZRY' /M) @ C,tori

where the inclusion of M — Z=(1)" is given by m +— ({m,v;)) as required by (4.6).
Hence

higrie(V) = [E(1)'| = .
In the notation of (3.6), we see that |S(1)] = I(A°)—1 since £(1) = A°NN—{0} (this

is where we use the maximality of the projective subdivision %). Then, removing

the interior points of the facets gives |Z(1)'| = I(A°) — 1 — .. I*(T°), and (4.4)

follows easily.

Now consider h.;;lf,’l(V). We will describe the moduli coming from the family
V € | - Kx.|. Our discussion will be informal, with a careful treatment to follow
in Chapter 6. Lemma 4.1.2 showed that A is the polytope associated to —K Xg-

Thus, a Laurent polynomial f € L{A) gives the affine hypersurface Z. ¢+ C TN, and

we can assume that V = Z; C Xg. Since multiplying f by a scalar doesn’t affect
V, varying f gives a parameter space of polynomial deformations of dimension

[(A) — 1. But we must take into account the automorphisms of Xy. Since A is
associated to —Kx,, Proposition 3.6.2 implies that the automorphism group has

dimension

dim(Aut(Xt)) =n + 3 I*(T).

It now follows easily that the polynomial moduli have dimension given in (4.5).

To complete the proof of the theorem, we need to understand the “non-toric”
divisor classes and the “non-polynomial” deformations of V. Batyrev [Batyrev4]

showed that in each case, the “correction term” is determined by the codimension

2 faces of A and A°. The formulas are:

(4.7) AIV) =AY —n—1- Sl T+ Y l"(6°)l'(é°)

(48) APTEV) =U(A) = n—1- N0 + el'(0)(8),
where in the first equation, I"°Arefers to codimension 1 faces of A°, ©° refers to

codimension 2 faces of A°, and ©° refers to the face of A dual to ©°. The meanings
for the second equation are similar. As above, applying these formulas to V and

V*° interchanges the roles of A and A°, so that the theorem follows immediately
from (4.7) and (4.8).

The correction term in (4.7) arises from divisors D; whose intersection with a
general V' is reducible. We've already seen that we can ignore those D; correspond-

ing to v; lying in the interior of a facet I'°. In general, suppose that v; lies in the

interior of some face 8° C A°. If ©° c A denotes the dual face, then Pg, C Pa

is an orbit closure, and f(D;) = Pg. under the blowup map f : Xg — P,. If

V = f(V) is the corresponding anticanonical hypersurface of P,, it follows that
D!=VNnD;and VN Pg. have the same number of irreducible components.

Recall that the face ©° and its dual ° satisfy dim©° + dim&° = n — 1. It
follows that if ©° has codimension > 3, then ©° has dimension > 2. Thus Pg, has
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dimension > 2, which implies that V NP, is irreducible by Bertini. We conclude

that Dj is irreducible when v; lies in a face of A° of cq\dimension >3

On the other hand, if ©° has codimension 2, then ©° has dimension 1 and Pg,

is a curve. In this situation, [Fulton3, Sect. 5.3] implies that

V - Pg. = vol(8°) =1"(8°) + 1,

where vol means normalized volume, and the second equality holds since €° has
dimension 1. This tells us that V NP, consists of 1*(8°) + 1 points, so that D]

has l*(é°) + 1 connected components. One can show that these components give

independent classes in H L1(V), and since their sum Dj is already in H:‘;:.,C(V), we

see that each interior point of ©° adds {* (é") new classes. Since ¥ is maximal, we
use all interior points of ©°, which explains the correction term in (4.7).

As for the correction term in (4.8), we will explain why the formula is reasonable

and refer to [Batyrev4, Voisind] for a complete proof. Ifwelet Z, =VNTy CTn

be the affine hypersurface determined by V/, then the complement V' — Z equals
5,V N Dy, which is a divisor with normal crossings (in the orbifold sense). Hence

the Gysin spectral sequence gives an exact sequence

— @, H"3(V 0 D;,C) — HTM\(V,C) — Gri_ [ H""}(Z;,C) —0.

All of these groups have pure Hodge structures, from which one can show that

(4.9) RP=2L(V) = A2 (Gr H"Y(Zf,C)) + LAV N D).

By the work of Danilov and Khovanskii [DK, 5.9}, the first term on the right hand

side can be computed to be

B2 GrY HTMY(Z;,C)) = 1"(24) — (n + DI*(A) = S pI7(T)-

However, being reflexive implies {*(4) = 1, and I"(24) = {(A) also follows from

being reflexive. Hence the above formula simplifies to

A2YGrY HYY(Z4,C)) = U(A) —n—1 =3 1N(D)-

1t remains to show that the second term on the right hand side of (4.9) is equal to

the correction term in (4.8).

N One way to see this is as follows. Suppose that v; lies in the interior of a face

B C A°, and let © C A denote the dual face. As above, this gives an orbit closure

Pe C Pi such that f(D;) = Pg. Then we get a map V N D; — V N Pe, which in

turn induces a natural map

H =30V nPg) — H" 3%V N D).

Most of the time, An—39(7 NPg) = 0, but in the special case when © is simplicial

and V N Pg has dimension n — 3, we have the formula

(4.10) R3OV APs) = 1*(O)

from [DK, 5.5 Note that dimV NPe = n — 3 is equivalent to © being a face

of codimension 2. It follows that if ® C A is simpliciai of codimension 2, then

every one of the [*(©) interior lattice points v; € & contributes I*(©) holomorphic

(n — 3)-forms. In this way, the correction term Y g 1*(©)1*(8) arises naturally.
Unfortunately, this argument does not work in general. To actually compute the

sum on the right hand side of (4.9), one needs to decompose D; into a disjoint

union of orbits O and compute the appropriate h#*9 numbers for each V' N O using
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the techniques of [DK]. As mentioned above, the details of this argument can be

found in [Batyrev4, Voisin3]. O

Historically, large numbers of families of Calabi-Yau varieties were first con-

structed as quasi-smooth hypersurfaces in weighted projective space—eventually,

7555 examples were found [KS, KS2]. When the Hodge numbers of these exam-

ples were plotted, the resulting graph exhibited a striking partial symmetry, which

was some of the earliest evidence for mirror symmetry. After the publication of

[Batyrev4], it was checked in [CdK] that for each of the 7555 varieties on the list,
the translate to the origin of the Newton polytope of the general Calabi-Yau hyper-

surface is in fact reflexive. Thus these examples are all special cases of the Batyrev

mirror construction. Section 4.4.3 will say more about the techniques involved.

The equality of Hodge numbers given in Theorem 4.1.5 says, for example, that

H'(V) is isomorphic to H'(V°, Tye) ~ H*21(V°), but doesn’t specify the iso-
morphism. According to mirror symmetry, the mirror map relating the Kihler

moduli of V' to the complex moduli of V° should be defined over at least an open

subset of the Kahler moduli space of V, and its derivative should give a canonical

isomorphism H'!(V) ~ H*~21(V°). Also, in the course of the above proof, we
mentioned the monomial-divisor mirror map, which is a natural isomorphism be-

tween Hyoy (V) = Hoa2' (V). In Chapter 6, we will discuss this isomorphism in
more detail and explain its relation to the mirror map.

We should also mention that according to (1.5), mirror symmetry suggests that
more generally, we should have equalities of Hodge numbers

(4.11) RPI(V) = R 17PA(V0)

when V° is the Batyrev dual of V' (remember that V' and V° have dimension

d =7 —1 in this case). Theorem 4.1.5 covers the cases (p,q) = (1,1} and (n—2,1),
and the case when ¢ = 0 is trivial. For a threefold, this is all that is needed, but

for dimension 4 and greater, it is an open question as to whether (4.11) holds.

In [BB2, BDJ, the string theoretic Hodge numbers h2°(V') are defined when
V' C Xz is a Calabi-Yau toric hypersurface of the type we’ve been considering.

These numbers agree with the usual Hodge numbers h?9(V') when V is smooth or

when ¢ = 1. More importantly, these numbers satisfy

hE2 (V) = hL T TPI(V°)

for all p + ¢ = dim(V) when V° is the Batyrev dual of V. It follows that (4.11)

holds in the smooth case when p + ¢ = dim(V'), but as already mentioned, this is

still open if either V' or V° is a singular minimal Calabi-Yau variety.

4.1.4. Multiple Mirrors. In the Batyrev mirror construction, there may be

more than one choice of maximal projective subdivision for ¥ and £°. This seems

to lead to a multiplicity of mirror families. For example, if £ and ¥’ both satisfy

E(1) = '(1) = A°NN — {0}, then we get two families V C X5 and V' C X5. Is it

possible for V° C Xgo to be the mirror of both families? The answer is yes, which

is part of the “multiple mirror” phenomenon discussed in [AGM2]. Chapter 6 will

discuss muitiple mirrors in detail. However, if we restrict to toric Kihler moduli as

in (4.2}, then the rough idea is that = and ¥’ correspond to distinct cones in the
GKZ decomposition, and the Kibler moduli of the families V and V" give disjoint

open sets of the same global Kihler moduli space.
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One can also make different choices on the other side. Here, maximal projective

subdivisions 3° and X' give families V° and V'°. We want the complex moduli of

7 . these families to correspond to the Kéhler moduli of the family V. Hence V° and V"°
"should have the same complex moduli. If we restrict to polynomial deformations
as in (4.3), this follows from the proof of Theorem 4.1.5. Namely, the polynomial

moduli of V° correspond to an open subset of L{A°) modulo the action of the

automorphism group of Xs.. But V" is defined by polynomials in the same space
L(A®), ana using results of [Cox], one sees that Aut(Xx.) and Aut(Xsz-) have the

same connected component of the identity. It follows that the polynomial moduli

spaces look the same, at least locally. All of this will be explained carefully in

Chapter 6.

4.2. The Quintic Threefold, Revisited

We now return to the quintic threefold V' C P*, which was discussed in Chap-

ter 2. Since V is an anticanonical hypersurface in the Fano toric variety P4, we can

describe its mirror family using Batyrev’s construction.

The anticanonical class Dyp+- - -+ D4 on P* corresponds to the reflexive polytope

A C My ~ R® whose vertices are

(-1,-1,-1,-1)

(4,-1,-1,-1)

(4'12) (—1i47 —1)—1)
(-1,-1,4,-1)

(-1,-1,~1,4).

We can think of A as the Newton polytope of quintics in P*. To see this, consider

a Laurent polynomial determined by A as in (3.5), say

f=Y16itTM, ANM={m,...,ms},

and then observe that its homogenization

F(xg, 21,22, T3, Za) = 2o2122%3T4f(21/Z0, 22/ 0, 3/ %0, T4/Z0),

from (3.8) is an arbitrary quintic in g, 21,2, 23, Z4.

To find the mirror family of V', we use the dual polytope A° C Ng, which is

easily seen to have vertices

(-1,-1,-1,-1)

(1,0,0,0)

(4.13) (0,1,0,0)

(0,0,1,0)

(0,0,0,1).

The toric variety Pao is determined by the normal fan of A° in Mg, which is given

by the cones over the faces of A. The cone generators are thus (4.12) and generate

a lattice My C M of index 125. The quotient M/M, is

G = {(ao, a1,a2,a3,84) € (Zs)5 : E?:oai = 0 mod 5}/25

where Zs C (Zs)® is the diagonal subgroup. Since My = (M1)g, we can view the

normal fan of A° as a fan in (M;)r. This fan has generators consisting of a Z-basis

for M) together with the negative of their sum. This shows that using the lattice

M), the normal fan is the standard fan for P*. If we then switch to the larger
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lattice M, standard results in toric geometry imply that Pa. is the quotient of P*

by M/M; ~ G, where G acts on P* exactly as described in Chapter 2.

The homogeneous coordinate ring S of Pao can be described as follows. It is
the polynomial ring § = Clxg,z;, 2, T3, z4), which is graded by the Chow group

A3(Pac). From (3.2), we get the exact sequence

0 —Z'—2° -ZaeG —0,

where the first map has the matrix whose rows are the rows of (4.12), and the

second sends (ag, a1, az2,a3,64) € Z5 to

a0, a1, 02,a3,a4) = (T i_gai, (~a1 — @2 — @3 — G4,01,82,03,04)) €ZSG.

Thus A3(Pac) ~ Z ® G and the grading on S is obtained by letting a monomial

z° - - - T4* have degree [ag,a1,82,03,04) €EZ O G.

It follows that the anticanonical class of Pao has degree [1,1,1,1,1] = (5,0) €

Z ® G, and the only monomials in S of this degree are 23 and ToT;Zo2324. Hence,

we get hypersurfaces V° C Pao defined by

(4.14) a0 xd + a2} +ay :rg +a3 a:g +ay xi + a5 Tor1ToT324 = 0.

In concrete terms, V° is the quotient by G of the hypersurface in P* defined by

the above equation. Notice that the monomials in (4.14) correspond to the integral

points in A, which are the origin and the points (4.13). Also, the relation

(@8)(@})(23)(23)(23) = (moz122374)°

reflects the fact that the five vectors in (4.13) add up to five times the origin.

The equation (4.14) differs from the 1-parameter family of varieties we discussed

in Chapter 2. But recall that we are interested in the moduli of these hypersurfaces.

The automorphism group of P. is the torus Ths, and using these automorphisms,

we can reduce to the 1-parameter family

zf + x5 + 25 + 25 + 25 + Yoz zoriz, =0

considered in Chapter 2. Chapter 6 will give a systematic method for doing this.

Finally, to get the mirror of the quintic hypersurface V, we pick a maximal

projective subdivision £° in Mg. Such a fan refines the normal fan of A° and

satisfies £°(1) = ANM — {0}. Then the mirror family is given by the hypersurfaces

V° € Xgo which are the proper transforms of V° C Pao.

Note that M NA — {0} bas lots of points besides the vertices, and hence there

are many choices for ¥°. The computational problem of identifying all such L£°

greatly exceeds current computer limitations. A specific choice for I° is described

in the appendix to [Morrison2].

4.3. Toric Complete Intersections

Generalizing the toric hypersurfaces studied in Section 4.1, one can also ask

if mirror symmetry bholds for Calabi-Yau complete intersections in toric varieties.

In this section, we will answer this question by describing two mirror symmetry

constructions due to Batyrev and Borisov {Borisovl, BB1] which involve nef-

partitions and reflezive Gorenstein cones.

i et g e e e~y T YR
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4.3.1. Nef-Partitions. Suppose that X = P, is an n-dimensional toric va-

riety corresponding to a reflexive polytope A. Let D, denote the toric divisor

associated to p € X(1), where ¥ is the normal fan of A. Given a partition

(1) = [; U--- U I into k disjoint subsets, we get the divisors E; = EpGIj D,

such that —Kx = E; +--- + E.

DEFINITION 4.3.1. The decomposition (1) = I U ---U I is called a nef-

partition if for each j, E; is a Cartier divisor spanned by its global sections.

If A; is the polytope corresponding to E;, then being a nef-partition implies

that

A=A+ -+ D

By abuse of language, the decompositions ~Kx = E1 +---+ E, and A = A; +

...+ Ay are also called nef-partitions.

General sections of O(E,),... ,O(Eg) define a complete intersection V C X of

dimension d = n — k. Using —Kx = E1 + - - + E; and the adjunction forinula, we

see that V C Pa is a Calabi-Yau variety. As in Section 4.1, a maximal projective
subdivision ¥’ of the normal fan of A gives a map Xy — P,, and the proper

transform V C Xg of V < P, is again a complete intersection which is now a

minimal Calabi-Yau [BB1, Prop. 4.15].

To describe the mirror family of V', we as usual regard elements of £(1) as

cone generators, which in the reflexive case are precisely the vertices of the polar

polytope A° C Ng. Then the nef-partition £(1) = I U --- U I}, gives polytopes

V; = Conv({0} U l;) C Ng.

This immediately implies that

A° =Conv(ViU---UVy).

The basic result of [Borisovl] is that the Minkowski sum

V=Vi+-+V

is again a reflexive polytope and, furthermore, V = V4.4V, is a nef-partition.

In the terminology of [BB1}, this is called the dual nef-partition.

Using the dual nef-partition, we get Calabi-Yau complete intersections V° C

Py, and choosing a maximal projective subdivision £° of the normal fan of V,

we get a family of minimal Calabi-Yau complete intersections V° < Xsgo. The

conjecture is that

V° is the mirror family of V.

This conjecture is consistent with a construction of mirror symmetry for complete

intersections in projective space proposed in [LTe].

As evidence for this conjecture, Batyrev and Borisov prove that

(415) hP»l(V) = hd—p,l(Vo),

where d = n — k is the dimension of V' and V°. More generally, using the string

theoretic Hodge numbers %% discussed in Section 4.1.3, one can prove

(4.16) B (V) = hiTI(V°)

(see [BB2]). Since A7 (V) = h%*(V'), we see that (4.15) is a special case of (4.16).
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4.3.2. Gorenstein Cones. An generalization of the combinatorial duality

of nef-partitions comes from the study of Gorenstein cones, which are defined as

follows. Suppose we have a lattice M with dual N.

DEFINITION 4.3.2. Let ¢ C Mg be a rational polyhedral cone.

(1) o is a Gorenstein cone if o is strongly conver and there is n, € N such that

(v,n0) =1 for every generator v of o.

(i) o is a reflexive Gorenstein cone if both ¢ and its dual & are Gorenstein

cones.

It is clear that ¢ is a reflexive Gorenstein cone if and only if & is. Furthermore,
if o is reflexive, it must have maximal dimension, which implies that n, € N is

uniquely determined. Then & has a similarly defined m; € M, and the integer

r=(ms,n,)

is called the index of o (or &).

We first explain how reflexive Gorenstein cones relate to the duality of reflexive

polytopes. Given a polytope A C Mg, we extend the lattice M to M = M x Z, and

similarly we have N = N x Z. We let ¢ C M be the cone spanned by the elements

{(»,1) | ve A}. In other words,

(4.17) c={(Aw,A):ve A, A0}

Note that o is a Gorenstein cone. Then an easy argument shows that ¢ is reflexive

if and only if A is. Furthermore, when A is reflexive, then the index is r = 1 and

J is constructed from A° in the same way o was constructed from A.

We can also describe the duality of nef-partitions using reflexive Gorenstein

cones. Given a reflexive polytope A C Mg and a nef-partition A = 4A; + -+ + Ay,

we define the lattice M = M x ZF with dual lattice N = N x Z*. Then let ¢ be

the cone

(4.18) o= {(Tiai Mt AL, M) tv € Ay, A > 0}
Notice how this generalizes (4.17).

PROPOSITION 4.3.3. o is a reflezive Gorenstein cone of index k and its dual

cone & ts constructed by applying (4.18) to the dual nef-partition V =V, +-- - +V,.

PROOF. The proof is given in [BB1]. O

There is an interesting geometric significance to the dual cone &, where ¢ is as

in (4.18). This cone is the support of a fan & whose associated toric variety is the

total space of the vector bundle

(4.19) O(E1) & - @ O(Ex)

on X = Pa. The toric variety X may be thought of as embedded in Xg as the

zero section, so that V' can be constructed as a subvariety of Xg. Also, & can be

extended to a complete fan whose associated toric variety is the projective bundle

PO(E1) © - © O(Ey))

over X. The sections of O(E,),... ,O(Ey) giving the complete intersection V also

determine a global section of (4.19). The corresponding hypersurface

(4.20) Y' CP(O(EL) & & O(E))

is intimately related to V. This is the Cayley trick described in [BB3, GKZ2].



4.4. THE VOISIN-BORCEA CONSTRUCTION 65

The hypersurface Y’ of (4.20) is not a Calabi-Yau variety, but it is a generalized

Calabi- Yau variety in the sense of Schimmrigk [BB3, Schimmrigk]. We can create

a generalized Calabi-Yau variety using any reflexive Gorenstein cone o as follows.

From o, we get the semigroup o N M, and we define the degree of m € 0N M to be

{(m,no). This makes Clg N M)] into a graded ring, which gives the toric variety

P, = Proj(Cle N M]).

If Op, (1) is the tautological sheaf on P,, then a global section of Op, (1) defines 2

subvariety

Y CP,

which Batyrev and Borisov call the generalized Calabi- Yau variety associated to o.

Of course, since the dual cone & is also a reflexive Gorenstein cone, we get the dual

family

Y°cCP;

which is conjectured to be the mirror of Y’ C P, in the appropriate sense (see [BB3,

Conjecture 2.17}).

This construction includes the Calabi-Yau hypersurfaces and complete inter-

sections considered so far. More precisely,

e When ¢ is given by (4.17), then P, is precisely the toric variety Pa (and

C[o N M] is the ring Sa of Section 3.2.1), and the hypersurfaces Y C P, are

precisely the Calabi-Yau hypersurfaces V' C Pa studied in Section 4.1.

e When o is given by (4.18), then there is a birational crepant morphism

P(O(Ey) & --- ® O(Ex)y — P,

such that Y C P, is the image of Y’ C P(O(E1) @ - - ® O(Ek)).

Furthermore, in each case, mirror symmetry reduces to the duality of Gorenstein

cones.

Besides these examples we already know, the Gorenstein cone construction

helps explain some cases where the usual formulation of mirror symmetry breaks

down. This is most evident in the case of rigid Calabi-Yau threefolds. These

have no nontrivial deformations, so that H*>!(V) = 0. A mirror V° in the usual

sense would have H''1(V°) = 0, which is impossible for a Kihler manifold. But

“mirrors” have still been found in some cases. For example, let E be the unique

elliptic curve with an automorphism of order 3, and let V = E®/G, where G is the

group generated by the diagonal action of the automorphism. One can show that

V is a (singular) rigid Calabi-Yau whose mirror, as calculated in [CDP], is a finite

quotient of the 7-dimensional Fermat hypersurface in P8. In [BB3], this is shown

to be consistent with the duality of Gorenstein cones.

4.4. The Voisin-Borcea Construction

In this section, we describe a different construction of mirror families due inde-

pendently to Voisin and Borcea. The inspiration comes from the work of Nikulin

on K3 surfaces with involution. He found 75 families of such surfaces whose invari-

ants exhibited a striking partial symmetry [Nikulin]. Using these surfaces, Voisin

and Borcea construct families of Calabi-Yau threefolds which are conjectured to be

mirror symmetric. We will sketch some of the proofs, though the reader should

refer to the original papers [Voisinl, Borcea2]| for full details.
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4.4.1. Threefolds from K3 Surfaces and Elliptic Curves. We begin by

constructing Calabi-Yau threefolds using certain K3 surfaces and elliptic curves

with involution. More precisely, consider the following data:

® A K3 surface § and an involution i : S — S acting by —1 on H29(5). The

fixed locus of i consists of a disjoint union of smooth curves Cy, ... ,Cy. We

explicitly assume that N > 0.

s An elliptic curve F and an involution j : E — E with quotient lP’1 We
denote the four fixed points of j by py, p2, p3, Ps.

The involutions ¢ of S and j of £ induce an involution k¥ of E x S defined by

k(e, s) = (j(e),i(s)) for (e, s) € E x S. The fixed point locus of k¥ consists of the 4N

curves C,, = {p,} x C,. If we blow up E x § along these 4N curves to obtain the

threefold E x S with smooth exceptional divisor D = UD, 4, then the involution k

naturally lifts to an involution k of m We put

(4.21) V =E x S/k.

We can regard D = UD,., as a divisor on V with 4N irreducible components. Then

one can prove the following.

LEMMA 4.4.1. V is a smooth Calabi-Yau threefold.

Let g, denote the genus of the curve C; C S and put N/ = Z:V=1 gs- We
compute the Hodge components of V' as follows.

THEOREM 4.4.2. RV (V) =114 5N — N’ and h*1(V) = 11 + 5N’ — N.

REMARK. From these formulas, observe that a similarly constructed V° which

reversed the roles of N and N’ would be a candidate for a mirror manifold. This

is precisely what Voisin and Borcea do.

PROOF. We begin by giving an explicit decomposition of H1!(V'). First, the

components of the divisor D = UD, , give 4N classes in H%1(V). Next, we get

some classes from the smooth surface T' = §/i. We compute 2':1(T) by identifying

each curve C; C S with its image in 7 and then ca.lcula.ting the Euler characteristic:

e(T) = e(T— UsCo) + 3 e

—e(S UsCs )+2 e(Cs)
(4.22) 2

5(24 2.(2-205)) +¥,(2=2g,)

=12+ N -N'.

Denote by 7" the action on the cohomology of S induced by i. By looking at i*-

invariants of the cohomology of S, it is immediate that the cobomology of T satisfies

R(T) = h4(T) =1 and A (T) = h3(T) = h*%(T) = h®2(T) = 0. Combining these
- invariants with (4.22) gives

(4.23) RM(T)=104+ N - N'.

The cohomology classes in H!(T") can be pulled back to V via the natural pro-
jection m : V — T, and the resulting elements of H-!(V) will be identified with
Hl‘l (T)
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Finally, the elements of H!}(E) pull back to k-invariant cohomology classes
on HVY(E x S) via the natural projection E x § — E, and hence can be identified

with cobomology classes on V.

It turns out that the three types of classes just described are independent over

C and span H1(V). Thus we get a direct sum decomposition

(4.24) H“ (V) =&,,C[D,,]® H"(T) ® H"'(E)

This decomposition implies A (V) = 4N + (10+ N ~ N') +1 = 11 + 5N — N,

which proves the desired formula for AL (V).

For the second assertion of the theorem, we idemtify H%'(V) with the k-

invariants of H%1(E x S) and again list three types of classes. First, note that
D, s is by construction a projective bundle over C., and thus gives a family of

curves in F x S parameterized by C;, ;. There is an associated Abel-Jacobi mapping

HY(C,,) — H>(E x §) (see [CG]) whose image we identify with H%(C,,).

Next, let H1(S)~ denote the —1 eigenspace for the action of < on H!(S). Since

4 induces —1 on H(E) and i acts as —1 on H%%(S), we also get classes from

HLY(S)~® HYO(E) and H?%(S)® H%!(E) via the Kiinneth decomposition. Again,

the three types of classes just described are independent over C and span H*!(V).

Noting that H'(E) and H%!(E) are each 1-dimensional, we can write this (non-

canonically) as

(4.25) H>Y(V) ~ @, HY(C,,) ® H ' (S)TM & H**(S).

This shows that h21(V) = 4N’ + hL'1(S)~ + 1. However, if H!(S)* denotes the
+1 eigenspace for the action of i* on H!(S), then equation (4.23) implies

(4.26) RMY(S)T =10+ N — N, RMYS)” =10+ N - N.

The desired formula for h*!(V) now follows immediately. i

For later purposes, we also need the following invariant of the involution i. The

intersection form (-, -} is unimodular on H%(S, Z), but not necessarily on H*(S,Z)*
or H%(S,Z)~. However, using results of Nikulin on involutions of K3 lattices [AN,

Dolgachev2, Nikulin], one can show that there is an integer a such that

427 2% = discriminant of {-,-} on H?(S,Z)*

(4.27) = discriminant of {-,-) on H%(S,Z)".

We have the following explicit formula for a.

LEMMA 44.3. a=12-N—-N".

Proor. The key step is the construction of an exact sequence

0 — H*(T,Z) — H*(S,Z)* — (Z2)V 1 — 0,

the inclusion being induced by pullback. We omit the construction here. Since

the form (-,-) on HZ2(S,Z)"* restricts to twice the unimodular form on H*(T,Z),
the exact sequence implies that the discriminant is 2°2(T)~3¥-1)_ The lemma now

follows from (4.23). ]
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4.4.2. The Voisin-Borcea NIi/_EPr. We now describe the mirror family V°

of the Calabi-Yau threefold V = E x S/k. As remarked earlier in Section 4.4.1,
Theorem 4.4.2 shows that if there were a mirror family of the same type, then the
roles of N and N’ would necessarily be reversed. Construction of the family V°
requires the following technical lemma.

LEMMA 4.4.4. If (N,N') # (5,1), then H2(S,Z)~ contains a hyperbolic plane.

The statement in [Voisinl] is in fact slightly stronger. The proof uses the
results mentioned above of Nikulin on involutions of K3 lattices.

Assuming that (N, N') # (5,1), we choose a hyperbolic plane P H2*(S,Z)-
and let rp denote the reflection in P. This means that P is the +1 eigenspace of
rp and P is the —1 eigenspace. We put if =rp-4i*. It can be shown (again using
Nikulin's results on involutions of K3 lattices) that i} is an involution arising from
an involution i; on some K3 surface S,. Furthermore, an easy calculation shows
that

(4.28) H%(8,,2) =P H*(S,Z)*.

Now construct the Calabi-Yau threefolds V° from (S1,%1) and an elliptic curve
E, with involution j; by the same construction leading to V. As explained in
[Voisinl], there is a natural choice for (E1,71)- Let the invariants for V° be
(N1, N{). Then we have the following result.

PROPOSITION 4.4.5. N; = N’ and N{=N.

PROOF. Let 2% be the discriminant of the intersection form on H%(5,,Z)".
Since P C H?(S,Z) is unimodular, (4.27) and (4.28) imply a; = a, so that

12-N,~N/=12-N-N'

by Lemma 4.4.3. Equation (4.28) also implies A11(S,)~ = h*!(S)*. When com-
bined with (4.26), we obtain

104+ N/ -~N;=10+N-N".

The desired equalities N, = N’ and N = N follow immediately. O

The resulting family of Calabi-Yau threefolds V° is conjectured to be the mirror
family of V. In support of the mirror relation between V and V°, we get At1(V) =
h*1(V°) and h>1(V) = hY1(V°) by Theorem 4.4.2 and Proposition 4.4.5. In
addition, Voisin and Borcea offer other evidence for the mirror relation.

The first evidence, due to Voisin, concerns the relation between complex and
Kahler moduli of V and V°. The complex moduli of V' can be described as follows.
We start by considering the moduli coming from the K3 surface S. Consider the
domain

D={wePH*S5C)):w-w=0, w-@& >0},

which is almost a period domain for K3 surfaces with involution %’ such that '* = i*.
More precisely, a generic point w € D corresponds to a K3 surface S’ with involution
¢’ satisfying ¢ = ¢* and C-w = H20(S"), and the moduli space of pairs (5,1) is a
discrete quotient of an explicit second category subset U C D. By fixing the elliptic
curve (E, j), we get an embedding of the moduli space of (5,1} into the complex
moduli space of V. So we think of D as essentially being slightly larger than a leaf
of a foliation of the complex moduli space of V.
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Turning to the Kéhler moduli of V', define the domain

={a € H*(5,C)* : (Rea)? > 0}

“ Note that D’ can be identified with a subset of H?(T,C) which roughly speaking

is slightly larger the the Kihler moduli space of T'. Furthermore, via pullback by

.V — T, elements of the Kihler moduli of T" can be added to complexified Kahler

Iasses of V to obtain new complexified Kihler classes. Therefore the Kahler moduli

space of T’ can be identified with the leaves of a foliation of the Kahler moduli space

of V, and the domain D' is slightly larger than this leaf in the Kahler moduli of V.

Notice how this is similar to what we just did for complex moduli.

The K3 surface S gave the domains D and D’ related to complex and Kahler

moduli of V. On the mirror side, we have the surface S; constructed above. Let [

and D) denote the corresponding domains for §). If V' and V*° are indeed mirrors,

then it would be consistent for there to be a relationship between D and D} and

between D’ and D,. Voisin proves the following result.

THEOREM 4.4.6. D~ D{ and D' =~ D,.

Another type of evidence provided by Voisin is the asymptotic behavior of the

Yukawa coupling. On HV1(V'), we have the coupling given by cup product, and as

defined in Chapter 1, H!(V,Ty) has the Yukawa coupling

(4.29) (62,02,08) = [ QA (V0,70 90,9,
v

where § is a holomorphic 3-form on V (see (1.9)). The isomorphism H(V,Ty) =

H2Y(V) gives a coupling on H>!(V) also called the Yukawa coupling.
Using the decompositions given in (4.24) and (4.25), Voisin gives a careful

description of the the couplings on H»!(V) and H%!(V°) and proves that cup
product on H'! (V) can be identified asymptotically with the Yukawa coupling on
H2,1 (Vo ) .

To explain this last statement, recall from Chapter 1 that the B-model correla-

tion function on H>!(V°) is precisely the Yukawa coupling described above, while

the A-model correlation function on H'!(V') is given by the formula

(wl,ug,u3)=/u1/\u2 Aws +
v

21n faw 8

2 gt fywe [y YT e
B#0

(see (1.7)). Now suppose the complexified Kahler class of V' approaches infinity,

meaning [, 8 Im(w) — oo for all effective curves § (this is called the “large radius

limit” in the physics literature). It follows that

<W1,W27w3)_’/ w1 Awe Aws,
v

which is cup product. In this situation, we say that asymptotically, the A-model

correlation function becomes cup product.

Since the B-model correlation function of a mirror manifold V° coincides with

the A-model correlation function of the original manifold V', we expect that the

B-model correlation function should bave similar bebavior. This is what Voisin

proves, namely that under suitable hypotheses, the Yukawa coupling on V° has a

limit which coincides with cup product on V [Voisin1, Section 3].
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4.4.3. Relation to the Batyrev Construction. A different kind of evi-
dence for mirror symmetry between V and its Voisin-Borcea mirror V° is given
by Borcea, who shows that some instances of this construction are special cases of
Batyrev’s mirror duality. For instance, consider the anticanonical hypersurface

(4.30) vt +vt =38+ 25+ uf

in the weighted projective space P(3,3,2,2,2) (the variables u,v,¥, 2, w have re-
spective weights 3,3,2,2,2). To relate this to the threefolds (4.21), observe that

z? = u* 4+ v* defines an elliptic curve E in P(2,1,1) and 22 = y8 + 26 + w® defines
a (singular) K3 surface in P(3,1,1,1). In each case, the map sending z to —z is an

involution. Borcea shows that the Calabi-Yau threefold V = E x § /k is a desingu-
larization of above hypersurface in P(3,3,2,2,2). Notice also that in S , the fixed
locus of the involution is given by y® + 2% + w® = 0, which is a smooth curve of
genus 10. Thus (N, N') = (1,10) in this case.

Using the Voisin-Borcea construction, the family (4.30) has a mirror family
Vs with invariants (N, N’) = (10,1). In [Borcea2], Borcea shows that this family
contains the anticanonical hypersurface

(4.31) ut +vt =% + 2% + 200

in the weighted projective space P(25, 25, 20, 16, 14). In this case, E is again z2
u! + v* in P(2,1,1), but S is the singular K3 surface defined by 22 = ¢°
yz° + zu® in P(25,10,8,7). As above, the desingularization of (4.31) is V2,
Ex S /1::. The fixed locus of the involution is y° + yz5 + zw® = 0 in S;. When
8y is desingularized, the fixed locus becomes an elliptic curve plus nine P’s, which
explains why (N, N’} = (10, 1).

The basic claim is that V7, coincides with the Batyrev mirror of (4.30), which
we will denote V7. Borcea proves this in [Borcea2] using his bipyramid con-
struction, but we will give a more elementary proof using the generalized Berglund-
Hibsch transposition rule from [CdK]. The duality between (4.30) and (4.31) is
not obvious because P(3,3,2,2,2) is a Fano toric variety but P(25,25,20, 16, 14) is
not (see Lemma 3.5.6). So how do we apply Batyrev duality?

The answer involves a technique used in the physics literature whereby a
Batyrev mirror is represented by a hypersurface in a non-Fano weighted projec-
tive space. Rather than describe the general case, we will explain how it works for
P(g), ¢=(3,3,2,2,2) (see [CdK, Sect. 3.1] for more details). Thinking of P(g) in
toric terms, we have

W+ 0

M={a€Z%:q.-a=0} and N =7Z5%/24,

and the cone generators of the fan of P(q) are w; = [e;] € N, where [e;] denotes
the coset of the ith standard basis vector e; € Z5. Also, the polytope of the
anticanonical divisor is

A={a€MR:(a,wi)2—1}={a€MR:a-ei2—1}.

Note that A is reflexive since P(g) is Fano.
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Now consider the following points in A N M:

a=( 3,-1,-1,-1,-1)

a =(-1, 3,-1,-1,-1)

(4.32) ax=(-1,-1, 4, 0,-1)

a3 =(-1,-1,-1, 4, 0)

ay = (-1,-1,-1,~-1, 5).

These points span a simplex with 0 in its interior. Hence some positive linear

combination of the a;’s equals zero, and one can check that

(4.33) . 25a09 + 25a;) + 20462 + 16a3 + 14a4 =0.

Furthermore, all other relations are multiples of this one. It follows that § =

(25,25, 20, 16, 14} is the unique positive integral relatively prime relation among

the a;’s. This gives the weighted projective space P(§) = P(25,25, 20, 16, 14}, which

has

M={acZ:G-a=0} and N =12%2j

The fan of P(§) has the cone generators w; = [e;] € N.
Since A is reflexive, P(q) = P, is Fano and the dual polytope A° gives the Fano

toric variety Pao, which we denote P(g)°. The fan of P(g)° lies in Mg and has cones

determined by the faces of A. To relate P(g)° to the non-Fano weighted projective

space P(§), we will use the map ¢ : N — M which sends w; € N to a; € M.
stng (4.33), it is easy to see that ¢ is well-defined and induces an isomorphism

NR Mpg. Since ¢ takes the cone generator w; to a; € AN M, which is also a

cone generator, we can find a maximal projective subdivision £° compatible with

the fan of P(§). This means that the fan in Ny obtained by pulling back ¥° via ¢

refines the fan of P(4). This gives a toric blowup X - P(§), and it follows that ¢

induces a morphism

¢,Z£—’XZO.

By standard theory, ¢. is a finite morphism whose degree is the index of ¢(IV YT M.

Fweletd=q-(1,1,1,1,1)=12and d = - (1,1,1,1,1) = 100, then the index is
computed by the formula

det(A +1) _ 2400

dd T 12-100

where A is the 5 x 5 matrix whose rows are given by (4.32) and 1 is the 5 x 5 matrix

with all entries equal to 1. This formula is stated in [CdK, Sect. 3.1} without proof,

but the argument is not difficult. Thus ¢, X - Xso isa2:1 cover.

The next step is to identify V7, C X with the pullback of an anticanonical

hypersurface V2, ¢ Xso. The vertices of the reflexive simplex A° C Ny are the

w;, which give the Laurent polynomial f = Y i, cit® € L(A°) (this is not the

most genera] Laurent polynomial in L(A°), but it does have the correct Newton

polytope) Thus we can assume that V) is defined by f = 0. To see what this

gives in X, we need to study the map ¢* : N — M which is dual to ¢. If we think

of Z5 in terms of column vectors and use the natural basis and coordinates for N
and M, then the composition

Zf’__,fi_i,M_,ZE‘
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is multiplication by A?, where (as above) A is the matrix whose rows are given by(4.32). Taking duals, it follows that the composition

Z° — N —"i» M7
is multiplication by A. This means that #'(w;) = &;, where a; is the ith column
of A. Thus f =0 on X5 pulls back to f = 0, where f = i ocit®. The final
step is to homogenize with respect to the variables u,v,y, z,w. We leave it to the
reader to show that this is done by adding 1 to every entry of 4;. It follows thatthe exponent vectors we get are the columns of the matrix

4 0000

0 4000

A+1=|0 0 5 1 0

00051

0 000G6

Thus, in terms of u,v,y,2,w, we can write f = 0 as

f=cou4+c1v4+c2y5+C3yzs+C4zw6=0.
Since (4.31) is an equation of this form, we can assume that Vi is defined by f = 0.

All of this proves that ¢, induces a 2 : 1 map ¢. : V7, — V£ . This doesn’t
seem quite right, since we want the two to be/@i same. Fortunately, there is a
simple explanation. In working with V5, = E x S /k, dividing F by a point oforder 2 gives a degree 2 isogeny £ — E’ which commutes with the involution. It
follows that we get a 2 : 1 cover Vie = Vi3 = E'x 51 /k, One can prove that
&y 2 V3, — V2, is precisely this sort of map, so that we can identify V5, with V2(the proof uses Borcea’s bipyramid construction—see the remarks following (29) in[Borcea2]). Now comes the crucial observation: since E and E' are deformationsof each other, so are V2, and Vi2- Thus, in terms of mirror femilies, the Batyrev
mirror of (4.30) is (4.31). This shows that, at least in the case (N,N’) = (1,10),
the Voisin-Borcea construction is consistent with Batyrev mirror duality.

The paper [Borcea2] lists other pairs (N, N’) for which the Voisin-Borcea
construction can be interpreted in terms of Batyrev mirror duality. However, since
not every Calabi-Yau is a toric hypersurface, it is possible that not all (N,N') canbe treated in this way. Still, the fact that two vastly different mirror constructions(Batyrev and Voisin-Borcea) coincide in a case like (4.30) is a strong indication ofthe reality of mirror symmetry. On the other hand, the differences between these
constructions also illustrate how far we are from having a truly general method forfinding mirrors.

A final remark concerns the list of 7555 weighted projective spaces mentioned
in Section 4.1.3. Like P(25,25, 20,16, 14), most of the weighted projective spaceson the list were not Fano. The list exhibited only a partial symmetry, and peo-ple worried about the “missing mirrors”. The resolution of this difficulty involvedBatyrev mirror duality together with a variant of the above technique for interpret-ing Batyrev duals using non-Fano weighted projective spaces. From this point ofview, the “missing mirrors” correspond to those Batyrev duals which couldn’t be
represented by a weighted projective space. See [CdK] for details and examples.



CHAPTER 5

Hodge Theory and Yukawa Couplings

In this chapter, we recall and develop some ideas from Hodge theory, and apply

this to the calculation of the Yukawa couplings of a Calabi-Yau manifold V. To do

this, we must first understand the Picard-Fuchs differential equations satisfied by

the periods of integrals on V. We illustrate two methods for doing this.

In Section 5.1 we review variations of Hodge structures, Picard-Fuchs equa-

tions, and boundary bebavior, and in Section 5.2, we define mazximally unipotent

boundary points, which will play an important role in determining the mirror map.

In Section 5.3 we explain the method developed by Griffiths and Dwork, whereby

cohomology classes on V are represented by residues of rational differentials on pro-

jective space. Two examples are given in Section 5.4. In Section 5.5, we study an

alternate approach to computing Picard-Fuchs equations which involves the gen-

eralized hypergeometric equations of Gelfand, Kapranov, and Zelevinsky. We then

apply all these to the calculation of Yukawa couplings in Section 5.6.

Two unexpected aspects of this chapter are the cohomology-valued solution

I of the GKZ system from Section 5.5.3, which will appear in our treatment of
the mirror theorem in Chapter 11, and the relation between normalized Yukawa

couplings and the Gauss-Manin connection from Section 5.6.3, which will play a

prominent role in the A-variation of Hodge structure discussed in Chapter 8.

5.1. Hodge Theory

In this section, we review the Hodge theory used in mirror symmetry. We follow

the spirit of [Morrison2] while generalizing to families with higher dimensional

parameter spaces. Some general references to variations of Hodge structure can be

found in [Griffithsl, Griffiths2, Schmid, CaK]. Particulars about Calabi-Yau

variations can be found in [BG].

5.1.1. Hodge Structures and Their Variations. If X is an n-dimensional

smooth complex projective variety, then H*(X,C) has a Hodge decomposition

HYX,C)~ @ H(X).

pta=k

where HP9(X) = H%?(X) relative to the real structure determined by H*(X, R).

When we add the integer lattice coming from H*(X,Z), we get a Hodge structure

of weight k.

We will often formulate the Hodge structure on H*(X, C) in terms of the Hodge

filtration F*(X) = {FP(X)}p=o, which is defined by

FP(X) = D H***(X).

azp

-
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is multiplication by 4!, where (as above) A is the matrix whose rows are given by
(4.32). Taking duals, it follows that the composition

25 —s N —di) ]/W\ — 7"
is multiplication by 4. This means that #*(w:) = &;, where & is the ith column
of A. Thus f = 0 on Xgo pulls back to f = 0, where f = i ocit®. The final
step is to homogenize with respect to the variables u,v,y, z,w. We leave it to the
reader to show that this is done by adding 1 to every entry of a;. It follows that
the exponent vectors we get are the columns of the matrix

00

A+1= OO0 O OO O O OCoOoOULMWOoOO [

0

0

1

6

Thus, in terms of u,v,y, 2, W, we can writef:Oas

f=cou4+c1v4+c2y5+C3yz5+C4zw6=0.
Since (4.31) is an equation of this form, we can assume that V3, is defined by f = 0.

All of this proves that ¢, induces a 2 : 1 map ¢. : Vo, — V2 . This doesn’t
seem quite right, since we want the two to be/fix_e/ same. Fortunately, there is a
simple explanation. In working with V5, = E x S, /I-c, dividing F by a point of
order 2 gives a degree 2 isogeny E — E' which commutes with the involution. It
follows that we get a 2 : 1 cover Vs = Vi3 = E' x S1/k. One can prove that
@« : Vi, — V2, is precisely this sort of map, so that we can identify V2, with V3
(the proof uses Borcea’s bipyramid construction—see the remarks following (29) in
[Borcea2]). Now comes the crucial observation: since E and E’ are deformations
of each other, so are Vs and V3. Thus, in terms of mirror families, the Batyrev
mirror of (4.30) is (4.31). This shows that, at least in the case (N,N’) = (1, 10),
the Voisin-Borcea construction is consistent with Batyrev mirror duality.

- The paper [Borcea2] lists other pairs (N, N’} for which the Voisin-Borcea
construction can be interpreted in terms of Batyrev mirror duality. However, since
not every Calabi-Yau is a toric hypersurface, it is possible that not all (N,N') can
be treated in this way. Still, the fact that two vastly different mirror constructions
(Batyrev and Voisin-Borcea) coincide in a case like (4.30) is a strong indication of
the reality of mirror symmetry. On the other band, the differences between these
constructions also illustrate how far we are from baving a truly general method for
finding mirrors.

A final remark concerns the kst of 7555 weighted projective spaces mentioned
in Section 4.1.3. Like P(25, 25,20, 16,14), most of the weighted projective spaces
on the list were not Fano. The list exhibited only a partial symmetry, and peo-
ple worried about the “missing mirrors”. The resolution of this difficulty involved
Batyrev mirror duality together with a variant of the above technique for interpret-
ing Batyrev duals using non-Fano weighted projective spaces. From this point of
view, the “missing mirrors” correspond to those Batyrev duals which couldn’t be
represented by a weighted projective space. See [CdK] for details and examples.



CHAPTER 5

Hodge Theory and Yukawa Couplings

In this chapter, we recall and develop some ideas from Hodge theory, and apply

this to the calculation of the Yukawa couplings of a Calabi-Yau manifold V. To do

this, we must first understand the Picard-Fuchs differential equations satisfied by

the periods of integrals on V. We illustrate two methods for doing this.

In Section 5.1 we review variations of Hodge structures, Picard-Fuchs equa-

tions, and boundary behavior, and in Section 5.2, we define mazimally unipotent

boundary points, which will play an important role in determining the mirror map.

In Section 5.3 we explain the method developed by Griffiths and Dwork, whereby

cohomology classes on V are represented by residues of rational differentials on pro-

jective space. Two examples are given in Section 5.4. In Section 5.5, we study an

alternate approach to computing Picard-Fuchs equations which involves the gen-

eralized hypergeometric equations of Gelifand, Kapranov, and Zelevinsky. We then

apply all these to the calculation of Yukawa couplings in Section 5.6.

Two unexpected aspects of this chapter are the cohomology-valued solution

I of the GKZ system from Section 5.5.3, which will appear in our treatment of

the mirror theorem in Chapter 11, and the relation between normalized Yukawa

couplings and the Gauss-Manin connection from Section 5.6.3, which will play a

prominent role in the A-variation of Hodge structure discussed in Chapter 8.

5.1. Hodge Theory

In this section, we review the Hodge theory used in mirror symmetry. We follow

the spirit of [Morrison2| while generalizing to families with higher dimensional

parameter spaces. Some general references to variations of Hodge structure can be

found in [Griffithsl, Griffiths2, Schmid, CaK]. Particulars about Calabi-Yau

variations can be found in [BG].

5.1.1. Hodge Structures and Their Variations. If X is an n-dimensional

smooth complex projective variety, then H*(X,C) has a Hodge decomposition

H¥X,C)= € HTM(X).

p+a=k

where HP4(X) = H%P(X) relative to the real structure determined by H*(X,R).

When we add the integer lattice coming from H*(X,Z), we get a Hodge structure

of weight k.

We will often formulate the Hodge structure on H*(X, C) in terms of the Hodge

filiration F*(X) = {F?P(X)}p=9, which is defined by

FP(X) = P H***(X).

azp

-
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Note that FP(X) @ FF—7+1(X) = H*(X,C) and that

HPI(X) = FP(X) N Fa(X).

We also have HP9(X) ~ FP(X)/FP*1(X). Thus the Hodge structure on H*(X,C)

is uniquely determined by the integer structure and the Hodge filtration.

Finally, a Kahler class w on X determines the primitive cohomology group

HE(X,C) or PH*(X) in H*(X,C), and the pairing

Qe f) = (DD [t hang, e f e HEX,C)
X

makes primitive cohomology into a polarized Hodge structure. This means that

(5.1) Q" %a,@) >0, forallas#0in H(X,C), p+q==k.

See [CaK, Griffiths2] for more about polarized Hodge structures.

The subspaces HTM?(X) do not vary holomorphically with families. However,

the relative version of FP(X) is very nicely behaved. Suppose that we have a

smooth morphism 7 : X — § of relative dimension n, where S is smooth and

quasi-projective. Put X, = w~1(¢) for any ¢t € S. Then the cohomology groups

H*(X,,C) fit togetber to form the locally free sheaf F° = R*x,C ® Og on S. The
spaces F?(X,) may be seen to fit together to form a locally free subsheaf F®.

By construction, F° contains a local system, the locally constant sheaf R*r.C.
This uniquely determines a flat connection V on F°, the Gauss-Manin connec-

tion V, whose flat (or horizontal) sections coincide with the local system R*r,.C.

Concretely, V : ¢ — 70 ® QL is defined by

V(s® f)=s®df,

where s is a sectior’ of R*m,C and f is a function on S. The Gauss-Manin connection
satisfies Griffiths transversality V(FP) ¢ FP~1 ® QL.

If we set 7 = F°, then ¥ has the locally constant subsheaf +c = R*r.C, and
this in turn has the subsheaf +z of integer sections (the image of R*7.Z — R*m.C).

We call (H,V,Hz, F") a variation of Hodge structure.

5.1.2. Picard-Fuchs Equations. For the rest of this section, we will study

the variation of Hodge structure on the middle-dimensional cohomology group

HTM(X;,C), n = dim(X,). Let (t) be a fixed local section of FTM at a point of

p € 5, and let D be the sheaf of linear differential operators on S. In local analytic

coordinates 21,... ,zr at p, we have the ring of differential operators

o 15}
D= ot o} [ 2],{ZL zr} 621 az,

where C{z1,...,2.} is the ring of convergent power series in zi,...,2.. Then

the Gauss-Manin connection V determines an Og-homomorphism ¢ : D — F°

determined by the rule

¢(X1 . Xe) = vX1 - vxlfl(t)

for vector fields X; on S. This gives F? the structure of a D-module.

The ideal I = ker(¢) consists of the differential operators annihilating $(s).

We call I the Picard-Fuchs ideal. This ideal plays an important role in the theory.

For example, we will see later that knowing I allows us to calculate the Yukawa

couplings. If the above map ¢ is surjective, which happens for Calabi-Yau threefolds
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by [BG|, then the D-module structure on F° is completely determined by the

Picard-Fuchs ideal I.

The equations D -y = 0 for D € I are the Picard-Fuchs equations, and a local

section y of Os is a solution if D-y =0 for all D € I. Since

(52) 2 [ apy = [ Voje.00
T Jye Ye

for a (locally) constant bomology n-cycle 7, it follows that the periods y = I e Q(t)

of Q are solutions of the Picard-Fuchs equations. We will often write periods as

y = (g(t),(t)), where g(t) € H"(X,,C) is the Poincaré dual of y; (thus g(t) is a

flat section of V). Note that a differential operator D is in the Picard-Fuchs ideal

if and only if D -y = 0 for all periods y = (g,0).

Although we have only constructed the Picard-Fuchs equations locally, by an-

alytic continuation they make sense as algebraic differential equations over all of S

if we restrict our attention to the periods of algebraic differentials.

5.1.3. Degenerations of Hodge Structures. Suppose that the smooth fam-

ity w: & — S can be completed to a flat family 7 : X — §, where S is a smooth

compactification of § with normal crossings boundary divisor D = U;D; = § — §.

The bundle F° on § has a canonical extension F° on S [Delignel]. The Gauss-

Manin connection does not necessarily extend to a connection on F° because it can

acquire singularities. The singularities are very mild (regular singular points), which

means that V extends to a map V : F° — F° ® QL(log D). The sheaf Q% (log D)

is a subsheaf of the sheaf of rational 1-forms on S. In local coordinates zj, ... , 2

for S such that D is defined by 2; -- - 2y =0, the sheaf Q_ls—,(log D) is generated by

fi,... ,g—z—l,dzH.l,... ,dzr.
z1 ]

There is sdlso monodromy to consider. Let +y; = +;{u) be a small loop going

around the boundary divisor D; based at v;(0) = v;(1) =t € §. A cohomology

class 7 € HTM(X:,C) can be uniquely lifted to a V-flat section n(u) € HTM(X, (), C)

over [0, 1] such that (0) = 7. The monodromy transformation (or Picard-Lefschetz

transformation)

'1;' ZH“(X;:,C) —_— Hn(Xt,C)

is defined by 7;(n) = n(1). Up to conjugation, it only depends on D; and not on

the choice of ;. The monodromy theorem [Landman] says that for some integer

m 20,

(T - ITM* =0

Thus T; is quasi-unipotent, with index of unipotency at most n + 1. In particular,

the eigenvalues of 7; are roots of unity.

5.1.4. The Limiting Mixed Hodge Structure. Assume that the mon-

odromy is unipotent and that we are at a point p € S such that D = § - §

is defined by z;---2z. = 0, where z;,...,2. are local coordinates at p as before.

Hence we may assume S = (A*)", § = A" and p = 0. Let N; = log(7;), where T;

is the monodromy given by going counterclockwise around the j*® factor of (A*)".

In this situation, the canonical extension of F° can be described as follows. Let s be

a flat multi-valued section of H = F° over (A")". Then exp(—55; Y, log(z;)N;) s is
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single-valued and extends to a section of the canonical extension FO. This property
is easily seen to characterize F°.

Furthermore, the nilpotent orbit theorem [Schmid] implies that the bundles

FP extend to FP, which are subbundles of the canonical extension. At 0 € A", F?

gives the limiting Hodge filtration Fy = F, .. One can show that N;(FZ.) C Fi.'.
Thus we get a linear map

Ny : P/ Pt — Fin /P

If ; = 2; 8/8z;, then Vg, (FP) C FP~! by Griffiths transversality. It follows that

Vs, induces a linear map

-1

V5J‘ : F’l’l’m Fl]:;n-l - Flzi’m /Flzn’m

Using the nilpotent orbit theorem, one sees that these maps are related by

_ -1 ‘
(5.3) Vs, = %N,».

We also have a natural integer structure over 0 € A”. Let s be a (flat) multi-

valued section of Hz over (A*)". Then, as above, § = exp(—z%; 2_; log(z;)N;) s is

a section of the canonical extension F°, and 5(0) is an integral element over 0. If

we transport this back to HTM (X, C) using exp(z= 3, log(z;}NV;), then we get the

usual integer structure determined by HTM(X,,Z).

Another important ingredient is the monodromy weight filtration

W. : WO C Wl C---C Wzn_], C W2n = Hn(XhC)a

which is defined in terms of the action of N = 3. a;N;, a; > 0, on H"(X;,C). For

instance,

Wy = im(NTM)

W1 = im(NTM"1) Nker(N)

(5.4) Wy = im(NTM2) nker(N) + im(NTM~1) Nker(N?)

Wgn_l = ker(N").

Formulas for the other Wi can be found in [Griffiths2]). The main properties of

the monodromy weight filtration are:

°* N(Wk) C Wk_g.

e N* induces an isomorphism N* : Woak/Waik—1 = Wh_o/Wa_i_a.

e F; induces a Hodge structure of weight kK on W, /W;_,.

The last item says that (W,, F};, ) is a mized Hodge structure. A more complete

discussion can be found in [Griffiths2]. The monodromy weight filtration will play

an important role in Section 5.2.

5.1.5. Monodromy and the Picard-Fuchs Equation. For simplicity, as-

sume that dimS = 1, and let z be a coordinate in a disk A C S centered at

p € § — 5. Choosing a basis wy, ... ,w, of F° over A, the connection V is com-
pletely determined by its connection matriz (T'y,), defined by V4,0, = 3 5 Dagew;.
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T,; has at worst a simple pole at z = 0 since V bas regular singular points. Then

¢ we get the residue matriz

(5.5) Res(V) = Res.—o(T;),

which by [Delignel], bas the following properties:

o The eigenvalues X of Res(V) are rational and satisfy 0 < A < L.

e exp(—2miRes(V)) is conjugate to the monodromy 7.

e T is unipotent if and only if Res(V) is nilpotent.

In practice, we might not know a basis of 7. Assume instead that wi,... ,w, is

a basis over the punctured disk A*. If the connection matrix bas at most simple

poles at z = 0, then the residue matrix Res(V) still gives useful information:

e The eigenvalues of the monodromy 7 are exp(2mi)\) as X ranges over the

eigenvalues of Res(V).

e 7T is unipotent if and only if Res(V) has integer eigenvalues.

e If no two distinct eigenvalues of Res(V) differ by an integer, then 7 is

conjugate to exp(—2miRes(V)).

To see what the Picard-Fuchs equations look like in this case, let § = zd/dz.

For a fixed section Q(z) of FTM, suppose that we have a relation in FP of the form

VEQ+ ARVETIQ+ -+ fm(2)2 =0,

where the fi(z) are all analytic at z = 0. As explained above, this implies that .

6TM + fi(2)6TM 1 + --- + fm(2) is in the Picard-Fuchs ideal, and the periods y =

[, QU(2) are solutions of the Picard-Fuchs equation

(5.6) TMy + Al Y+ + fm(2)y =0,

possibly multiple-valued because of the effect of monodromy on ..

Let’s now connect this to ordinary differential equations, as in [CL]. The

equation (5.6) has regular singular points as defined in standard texts in differential

equations. The solutions are governed by the indicial equation, which is obtained

from (5.6) by replacing § with an auxiliary variable A:

ATM 4+ F(0ATM ! + -+ fm(0) = 0.

Suppose that X is a root of the indicial equation with the property that there is

no root N such that X' — X is a positive integer. Then the Picard-Fuchs equation

(5.6) bas a solution of the form yo = 2z*fo(z) near z = 0, with f analytic and
nonvanishing at 0. Thus analytically continuing yo around z = 0 gives exp(2miA) yo-

Furthermore, if \ is a root of multiplicity 4 > 1, then the classical method of

Frobenius gives in addition to yo = 2*f(2) other solutions y1,--. ,yu-1 such that

analytically continuing y; around z = 0 gives exp(2mi}) (yit+yi-1) for 1 i< pu—1.

This implies the asymptotic behavior

yi~czA(l—9—g—.z)t, 0<i<u-—1
2mi

as z — 0, where ¢ is a nonzero constant. The number x depends on the Jordan

canonical form of the companion matrix of the indicial equation.

The above Picard-Fuchs equation came from a section {2 of Fn. If we switch to

¥ = g(2)f, where g(z) is meromorphic on S, we get a new Picard-Fuchs equation
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with solutions § = g(2)y, where y is a solution of (5.6). In this situation, one can

show that the new equation has regular singular points with indicial equation

A=D"+ AN =D+ 4 fa(0) =0,

where the Laurent expansion of g(z) at z = 01is g(z) = a;z* +-- -, a; # 0.

In the next section, we will see that if we are at the right kind of boundary

point, then the relation between the Picard-Fuchs equation and the monodromy is

especially close.

5.2. Maximally Unipotent Monodromy

In this section, we will discover that the mirror of the quintic threefold has

some special monodromy behavior which is crucial to mirror symmetry.

5.2.1. 1-Dimensional Moduli. We begin our discussion of maximally unipo-

tent monodromy with the case of a Calabi-Yau threefold V' whose complex moduli

space S is 1-dimensional. An example is the mirror of the quintic threefold de-

scribed in Chapter 2. We need not have a universal family over S, but we can

construct families locally over finite covers of S. The resulting Picard-Fuchs equa-

tions make sense as algebraic differential equations provided that we start with

algebraic sections of 73, and so can be analytically continued over all of S. Let

S as above be a compactification of S, and suppose we have a boundary point

p € § — S which has mazimally unipotent monodromy. This means that the mon-

odromy 7 : H3(V,C) — H3(V,C) is unipotent, and since (T — I)* = 0 by the

monodromy theorem, maximally unipotent implies (7 — I)® # 0. It follows that

N =log(T) also satisfies N3 # 0.

Qur first goal is to explain how the theory of the last section applies to this

situation. We will see that maximally unipotent monodromy has some strong con-

sequences concerning periods and the Picard-Fuchs equation. A first observation

is that A>}(V) = 1 since V has 1-dimensional complex moduli. It follows that

h3(V) = 4, and since 7 is maximally unipotent, we can find a basis go, g1, g2, g5 of
H3(V,C) such that 7 is given by the matrix

1100

0110

(5.7) T=lo0o01 1
0001

Each g; is dual to a homology class v; € H3(V,C). Given a fixed local basis Q of

F3 near z = 0, we want to describe the behavior of the periods y; = [, @ near 0.

We first follow [Morrison2]. Any g € H3(V,C) extends to a multiple-valued

flat section g(z) of F°, and exp(— '—gfii—’N ) () is single-valued and analytic at z = 0

by the nilpotent orbit theorem. When g = gy, we have exp(—'—;’;‘r{-N ) 90(2) = go(2)
since 7(gp) = go implies N(gp) = 0. Thus go(2) is single-valued at 2z = 0. Since

o= [ Q={g0(2),Q(2)),
Yo

it follows that y, is single-valued and analytic at z = 0. We will also see below

that yo is nonvanishing at z = 0. Turning our attending to y:, y2,ys, note that

7(9:) = g+ gi—1 for i > 1, and since y; = {g;(2),2(2)}, it follows that analytically
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continuing y; around z = 0 gives y; + y;—1. Furthermore, since exp(——l—g-‘;rfN ) gi(z)
is a single-valued function, one easily gets an asymptotic formula of the form

log 2\*
w~e(2e2), 0<i<3

2mi

as z — 0, where c is a nonzero constant.

This is reminiscent of the differential equation theory discussed in Section 5.1.5.

So we next explain what the Picard-Fuchs equation looks like in this case. Here is

the key result.

PROPOSITION 5.2.1. Fiz a Calabi- Yau threefold V with ¢ 1-dimensional com-

plex moduli space S end o local coordinate z at o boundary point of S. Also assume

Q is e local section of F° giving a Picard-Puchs equation

8y + f1(2)8%y + f2(2)8%y + f3(2)y + fa(z)y = O,

where § = zd/dz. Then:

(i) The monodromy T is unipotent if and only if the roots of the indicial equation

are all integers.

(#) The monodromy T is maximally unipotent if end only if the indicial equation

is of the form (A —1}* = 0 for some integer L.

PROOF. The above Picard-Fuchs equation implies that in F°, we have

(5-8) ViQ+ f1(2)VEQ + f2(2)VEQ + f3(2)VsQ + fa(2)2 = 0.

By [BG], we also know that €, VsQ, V€, VIQ must be generically linearly inde-

pendent. In particular, we can assume they form a basis of F® in a punctured

neighborhood A* of z = 0 (since Q might not be a section of 3, we might not

have a basis at z = 0).

The basis 2, V2, Vi, V3 enables us to compute the connection matrix of

V. Applying V4. to the basis and using (5.8) yields

1

Viayaz() = -z'Vsfl

1
Va/az(Vs) = ;vgn

1
V4930 = 1930

vd/dz(vgfl) = _f4iz) Q- f3§z) V(,'Q _ fZiZ) v%Q _ fliz) vlgfl'

The connection matrix has at worst simple poles at z = 0, so we can use the theory

developed in Section 5.1.5. The residue matrix Res(V) in this basis is -

0 1 0 0

0 0 1 0
(5.9) Res(V)=| o o L

—f4(0) —f3(0) —f2(0) —f(0)

which is the companion matrix of the indicial equation.

Then 7 is unipotent < the eigenvalues of Res{V} are integers < the roots of

the indicial equation are integers, which proves the first part of the proposition.
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As for the second part, suppose that the indicial equation is (A — 1)* = 0 for

some integer . If we replace {2 by z~!Q, then the discussion at the end of Section 5.1

shows that we can assume that the indicial equation is A* = 0. Then (5.9) becomes

0100

0010

Res(V)=15 ¢ o 1
0000

Since no two distinct roots differ by an integer, the properties of Res(V) imply that

T is conjugate to exp(2miRes(V)), which implies that 7 is maximally unipotent.

Conversely, suppose that 7 is maximally unipotent. It suffices to find a Picard-

Fuchs equation whose indicial equation is A* = 0. Let be a local basis of 3. We

claim that 2, Vs(Q), V() and V(1) form a basis of F° near z = 0.

We will prove this using the monodromy weight filtration described in Sec-

tion 5.1.4. By (5.4), Ws = H3(V,C) and W5 = ker(N3), where N = log(7).

Then dim(We/Ws) = 1 follows from (5.7). Since Fj induces a Hodge structure

of weight 6 on Wg/Ws and FS = F = F}_ =0, we must have Wg/W; = H33.

But W /W5 and F | are both 1-dimensional, and it follows that F3 N W; = {0}.

This gives the direct sum decomposition

(5.10) Fin®W; = HY(V,C).

The local basis 2 of 3 gives a nonzero element of Q(0) € F§,. Since W5 =

ker(N3), (5.10) implies N3(£(0)) # 0, and it follows from (5.7) that Q(0), N{(£(0)),

NZ(Q(0)), N3(Q(0)) are a basis of H3(V,C). Iterating (5.3) implies that

V3(Q)(0) = (%)’ N ((0)) mod Fir?27 lim °

and then, using N(F&,) C FE-' and dim(Ff_ ) = 4 — p, it follows easily that £,

Vs(Q), VE(2), V3(Q) are linearly independent at z = 0. Hence they form a basis

of 70 in a neighborhood of z = 0.

In particular, we can express V4((2) in terms of this basis, which gives a Picard-

Fuchs equation of the form (5.8). It remains to prove that fi(0) = f2(0) = f3(0) =

f4(0) = 0. This is now easy: using our basis to compute the connection matrix and

residue matrix of V as above, we get the formula (5.9) for Res(V). Since we formed

this matrix using a basis of F°, we know from Section 5.1 that Res(V) is nilpotent

since 7 is unipotent. Thus the indicial equation is A* = 0, and the proposition is

proved. O

There are two comments to make concerning the proof of Proposition 5.2.1.

First, one can prove Wy, = Wyi,1 and

(5.11) FP @ W,y = FPo @ Wap—2 = H(V,C)

for 0 < p < 3, generalizing (5.10). It follows that the mixed Hodge structure

(W., F}.,) is a Hodge-Tate structure in this case. In general, the relevance of Hodge-

Tate structures to mirror symmetry is discussed in [Deligne2].

A second comment concerns the discussion preceding Proposition 5.2.1, where

we claimed that the solution yg; = (go, 2) was nonvanishing at z = 0. To see why,

first note that (Wy, Ws) = O follows easily from (5.4) and

(N(a),b) + (a,N(b)) =0, a.be H3V,C).
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Since go € Wo and Q(0) spans Fii,, we must have {g0,€2(0)) # 0 by (5.10) and the

aondegeneracy of cup product. Thus yp(0) = {go, $¥(0)) is nonzero.

For an example of how to use Proposition 5.2.1, consider the quintic mirror

family from Chapter 2. The Picard-Fuchs equation is

0= (zi)4 + 2.5%2 (z_d_>3 + 7-5% ( 1)2

=\ YT 15 dz) YT 155z \%dz) Y
2.5%z s d 24 .52

tir5z (Zfiz)y 1Y
by (2.8) (we will derive this in Section 5.4). In this equation, the variable z (called

£ in Chapter 2) is z = ¢~3, where 1 is the parameter in the defining equation of

the quintic mirror (2.4). Since the indicial equation is A* = 0, we have maximally

unipotent monodromy at z = 0 by Proposition 5.2.1.

On the other hand, the quintic mirror family has two other boundary points at

2z = —5-3% oo. It is easy to see that the monodromy is not maximally unipotent at

z = oo. This follows from (5.12) by a coordinate change w = 1/z and calculating

the roots of the indicial equation to be {1/5,2/5,3/5,4/5}. By Proposition 5.2.1,

oo is not even unipotent. Adapting coordinates to z = —5795, we get integral roots

of the indicial equation, hence unipotent monodromy. But the roots are not all
equal, so that the monodromy cannot be maximally unipotent by the proposition.

In fact, one can show that N? = 0 in this case.

(5.12)

5.2.2. r-Dimensional Moduli. We next generalize the definition of maxi-

mally unipotent monodromy. For a Calabi-Yau manifold V' of dimension d (the

case when V is singular will be considered in Chapter 6), let S be the full com-

plex moduli space of V. Then S is a smooth manifold of dimension r = ALV

[Bogomolov, Tian, Todorov]. Let S as in Section 5.1 be a compactification

of § with normal crossing boundary divisor D = 5 - S. We focus attention on

boundary points p € 5 — S which are the intersection of r = dim(S) boundary

divisors D1, ... , D, (we will study natural compactifications of S in more detail in

Chapter 6.) We will be interested in boundary points of the following type.

DEFINITION 5.2.2. [Morrison3] The point p = D1 N--- N D, is o maximally

unipotent boundary point if the following conditions hold.

(i) The monodromy transformations T; are all unipotent.

(i4) Put N; = log(T;) and let N = >, 8iN; be a linear combination with all

a; > 0. If W. is the monodromy weight filtration (5.4) determined by N,

then dm Wy =dimW; =1 end dimWe =1+ 7.

(3ii) Let go,.- . ,0r be a basis of Wy such that go spans W, aend define m;; via

Ni(g;) = mi;go for LS4, J <. Then the matriz (m;;) is invertible.

We can explain this definition as follows. Each go € W, gives a solution yp =

(g0, Q) of the Picard-Fuchs equations which is analytic at the maximally unipotent

boundary point p. Then dimW, = 1 says that up to a constant multiple, the

Picard-Fuchs equations have a unique solution which is holomorphic at p. Also

note that each g; € W, gives a solution (gi, Q) of the Picard-Fuchs equations which

has at worst logarithmic growth along the divisors D;. Hence dim Wy=1+r

means that we have r independent solutions with logarithmic growth along the Dj.

Finally, the invertibility of the matrix (m.;) in condition (i) allows us to change
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to a new basis
-

(5.13) o= _gmTM*, (m*)=(mu)?
j=1

with the property N;(g;) = 6xg90. This implies that yx = {gj, ) is a solution of

the Picard-Fuchs equations which is holomorphic at a general point of D; for j # k

and has logarithmic growth along D). More precisely, locally near p, ¥, can be

written in the form

log z

27

In practice, this is what one looks for when dealing with a maximally unipotent

boundary point. We will see in Chapter 6 that the mirror map is built from the

functions yg, y1,.-- ,¥r-
Another way to understand condition (i) comes from mirror symmetry. Sup-

pose that V and V° are mirrors. As we will see in Section 6.3, the mirror map iden-

tifies the Kahler moduli space of V° with a neighborhood of a maximally unipotent

boundary point of the complex moduli space of V. On the mirror side, we will

use quantum cohomology in Chapter 8 to construct a flat connection on the Kihler

moduli space of V° called the A-model connection. Locally, this connection lives on

a punctured polydisc (A*)" whose coordinate axes correspond toaset T;, 1 <i <,

of generators of the Kéhler cone of V°. Each axis gives rise to a monodromy trans-

formation 7; for this flat connection, and the logarithm N; = log(7;) is the en-

domorphism given by cup product with ~T; on ©,HPP(V°). Conjecturally, the

mirror map identifies the A-model connection with the Gauss-Manin connection in

such a way that:

e N; is identified with N, = -U(=T}), and thus N = 3, a; N; is identified with

cup product with the negative of an ample class D =3, a;T;.

e gp is identified with the cohomology class of a point.

s g; is identified with the Poincaré dual of a curve C;, where C; is a suitable

basis of Hx{(V°,Z).

Then, under the mirror map, the matrix (m;;) is the matrix of intersection prod-

ucts (D; - C;), which is necessarily invertible by Poincaré duality. Hence the third

condition of Definition 5.2.2 is completely natural from the point of view of mirror

symmetry.

At a point of maximally unipotent monodromy, N9 : Wyq/Wog 1 =~ Wy im-

plies that N¢ # 0, so that N is unipotent of maximal index (since N9+! = 0

by the monodromy theorem). In particular, when dealing with threefolds with

1-dimensional complex moduli, it follows easily that Definition 5.2.2 is equivalent

to N3 # 0. More generally, for a Calabi-Yau of dimension d with 1-dimensional

complex moduli, Definition 5.2.2 is equivalent to N9 # 0 [Morrison2] .

Finally, we should mention how the integer structure of the weight filtration

interacts with Definition 5.2.2. Suppose that we are at a maximally unipotent

boundary point, and let gg,41,...,9- be a Z-basis of W,. Then one easily shows

that the numbers m;; defined by N;(gx) = mjrgo are integers. In [Morrison6],

Morrison conjectures that the matrix (m;) is invertible over Z, or equivalently, that

the m?* in (5.13) are integers. This Integrality Conjecture has been verified for the

mirror of the quintic threefold [Morrison2], and other cases of the conjecture are

discussed in [Morrison6].

L. holomorphic.Y = Yo
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5.3. The Griffiths-Dwork Method

We now turn to a method for calculating the Picard-Fuchs ideal due to Griffiths

and Dwork. This technique was introduced for projective hypersurfaces and more

recently has been extended to hypersurfaces in weighted projective spaces or more

generally projective toric varieties.

5.3.1. Projective Hypersurfaces. We begin with a hypersurface V' C " of

degree £. We have the residue map

Res: HTM(P" - V) — H" (V)

which we will describe presently. We can represent elements of H "(P" - V) by

holomorphic n-forms on P® with poles along V. To do this, we define

Q =Zj(—1)":cjda:0 /\.../\E/\.../\dzn.

Note that Qg is a section of Q. (n + 1), which is a trivial sheaf. This means that

(Yo is up to scalars the unique holomorphic n-form on PTM which is homogeneous of

degree n + 1.

If V is defined by a degree £ homogeneous equation f = 0, then by [Griffiths1],

elements of HTM(P" — V) can be represented by forms

PQy

P

where P is also homogeneous. For any topological (n — 1)-cycle v in V, let T(7)

be the tube over vy (a circle bundle over v contained in P" — V). Then the residue

is defined by

PQo PQy
5.14 /Res-—— =/ _

( ) ¥ r* T(v) f*
Addition of an exact form to PS/f* does not alter the right hand side of (5.14),

so that Res is well-defined on cohomology classes. Since £H ~ V, where H is

the hyperplane class, it follows that Res(PQo/ f*) - H = 0. Define the primitive

cohomology

deg(P) = ké — (n+1),

PH" ' (V)={ne H" (V) |n -H =0}

The primitive cohomology is equal to the full cohomology if the dimension of V'

is odd. In general, the image of Res is contained in PHTM(V), and the map

Res : H"(P" — V) — PHTM L(V) is surjective by [Griffithsl]. In the sequel, we

will follow common practice and frequently drop the “Res” from our notation and

view P/ f* as a cohomology class or form on V.

Tt turns out that P/ f* actually lies in F*~*PH"~1(V) by [Griffithsl]. Ifa

family V is obtained by letting the defining polynomial f and numerator coefficient

P depend on a parameter s, we calculate

Py _ (HES P00 ¢ g,
fR+T

where the primes denote differentiation with respect to s. This verifies Griffiths

transversality for projective hypersurfaces.

Vd/a(
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An effective procedure was developed in [Griffiths1] for calculating modulo

exact forms. For each 4, let G; be a homogeneous polynomial of degree (k—1)¢ ~n,

and put

——
1 —

n= ?,;TZ(:L‘;GJ'—IJ'G,-)dZ()/\-"/\dI,-/\"'/\d.’l'j/\--~/\d$n.
i<j

Then

- o2 1 86;

(5.15) dn = (k-1)3; Gi g% & ggj)flo_
fk fk-l

The point is that using (5.15), any form PQq/f* with P lying in the Jacobian ideal

J(f) = (8f/Bxo,- .. ,0f/Ozy)

can be reduced modulo an exact form to a form having a lower order pole. The

converse is also true: if PQy/f* reduces modulo an exact form to an element of

FTM=k=1, then P lies in the Jacobian ideal. In other words, the map P — PQq /f*
defines an isomorphism

(5.16) (S/I(fkt=(nsr) = PHSF=1(V),

where S = Clzo,...,zn] and the subscript denotes the graded piece in degree

kf — (n +1). Thus, by choosing a basis of (S/J(f))ke—(n+1), any form (PQo)/ f*

with P of degree kf — (n + 1) can be reduced modulo exact forms and forms with

lower order poles to a linear combination of the forms coming from the basis of

(8/J(f))kt-(n+1)
We next compute the Picard-Fuchs equations. For simplicity, we will explain

the method when V is a Calabi-Yau hypersurface in P*, which means £ = n+1. In

this case, w = Res(Qy/ f) is a holomorphic (n — 1)-form on V. Then the Griffiths-
Dwork method proceeds as follows:

e Suppose V is defined by a single equation f depending on a parameter s € S,

where S is 1-dimensional. Then w = Res(€/f) is a holomorphic (n — 1)-

form on the family of hypersurfaces V defined by f as s varies. We will

assume that f depends on s in a polynomial fashion.

» Choose a basis for the primitive cohomology of V represented by a collection

of conveniently chosen forms w; = PQY/f* for 1 < i < r (so that r =

Y (V) —1).

Repeatedly differentiate w with respect to s to get sections

W, Vd/ds(w)» EEE | v&/ds(w)

of 7°. Each of these can be expressed in terms of the basis modulo ex-
act forms. This is done as follows. Working from the highest order pole

downward, we find relations between the polynomials in the numerator of

vi /ds (w) and the numerators of the chosen basis modulo J(f), most conve-

niently using Grébner basis techniques in the ring C(s){zo, ... ,Z.]. Then

we use (5.15) to express the differentiated form modulo an exact form as a
linear combination of the basis elements and a form 7 with a lower order

pole. The coefficients in the linear combination will be rational functions in

the parameter s. Then the process is repeated, this time applied to 7.
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o Since we have r + 1 sections and F° has rank 7, then there is necessarily a

linear relation between w, Va/qs(w), - » V4, (W) with coefficients in C(s).

This gives an element of the Picard-Fuchs ideal, and the resulting ordinary

differential equation is the Picard-Fuchs equation.

In the next section, we will apply the Griffiths-Dwork method to the quintic mirror.

Also, when the defining equation f of the hypersurface depends on more than one

parameter, it is easy to modify the method to obtain elements of the Picard-Fuchs

ideal.

Furthermore, it is easy to extend the Griffiths-Dwork method to hypersurfaces

in weighted projective spaces, following [Dolgachev2]. If the weighted projective

space is P(go, - - ,dn), then we put

n

Qo = Z(—l)"“qjxjdzo A Adzi Acer AdZq

=0

The other modifications are straightforward. An example of how this works will be

given in the next section.

5.3.2. Toric Hypersurfaces. We will next describe how the Griffiths-Dwork

method applies to ample hypersurfaces in toric varieties. We follow the treatment

in [BC]. Let X = X5 be an n-dimensional projective simplicial toric variety with

(1) = {p1,--- ,Pr},and let § = Clzy,- .. ,zr] be its homogeneous coordinate ring,

as defined in Section 3.2.3. Let 8 € An.1(X) be the first Chern class of an ample

line bundle on X, and let Sg be the set of polynomials in S which are homogeneous

of degree J in the sense of Section3.2.3 (recall that § is graded by An_1(X)). Then,

for a general f € Sp, the hypersurface V' C X defined by f = 0 is quasi-smooth

with 3 as its divisor class.

The ideas of the Griffiths-Dwork method go over in a natural way. We again

need an analogue of the form Qo in this context. This is to be a section of 0%

which is homogeneous of degree 8y = }_;._, (D1}, since Q% ~ Ox(— -, Di). Note

also that if 3; = deg(z:), then Bo = Y1, B:-

Fix a basis e1, . .. ,en for M, and for each subset I = {i, ... i} C {1, ,7}

with n elements, put

det(e;) = det({e;j,Pi,) 1<s,ko<n)s

where we abuse notation by letting p; also denote the primitive integral gen
erator

of the edge p; € B(1). Also let

d$1=d$h/\"'/\d$1‘,", E;=H:E,,
il

‘We now can now define

(5.17) Qo= det(er)Zrdzr.
j{j=n

Note that §¥ has degree 3. Furthermore, Q, is actually a form on X (not just on

Cr), as explained in [BC|. We can again write n-forms on X with poles along V'

in the form

PQy
fk H deg(P) = kfl - flo-
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To reduce the pole order, we need for each 1 < i < r an (n — 1)-form Q; of
degree By — B; whose exact definition will not concern us. What will be important

is the formula

. AP _ of

(5.18) (P Q) _ U = Pp)0_F_ FE1

We define the Jacobian ideal here to be

J(f) = (af/axla' .. 76f/6x1‘>'

We can again use Grobner basis techniques and the Jacobian ideal to express ar-

bitrary forms in terms of a given basis modulo exact forms by reducing the pole

order.

In the toric case, we use a slightly different notion of primitive cohomology:

PHTMY(V) = H* (V) /(im H*"}(X)).

This again coincides with the usual cohomology if the dimension of V is odd. We

also have a residue map

Res: H*(X — V) — PH"TM (V).

In the classical case, Res is an isomorphism, but here, we instead have an exact

sequence

0 — H3x) L go(x) — Br X - v) B3 pEn (V) — 0,

Since HTM(X) = HTM/2TM/2(X), we see that (5.16) gets replaced with the isomorphism

(§/T(fip-go = PHPREUV), ks (n/2) +1,
and, for k = (n/2) + 1, the exact sequence

0 — H**(X) — HTM(X) = (5/J(£))((n/2)+1)8-8 — PHD12(v) = 0
(see [BC]). Note that we only have to worry about the exact sequence when n is
even, which occurs when the hypersurface V is odd-dimensional (e.g., a Calabi-Yau

threefold).

It is also possible to avoid the exact sequence by changing J{ f) slightly. Instead

of the Jacobian ideal, consider the ideal quotient

J(f) = (2.8f/8z1,... ,2:0f/Bz,) 1 21 - - - TP

Then [BC] shows that if V' C X is nondegenerate (meaning that V is quasi-smooth
and meets all torus orbits in X quasi-transversely), then we have isomorphisms

(S/Tu(£)) k-0 = PH"*5"1(V)
for all k. To explain the appearance of the ideal .J; (f), note that the operators

%;0/0z; are invariant under the torus action, and taking the ideal quotient is nec-

essary in order that J(f) C Ji(f). Also, J1(f) appears naturally in studying gauged

linear sigma models (see [MP1]).

Hence, using either J(f) (when n is odd) or Ji(f) (for any n), the Griffiths-
Dwork method for computing the Picard-Fuchs equation of an ample hypersurface

can be applied to any projective simplicial toric variety.

A drawback of this method is the insistence that the hypersurface be ample and
that the ambient space be simplicial. For instance, in the situation of the Batyrev
mirror construction, recall from Section 4.1 that we start with a reflexive polytope

A and an ample anticanonical hypersurface V C Pa. Then, taking a maximal rtore ey e
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projec'flive subdivision £ of the normal fan of A, we get the minimal Calabi-Yau

V C Xs which is the proper transform of V. However, P may fail to be simplicial,

although V' is ample, and V' may fail to be ample, although X is simplicial. Thus

it can happen that the Griffiths-Dwork method applies to neither V nor V.

5.4. Examples

We will present two examples which illustrate how the methods of the previous

section can be used to compute Picard-Fuchs equations.

Example 5.4.1. We first consider the quintic mirror family, following the spirit of

[Morrisonl]. By (2.4), the quintic mirror is defined by the equation

(5.19) 23 + 25 + 25 + 25 + 7§ + Y T12223T4T5 = 0,

modulo the action of the group G from (2.3). More precisely, as we saw in Sec-

tion 4.2, if W < P* is defined by the above equation, then the mirror V° is a

resolution of the quotient W/G C P*/G = P, where A° has the vertices (4.13).

Furthermore, by equation (4.8) from Chapter 4, we have

BE(V®) =A%) = 5 = Lol (1) + Lo (87)1(87)

= h2, (V°) + Leal"(€°)7(8°),

where I‘°Arefers to codimension 1 faces of A°, ©° refers to codimension 2 faces of

A°, and ©° refers to the 1-dimensional face of A dual to ©°. An easy computation

shows that the only lattice points of A° are the five vertices listed in (4.13), together

with (0,0, 0,0). It follows that

RN V) = h2 (V) =6-5-0+0=1,

so that V° has 1-dimensional complex moduli which comes from varying the ¢ in

(5.19). Recall from Chapter 2 that z = ¥~3 is a local parameter in the moduli

space (the variable z = y~° from Chapter 2 is now called z). i

Since V° is a non-ample divisor in a toric blowup of Pae, we can’t apply the

Griffiths-Dwork method to V°. Fortunately, W/G is ample and Pa. is simplicial,

so that we will instead let V° = W/G since the Picard-Fuchs equations do not

change under resolution. It follows that we can apply the methods of Section 5.3,

provided we use G-invariant forms PQy/f* on P* — W to represent cohomology

classes on V°.

We begin with the G-invariant 3-form w; = %o/ f, which appeared in (2.7)

in Chapter 2. Our goal is to find a relation between w1, 6w, ... 6%, where § =

zd/dz = "%1/1 d/dvy. For this purpose, we need a basis for cohomology. Consider

the G-invariant forms

(YL
(dj = fj ,

The factor of ¥’ has been inserted so that w is invariant under the substitution

€, — p~'zy, % — pyp which induces the isomorphism V =~ V7, (as discussed in

Section 2.2). In particular, this implies that the Picard-Fuchs equations for wy can

be rewritten in terms of z = 3 ~3.

Then Res(w;) € F4~7H3(V°,C), and an easy Grdbner basis calculation shows

that this class has nonzero projection into H4TM77=1(V°). Since A% = Rl =

AL2 = h03 = 1, it follows that the residues of the w;, j = 1,2,3,4, are a basis for

(5.20)

i=1...,4



L

88 5. HODGE THEORY AND YUKAWA COUPLINGS

H3(V°). Thus any G-invariant form P/ f* is equivalent modulo exact forms and

forms with lower order poles to a multiple of wy for k = 1,2,3,4, and any form

with poles of any order is equivalent to a linear combination of these four forms

module exact forms. The pole order reduction formula (5.15) can be invoked using

Grobner basis techniques to perform these calculations.

We will apply this process to wi, 6wy, ... ,§%w;. Since

(5.21) bw; = —%(uj +wis1)

for any j, it follows easily that

wy 11 (1) 0 0 wy

622 ol Rl U S A S b
o) \-dh -t - -/ \w

This takes care of wy, wi, 6°wy, 6%w:, and as for 6%w;, repeatedly applying the
Grébner basis calculation and reduction of pole order to §*w; gives

5z 752 250z 300z

Shan = g+ Tl t Tt T T
modulo exact forms. If we write this as

wh

Sy = ( 5z 752 250z 3002 ) wa

1+5% 1+55z 1+5% 1+5%2/ {ws]’

Wwq

then (5.22) easily gives the Picard-Fuchs equation (5.12).

Example 5.4.2. We next explain how the Griffiths-Dwork method works for the

mirror family of a Calabi-Yau hypersurface in a blowup of P(1,1,2,2,2). As we

will soon see, the mirror has two-dimensional complex moduli, which means that

the Picard-Fuchs equations will be partial differential equations.

For the standard fan of P(1, 1,2, 2, 2), the generators of the 1-dimensional cones

are

{(_'11 _27 —27 —2)» (17 0» 07 O)a(0, la 07 0)7
(0,0,1,0),(0,0,0,1)}.

These are the vertices of a reflexive polytope A° C Ng. Using the methods discussed

in Section 4.2, one easily computes that Ps. is the quotient of P(1,1,2,2,2) by a

finite group H.

An easy computation shows that the only lattice points of A° are the five

listed above, together with (0, -1,~1,-1) = 3(-1,-2,-2,-2) + 4(1,0,0,0) and

(0,0,0,0). It follows from equation (5.20) that

h2.1(vo) = h2,l (V'O) - 2’

poly

so that V° has two-dimensional complex moduli. Furthermore, they are polynomial

moduli, which means that we can detect them by varying the defining equation of

ve.

As in the previous example, we can assume that V° is an anticanonical hyper-

surface in P5-. Then V° is ample and Pa- is simplicial, so that we can compute

Picard-Fuchs equations using the Griffiths-Dwork method.

(5.23)
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Since A° is the convex hull of the points (5.23), we compute the polar polytope

A to be the convex hull of the points

{(—-1, —17 —'17 —1)’ (77 "1’ —17 _1)1 (—1’ 3’ —l! —l)v
(5.24) (-1, ~1,3,-1), (-1, -1, -1,3)}.
We denote the vertices of A by v; in the order given. The v; generate the 1-

dimensional cones of the fan of Pa.. Note that Po =P(1,1,2,2,2), and if ¥ is the

unique maximal projective subdivision of the normal fan of A, we see that Xs is

a single blowup of P(1, 1, 2,2, 2) obtained by inserting the edge (0, -1, -1, —1) into

the fan determined by (5.23). The family V° is now seen to be the family described

in the first sentence of this example.

The homogeneous coordinate ring of Pa- is just Clzy,...,zs] and is graded

by A3(Pa-), which in this case contains torsion. We need to determine the mono-

mials of degree G = Ef=1 deg(z:) € A3(Pa-), which in concrete terms are the
H-invariant monomials of degree 8 (where Pa- = P(1,1,2,2,2)/H). The easi-

est way to do this is using the isomorphism (3.8), which implies that the desired

monomials are given by

Hxsv.’ui)-!-l’ ve A°AN.

i

Since we already know the points of A° N N, we get the monomials

8 8 4 4 _d4 _4.4

Ty, Ty, T3y Ty Ts, T1T2s T1T2T3T4T5-

These are just the H-invariant monomials of weight 8 in the weighted projective

space. From the point of view of weighted projective spaces, this is precisely the

Greene-Plesser orbifold construction. In general, one can show that the Batyrev

mirror of a weighted projective space which admits a Fermat hypersurface always

coincides with the Greene-Plesser construction (see [BK2]).

So the general anticanonical hypersurface in Pa- is given by linear combinations

of these H-invariant monomials. Using the torus action to rescale the variables z;,

we can put the equation of an anticanonical hypersurface in the form

(5.25) f=z28 + 2} + 212} + 2} + 2} + 7172337475 +2iTd =0,

where 2;, zo are parameters. This choice has been made so that 2y = 22 =0 is a

maximally unipotent boundary point. We will let §; denote z; d/dz;. The Hodge

numbers are h30 = h%3 =1 and (as computed above) h*! = a2 = 2. We choose

the basis ’

Q
w; = Afl

2123
wy = 6w = ——1;3—

22230
wg = by = —TFH—

223z5Q
wyg = 6w = wy + HF2

2 3230
ws = 6162(0’1 = ZIZQ;}I —

8 2 8 80

we = 5%52“,1 = ws——z-’ijfi-fl—fl

We can now generate Picard-Fuchs equations by expressing various 6{ w) in terms
of this basis.
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For example, we compute

2 2$1600
5%(»'1 = w3+ —5272——

and accordingly attempt to reduce £16 to an expression involving only z§ and x$z$
using the Jacobian ideal. Using Grébner basis techniques, we compute the relation

22(1 — 422)x18 — 2228 + 4z, 200328 € J(S).

In fact, it is easy to verify that

3
1 of

16 _ .2 8 422(1 — 422)21® — 2228 4 421202828 = 16 (Z_:iAi-‘ri'a—;)a

where we have put

A =2(4z5 — 1)} + 2122237475 — dziTh

Ay =218

Az = 42175 — 162025 — 2122237475

and combine this with (5.18) to reduce the pole order of 62w;. Repeating this

process to reduce the pole order further, we arrive at the Picard-Fuchs equation

(5.26) (1 — 422)62w; — 22(67 — 46163 — 61 + 262)wy = 0.

This example (using a slightly different form of equation (5.26)) was worked

out in detail in [CAFKM] by different methods (see also [HKTY1]). One can

prove that the point z; = z; = 0 is a maximally unipotent boundary point, as

has been remarked earlier. One needs another Picard-Fuchs equation to verify

this in detail. For now, we content ourselves with the observation that the form

of equation (5.26) leads quickly to N3 = 0, so N, by itself cannot define the

monodromy weight filtration of a maximally unipotent boundary point. But any

positive linear combination a; Ny + as Ny satisfies (a; N3 + aaN2)® # 0, and in fact

defines the right kind of monodromy weight filtration.

We will return to this example in Example 5.5.2.1, and again in the next chap-

ter. Note that a smooth compactification of the moduli space with normal crossings

boundary necessarily has many components. The one constructed in [CdFKM]

nonetheless has only one maximally unipotent boundary point. The other intersec-

tion points of pairs of boundary divisors are not maximally unipotent.

5.5. Hypergeometric Equations

‘We now describe the hypergeometric systems of Gelfand, Kapranov and Zelevin-

sky and discuss some examples which arise naturally in mirror symmetry.

5.5.1. The A-System. Let A = {v;,... ,vx} C ZTM*! be a collection of k >

n +1 points lying in an integral affine hyperplane. Denote the coordinates of v; by

v;;. Introduce variables ); for each v; € A, and fix a vector § = (f1,... ;Bnt1) €

CTM*1. To this data, we can associate the A-system of hypergeometric equations, a

system of differential equations in the )\;. We let 8; denote the differential operator

8/0X;, and we use §; for the logarithmic derivative A\;8; = A\i8/0\:.

The A-system is comprised of two types of differential operators, denoted Z,

and Og. The operators Z; are defined by

(5.27) Z; = (T,8) - B,y i=1,...,n+1L
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To describe the O¢, we need some more notation. We let A be the lattice of relations

among the elements of A:

(5-28) A={=(t)€Z": T biwi =0}
By our assumption on A, we have A # 0. Then define

(5-29) He= Hl,->oaf‘ - Ht‘-<oai_liv teA

DEFINITION 5.5.1. The A-system of hypergeometric equations is the system of

differential equations Z;® =0, 1 <j<n+1 and 3,8 =0, ¢ € A, where Z; end

O, are respectively defined in (5.27) and (5.29).

This system is frequently referred to as the GKZ system, after the work of

Gelfand, Kapranov, and Zelevinsky [GKZ1].

5.5.2. Calabi-Yau Toric Hypersurfaces. Now let A C Mg be a refiexive

polytope of dimension =, and let Xy be the toric variety associated to a max-

imal projective subdivision £ of the normal fan of A. We consider the family

of anticanonical hypersurfaces in Xg, which are minimal Calabi-Yau subvarieties

by Proposition 4.1.3. Our task is to find Picard-Fuchs equations for this family. As

we've already noted, these equations are independent of the choice of subdivision,

and coincide with those for the family V of anticanonical hypersurfaces in Pa, which
is a family of Calabi-Yau varieties by Proposition 4.1.3. So we need only study this

family of Calabi-Yau hypersurfaces in Pa.

Pick an ordering of the points m; of A N M such that mg = 0. Since A is

reflexive, we know that the sections of the anticanonical bundle can be identified

with the Laurent polynomials

(5.30) F=2 0TM =20 + X inotitTM € L(A),

where the )\; are parameters. Then the family of Calabi-Yau varieties VCP,is

defined by the equation f =0 for f € L(A).

To make contact with hypergeometric equations, let

(5.31) A=(ANM)x {1} c M xZ~Z",

and put ,@ = (0,...,0,-1). Note that £ € A implies both 3, &;mi = 0 and

Y, & = 0. The latter implies that the O, from (5.29) are homogeneous differential
operators.

We claim that equations of the .A-system are Picard-Fuchs equations, that is,

the periods of certain differentials on V' satisfy the A-system of hypergeometric

equations.

Following [Batyrev3], we use the n-form

1 dt1 din
5.32 = -, = —— AL A —

(5.52) vEFT 1T tn
where (t1,... ,tn) are coordinates for the torus T C Pa. For £ = (6;)ceAand ] a
subset of indices, we put ¢y = 21.6 1 ¢; and compute

—1)¢ . L m

(539) (Mgt = = <f;3ig,arf .

Since £ € A implies Y, .o &M = 3, <o(—¢:)TM:, We have

Hl.- >0tl‘m’ = H£,<Ot—l'mi‘
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and then Ogw = 0 easily follows from (5.33) and 35, o0& = Y p co(—6). If @ is

any period of w, it follows immediately that 0,® = 0.

It is equally easy to show that Z;® = 0 for 1 < j < n+ 1. Consider the

(n — 1)-form

at; dt .nj=d_t1_/\.../\_’/\.../\—1, 1<j<n
tl t] tn

One computes that

1 —1) _

d(? m) = : f—2) (ZiimastTM ) m,
where m;; are the coordinates of m,. Since Bj = 0 for 1 £ j < n, this easily implies
that Z;w is exact for j < n+1, and therefore Z;® = 0 for these j. Asfor j =n+1,

we have 3,1 = —1, and since the last coordinate of (m;,1) € A is always 1, we

obtain

W AZppiw = (M )w+w = —z’—n +w=0,
f2

as desired.

The form w in (5.32) is defined on T — Z;, where T C P, is the torus and

Zs = VNT is the affine hypersurface determined by f € L(A). Then the residue of

w is an (n — 1)-form on Z;. The affine point of view is explained in more detail in

[Batyrev3]. However, we want Picard-Fuchs equations for periods on V and not

just the affine part Z;. This by done by using the homogeneous coordinate ring

Ciz1,... ,z,] of Pa. The z; relate to the ¢; via the formula

t; = [T,z
and under this substitution, we have

Qo=2z---z7,

where (g is defined in (5.17). Proofs of these facts can be found in [BC]. The

formula for {y is easy to understand, since the form 7 has simple poles on the

components Dy,...,D. of B — T. On the other hand, the section z; - -z, of

Op, (27=1 D;) corresponding to 0 € A vanishes simply on each toric divisor D,

and Qo = z1 - - - 2, 7 follows since §§A =~ Op, (~ 3_j=1 D;). Then, under the above
change of variables, we have

W= n _ Ty Tr 7 - Qo

F(teostn) @1 @ f(taye o ytn) F(Z1s--.,20)]

where f(z,,...,z.) is the homogenization of f(t1,... ,t,) as defined in (3.8). Thus

w is one of the forms considered in Section 5.3, so that its residue is a holomorphic

n-form on V. We conclude that the .A-hypergeometric equations are Picard-Fuchs

equations. One technicality is that P, might not be simplicial, but once we pull

back to a resolution, there is no difficulty.

The A-hypergeometric equations are defined on the space L(A), which has

the A; as coordinates. However, we are interested in differential equations on the

moduli space, which is a quotient of L(A) (more precisely, the quotient gives the

polynomial part of the moduli). This topic will be discussed in detail in Chapter 6,

so for now we will content ourselves with two of the more obvious aspects of moduli.



5.5. HYPERGEOMETRIC EQUATIONS 93

First, we have the natural action of the torus T on L(A) given by

v- f =v- Zi/\itm" = Zillm‘ Aitm", veT.

Since this action is induced by the natural action of T on itself, it follows that for

each v € T, f € L(A) and v - f define isomorphic hypersurfaces in P, so that f

and v - f give the same point in moduli.

The second action we have is.the C* action given by f — ¢ f for ¢ € C*.

Since rescaling gives the same hypersurface, f and ¢ - f also give the same moduli

_point. Putting these all together, we get an action of T x C* on L(A) such that

the quotient maps to the moduli space.

Since w = 7/ f is determined by f € L(A), T x C* acts on the period integrals of

w. One can show that the equations Z;® =0, 1 < j < n, are the infinitesimal form

of the invariance of the periods under the action of T, and similarly, Z, 1w =0

follows from invariance under rescaling. See [HLY1] for the details.

If we work with the subset (C*)2TMTM < L(A) where A; # 0 for all ¢, the quotient

(C*)ANM /(T x C*) is easy to describe since it is a quotient of tori. This is where
the set A from (5.28) comes into play. Choose a basis £; = (¢;;) of A, and define

functions

I
z; = Hkil .

1

It is easy to check that the z; are invariant under the action of 7' x C* and give

coordinates for the quotient. One of our goals will be to find a basis for A such that

the z; will be local coordinates on the complex moduli space near the maximally

unipotent boundary point under study. Then the periods which are analytic near

the maximally unipotent boundary point will be analytic in the z;. We will return

to this point in Chapter 6.

We will want to write the A-hypergeometric equations in terms of the variables

z;. But first, let us put them in a more useful form for dealing with moduli. The

problem is that w is not invariant under our C* action A; = cA;. For this reason,

we will choose the form

(5-34) W= Aw = %n,

which now is homogeneous of degree 0 in the \;. Since the periods of w satisfy the

A-system, we see that the periods ® of & satisfy the equations

ZNg'® =0, QN8 =0

fori<j<n+landf€A _

The equations Z;\;'® = 0 are the infinitesimal form of the invariance of ®

under the action of T x C*, so that once we take the quotient by T x C*, our

remaining task is to change the equations J,A;' = 0 into z; coordinates. We do
this by repeated use of the identity of differential operators

(5.35) . 8:7 = AL(6; + p).

We illustrate the method for the quintic mirror. Here, the relevant generator for

Ais £=(1,1,1,1,1, —5) (recall that A consists of relations among the elements of

A= (AN M) x {1}), yielding the coordinate

(5.36) Z=Ap---As/AD.
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If we homogenize the equation (5.30) in this case, we get

ALZd 4+ X223 + A3 7§ 4+ A T3 + A5 T8 + Ao 1 Z2Taz4T5 = 0.

This gives equation (2.4) by putting X\, = --- = A5 = 1 and Ay = 1, and then

the above moduli coordinate is z = 1 ~5, agreeing with the coordinate z chosen in

Chapter 2 (recall that we now use z instead of x for the moduli coordinate). We

must convert the A-hypergeometric equation

CeAg = (8185~ 3N =0

to an equation in z. Multiplying g5 on the left by Xg- - As = 22§ gives

By-+-65 — ZAERAGY = 61 - -- 85 — 2A360(A5 160)4 NG Y,

and repeated application of (5.35) from right to left yields the equation

610065 —2(60 —5)(6o—4)--- (6o~ 1) =0.

Now let 6 denote zd/dz. From (5.36) we obtain the identities

bh=---=65=46, §=-56

when we restrict attention to functions of z alone. We thus finally arrive at

(5.37) 8% + 2(56 + 5)(56 +4) --- (56 + 1) = 0.

We immediately see the limitation of this method—the fifth order operator (5.37)

does not generate the Picard-Fuchs ideal, since we are missing the fourth order

operator (5.12).

In general, the system of differential equations in the coordinates z; arising from

the A-system contains the periods among its solutions, but there will typically be

other solutions. The problem is to identify a larger system of differential equations

which vanish only on the periods. There are several strategies for doing this.

One method for finding the full set of Picard-Fuchs equations is to begin with

the hypergeometric equations from the A-system and augment them with other

Picard-Fuchs equations. Typically, this is done by adding in lower order equations

found using the Griffiths-Dwork method. See [BKK] for some examples.

Another common method is to factor a Picard-Fuchs equation arising from

the A-system. As explained in Section 5.1.2, the resulting lower order operator

D is Picard-Fuchs provided it annihilates all periods. Fortunately, there are many

cases where it suffices to check that D annihilates just one period y. Suppose, for

example, that D -y = 0 and that analytically continuing v over the whole moduli

space gives a basis y; of solutions of the Picard-Fuchs equations. Then D -y = 0

implies D - y; = 0 for all i. It follows that D annihilates all periods and hence is a

Picard-Fuchs operator.

For an example of how this works, consider the quintic mirror. We have the

fifth order equation (5.37), and commuting z to the right, we obtain

8% + (56)(56 — 1)--- (56 — 4)z = 0,

and so factoring out a § on the left gives the fourth order equation

(5.38) 8 +5(56 — 1)(56 — 2)(56 — 3)(56 —4)z = 0,
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which is equivalent to (5.12). A systematic method for this sort of factoring is

gdescribed in [HKTY1]. To prove that this is a Picard-Fuchs equation, consider
o0

(5n)!
w(2) = ) rz(-1)"2"7;) (nh)3

from (2.11). In (6.48) we will see that yo really is a period, and one easily checks

that yo is a solution of of (5.38). Furthermore, [CdGP] shows that under analytic

continuation, yo gives a basis of periods. It follows that (5.38) is a Picard-Fuchs

equation for the quintic mirror.

In order to implement this strategy in general, one needs to know an explicit pe-

riod satisfying the A-system. One such period, taken from [Batyrev3, Prop. 14.6],

will be given in equation (6.48) in Chapter 6. In fact, the period y from (6.48)

leads to a slightly different method for generating Picard-Fuchs equations. Here,
the idea is to deduce the differential equations from recurrence relations among the

coefficients of y. This technique is used for several one parameter families in BvS].

One drawback of this method is that it is not known in general if analytic continu-

ation of (6.48) leads to a basis of solutions, though one expects this to be the case

for Calabi-Yau threefolds. See [BvS]| for more details.

Unfortunately, factorization might not give all of the missing Picard-Fuchs

operators, because the A-system has a second source of incompleteness due to

automorphisms. The GKZ equations Z;® = 0 reflect invariance under the torus

of Pa, but to get the moduli of f = 0, we need to mod out by the action of

Aut(Pa). We saw in Section 3.6 that Aut(Pa) includes automorphisms arising

from roots. These automorphisms render some of the coordinates J; ineffective

(the ones associated to interior points of facets of A). Instead of adding more

equations, we can simply omit these A, remembering that there may be residual

discrete identifications of the moduli space (for an example, see [CFKM]). We

will adopt this approach in Chapter 6 when we define the simplified moduli space

Hsimp of the toric hypersurface V. A closely related method is to extend the

A-system by the infinitesimal form of the extra automorphisms, as described in

[HKTY1, HLY1]. These complement the equations Z;® = 0, which (as just

mentioned) are the infinitesimal form of the automorphisms induced by the torus.

The solution (6.48) of the GKZ-system mentioned above is one of the many won-

derful formulas for solutions of hypergeometric equations. These are generalizations

of the classical hypergeometric power series. This is discussed in [GKZ1, HLY1],

and we will give some explicit examples and solution methods when we discuss the

mirror map in Section 6.3.

We illustrate our discussion by returning to an example already considered.

Example 5.5.2.1. In Section 5.4, we discussed the mirror V° of the degree 8 hy-

persurfaces in P(1,1,2,2,2). In this case, homogenizing (5.30) leads to an equation

of the form

A1 :L‘? + A2 :L‘g + A3 :L‘g + M :1:3l + As :L‘g + Xg :L‘%:E% + Ao T1Z2T3T4T5 = 0.

These monomials were computed in Example 5.4.2. Using the reflexive poly-

tope A° determined by (5.23), one computes that a basis of A is given by £; =

(0,0,1,1,1,1,-4) and £; = (1,1,0,0,0, —~2,0). Thus we get moduli coordinates

. = A3A4As e 7 = A1Ag
1 /\8 y 42 /\% .
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Note that setting )\0 = )\2 = )\4 = )\5 = AG =1 leads to 21 = )\3 and 2y = Al, which

agrees with (5.25). Then from

Ao deOe A5t = AoAr e (818, — 63),\51 =0,

we obtain by the methods discussed above

(5.39) 62, — 2(62, — 265,)(685, — 26, = 1) =0,

where we have put §,, = 2, 8/821, 6., = 2, 8/8z; and used the identities

(540) 61 = 62 = 622! 66 = 621 - 26227

which hold on functions of z; and z;. The reader should note that some easy

algebra transforms (5.39) into the Picard-Fuchs equation (5.26) found earlier using

the Griffiths-Dwork method (the é; appearing in (5.26) are the operators denoted

here by 6, ).

A similar computation using (5.40) and the further identities 63 = 6, = 65 =

bz,, 60 = —46,, shows that the GKZ equation

A0 A AsA60e, Ag ! = MoAzAaAs A6 (83048586 — ) A5 = 0

leads to the Picard-Fuchs equation

83, (82, — 26.,) ~ (46,)(46z, — 1)(462, — 2)(46,, — 3)z1 = 0.

Hence by factorization, we get the third order equation

82,(62, = 262,) = 4(462, — 1)(46s, — 2)(46,, — 3)z1 = 0,

which is equivalent to

(5.41) 62 (62, ~ 262,) — 421 (468, + 1)(46, + 2)(46., +3) = 0.

This equation is satisfied when applied to the analytic period (6.50), and as shown

in [CdFKM], this period analytically continues to a basis of solutions. By the

discussion preceding this example, we conclude that (5.41) is in fact a Picard-Fuchs

equation.

The Picard-Fuchs equations (5.39) and (5.41) have ranks 3 and 2 respectively

and hence have a solution space of dimension at most 6. Since h3(V°) = 6, we have

found generators for all of the Picard-Fuchs equations.

5.5.3. Nef Complete Intersections. So far, we've discussed Picard-Fuchs

equations and the GKZ system, but we haven't said much about solutions. This

will have to wait until Section 6.3, where we will construct the mirror map using

solutions of the Picard-Fuchs equations. But we thought it worthwhile to describe

here one interesting solution to the GKZ system which arises from a toric complete

intersection.

Let X = Pa be an n-dimensional toric variety corresponding to a reflexive

polytope A C Mg with normal fan . For ease of exposition, we assume that X

is smooth, although this assumption can be weakened somewhat. We consider a

generalization of the complete intersections studied in Section 4.3.1.

DEFINITION 5.5.2. A nef complete intersection on X is ¢ complete intersection

Y =Y such that each Y; is the zero locus of a general section of ¢ line bundle

L, generated by global sections, end —(Kx + Ei;l L,) is nef.
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Note that the last condition is slightly stronger than saying that —Ky is nef.

We are requiring that

(Kx + Z:;ll:i) .C<o0

for all curves C C X. By the adjunction formula, saying that —Ky is nef merely

requires this condition only for curves C C Y. The cone of effective curves of Y

and X can differ, as we will discuss in Section 6.2.3.

Note that a nef-partition —Kx = Z:;l E; as defined in Section 4.3.1 auto-

matically defines a nef complete intersection. In this case, £; = O(E,), so that

—(Kx + Z:;l L£;) is trivial and hence clearly nef.

We now put N = N @ ZF and for 1 < ¢ < k choose a;, such that

[:1- = O(Zp€2(1>aipr).

Then consider the set

(5.42) A= {(p,81p,--- k) 1 p € Z(DIU{(0,e1),.-- 1 (0,86)} C N,

where e; is the #*? standard basis vector in C*. Note how this generalizes (5.31),

which is the case k = 1 and £; = O(3_, D,).

Let r = {E(1)| as usual. For each p € (1), we put w, = (¥p, 810, - - - ) Ckp)» and

for 1 < i < k we put u; = (0,e;). Then (5.42) can be written as A={w, p€

o(1); w, 1 <i <k}

The set A is related to the smooth toric variety X as follows.

LEMMA 5.5.3. Let A be the lattice of relations emong elements of A. Then

(i) For each 8 € Hy(X, Z), we have a relation

Ep(Do Byw, = L (e(Li) - Bui =0

in N. Hence 8 gives an element of the lattice A.

(#) The induced map Ho(X,Z) — A @5 an isomorphism.

ProoF. First note that the exact sequence (3.2) implies that for all m € M,

>, (m,v,)[Dy] =0 in H%*(X,Z). Thus }_,{m,v,)(D, - 8) = 0 when B € Ho(X,Z),

and since this holds for all m, we must have Y, (D, - B)v, = 0in N. Using this

together with ¢1(L;) = & . a;,D, and the definitions of w, and u,, the desired

relation follows easily.

To prove the second part of the lemma, consider the commutative diagram

0 — A -~ ZA - N
i ! i

0 — HyX,Z2) — Z®*% — N

The top row is exact by the definition of A, and the bottom row is exact, arising

from (3.2) by dualizing. The middle vertical map sends w, to v, and u; to 0, while
the rightmost vertical map is the natural projection. The leftmost vertical map is

defined by the commutative diagram. If N’ is the image of ZE() — N, then the

image of Z* — N is easily seen to be N’ @ Z* . From here, a diagram chase shows

that.A — H3(X,Z) is an isomorphism. One also can check that the inverse of this

map is the map Ho(X,Z) — A described in the statement of the lemma. a

For simplicity, we will now assume that the Kahler cone K(X) is simplicial. We

will return to a discussion of issues surrounding this assumption in Section 6.2.3.

This implies that we can choose a basis 1,. .., Br—n of Ha(X,Z) such that the Bi
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generate the integral classes M (X )z of the Mori cone M(X) C H?(X,R) generated

by homology classes of effective curves on X. For the rest of this section, we fix

an ordering of the elements of (1), although it will frequently be convenient to

continue denoting generators of £(1) by v,. Fixing such an ordering, we associate

variables A1, ..., Arik to the generators of A in the order given in (5.42). We will

also often denote the variable associated to w, € A as A,.

We put T = N ® C*, and introduce the T-invariant variables

k

(5.43) 4= (fov'fij)/(n,\fififf)"’j), 1<j<r-n
P i=1

Let T1,...,Tr_n be the generators of K(X) dual to 3;,...,8r—n and define

¢ =T[d? for Be M(X)z C Hy(X,2).

7

We will see much more of this notation when we discuss quantum cohomology in

Chapter 8. We also put ¢; = logg;, so that g; = es.

Inspired by [Giventald)], we will consider the cohomology-valued expression

e 3 g (M M35 (@) +m) (T, e o (D + )

BEM(X)z I1, Hfi‘;’f’.w (Dp+m)

The exponential eZ1 4T is a polynomial in H*(X){t1,... ,t,—n], while the sum can
be viewed as an element of H*(X)|[q1,. .. , gr-n]]- Note that c;(£;)-8 > 0 (since £;

is generated by global sections) and all but finitely many factors of D, + m cancel

from the numerator and denominator. This slightly cumbersome way of defining [

is needed to handle the possibility that D, -3 < 0. Since —(Kx + Ef=1 L;) is nef,

it is conjectured that the series for [ converges for g; sufficiently small.

Let V be the vector bundle @%_, £;, which has Euler class given by Euler(V) =

"H:;l ¢1(£;). In Chapter 11, we will see that the cohomology-valued formal function

(5.44) Iy = Euler(V) I

plays an important role in Givental’s version of the Mirror Theorem for toric com-

plete intersections (see (11.73) and Theorem 11.2.16).

In the special case when X = P4, k =1 and V = £; = Op«(5H), the complete

intersection is the quintic threefold. Then [ is given by

(545) j — et;H i edtl Hf:=1 (5H + m)

a=0 an:l(H + m)5 ’

and I, = 5H I becomes

' % 5d

(5.46) Iy = e“”SHZeMMMV
= Teoi(H+m)s

This last formula appeared in Chapter 2 as equation (2.32).

The function [ is related to hypergeometric equations as follows.

PROPOSITION 5.5.4. The formal function I satisfies the A-system associated

to (5.42) with 8 =0.
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PRrOOF. In the statement of this proposition, 3 of course refers to the vector
needed to define the operators Z; in (5.27). As we discussed in Section 5.5.2, the

assertion that Z; (I) = 0 for all i amounts to the T-invariance of the formal function

1. This follows 1mmed1ately, since the ¢; were constructed to be T-invariant, and

the \; appear in I only through the g;.

‘We now consider the operators O for 8 € Ha(X,Z) ~ A. By Lemma 5.5.3, 3

gives the relation 3 (D, - B)w, — L;(c1(L:) - B)u: = 0. It follows that Oy can be

written as

G4 ge= IJ oP* 1 era®?- I &> JI a8
D,-8>0 ¢1(L,)-8<0 D,-<0 c1(£,)-8>0

where 8, = 8/82, and Or4; = 8/3)r+i. We need to show that agl =0,

As usua.l we put 6, = A\p8p and 8r4i = AryiOrvi - Wealso put 6, = q;0/0g; =

8/6t;. Our methods apphed to (5.43) give the identities

8, =2_;(D, '57‘)%

Oryi = “Z (ar(£ 5])691,

when applied to T-invariant functions. We also compute that

(5.49) b, (55T = (T + (T B) (e5457¢P).

Combining (5.48) and (5.49), we obtain

6, (eZ.-tiT.qfl) =(D,+(D,-8)) (ez‘ tmqfl)

rr (e545T07) = ~(e1(£0) + (@2(£0) - 8) (T
In (5.50), we have used the identity of divisors D = }_;(D - 3;)T; for D = D, and

= ¢1(£L;). This identity follows because T is the dual basis to ;.

The operator Oy is defined in terms of 0 and 8,4;. In order to write this in

terms of 8, = 2,8, and br1i = Ar4iOr4i, We w111 consider the operator

[ D,-8 —c1(£.)-8

D,-3>0 c1(£:)-8<0

(5.48)

(5.50)

Then we compute that

DB = HD,~[3>069(5P —=1).-- (6, - D, B+ 1) x

L. cco-s<obrsi(Brsi = 1) - (Bris + (L) - B+ 1)

- qflnop.5<059(5p =1)---(6p+ D, B+1) %

[eiccogo00r+i(Brpsi = 1) -+ (bris —c2(Li) - B+1)

Using (5.51) and (5.50), we can now compute D;,I- to be

(5.51)

. F = e(ZtTi) %
4

o (M5 T2 (@(80) +m) ) (TT, Mmoo (Do +m)

(5.52) BeM(X)y I, Lo B P (D, +m)

o (i 10D (¢ (£4) +m) ) ([T, [Tonmmco (Do + TM))
D,-(8") )

BrEM(X)z I, [mZZeo (Po+m)
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In this expression for D;,I- , note that the term in the first sum for 3’ € M(X)z

cancels the term in the second sum containing 3" € M(X)z provided # = 8" + 3

After this cancelation, we are left with two classes of terms: those in the first sum

corresponding to A’ € M(X)z such that 3 — 3 ¢ M(X)z, and those in the second

sum corresponding to 8" € M(X)z such that 8”7 + 5 ¢ M(X)z.

‘We begin with the first class of these terms. Thus, suppose 5/ € M(X)z and

B — B ¢ M(X)z. It follows that e(X%7)¢8" appears in the first sum of (5.52)

but not the second. Our goal is to prove that the coefficient of e(Z%72)¢#’ is zero.

Our assumption §' — 8 ¢ M(X)z implies there is an ample divisor D such that

D - (f - B) < 0. We may without loss of generality assume that D is T-invariant,

and write D =3 a,D, with a, > 0. Let

S={p€Z(1): D, (6 -B) <0}

Note that S # @ since D - (8 — 3) < 0.

We claim that the Il,¢sD, = 0 in H*(X). To see this, it suffices to prove that

MeesD, = 0. So suppose that this intersection is nonempty. Then M,esD, contains

at least one fixed point of the torus action. If & is the corresponding n-dimensional

cone of X, then p C o for all ¢ € S. Since D = Y a,D, is Cartier, we can find

m, € M with (m,,v,) = —a, for all edges p of o-(and in particular, for all elements

of S}. Here, v, € N is the generator of the edge p. But D is also ample, so the

ampleness criterion given at the end of Section 3.1 implies that (m,,v,) > —a,

for all p € £(1). Then D is linearly equivalent to the divisor D' = D + div(xTM).

Replacing D by D', we may therefore assume that

(5.53) D=> a,D, a,>0.

pES

Intersecting both sides of (5.53) with 5’ — 3, we see that the left hand side is negative

and the right hand side is nonnegative, a contradiction. This proves our claim.

Now consider the coefficient of e(Z%T1)g8" in the first sum of (5.52), and fix

p € S. The definition of S implies D, - (8’ — ) < 0, and then it follows from (5.52)

that D, is a factor of this coefficient. This holds for all p € S, so that the coefficient

is a multiple of II,esD, = 0. Thus the coefficient is zero.

It remains to study the second class of terms, which correspond to 87 € M(X)z

such that 8”+ 3 ¢ M(X)z. The argument is entirely analogous and is omitted. O

An immediate corollary of Proposition 5.5.4 is that the formal function [}, =

Euler(V) I defined in (5.44) is also a solution of the .A-system.

Proposition 5.5.4 gives interesting solutions to the GKZ system for A as in

(5.42). This means that if we expand [ in any basis for H *(X), the coefficients

satisfy the GKZ equations. But how does this relate to Picard-Fuchs equations? In

the case of a Calabi-Yau complete intersection V' C X associated to a nef-partition,

we have the mirror family V° constructed in Section 4.3.1, and one can prove that

the A-system of differential equations are among the Picard-Fuchs equations of the

mirror family V°, generalizing the case of hypersurfaces considered in Section 5.5.2.

(The reader may worry that we had 8 = (0,... ,0, —1) for the hypersurface case but

8= (0,...,0) for a complete intersection. This difference is insignificant, arising

from the choice of the holomorphic form w in (5.34).)
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As an example of what this means, let X = P* and V = £; = Ops(5H). Then

expanding I from (5.45) using the usual basis of H*(P*) gives

(5.54) I=yo+u H+y H? +y3 H® +y HY.

It follows that yo, ...,y are solutions of the fifth order GKZ equation (5.37).

However, we have seen that the GKZ system is smaller than the full set of

Picard-Fuchs equations contain more than just the GKZ system. Thus, while T

satisfies the GKZ system, it can happen that I does not satisfy all of the Picard-
Fuchs equations. For example, we saw in Section 5.5.2 that (5.37) factors to give

a fourth order equation, which is the Picard-Fuchs equation of the quintic mirror.

Section 6.3.4 will show that in (5.54), only yy,. .. ,ys give solutions of the Picard-

Fuchs equation—y, is spurious. This is why we consider [, = Euler(V) I, which

transforms (5.54) into

(5.55) Iy =5H(yo +y1 H + y2 H? + y3 H®)

since H® = 0. The theory developed in Section 6.3.4 will imply that yo,... ,y; are
a basis of solutions of the Picard-Fuchs equations of the quintic mirror. We will

also see how the formula for [ given in (5.45) arises naturally from the Frobenius

method applied to the Picard-Fuchs equation.

More generally, when the complete intersection determined by the £; is Calabi-

Yau, the function Iy = [], c1(£:) I defined in (5.44) should satisfy the Picard-Fuchs

equations for the mirror. This is asserted without proof in [Giventald]. In explicit

examples, it is often straightforward to check that the coefficients of Iy satisfy

the Picard-Fuchs equations of V°. For example, this is true for the mirror of the

quintic threefold. In these examples, justification typically proceeds by considering

the dimension of various spaces of cohomology classes and using the irreducibility

of the D-module associated to the Picard-Fuchs system.

In Chapter 11, we will first encounter (5.46) and (5.55) in the more general

form used in [LLY]. Specifically, for Ops(5), equation (11.25) reduces to

Hf:=o(5p — mh) edtt
d>0 an:l H:=0(P = Ax — mh)

This formula takes values in equivariant cohomology, and p is the equivariant hy-

perplane class. If we set i = —1 and reduce to ordinary cohomology by letting

Mg — 0, then we get

HGII(P)|(tr) = e~?1/"

. » — ol1 Hf:= (5H * m) tfm HOPNG) =158 3 e e
which is precisely Iy in this case. The authors of [LLY] chose the “HG” notation

to emphasize the hypergeometric interpretation of these functions.

Some of the items introduced here will play an important role in subsequent

chapters. For example, in Section 6.2.3, we will see how the ¢; from (5.43) give nat-

ural coordinates on the Kahler moduli space of a Calabi-Yau hypersurface V C X.

Also, as already mentioned, the function [y, will appear prominently in Chapter 11

when we discuss the mirror theorem. In particular, Example 11.2.5.2 will show that

Proposition 5.5.4 implies some nontrivial relations in the qguantum cohomology ring

of toric complete intersections.

b
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5.6. Yulkawa Couplings

In this section, we will focus on the special case of Calabi-Yau threefolds. As

in Chapter 1, the Yukawa coupling is defined by the formula

(61, 02,65) = f QA (Vo, V6, Ve, Q)
Vv

for §; € H}(V, Ty ) (see (1.9)). If we think of H*(V,Ty) as the tangent space to the
moduli space at a maximally unipotent boundary point p, the moduli coordinates

Z1,... ,2 give a basis 8/8z; of the tangent space. However, since the Gauss-Manin

connection V has a regular singular point at p, it is more convenient to work with

6; = 2;0/0z;. Hence we will be interested in computing

(62,87, 6) = / QA (V5,Y5,Y5,9).
v

5.6.1. The 1-Dimensional Case. We start by considering a Calabi-Yau

threefold V' with 1-dimensional complex moduli. Suppose we are at a maximally

unipotent boundary point with coordinate z. For § = zd/dz, we can write the

Picard-Fuchs equation as

Vi + f1(2)VEQ+ f2(2)VEQ + f3(2) Ve + fa(2)2 = 0.
This equation allows us to determine the Yukawa couplings up to a constant. We

have already seen this done for the quintic mirror in Chapter 2, and the process gen-

eralizes easily. Griffiths transversality implies [, @ A VZQ = 0, and differentiating

twice leads to the equation

/vgnx\vgn=—3/9/\vgn,
v 2 Vv

just as in (2.16). Letting Y = [, @ A V3Q denote the Yukawa coupling, we now

compute

6Y=/Q/\V§Q+/V.;Q/\V§Q
v v

=%/Q/\V‘§Q
v

- -ifl(z)/ QAVIQ.
2 v

The last equality arises from the Picard-Fuchs equation together with the vanishing

of fv QA ViQ for i < 2 by Griffiths transversality. Hence we get

Y =2 H(A)Y,
which can be solved for ¥ up to a constant factor, as was done for the quintic

mirror.

5.6.2. The General Case. Essentially the same method works in the general

setting, though the algebra gets messier. For simplicity, suppose that V is a Calabi-

Yau threefold with 2-dimensional complex moduli. Given a maximally unipotent

boundary point with coordinates z;, z; such that z; = 0 define the boundary divi-

sors, we set §; = 2; d/dz; and define

K®= [ QAVE V2 Q, a+b=3.
Vv
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Thus K is one of the Yukawa couplings

(61,61,61), (61,01,82), (61,62,82), (62,62,82).

However, we also have Griffiths transversality, which here becomes

(5.56) /Q/\vglvggn=o, a+b<2
v

Repeated differentiation yields identities relating the quantities

(5.57) W = / QAVEVERQ, a+b=4
v

to the partial derivatives of the Yukawa couplings K“°. Combining these with

the Picard-Fuchs equations, one gets a solvable system of first order differential

equations in the Yukawa couplings. See [HKTY1] for more details.

To see what this means in practice, we return to a familiar example.

Example 5.6.2.1. The mirror V° of the degree 8 hypersurface in P(1,1,1,2,2)

has 2-dimensional complex moduli with coordinates 21,z from Example 5.5.2.1.

There, we worked out two Picard-Fuchs equations(5.39) and (5.41), which after

some algebra can be written as

(5.58) 0 = (1 — 422)62 — za(63 — 46162 — 61 + 263)

(5.59) 0 = (1 - 25621)8 — 26762 — 821 (4867 + 226 + 3).

These equations give some immediate relations among the K’ ab_ For example,

the Picard-Fuchs equation (5.59) and Griffiths transversality (5.56) easily imply

0= (1-2562)K% — 2K,

which tells us that

K% = %(1 — 25621) K.

Similarly, multiplying (5.58) on the left by §; and &7 and then solving in terms of

K30 gives

_ z(=1+5122)KIZ = 30

1- 422 K
1 — 25627 + 425 — 30722, 22)K03 = 22( 1 K30.

21 = 4z9)2

Hence, it suffices to determine the single Yukawa coupling K*°. We do this

by finding the first order partial differential equation it satisfies. To begin, first
multiply (5.59) on the left by 6,. Proceeding as above and using 6,z = z (6 +1),

one easily obtains

(5.60) (1 - 25621 )W —2W3! — 6402, K0 =0

where W2 is from (5.57). However, repeated differentiation of (5.56) gives the

identities

W4D = 251K 30

w3l = %51[{21 + %52K30

W2 = 61K12 + 52K21.
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A systematic method for writing down all such identities can be found in [HKTY1].
If we combine equation (5.60) with these identities and the above formula for K2¢,
then we get the equation

(1 —25621) 6, K30 — 26, K30 — 5122, K30 =,

We can derive a second equation by multiplying (5.58) on the left by §2. This
yields

(1 - 42)W?2 — 2 (W —aW3 — K30 4 2K21) = g,

and proceeding as above leads to the equation

~2562122 61K + J(1 — 2562; + 10242,25) 6, K = 0.

(There is a lot of cancelation!)

We thus have two first order linear partial differential equations for K3°. Using
some algebra and §; = z;8/8z;, we can rewrite these equations as

8K30 512(1 — 25621 + 1024z 20)

Bz D(z, z3)

BK® 512222

822 D(az1,z)’

where

D(z1,22) = (1 — 2562,)% ~ 5122222,

It follows easily that the Yukawa coupling K3° is given by the formula

30 _ c

K = by <7
From here, we immediately get formulas for K2, K12 and K as well. These
answers agree with those given in the appendix to [HKTY1].

The denominators of the Yukawa couplings K all involve D(z;, z,) and 1~4z5.
In Section 6.1.4, we will show that in the complex moduli space of V°, the equations

D(z1,22) = 0 and 1 — 4z3 = 0 define the two components of the discriminant locus
(= all points (z;,z2) where the defining equation (5.25) becomes singular). Hence
the appearance of these polynomials in the denominators of the Yukawa couplings

is no surprise.

5.6.3. Normalized Yukawa Couplings and the Gauss-Manin Connec-
tion. Our next task is to discuss the normalized Yukawa coupling. As we will see,

this requires a careful choice of both the 3-form © and the moduli coordinates.

We begin by noting that £ is far from unique—we can multiply it by any
nonvanishing function on the moduli space. As in Chapter 2, we normalize ) as

follows. At a maximally unipotent boundary point, dim(Wjy) = 1. By the definition
of the monodromy weight filtration W,, W, is invariant under monodromy. Let go

be a generator of Wy N H?3(V, Z), so that gq is well-defined up to sign. Then up to a
constant factor, yo = (go, 2) is the unique period which is analytic at the boundary

point. As in Section 2.4, we then normalize the 3-form by replacing & by Q/yq.

The argument of Chapter 2 shows that this replaces a Yukawa coupling Y with
Y/v5, in perfect analogy with the discussion prior to (2.19). As in [Morrison2],
we note that Y/y3 is independent of the choice of go.

The next step in normalizing the Yukawa coupling is to choose a canonical
moduli variable. Here, we will discover a very interesting relation between Yukawa



5.6. YUKAWA COUPLINGS 105

couplings and the Gauss-Manin connection V. For simplicity, we begin with the

case where the complex moduii of the Calabi-Yau threefold is 1-dimensional, and

assume that we are at a maximally unipotent boundary point. As above, we have

the 3-form © and the period yo = (go,?). Then normalize ) by replacing it with

/yo, Which as above takes Y to Y/y3. With this replacement, we have (go, 2) = 1.

The following proposition shows that this has a dramatic effect on the form of the

Picard-Fuchs equation, provided we pick the correct local coordinate.

PROPOSITION 5.6.1. Let V' be a Calabi-Yau threefold with 1-dimensional com-

plez moduli, and suppose that we are at a mazrimally unipotent boundary point which

satisfies the integrality conjecture of Section 5.2.2. Then there is a local coordinate

q such that the Picard-Fuchs equation of the normalized 3-form Q is given by

() -
where § denotes 2miqd/dg and Y is the Yukawa coupling defined by

Y =-— / QAVEQ.
v

PRrOOF. Qur proof is based on ideas from [Deligne2]. We begin with a local

coordinate z at the maximally unipotent boundary point. In a neighborhood of

z = 0, we have the Hodge filtration F* of H = F°, and the weight filtration W,

gives a filtration W, of H. Above z = 0, we know that (W,, Fj;) is Hodge-Tate by

(5.11). As observed in [Deligne2, Sect. 6], this implies that

P@Wz;,-] = P@sz—2 =H

in a neighborhood of 0. It follows that (W., F*) is a variation of mixed Hodge struc-

ture of Hodge-Tate type, so that for each p, F? induces on Gr;'},) a l-dimensional

pure Hodge structure of type (p,p). If we set IPP = Wy, M F?, then we have a

natural isomorphism

P o~ GOVPP = Gry,.

Since W. is flat, V induces a connection V3 on Gry). We also have N (Wap) C

Wap—2 = Way_1 (where N is the monodromy logarithm), so that N acts trivially

on Gryy. Hence V3 has trivial monodromy on Gr}y, which thus extends naturally

to z = 0. Since Gr%’},’ is 1-dimensional and has a natural structure over Z, it follows

that in a neighborhood of 0, we can find an integer valued V‘z’}fiat section which

spans Gr{l‘,' and is unique up to +1. Under the above isomorphism, this gives a

section of I?"? which we will denote e3_,.

The sections eg, €1, €2, e3 have some very nice properties. First, IV is an infin-

itesimal automorphism of {&,3) = [, @ A 3, which in combination with (5.4) and

W, = Ws implies (Wp, Wy) = (W2, Wa) = {0}. Hence the only nonzero pairings

are {(eg, e3) and (e, e2), and we can compute these in GrWV. It follows that (eg, €3}

and (e;, e2) must be +1 since (-,-) is a perfect pairing over Z. Thus we can pick

g, €1, €2, €3 such that

(5.61}) (eo,e3) = —1 and (e;,ez) =1.

The reason for this sign choice will soon become clear.
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Now let § = 2mizd/dz. Since e3_, maps to a V,-flat section of GrlY, V(es_,)
lies in Wh,_3 = Wh,_5. But e3—, is also a section of F?, so that Vs(e3—p) lies in
JFP~1. This shows that V;(es—,) is a section of IP~17=1 and it follows that

Vs(eo) =Yre1, Vs(er) =Yaez, Vs(ez)=Yses, Vs(ez) =0

for some functions Y;,Y,,Ys. However, since (eq, €2) is identically zero, we have

0 = 6(e0, e2) = (Vs(en), e2) + (€0, Vis(€2)) = (Y1 €1, €2) + (en, Yaez) = Y; — Vs,

where the last equality uses (5.61). It follows that Y; = Y.

Since V has regular singular points and 6 = 27iz d/dz, Y3 is holomorphic at 0.
Let us prove that Y3(0) = %1. By (5.3), we know that over 0,

Vs=-N

when regarded as a map Fy,/FZ, — F /FL . This shows that Vs(ez) = —N(es).
However, V(e2) = Y3 e3 clearly implies V;(ey) = Y3(0)es. It follows that N(ez) =
—Y3(0)es. But over 0, e3 is a Z-basis of Wy and es, e3 is a Z-basis of Ws. Then
N(ez) = e3 is a consequence of the integrality conjecture described at the end of
Section 5.2.2. We conclude that Y3(0) = =1, as desired.

We can then assume that N(e;) = —e3 by replacing e, e; with —e1, —ey if
necessary (note that (5.61) remains true). This implies Y3(0) = 1, and it follows
that the function

dz
g= exp(/Ys(Z)-z‘)

gives a local coordinate at 0 such that

dz

Redefining § to be 2migd/dg yields Vs(e;) = e3, and since Y; = Y3, we also have
Vs(eg) = e1. Thus, relative to the basis eg, e1, e5, e3 and using ¢ as local coordinate,
Vs has the connection matrix

Ys(z) 27riqzda = 2mwiz —d—

(5.62) (=R =R oxoo HOOO =E=X=K=]
for Y = Y. We will eventually identify ¥ with the normalized Yukawa coupling.

The next step is to show that e, is the normalized 3-form Q. We know that g
is a nonvanishing section of 73, so that Q2 = a(q) e, for some holomorphic function
a(g). The above matrix shows

Vi = 67(a) ep mod ey, e, €3,

which implies that a(q) satisfies the same Picard-Fuchs equation £ does. Since
we are al a maximally unipotent boundary point, there is only one holomorphic

solution (up to a constant), and since {2 is normalized, one solution is (g0, 82y = 1.
This shows that a(g) is a constant a, hence Q = a eg. However, recall that gg is an
integral basis of Wy, so we can assume e3 = go. Then, since (-,-) is odd, we have

1= (g0, Q) = (e3,ae0) = —a{eg, €3) = a,
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where the last equality is by (5.61). This proves that ep = 2. From here, one easily

" obtains the desired Picard-Fuchs equation

, 1 V20
2( V5 _(5.63) W(Y) 0.

The final step in the proof is to show that Y is the Yukawa coupling. This

is easy, for we've already seen that 2 = eg, and then (5.62) shows that Vi) =
6(Y) ez + Y3, and then (5.61) implies

/ QA Vgg = / eg U (5(Y) ez + Yes) = (e, 5(Y) ex + Y€3) =-Y.
v v

This completes the proof of the proposition. [}

After having all of the signs work out so carefully during the proof, it may

seem odd to have the minus sign appear in the final formula for Y. However, this

is completely natural, for in the equation

(5.64) Y=—/QAWQ
v

the right hand side is the pairing Q(a, 8) = (—1)33=1/2 { o U 8 which polarizes

the Hodge structure on H3(V,C) (see (5.1)). According to mirror symmetry, ¥

should correspond to a certain A-model correlation function on the mirror V°,

which can similarly be defined using a polarization on the A-variation of Hodge

structure, which we will discuss in Section 8.3. The need for the sign will become

clear when we compare these two polarized variations of Hodge structure. In the

language of Section 5.6.4, (5.64)} is the normalized Yukawa coupling in the case of

1-dimensional moduli.

The proof of Proposition 5.6.1 given in [Deligne2] is more sophisticated than

what we did above. Starting with our original local coordinate z, Deligne fixes

1 €% < 3 and considers the extension of Hodge structures

(5.65) 0— Gry¥ o — W /Wa_y — Gryy —0.

Over each point, the extension we get is classified by a number in C*, so that as

(WL, F*) varies in a neighborhood of z = 0, the extension is classified by a function

g:(z). Then the functions we denoted Y}, Y5, Y; can be expressed in terms of the g;

as Yy, = qi‘_%‘i‘:i, 1 € i< 3. (A minus sign occurs in [Deligne2, Sect. 7] since he is

working in the dual situation.) Thus the special coordinate q of Propaosition 5.6.1

is q; = g3, which classifies (5.65) for i =1, 3.

Proposition 5.6.1 generalizes nicely to the case when the Calabi-Yau three-

fold has r-dimensional moduli. If we assume the integrality conjecture from Sec-

tion 5.2.2, then we get the following description of the Gauss-Manin connection

near a maximally unipotent boundary point, which we think of as 0 € 4",

As before, we have PP = W, N FP = Gr}Y, though I and I*? now have

rank r. The basis eg, e1, €2, e3 used in the proof of the proposition generalizes to

bases

eoof I%%, e;, 1<j<r of I*2, &5 1<k<r, of IV, €% of e

such that

(5.66) (e0,€®) =—1 and (e;,€") =6, 1 <j k<,
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and &ll other pairings vanish. Note how (5.61) is the special case 7 = 1. Further-

more, as in the proof of Proposition 5.6.1, we can assume that these basis elements

extend to 0 and are integral there.

The methods used to prove Proposition 5.6.1 (or the more powerful methods
of [Deligne2]) then imply that we can find special Iocal coordinates g;, .. . »gr of
0 € A" such that for §; = 2miq; 8/0q;, we have

Vs’ =0

V.;,.e’c =6,¢e% 1<k<r

(5.67)
,

Vse; =) Yire*, 1<j<r
k=1

Vs.eo = e;

for some functions Y;;. This shows how the matrix (5.62) generalizes to the case

of r-dimensional moduli.

By the argument of Proposition 5.6.1, we know that eg is the normalized 3-form
§2, and then (5.67) implies that the Y;; are given by

(5.68) Yk = — / QA V5 Ve V5 Q.
v

In Section 5.6.4, we will define the Y;;; to be the normalized Yukawa couplings.
Then the above discussion shows that the Gauss-Manin connection is uniquely
determined by the normalized Yukawa couplings.

We next show that the functions Yi;i all come from a single “potential func-
tion”. Introduce variables ¢; such that g; = e*TM%, so that 8/8t; = 2miq; 8/dg; =

;. Then we have the following lemma.

LEMMA 5.6.2. There is a holomorphic function ®(t1,... ,t) such that

1 8%
S e e — all i34 k.Kflc (21rz')3 at,-atjatk for all 4,5k

PROOF. The key point is that V is flat, so that the composition

H-LHRM L He 0k

is zero (where § = (A*)"). Using (5.67), one computes that

0= Vz(eo) = Z Kjkek R dt; A dtj.

1,5,k=1

This implies that Y;;x = Yju for all 4,7, k. Furthermore, one also computes that
for 1 < j < r, we have )

2 . 0 ~ Yk 40=V¥e;)= Y Yipel @dte ndt:+ Y =2t gdt, ndt.
‘ Bte

k=1 ik f=1

This implies first, that Yijk = Yij: for all 4, 5, k, and second, that

sk _ 0¥k

Ote at; '

Hence Y, is completely symmetric with respect to 3, J, k. Then, using the above

condition on the partial derivatives, we easily conclude the existence of ®. a

for all 4, j, k, £.
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Notice that if we define V by (5.67), then the existence of the potential function

. ® is equivalent to the flatness of V.

We have thus proved that near a maximally unipotent boundary point 0 € A"

‘satisfying the integrality conjecture, the Gauss-Manin connection of a family of

Calabi-Yau threefolds is determined by the single function ®. Since @ is a function
of t; = 5}5 log g;, it is multi-valued on (A*)7, but its third derivatives are the

sormalized Yukawa couplings, which are single-valued and extend holomorphically
to Ar. Furthermore, using &, one can write down explicitly lots of interesting

things about the variation of Hodge structure on H3(V,C). For example, we will
see in (8.53) that one can write down a basis of multi-valued flat sections in terms

of the potential function &.

One of the real surprises is that a natural analog of ® exists on the mirror side,

where it is called the Gromov-Witten potential. We will explore this analogy in

detail in Sections 8.5 and 8.6.

5.6.4. Normalized Yukawa Couplings and the Mirror Map. Proposi-

tion 5.6.1 shows that the Gauss-Manin connection is determined by the Yukawa

coupling, provided we use the normalized 3-form and the correct local coordinate.

Now a miracle occurs: the mysterious coordinate ¢ is precisely the mirror map! We

won't define the mirror map in general until Section 6.3, but we can understand the

case of 1-dimensional moduli if we follow Chapter 2. There, recall formula (2.6),

which gave the mirror map as

(5.69) g=-exp(2mif Q/f Q),

where fw Q is holomorphic and f% Q/ f_mQ increases by 1 when we go around

z = 0. If we let go, g1 be the Poincaré duals of vp,7:, then this translates into

go € Wo, g1 € Wy, and N(g1) = go, where N is the logarithm of the monodromy.

Hence go, g1 satisfy the definition of maximally unipotent monodromy, and the

formula for § becomes

(5.70) g = exp (2mi{g1, Q)

since Q normalized implies (go, ) = 1.

We can prove that this is the coordinate ¢ from Proposition 5.6.1 as follows.

We have the basis e, e1, ez, €3 constructed in the proof of the proposition, and the

proof also shows that go = e3, 2 = eo, and Vs(ez) = e3. It follows easily that

log q

g1 = —ez + omi €3

is flat, where ¢ is now the coordinate from Proposition 5.6.1. Going once clockwise

around the origin increases %fr—:l by 1, so that T(g:1) = g1 + go, which in turn implies

N(g1) = go- By definition, e2 and e; lie in W; and W respectively, and we conclude

that g, is a flat section in W5 satisfying N(g;) = go. Hence this is the g1 we want,

from which we obtain

1

(91, = 5—logyg.

It follows that the coordinate g is the mirror map § defined in (5.70).

More generally, once we define the mirror map in general in Chapter 6, it will

follow that in the case of a Calabi-Yau threefold with r-dimensional moduli, the

mirror map is given by the special coordinates g1, . .. ,g- appearing in our discussion

(5.66) and (5.67) of the r-dimensional generalization of Proposition 5.6.1.
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Assuming this for the time being, we will call q,, ... , g, the mirror coordinates,

and using them, we can finally give a formal definition of the normalized Yukawa

coupling.

DEFINITION 5.6.3. Suppose we have a family of Calabi-Yau threefolds which

satisfies the integrality conjecture at a mazimally unipotent boundary point. If

q1;--- ,gr are the mirror coordinates defined above and Q is the normalized 3-form,

then the normalized Yukawa couplings are defined by

Yijk = —/ Q/\Vg,‘V&V.sz,
v

where 6]' = 27('in a/an .

The Y;;x are also often called the B-model correlation functions. There is one

case where we can explicitly compute the normalized Yukawa coupling.

Example 5.6.4.1. Let V° be the quintic mirror. By [Morrison2], we know that

V© satisfies the integrality conjecture, so that its normalized Yukawa coupling Y is

defined. We claim that Y is given by the formula

5 qdz\3

) Y= e ca)
where z is the usual moduli variable and

()= 3 O (e
oo 5n

() = () los(-9) +53_ SHE[ Y 3] (-1
n=1 J=n+1

q = exp(v1/vo)-

Note that (5.71) is precisely the B-model correlation function which appears in the

statement of mirror symmetry for the quintic threefold (2.26) given in Chapter 2.

Section 6.3.4 will prove that y, and y; are solutions of the Picard-Fuchs equa-
tion of the quintic mirror. The formula ¢ = exp(y:/yo) is how the mirror map is

defined in [CdGP], and then [Morrison2, App. C] shows that this agrees with the

definition of mirror map given in (5.69). Hence g is the mirror coordinate.

If Q2 is the 3-form defined in (2.7), then the methods of Section 5.6.1 applied to
the Picard-Fuchs equation (5.12) from Example 5.4.1 show that

/ QAV. o V.aV.40= X some constant,
1

14552

just as in Chapter 2. Normalizing replaces Q with & = Q /{g0,§?). Since yo and
(90,§1) are holomorphic solutions of the Picard-Fuchs equation, Yo is a nonzero
constant multiple of (gg, 2}, so that as explained in Section 5.6.3,

= = 1/u QAV_ 4V, 4V 4= TSm0 x another constant.

Finally, when we switch from z to the mirror coordinate g, we have

. d gdz d
6: _= - r—2miq 7 21rzz aq 2
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so that by Griffiths transversality, the normalized Yukawa coupling is

Y=— fi AVsVsVsQ
VD

(5.72) ~ c qdzy 3

el
for some nonzero constant c. Then (5.71) will follow once we show ¢ = 5. Since

evaluating the above equation at ¢ = 0 gives Y (0) = ¢, it suffices to show Y(0) = 5.

In terms of Chapter 2, the constant ¢ was written (27%)3c,, and we set cp =

5/(2m1)® in the discussion following (2.22) to get the correct leading term as pre-

dicted by mirror symmetry. But now, in this chapter, we can predict the constant

in advance by computing the normalized Yukawa coupling. More precisely, we will

compute Y(0) by combining the Hodge theory developed earlier in this chapter

with explicit computations from [CdGP, Morrison2].

We will need the notation of the proof of Propositidn 5.6.1. Recall that eg =

is part of a basis eg, 1, €2, e3 of the canonical extension H which over ¢ = 0 is

basis of the integral structure.

Now consider V3(eo) at ¢ = 0. First, by (5.3), we know that over ¢ =0,

Vs =—N

on the graded pieces of the limiting Hodge filtration, so that modulo F._, we have

Vi(eo)(0) = (—N)3(eo(0)) . However, we also have V3(eq) = Ye;3 + 6(Y)e; from

the connection matrix (5.62). Putting these together, we obtain

N3(eg(0)) = ~Y (0)ea(0).

Now let s; be the flat section of H such that the value of exp(~t1N)s; at ¢ =0 is

e;(0). Since the e; are an integral basis at ¢ = 0, the s; are an integral basis of Hz.

Then it follows from the previous equation that )

(5.73) N3(s0) = =Y (0)s3.

Finally, we use the explicit computation of the monodromy of the quintic mirror

family given in [CAGP]. As explained in [Morrison2, App. C|, there are integral

flat sections 52, az of H which are part of a Z-basis and satisfy (a2,3%) =1 and

N3(82) = —5a2. (In [Morrison2|, this is written with a + sign because there,

the boundary point is oo, while here it is 0, and the inversion map taking oo to 0

reverses the orientation of the generator of the monodromy group.)

Comparing (5.73) and N3(8%) = —5a;, we see that s3 and o are integral

generators of Wy, so that multiplying 3%, a2 by —1 if necessary, we can assume

ay = s3. Since N3 : W5/Ws ~ Wy and N3(Y(0)3% — 5sg) = 0, we infer that

Y(0)3% — 556 € Ws. Then (W5, Wo) = 0 implies (Y(0)32 — 530, 83) = 0. But

we also know that (a2,%) = 1, and (5.61) implies (s¢,s3) = —1. From here, we

immediately conclude that Y (0) = 5, as desired.

Q
a

There are two further comments we wish to make about the example just

discussed. The first is that Y(0) = 5 and (5.73) imply that

N3(30) = —533.

It turns out that this equation makes perfect sense from the point of view of mirror

symmetry. When we study the A-model connection of the quintic threefold in

Section 8.5, we will see that the monodromy N of this connection is naturally
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isomorphic to cup product with —g , where H is the hyperplane section of the

quintic threefold. Then the above monodromy equation is consistent with 3 = 5,
The second observation to make is that proving (5.71) required some extremely

detailed knowledge about the quintic mirror family. In addition to the types of
computations discussed in this chapter, we also needed explicit facts about the
monodromy S0 that we could satisfy the integrality conjecture, compute the mirrormap, and determine Y (0),

The moral of this discussion is that although the definition of normalized
‘Yukawa coupling has wonderful theoretical properties, it is very hard to compute
in practice. What happens more often is that one only partially normalizes theYukawa coupling, which means normalizing the 3-form Q and switching to mirrorcoordinates, but not worrying about the value at 0. In such cases, we only know theYijx up to a constant, though because of Lemma 5.6.2, there is only one constantto worry about. We will take this approach when we formulate a toric version ofthe mirror theorem.

This section began with the Yukawa coupling, then discussed Picard-Fuchsequations and connection matrices, and wound up with the mirror map and thenotion of a normalized Yukawa coupling. This is a remarkable turn of events, butthe story will get even better. In Chapter 8, we will study the A-model connection,which is built from quantum cohomology. In particular, Example 8.5.4.1 will showthat if a Calabi-Yau threefold V° has h*(V°) = 1, then the middle cohomology©,HPP(V°) has a basis such that matrix of the A-model connection is precisely(5.62), except that Y is now the A-model correlation function discussed in Sec-tion 1.2. The situation gets richer in Chapter 10, where Example 10.3.2.1 discussesV° from the point of view of guantum differential equations and derives the operator

L) (°55),
Wwhere Y is again the A-model correlation function of V°. This is strikingly sim-ilar to the Picard-Fuchs equation (5.63) (especially if we let g = e2¥1 gg that§ = d/dt;). Finally, when the Calabi-Yau threefold V is a toric hypersurface andV*° is its Batyrev mirror, the Hodge-Theoretic Toric Mirror Conjectures discussedin Section 8.6.4 assert (roughly speaking) that the Gauss-Manin connection onH3(V,C) coincides with the A-model connection on @®pHPP(V°) under the coordi-nate change given by the mirror map. An immediate corollary will be the equalityof the two Yukawa couplings.

But there is serious work to be done before this can happen. First of all, weneed to give a careful definition of the mirror map. This requires a detailed studyof complex and Kihler moduli. There are many compactifications of the complexmoduli space, giving potentially many maximally unipotent boundary points tochoose from, and the picture on the Kihler side is equally complicated. Theseissues will be explored in Chapter 6.
The other missing ingredient is a careful definition of the A-model correlationfunction or three-point function mentioned above. For this, we will need a carefulstudy of Gromov-Witten invariants. These invariants and their relation to enumer-ative geometry will be discussed in Chapter 7. Then, when we combine this withquantum cohomology from Chapter 8, we will have all the ingredients needed tostate a mathematical version of mirror symmetry. Proving some special cases ofthis will be the main topic of Chapter 11.



CHAPTER 6

Moduli Spaces

The goal of this chapter is to describe the complex and Kahler moduli spaces

and to explain how to construct the mirror map between the Kihler moduli space

of a Calabi-Yau manifold V" and the complex moduli space of its mirror V°.

Our discussion will reveal that the complex and Kihler moduli have a surpris-

ing richness. We will devote special attention to Calabi-Yau hypersurfaces in toric

varieties, for here one can describe explicitly (though somewhat conjecturally) what

the complex and Kahler moduli look like. Actually, we will only examine the poly-

nomial and toric parts of these moduli spaces, but these will be plenty interesting.

The intimate connection between complex and Kahler moduli is mediated by

the mirror map, which will be defined at the end of the chapter. The difficulty

is that one can’t fully understand complex moduli without knowing about Kahler

moduli, and vice versa. Furthermore, both require knowing the mirror map, yet

a full understanding of the mirror map will have to wait until we study quantum

cohomology and quantum differential equations in Chapters 8 and 11. Hence our

discussion, while ostensibly proceeding from complex moduli to Kéhler moduli to

the mirror map, will in fact weave back and forth between these topics.

6.1. Complex Moduli

In this section, we will discuss the complex moduli of Calabi-Yau manifolds.

It is shown in {Viehweg] that polarized Calabi-Yau manifolds (V, £) are param-

eterized by a smooth quasi-projective variety. We will focus our attention on a

connected component M of this moduli space.

Our goal is to find a convenient compactification M of M. We will adopt

a utilitarian approach, so that we will be flexible in interpreting the meaning of

“convenient”. At a minimum, we will want the compactification divisor to have

normal crossings near the maximally unipotent boundary points that are relevant

for mirror symmetry. By resolution of singularities, a compactification with normal

crossings always exists but is far from unique. However, it is not clear why a such

a compactification should have maximally unipotent monodromy.

After a discussion of maximally unipotent monodromy, our primary focus will

be on the moduli space of Calabi-Yau hypersurfaces arising from Batyrev’s con-

struction described in Section 4.1. We will then describe some examples in detail.

6.1.1. Maximally Unipotent Boundary Points. Suppose we have a fam-

ily of Calabi-Yau manifolds over the punctured polydisc (A*)” C A" such that the

monodromy is maximally unipotent at the origin. This is what we call a mazimally

unipotent boundary point. Let z,...,2 be coordinates of A", and let gy,... ,9r

be as in the definition of maximally unipotent monodromy (Definition 5.2.2). We
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isomorphic to cup product with —H, where H is the hyperplane section of the
quintic threefold. Then the above monodromy equation is consistent with H3 = 5.

The second observation to make is that proving (5-71) required some extremely
detailed knowledge about the quintic mirror family. In addition to the types of
computations discussed in this chapter, we also needed explicit facts about the
monodromy so that we could satisfy the integrality conjecture, compute the mirrormap, and determine Y(O)

The moral of this discussion is that although the definition of normalized
Yukawa coupling has wonderful theoretical properties, it is very hard to compute
in practice. What happens more often is that one only partially normalizes theYukawa coupling, which means normalizing the 3-form Q and switching to mirrorcoordinates, but not worrying about the value at 0. In such cases, we only know theYijx up to a constant, though because of Lemma 5.6.2, there is only one constantto worry about. We will take this approach when we formulate a toric version ofthe mirror theorem.

This section began with the Yukawa coupling, then discussed Picard-Fuchs
equations and connection matrices, and wound up with the mirror map and thenotion of a normalized Yukawa coupling. This is a remarkable turn of events, butthe story will get even better. In Chapter 8, we will study the A-model connection,which is built from quantum cohomology. In particular, Example 8.5.4.1 will showthat if a Calabi-Yau threefold V° has h?(V°) = 1, then the middle cohomology@, HTMP(V°) has a basis such that matrix of the A-model connection is precisely(5.62), except that Y is now the A-model correlation function discussed in Sec.tion 1.2. The situation gets richer in Chapter 10, where Example 10.3.2.1 discussesV® from the point of view of quantum differential equations and derives the operator

(a) (46),
Where Y is again the A-model correlation function of V°. This is strikingly sim-ilar to the Picard-Fuchs equation (5.63) (especially if we let ¢ = 2TM gg that6 = d/dt;). Finally, when the Calabi-Yau threefold V is a toric hypersurface andV® is its Batyrev mirror, the Hodge-Theoretic Toric Mirror Conjectures discussedin Section 8.6.4 assert (roughly speaking) that the Gauss-Manin connection onH3(V,C) coincides with the A-model connection on ©pHPP(V°) under the coordi-nate change given by the mirror map. An immediate corollary will be the equalityof the two Yukawa couplings.

But there is serious work to be done before this can happen. First of all, weneed to give a careful definition of the mirror map. This requires a detailed studyof complex and Kihler moduli. There are many compactifications of the complexmoduli space, giving botentially many maximally unipotent boundary points tochoose from, and the picture on the Kibler side is equally complicated. Theseissues will be explored in Chapter 6.
The other missing ingredient is a careful definition of the A-model correlationfunction or three-point function mentioned above. For this, we will need a carefulstudy of Gromov-Witten invariants, These invariants and their relation to enumer-ative geometry will be discussed in Chapter 7. Then, when we combine this withquantum cohomology from Chapter 8, we will have all the ingredients needed to

this will be the main topic of Chapter 11.



CHAPTER 6

Moduli Spaces

The goal of this chapter is to describe the complex and Kihler moduli spaces

and to explain how to construct the mirror map between the Kihler moduli space

of a Calabi-Yau manifold V" and the complex moduli space of its mirror V°.

Qur discussion will reveal that the complex and Kéhler moduli have a surpris-

ing richness. We will devote special attention to Calabi-Yau hypersurfaces in toric

varieties, for here one can describe explicitly (though somewhat conjecturaily) what

the complex and Kahler moduli look like. Actually, we will only examine the poly-

nomial and toric parts of these moduli spaces, but these will be plenty interesting.

The intimate connection between complex and Kihler moduli is mediated by

the mirror map, which will be defined at the end of the chapter. The difficulty

is that one can’t fully understand complex moduli without knowing about Kahler

moduli, and vice versa. Furthermore, both require knowing the mirror map, yet

a full understanding of the mirror map will have to wait until we study quantum

cohomology and quantum differential equations in Chapters 8 and 11. Hence our

discussion, while ostensibly proceeding from complex moduli to Kihler moduli to

the mirror map, will in fact weave back and forth between these topics.

6.1. Complex Moduli

In this section, we will discuss the complex moduli of Calabi-Yau manifolds.

It is shown in [Viehweg] that polarized Calabi-Yau manifolds (V, £) are param-

eterized by a smooth quasi-projective variety. We will focus our attention on a

connected component M of this moduli space.

Our goal is to find a convenient compactification M of M. We will adopt
a utilitarian approach, so that we will be flexible in interpreting the meaning of

“convenient”. At a minimum, we will want the compactification divisor to have

normal crossings near the maximally unipotent boundary points that are relevant

for mirror symmetry. By resolution of singularities, a compactification with normal

crossings always exists but is far from unique. However, it is not clear why a such

a compactification should have maximally unipotent monodromy.

After a discussion of maximally unipotent monodromy, our primary focus will

be on the moduli space of Calabi-Yau hypersurfaces arising from Batyrev's con-

struction described in Section 4.1. We will then describe some examples in detail.

6.1.1. Maximally Unipotent Boundary Points. Suppose we have a fam-

ily of Calabi-Yau manifolds over the punctured polydisc (A*)" € A7 such that the

monodromy is maximally unipotent at the origin. This is what we call a mazimally

unipotent boundary point. Let zq,...,z. be coordinates of A", and let go,--. ,9r

be as in the definition of maximally unipotent monodromy (Definition 5.2.2). We
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then define holomorphic functions ¢, ... , g by the formula [Morrison6]

1 s :
6.1 lo, = —— . QymIk,(6.1) B9 = g ;(QJ )

2mi

where m7* is the inverse matrix to the matrix m;; from Definition 5.2.2.

Let’s compute the behavior of gx near the origin. From N;g; = m.;go, we note

that (g;, Q) ~ m.;(go, ) log(z;)/(2mi) along 2; = 0. Substituting these asymptotics

for all 2; into (6.1), we get gx ~ czx near the origin for some constant ¢ # 0.

Thus (g3, ... ,g,) define local coordinates near our maximally unipotent boundary

point. Furthermore, these coordinates are almost unique. If we change go, ... , g,

to g = Y\ _oCikgk, then we get new local coordinates (g,... ,qg.), and one can

show that .

(6.2) q; = eZ”(cko/cou)qk, k0 — Z;=1Cjomljk,

where (m'7*) is inverse to the matrix determined by N;(g}) = TM go- In Section 6.3,

we will discuss how to determine the gx uniquely.

Unfortunately, the “uniqueness” just mentioned assumes that we’re working on

a fixed normal crossings compactification of (A*)”. Hence we need to determine

how the g change when we pass to a different compactification. This need only be

done locally, so consider a holomorphic map ¢ : ATM — A" which is an isomorphism

when the source and target are restricted to (A*)", and which maps coordinate

hyperplanes to coordinate hyperplanes. Shrinking the disks if necessary, it is easy

to see that coordinates w = (ws,... ,w,) on the source and z = (21,... ,z.) on the

target can be chosen so that the map is given by

(6.3) z = ¢(w) = [Jwiv,

where the a;, are nonnegative integers such that the matrix (a;;) is invertible over

Z.

We claim that w = 0 is a maximally unipotent boundary point in the source

if and only if z = 0 is maximally unipotent in the target. To prove this, we first

compare the monodromies about the divisors z; = 0 and the divisors w; = 0. Let

T7 and N7 respectively denote the monodromy and the logarithm of monodromy

about the divisor 2; = 0, and similarly let 77 and N denote the monodromy and

the logarithm of monodromy about the divisor w; = 0. If we follow a path circling

around w; = 0 once, say

278
0= (P1,.. - P 1, D€ Dit1s - o 2 Dr)s

then substituting into (6.3) shows that the composition with ¢ gives a path winding

a;; times around z; = 0. Thus, for each i, we obtain the formula

T =11
7

Now suppose that the 7 are unipotent. Since they commute, the T are also

unipotent, and the converse follows by the invertibility of (a;;). This allows us to

take logarithms, which gives

(6.4) N¥ =" ay; N

7
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For later purposes, note that this can be written as

Ny N§

(6-5) Sl=Al s
NY NE

where A= (a,-j)_

We next compare the monodromy weight filtrations. On the source, this is

determined by N = 3", a; N with a; > 0. However, by (6.4), we have

N=ZaiN,-“’ =Z (Za,-aij)Nj.
i j i

We are assuming a;; > 0 for all 4,7, and it follows that 3>, a;a;; > O since (a;;) is

invertible. This shows that we can use N on the target as well, so that source and

target have the same monodromy weight filtration. From here, it is easy to see that

Definition 5.2.2 is satisfied at w = 0 if and only if it holds at z = 0, and our claim

is proved.

In this situation, we also use ¢7 and ¢} to denote the coordinates determined

in the differing local compactifications by (6.1). Then we compute

(6.6) g =T

Note the similarity to (6.3).

It follows that one maximally unipotent boundary point gives rise to lots of

others by means of (6.3), which in turn gives lots of local coordinates (q1,. .. ,4r),

all related by (6.6). In Section 6.2.1, we will see that on the Kahler side, the large

radius limit points have local coordinates with ezactly the same indeterminacy.

Returning to the global situation, suppose that M is a smooth normal crossings

compactification of the complex moduli space M. If M has a maximally unipo-

tent boundary point, then the above discussion shows that blowing-up gives other

compactifications with several maximally unipotent boundary points. And it could

also happen that A is itself a blow-up. In fact, M could have several maximally

unipotent boundary points which are identified under a blow-down to a singular

compactification.

One way to sort out these possibilities is to introduce an equivalence relation

among maximally unipotent boundary points. Following [Morrison6], we make

the following definition.

DEFINITION 6.1.1. Let M be a smooth normal crossings compactification of the

moduli space M. We say that two mazimally unipotent boundary points p,q € M

~are equivalent if there is a connected set = C M — M containing p and q and
a local system L on the cotangent bundle of M defined on a neighborhood of =

having logarithmic poles on the boundary such that the local system is spanned by

the 1-forms dlog gk for qx as in (6.1) near each of the points p and q.

It is easy to see that the multiple maximally unipotent boundary points created

by a blow-up are equivalent in this sense.

One of the basic ideas of mirror symmetry is that each equivalence class of

maximally unipotent boundary points of the complex moduli space of the Calabi-

Yau manifold V' should correspond to a suitably defined equivalence class of large
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radius limit points (to be discussed in Section 6.2.1) on the Kihler moduli space of
its mirror V°,

In practice, starting from a particular choice of M, one usually blows down as
much as possible until we get a smooth normal crossings compactification which
can’t be blown down any further. This makes the equivalence classes as small as
possible. We will see an example of this in Section 6.1.4.

We also note that the equivalence relation of Definition 6.1.1 can be defined on
more general compactifications of M. This is done in [Morrison3).

Finally, notice that we’ve said nothing about the ezistence of maximally unipo-
tent boundary points. This is still conjectural, though they are present in every
example computed to date, and as we will soon see, the moduli of toric hypersur-
faces have naturally occurring compactifications with distinguished boundary points
conjectured to be maximally unipotent (see [HLY?2] for a nice partial result). In
general, mirror symmetry predicts the existence of very special compactifications
of M which not only have maximally unipotent boundary points but also reflect
the structure of the Kihler moduli of the mirror. We will have more to say about
this later in the chapter.

6.1.2. Complex Moduli of Toric Hypersurfaces. We will study the com-
plex moduli of the Calabi-Yau toric hypersurfaces. Recall from Section 4.1 that for
a reflexive polytope A, the anticanonical hypersurfaces V ¢ P, are Calabi-Yau,
though possibly singular. If T is a maximal projective subdivision of the normal fan
of A, then we proved that the proper transform of V is again anticanonical, giving a
family of minimal Calabi-Yau hypersurfaces V ¢ X = X 5. Thus V is a Gorenstein
orbifold with at worst terminal singularities and is smooth when dim(V) = 3.

Rather than deal with the whole complex moduli space M of V, we will concen-
trate on the “polynomial” part Moty C M consisting of those complex structures
which can be realized as hypersurfaces in X. We will see later that if no points
of A are interior points of codimension two faces, then M,y is the full complex
moduli space.

To construct the polynomial moduli space, we begin with the vector space
L{ANM) of Laurent polynomials of the form Lomeanm AmtTM. As in Section 3.2.1,
tTM is the character corresponding to m. (In Chapter 3, L(A N M) was denoted
L(A), but here we want to make the dependence on the lattice more explicit.) By
(3.7), we have a natural isomorphism

H(X,0x(—Kx)) =~ L(AN M).

We can think of a polynomial in L(A N M ) as defining the affine part of an anti-
canonical hypersurface in X. Also, ~Kx = »Dp implies that

ANM={meM: (m,uv,) > ~1 for all p}.

Since the pullback of a canonical differential is again a canonical differential, the
automorphism group Aut(X) acts naturally on the projective space P(L(A N M)),
so that the polynomial moduli space is the quotient .

Moy = P(L(A N M))/Aut(X).

To make this precise, we need to replace P(L(ANM)) with the subset corresponding
to quasi-smooth hypersurfaces, and we also need to worry about the existence of
the quotient. The latter concern is serious since Aut(X) need not be reductive.
However, as pointed out in [BC, Sect. 13], one can find a nonempty invariant open
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set U C P(L(A N M)) such that a geometric quotient M, exists. Hence we can

construct the polynomial moduli, at least generically.

It would be nice to get a clearer picture of this moduli space, and for this

reason, we next discuss the simplified polynomial moduli space Msimp introduced

in [AGM1]. Let (AN M)g be the set of points of A N M which do not lie in

the interior of any facet of A, so that L((ANM )0) is the vector space of Laurent

polynomials of the form

S AmtTM

me(ANM)o

Since the torus T = Ty acts on tTM via v-tTM = vTMtTM for v € T, we get the induced

action on L{{A& N M)o), where

(6.7) VAdm =" Am, veT.

It follows that T acts on P(L((ANM)g)), and one can check that under the inclusion

T C Aut(X), this is compatible with the action of Aut(X) on P(L(A N M)).

We now define the simplified polynomial moduli space Mgimp t0 be

Msimp = ]P(L((A N M)O))/T

As before, we actually need to restrict to the subset of P(L((ANM)o)) corresponding

to quasi-smooth hypersurfaces, and we also need to worry about the existence of

the quotient. Fortunately, the latter is not so bad since T' is reductive and (6.7)

linearizes the action. Hence we can not only construct Mgim, but alse compactify

it using the GIT quotient (Mumford1]

—Msimp = ]P(L((A N M)U))//T

For our purposes, however, the most interesting compactification is provided by the

Chow quotient from [KSZ1]. We will see below that this compactification has a

natural toric structure given by the secondary fan.

Our basic claim is that the obvious map ¢ : Mgimp — Moly is a local isomor-

phism, at least generically. This is the dominance conjecture from [AGM1], which

We NOW prove.

PROPOSITION 6.1.2. The map ¢ : Mgimp — Mopoly is generically étale.

PROOF. We will let Auto(X) denote the connected component of the identity

of Aut(X). As noted in [Cox], Auto(X) has finite index in Aut(X), so that it

suffices to show that the natural map

P(L((AN M)o))/T — P(L(A N M))/Auto(X)

is dominant.

Let I = (AN M) — (AN M)y be the set of integral points of A which are in

the interior of a facet. By the proof of Proposition 3.6.2, each m € I determines

a l-parameter family of automorphisms ym. : X — X, where u € C is the pa-

rameter. To describe ym 4, we use the homogeneous coordinate ring § = Clz,]

from Section 3.2.3. Namely, since m is the interior of a facet, there is p such that

(m,v,) = —1 and (m,vy) > —1 for all p' # p. If we let xP =1, #1:("“’ ») then
the corresponding 1-parameter family of automorphisms is given by

Ym,ulTp, X) = (2, + ux?,x).
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Here, as in (3.21), we have represented points of CE(TM by (z,,x), where x is a
vector indexed by I(1) — {p}. :

Consider the |I| parameter family of automorphisms

(6.8) va=J] tmou
my€l

An ordering of I needs to be chosen to define the right hand side of (6.8), since the
Ym, u, Deed not commute. If we combine the inclusion 7' C Autg (X) with the map
u — Yy, We get a map

T x € — Auto(X)

which is easily seen to be dominant. Hence it suffices to consider the action of
T x C! on P(L{(A N M)), and the proposition will follow provided we can show
that generically, the orbits of C! have dimension |I| and meet P(L((A 0 M)o))
transversely.

We begin by computing the action of Ym,u On a Laurent monomial t* ¢

L(A N M). To do this, one needs to map t* to the monomial TT,z;*"*'*! (see
Section 3.2.3), apply ¥m,u, and then map back to L(A N M), I (m,v,) = —1-
determines the facet m lies in, then one can compute that

te if (o, v,) =~1

t* +u({a,vp) + 1)t*TM + hot. if {a,v,) > —1.
UYmu (ta) = {

One can check that {a,v,) > ~1 implies that a+m € ANM. See Example 6.1.4.2
for a sample computation, including the higher order terms omitted above.

Since A is reflexive, the origin 0 is contained in (A N M), so that 1 = 0 ¢
L((AN M)p). Then one easily obtains

w@) =1+ > wtTM + hot.
mi€l

This shows that the orbit of C! acting on 1 has the correct dimension, and its
tangent space at 1 is clearly complementary to L((A N M)g). Because the constant
term of yy(1) is always 1, the same is true once we projectivize, and the proposition
follows easily. d

This proposition implies that Minyp is a finite cover of Mopoly. From knowledge
of the automorphism group of X, we can calculate the finite group acting on Mg,
explicitly. This has been done in an example in [CFKM], and Example 6.1.4.2
below will illustrate the technique in a slightly simpler situation.

We next compute the dimensions of Mooy and the full complex moduli space
M and determine when the two are equal.

PROPOSITION 6.1.3. Let V € X = Xy be a minimal Calabi-Yau toric hy-
persurface, where ¥ is a mazimal projective subdivision of the normal fan of the
n-dimensional reflezive polytope A. Then:

(2) The polynomial moduli space Moy of V' has dimension

dim(Mpoy) = l(A) —n — 1 — S LIND),

where I[(A) = |A N M|, the sum is over all facets T of A, and I*(T) is the
number of lattice points in the relative interior of I.
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(it) The complexr moduli space M of V' has dimension

dim(M) ={(A) —n—1 -3 () + Zez*(e)z*(é°),

where the second sum is over all codimension two faces of A, and @° is the

2-dimensional face of A° dual to ©.

(ii2) If no points of AN M are interior points of codimension two faces, then

M= Mpoly-

Proor. Computing the dimension of Mg, is easy, for generically, the action

of T on P(L{{A N M)g)) has finite stabilizers since A has dimension n. Thus

dim(Mgimp) = [(ANM)o| —n ~ 1,

which is also the dimension of Myl,. Since [(A) = |(A N M)o| + > I*(T), the

first part of the proposition follows.

For the second part, we note that since V' is a minimal Calabi-Yau orbifold, its

infinitesimal deformations are classified by H!(V,©v) ~ H'(V,Q3TM%) by Proposi-

tion A.4.3 (remember that V' has dimension n ~ 1). Furthermore, by a result of

Ran [Ran2], these deformations are unobstructed since the singularities of V have

codimension at least 4 by Proposition A.2.2. It follows that the dimension of M is

h*~21(V). This Hodge number is computed in (4.8), which proves the second part

of the proposition. The final part follows immediately from the other two, so we

are done. d

This proposition relates nicely to Proposition 4.1.5 in Chapter 4. The tangent

space to M at a generic point V is H'(V,©y) ~ H"21(V), and what we called

H:Jf'l(V) C ATM2Y(V) in Section 4.1 is the tangent space to My, at V. Thus

the first part of Proposition 6.1.3 gives a rigorous proof of (4.5).

Now that we know more about M)y, our next task is to compactify it and

see if we can find some maximally unipotent boundary points. Actually, we will

work with Mgy, because it has an especially nice compactification. As mentioned

earlier, we will use the Chow quotient

(6.9) Maimp = P(L((A N M)o))//T

from [KSZ1). This quotient is a toric variety, and we begin by describing the torus

involved. First note that L({(ANAf)y) contains the torus (C*)(4"M)o. Homotheties

give a natural map C* — (C*){(A7M)o (we need this to projectivize), and (6.7) shows

that the action of T' comes from the map T — (C*)(4"Mo given by the characters

tTM for m € (AN M)o. Thus we have the torus

(6.10) Ty = (C*)ATMMo /im(T x C*)

which is contained in the above quotient. We can get rid of the C* by using the

distinguished point 0 € (A N M)o. More precisely, if we let = = (A N M)g — {0},

then

To = (C*)/im(T).

The 1-parameter subgroups of T, form the lattice

(6.11) No = Z=/N modulo torsion,

where the inclusion N — ZZ is given by u — ((¥,m1),...,{u,m,)) for E =

{ml,... ,ms}.
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The lattice Np is important, for the GKZ decomposition of = = (ANM)o— {0},

as defined in Section 3.4, lives naturally in the vector space Ny @ R. Furthermore,
by Theorem 3.4.1, the maximal cones in this fan are the cones cpl(Z°) for all fans

Z° in Mg which are projective, simplicial, and satisfy £°(1) C =.

This is closely related to the Batyrev mirror of V. Recall how the construc-

tion works: if A® C Ng is the polar polytope and Z° is a maximal projective
subdivision of the normal fan of A°, then the Batyrev mirror is the family of anti-

canonical hypersurfaces V° C Xy.. According to Definition 4.1.1, T° is projective
and simplicial, refines the normal fan of A°, and satisfies £°(1) = A N M — {0}.

However, we will see in Section 6.2.3 that we can replace the last condition with

2°(1) = (AN M) — {0} = E without changing V°. Once we do this, V° C Xx.

gives one of the cones cpl(°) in the GKZ decomposition of E.

It follows that for each choice of a Batyrev mirror V° € Xge, we get a distin-
guished maximal cone in the GKZ decomposition. In the toric variety correspond-

ing to the GKZ decomposition, these cones give distinguished points on the toric

boundary. They may be singular points, but as we will soon see, their resolutions

are conjectured to give the desired maximally unipotent boundary points. Also, as

a preview of Section 6.2.3, we should mention that the interior of cpl(Z°) is the

Kahler cone of Xso and is naturally isomorphic to the toric part of the Kihler cone

of V°. This is the beginning of the isomorphism between the complex moduli of V

and the Kahler moduli of its mirror V°.

We can now give a careful description of the Chow quotient (6.9). The GKZ

decomposition of = from Theorem 3.4.1 is not complete, but as described in Sec-

tion 3.4, can be naturally enlarged to a complete fan called the secondary fan of =.

For later purposes, we note that the secondary fan is constructed from the set

(6.12) Et=Eu{h)x{l}=(AnNMex{l}c M xZ

Then [KSZ2] shows that the Chow quotient Maimp is the toric variety determined
by the secondary fan of . The relation between the Chow quotient and the various

GIT quotients is explored in [KSZ1]. We should also mention that Mgmp has a
natural projective embedding given by the secondary polytope of (GKZ2].

The toric compactification —Msimp contains distinguished toric boundary points

corresponding to the different choices of the mirror family. However, —Msimp isn’t

always smooth, so that we need to resolve singularities before talking about max-
imally unipotent boundary points. Hence we pick a refinement of the secondary

fan which gives a smooth toric variety. The resulting smooth compactification of

Miimp will be denoted Mimp.

This smooth compactification has the property that each Batyrev mirror V° C

Xz gives finitely many distinguished boundary points of Miimp corresponding to
the cones subdividing cpl(£°). Conjecturally, these are the maximally unipotent

boundary points we seek.

CONJECTURE 6.14. Let ./T/ivsimp be a smooth toric resolution of the Chow quo-
tient ./\_/fsimp, and let V° C Xxo be a Batyrev mirror of V. Then the points of

Hsimp corresponding to the cones subdinding cpl(£°) are all mazimally unipotent
boundary points. Furthermore, these points are all equivalent under the eguivalence

relation given in Definition 6.1.1.

An incomplete proof of this conjecture appeared in [BK1]. If H*!(V) generates
@, H?P(V) under cup product, then the conjecture would follow easily from a proof
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that the coefficients of the formal function Iy defined in (11.73) are indeed the

periods of the mirror family V°, as asserted in [Giventald] (see the discussion in

Section 5.5.3). In particular, this would apply when V' is a threefold. It can be

shown that Conjecture 6.1.4 holds for Examples 6.1.4.1 and 6.1.4.2 below. The

proof for Example 6.1.4.1 follows for instance from the computations given in the

paper [CAFKM].

One of the motivations for Conjecture 6.1.4 is that under mirror symmetry, the

logarithm of monodromy around a boundary divisor is identified with cup product

with the negative of the corresponding generator of the cone subdividing cpl(X°), as

mentioned in the discussion following the definition of maximally unipotent bound-

ary points (Definition 5.2.2). In Chapter 8, we will see this from a more sophisti-

cated point of view when we discuss the A-variation of Hodge structure.

For the rest of this chapter, we will assume that Conjecture 6.1.4 is true.

The maximally unipotent boundary points described in Conjecture 6.1.4 come

from very special cones in the secondary fan. There are other cones in the GKZ

decomposition that correspond to £°’s which don’t use all of the points of = or fail to

refine the normal fan of A°, and there are also the cones we get when we enlarge the

GKZ decomposition to the secondary fan. Conjecture 6.1.4 says nothing about the

boundary points of Msimp corresponding to such cones. However, in Section 6.2.3,

we will see that all of these cones have interesting physical interpretations—each

one will give a different physical theory.

We should also mention that there is a canonical refinement of the secondary

fan given by the Grébner fan [MR, Sturmfelsl]. This gives a compactification

of Mgimp which is a blow-up of T/fsimp and hence potentially less singular. This

compactification is used in [HLY1, HLY?2], where it is shown that there exist

boundary points of mazimal degeneracy, which means that locally there exists a

unique (up to a multiple) holomorphic period integral. This is a necessary condition

for maximally unipotent and hence would follow from Conjecture 6.1.4.

Our discussion so far has concentrated on blowing up Hsimp, as if Hsimp were

the “minimal” compactification of Mgmp. But there are situations where combining

cones of the secondary fan into a larger cone is completely natural. This gives a

compactification H;imp such that Msimp is a blowup of H;imp. We will see an
example of this behavior in Example 6.1.4.2, and a careful study of how and when

this should be done can be found in Section 6.2.3.

Another point to note is that besides having multiple mirrors, there are also

multiple versions of our original family V' C Xs, because of the potentially many

choices for the maximal projective subdivision £. Our description of Micap makes
no mention of T, for the good reason that these families all have the same poly-

nomial moduli. What changes is the Kihler cone of V, since each X corresponds

to a different part of the enlarged Kahler moduli space of V' to be discussed in

Section 6.2.3. In Chapter 4, the multiple choices for £ and X° seemed to be a

nuisance because they prevented us from making a canonical choice for the mirror.

But as we are now learning, the “multiple mirror” phenomenon is essential to a

global understanding of complex and Kahler moduli.

The compactification Msimp has a toric boundary which contains the maximally

unipotent boundary points just discussed. But there are points in Maimp — Msimp

not in the toric boundary, for the torus Ty C Maimp has many points which cor-

respond to singular hypersurfaces V C Xyr. Actually, since V and Xy may be
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singular, it is usually easier to speak of nondegenerate hypersurfaces. For V ¢ X 2,
this means that for each torus orbit @ C X7y, the intersection VN is either empty
or smooth of codimension one. Since Xy, is an orbifold, it follows easily that every
nondegenerate hypersurface of Xy, is a suborbifold. :

In L((A N M)g), the discriminant locus D is the set of all Laurent polynomials
f such that f = 0 fails to be nondegenerate. By [GKZ2, Chap. 10|, the defining
equation of D is given by the principel A-determinant. fwelet A= (AnM Jo=
Z U {0}, this is a polynomial in the coefficients of f and is defined by

Ea(f) =Resa(t10f /081, ... ,t.8f/8tn, f),

where Res, is the sparse resultant defined in [GKZ2, Chap. 8] and ty,... ,t, are
coordinates of the torus 7. This polynomial is actually reducible, and one has a
factorization

Ea(f) = I] Darr(fr)TM®.
rca

We can understand the right hand side as follows. The A-discriminant D 4 defines
the Zariski-closure of the set of polynomials in L((A N M)g) which have a singular

point in the torus T (so D4 = 1 if this set has codimension > 1). Then, for each

face I' C A, one defines fr to be the sum of those terms of f corresponding to
elements of ' 1 A. Finally, in the above equation, the exponent m(T') is a positive
integer equal to 1 in nice cases.

It follows from this description that the discriminant locus has potentially many
connected components. Fortunately, it often happens that many of the D4~r’s are
1. For instance, the discriminant locus in Example 6.1.4.1 below has exactly two

components. We should also mention that the discriminant locus D is precisely the

discriminant locus of the GKZ hypergeometric system (to be described below).

When we descend from L{(A 1 M)g) to the Chow quotient, the image of the
discriminant locus is again denoted D. The principal component of the discrimi-
nant is the hypersurface defined by D4 = 0. When V is a threefold, its generic
point parametrizes hypersurfaces V' with a node (three dimensional nodes are of-

ten called conifolds in the physics literature). The other nonempty components of
the discriminant parametrize singular hypersurfaces with singularities that may be

more complicated.

In addition to the discriminant locus just described, the toric boundary of
—Msimp also parametrizes singular hypersurfaces, although the parameter values Ad
may not be well-defined. If we think of this in terms of a GIT quotient, the problem
is that these parameter values might correspond to non-stable hypersurfaces. Hence
the hypersurfaces themselves may be ill-defined when thought of in Meimp- For
example. the limit ¥ — oo of the quintic mirror family (2.4) can be taken to be

T1Z22324%5 = 0, yet after the coordinate change z5 — z5/%, the limit is i+ zd +

2§ + 2t + 2f + £ zozszaTs = 0.

6.1.3. Hypergeometric Equations and Moduli. In Section 5.5, we defined
the GKZ hypergeometric equations and discussed (rather naively) how they behave
on the moduli of V. Now that we know more about complex moduli, we can get a
better idea of what the GKZ system looks like.

The hypergeometric equations constructed in Section 5.5 used A N M. Here,
because we want to work with the moduli space Maimp, we will use (AN M Jo
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instead. Following (5.31), this means that we will use the GKZ system built from

the set

(AnM)g x {1} ==+

identified in (6.12). As in Chapter 5, we label the points of (A N M)y as m; with
mo = 0. Then the module of relations among the points of =+ is

(6.13) Mo={t=(£)eZ% : T timi=0, ¥,4 =0}.

From (6.10), we see that My can be identified as the character group of the torus

Ty, so that Ny from (6.11) is the dual of My. The GKZ hypergeometric system

consists of operators 0, for £ € My and Zj for j = 1,...,n+ 1. Precise definitions

of O¢ and Z; can be found in Section 5.5.

In Chapter 5, we used (C*)2TMTM /im(T x C*) as a crude approximation of the

moduli space. The subspace (C*)(A"Mo /im(T x C*) is precisely the torus Tp C
Msimp- Then f € L((A N M)o) gives the n-form

Ao dty /\.../\éi’l
f t tn

on Tp, and we showed that & satisfies the equations OgAg 1% =0and ZiMy 1@ =0.

The latter simply express the invariance of & under the actions of T and C* (because

of the extra factor of Ag in &), so that & descends to a rational n-form on Maimp-

Hence the GKZ system on Mimp, is given by

Orglw =0, £eM,.

__To exploit these equations, we need to express them in local coordinates on

Msimp- Each { = (&) € My gives

(6.14) z=]]a%

which is invariant under T x C*, so picking a basis of M) gives coordinates z,... , 2,

of the torus Tp. The methods of Section 5.5 then enable us to write the equations

Oey'% = 0 in terms of the z;, though Section 5.5 didn’t specify which basis of My

to use.

Now, given Conjecture > 6.1.4, we know exactly how to pick the coordinates. Fix

"a smooth toric resolution Meimp of —Msimp and let o be a maximal cone in the fan
of the resolution which subdivides a cone cpl(X°) coming from a Batyrev mirror

V°® C Xgo of V. Since fisimp is smooth, the generators of o form a basis of Ny,
and the dual basE of My gives coordinates z1,... ,2- which are local coordinates

for the point of Mgim, corresponding to o.

We will see a nice example of this in Section 6.1.4 below. We should also

mention that the special coordinates z;, ...,z constructed above are part of the

mirror map, to be discussed in more detail in Section 6.3.

6.1.4. Examples. We will now give two examples of the complex moduli of

Calabi-Yau toric hypersurfaces.

Example 6.1.4.1. We first consider the mirror family of anticanonical hyper-

surfaces in the toric blowup of P(1,1,2,2,2) which was considered previously in
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Sections 5.4, 5.5 and 5.6. In the notation of Example 5.4.2, we have the reflexive

polytope A° with vertices

(-1,-2,-2,~-2), (1,0,0,0),(0,1,0,0), (0,0,1,0),(0,0,0,1).

We want to study the complex moduli of V° € Xgo, where I° is a maximal

projective subdivision refining the normal fan of A°.

Let’s first show that M = Mpoly = Maimp. In Example 5.4.2, we noted
that A® N N consists of the 5 vertices of A° together with (0,—-1,~-1,~1) =

3(-1,-2,-2,-2) + 1(1,0,0,0) and (0,0,0,0). This gives a cod1mens1on 2 face
of A° with an interior lattice point, but the dual dimension 2 face of A has no

interior lattice points, so that M = Mpay, by Proposition 6.1.3.
Note also that the facets of A° have no interior lattice points. Hence Aut(Xgo)

has no roots by Proposition 3.6.2, which means that the torus T° of Xso is the

connected component of the identity of the automorphism group. However, we

have Aut(Xge)/T° = Z/2Z x S5 because of the automorphisms of the normal fan

of A® (we get Z/2Z by switching the first two vertices of A° and S3 by permuting

the remaining three). We need to show that these automorphisms act trivially on

Ms,mp To prove this, note that f € L((A N M)p) can be written

F= T 5252007 4 Aoty + Aata + Mats + Asta + Aet3 551 + Ao,

The automorphism switching ¢; and t3 (one of the S, ones) induces an automor-

phism of L({A N M),) which switches A3 and A\y. However, one can check that

(1, A4/ A3, A3/ A4, 1) € T° has the same effect on f, so that this automorphism acts

trivially on (T° x C* )-orbits. The other automorphisms are handled similarly, and

we conclude that Moy = Msimp.-

The next step is to construct the secondary fan, which is built from =+ =

(AN M)o x {1}. Thus

= {(-1,-2,-2,-2,1), (1,0,0,0,1), (0,1,0,0,1),
(0,0,1,0,1),(0,0,0,1,1), (0,—-1,-1,-1,1), (0,0,0,0,1)}.

By (6.13), Mo is the lattice of linear relations among the points of =+. A basis is
given by the rows of the matrix

00111 1 —d

(6.15) ' (1 1000 -2 0)‘
We also get the dual basis of Ny. To describe the secondary fan, we use Section 3.4,

which implies that in the rank two case, the secondary fan is the complete fan in

No®R which has the columns of the matrix (6.15) as 1-dimensional cone generators.

Thus, the secondary fan is obtained by enlarging the GKZ decomposition (3.23) by

inserting the cone generated by (—1,0) and completing.

Looking back at (3.23), we see that V'° has a unique Batyrev mirror, namely
the toric blowup of P(1,1,2,2,2) described in Example 3.7.2. The corresponding

cone in the GKZ decomposition is the first quadrant, which means that the local

coordinates z,, zz we want are given by rows of the matrix (6.15). Using (6.14), the

rows give

2 = AzAiAs A6 S A1A2
1 Aé b 2 /\% .
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As noted in Section 5.5, we can transform the general f € L((A N M)o) into the

form

(6.16) f=atit 2t v+t + o+ ta + 6757 41

using T°xC*. Hence this way of writing f, first used in (5.25), was no accident—it’s

precisely what’s needed to give a maximally unipotent boundary point by Conjec-

ture 6.1.4.

Outside of the toric boundary, the discriminant locus D C Msimp has two

components in this case: the principal component defined by Dy = 0, for A =

(AN M)o, and the component Drn, = 0 associated to the edge I of A with

roM={(-1,-2-2,-2),(1,0,0,0),(0,-1, -1, -1} = {m,, my, Mg}

To determine D4, one writes f in the form (6.16) and determines the values of
.z, 22 for which the equations f = ¢,8f/8t; = 0 have a solution in 7°. This can be

done by hand, and one finds that

Da(f) = 512% 272, — (1 — 256 23)°.

Turning to the edge T', we have fr = zptTM + TM2 + tTMs. Since my + mo = 2mg,

we see that tTM1¢TM2 = (¢TM6)2 and one finds that Danr(fr) =1 — 423. The Picard-
Fuchs equation (5.26) degenerates when 1 — 4z, = 0, so that this equation picks

out one component of the discriminant locus. As for the other component D4 = 0,

the Yukawa couplings computed in Example 5.6.1 show that the GKZ system also

degenerates on this component.

Example 6.1.4.2. We consider the reflexive polytope A which is the convex hull

of the points

(-la _27 "31 —7)7 (1v O, 01 0)7 (01 lv 01 0)1
(07 07 11 0)7 (07 Ov 07 1)) (01 Ov "17 _2)

in Z* = M. The Batyrev construction gives mirror families V C X5 and V° C Xso.
Our goal here is to describe the complex moduli of V. We will consider the Kihler

moduli of V° in Section 6.2.3.

A first observation is that the lattice points of A are the six vertices from (6.17)

together with the origin (0,0,0,0) and the point (0,0, 0, —1), which is interior to

the facet spanned by all vertices except the fifth. It follows that AM = My since

the codimension 2 faces have no interior points (Proposition 6.1.3). Since we have

exactly one interior point in a facet, the same proposition implies that we have

two-dimensional moduli.

Having an interior point in a facet also tells that Aut(X) is larger than the

torus T. However, we still have —flpoly = —Msimp, as we will now show. We begin

by describing the action of the extra automorphism arising from (0,0,0,-1) on

the space L(A N M). Although this can be done directly, it is instructive to do

this using homogeneous coordinates. We recall that the fan T for Xy satisfies

E(1) = A° N N — {0}. One checks that A° is the convex hull of the points

(13,-1,-1,-1),(1,-1,3, -1),(~1,6, -1, ~1),(-1,-1, 3, ~1),

(‘—l, -11 _1’ _1)7 (-17 _11 —17 1)1 (-1: Oy 31 —1)

There are numerous other lattice points of A°. To simplify matters, recall that

the hypersurfaces V are all pullbacks of anticancnical hypersurfaces in Po. We can

therefore perform the calculation using homogeneous coordinates associated to the

(6.17)
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normal fan itself. We will use the above order for the homogeneous coordinates

Ly, 327,

We know from Section 3.6 that the only root of Aut(Xg) comes from (0, 0,0, —1)

since this is the only lattice point interior to a facet of A. Since the facet containing

this point is dual to the vertex (—1,~1,—1,1) of A°, one easily sees that the

corresponding root is (2, T1T2Z324T527). The corresponding 1-parameter family

of automorphisms is given by yu.(%6) = T¢ + uT122T3T4T5T7 and y,(z;) = z; for

i3 6.

Recall from the discussion preceding Proposition 3.6.2 that the Laurent mono-

mial TM € L(A N M) gives the monomial tTM = Hiz§m’"‘) *! in the homogeneous
coordinate ring. In this formula, the v; are the vertices of A° listed above. The

points of A N M will be written as follows: the points of (6.17) are m,,... ,mg in

the order written, while m; = (0,0,0,—1) and mg = (0,0,0,0). Then we obtain

1TM = T ToT3T4TE5TeT7
MTMM= 2:22:;4

my 14,2
e = 551 5

tme = :1:33:7
me 4,.41TM = giricd

tTMs = g2
me — pdd,4

t"e = xlxgxg

mr _ 2 2,.2,.2
1" = pITSTITHTET

The 1-parameter family of automorphisms y, acts on these monomials via

Yu(tTM) = TM 4 4TM

Yu (T7°) = TM5 4 2 4TM 4 42 gTM

yu (tTM) =TM, i #£0,5.

We now prove that the natural map Ms,mp — Mpoly is generically one-to-one.

The first step is to show that the automorphisms of the lattice which preserve A

act trivially on Ms,mp —this is done using the methods of Example 6.1.4.1. Hence

we need only consider the connected component of the identity of Aut(Xz), which

is generated by T and the automorphisms y,. Take a point of Miim, represented

by f = ZI_O itTM and apply y,. The coefficient of TM7 in yu( f) is uAg + u)s.
We set this coefficient to 0 in order to find all points of Msm,p which have the

same image as f in Mpoly There are two solutions: u = 0 and u = —Ag/As.

The nontrivial solution 4 = —Ag/As gives y, (f) = —AgtTM + Zf_ A;tTM. But this

represents the same point of Ms,mp as f, since it can be obtained from f by the

action of (-1, ~1,~1,~1,-1) € T x C*. We conclude that Maimp = Mpoly-
1t follows that we can compactify the complex moduli of V' using the secondary

fan, which here is built from =+ = (ANM)g x {1}. We choose a basis for the linear

relations My, which here is given by the rows of

-2 -2 -4 10 7 O

1 1 201 -3 -2/

As in the previous example, the edges of the secondary fan can be read off from

the columns of the above matrix. So Mimp is the toric variety associated to the
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fan given by the following picture:

a1 o2

(6.18) o .

J4

When we compute the Kahler moduli of the mirror V° in Section 6.2.3, we will

see that the GKZ decomposition consists of the cones o1, 03, o3 (remember that the

GKZ decomposition is a subfan of the secondary fan). However, only o1 and o3 are

of the form cpl(XZ°) for an appropriate projective subdivision of the normal fan of

A°. Thus only o1 and o» give maximally unipotent boundary points of Mgimp.

Of these two cones, only o3 is smooth, so to apply our theory to o), we must

subdivide. This will give several maximally unipotent boundary points of a res-

olution Mgir,,. However, there is another way to approach this problem, for we

can combine o1 and o3 into a single cone o = o, U o3. If we use o with the

other cones o3, 04,05 of (6.18), we get a blowdown Hsimp — H;imp, and the point

pE —M;imp corresponding to ¢ is smooth. One can prove that p is a maximally

unipotent boundary point and that under the blowup Mgjmp — _;imp, all max-

imally unipotent boundary points of Mgy, map to p and are equivalent in the

sense of Definition 6.1.1. Hence, from the point of view of maximally unipotent
—f

monodromy, M, is the best compactification to use.

In Section 6.2.3, we will return to this example from the perspective of the

Kahler moduli space of the mirror manifold V°. In particular, we will learn the

systematic reason for why we should combine o; and o into the single cone o.

6.2. Kihler Moduli

We now turn to Kahler moduli. A Calabi-Yau manifold V' of dimension > 2

has a Kihler cone K (V) and, as in Definition 1.4.2, a complexified Kahler space

Kc(V) = {w e H3V,C) : Im(w) € K(V)}/im H*(V, Z).

Then the complexified Kihler moduli space is the quotient

KM(V) = Ke(V)/Aut(V).

When there is no danger of confusion, we will write XM instead of XM(V). The

goal of this section is to understand the structure of XXM and in particular to find

a nice compactification which contains analogs of the maximal unipotent boundary

points studied in Section 6.1. As in that section, it will be convenient to be flexible

‘in our comnstructions.
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In Section 6.3, we will discuss the mirror map, which conjecturally takes a
neighborhood of large radius limit points of KM(V) (to be defined in Section 6.2.1)
to a neighborhood of a maximaily unipotent boundary point of the complex moduli
space of V°. This will tie together the similarities that the reader will notice
between this section and Section 6.1. The mirror map can be used to identify
these neighborhoods with subsets of the SCFT moduli space. It is important to
stress at the outset that the mirror map is only locally defined, so at present it is
dangerous to try to identify the entire compactifications constructed in this section
with a part of the SCFT moduli space. On the other hand, we will see in examples
that the compactifications constructed in this section do give a useful geometrical
framework for understanding the global structure of the SCFT moduli space, with
the caveat that it is to be “corrected” by the mirror map. The problem of giving
a precise mathematical description of the SCFT moduli space will be left as one of
the exciting mysteries remaining to be explained.

6.2.1. Large Radius Limit Points. Our first step in studying Kihler mod-
uli is to find some nice partial compactifications of the complexified Kahler space
Kc(V). For this purpose, fix a maximal dimensional simplicial cone o whose inte-
rior lies in the Kahler cone K (V), and let

D, = (H*(V,R) +ilnt(0)) /im H2(V,Z) C Kc(V).

Note that D, is an open subset of K¢(V). Now assume further that o is generated
by a basis T1,... , T, of H2(V, Z)/torsion. Note that the T} lie in the closure of the
Kabhler cone. Then Int(c) = {t T}y + - - - + t, T} : t1,...,t- > 0}, and the map

(6.19) tulhh+-- +t T — (@1,-.. ,qr) = (821rih,‘ . ’eZWiir)

induces a biholomorphism

Dy == (ATM).

Using this isomorphism and the inclusion (ATM)" C A7, we get a partial compacti-
fication

D, CD; ~A".

In particular, the origin 0 € A”TM becomes a distinguished boundary point denoted
0eD;.

For w € H%(V,R) + iInt(0), having a large imaginary part means that under
the map (6.19), the image of w is close to 0. For this reason, we call 0 € D a large
radius limst point. This is the Kahler analog of a maximally unipotent boundary
point. Note that each large radius limit point has canonical coordinates Q- ,qr
as defined above.

For the nef complete intersections defined in Section 5.5.3, we saw a version of
the coordinates g, ... , ¢, in Proposition 5.5.4. There, we let g; = e* and set

T,

qfi = qujfa = exp (ffi(fiT] +"-+trTr))
for 8 € Hy(V,Z) (see the discussion following (5.43)). If we replace t; with 2mit;,
we get exactly the above variables ¢; and q,, and it follows that aside from an extra
factor of 24, the formal function I of Proposition 5.5.4 is intrinsically defined on the
complexified Kahler space K¢ (V). Since T is related to the Picard-Fuchs equations
of tbe mirror V°, we get a hint of the relation between complex and Kihler moduli
spaces given by mirror symmetry.
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Now that we've defined large radius limit points, we next observe that the

different choices of o give lots of such points. If we denote the corresponding coor-

dinates as g7, ... ,q% on D], then we can ask what happens to these coordinates if

we change o. For example, suppose that we have two such cones with 7 C . This

gives an inclusion D, C D,, and to relate the corresponding partial compactifica-

tions, we express the generators of 7 in terms of those of o

T

T;r = ZaijT;’, Qij > 0.

i=1

Then the inclusion D. C D, extends to a map DS — Dj given by
.

¢ = [Ja.
i=1

This is reminiscent of (6.4) and (6.6), and the similarity is deeper than one might

expect. First, Section 6.1.1 also has cones, namely those generated by the log-

arithms of the monodromy operators, and (6.4) comes from the inclusion of one

cone in another. Furthermore, when we study quantum cohomology in Chapter 8,

we will see that the generators T; of the cone o considered here are naturally the

logarithms of the monodromy of the A-model connection. So the situations are

incredibly similar, which is exactly what mirror symmetry predicts.

One potential difference between large radius limit points and maximally unipo-

tent boundary points is that local coordinates are unique for the former but not

the latter, because of (6.2). As we will see in Section 6.3.1, this can be corrected by

assuming that go,...,gr in (6.1) are integral. This mirrors the above assumption

that T1,... , T, are integral.

We next discuss Kahler moduli in the special case when Aut(V) = {1} and

K(V) is the interior of a rational polyhedral cone in H?(V,R). Here, the Kihler

moduli space is M = K¢(V), and we can construct a toric partial compactification

of KM as follows. The closure K(V) is rational polyhedral with respect to the

lattice N = H?(V,Z)/torsion, so that we get the affine toric variety XWV)! which

we denote X g for simplicity. Then the isomorphism

(6.20) H*(X,C)/N ~ N®C" =Ty = the torus of Xx

gives a natural inclusion of open sets

(6.21) KM=Ke(V)CTIn C Xk

by the definition of K¢(V). Using the boundary B = Xg — T of the toric variety,

we define the partial compactification M to consist of KM together with all

points of B which are in the closure of the image of XM in Xg.

The cone K(V) determines a point in 0 € X which is the fixed point of the

torus action and possibly very singular. One can check that 0 € XM since under

(6.20), the image of a point with large imaginary part is close to 0. Hence KM is

likely to be singular.

We resolve this singularity by standard toric methods. Let £, be a fan with

support K (V') such that the toric variety Xs_ is smooth. Then (6.21) applies with

Xz, in place of X, and we can define KM exactly as before, so that the boundary

of KM now consists of points of X5, — Tn lying in the closure of the image of

KM.
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The maximal cones of £, give distinguished points of Xr,. We claim that

these are all large radius limit points of M. To see why, note that the maximal

cones are all simplicial cones o with Int(¢) C K (V). This is precisely the type of

cone used in the definition of large radius limit point. If we regard XM as a subset

of X5_, then applying (6.21) with X, in place of X shows that

D, =X, NKM.

Since the affine toric variety X, is just C, it follows easily that X, KM is precisely

the partial compactification D discussed earlier.

Hence we get a nice partial compactification with a finite number of large radius

limit points. Furthermore, if the imaginary part of w € H2(V,R) + i K(V) goes

to infinity within one of the maximal cones o € I, then the image of w in XM

approaches the corresponding large radius limit point of KA.

This is a very nice picture, but it is still very special. For a general Calabi-Yau

manifold, the automorphism group need not be trivial, and the Kihler cone need

not be polyhedral. The structure of K(V) can be rather complicated, as we will

see in Section 6.2.2 when we study the threefold case in more detail. In general,

the best we could hope for is the Cone Conjecture [Morrison3]. To state this

conjecture, let K be the convex hull of K(V) N H2(V,Q). Then K(V) C K, by

the openness of K(V'), so that K consists of K(V) together with the rationally

defined part of its boundary.

CONJECTURE 6.2.1. Let V be a Calabi-Yau manifold of dimension > 2 with

Kabhler cone K(V). Then there exists a rational polyhedral cone I1 C K such that

Aut(V) I= K, .

The cone conjecture has been verified in a nontrivial example in [GM)]. Also,

some interesting finiteness statements concerning the action of Aut(V) on the

Kihler cone are corollaries of Conjecture 6.2.1. For example, it implies that K(V)

has only finitely many edges modulo Aut(V). In [Borceal], this was checked for

a particular Calabi-Yau threefold V which had a nonpolyhedral Kihler cone and

infinite Aut(V'). The cone conjecture also implies that certain classes of Calabi-

Yau threefolds admit only finitely many algebraic fiber space structures, and this

is known to be true [Oguiso, OgP]. Another consequence of the cone conjecture

is proved in [Szendroi]. A relative version of the cone conjecture is formulated

in [Kawamata2] and proven there for Calabi-Yau fiber spaces in low dimension.

For us, the key property of the cone conjecture is that we can construct a

partial compactification of M for any Calabi-Yau manifold satisfying the conjec-

ture. Hence we will assume that Conjecture 6.2.1 holds for V. Then Looijenga’s

work [Looijenga] on partial compactifications of quotients of tube domains (such

as H*(V,R)+i K (V)) shows that we can find an Aut(V)-invariant fan T, (possibly
infinite) whose support is K. We can also assume that Aut(V) acts freely on T,

and that the maximal cones of I are of the form o as above.

From this data, Looijenga builds a space 5( %) from strata determined by the
fan ¥, . The difficult part of the construction is giving fi(2+) the correct topology

so that the quotient D(Z,)/Aut(V) is a normal analytic space. This quotient,
called a semi-toric partial compactification, is the partial compactification XM we

want. A description of how this works can be found in [Morrison3].
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When Aut(V) acts properly discontinuously and K (V') is a homogeneous self-

adjoint cone [AMRT], this construction can be done purely within the toric con-

text. For the purposes of exposition, we will work in this special case to see how it

relates to what we did earlier. The idea here is that the infinite fan £ determines
a scheme Xy, which is locally of finite type, and using (6.21) with Xz_ in place of

Xk, we get an inclusion of open sets

Kc(V) C Xz,

Since the fan is invariant under Aut(V), this inclusion is equivariant with respect

to Aut(V), so that we get an inclusion

KM C Xz, /Aut(V).

A nice picture of what Xz, /Aut(V) looks like can be found in {[AMRT] and is

reproduced in [Morrison3]. Using the toric boundary of Xx, /Aut(V), we get a

partial compactification KM exactly as before. Furthermore, since Aut(V) acts
freely on the fan in this case, every maximal cone in the fan gives a large radius

limit point with a neighborhood isomorphic to D . (However, because of the action

by Aut(V), infinitely many different cones of L, can give the same large radius

limit point.) Asshown by {Morrison3], this picture continues to hold in the more

general situation considered by Looijenga.

The upshot of all of this is that we have a nice partial compactification KM

containing finitely many large radius limit points. However, there are many such

compactifications, because given one, we can always create others by subdividing

the fan further. Hence, as with maximally unipotent boundary points, we follow

[Morrison6] and introduce the following equivalence relation among large radius

limit points.

DEFINITION 6.2.2. Let KM be a smooth normal crossings partial compactifi-

cation of the Kéihler moduli space KM. We say that the large radius limit points

p,q € KM are equivalent if there is a connected set Z C M —~ M containing p and

g and a local system L on the cotangent bundle of KM defined on a neighborhood

of = having logarithmic poles on the boundary such that the local system is spanned

by the 1-forms dlogqx for g as in (6.19) near each of the points p and q.

It is easy to see that the multiple large radius points created by further subdi-

viding the fan ¥ are equivalent in this sense.

As explained in Section 6.1, mirror symmetry tells us that the Kahler moduli

of V should be isomorphic (via the mirror map) to part of the complex moduli of

the mirror V° in such a way that each equivalence class of large radius limit points

maps to an equivalence class of maximally unipotent boundary points. In fact, the

mirror map should preserve the local systems mentioned in the two definitions of

equivalence. There is a lot of nonuniqueness in the the construction of KM, just

as the compactification of the complex moduli of the mirror is not unique. So part

of the mirror conjecture is that compatible compactifications can be found.

In practice, one chooses £, with cones as large as possible, subject to our

assumption that Xy, is smooth. This makes the equivalence classes smaller, sim-

ilar to what we did for complex moduli in Section 6.1. However, if we allow for

singular compactifications of XCM, then there is a canonical smallest one, which

is determined by the fan Zgspp consisting of K and its faces. Since K, might

have infinitely many faces, toric methods don’t apply, but Looijenga’s construction
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still works, and one gets the minimal compactification denoted XMgpg. This con-
struction generalizes the construction of the Satake-Baily-Borel compactification

for quotients of bounded symmetric domains, which explains the notation. When

Aut(V) = 1 and K (V) is rational polyhedral, KAMspg is the compactification de-
scribed earlier coming from the affine toric variety X of K(V).

The existence of a Satake-Baily-Borel style minimal compactification for Kihler

moduli implies, via mirror symmetry, that the complex moduli of the mirror should

have a similar minimal compactification. Precise conjectures along these lines can
be found in [Morrison3|.

Finally, we turn to a question which may have already occurred to the reader:
why do we compactify the complex moduli, but only partially compactify the Kihler

moduli? The answer is that KM is actually only a small part of the full Kahler

moduli space, and to get the missing pieces, we need to go “beyond the Kihler

cone” [Morrison5]. The theory of how this works has not been done for general
Calabi-Yau manifolds, but extensive studies have been made in two special cases,
threefolds and toric hypersurfaces. Hence we now discuss the Kihler moduli of

these two very interesting classes of varieties.

6.2.2. Kahler Moduli of Calabi-Yau Threefolds. Let V be a smooth

Calabi-Yau threefold. Our goal here is twofold: first, to describe what is known

about the structure of the Kahler cone K (V') and its closure K(V), and second, to

explain how we can enlarge the Kahler moduli space.

In describing the Kahler cone, an important ingredient is the cubic cone W* ¢

H2(V,R) defined as the set of all classes D with D3 = 0. The basic idea is that away
from W*, K(V) is easy to understand. We will use the work of Wilson [Wilson2,

Wilsonl1], which relates the structure of K (V) to primitive contractions.

DEFINITION 6.2.3. A contraction is a birational morphism V — V where V.
is a projective normal threefold with p(V) < p(V) (where as usual p denotes the
Picard number). A contraction is called primitive if it cannot be factored further

into birational morphisms between normal varieties.

If ¢ is a primitive contraction, then one can prove that up to a multiple, there
is a unique numerical class C of 1-cycles on V which is contracted by ¢. This

defines the hyperplane H = {D € H2(V,R): D - C =0}, and it is easy to see that

this hyperplane supports a codimension one face of K (V). We say that this face

corresponds to the primitive contraction. These faces determine the structure of

K (V) away from the cubic cone W*. More precisely, we have the following result.

PROPOSITION 6.2.4. [Wilson2] Let V be a smooth Calabi- Yau threefold.

(1) Away from W*, the cone K (V) is locally rational polyhedral.

(ii) Away from W*, the codimension one faces of K(V) correspond to primitive
birational contractions.

This still allows the Kahler cone to have a fairly complicated structure. For

example, it can happen that K (V') has infinitely many faces away from W* which

accumulate at W*. We should also mention that W* may contain codimension one

faces of K(V). Such a face is determined by a linear system |D| which maps V to
a lower dimensional variety, and the general element D of the linear system lies.in
the face.
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We next describe how to enlarge the Kahler moduli space of V. The idea is

to extend the Kihler cone K (V') across certain faces of K(V). We will use faces

corresponding to primitive contractions, and recall that such contractions ¢ come

in three flavors:

e Type I: There is a curve C C V s0 that ¢ is an isomorphism on V' - C, and

¢ maps C to a point.

e Type II: There is a surface § C V so that ¢ is an isomorphism on V — §,

and ¢ maps S to a point.

e Type III: There is a surface S C V so that ¢ is an isomorphism on V - S,

and ¢ maps S to a curve.

Now suppose that a face of K(V') corresponds to a primitive contraction ¢ :

V — V of Type I. Then we have a (not necessarily irreducibie) curve C C V' which

is contracted by ¢. A basic theorem of threefold geometry states that C can be

flopped [Reid2, Kolldr]. This means in particular that there exists a Calabi-Yau

threefold V”, distinct from V, a curve C’ C V’, and a map ¢' : V' — V which

contracts C’ and is an isomorphism on V’ — C’. Since the resulting birational map

V' — — — V'’ is an isomorphism in codimension 1, we have a natural identification

H2(V) ~ H%*(V'). With this identification, K(V) and K(V’) meet along a common

face of each, namely the faces supported by the hyperplanes {D : D -C = 0} and

{D': D’ - C" = 0} respectively.

A result of Kawamata [Kawamatal] states that the cones K (V') for Calabi-

Yau threefolds V' (including V itself) which can be obtained from V' by a sequence

of flops form the chambers of a polyhedral decomposition of the convex hull of their

union, which is called the movable cone Mov(V'). Since all birational models of V'

are built from sequences of flops, the group Bir(V) of birational automorphisms

of V' acts naturaily on Mov(V). The birational version of the cone conjecture is

the birational cone conjecture [Morrison5], which asserts that there is a rational

polyhedral cone II such that Bir(V) - II = Mov(V),., where Mov(V) is the convex

hull of Mov(V) N H2(V,Q). By a construction similar to what we did above, we

can appropriately subdivide Mov(V') and construct a partial compactification of the

Kahler moduli space of all of the V' simultaneously. There is somewhat more detail

in [Morrison5}, and we will return to this idea in the context of toric hypersurfaces

in Section 6.2.3.

‘We can enlarge the Kihler moduli space even further. Suppose that ¢ is a Type

III contraction containing a ruled surface S over a curve C of genus ¢ > 2 such

that ¢ contracts S to C along the ruling. If we deform the complex structure of V'

generically, then the generic fiber of S — C will not remain holomorphic, but 2¢g—2

fibers will deform holomorphically. In fact, the obstruction to deforming a fiber of ¢

to first order is the image of the Kodaira-Spencer class p € H(©y) under a natural
map r : H(Oy) — HY(K(), and if p is generic, then r(p) vanishes at 2g—2 distinct

points. Over these points, the fibers deform to first order [Wilson2]. It can also be

calculated that there are no higher order obstructions. These 2g—2 deformed curves

can then be simultaneously flopped. The flopped Calabi-Yau threefold lies in the

same complex moduli space, but with a different complex structure. The Kahler

structure changes as well. The resulting isomorphism on H2 can be followed back

to the original complex structure, where it becomes the automorphism of H*(V)
given by

D—D+(D- f)E, f=class ofa fiber.
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Since E'- f = 2, this is a reflection in the hyperplane {D : D - f = 0}. We then

reflect Mov(V') using the refiections coming from all possible Type III contractions
as above. This yields the reflected movable cone [Morrison5]. If we also enlarge

the birational automorphism group to include the above reflections, then we obtain
a yet larger Kahler moduli space which uses the reflected movable cone and the

enlarged automorphism group just described. Furthermore, a suitable version of
the cone conjecture would then allow us to partially compactify this enlarged moduli

space.

The Kahler moduli space given by the refiected movable cone is constructed
by crossing walls of K (V) corresponding to contractions of Types I and I11, though

we only used Type III contractions where a ruled surface is contracted to a curve

of genus ¢ > 2. At present, there is no proposal for how to enlarge the Kihler
moduli space after crossing walls corresponding to Type II and the remaining Type

III contractions. However, we will see in Section 6.2.3 how the Kahler moduli space
can be enlarged even further when dealing with a Calabi-Yau toric hypersurface.

The final topic we want to discuss is how the Kihler cone behaves when we vary
the complex structure of V. In the naive picture drawn in Section 1.1, it looks as
if we can vary the complex structure while holding the Kihler structure constant.

In the threefold case, this is true generically. More precisely, Wilson [Wilson2]

has shown that for a generic complex structure on a Calabi-Yau threefold V, the
Kahler cone is constant under small deformations of complex structure. This generic
rigidity is rather strong. For example, [Wilson3] proves that if two Calabi-Yau

threefolds V; and V; are generic in their respective complex moduli spaces and

symplectic deformations of each other, then their Kihler cones are the same, and
[Wilsond4] shows that away from the cubic cone W*, the type (i-e., Type I, I1, or

IIT} of a primitive contraction associated to a codimension 1 face of K (V1) is the
same as the type of the primitive contraction associated to the corresponding face

of K(Vs).

However, things are actually more complicated, as hinted in the footnote below
the picture in Section 1.1. In particular, there are deformations of V which allow
the Kahler cone to vary. Suppose that ¢ is a Type III contraction which maps a

ruled surface S to a curve C of genus g. When g > 2, we were able to reflect the
movable cone, as described earlier. But when the base curve has g = 1, then the
argument given above shows that no fibers deform along with a general deformation

of complex structure. This means that for the special complex structure containing

E, the cone of effective curves strictly contains the cone of effective curves on
the general complex structure, since the class of f is not present for a general
complex structure. Dually, the Kihler cone becomes smaller for this special complex
structure. It follows that the Kéahler moduli space can depend on the complex

structure.

6.2.3. Kihler Moduli of Toric Hypersurfaces. Let A be a reflexive poly-
tope with ¥ a maximal projective subdivision of the normal fan of A. ¥V ¢ X >

is a general Calabi-Yau hypersurface, recall the description of the restriction map
H?*(Xg) — H*(V) from Chapter 4. lts kernel is generated by the classes [D,] of
divisors associated to edges p € (1) spanned by primitive integral vectors which
are in the interior of some facet of A°. The image of the restriction map is by
definition H2, (V). Our goal is to construct a Kahler moduli space for the “torictoric



6.2. KAHLER MODULI 135

part” of V. This construction is in a sense “mirror” to the construction of Mimmp
in Section 6.1.2.

As in Section 6.1.2, we change the problem slightly by excluding integral points

of facets of A°. We accordingly modify the definition of maximal projective subdi-

vision slightly to avoid these points.

DEFINITION 6.2.5. Given a reflezive polytope A C Mg, a fan T in Ng is a

simplified projective subdivision if it has the following properties:

o ¥ refines the normal fan of A.

e T(1) = (A°N N)p — {0}

o X5 is projective and simplicial.

‘We can now copy Batyrev’s construction from Section 4.1, replacing a maximal

projective subdivision £ by a simplified projective subdivision, which we will again

call £. Let’s show that we get the same class of Calabi-Yau varieties as arise from

Batyrev’s construction. First, given a maximal projective subdivision ¥, we can

remove all of the edges generated by interior points of facets of A° to obtain the fan

of a blowdown of Xs;. The resulting fan need not be simplicial, so we may need to

further subdivide this fan without adding new edges to get a simplified projective

subdivision £'. We get a commutative diagram

)

Xs —_— Xy

(6.22) L

By construction, ¢ is an isomorphism except over the points of P, associated to the

facets of A° which contain interior points. Since a generic Calabi-Yau hypersurface

V € | — Kp,| is disjoint from this finite set, we see that its proper transforms

under 7 and 7/, which are generic Calabi-Yau hypersurfaces in Xz and Xy, are

isomorphic as claimed. Going the other way is simpler, for any simplified projective

subdivision can be refined to a maximal one, and we get isomorphic Calabi-Yau

hypersurfaces as before.

Now fix a simplified projective subdivision I of the normal fan of A and consider

V ¢ Xs. Because we are excluding interior lattice points in the facets of A°,

the natural map H?(Xg) — H?(V) is injective. As already noted, the image is

HZ,..(V), so thatortc

HZ(XE) = thoric(v)‘

In Section 3.3.3, we saw that the closure of the Kihler cone of Xy is K(Xg) =

cpl(X). Hence we can regard cpl(X) as lying in HZ..(V). If we define the toric

part of the Kihier cone of V to be

K(V)toric = K(V) n thoric(V)’

then we have the obvious inclusion cpl(E) C K (V). Since ample classes on Xz

restrict to ample classes on V.

For the moment, suppose that cpl(Z) = K(V),, ;. always holds. In this situa-

tion, we can easily construct an enlarged toric Kihler moduli space and compactify

it using the secondary fan from Section 3.4. If we set = = (AN N)o — {0}, then the

secondary fan lives naturally in the vector space A(E) ~ H?(Xz,R) > HZ (V)

(this is the notation of Section 3.4). The secondary fan and the lattice given by

integer cohomology determine a complete toric variety, which we will temporarily
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call KMioric. For each simplified projective subdivision £, cpl(X) is a maximal cone
of the secondary fan, and cpl(Z) = K (V)toric would imply that the corresponding
point of KMoric is a large radius limit point in the sense of Section 6.2.1 (possibly
subdividing ¢pl(X) in order to get something smooth).

The problem with this picture is that equality need not hold in the inclusion
epl(E) € K(V), - The closure K(V),_ .. of the toric Kihler cone can be strictly
larger than cpl(Z). The reason is that there may exist simplified projective sub-
divisions ' # ¥ which give isomorphic Calabi-Yau hypersurfaces. It follows that
K(V)ioric may contain both cpl(Z) and cpl(T'). We will see an example of this
later in the section.

In fact, the precise structure of the toric Kahler cone K (V)toric is not known
at this time. It is suspected to be rational polyhedral, and this is certainly true in
all cases where K(V), .. has been computed. In Conjecture 6.2.8 below, we give

a careful description for what we think K(V), . should look like in general. The

essence of the conjecture is that K(V'), . is the union of certain cones cpl(T). If
correct, this would imply that the space KM,y constructed from the secondary
fan is a blowup of the “true” compactification of the enlarged toric Kiahler moduli
space.

Our plan for the rest of the section is, first, to examine the structure of
K(V)orier and second, to construct an enlarged Kihler moduli space and then
compactify it.

To begin our study of K (V), ., we need to look at how the cones cpl(T) fit
together as ¥ varies over all simplified projective subdivisions. For example, how do
we pass from one subdivision to a “nearby” one? This is provided by the language
of linear circuits, which we now define.

DEFINITION 6.2.6. Given = = (A° N N)g — {0}, a linear circuit is a linearly
- 

-dependent subset ' C = with the property that any proper subset of =' is linearly
independent.

We refer the reader to [GKZ2] and the references given there for more de-
tails, remarking that the situation in [GKZ2) is slightly different since there, affine
circuits are studied using affine dependence and triangulations instead of linear
dependence and fans respectively.

In what follows, we will use v; to denote the elements of =. Given a linear
circuit =" C Z, we fix a nontrivial linear relation 3", b;»; = 0 among the elements
v; € £/, and decompose =’ = =L, UEL, where =/, denotes the set of elements v; € =’
which appear with positive coefficient b; in the linear relation, and ='_ is defined
similarly.

For any subset § C =, we let C(S) denote the convex cone generated by S.
Given a circuit Z' C = with |=/, | > 1, we define £ (=’ ) to be the fan whose top
dimensional cones are C(Z' — {v;}) for all v; € Z/,. The support of this fan is
C(Z'). Similarly, we get the fan £_(Z') provided |E.] > 1. For an example of
what this looks like, suppose that = = {v1,v2, v3,v4}, where the linear relation is
v1 +v2 = v3 + vy. In this case, C(Z') is a cone with four generators. There are two
ways of subdividing this into a pair of simplicial cones: L4+ (Z') gives one way, and
Y _(Z') the other.

We next describe how a linear circuit interacts with a fan ¥.
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DEFINITION 6.2.7. Let & be a projective simplicial fan in Np with £(1) C =,

and let = C = be a linear circuit. We say that T s supported on =’ (or, alterna-

tively, =’ is supported by ) if the following conditions are satisfied:

(3) T4(Z) is a subfan of .

(i) Let o be a top dimensional cone of £ (Z'). If there exists a subset 1 C =’

such that o U II generates a top dimensional cone of T, then for all other

top dimensional cones o’ € T(Z'), o' UII also generates a cone of L.

Thus, being supported on =’ means that the cones of ¥ touching C(Z') are

determined by £..(Z’) in a particularly strong fashion. An example of a projective

subdivision supported on a circuit will be given when we revisit Example 6.1.4.2

later in this section.

Definition 6.2.7 allows us to use linear circuits to modify the fan £. More

precisely, suppose that X is supported on =’ and that |Z’_| > 1. Then we obtain a

new simplicial fan ¥’ = flip=,(X) by replacing the simplices of ¥ spanned by o UII,

where o are the cones of (=) and IT C =’, with the simplices spanned by o/ UTI,

where ¢’ are the cones of £_(Z). For an example of what this looks like, suppose

that ¥ is supported on the linear circuit =' = {v,,vs, v3,v4} and vy +v2 = v3 + vy

(this is the example discussed above). In this case, & will use one way of dividing

C(Z') into two simplicial cones, while the flip ¥’ will use the other.

If we start from a simplicial projective fan ¥ satisfying £(1) C Z, any flip ¥’

is clearly simplicial and satisfies £'(1) C =. Furthermore, using the techniques of

[OdP], one can show that &’ is also projective. Thus cpl(£’) will be a cone in

the GKZ decomposition. But when ¥ subdivides the normal fan of A (as in the

definition of simplified projective subdivision), £’ may fail to do the same. However,

if Z' is a subset of a proper face of A°, then ¥’ will also subdivide the normal fan

of A.

‘We next consider the geometric significance of the flip &' = flip=.(X). Suppose

that ¥ is a simplicial projective fan with £(1)} C = and that |2/ |,[E] > 2. It

follows immediately from the definitions that Xy is obtained from Xg by blow-

ing down the subvariety M, ¢z D;, and then blowing up the resulting singularity,

replacing it by the subvariety Nu;ezt, Di of Xsr. We will refer to this birational

transformation from X5 to X5 as a generalized flop, and will denote it by flop=..

For example, the classic example of a codimension 2 flop can be thought of as the

generalized flop associated to the circuit {v,v2,vs, va} with vy +v3 = v2 +v4.

Now let Z' be a linear circuit supported on X with |Z/, |, [E_| > 2. Also assume

that the base locus of flopz: is disjoint from V, i.e.,

nv;GE'_ Di N V = @

for generic Calabi-Yau hypersurfaces V C Xx. It follows immediately that flop=,

induces isomorphism V =~ V' of Calabi-Yau hypersurfaces. Such flops will be called

trivial flops, and the associated flip ' = flip=/ (X) will be called a trivial flip of T.

When ' is a trivial flip of T, we get a map

HY(Xs) — H3 (V') = HY(V)

which takes Kihler classes to Kihler classes. We therefore conclude that cpl(X') C

K(V) This motivates the following definition. Given our Calabi-Yau toric
toric®
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hypersurface V C X5, we consider the cone

(6.23) E(V)yone = Jopl(®),
-

where the union is over all fans ¥’ which may be obtained from & by a sequence of
trivial flips. It follows immediately from the above discussion that

K(V)mric c K(V)toric‘

CONJECTURE 6.2.8. K(V) .ic = K(V), c-

To the best of our knowledge, K(V),, ;. coincides with K (V )ioric in all known

examples. It is also intriguing to note that in these examples, K (V)1omic is always
simplicial, even though K(Xs) need not be. We will illustrate Conjecture 6.2.8
and some ideas which may be relevant to its eventual proof when we revisit Exam-
ple 6.1.2 below.

For the rest of this section, we will assume that Conjecture 6.2.8 is true.

Let’s explore what this says about the toric part of the Kahler moduli. We
define the toric part of the (unenlarged) Kahler moduli space to be the quotient

(6.24) KMioric = {we H'?oric(V’ C): Im(w) € K(V)toric}/im Hforic(v’ z).

Strictly speaking, we should take the quotient of this by the automorphisms of

V. However, Aut(V) preserves the rational polyhedral cone K (V)toric: and each
automorphism permutes its minimal generators. Hence Aut(V) acts via a finite
group of automorphisms, so that the true toric Kahler moduli space is a finite
quotient of (6.24). This is analogous to what happened in Section 6.1.2, where

Mpely was a finite quotient of Mgimp. Just as we found it more convenient to use
Mimp, here it is simpler to consider X Moric as defined above.

With this definition of the toric Kihler moduli space, we see that the cones
cpl(Z’) in (6.23) give a fan subdividing K (V)ioric- As in Section 6.2.1, the resulting
toric variety is a partial compactification of K M,ric, and if we refine further to get

a smooth partial compactification, we get lots of large radius limit points. These
include the ones coming from cpl(X), but there may be more because of the other

cones cpl(X’) which may occur in K {(V)toric- All of these should correspond to
maximally unipotent boundary points on the mirror side.

If we are looking for a minimal partial compactification of KM oric, then it is
clear that we should use the affine toric variety given by K (V)ioric- On the mirror
side, we will see later in the chapter that flsimp needs to be blown down a bit in
order to get the corresponding minimal compactification of the simplified complex
moduli space Mimp, as suggested in Example 6.1.4.2.

We will next discuss some further properties of linear circuits which are useful
for doing examples. We first observe that linear circuits give interesting elements
of the dual space A(Z)*. Since A(Z) = R¥ /Mg, we see that A(Z)* is the vector
space of linear relations

AB)" = {£=(4) € RZ: T,liw; = 0},

If =' is a linear circuit, we have a relation > ;bivi = 0, from which we get the
decomposition =’ = E/, UZ.. The relation also gives £z = (b;) € A(Z)”, which
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is well-defined up to a positive scalar if Z' = Z/, UZ’ is fixed. If we think of an

element D € A(Z) as a divisor class D = [3°, a;D;], then

EE'(D) = Ziaibi.

We can now characterize cpl(Z) in terms of the linear circuits supported by .

If ¥ is supported on =’ and ¥’ = flip=/(X), then it is easy to show that ¢=.(D) > 0

for D € cpl(X), while £z/(D’) < 0 for D’ € cpl(X'). Thus the hyperplane ¢z = 0
separates the interiors of the two cones. Furthermore, one can show that the cone

cpl(E) can be defined as

cpl(Z) = {D € A(Z) : £z/(D) > 0 for all =’ supported by T}.

In fact, the facets of cpl{(X) are in one-to-one correspondence with the linear circuits

=’ such that ¥ is supported on Z'.

We can also use linear circuits to shrink the GKZ decomposition. This is useful

since we’re not really interested in the cones cpl(X) for which ¥(1) is a proper

subset of & = (A° N N)p — {0}. The idea is as follows. Let ¥ be a simplified

projective subdivision, and suppose that =’ C = is any linear circuit with |= | =1,

not necessarily supported by . We claim that ¢z > 0 on cpl{Z). To prove this, we

relabel =’ so that the linear relation is bovg = 3, 5 bi¥;, where all of the coefficients

are positive. Since vg € = = Z(1), we have vy € o for some maximal cone o € Z.

Now take D = [}, a;D;] € cpl(T). Since o is simplicial, we can find m, € Mg

such that (m,,v;) = —a; for all v; € o, and note that for any v; € =, we also have

(Mg, v;) > —a, since D € cpl(X) (see Section 3.3.3). Then

—boag = <m<71b0v0> = <m0'7 Eibivi> > _Eiaibiy

and it follows immediately that ¢z (D) > 0. To exploit this, recall that the cone

AT(Z) = {[;aD:] € A(E): a; > 0 for all i}

is the support of the GKZ decomposition. Then we define the Calabi- Yau cone! to

be

Coy = {D € A*(Z) : f=/(D) >0 for all = with [=_|=1}.

The point is that if X is a simplified projective subdivision, then c¢pl(X) C Coy by

the above paragraph. So we need only study the restriction of the GKZ decompo-

sition to the cone Coy.

We will now illustrate the concepts developed so far in an example we’ve seen

before.

Example 6.1.4.2, revisited. Example 6.1.4 studied the complex moduli of the

Calabi-Yau threefold V ¢ Xs coming from the reflexive polytope A with vertices

v1,... ,vg given by

(-1,-2,-3,-7),(1,0,0,0),(0,1,0,0),

(0,0,1,0),(0,0,0,1), (0,0, -1, -2)

We now want to study the the Kihler moduli of the mirror ¥° C Xso. Since we're

dealing with V°, we need to switch N and M, A and A°, etc.

A first observation is that K(V°) = K(V°)oric- This follows from the formulas

of Section 4.1, especially (4.4) and (4.7), which imply h%(V°) = A2 . (V°) = 2.

(6.25)

1The relevance of this cone was pointed out to us by B. Sturmfels.
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A simplified projective subdivision T° of the normal fan of A° lives in My and

satisfies £°(1) = (A N M)p — {0}. This is precisely the set = of Example 6.1.4.2,

and observe that = = {v1,v2,v3,v4,v5,v6}. Then the cone cpl(E°) is part of the

GKZ decomposition of =. Earlier, we constructed the secondary fan (6.18) using

=t = (Tu{0}) x {1} = (AN M) x {1}. Repeating that construction using =

instead gives the GKZ decomposition. Recall that A(Z)* is the vector space of

linear relations among the elements of =. In this case, a basis of A(Z)" is given by

the rows of the matrix

-2 -2 -4 1 0 7

1 1 2 01 =3

Using the dual basis of A(Z), the columns of this matrix give vectors e, , ... ,e5, €

A(Z). Then Section 3.4 shows that the GKZ decomposition is given by the following

picture:

vs

* **

€ € €
177U Fus g [2p)U

(6.26)

ve

Each edge is labeled with the points e which span the edge. There are three

maximal cones in the GKZ decomposition, denoted o1, 02, 03.

The linear circuits of = are

(6.27) {v1,v2,v3, 5,6}, {v1,v2,v3,v4,V6}, {va,vs,06}, {v1,v2,v3,vs,05},

corresponding to the linear relations

v +v2+2v3+vs —3vs =0

—2uy — 2vg —4dug + v+ Tvg =0

vg+vs+2v6 =0

v1 + v2 4+ 2vu3 + 3vg + Tvs = 0.

(6.28)

The linear circuits are most easily found by looking at (6.26). Each circuit is

obtained by dividing the plane into two halfplanes along the line determined by

one of the edges in the figure. Then =’ is the set of vertices not contained in the

line, with points of =/, on one side of the line and points of =_ on the opposite

side.

It is readily observed that the only linear circuit =’ with |= | = 1 (using either

the relations (6.28) or their negatives) is the first relation with the signs as written.

Thus the Calabi-Yau cone Ccy is the cone inside ATM(E) = o1 U o U o3 determined

by the single inequality a; +a; +2a3 + as — 3as > 0, where a general point of AT (=)

is represented by [3_, a;D;] as usual. This gives Cey = oy U 0.

We will next construct the fans corresponding to oy and o,. Let’s begin with

2. One way to do this would be to take a divisor class in o2 and use the con-

vexity conditions for ampleness to determine the fan (this procedure is automated

in [KS]). However, it is easier to realize that V° comes from the weighted pro-

jective space P(1,1,2,3,7) (this is how V° was originally constructed). Namely, of

the six vertices listed in (6.25), the first five determine a simplex, which gives a fan
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in Mg by taking cones over faces of the simplex. The associated toric variety is

P(1,1,2,3,7), which is not Fano. However, if we blow-up P(1,1,2,3,7) by inserting

the l-dimensional cone generated by (0,0, —1, —2}, then we get a simplicial fan %°

whose top dimensional cones are

C(va,v3,v4,s), C{v1,v3,v4,v5), C(v1,v2,v4,0s), C(V1,v2,V3,V4),

C('vz, V3, Us, ’Ue), C('Ul, U3, Us, 1)6), C(’U1, u2,Us, 1)6), C('l}l, U9, V3, ‘Ue).

This fan clearly refines the normal fan of A°. One can also check that X° is

supported on the linear circuits =] = {v,v2,v3,v5,v6} and =) = {v1,v2,vs,v4, v}

(with signs determined by (6.28)). Since the inequalities ¢=;(D) 2 0 for i = 1,2

define o2, we see that cpl{£°) = 3.

Furthermore, note that =5 has |[(25)+] = 2 and |(Z5)-| = 3, so we get the fan

£°' = flipg, (X°) and the birational map flopz,. Using (6.26), one easily checks

that cpl(X°') = o1. Note also that =’ is contained in the facet of A supported by

the hyperplane in Mg defined by the equation

{m,(-1,-1,-1, 1)) =-1

corresponding to the vertex (—1,—1,—1,1) € A° (see Example 6.1.4.2). By our

earlier remarks, it follows that both £° and £°’ are simplified projective subdivi-

sions.

‘We will now prove that I° is a trivial flip of £°. Since both are simplified

projective subdivisions, we are in the situation of (6.22). Furthermore, one can

check that flopgy : Xgo — — — Xso is an isomorphism except over the point of

Pao corresponding to the vertex (—1,-1,—1,1) € A°. Since a generic V° C Pao

misses this point, it follows that a generic V° C Xgo misses the base locus of flopga.

Hence the general Calabi-Yau hypersurfaces in Xso and Xz-r are isomorphic and

¥ is a trivial flip of X°. o

We have thus shown that K(V°), .. =01 Uds. The next step is to show that

this equals K(V°),,, i-€., that Conjecture 6.2.8 is true in this case. To begin the

proof, let D € K(V°), ;.- First view V° C Xso and define the curve C C V° by

imposing the equations z; = z¢ = 0 on V°, using homogeneous coordinates on Xxo.

Then view V° C Xso/ and consider the curve C’ C V defined by z, = z; = 0 using

homogeneous coordinates on Xgor. Since D € K(V°), ., We bave C-D>0and

C’-D > 0. One can show that these two inequalities are precisely the conditions

defining oy Ucs. In fact, the first inequality coincides with £z;(D) = 0, where =l is

the linear circuit defined above (which is supported on %°). The second inequality

coincides with £z, (D) > 0, where =3 is the third circuit in (6.27), with signs as

in (6.28). Thus K(V°),,.;c C 01 U 02, and equality follows.

One approach to proving Conjecture 6.2.8 in general is to produce curves like

C,C’ above such that the linear functionals given by C,C’ coincide with the linear

functionals ¢z d(fii_xle/d by appropriate circuits for the various subdivisions used in

the definition of K(V), .-

Now that we have the Kihler cone K(V°) = K(V?°),,c = 01U 02, we next

discuss the Kihler moduli space of V°. By Section 6.2.1; a partial compactification

of KM is given by the affine toric variety of K(V°), which is easily seen to be

smooth. Furthermore, natural coordinates near the large radius limit point are

determined by generators of K (V°). The generators D, D’ we want are the vectors

D=(-2,1) =¢ and D' =(1,0) = ¢, in (6.26), and it follows that D = D1 and
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D’ = Dy, where D; now denotes the toric divisor associated to v; restricted to V.
One can compute the intersection numbers

D*=0, D?.D'=1, D-D?=3 D®=9

from which we obtain see that the relations D3 = 0, D2 —3D - D' = 0 hold in the
cohomology of V°. This will be useful below.

The next step is to compare this to the complex moduli of the mirror V.
In Example 6.1.4.2, we compactified Msimp using the secondary fan (6.18). But
we now know that we need to combine the cones ¢ and o, into a single cone,

which corresponds to blowing down our previous definition of .A_/tsimp. When we

do this, the Kahler cone K (V°) corresponds to a single boundary point of Meimp
which can be shown to be maximally unipotent. If fact, if we use the natural
coordinates provided by the generators of the cone K (V°), then we get two mon-

odromy transformations with associated logarithms Nj, Na. One can calculate that

N3 =0, N 3NN, = 0.2 This is enough to prove that the corresponding bound-
ary point of the minimal blowdown is maximally unipotent. Note the similarity

with the relations D3 = 0, D2 - 3D - D' = 0 satisfied by D,D’. This is no ac-
cident, for under the mirror map, the logarithms of the monodromy are supposed

to match up with cup product with the generators of the corresponding cone in

K(V®). So we have an explicit example of how mirror symmetry works in this case.

We next turn to the global description of the Kahler moduli space. Our goal
is to make this tautologically identical with the global description of the simplified

polynomial complex moduli space of the mirror manifold given in Section 6.1.2.

More formally, let V C X5 be a Calabi-Yau toric hypersurface, where T is a
simplified projective subdivision of the normal fan of the reflexive polytope A, and

as usual, let = = (A° N N)g — {0}. Then we define the compactified toric Kihler

moduli space KM .;c to be the toric variety associated to the fan in A(Z) which is
obtained from the secondary fan of Z+ = (A° N N)g x {1} by replacing collections

of cones cpl(X’) by their unions when they can be related by a sequence of trivial
flips (as in Conjecture 6.2.8).

Thus the compactified toric moduli space is essentially the same as the compact-
ified complex moduli space Miimp of the mirror family after a minimal blowdown.
Note that by definition, the compactified Kahler moduli space contains the affine
toric variety associated to the Kihler cone. We have also seen in Section 6.2.1

that this toric variety naturally contains the Kahler moduli space. As already
mentioned, we are ignoring the role of the automorphism group, which (assuming

Conjecture 6.2.8 as always) would give a finite quotient of K Miopic.
One nice thing about the definition of K Mgy is the way it effortlessly enlarges

the Kéhler moduli space and simultaneously compactifies it. For a general Calabi-
Yau threefold in Section 6.2.2, we first had to enlarge to the movable cone and
then further enlarge to the reflected movable cone. And this only gave a partial
compactification. So although it took some effort to describe the toric Kihler
moduli space, there is no question that Calabi-Yau toric hypersurfaces are much
easier to work with than general Calabi-Yau threefolds, not to mention Calabi-Yau
varieties of arbitrary dimension.

2The calculation was done using the methods of [CAFKM, CFKM], which are more efficient
for this purpose.
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The compactified toric Kédhler moduli space, together with the moment map

discussed in Section 3.3.3, give a mathematical description of the phase structure

of the gauged linear sigma mode] (GLSM) which we outline in Appendix B.5. The

GLSM depends on certain parameters, which can be identified with elements of
Hforic(X =, R). This space is naturally identified with the target space of the moment
map. As in our discussion of symplectic reduction, there is a symplectic quotient

which is obtained as a quotient of a fiber of the moment map over a cohomology

class D € A*(Z). If D is in the cone of cpl(X) in the GKZ decomposition of
A*(Z), then we proved in Theorem 3.4.2 that the symplectic quotient is just Xs.

For a general D € A(=), the symplectic quotient is still defined but need not be

a projective toric variety. It follows that the isomorphism classes of the possible

symplectic quotients are in one-to-one correspondence with the top dimensional

cones in the secondary fan.

The additional ingredient in the GLSM is that a subvariety V' of the symplectic

quotient is obtained. In this context, the different symplectic quotients correspond-

ing to different components of the secondary fan are called phases of the GLSM.

If D € cpl(X) for a simplified projective subdivision, then the subvariety V is a

Calabi-Yau hypersurface. In general, V' need not even be a hypersurface. In the

example given in Appendix B.5, there are two phases. The corresponding symplec-

tic quotients are P* and C%/Zs, and the associated subvarieties V are the Fermat

quintic threefold and the origin. The latter case is an example of a Landau-Ginzburg

orbifold, also discussed in Appendix B.4.

One consequence of our definition of the toric Kahler moduli space is that if

V C X5 and V° C Xso are Batyrev mirrors, then KMoric(V) and /Vsimp(V°) are
the same space. This may suggest to the reader that the mirror map is the identity,

but as we will see in Example 6.2.4.3, the mirror map is not so simple. The actual

mirror map will be discussed in detail in Section 6.3.

6.2.4. The Boundary of the Kihler Moduli Space. The discussion in

this section is still largely speculative. We will begin with Calabi-Yau threefolds,

and then specialize to those which arise as toric hypersurfaces. We take as our

starting point the observation that one can often blow down a known Calabi-Yau

threefold to a singular variety and then smooth it to get a new Calabi-Yau. More

precisely, we have the following definition from [Morrison9).

DEFINITION 6.2.9. Let V be a Calabi-Yau threefold, and let ¢ : V =V be a

birational contraction. If V _can be smoothed to a Calabi-Yau threefold V, then the

process of going from V to V is called an extremal transition.

If ¢ is a primitive birational contraction, then for emphasis, we will sometimes

refer to this transition as a primitive extremal transition. Recall from Section 6.2.2

that ¢ has Type I, IT or IIL so that (for example) we can speak of a Type I extremal

transition.

In the physics literature, Type I extremal transitions are called conifold tran-

sitions, since physicists often call a three dimensional node a conifold. Conifold

transitions are the transitions appearing in what is commonly called “Reid’s fan-

tasy”. In [Reid5|, Reid speculates that if the complex moduli spaces of all possible

V and V are glued together along the space of all possible V, then the resulting
space may be connected.

Here is a nice example of a conifold transition, taken from the paper [GMS].
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Example 6.2.4.1. Let V C P* be a generic singular quintic threefold containing
the plane in P defined by £3 = z4 = 0. Such a V has equation Z3g(zo, . . . ,Z4) +
z24h(Zo, ... ,T4) = 0 for generic quartics g, ». The hypersurface V has 16 nodes at
the points z3 = T4 = g(zo,... ,Z4) = h(Zg,... ,T4) = 0. Consider now the smooth
Calabi-Yau complete intersection in V C P4 x P! defined by

YoZa =123 =0, yog(Zo,--.,Z4) + y1h(Tg,... ,z4) =0,

where yg, ¥1 are homogeneous coordinates on P! and zq,. .. , z4 are again homoge-

neous coordinates on P%. It is easy to see that the Kihler cone of V is isomorphic
to the Kahler cone of P* x P!, i.e., is generated by the pullbacks of the hyperplane
classes of P* and P'. The hyperplane class H coming from P4 spans a face of the
Kihler cone and H® = 5 % 0, 50 the projection map P4 x P! — P4 restricts to a
primitive contraction ¢ : V — V. It is of Type I since ¢ contracts the curves lying
over the 16 nodes. The singular threefold V can be smoothed to a smooth quintic

threefold V C P4, completing the conifold transition.

Our discussion of extremal transitions from V to V is structured to suggest
that it is more natural to simultaneously glue both the complex and Kihler moduli
spaces of V and V, rather than just the complex moduli spaces. In other words,

we are working with the full SCFT moduli space. As we will see below, identifying

the SCFT moduli spaces of V and V° leads to a surprisingly rich structure.
An extremal transition is naturally thought of as a two-step process in the

SCFT moduli space: a deformation of Kahler structure with fixed complex struc-
ture, followed by a deformation of complex structure with fixed Kahler structure.

In more detail, the space of ample classes on V pulls back via ¢ to a face F of K (V)

by the discussion in Section 6.2.2. We first choose a path in KA approaching a

component of the boundary of XM associated to F (keeping the complex structure
fixed). Then we glue the product of this boundary component with the complex

moduli space of V' to the product of the compactified Kahler moduli space for V
with the complex moduli space of V. Note that the complex moduli space of V is

a subset of the boundary of the complex moduli space of V. The transition may be
completed by smoothing V, which is done by moving freely in the complex moduli
space of V.

It is conjectured [Morrison9] that this transition is “mirror” to an extremal
transition in the SCFT moduli space of V° performed in the reverse direction.

Mirror symmetry conjecturally identifies the path in the SCFT moduli space of V

with a path in the SCFT moduli space of V°, If V° is the mirror of V, then the
path describing the transition should have the following description: it starts with
a path in complex moduli space of V°, fixing the Kahler structure, and the limiting

singular complex structure arises as a primitive contraction of V°, representable

as a path in the Kihler moduli space of V°. The transition from V° to V° is
conjectured to be the inverse of an extremal transition.

As noticed in [BKK, Morrison9), a nice example of how this works is provided
by the Batyrev mirror construction.

Example 6.2.4.2. Suppose that A and A are distinct reflexive polytopes such
that A C A. For simplicity, we will assume that both have dimension four. We
will first use this data to construct an extremal transition from V to V.
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Since A ¢ A°, any subdivision $ of the normal fan of A can be refined
to a subdivision ¥ of the normal fan of A. This subdivision yields a morphism

7 : Xz — X5. The Calabi-Yau hypersurfaces V' C X5 are defined by the equations

/\itm' =0.

m.EANM

Similarly, we get Calabi-Yau hypersurfaces Ve X defined by equations

(6.29) S =0
m;GEflM

Putting ¢ = w|v, we get a birational contraction ¢ : V' — V, where V is defined

by (6.29), except that all coefficients ); for m; € (A A) N M are zero. The

extremal transition is completed by smoothing V to 1% by allowing arbitrary values
of all the ); in (6.29). The process of going from V to V is called a toric extremal

transition. _

Now comes the crucial observation: since A° C A°, the identical construction

gives a toric extremal transition between the mirrors, now going from V° and V°.

This is exactly as predicted by Morrison’s conjecture.

We should also mention that the technique of Example 6.2.4.2 has been applied

to the 7555 reflexive polytopes corresponding to hypersurfaces in weighted projec-

tive spaces discussed in Section 4.1. It can be shown [CGGK, ACIJM] that when

the toric extremal transitions are used to connect moduli components, the result-

ing space has all of these 7555 irreducible components lying in the same connected

component.

In general, suppose we have an extremal transition from V to V. There is

not yet a good mathematical definition of the structure of the SCFT moduli space

along the intersection of the two components of the moduli space associated to V'

and V. The only existing explanation is via physics using type II string theory

and massless black holes in the case of Type I extremal transitions [GMS]. The

type II string theory moduli space is larger than the SCFT moduli space, and

these larger moduli spaces get glued together by an extremal transition in a way

described by physics as follows. The curves which are to be contracted by V — v

correspond to black holes. As we follow the extremal transition to the boundary of

the Kahler moduli space of V, the black holes become massless. On the other hand,

cohomology classes also correspond to massless particles in type II string theory,

and the difference between the Hodge numbers of V and V are accounted for by

these massless black holes. A similar explanation can be given for certain Type III

extremal contractions based on the physics explained in [KMP]. We will revisit

this circle of ideas briefly in Section 12.2.8. (The type II string theory referred to

here—with lowercase “t”—has no direct relation to the Types I, II, III of extremal

contractions—with uppercase “I”.)

We next discuss an example taken from [CAFKM, KMP] of an extremal

transition which reveals the richly detailed structure of the moduli spaces involved.

Surprisingly, it is an example we're already familiar with.

Example 6.2.4.3. We will continue our discussion of the mirror family of anti-

canonical hypersurfaces in the toric blowup of P(1, 1,2, 2, 2) begun in Examples 5.4.2
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and 6.1.4.1. We have the reflexive polytope A whose polar A° satisfies

E= (Ao n N)O - {0} = {(_1’ -2,-2, _2)1 (1107 0, O)a (07 150.1 0)7
(0,0,1,0), (0,0,0,1), (0, -1, -1,—1)}.

We label these points m;,... ,ms. The GKZ decomposition from Example 3.7.2

shows that there is a unique simplified projective subdivision X with (1) = Z. This

gives a Calabi-Yau threefold V € Xy. We will construct an extremal transition

starting from V, and we will study what this transition looks like on the Kahler

moduli space of V.

Using the formulas from Section 4.1, one computes that

RN VY = Ak (V) = 2toric

h*H (V) = 86, A2 (V) = 83,

and the Batyrev mirror V° therefore satisfies

N o 2, o
RYH(V°) = hin (V) =2

RVY(V°) = 86, kil (V°) = 83.

Let Di,...,Dg denote the toric divisors associated to ©(1) = Z, which by

H?*Xg) ~ H*(V) can be thought of as on either X5 or V. Then the Kahler cone

of V is spanned by the classes of Dy and Dj3. The first six columns of the matrix

in Example 6.1.4.1 yield the linear equivalences Dz ~ D), Dy ~ Ds ~ D3, and

D¢ ~ Dy — 2D,, which are useful in subsequent calculations. In particular, this

tells us that V € | 3_, D;| = [4Ds].

We next look for a birational contraction of V. Using the theory developed in

Section 6.2.2, we study the faces of the Kahler cone. It will be convenient to use

homogeneous coordinates z,... ,Z¢ of Xx corresponding to £(1) = Z. One can

check that |Dy| is the pencil defined by sections z1,z2, which give a K3 fibration

V — P!, and (D;)® = 0. Hence |D;| doesn’t give a contraction. On the other

hand, |Ds] is defined by sections z?zs, T17226, 2376, 23,24, T5. Since (D3)® = 8,

we get a primitive contraction ¢ = ¢p,| to a degree 8 threefold V c P°. In fact,

V is a complete intersection of a quadric and a quartic. To see this, we introduce

coordinates yp, . .. ,ys on P°. Using the sections of | D3| in the order above to define

&, we see that V lies on the singular rank 3 quadric yoys2 = y?, while the section

of |4Ds| defining V C Xy is induced by a degree 4 polynomial in the y;. One

can check that ¢ is a primitive contraction of Type III and that it contracts the

exceptional surface z¢ = 0 to the locus in V cut out by yg = y1 =y = 0, which is

in fact a plane quartic curve. The exceptional divisor z¢ = 0 is a ruled surface over

" this genus 3 curve. The primitive extremal transition is completed by smoothing

V to a smooth (2,4) complete intersection V C P5. The relevant Hodge numbers

of V are h11(V) = 1 and A2 (V) = 89.
In terms of Kahler moduli, this transition is described as follows. Since we

obtained V from a face of the Kahler cone of V, it is clear that KA(V) should

be attached to KM(V') along the subset corresponding to this face. However, this

isn’t quite the full storv. since a face of the Kahler cone has real codimension one,

yet W(f/) C KM(V) has complez codimension one. So further work is needed

to determine the precise locus where we attach KM(V). We will see below that

the mirror tells us what to do.
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This is almost a complete picture of the SCFT moduli space. So far, we have

looked at the polynomial part of the complex moduli space of V, yet the Hodge

numbers of V' indicate that there are non-polynomial deformations. The exceptional

divisor zs = 0 will not survive a general deformation of complex structure of V,

but since this divisor is a ruled surface over a genus 3 curve, 29 — 2 = 4 of the

fibers will deform with a general deformation of complex structure. On this nearby

complex structure, the deformed | D3| will again induce a primitive contraction, but

now it will be of Type I. Furthermore, the 4 isolated curves can be simultaneously

flopped, resulting in different complex and Kahler structures. One can show that

this flop induces an involution of the SCFT moduli space.

We thus arrive at the following description of the SCFT moduli space of V.

For any complex structure in the 86-dimensional complex moduli space, we have a

2-dimensional Kahler moduli space containing a distinguished curve corresponding

to the primitive contraction ¢|p,;. Furthermore, in terms of the flop involution of

the SCFT moduli space that we constructed above, the 83-dimensional polynomial

subspace is fixed by the involution, but it acts nontrivially on the Kahler moduli

space by a reflection as in Section 6.2.2. The 89-dimensional complex moduli space

of V' contains an 83-dimensional subspace of (2,4) complete intersections whose

defining quadric has rank 3 and an 86-dimensional subspace of (2,4) complete

intersections whose defining quadric has rank 2. These get identified with the

complex moduli space and polynomial moduli space of V, while the Kahler moduli

space of V is identified with a curve in the Kahler moduli space of V (this will be

described below).

We next consider the “dual” extremal transition from V° to V°. We have
described V° in Examples 5.4.2 and 6.1.4.1, and V° can be counstructed using

the Batyrev-Borisov construction discussed in Section 4.3. When this is done,

an extremal transition from V° to V° can be written down explicitly based on

the calculation in {CAFKM]. This extremal transition induces a map on mod-

uli flsimp(V") — flsimp(V"). Using the coordinates zj,z; on flsimp, one can

show [CAFKM, KMP] that Mmp(V°) is attached along the component of the
discriminant locus defined by Danr(fr) =1 —42; = 0 in Example 6.1.4.1. We will

give a brief account of this argument in Section 6.3.3. The appearance of the dis-

criminant locus should not be surprising since going from V° to V° first contracts

to a singular variety.

Since the transition from V° to V° is compatible via mirror symmetry with
the transition from V to V, we can finally complete our description of the SCFT
moduli space of V. Namely, if we use the mirror map to identify Mgimp(V°) with

JCM(V), then by the previous paragraph, the Kihler moduli space of V should be
identified with the curve in the Kihler moduli space of V defined by the equation

1- 4Z2 =0.

The SCFT moduli space of V° will have the same intricate geometry as that

of V. In addition, we can also see the effect of the flop involution as follows. By

the proof of Theorem 4.1.5, V° is constructed as a hypersurface in a toric variety

Xso which contains 3 toric divisors D;, each of which has 2 components Dj, DY

after restricting to V°. The divisor classes D} + D are part of Htl‘;iic (V*°), but the
individual divisors D!, DY are not. The involution D} « D, i = 1, 2,3 corresponds

to the effect of the flop involution in the complex moduli space of V. This involution

is trivial on HLL (V°).
toric
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This example has some interesting consequences concerning the mirror map in
the toric case. By our secondary fan construction, Batyrev mirrors V and V° give
identical moduli spaces KM:oric(V) and M, (V°). This might suggest that the
mirror map is the identity. However, a closer look at Example 6.2.4.3 reveals that
this is wrong. The basic idea is that in order for mirror symmetry to be compatible
with extremal transitions, the mirror map must differ from the identity.

Here are the details of how this works. Returning to Example 6.2.4.3, the
closure of the Kahler cone of V is {t1D3 + 12Dy : ty,t2 2> 0}. Note that ¢,,¢, are
the coordinates labeled r;,r; in (3.23) in Chapter 3. It follows that the faces of
the Kahler cone are defined by t; = 0. Moving to the Kahler moduli space, we now
let Z; lie in the upper half plane, and then g; = €TM is the corresponding local
coordinate of KM(V). Hence Im(t;) = 0 corresponds to |g;| = 1 in the Kihler
moduli space of V. Note that this set has real codimension one in KM(v).

On the mirror side, we have the simplified complex moduli of V°, which is given
by the same space. The natural coordinates z,,z, described in Example 6.1.4.1
came from the matrix (6.15). The rows of this matrix gave a basis of A* (Z) and the
dual basis of A(Z), which is where the GKZ decomposition lives. This is precisely
the basis D3, D; used above for the Kihier cone of V. Thus the local coordinates
21,23, for Meimp(V°) are the same as the coordinates q1,92 on KM(V) under
our identifications of each with a Chow quotient (we will prove this carefully in
Section 6.3.3).

To see why the mirror map is not g; = z;, we use the extremal transition from
V to V described in Example 6.2.4.3. As we saw above, the face of the Kahler cone
generated by Dj gives the primitive contraction ¢ = DDy V — V. In Kahler
moduli, this face is defined by Im(t;) = 0, which gives |go| = 1. If the mirror map

were the identity, then the “dual” extremal transition from V° to V° would glue in
somewhere along the locus |z3] = 1. Yet we saw in Example 6.2.4.3 that this locus
is defined by 1 —42; = 0, or 2o = 1/4. The discrepancy between these equations
shows that the mirror map can’t be the identity.

A. physicist would explain the discrepancy just noted by saying that the Kahler
moduli space “receives instanton corrections”. We have seen this phenomenon
before, most notably in how instantons (holomorphic maps from a Riemann surface
to V') cause the A-model correlation function to differ from the intersection number.
We will finally explain the mirror map in Section 6.3.

It is also interesting to note that although |23} = 1 and 1—42, are not consistent,
they at least involve the same variable. This is no accident and is part of a general
conjecture of Morrison [Morrison9) describing the location of complex and Kahler
moduli identifications for extremal transitions.

Sections 12.2.8 and 12.2.10 will discuss further aspects of extremal transitions.
We will also see in Section 12.2.9 that extremal transitions can be used to construct
mirrors of Calabi-Yau complete intersections in Grassmannians and partial flag
manifolds.

6.3. The Mirror Map

In this section, we will describe the mirror map between the complex mod-
uli space of a Calabi-Yau manifold V and the Kahler moduli space of its mirror
manifold V°. These moduli spaces are presumed to be isomorphic, and the mirror
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map is an explicit local isomorphism connecting a natural set of coordinates on the

Kihler moduli space of V° at a large radius limit point and a natural set of coordi-

nates on the complex moduli space of V' near a correspondiug maximally unipotent

boundary point. .
We will start with a general definition of the mirror map, and then apply the

definition to the case of toric hypersurfaces. We will conclude with some explicit

examples.

6.3.1. Definition of the Mirror Map. The mirror map was written down

in [CAGP] for the quintic threefold, and other examples with 1-dimensional K&hler

moduli were done by essentially the same method [Font, KT1, KT2, Morrison1].

The mirror map for higher dimensional moduli was worked out in [CAFKM,

HKTY1l, CFKM, HKTY2], and a physics argument for the mirror map can

be found in [BCOV?2]. In Chapter 8, we will motivate the mirror map mathemat-

ically based on quantum cohomology. In Chapter 11, we will give another way to

calculate the mirror map, a hint of which is given at the end of Example 6.3.4.1.

The purely mathematical definition of the mirror map is due to Morrison, and we

will follow the treatment of [Morrison6).

To define the mirror map, we begin with a maximally unipotent boundary point

in the complex moduli space M(V). Let go,...,g- be a basis for Wao C HY(V) as

in Definition 5.2.2 (W is from the monodromy weight filtration and d = dim(V)).

Then, as in (6.1), define gx by

1 1 ¢ &
(6.30) I logqx = %) j;(g,,fl)m )

where m7* is the inverse matrix to the matrix m;; from Definition 5.2.2. By Sec-

tion 6.1.1, ¢; = g;(p) is holomorphic for p in a neighborhood of our maximally

unipotent boundary point.

By the discussion following Definition 3.2.2, we can rewrite the formula for gi

as follows. First, note that yo = {go, ) is the unique (up to a constant) solution

of the Picard-Fuchs equations which is holomorphic at the maximally unipotent

boundary point. Furthermore, if we set

Ye = Z(gjyfl)mjkv
i=1

then by Chapter 5, yx is a solution of the Picard-Fuchs equations satisfying

logz, .
27 + Yk

where §y, is holomorphic at the boundary point. Using this notation, (6.30) can be

written as

Ye = Yo

1 Y
=1 =Zk
i 0g i Yo

which implies that g, is given by

(6.31) gx = 2k exp(27i Gi /Yo )-

Note that once g is fixed, yx is unique up to adding a constant multiple of yo.

Hence g is unique up to a constant multiple.
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Now let V° be the mirror of V, and assume that the cone conjecture holds
for the Kahler cone of V°. Also choose a subdivision 3+ of the cone K. from
Section 6.2.1 which gives a smooth partial compactification KAM(V°) (the unen-
larged Kahler moduli space.) Then each cone ¢ € 4 gives a large radius limit
point of KM(V°). By (6.19), the generators T; of the cone o determine canonical
coordinates g;, which are unique up to order.

Since M(V) and KM(V°) have the same dimension r (this is part of being
mirrors), we can take p in a neighborhood of our maximally unipotent boundary
point in M(V) and define

(6.32) M@p) = (a1(p),... e (p)) € KM(V°),

where ¢;(p) are the holomorphic functions defined above and we are using the
canonical local coordinates of the chosen large radius limit point on the mirror
side. It follows that the mirror map M requires two sorts of data for its definition:

e The functions ¢;,... , ¢, from (6.30).

® The generators T3,...,T. € H(V°) of the cone ¢ which gives the large
radius limit point.

The first item'is determined purely by the maximally unipotent boundary point of
V, while the second is determined by the large radius limit pomt of V°.

Once the functions g1,... ,q, and cone generators T, ..., T, are chosen, the
map M from (6.30) and (6.32) is defined. For most choices, M will not be the
map we want, but—and this gets to the heart of mirror symmetry—if the following

conditions are satisfied:

e The classes go,g1,...,9, in Wa are chosen correctly (or equivalently, the
solutions yo, 41, .. ,y, of the Picard-Fuchs equations are chosen correctly),
and

e The maximally unipotent boundary and large radius limit points are chosen
correctly in compatible compactifications of the moduli spaces,

then the map (6.32) is the mirror map.

To understand how to “choose correctly”, we need to explain these two items
in more detail. The first goes back to (6.2), where we noted that if we change
90,--+ 1 9r £0 g5 = 37 _( cikgk, then we get new local coordinates (qi,--.,q.) with

(6.33) g = €3 0)g KO > i=1comIK,

where (m'7%) is inverse to the matrix determined by N;(gi) = m/, g5
There are two known methods for dealing with this lack of uniqueness. The

first is to use the integral structure [Morrison6]. The spaces W, C W, in the
monodromy weight filtration are defined over Q. If W, N H 4(V,Z) denotes the
intersection of W; with the image of H9(V, Z) in H4(V,Q), then we can pick go €
WeNHYV,Z) and ¢, ... ,g, € W, N H%(V,Z) such that go spans W, NHYV,Z)
over Z and go, g1.- . . , g- span WoNH4(V, Z) over Z. We call 90,91, - - - , gr a Z-basts
of Wy C Ws.

Given a a Z-basis go, g1, .. . , g, one easily shows that the numbers m; defined
by N;(gx) = m,igo are integers. The integrality conjecture from Section 5.2.2
asserts that the matrix (mjx) is invertible over Z, or equivalently, that the m7*
in (6.30) are integers. This conjecture has been verified for the quintic mirror
[Morrison2|, and other cases of the conjecture are discussed in {Morrison6}.
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We will assume that the integrality conjecture is true. Now suppose we have

Z-bases go, 91,- - - » gr and g5, ¢, - .. , g~ related by g; = 3% _q ¢jkgx- It follows that

coo = £1 and ¢jx € Z. Since we are also assuming m'ik ¢ Z, (6.33) implies g, = G-

Hence the functions (6.30) are unique up to order provided we use a Z-basis.

Example 6.3.1.1. Suppose that V is a smooth Calabi-Yau threefold which satisfies

the integrality conjecture at a maximally unipotent boundary point, which we will

think of as 0 € ATM. In the discussion following Proposition 5.6.1, we explained how

we can find variables qi,. .. , g~ such that the Gauss-Manin connection V is given

by

Vs.e® =0

V5i€k=5ik€0, 1<k<r

6.34) r

( Veie; = Yiyre, 1<j<r
k=1

v&e €g = €4,

where 6; = 2mwig; 3/8g; (see (5.67)). Let us show that qp,...,g, determine the

mirror map in this case.

In the proof of Proposition 5.6.1, we showed that eg is the normalized 3-form

Q and the flat section e® = gg is the integral generator of Wy such that {go, Q)y=1.

Furthermore, we also know that el,...,e" are sections of W,. If we write ¢; =

exp(2miu;), then it follows easily that

g =—¢ +u;e’, 1<j<r

is a flat section. Since going once counterclockwise around the ith slice of (A*)"

takes Uj to Uy + 5,'_7', it follows that T,(gj) = g5 + 5,;]'90, and hence N,(g]) = 61;ng

for1Lj<r.

Since €°,el,... ,e" are sections of Ws, the same is true for go,91,.--,9r: ‘We

also claim that these sections are integral. We already know this for go. For

the others, note that exp(— Y, wN;)g; = ¢ for 1 < j < r. Asin the proof of

Proposition 5.6.1, the e’ are integral above 0 € AT, which implies that the same

is true for the flat section g; by the discussion in Section 5.1.4. Thus gg,91,.-- ,9r

are a basis of Wa consisting of flat integral sections such that go spans Wp.

We can now compute the mirror map. Since N;(g;) = 8i;0, the matrix (my;) =

(8:5) is the identity, so that the right hand side of (6.30) reduces to {gj, ) (remember

that (gg, 2} = 1). But

(gj,Q) = (—‘63 +u]-e°,eo) = u;

since (e/,e9) = 0 for 1 < j < r by (5.66), and it follows from (6-30) that g is

indeed the k' coordinate of the mirror map.

In the toric case, there is a second method for picking the correct go,91,--- ,9r

in (6.30), which doesn’t depend on the integrality conjecture. The basic idea is

that toric geometry gives natural choices for the z,, and by suitably normalizing

the constant term of §i/yo in (6.31), we get a unique choice for g. ‘We will explain

how this works in Section 6.3.3.
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After computing gy, ... , ¢, the other aspect of “choosing correctly” is finding
the corresponding large radius limit point of W(V"). This is potentially non-
trivial, for as we saw in Sections 6.1.1 and 6.2.1, the compactifications may be
nonunique with possibly many equivalence classes of points to choose from. One
approach is to look for suitably minimal compactifications, where one blows down
the boundary as much as possible. This may lead to a small number of choices for
how to match maximally unipotent boundary pomts with large radius limit points.
But most of the time, the issue is that one needs to have fairly complete knowledge
of what the moduli spaces look like. In fact, part of V° being the mirror of V is
that the moduli spaces M(V) and KM(V°) should be understood weil enough so
that one knows how to match up marimally unipotent boundary points with large
radius limit points. The best example of this is the toric case, where the moduli
spaces are essentially the same, so that we know precisely how the boundary points
match up. We will explore this in more detail in Section 6.3.3.

Furthermore, once we've picked the correct large radius limit point, we get a
cone o generated by T7,...,T,. But how are these generators ordered? When we

discuss the derivative of the mirror map in Section 6.3.2, we will see that this is
essentially determined by the isomorphism H9~b1(V) ~ H1(V°) from equation
(1.5) in Chapter 1.

Once all of the correct choices have been made, the key idea is that the mirror
map from M(V) to KM (V°) should be compatible with the A-model and B-model
correlation functions. Furthermore, it is conjectured that this compatibility extends
to variations of Hodge structure. Over M(V), we have a natural variation of Hodge
structure coming from the variation of complex structure on V, and the asymptotic
behavior of this variation is what determines whether a boundary point is maximally
unipotent. In Chapter 8, we will define the A-model variation of Hodge structure
on W(V°), and we will prove that it is maximally unipotent at large radius
limit points. Then the mirror conjecture asserts that the mirror map is compatible
with these variations of Hodge structure, and this would imply compatibility of the
corresponding correlation functions. In Chapter 11, we will see how much of this
conjecture can be proved in the toric context.

6.3.2. The Derivative of the Mirror Map. Let V and V° be Calabi-Yau
manifolds of dimension 4 > 3, and assume that the mirror map has been defined
as in Section 6.3.1. Our next task is to relate the following three topics:

® The derivative of the mirror map M.

e The isomorphism H¢~*}(V) ~ H11(V°) from (1.5) in Chapter 1.
® The “correct choice” of T},... ,T. once we know q1y--e o Gre

In order to study the mirror map, it is convenient to replace the Kihler moduli
space KM (V°) with the complexified Kahler space

Kc(V°) = (HX(V°,R) +i K(V°))/im H2(V°, Z).

If we assume the cone conjecture from Section 6.2.1, then this is a discrete cover of
KM(V®). To avoid this, we will simply regard the mirror map as a map

M: S — Kc(V°),

where S is a neighborhood of a maximally unipotent boundary point of the complex
moduli space of V.
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A large radius limit point of V° is determined by a cone & generated by integral

classes Ti,...,Tr € H3(V°,C) = H'}(V°) which lie in the closure of the Kédhler

cone of V°. This gives coordinates

(6.35) (e*mitr, ... e¥ i) — [T .4, Ty] € Kc(V°).

in a neighborhood of the chosen large radius limit point. By (6.32), the mirror

map is M(p) = (q1(p),-.. . ¢-(p)) for p € S, and then (6.31) easily implies that M

extends to the boundary points and is a local biholomorphism there.

In order to describe the derivative of M, we need to understand the tangent

bundles of S and K¢(V°). Let’s begin with the latter. Bach T ¢ H 2(V°,C) gives

a vector field 8/8T on H*(V°,R) + i K(V°) which is invariant under translation.

Thus we can regard 8/9T as a vector field on Kc(V°). This gives a trivialization

Tio(vey = H(V°,C) x Ke(V°)-

The coordinates (6.35) give vector fields 8/8t; on Kc(V°) which are naturally

identified with 8/8T;. Under the above isomorphism, 0/8¢; is identified with Tj.

In terms of this trivialization, the mirror map M : § — Kc(V°) induces a map

(6.36) Dy i Ts = H*(V°,C) x Ke(V°).

since M is a local biholomorphism. Since the functious g1, ... , ¢, can be used as

local coordinates on S, the vector fields §; = 2mig; 3/0g; on S are a basis of Ts,

and then the above formula for M shows that Dy takes §; to 8/0t; = 8/06T;. In

terms of (6.36), D takes §; to T}.

We next describe the tangent bundle T of S. The complex moduli space of V

is M(V), and in a neighborhood S of our maximally unipotent boundary point po,

we will assume that we have a universal family = : V — S (strictly speaking, we

should go to a finite cover of S). Since V is Calabi-Yau, the Kodaira-Spencer map

is an isomorphism [Bogomolov, Tian, Todorov]

K ZTS = Rlfl',.ev/s,

where Ts is the tangent bundle of S and ©y,¢ is the relative tangent bundle.

We also have the Hodge filtration FP of H = R%r,.C ®c Os. We are most

interested in F¢ = 7, Q8 /s and Fi-l/Fd = Rl'rr,,Q{‘;;. Contraction gives a map

(6.37) R'm.0y,5 — Hom(F?, F* 1 /FY),

and, as is well known, the composition

(6.38) Ts — Hom(F?, F2=1/F%)

of % with {6.37) is the map which sends a vector field X and holomorphic d-form

Q to [Vx(Q)], where [...] denotes the class in the quotient Fi-1/Fd,
Since V is Calabi-Yau, we can fix a nonvanishing section Q of F¢ over S. We

normalize it as usual by setting Q = 2/(go, ), where go is from the definition of

maximally unipotent monodromy. Then (2 induces an isomorphism F¢ ~ Og, so

that (6.38) gives the isomorphism

(6.39) Ts ~ R'm.6ys ~ R'm.Q5 ¢

defined by X — [Vx()]. This has the following meaning. Suppose V' =V, for

p € S. If we think of X as the infinitesigla.l deformation ja.king V =V, to V,, then

under this deformation, 2, deforms to Q¢ = Qp +eVx((p + O(€2).
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We can now bring together the three items discussed earlier. First, if V =V,
for p € S, then combining (6.36) and (6.39) gives an isomorphism

(6.40) HYV,Q%) = Ts, ~ HA(VC,C) = HVY(V).

Thus, the derivative of the mirror map is the d-dimensional version of the iso-
morphism (1.5) from Chapter 1. Furthermore, we saw above that Dj,; takes

6; = 2mig;8/0q; to T;. In terms of (6.40), this says that at V = Ve,

HY(V,Q% 1) ~ H?(V°,C) is defined by 27riqja—z- - Tj.
i

Thus knowing (6.40) is equivalent to knowing the “correct choice” for Ty,..., T}
We conclude our discussion with the following lemma, which will be useful in

Chapter 8. The idea is to relate the derivative of the mirror map to the bundle
H = F9 = Rir,C R¢ Os.

LeEMMA 6.3.1. Let Q be the normalized d-form near a mazimally unipotent
boundary point py. Then:

(2) In a neighborhood S of py, the map

%:0s@Ts — FilcH

defined by Y(f, X) = fQ+ Vx () is an isomorphism compatible with (6.39).
(%) There is a bundle isomorphism

¢: F* = (HO(VC,C) @ HA(V°,C)) x M(S)

such that ¢ takes Qtole HOY(V°,C) and is the derivative of the mirror
map when restricted to Ts, which is identified with a subset of %! vig 1.

ProOOF. The definition of maximally unipotent monodromy implies that Wy =
W1 has dimension 1. Since cup product interacts nicely with the monodromy weight
filtration, it follows that GrY, has dimension 1 and Wy_; = Wia—2. The arguments
used to prove (5.10) then imply that

F}‘iim 53] W?d—l = F‘I‘xim 53] W2d—2 = Hd(‘/’ C)v
where Fii is from the limiting Hodge filtration. We conclude that the Hodge
structure on Gr;"d'_2 is purely of type (d — 1,d — 1), and this in turn implies

F’I?;I/F'l‘xim e GT;Z—T
The definition of maximally unipotent monodromy, together with the duality given
by cup product on Grl¥’, imply that if g € Wy4 generates GrlY, then the N;(g)
form a basis of Grj;_,. Combining this with (5.3), we see that the lemma is
true at pp once we go to the canonical extensions. From here, the isomorphism

Os @ Ts = F*~! follows immediately. The remaining statements of the lemma are
now obvious.

An illustration of this lemma is provided by (6.34), since ey = Q and e; =
Vs, (fi) Thus, if we use the basis 1 of Og and &; of Ts, then the isomorphism in
the first part of Lemma 6.3.1 takes 1 to £ and d; to e;. In particular, (6.34) contains
an explicit copy of T’s. Also, the isomorphism in the second part of the lemma takes
eotole HY(V°,C)ande; to T, for 1 <i<r. In Chapter 8, we will extend ¢ to
an isomorphism of H = F¥ with the trivial bundle given by @, H*P(V°,C). As we
will see. this is part of the Hodge-theoretic formulation of mirror symmetry.
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6.3.3. The Mirror Map for Toric Hypersurfaces. For toric hypersur-

faces, we can be much more precise about what the mirror map should be, and we

can also give an alternate proposal for dealing with the nonuniqueness (6.33).

As usual, we fix a reflexive polytope A and let V C Xz be a Calabi-Yau

hypersurface corresponding to a simplified projective subdivision ¥ of the normal

fan of A. Also let V° C Xs. be a Batyrev mirror of V' and set

T=(ANM)—{0} and ZT =(SU{0}) x {1} = (ANM)o X {1}.

Note that £°(1) = = since £° is a simplified projective subdivision of the normal

fan of A°. Finally, recall that the GKZ decomposition of = and the secondary fan

of =+ live in the vector space A(Z).

In order to specify the mirror map, we need more data. The cone cpl(Z°) is a

cone the GKZ decomposition of =. We will subdivide cpl(X°)} into smooth cones

o. Hence each o is a simplicial cone whose generators form an integer basis of the

lattice. :

Our basic claim is that each cone o gives all the information we need to specify

the mirror map. In other words, o determines corresponding maximally unipotent

boundary points and large radius limit points and chooses the constants in (6.33)

without assuming the integrality conjecture or knowing anything about integer co-

homology. Furthermore, by starting with o, the “correct choice” for T1,... , T is

made automatically.

Let’s begin with the simplified (polynomial) moduli space flsimp constructed

in Section 6.1.2 using the secondary fan of =+ (see (6.12)). Since we want a smooth

compactification, we will use a refinement of the the secondary fan which includes

the above cones o refining cpl(E°). We denote this compactification by Miimp, and

assuming Conjecture 6.1.4 (which we do for the rest of the chapter), each o gives a

maximally unipotent boundary point of ./\_A_simp.
If we fix one of the o’s, we get natural coordinates at the maximally unipotent

boundary point as follows. The generators of o form a basis of the lattice of A(D),

denoted Ng in Section 6.1.2. The dual basis ¢y,...,%- generates the lattice of

A(Z)*, denoted Mp in (6.13). This is the lattice of relations among =*. Thus each

basis element can be written £x = ({;}. Then we saw in (6.14) that

(6.41) z =[]~
7

are the local coordinates at the maximally unipotent boundary point. Recall that

the \; are coefficients of the Laurent polynomials

(6.42) ST Mttt =+ 3ot
miE(ANM ) mE€Z

where as usual mg = 0. This way of writing the local coordinates emphasizes that

we are dealing with moduli (actually, simplified moduli, since the by the dominance

conjecture, flsimp is a finite cover of the true polynomial moduli space).

The mirror map will be a function of the coordinates z,..., 2 from (6.41).

We will see below that each & = (£x;) contributes the sign

(6.43) ()0, k=1,...,r

which will play an important role in determining the mirror map.

We now turn to the toric Kihler moduli space KM oric(V?) discussed in Sec-

tion 6.2.3. We will assume Conjecture 6.2.8, which implies that up to the action of a
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finite group, a compactification of the toric Kihler moduli is given by the secondary
fan of =¥, provided we combine cones corresponding to trivial flips. In order to
have a compactification compatible with the complex moduli of V, we will work
with the smooth blow-up KMieric(V°) given by the refinement of the secondary
fan used above. In particular, the cones ¢ refining cpl(£°) give large radius limit
points of KM, oric(V°).

For each ¢, we get local coordinates q1,. .. , gr at the corresponding large radius
limit point as follows. First note that we have a natural isomorphism

A(E) = thoric(V°7R)
by the proof of Theorem 4.1.5. If the generators of o are T1,..., T, then the map

(A‘)r - (Hforic(voi R) + iKtOfiC(Vc))/im‘H.tzoric(VorZ)
given by (e?TM1 . ¢?mitry [27=1t;T;] extends to an open immersion

AT C KMioric(VO)

such that the origin maps to the chosen large radius limit point. Then local co-
ordinates at this point are given by q; = €2TM*. We will use these coordinates in
defining the mirror map. _

The compactifications Miimp(V) and KMioric(V°) are the same, and fixing
o gives compatible maximally unipotent boundary points and large radius limit
points. We also have local coordinates z1, ... , z, of the former and q,...,qr of the
latter. It may not be obvious, but these coordinates are the same. This is because
the z; correspond to a basis of the character group of the torus Tp contained in the
moduli space (this is the notation of Section 6.1.2). Similarly, the ¢; correspond to
a basis of the 1-parameter subgroups of Tj. Since the two bases involved are dual
bases, the z; and the g; clearly give the same coordinates. However, in order to keep
things straight, we will continue to use z;j for flsimp(V) and g; for KMqric(V°).

We can now specify the mirror map. We define ax = qi(21,... ,2zr) &8 in
(6.30), and we resolve the lack of uniqueness of gx as follows. By (6.31), we have
ax(21,...,2:) ~ ¢z, for some constant ¢ # 0. Then, using (6.33), we can arrange
that

(6.44) ar(z1,. .. ,20) ~ (—l)l“° Zk,

where the sign (—1)%0 is as in (6.43). This clearly determines the functions
q1,--- ,¢r uniquely, and defines a unique mirror map (6.32). In terms of the discus-
sion preceding (6.31), this means finding a solution y of the Picard-Fuchs equations
such that

log((-1)%¢2)
——_2;1:—— + Uk,

where g, is holomorphic and vanishes at 2y =--- =2, =0. Then ¢ is given by

(6.45) Y = Yo

9k = (~1)%° 2 exp(2mé G /y0)-
Although this formula for g; looks unusual, the sign (—1)%° was present in our
very first example of mirror symmetry, as we will now explain.

Example 6.3.3.1. In our discussion of the quintic threefold V in Chapter 2, the
mirror map went from the complex moduli of the mirror V° to the Kahler moduli
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of V. In homogeneous coordinates, V° is defined by

AL P+ Ao zd 4+ Aax) + Ay zd + A5 22 + Mo 2152237435 =0,

and the relation between the elements of =+ is £ = (1,1,1,1,1,-5). As in (5.36),

the moduli coordinate of V° is
Ao As

A3
The discussion following (5.36) shows that z is precisely the coordinate called z in

Chapter 2. We also have the coordinate g for the Kahler moduli of V.

In Example 6.3.4.1 and its continuation, we will show that the Picard-Fuchs

equation of V° has the holomorphic solution

z =

(5n)!
w(z) =) = (—2)"

_ = (nl)?

and there is also the solution

log(=2) | 5 <= (6n)![e= 17, »

Y om +27ri1;(n!)5 [j;lj]( 2"
which has the required form (6.44). It follows that the toric mirror map for the

quintic threefold is given by ‘

o 5n

q=—zexp <&)‘ ; Ei!)); [J;H fl (-z)").

This is the formula given for the mirror map in (2.9). In Chapter 2, we got the

minus sign in front of the right hand side by computing the Yukawa coupling of V°

and using the fact that the generic V has 2875 lines. Now that we know (6.44), we

get the minus sign immediately from (—1)%0 = (-1)~% = -1.

We can also compare this to the mirror map defined in Section 6.3.1. Since the

quintic mirror satisfies the integrality conjecture [Morrison2], we can find integral

go, g1 With N(g1) = go such that the mirror map of (6.30) is

_ (gl,Q}

2ni 89 (g0, )
It is not obvious that this agrees with the above toric formulation. However, as

mentioned in Example 5.6.4.1, this follows from the explicit computations given in

[CdGP, Morrison2|. Furthermore, letting 7o, v: be Poincaré dual to go, 91, the

above formula implies

q =exp (27rif,n Q/ f% ),

which is the definition of the mirror map given at the beginning of Section 2.3.

Hence we see that for the quintic threefold, all of the various ways of defining the

mirror map agree.

One way to understand (6.44) is to change the sign of Ag: if we replace Ao by

—Xo in (6.42), then by (6.41), each z changes sign by (—1)%. If we had set things

up this way, the mirror map would be normalized using g ~ zi instead of (6.44).

This method is used in [BvS]. On the other hand, [HKTY1] uses the same z) we

do, but then introduces new variables z; = (—1)%9z; and defines the mirror map

in terms of the zj.
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Another way to understand (6.44) is to observe that it is equivalent to specifying

the derivative of the mirror map. Using the ideas of Section 6.3.2, the tangent

space at the maximally unipotent boundary point can be naturally identified with

the space denoted H_, (V,Ty) =~ H;;f (V) in the proof of Theorem 4.1.5, and

similarly, the tangent space at the large radius limit point is H2 ,.(V°). In terms

of the coordinates z; and g, we have the natural bases 8/8z; of H;;Iz (V) and

8/08q; of HZ ,.(V°). In these coordinates, the derivative of the mirror map is the

isomorphism

Hpo 0 (V) = Hipno(V°)

defined by 8/8zc — 3, %’i—&/&qj. At the boundary point 23 = --- = z. = 0,

(6.44) tells us that the derivative takes 8/9z to (—1)%°8/8gx. If we untangle the

notation, this map takes first order deformations of V determined by monomials

to cohomology classes of V° coming from toric divisors, up to the sign (—1)%o.

Hence this map (or more properly, the version without the signs) is called the

monomial-divisor mirror map [AGM1].

One of the basic conjectures of [AGM1, Sect. 4] is that up to an automorphism

of order 2, the monomial-divisor mirror map is the derivative of the mirror map.

The automorphism of order 2 means that certain signs need to be specified, and

this is precisely what we do in (6.44). In our treatment, this conjecture is true by

definition, given our toric method for defining the mirror map. However, to really

deserve the name “mirror map”, the mirror map described here must be compatible

with the correlation functions and variations of Hodge structure mentioned at the

end of Section 6.3.1. This has yet to be proved in complete generality, so that there

is still work to be done.

A final question to ask concerns why (6.44) is the correct way to normalize the

mirror map. A justification from physics can be found in [MP1]. From a mathe-

matical point of view, the sign (—1)%° is most easily explained using hypergeometric

functions, which we will discuss in the next section.

We close by partially computing the mirror map of an example we know well.

Example 6.3.3.2. The mirror V° of an anticanonical hypersurface in the toric

blowup of IP(1,1,2,2,2) has been considered several times, most recently in Sec-

tion 6.2.4. Rather than compute the whole mirror map, we will concentrate on

studying the part relevant to the extremal transition studied in Example 6.2.4.3.

Recall that there were actually two extremal transitions: the original one, from V'

to V, and its “dual” transition, from V° to V°. The original transition involves a

face of the Kéhler cone of V, while its dual uses part of the discriminant locus of

V°. The question is, how do these match up under the mirror map?

Using the local coordinates z;,z; from Example 6.1.4.1 for our maximally

unipotent boundary point in ./\_A_simp, we will study the mirror map on the locus

z; = 0. The calculation presented here first appeared in [AGMS3] and has been

amplified in [Morrison9]. Our goal will be to compute g3 as a function of z,, as-

suming z; = 0. Since zo = A Ay/AZ, we get the GKZ operator O = 612 — 82, where

O, is partial differentiation with respect to A;. The calculations leading to (5.39)

apply here to give the Picard-Fuchs equation

82y — 22,6(26 + 1)y =
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for the periods y = y(22), where § = 23(d/dz;). The general solution is

Vv1—4z +222—1>

222
(6.46) y(z2) = c1 + c2log (

To calculate the mirror map, we need the analytic and logarithmic solutions near

zo = 0. The analytic solutions are just the constants, and we accordingly take

yo(z2) = 1. Since the Taylor expansion of /1 - 4z; begins 1 — 2z, — 222 +- -, the

function multiplying cz in (6.46) has logarithmic growth at z; = 0. In order that

g2(2z2) = exp(2miy1(22)/yo(22)) bave the asymptotic behavior predicted by (6.44),

we let ¢; = 1/2 and ¢y = 1/(2mi). This gives

1 (1-—222—\/1—423)

wlz) = 518 2%

and it follows that the mirror map on the locus 2; = 0 is given by

1~22—1T-4dz

222
(6.47) qz2(z2) = =20 + 225 +525 4.

In ./\_A_simp(V°), Example 6.2.4.3 showed that the dual extremal transition oc-

curred along the locus 1 — 422 = 0, which is part of the discriminant locus. This

locus hits z; = 0 in the point z2 = 1/4. If we substitute this into (6.47), we get

go = 1. However, g, = exp(2nity), so that ¢; € Z and in particular the imaginary

part of ¢, is zero. The point with coordinates qi, g, corresponds to the complexified

Kahler class

t]_Tl +toTp = Re(tl)Tl + Re(tQ)T‘z +1 (Im(tl)Tl + Im(tz)T‘z) =B +iw,

and Im(t;) = 0 implies that w is in the face of the Kahler cone where the original

extremal transition occurs. Hence we get exactly the compatibility predicted by

mirror symmetry, and we also see why we get z; = 1/4 rather than z; = 1, which

would be the case if the mirror map were simply ¢ = 25.

In the next section, we will return to this example and compute the full mirror

map using hypergeometric functions.

6.3.4. The Mirror Map Via Hypergeometric Functions. In Sections 5.5

and 6.1.3, we used the GKZ hypergeometric system to study Picard-Fuchs equations

on the simplified moduli space of a Calabi-Yau toric hypersurface V' C Xx. Here,

we will continue our discussion by using hypergeometric methods to construct the

mirror map. We will use the notation of the previous section, and in particular,

we will assume that we are at a maximally unipotent boundary point with local

coordinates 23, ...,z given by (6.41).

The GKZ system on Mamp consists of the differential operators QgAy ! dis-

cussed in Section 6.1.3, where £ is in the lattice My of relations among Z* (6.13).

For f = Ao + 3. ez MitTM, we also know that the n-form

Ao dty dtn
=202 A A2

.f tl A tn
is a solution, i.e., Dgz\glfi =0 for all £.

The form & lives on X5 —V and its residue on V is the holomorphic (n—1)-form

). We also have the cycle v on T C Xy defined by |t1] = -+~ = |tn| = 1, which

1
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gives a cohomology class g € H*~1(V"). It follows that

’ 1 Ao dt1 dt'nQ) = —— A A—,00 = G [ Fa VM
where we added the constant 1/(271)TM to make the integral easier to compute. By

Chapter 5, we know that this function is a solution of the Picard-Fuchs equations.
The above integral is an example of an Euler integral, and solutions of the GKZ

system of this type are studied in detail in [GKZ1].

To see what this solution looks like, we follow [Batyrev3] and note that

’\0 1 . oo _ |
—_— = ' “:/\'i. _,\ ltm, k.

F 1=z Xi(=Xo)"1tm kz=0 (Zm.e_ (—20) )
Suppose that = has s elements. Then substituting this identity into the above
integral and integrating term-by-term gives the formula

_ ("uo)! ug YU u,

(6.48) <g, Q> - ulzu m(—/\o) OAI o As !
where the sum is over all £ = (uy,... ,u5,u0) € My with u;,...,u, > 0. This

follows because £ € M, implies )7 _; uym; = 0 and —ug = u1 +- - - +u,. The minus
sign in front of Ag in (6.48) is significant.

Here is an example of what the series (6.48) looks like in a specific example.

Example 6.3.4.1. For the mirror V° of the quintic threefold, the only relations

among =1 are multiples of £ = (1,1,1,1,1,~5). Hence we are summing over
(n,n,n,n,n,—5n) for n > 0, which gives

= (- =35 ! —Snynynynynyn(9, = z (_(__71.)_)(-1)_5"/\05 ATAZAZALAS
(6.49) fpard ninininin!
6. 

—

— (5n)! N

- go En!))5 (=2)",
where as usual z = A1 A\2A3A4A5/A3. This is precisely the formula (2.11) for yo(z)

given in Chapter 2.

In general, we can prove that the solution (6.48) is holomorphic at the maxi-

mally unipotent boundary point.

PROPOSITION 6.3.2. If we write the series (6.48) in terms of the coordinates
z1,-..,2r ot the mazimally unipotent boundary point, then we get a nonvanishing

holomorphic function.

ProOF. The first step of the proof is to write (6.48) in terms of z;,... ,2, and

show that only nonnegative exponents occur. The z; come from a basis £ = (Licj)
of the lattice of relations among =+, so that any ¢ in (6.48) is of the form ¢ =
nyly + - -- + n.{, for integers n;,... ,n,. It follows that we can write the series as

(- T nudro)! ¢(6.50) = ((=1)80z)TM .. ((=1)50z,.)TM,nlg;n, H:=1 (Zk:l nk!kj)!
where the sum is over all n;,... ,n, such that ZI;:] nply, > 0 for j=1,...,s.

We need to prove that these inequalities imply n1,... ,n, > 0, ie., that every
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¢ =(u1,...,us,up) & Mp with u;,... ,u; > 0 is a nonnegative integer combination

of the lx = (£i;).

This is actually quite easy to see once we unravel the various interpretations of

elements of My and its dual Ny. Over R, we have Ny ® R = A(Z) = HZ, (V°,R),
and My ® R = A(Z)” is its dual. Each toric divisor D; on Xy gives a divisor still

called D, on V, so we get (D;] € H2,,.(V°,R). Since 2°(1) =5, [Dy], ..., [Ds] give

linear functionals on M. Furthermore, as a functional on M), one can show that

[Dj] picks out the jth coordinate of £ = (uy, ... ,us, up) € Mp. Thus uy,... ,us 20

simply says that £ is in the cone dual to the one generated by the [D;].

The cone generated by the (D;] is the effective cone of A(Z) and is the support of

the GKZ decomposition. Since the cone o which specifies our maximally unipotent

boundary point lies in cpl(Z°), we see that o lies in the effective cone, so that its

dual contains the dual of the effective cone. Hence £ lies in the dual of o, which is

generated by the £ = ().

We conclude by proving convergence in a neighborhood of the origin. The

elementary bound

(ug -+ +ug)!
< su1+---+us

uy!- - u,l =

comes from expanding (1 + --- 4+ 1)1+ +% and if u; = 3 ;_, nilx; as above,

then 3°7_, u; < C 3, nk for a suitable constant C' independent of the ny since

n; ...,n,. > 0. Since the constant term of the series is clearly 1, the proposition

follows easily. O

This proposition shows that the one series (6.48) is holomorphic at every maxi-

mally unipotent boundary point. The proof also suggests an interesting relationship

between the GKZ system and the GKZ decomposition. See [GKZ1] for further de-

tails.

At a maximally unipotent boundary point, the Picard-Fuchs equations have

only one holomorphic solution {(up to a constant)—this is what the monodromy

weight filtration having dim(W;) = 1 means. Thus Proposition 6.3.2 describes the

denominator (go,{?) in our formula (6.30) for the mirror map. For simplicity, we

will let yo denote the series given in (6.50).

In order to find the kth component qx of the mirror map, we need to find a

solution of the Picard-Fuchs equations satisfying (6.45). However, when dealing

with hypergeometric functions, it is convenient to drop the factor 1/(2x%) in (6.45).

Thus we seek a solution yi such that

(6.51) Ye = yolog ((=1)*°z) + G, 1<k <,

where J is holomorphic at the origin with 4. (0) = 0. With this normalization, the

formula for q; becomes

(6.52) @k = (~1)"z exp(f/yo) ~ (=1)%02z, 1<k<rT

since yp (resp. yx) is nonvanishing (resp. vanishing) at the origin. By (6.44), this is

precisely what we want.

There are several ways known to find y, satisfying (6.51). We begin with a

variant of the Frobenius method from [HLY1] which works nicely for hypergeo-

metric equations. The idea is to replace each nj in (6.50) with ni + px, where p; is

a real parameter. This means that a factorial such as (3 ;_, nxfx;)! gets replaced
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with the classical Euler I'-function

[ (ka1 + i)l + 1).

This also affects exponents, so that ({—1)%02;)TM becomes ((—1)%o0z;)TM<+#x, Let

the series obtained from (6.50) in this way be denoted yy(z; p), where z stands for

21,..., 2, and p stands for p1,..., pr.

If 8,, = 8/8pi denotes partial differentiation with respect to g, then the key

result is that

vk = (Op0(2,p))| s 1S kST

has the desired property (6.51). This follows from the identities

Bp ((—1)#0 25 )" +Px = log((—1)t0z;) - ((—1)%k0z;)TMr+o%

[Df’ apk] =0.
We will omit the details of the proof. Instead, we will give some examples to show

how this works in practice.

Example 6.3.4.1, continued. For the quintic mirror example begun earlier, the

formula given for yo(z) in (6.49) means that

Z I'(5n +5p+ 1) ( — ),
(6.53) Yo(z:0) = [(n+p+1)°

n=0

Then yo(2) = yo(z;0), and the above theory tells us that the logarithmic solution

of the GKZ equations is given by

(=2)TM
=0

1(2) = B,30( )],y = v0(=) og(— z>+26(
n=0

5n+5p+1)>

T(n+p+1)°

In order to simplify this, we need to understand the derivative of the I'-function.

Fortunately, we have the following formula for I'(s) when evaluated at a positive

integer:

I'(n+1)=T(n+ 1)(—7+i§),
j=1

where v is Euler’s constant. This is proved using induction and the classical fact

I"(1) = —y [WW, p. 236]. From here, one easily obtains

01(2) = vo(2) log(~ +52 IS e
l(n!) Lo I

and then (6.52) gives

o= -zem ?z)i
n=1

S
(nt)s [ Z _}(_Z)n)

j=n+1

This is precisely the formula following (2.11) in Chapter 2 for the mirror map of

the quintic threefold.

We next switch to the standard Frobenius method, which is based on recurrence

relations (and is similar to what is done in [Bv$S]). To simplify notation, let z = —z.
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Using this variable, the Picard-Fuchs equation (2.8) for the quintic mirror family

can be written as

&Yy = 5(56 + 1)(56 + 2)(56 + 3)(56 + 4)y,

where § = zd/dz (see (5.37) and the subsequent discussion). Then the standard

Frobenius method [CL] uses the function

§(z:p) =Y _ an(p) TM.
n=0

If L represents the operator given by the Picard-Fuchs equation, then the an(p)

peed to be chosen so that §(z; p) satisfies the equation

(6.54) L(§(z; p)) = p* z*

since the indicial equation of the Picard-Fuchs equation is p* = 0 (maximally

unipotent monodromy). We get for n > 0 the recursion relation

(p+n)tan(p) = 5(5p + 5n — 1)(5p + 5n — 2)(5p + 5n — 3)(5p + 51 — 4)an—1(p)-

Choosing the solution with ag = 1, we solve the recursion relation to obtain

[Ty (50 +m)
an(p) = pm=tE T

Hm:l (p + m)

This gives

oc 51

_ [T (52 +m)
(6.55) §z;p) = ) —m=l———% 2",’ 1I.Z=0 ?n=1 (p+m)
and then (6.54) easily implies that the functions

L89(ip)
il 8pt =0

satisfy the Picard-Fuchs equation and in fact give a basis of solutions near x = 0.

Note that we can regard the y;(z) as the coefficients of the Taylor series of

(6.57) i(z3 p) = yo(z) + y1(2) p +v2(2) 0 +93(2) P + -+ -
The reader might worry that this differs from our earlier version of the Frobe-

nius method, which used the P-function. However, one can easily check that g(x; p)

is related to the function yy(2; p) defined in (6.53) via

yo(z ) = §(~20) %fffl—g

(6.56) yi(z) = 0<i<3

Classical formulas (or Mathematica) give the power series expansion

T'(5p+1 52

SRl NS
and it follows that

94(=zip)| _ Buo(zip)

9 =0 om0

Hence both versions of the Frobenius method give the same formula for the loga-

rithmic solution y1.

The surprise comes when we think about this from a more formal pomt of view.

First replace = with e (so that § = zd/dz = d/dt;), and then replace p by the
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hyperplane class H in the cohomology ring of P*. If we also change the index of
summation from n to d, then (6.55) becomes the function

5d

I=enH 3 TL(SFIE% dt
a=0 [Im=1 (H +m)

which was considered in Chapter 5 (see (5.45)). Hence, the strange-seeming co-
homology valued function [ is completely natural from the point of view of the
Frobenius method (we are grateful to the authors of [LLY] for explaining this to
us). If we expand [ in the usual basis of H* (P4), then we get an expression of the
form

r

I=yw@) +un@) H+ y2(2) H? + y3(z) H® + ya(z) H,

which is just (6.57) with p replaced by H (since H5 = 0). Tt follows that yo, ¥1, Y2, vs
are the solutions (6.56), while y, is not. This justifies the claims made in connection
with (5.54) in Section 5.5.3. Furthermore, if we define I, to be SH I as in (5.46),
then we see that

0o 5d

L= enflsgzl;nflrflgedn
d=0 Hm=1 (H +m)

=5H(yo(z) + y1(2) H + y2(z) H? + y3(z) HY),
where Yo,¥1,%2,Y3 give a basis of solutions of the Picard-Fuchs equation of the
quintic mirror. These formulas appeared in Chapter 2 as (2.32) and (2.33). The
solutions to the Picard-Fuchs equations were first written down in this form in
[Giventall]. As indicated at the end of Section 5.5.3, Iy, appears in [LLY] as
limy_,o HG[Z(P))(t,), and the above discussion of solving hypergeometric equa-
tions makes it clear why the “HG” notation is appropriate. The function Iy, =
lim) Lo HG[Z(P)|(t1) will play an important role in the treatment of the mirror
theorem in Chapter 11.

Example 6.3.4.2. For our final example, we return to the mirror V° of an anti-
canonical hypersurface in the toric blowup of P(1,1,2,2,2). In Example 6.3.3.2, we
computed the mirror map assuming 2z; = 0. Using hypergeometric functions, we
can now determine the map for all z; and z,. We will revisit this mirror map and
more in Example 11.2.5.1, using the function J of Section 5.5.3 for this example.

The solution yo(z1, 20) is easy to write down since the generators of the lattice
My are the rows (0,0,1,1,1,1, —4) and (1,1,0,0,0,-2,0) of the matrix (6.15).
Then

(ul,ug,QL3,U4,U5, ufivuo) = 71](0, 07 1’ 17 17 11 —4) + n?(lu 1, 07 07 03 "27 0)
implies that u; = us = ny, 3 = uy = us = Ny, Ug = Ny — 2ny and uy = —4nq in
(6.48), so that (6.50) gives the series

_ (471.1)' ny _noyo(z1,22) = Z (n11)3 (a2 (my = 2112)!2:1 252,
ny 22n,

The condition n; > 2n; shows that Y0(0, z2) = 1, which agrees with what we found
in Example 6.3.3.2.

To describe solutions with logarithmic growth, we define yo(21,22; p1,02) as
above and compute y(z,. 2) = 6pky0(z1,zg;pl,pg)lp;m:“. This can be done by
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the methods of the previous example, except that we have to be treat the condition

ni > 2n2 appropriately. The subtle point here is that yo(z1, zg) is really the series

1“(4n1 + 1) n
Ri,R2) = [

Wz = 3 Fim + Dl (m2 + )20(ny — 2na + 1)+ 2
ny.n2>0

This agrees with the previous series because the Euler-I' function has simple poles

at 0, —1, =2, etc. But when we create yo(21, z2; p1, p2) from this series, it will now

have terms for both n; > 2ny and n; < 2ne, and so will its derivatives with respect

to py and p2.

Let’s illustrate what happens with yo = 8,,y0|

it suffices to work with

(6.58)

p1=pa=0" If we let p = po, then

3 T'(4ny +1)
T(m + Ol (nz + p+ 1)30(n;, — 2n2 —2p+ 1)

n1,n220

z;"l z;'2+P.

Differentiating with respect to p and setting p = 0, we get yo log z2 + %, where ¥2

is obtained by differentiating the coefficients of (6.58). This series will have terms

of two sorts, those with n; > 2n,, and those with n; < 2n2. The former can be

treated by the methods of the previous example, while the latter require some extra

work. Here, one uses the identity

T'(s)rl-s) = ———()T s) sin(ws)
from [WW, p. 239] to obtain

8p(L(ny = 2ny — 2p +1)71) = 2(=1)TM (2ng — 1y — 1)!

when n; — 2ny < 0. Using this, we get the formula we want:

B (4n1)1(2np — ny = 1)} e mLn
v2(21,22) = yo(z1, 22) log 22 +2 Y )3 (mal)? (=1)TMz" 2"

ny<2ng

(471.1)! ny—2ng 1 ng 1

+ 2 [ - - f] T zn?,1'-1;"2 (n11)3(n2!)2(ny — 2n2).! ; j Jz___:l jit

If we write this as yo = yg log z3+72, then the mirror map has g2 = 22 exp(j2 /o) by

(6.52). This gives an explicit (though very complicated) formula for gz, and we can

work out a similar formula for ¢;. Thus we now know the mirror map completely.

As a check of what we did, suppose we set z; = 0 as in Example 6.3.3.2. Then

all of the terms with n, > 2ng vanish, and since yo(0, 22) =1, we have

> (271.0 - 1)'
(659) yg((), 2‘2) =10g Za +2 Z szz_

np=1

In contrast, Example 6.3.3.2 found that

1—222—\/1—422>

222(6.60) 1200, 23) = log (
(this is the formula in the equation preceding (6.47)—the factor 1/(2mi) disappears

because of the way we are normalizing things in this section). These two formulas

are equal by (6.46) because the series for y2(0, 22) satisfies the Picard-Fuchs equation

5%y — 2296(26 + 1)y = 0 from Example 6.3.3.2. Hence, even though we took a very

different approach to finding the mirror map in Example 6.3.3.2, the results we got

there agree perfectly with what we found here.
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As a final comment, we should mention that the method of computing the
mirror map described in the two examples given here has been applied to a large
number of toric hypersurfaces [HKTY1)]. This method (with suitable modifica-
tions) has also been applied to many complete intersections [BvS, HKTY?2].



CHAPTER 7

Gromov-Witten Invariants

As we have seen in Section 1.2, the A-model correlation function on a Calabi-

Yau threefold V is expressed in terms of the invariants ng, which naively are the

numbers of rational curves on V' which represent the homology class S—see espe-

cially (1.7). The goal of this chapter is twofold: to give a rigorous definition of the

ng, and to give a rigorous definition of the related Gromov-Witten invariants. In

fact, the ng will be defined in terms of the Gromov-Witten invariants.

We will work in the following general situation. Given a projective algebraic

variety X, we fix a homology class 8 € H2(X,Z) and cycles Zy,y... ,Znon X. The

basic question concerns the structure of the following set of curves:

(7.1) C C X of genus g, homology class 8, and C N Z; # 0 for ali 2,

assuming the Z; are in general position. We will distinguish between Gromov-

Witten invariants, which (roughly speaking) are the number of curves (7.1) when

there are finitely many, and Gromov- Witten classes, which are cohomology classes

obtained when the number is infinite.

The Gromov-Witten invariants have their origins in physics, in the topological

sigma model coupled to gravity. In particular, the genus 0 (sometimes called tree

level) Gromov-Witten invariants originate from the topological sigma model, which

is a topological quantum field theory. In particular, Gromov-Witten invariants are

by design to be unchanged by deformations of the complex structure of X. A brief

description of topological quantum field theories is given in Appendix B.6.

We will see below that (7.1) is a hopelessly naive description of a Gromov-

Witten invariant (or class). In order to get a rigorous definition, considerable

sophistication is required. There are several ways of doing this, using algebraic

geometry or symplectic geometry. The first reasonably general definition was

in the context of semi-positive symplectic manifolds: for genus 0 in [RT1], with

some special cases appearing earlier in [Ruan2], and for higher genus in [RT2].

Since then there have been several generalizations to general symplectic mani-

folds, e.g., [LTi3, Siebertl, Ruan3, FO). Algebraically, the invariants were

first constructed early on for Grassmannians [BDW], then generalized to homoge-

neous spaces [LTil, FP|. General algebro-geometric definitions are given in [LTi2]
and (BF, Behrend)].

Sections 7.1 and 7.2 will describe the main algebraic and symplectic approaches

to the definition of Gromov-Witten classes. The multiplicity of definitions may seem

a bit daunting, but fortunately they all satisfy the basic axioms of Gromov-Witten

classes stated in Section 7.3.1. It is commonly believed that all of these definitions

agree with each other in their common domain of validity. In Section 7.3.2, we

will see that this has been proved in some cases, though the equivalence is not

known in general. So we are in a sense abusing notation by referring to all of
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As a final comment, we should mention that the method of computing the
mirror map described in the two examples given here has been applied to a large

number of toric hypersurfaces [HKTY1]. This method (with suitable modifica-

tions) has also been applied to many complete intersections [BvS, HKTY?2].



CHAPTER 7

Gromov-Witten Invariants

As we have seen in Section 1.2, the A-model correlation function on a Calabi-

vau threefold V is expressed in terms of the invariants ng, which naively are the

numbers of rational curves on V which represent the homology class 3—see espe-

cially (1.7). The goal of this chapter is twofold: to give a rigorous definition of the

ng, and to give a rigorous definition of the related Gromouv-Witten invariants. In

fact, the ng will be defined in terms of the Gromov-Witten invariants.

We will work in the following general situation. Given a projective algebraic

variety X, we fix a homology class 8 € H3(X,Z) and cycles Zy,... ,Zp on X. The

basic question concerns the structure of the following set of curves:

(7.1) C C X of genus g, homology class 38, and C'N Z; # 0 for ali 1,

assuming the Z; are in general position. We will distinguish between Gromov-

Witten invariants, which (roughly speaking) are the number of curves (7.1) when

there are finitely many, and Gromouv- Witten classes, which are cohomology classes

obtained when the number is infinite.

The Gromov-Witten invariants have their origins in physics, in the topological

sigma maodel coupled to gravity. In particular, the genus 0 (sometimes called tree

level) Gromov-Witten invariants originate from the topological sigma model, which

is a topological quantum field theory. In particular, Gromov-Witten invariants are

by design to be unchanged by deformations of the complex structure of X. A brief

description of topological quantum field theories is given in Appendix B.6.

We will see below that (7.1) is a hopelessly naive description of a Gromov-

Witten invariant (or class). In order to get a rigorous definition, considerable

sophistication is required. There are several ways of doing this, using algebraic

geometry or symplectic geometry. The first reasonably general definition was

in the context of semi-positive symplectic manifolds: for genus 0 in [RT1], with

some special cases appearing earlier in [Ruan2]|, and for higher genus in [RT2].

Since then there have been several generalizations to general symplectic mani-
folds, e.g., [LTi3, Siebertl, Ruan3, FO|. Algebraically, the invariants were

first constructed early on for Grassmannians [BDW], then generalized to homoge-

neous spaces [LTil, FP]. General algebro-geometric definitions are given in [LTi2]

and [BF, Behrend)].

Sections 7.1 and 7.2 will deseribe the main algebraic and symplectic approaches

to the definition of Gromov-Witten classes. The multiplicity of definitions may seem

a bit daunting, but fortunately they all satisfy the basic axioms of Gromov-Witten

classes stated in Section 7.3.1. It is commonly believed that all of these definitions

agree with each other in their common domain of validity. In Section 7.3.2, we

will see that this has been proved in some cases, though the equivalence is not

known in general. So we are in a sense abusing notation by referring to all of
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these by the same term “Gromov-Witten invariants”. Fortunately, as long as what
we do involves only the Gromov-Witten axioms, there is no problem, and when
we speculate on the consequences of the conjectured equivalence of the various
definitions, we will be explicit about which definitions are being discussed.

The chapter will end with some examples of how Gromov-Witten invariants
are computed. Then, in Chapter 8, we will use these invariants to construct the
quantum cohomology ring.

Some excellent introductions to Gromov-Witten theory are available in the
literature. We recommend in particular Voisin’s book [Voisin3], Morrison’s Park
City notes [Morrison7], and Fulton and Pandharipande’s Santa Cruz notes [FP].

7.1. Definition via Algebraic Geometry

In the algebraic approach to Gromov-Witten theory, Kontsevich [Kontsevich2]
made the key observation that curves C C X in (7.1) should be replaced with n-
pointed curves (C,p1,... ,p,) and holomorphic maps f : C — X. This observation
is consistent with the origins of the notion in the nonlinear sigma model (Appen-
dix B.2) and two-dimensional topological quantum field theory coupled to gravity.
Then (7.1) tells us to consider maps

(7.2) f:C — X such that f,[C] = B and f(p;) € Z; fori=1,... .n.

There is an obvious notion of isomorphism of such maps, so that we need to consider
their moduli. To get a compact moduli space, we will allow certain reducible curves
C of genus g. The Deligne-Mumford coarse moduli space M, ,, of n-pointed stable
curves of genus g will play an important role in the theory. A nice introduction to
Mg, can be found in [FP].

The rough idea of a Gromov-Witten class is that the maps in (7.2) give a
subset of _A/Tg,n, which in turn gives a cohomology class in H* (‘]\79,", Q). We use Q
coefficients because _]\/Tg,,. exists and is an orbifold of dimension 3g — 3 +n whenever
n +2g > 3. To make this more formal, let o; € H*(X) be the cohomology class
dual to the cycle Z;. Then the Gromouv- Witten class

Ig,n,fi(al, R an) € H” (Hg,na Q)
is intuitively supposed to be the cohomology class represented by the set of pointed
curves (C,p1, ... ,pn) occurring in (7.2). Thus, Gromov-Witten classes are a system
of maps

(73) Ig.n,fi B H'(Xv Q)®n — H*(Hg,fivQ)'

The properties of these maps will be studied in Section 7.3.

Besides cohomology classes, we can also define numerical invariants. This is
done as follows: if I , (e, ... ,@,) is as above, then we get the rational number

(7.4) gmp)oa,... ,an) = /_ Ipnglea, ... an).
-

This is a Gromov-Witten invariant. Note that (7.4) vanishes unless the Gromov-
Witten class I ., g{ay,...,on) has a component of top degree in H*(M, ., Q).
Intuitively, I, . 5(a1,. .. ,an) should have top degree when (7.2) consists of finitely
many curves, and then the number of such curves is (Igng){(e1,-.. ,0n). However,
we will see in Section 7.4 that Gromov-Witten invariants may be fractional or even
negative, so that their enumerative significance is not always straightforward.
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Everything we’ve done so far is still extremely naive. To define Gromov-Witten

classes, we need to study the moduli of maps (7.2) more carefully. In particular, we

need to learn about stable maps and virtual fundamental classes. We will discuss

each of these topics separately.

7.1.1. Stable Maps and Their Moduli. In looking for an algebraic defini-

tion of the Gromov-Witten classes, another key idea from [Kontsevich2| was the

construction of a compactification of the moduli space of maps (7.2). This is done

by means of stable maps, which we now define.

DEFINITION 7.1.1. An n-pointed stable map consists of a connected marked

curve (C,p1, ... ,Pn) and a morphism f : C — X satisfying the following properties.

(i) The only singularities of C are ordinary double points.

(#) p1,...,Pn are distinct ordered smooth points of C.

(i) If Ci is a component of C' such that C; ~ P! and f is constant on C;, then

C; contains at least 3 special (i.e., nodal or marked) points.

(i) If C has arithmetic genus ! and n = 0, then f is not constant.

Given the first two conditions of this definition, the third and fourth are equiv-

alent to the assertion that the data (f, C,p1,... ,pn) has only finitely many auto-

morphisms. The presence of infinitely many automorphisms is precisely the reason

why M, ., does not exist if n +2g < 3.

We define families of stable maps as follows.

DEFINITION 7.1.2. Let X be a projective algebraic variety and let S be a scheme

over C. An n-pointed stable map over S is a flat proper morphism C — S together

with n sections sy, ... ,sn and a map f : C — X such that for each geometric point

s of S, the restriction f; : C; — X of f to the geometric fibers of C over s, together

with the images of the sections s;, defines a stable map. Furthermore:

(i) We say that f : C — X has genus g if for each geometric point s of S, the

curve C, has arithmetic genus g.

(#) Given a homology class 8 € Hp(X,Z), we say that f : C — X has class § if

for each geometric point s of S, (f5)«[Cs] =8

Then, given 3 € Ha(X,Z), we can define the contravariant functor

M, n(X,B): (C-Schemes) — (Sets)

by sending the scheme S to the set of ail isomorphism classes of n-pointed stable

maps over S of genus g and class 3.

In order to solve the moduli problem for stable maps, we need to represent this

functor in some sense. The most straightforward approach is to think about the

coarse moduli space of stable maps f : C — X. The idea of a coarse moduli space

is discussed in [Mumford1]. Then we have the following basic existence result.

THEOREM 7.1.3. If X is projective and (3 is a homology class in H,(X,Z), then

the functor My (X, B) has & coarse moduli space My (X, B) which is a projective

scheme over C.

This theorem was first proved by Alexeev [Alexeev]. A fairly explicit con-

struction of M, .(X,8) is given in [FP}].

A more sophisticated approach to moduli questions involves the use of algebraic

stacks. For the language of stacks, see {[DM] or [BEFFGK]. For our purposes, it
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suffices to note that stacks are contravariant functors from the category of schemes
to the category of sets which satisfy certain properties, some of which we will make
explicit as we go along. Schemes are themselves stacks. To a scheme S, we can
associate the representable functor kg defined by

(7.5) hg(X)=Hom(X,S) = {all morphisms of schemes f : X — S}

for any scheme X.

In this language, the basic existence result was stated in [Kontsevich2].

THEORE_M 7.1.4. If X is projective and G is a hamology class in Hy(X,Z), then
the functor My (X, 3) is an algebraic stack which is proper over C. Furthermore,
the stack ./\_A_o,,.(FT, B) is a smooth stack.

A proof can be found in [BM]. Because of this result, we will use M, (X, 8)
to denote the stack determined by the functor. Also, recall that every algebraic
stack has an underlying algebraic space. For the stack Mgy,n(X,B), the underlying

space is the coarse moduli space _IVTQ,,.(X, B). There is a natural morphism of
stacks Mg (X, 8) — M, (X, 8) which takes an n-pointed stable map over S to
its classifying map S — M, .(X, B). Roughly speaking, the existence of this map
shows that the stack has more information than the coarse moduli space itself.

Since stacks are a generalization of schemes, we will frequently discuss stacks
using the language of schemes. Our desire is to give the reader a geometric feel for
My (X, B) without having to delve into the technical issues surrounding stacks,
at the cost of introducing some imprecision that we trust will not be too distract-
ing. This places some extra demands on the reader who wants to understand
our precise meaning in the language of stacks. For instance, we will at times re-
fer to an n-pointed genus g stable map f : (Cipry---yPn) — X of class 3 as a
point of M, (X, ). This strictly speaking makes no sense, because functors do
not have points. Depending on context, we might mean the corresponding point
of the algebraic space associated to '/\_A_g,,.(X ,B), or the corresponding element of

My (X, B) (Spec(C)).
Let’s say a few words about the special case when ¢ = 0 and X = PT. Here,

we can write 3 = df, where ¢ is the class of a line. Then Mo.(PT,df) is smooth
by Theorem 7.1.4, which means that the underlying algebraic space My . (P",df)
is an orbifold. One can show that it is an irreducible, normal projective variety
of dimension rd+r+d +n — 3. We will frequently write M, »(P", d) in place of
M, (P, db).

7.1.2. Frg_m Moduli to Gromov-Witten Classes. Now that we have the
moduli space M, .(X, ), we get the following natural maps:

my - Mg,n(XmB) — X"
o : _]\Zg‘n(X, B — _Mg,n.

These maps are easy to define. Given a stable map f: (C,p1,... ,pn) — X, we get
a well-defined n-tuple

(7.6)

(f(pl)"" a.f(pn)) eX”

since py, ... ,p, is an ordered list of points. This gives m; set-theoretically, and it is
not hard to check that 7, is a morphism. As for n,, first observe that if f : C — X
is a stable map, then C need not be a stable curve in the sense of Deligne and
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mMumford. However, if n+29 2> 3, the_rvl successively contracting the non-stable

components of C gives a stable curve C. Then m; is given set-theoretically by

sending f : (C,p1,-..,Pn) — X to the isomorphism class of C. It can be seen to

be a morphism using the techniques of (Knudsen].

‘We can now explain what the Gromov-Witten classes should look like in the

special case when X is smooth and M, (X, 8) is an orbifold of dimension

@7 (1 -g)(dim X - 3) - fiwx +n,

where wx is the canonical class of X. As we will explain in Section 7.1.3, this is

the “expected dimension” of the moduli space. Given these hypotheses, the maps

(7.6) give natural maps

i HY(X,Q)®" — H*(My,q(X, 5),Q)

Mo * H*(A’[g,n(X»fl)’Q) hannd H*(A/[g.‘fl-rQ)a

where we are still assuming n+2¢ > 3. Since all of the spaces involved are orbifolds,

Poincaré duality (see Appendix A) and m. induce the Gysin map

ot H'(Mgn(X,5),Q) — HTM*(My,n,Q),

where m = (g—1) dim X+ffl wyx. Then for n+2g > 3 we define the Gromov-Witten

class Iy . g(o,... ,a,) by the formula

(78) Ig,n,fi(alw-' ,(1’1..) =7|'2!(7|';((]1 ® "‘®a’n))-

Note how this gives a precise definition of the cohomology class of the set of curves

in (7.2) (remember that o; is the Poincaré dual of Z;). One easily checks that

Iy n8(at,- .., 05) is a cohomology class of degree

2m + 37 degos = 2(9 - 1)dim X + 2 fjux + 20, deg .

By (7.4), we also have the Gromov-Witten invariant

(I ,n,fi)(alv"' 70’1;) = ./M Ig,n,fi(ah'" ,(]n)

whenever I, g(ay,...,0,) has dimension 2(3g — 3 + n), the real dimension of

Mg, .. Using (7.8), this easily simplifies to

(7.9) Gmadon, )= [ mf@ s ®a).
Mg n(X.3)

Intuitively, this is precisely the number given in (7.2). An important observation is

that (7.9) makes sense when n+2g < 3. Thus, although Gromov-Witten classes re-

quire n+2g > 3, Gromov-Witten invariants are defined for n,g > 0. In Chapter 11,

we will frequently adopt the shorthand

((]1, . ,(!-,.)g';; = (Ig,,l,,g)(al, . ,(1',,_)

for Gromov-Witten invariants when n is clear from the context.

Everything we've done so far assumes that M, ,(X, 8) is a smooth orbifold of

the expected dimension (7.7). A nice example which satisfies these hypotheses is

when g = 0 and X = P". As noted above, My,.(P",d) is an orbifold of dimension

rd +r +d +n — 3, which is the expected dimension in this case. Full details can

be found in {[BM] or [FP].

Unfortunately, definitions (7.8) and (7.9) don’t work in general. For example,

when g > 1, and even when g = 0 for most manifolds X # P", the space M, (X, 5)
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may have components whose dimension exceeds the expected dimension. To see

how to correct this, we need to highlight the role of the fundamental class. In the

above situation, we have the fundamental class

€= [Myn(X,0)| € H.(M,,n(X,0),Q),

which under Poincaré duality corresponds to 1 € H*(M,.(X,3),Q). We can

rewrite (7.8) in terms of £ as follows. First note that if e = dim M, ,,(X, 8), then

Poincaré duality PD : H*(My (X, 3),Q) — Hze—u(M, (X, 8), Q) is cap product
with £. Since the maps m; and w2 of (7.6) give a map

T Mgn(X,0) — X" x Mg p

such that 7; = p; o m, where py and p, are the natural projections, we obtain

(T (@ ® - ®an)) =7y PD n} (01 ® - @ an) n¢g)

=PD7'mp (7f (1 ® - ® @) N E)

= PD_lpg..Jr* (W*p;(al ® - Ban) flf)

where in the last two equalities, PD refers to Poincaré duality for _Mg,n. Then the

projection formula and (7.8) show that Gromov-Witten classes are given by

(7.10) Ig,,.’;g(al, ey Q) = PDblpg,. (p}' (1 ®---® Ct',._) N W‘(f))

whenever n + 2g > 3. Similarly, for n, g > 0, the formula (7.9) for Gromov-Witten

invariant can be written using £ as

(Igmp)a,... an) =/7rf(al®---®an).
¢

It will be convenient for use in later sections to express the map #; from (7.6) in

terms of its components. For 1 < ¢ < n, we define the evaluation map

e Mgn(X,0) — X

by sending a stable map f : (C,Py,...,p.) — X to f(p:), or equivalently by
composing 71 with the projection of XTM onto its i*! factor. In this notation, the

Gromov-Witten invariant is given by

(7.11) Tpmp)(@r, .. an) = /g ei(@) U--- Uel(an).

The key point is that formulas (7.10) and (7.11) make sense whenever we have a

suitable “fundamental class” £ € H, (Hg.n(X ,8),Q). A class £ with the desired

properties is usually called the virtual fundamental class. However, as we will soon

see, the definition is quite subtle.

7.1.3. The Normal Cone. We begin with the normal cone, which is a pro-

totypical example of a virtual fundamental class. Suppose that E is a vector bundle

of rank r on a smooth variety . Given a section s € HO(E), let Z = Z(s) C Y be
the zero scheme of s. As s varies, Z can behave badly, even changing dimension.

This is similar to the problem we have with the spaces Mg." (X, B). However, the

procedure in the present case is well known (see [Fuiton1), or [Fulton2] for a more
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in-depth treatment). If T is the ideal sheaf of Z in Y, then the normal cone to Z

in Y is defined by

(7.12) CzY=M(éI"/I’°+1).
k=0

The normal cone CzY is an affine cone over Z of pure dimension n. The surjection

O(E*) — T given by multiplication by s induces a surjective map

B Sym* (O(E")/TO(E")) — P T*/T*+.
k k

Applying Spec, we get an embedding of CzY in the bundle £|z on Z. The normal

cone defines a cycle class [CzY] € An(E|z). Then the class s*{CzY] is a class in

Ap--(Z). Note that the dimension n — r is what we would get for the dimension

of Z if s defines Z as a local complete intersection. Thus, n — r is the “expected

dimension” of Z. We also have the following folklore result about s*[CzY] which

can be proved using the results and techniques of [Fuiton2].

LeMMa 7.1.5. Ifi: Z < Y is the inclusion map, then i.(s*(CzY]) € An—r(Y)

is the Euler class c,(E)N[Y] of E.

This lemma shows that s*(CzY] refines the Euler class ¢.(E) N [Y]. The class

s*[CzY] also behaves well as the section s varies. We remark that s*{CzY] can

sometimes be calculated as the Euler class of an associated excess normal bundle.

We will have occasion later to work in cohomology rather than in the Chow group.

In that situation, the Euler class of a rank r bundle E will be taken to be the

top Chern class ¢.(E) € H?"(Y,Z). This differs slightly from common usage in

topology, where the Euler class is defined as the homology class ¢.(E) N [Y].

The following example illustrates how normal cones relate to stable maps.

Example 7.1.3.1. Let V C P* be a smooth quintic threefold. Since a generic

V has precisely 2875 lines, any reasonable definition of Gromov-Witten invariant

should satisfy (Ig,¢) = 2875 when £ is a line on V. (Note that (ly0¢) is a function

of n = 0 arguments, i.e., a number.) We will eventually show that this is the case,

but for now, let’s see why normal cones are relevant to this example.

First observe that Mo(P*, £) is the Grassmannian G(2, 5) of lines in P*. Thus

the inclusion V' C P* induces a natural map My o(V,£) — Moo(P*, ¢) = G(2,5)

which sends a stable map to its image line in P4. Note also that dim G(2,5) = 6.

Example 7.1.5.1 will describe this map as follows. If U is the tautological rank 2

subbundle on the G(2,5), then the fiber U, over a line ¢ is the 2-dimensional sub-

space of C® whose projectivization is £. An equation for V gives a section s of the

rank 6 bundle E = Sym®U*. Then My o(V, £) is the zero scheme of s.

The above construction produces the class s*[CzY] € Ag(Mpo(V,£)), where

CzY is the normal cone of My o(V,£) = Z(s) C Y = G(2,5). By Example 7.1.5.1

below, this O-cycle is the virtual fundamental class of Mo(V, ¢). This is plausible

since V has trivial canonical bundle, so that MO,O(V, ¢) has expected dimension 0

by (7.7). Hence the virtual fundamental class should be a 0O-cycle.

If V is a generic quintic, then one can prove that the zero locus of the section s

is a reduced complete intersection, so that Mo o(V; £) really does have dimension 0.

It follows that in the generic case, (lyo¢) is precisely the number of lines on V.
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In Example 9.1.3.1, we will calculate this pumber to be 2875, in agreement with

Chapter 2.

On the other hand, suppose that V C P* is the Fermat quintic defined by

zg+z?+zg+x§+zi=0.

This is a smooth Calabi-Yau threefold with infinitely many lines. To see this, let ¢

be any fifth root of unity. Then, for any i # j, the hyperplane z;+({z; = 0 intersects

V in a cone over a plane Fermat quintic curve, which gives a 1-parameter family of

lines lying on V. Furthermore, one can show that the 50 families we get this way

contain all lines on V and that each line has normal bundie N = Op1 (—3)® Op1 (1).

Hence M ¢(V, £) is 1-dimensional and has 50 components, each of which is a plane

quintic curve. In addition, the normal bundle satisfies h°(N) = 2, which enables

one to show that Mg o(V;£) is nowhere reduced. In fact, each component has

multiplicity 2 at its generic point, and multiplicity 5 at each of the 375 special

points corresponding to the 375 lines common to more than one cone (for example,

the line defined by zo + 21 = z2 + 3 = 24 = 0 is of this form). All of this is proved

in {AKa] by studying deformations.

Although M o(V; £) is complicated, its virtual fundamental class is still the 0-

cycle s*[CzY] € Ao(Moo(V, £)) given by the normal cone construction, provided s is

induced by the Fermat quintic equation. The structure of the normal cone C = C;Y

is described in {CIK, Example 4.2], where more details are given. Over each of

the 50 components in M(V,£), the normal cone C has a component with fiber

dimension 5 and multiplicity 2, and over each of the special points corresponding

to the 375 lines which lie on more than one cone, there is a component of C' with

fiber dimension 6 and multiplicity 5. Thus C has pure dimension 6, as expected.

Turning our attention to the virtual fundamental class s*[C], one can show that

each component of C lying over a component of Mg o(V,£) contributes 20 to the

virtual fundamental class (an Euler class calculation of an excess normal bundle

on a plane quintic curve is needed), while each component over the special points

contributes 5. By (7.11), the Gromov-Witten invariant (g ¢) is the degree of this

O-cycle, which is 20 x 50 + 5 x 375 = 2875, as expected.

One can check that the calculation just described corresponds precisely to

[AKa)]. In fact, our exposition shows that this correspondence follows from dy-

namic intersection theory [Fulton2, Chapter 11]. The virtual fundamental class in

a sense extends the validity of dynamic intersection theory.

7.1.4. The Virtual Fundamental Class. To define the virtual fundamental

class of M, (X, 8) for arbitrary g,n, X, 3, we will need something more general

than the normal cone construction. Thus, rather than realizing M, (X, 8) as the

zero scheme of a section of a vector bundle, we will instead endow M, (X, 8) with

more structure. In the approach of [LTi2], the structure is called a perfect tangent-

obstruction compler, and in the approach of [BF), it is called a perfect obstruction

theory.

Before we plunge into the details of these definitions, we first indicate why

obstructions are relevant to the virtual fundamental class. The basic reason is that

obstructions arise naturally when computing the expected dimension (7.7) of the

coarse moduli space M, (X, 8). The explanation is as follows.

The idea of an “expected dimension” occurs often in algebraic geometry and is

perhaps easiest to see in the case of deformations of a compact complex manifold



7.1. DEFINITION VIA ALGEBRAIC GEOMETRY 175

M. The infinitesimal deformations are given by H'(M, Our), and the obstructions
lie in H2(M,© ). Kuranishi theory {Kuranishi] describes the moduli space of M

locally as the zero locus of a holomorphic obstruction map

(7.13) U — H*M,8u),

where U C H'(M,©)s) is an open subset. Thus the expected dimension of the

moduli space of M is

dim H'(M, O ) — dim H2(M, O ).

The reasoning is similar in the case of M, ,(X,58). Let f: (C,p1,... ,pn) = X

be a stable map. The tangent space of the stack M, (X, ) at f is the hyperext

group

Extg (f*Q% — Q¢ (Tip1), Oc)

while the obstructions live in

Extg (f*Q% — Q& (Zip), Oc).

Here, we are following [LTi2]. In [Kontsevich2], the tangent space and obstruction

space were equivalently written as

H'(C,0; — f'6x) and H?*(C,6; — f*Ox),

where © x is the tangent sheaf of X and O is the sheaf of vector fields on C which

vanish at pq,... ,Pn.

We will see that (7.13) has an analog in this context. Thus, the expected

dimension of M, ,(X, 8) is

dim Extf, (f*Q% — Q6(2L,p1), Oc) — dimExt} (£* Q% — Q¢(Ti,p:), Oc) -
We look at the long exact sequence for Ext, which begins

0 — Extg (f*Q% — Q6(Ti,p), Oc) — Ext ((Ti,pi), Oc) —

Extl (f"Q%, Oc) — Exto (f"Q% — Q6 (Xp1), Oc) —

Note that ExtO(Qé(zz;lp,-),Oc) is the space of infinitesimal automorphisms of

(C,p1,.-- ,Pn) (these can exist, since C itself need not be stable). Furthermore,

ExtO(f*QL,0c) is the space of first order deformations of the map f (with C

fixed). The map connecting these terms is seen to be injective, using the stability

of f. Thus Ext%(f*Q} — QL(¥7.pi),Oc) = 0. It follows that the expected

dimension can be rewritten as

X(f*©x) + dim Ext! (Q& (X 7pi), Oc) — dimExt® (Q6(X7-,p4), Oc)

where we have used the isomorphism Exté (f*QY,Oc) ~ H*(f*Ox). The Hirze-

bruch-Riemann-Roch theorem gives x(f*0x) = — [ywx + (1 - g)dim X. As for

the two Ext terms, Ext!(Q} (Z,_l pi), Oc) is the space of first order deformations

of (C,p1,.-.,pn) and ExtO QL(3r_1p:), Oc) is the space of infinitesimal auto-

morphisms (recall that (C,p1, ... ,pn) need not be stable). Thus the difference is

the dimension of the tangent space to M, . (in the sense of orbifolds), which is

3g — 3 + n. Thus the expected dimension is

~Jpwx +(1-g)dimX + (3¢ - 3+n)=(1-g)(dimX ~3)— fjwx +n,

in agreement with (7.7).

(7.14)
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We can now give a precise definition of virtual fundamental class. As indicated

earlier, two ways of doing this are presented in {LTi2] and [BF)]. It is anticipated

that these two approaches define the same virtual fundamental class in their com-

mon domain of validity. The proof should be straightforward, though it has not

appeared in the literature. For this reason, we will sometimes give two proofs of

assertions about the virtual fundamental class, one for each approach. Further-

more, when we use a particular approach, we will be explicit about which one we

are using. To emphasize the idea of virtual fundamental class, our notation for it

will not distinguish between the differing approaches.

We start with the approach of Li and Tian and refer the reader to [LTi2] for

more details. Let

F : (C-Schemes) — (Sets)

be a contravariant moduli functor sending a scheme § to the set of all isomorphism

classes of geometric objects over S of a certain fixed type. The stack _A_A.g,n(X ,0)

is an example of such a moduli functor.

Let S be an affine scheme over C and let V be an Os-module. Let Sy denote

the trivial extension of § by A, which means that Sy = Spec(I'(Os) & T'(NV)),

where I'(Og) ®T(N) is the trivial ring extension of I'(Os) by T'(NV). In particular,

we get an infinitesimal extension § <= Sy. The tangent functor TF of F is the

following collection of functors. To each § as above and element a € F(S), we have

a contravariant functor

TF(a) : (Os-modules) — (Sets)

taking A to the set of all elements of F(Sx/) which restrict to o under the natural

“restriction” map F(Sx) — F(&). See [LTi2] for a more precise description. Thus

the tangent functor encodes the data of all “extensions” of a to all infinitesimal

extensions of S. The various functors making up TF satisfy a natural base change

property.

A tangent-obstruction complex for F consists of a complex of functors

T'F - T*F

where the arrow is the zero patural transformation, T F is the tangent functor

defined above, and T2F gives a reasonable obstruction theory for F. We will not

say more about what an obstruction theory is, except to mention that in particular,

there is associated to the data (o, S, ) an obstruction class

ob(a, S,NV) € T(T2F(a) ®os N)

whose vanishing is necessary and sufficient for the existence of an element & €

F(Sn) extending «. However, an obstruction theory contains more information

than this—see [LTi2] for more details.

A tangent-obstruction complex is perfect if for each (e, §) as above, there is, at

least locally on §, a 2-term complex of locally free sheaves of @g-modules £! — £2

such that for any N, T* F(a)(N) is the i*" sheaf cohomology of the induced complex

E Qo N. .

Suppose now that F is representable by a scheme Z. In the notation of (7.5),

this means F = hz. where 1z € hz(Z) = Hom(Z, Z) corresponds to the universal

object a € F(Z). For ease of exposition, let us suppose also that there is a perfect

tangent-obstruction complex for F where the £ of the definition are all induced

from locally free sheaves defined over all of Z (rather than just locally). These
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sheaves will be denoted by the same symbols £'. We give a simple example of

such a perfect obstruction theory in Example 7.1.4.1 below. For i = 1,2, we let Ei
denote the vector bundle with O(E*) = £*. Li and Tian use obstruction theory to

construct a (far from unique) Kuranishi map

F.E' . E?

where E is the formal completion of E! along its zero section. This Kuranishi map

F is a formal relative version of the usual one (7.13). The characteristic property

of F is that on each fiber over z € Z, the zero locus of F is formally isomorphic

to the completion of Z at z. More precisely, the zero locus of F itself is formally

isomorphic to the completion Z of Z x Z along its diagonal. In particular, the

Kuranishi map gives an embedding of Z in B
It is now a simple matter to construct a virtual normal cone. Consider the

normal cone to Z in E'. This is a cone over Z. The virtual normal cone CE is
the restriction of this cone to Z C Z. Note that via Z C E 1, Z is embedded as the

zero section of E!. The virtual normal cone has dimension equal to the rank of E L
The Kuranishi map can now be used to give an embedding of C%" in E%. The

virtual fundamental class is defined to be s~ [Cg'], where s is the zero section of E2.

It is immediate to see that it is a cycle class on Z of dimension rk(E')-rk(E?). This

difference can now be identified with the expected dimension of Z (or rather, this

is now a definition of the expected dimension). It is obvious from the definition of a

perfect tangent-obstruction complex that this difference is completely determined

by the tangent-obstruction complex and not by the choice of the £%. Less obvious,

but shown in [LTi2], is that the virtual fundamental class itself is independent of

the choices of the £ and Kuranishi maps.

Example 7.1.4.1. We bring this into down-to-earth terms by returning to the

context of a smooth scheme Y, vector bundle E, and section s € H°(E). We let 7

be the functor represented by Z = Z(s). Said differently,

F(8) = {all morphisms f : § — Y satisfying f*(s) = 0}.

Given an element f: § — Y of F(S), we claim that the complex T"F (f) defined

by the kernel and cokernel of

"8y — frO(E)

satisfies the requirements needed for a perfect tangent-obstruction complex. The

map in the above complex is the differential of the section s : Y — E composed

with the natural projection Tz — E of the tangent bundle of F to the normal

bundle of the zero section, which is isomorphic E itself. It is clearly induced by a

complex defined globally on Z, namely

(7.15) Oy|z — O(E)lz

which plays the role of £* above. Following the prescription of [LTi2], the virtual

normal cone C¢" is seen to coincide with the normal cone CzY, with precisely the

same embedding into E as was just described. The virtual fundamental class is

then just s*[CzY]. This shows that the virtual fundamental class generalizes the

normal cone construction given in Section 7.1.3.

So far, we've constructed virtual fundamental classes only in the special case

when the functor F is representable by a scheme and the complex £° exists globally.
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The paper [LTi2] shows that these assumptions can be relaxed. In particular, the

construction can be applied to define a virtual fundamental class for certain non-

representable functors such as —A_/—tg,n(X , 8) which have coarse moduli spaces.’

To see how this is done for _J\/—ig,n(X , B), consider a family of n-pointed genus g

stable maps f : C — X over an affine scheme S (see Definition 7.1.2). The union

of the images of the n sections s; : § — C will be denoted as D c C. Li and

Tian consider the tangent-obstruction complex which associates to f the complex

of functors with terms

(7.16) T My n(X, B)(FN) = Extg s (£ — Qe/s(D), Oc ®os N)

for i = 1,2. Li and Tian prove that this is a perfect complex. Thus, we can

define the virtual fundamental class of Mg (X, 8) to be the virtual fundamen-

tal class of the above perfect tangent-obstruction complex. This class, denoted

(M,n(X, B)]Y'*, has dimension rk(E') — rk(E?). Using the display immediately
before (7.14), we see that [M, (X, 8)]""" has the expected dimension (7.7).

We next give a brief treatment of the related construction of the virtual fun-

damental class due to Behrend and Fantechi [BF]. We will not go into depth in

describing this natural construction, since it would require a substantial detour into

the world of stacks. We continue to refer to [DM] or [BEFFGK] for the language

of stacks, and to [Vistoli] for intersection theory on algebraic stacks.

A Deligne-Mumford stack is an algebraic stack with unramified diagonal. The

construction of [BF)] begins with the observation that any Deligne-Mumford stack

M has an intrinsic normal cone Caq. This is a stack over M of pure dimension 0.

We can describe the intrinsic normal cone locally as follows. Since M has an

étale open covering by schemes, we can work over a scheme U. Pick an embedding

U — W, where W is smooth. Let Z be the ideal sheaf of U in W, and define the

normal cone CyW by the right hand side of (7.12) as usual. The differentiation

map I — Q};, takes f to df and induces a map

P17 — P Sym* (A /TUy) -

k k

Applying Spec, we get a map

Twly — CuW

since Tw = m(ei‘;OSyka‘l,v). There is a potion of a stack quotient, and the

intrinsic normal cone Cy is defined to be the stack quotient of CyW by Twlu- The

normal cone Cy is independent of the choice of W, which implies if we pick an étale

covering M = U;U; where the U; are schemes, that these local intrinsic normal

cones Cyy, glue together to give Caq.

Replacing the normal cone CyW in the above construction with the normal

sheaf, we also arrive at a construction of the intrinsic normal sheaf Naq. It turns

out that Caq embeds in Ma. The embedding is induced locally by the surjection

P Sym*(z/1%) — P ITF/T*.

k k

Now M has a cotangent complex L3, [Illusie]. Roughly speaking, hO(L5%)

controls deformations and A~!(L%,) controls obstructions. In [BF], an obstruction

theory for M roughly speaking denotes a complex of sheaves £ on M and a

morphism £* — L%, which is an isomorphism on h° and a surjection on h~l. To

be more precise, we should work in a derived category. Note the similarity with the
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tangent-obstruction complex of [LTi2], when the tangent space TLF is fixed but

there is some flexibility in the obstructions T2F.

If £9 — £! is a 2-term complex of Abelian sheaves on M, we can form the

stack quotient of the action of £° on £ 1. We have already seen an example of such

a quotient in the construction of the intrinsic normal cone above. Now, if £° is a

complex of arbitrary length, following [BF] we can define h1/RO(E") to be the stack

quotient of the kernel of £! — £? by the cokernel of £ -1, 0,

PROPOSITION 7.1.6.

R /RO((Lw) ") = N

Proor. This follows from [BF, pp. 66-69]. The symbol (L},)¥ denotes a

“dual” in the derived category. ' O

We can now give the construction of the virtual fundamental class. An ob-

struction theory £° is perfect if h!/RO((€")Y) is smooth over M. It follows from

Proposition 7.1.6 and the definition of a perfect obstruction theory that Na em-

beds in h!/A%((£*)"), hence Caq embeds there as well. Let C' be the fiber product

of (E~1)* with Cpq over h'/hO((£")"), where O(ETM") = £~'. This is an ordinary

cone contained in the vector bundle (E~1)*. The virtual fundamental class is then

defined to be the intersection C' with the zero section of (ETM)".

We now continue our previous example using the approach of [BFj.

Example 7.1.4.1, revisited. We return to the situation of the zerolocus Z C Y

of a section s of a vector bundle E. Let £ be the complex O(E*)|z — Q)2

dual to (7.15), the terms having degrees —1 and 0. Since Y is smooth, we have

L} ~ QL. There is then a morphism £° — L obtained by projecting £* onto its

degree 0 term, then composing with the functorially defined map L}, |z — L%. This

makes £° into a perfect obstruction theory. Then h1/RO((£°)V) becomes the stack

quotient of E|z by ©y|z—compare with (7.15). The virtual fundamental class is

then computed as the intersection of a cone C in the bundle E|z with the zero

section. It follows from the definition of the intrinsic normal cone that C = C zY

with the same embedding into E|z as given at the beginning of this section. Thus,

the virtual fundamental class agrees with s*{CzY] as claimed.

We now apply this construction to M, (X, B). Following [Behrend], we will

define a relative version of the virtual fundamental class, which can be simpler to

apply. Let 90, , be the stack of n-pointed genus g curves which satisfy conditions

(i) and (4i) of Definition 7.1.1 (such curves are called prestable). Then we have the

map of stacks )

(7.17) F: -M_g,n(Xv fi) i mg:"-

which forgets the map but doesn't stabilize. A relative version of the above con-

structions shows that F' has an intrinsic normal cone Cr and sheaf Mr.

Now consider the map of stacks

Tn+1 ! -M_g,n-i-l(X: B8) — _My.n(Xa 8)

which forgets the last point p,.1 and contracts any resulting unstable components.

As explained in Section 10.1.1 and proved in [BM], the universal stable map (in

the stack sense) consists of 7, and the evaluation map

€nill _-M—g,n-{-l(Xyfl) — X.
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The required perfect obstruction theory is £° = (Rftpi1e€5,,10x)Y. Then Cr em-
beds into h' /R%((£°)Y) = h!/R°(Rmp41.e,,Ox). This can again be pulled back
to an ordinary cone in an ordinary vector bundle, and intersecting with the zero sec-
tion gives a relative virtual fundamental class [Mg n(X, B) /Mg n, Rtns10€5 1O x]

in the bivariant Chow group 4*(M, .(X,3) — M, ). (Bivariant Chow groups
are discussed in [Fulton2] and [Vistoli].) Finally, the virtual fundamental class of
M, (X, B) is defined to be

Wg,n (X7 fl)]Vin = {m ,fl] n W_g,n (X7 fi)/mg,na R7rn+l*e;+1 ex]

in 4.(M, n(X, 8)).
Notice that all of our definitions of virtual fundamental classes lie in a Chow

group or bivariant Chow group. In the remainder of this chapter, we will frequently
identify the virtual fundamental class with its associated homology class, forgetting
some information in the process. We do this in order to compare with the symplectic
version of the virtual fundamental class, discussed in Section 7.2. We also do this
to avoid working with equivariant Chow groups in Chapter 9 and later chapters.

7.1.5. Computing the Virtual Fundamental Class. Rather than give an
exhaustive account of how to compute and manipulate virtual fandamental classes,
we will instead indicate four situations where they are relatively well understood.
We begin with a case where [M (X, 8)]"TM is especially easy to find.

DEFINITION 7.1.7. [KoM1] A smooth projective variety X is said to be convex
if HY(C, f*Tx) = 0 for all genus 0 stabie maps f: C — X.

When X is convex, one can prove that Mo (X, 8) is an orbifold of the expected
dimension [FP]. In particular, we have the fundamental class [M,.(X,3)] €
H,(Mg (X, £),Q). But being convex also implies that the moduli functor of
genus O stable maps to X is unobstructed. Using either of the approaches de-
scribed above, we are reduced to a trivial intersection in a trivial bundle, which
proves that [Mo (X, 8)]""* = [M.,(X,3)] in this case. Projective spaces, and
more generally homogeneous spaces, are convex.

In Section 7.1.2, we discussed the case when M, ,(X, 8) was an orbifold of the
expected dimension. For such an X, we again have [M (X, 8)]"irt = (Mon(X,8)].
This is because (in the language of [LTi2]) the tangent-obstruction complex is
induced from the tangent sheaf to the associated moduli stack My n(X,B) or (in
the language of [BF]) the perfect obstruction theory is induced from the cotangent
sheaf of the stack. The desired equality now follows for reasons similar to the
previous paragraph.

We next compute a virtual fundamental class for the quintic threefold.

Example 7.1.5.1. Let V C P* be a smooth quintic threefold, and let d > 0. The
goal of this example is to construct the virtual fundamental class [MO,O(V, dgy]virt,
We begin by showing that the natural map M o(V,dl) — Mo o(P%, d) is an em-
bedding. To see why this is true, let s be a section of Op+(5) which vanishes on V.
Then consider the functor

(7.18) F(S) = {f:C — P* is a genus 0 stable map over S with (s) =0}/~,

where ~ denotes isomorphism of stable maps over S. This is the functor associated
to Mg o(V,d?), and it follows that we get an embedding Mo o(V,df) — Mg o(P*, d).
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We can describe this embedding as follows. Let V; be the rank 5d + 1 vec-

tor bundle on the stack Mg o(P*,d) whose fiber over a stable map f: C — P*

is HO(C, f*Opi(5)). The section s defining V determines a section 3 of V; over

Mo o(P*, d), and then (7.18) implies that My o(V, df) is the zero locus of 5. We use

stacks here because Vg need not be a vector bundle over the orbifold Moo (P4, d).

This representation of Mg (V, d¢) implies that we are (almost) in the situation

of Section 7.1.3. We have a vector bundle E = V,; over Y = M o(P*,d) which is

smooth (as a stack, though not as a variety), and Z(5) = Mo o(V, d¥) is the zero

locus of the section 5. Then the normal cone construction gives 5*{CzY]. Thisis a

0-cycle since V; has rank 5d + 1 and My o(P*,d) has dimension 5d + 1 by (7.7).

We claim that §*[CY] is the virtual fundamental class [Moo(V,d0)]"**. To

prove this, we will use the approach of Li and Tian. By Example 7.1.4.1, we know

that 5*{CzY] is the virtual fundamental class of the perfect tangent-obstruction

complex given by the kernel and cokernel of

(7'19) 9.!‘_;1‘0,0(11"“.4)Imo,n(v,dl) - le—fio,o(V,dl)
(see (7.15)). Hence it suffices to prove that the kernel and cokernel of (7.19) coin-

cides with the tangent-obstruction complex defined in (7.16) for Mg o(V, dé).

Towards this end, let f : C — V be a stable map over a scheme S, with

7 : C — S the structure map. Consider the short exact sequence of complexes

0 — f*Op(=5) — fOh — fQ, - 0

! ! 3
0 — 0 — Q}:/s = Qé/s — 0.

We now look at the long exact sequence of relative Ext’s.

0 — Ext},g(f*Ql — ¢, Oc) — Extés(f* Qe — 05, 0c) —

Ext¢/s(f"Ops(=5), Oc) — Extg,s(f*Qy — ¢, Oc) = 0,

where the final — 0 follows from the convexity of P*.

Let’s investigate the nonzero terms of (7.20). The first term is the puilback

to § of the tangent space to Mgo(V,df), the second is the pullback to S of

the tangent space to Mo o(P4,d), the third is the pullback to S of V4, and the

fourth is the obstruction space T2. It follows from the exactness of (7.20) that we

can identify the kernel of (7.19) with Ext} /s QL — QL,0c) and the cokernel

with Ext2 /s FQi — QL, Oc). This is the tangent-obstruction complex defined in

(7.16), and our claim is proved.

The observant reader will notice that we have abused notation slightly in our

claim. The bundle V, and its Euler class are defined only on the stack Mo o(V, d)

and not on the space Mg (V,d). Yet we have defined the virtual fundamental class

on the coarse moduli space TVTO'O(V, d). This is because once we have the Euler class

on the stack, it can then be pushed forward to the coarse moduli space without

regard to the existence of a related bundle on HO,O(V, d). We will continue this

abuse of notation throughout the book.

The equality [Moo(V;dé)]'iTM = §*[CzY] has a very nice consequence. Let ¢ :

Mo,o(V,dl) — Mo o(P?,d) be the embedding described above. Then Lemma 7.1.5

implies that

(7.21) i ([Moo(V,dO)]"TM) = i.(5°[C2Y]) = csar1(Va) N [Mo,o(B*,d)).

(7.20)
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This equation takes place on Mg o(P4, d), and pushing forward to Mo o(P4, d) gives
a 0-cycle on Mg o(P4, d) which represents the Euler class of the bundle Vg. This will
lead to a nice formula for the Gromov-Witten invariants studied in Example 7.1.6.1.

In the notation of Example 7.1.3.1, the bundle Sym®U* on G(2,5) is the bundle
V1 on Moo(P*, 1) considered here. Thus the embedding M o(V, £) «— G (2,5) given
in that earlier example follows from the above description of Mo o(V, de).

The third aspect of computing virtual fundamental classes we wish to discuss
concerns “excess dimension”. In intersection theory, excess dimension occurs when
an intersection has greater dimension than expected. In certain nice situations, it
is then possible to compute the mtersection class using what’s called the excess
normal bundle. See [Fulton2, Sect. 6.3] for a clear discussion.

The idea of “excess dimension” also applies in our situation. We define the
excess dimension of M, (X, ) to be the difference between dim M, (X, 3) and
the expected dimension (7.7). When the excess dimension is positive, the equality
[Mgn(X, BV = [M,,.(X, B)] is clearly impossible, but it is sometimes possible
to compute the virtual fundamental class using Euler classes. If _J\/—ig,n —- M, is
the map of stacks (7.17), then we have the following result.

PROPOSITION 7.1.8. If the sheaf R'm, 1.€,,Ox which was used to define
M 3.n(X, BV is locally free of rank e, where e is the excess dimension, then

[Hg.n(x’ fl)]vm = Ce(RIWn+1~5:;+19X) N [Hg,n(Xv B)/Mg ],

where [My n(X, 8)/M, ] € A"(Mgn(X,B8) — M, ) is the fundamental class in
the sense of [Fulton2].

PROOF. See [Behrend, Getzlerl]. O

We will use this proposition in Example 7.4.5.1 when we discuss genus one
Gromov-Witten invariants. Note that even when M, ,(X,4) is smooth, the hy-
potheses of Proposition 7.1.8 need not hold. The point is that the obstructions
for maps in My (X, 8) do not lie in H'(C, f*©x), but rather in its quotient
Ext®(f*Q% — QL(T; pi), Oc), which is more subtle to work with. We will see an
illustration of this in Section 9.2.3.

Our fourth and final observation concerns the following compatibility between
the virtual fundamental classes of My, (X,8) and M, ,_,(X,B). Consider the
commutative diagram

X

A:-fi-l Ten
kvi Gnt1 Vi
Mg,n+1 (X, .3) '_"+ Mg,n(Xy ,3) |

lfl'n+1 l’fn {’

Myn(X,8) 2% Myn-1(X,B)
where the maps ¢; forget the first marked d point (and stabilizes), the maps 7; forget
the last marked point, and the maps e; : M 9.i(X, B) = X are evaluation at the last ‘
marked point. By base change, we have

1
Ritpiiee 1Ox = ¢r R 1,650 .
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This implies that

(7.22) My n(X,B)]" = ¢ [Mynr (X, B)]"

Said differently, the deformation theory of the n'® marked point is unobstructed.

See [Behrend, Axiom IV}]. The compatibility (7.22) will be useful in Chapter 10.

We should point out that the forgetful map ¢, : My (X, 8) — Mya-1(X,08)

doesn’t always exist. The problem is that when 8 = 0, the process of forget-
ting a marked point and stabilizing can make the curve vanish. For example,

#3 : Mo3(X,0) — Mo2(X,0) doesn’t exist since Mo3(X,0) = Moy x X and

Mo2(X,0) = 0. Fortunately, one can show without difficulty that ¢ exists if

either n +2g >4 or 8 # 0 and n > 1. The same is true for mn.

7.1.6. Defining Gromov-Witten Classes and Invariants. Now that we

have the virtual fundamental class £ = [My (X, 8)]"'*, we can finally give a rigor-

ous definition of Gromov-Witten classes and invariants. Recall from (7.6) that we

have a map 7 : Mg o(X,8) — XTM x My, and let p;, i = 1,2, be projection onto

the i*® factor of XTM x M 5.

DEFINITION 7.1.9. Let 8 € H2(X,Z) be a homology class and a,...,an €

H*(X,Q) be cohomology classes.

(i) If n+2g >3, then the Gromov-Witten class Ign glai, ... ,0n) 18 the coho-

mology class in H*(M,,,,Q) defined by

Ipng(on, ... 0n) = PD—po,(p;(al ® - ®an) Nmu(E)),

where & = [My.(X,B)]"TM is the virtual fundamental class of M,(X,8)

and PD is Poincaré duality.

(i) If n,g > 0, then the Gromov-Witten invariant (Ign.a¥(o1,. .. ,an) is the

rational number defined by

Tgnp)(at,- - san) = Ae’{(m) U...uek{an),

where the e; are as in (7.11).

Notice how these definitions are the same as (7.10) and (7.11), except that ¢ is

now the virtual fundamental class. Also, if n +2¢g > 3, then one can show that

{1, ,n,B)(aly--- »Qn) =/_ Ig,n,B(alw-‘ , Qn).
g

Hence Gromov-Witten invariants are determined by the corresponding Gromov-

Witten classes when n + 2g > 3.

We will study the properties of Gromov-Witten classes and invariants in Sec-

tion 7.3 and compute some examples in Section 7.4. We should mention that

although our treatment of Gromov-Witten classes uses homology and cohomology

over Q, many of the papers in the literature use Chow groups instead. A similar

definition of a Gromov-Witten invariant is given in [Behrend], using the relative

version of the virtual fundamental class discussed earlier in Section 7.1.4.

We end this section with a formula from {Kontsevich2] for certain Gromov-

Witten invariants of the quintic threefold. This result will play an important role

in Chapter 11.
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Example 7.1.6.1. Let V C P* be a smooth quintic threefold, and as before let

£ € Hy(V,Z) be the class of a line. We have seen in Example 7.1.5.1 that the virtual

fundamental class [Mo,0(V, d€)]¥"TM is a O-cycle. Thus, by Definition 7.1.9, we have

{(Io,0,d¢) = /_ 1 = degree of the O-cycle [Ho,o(V, E)]"i".
MO,O(V,de)Vir"

We can compute this degree by working on Mo o(P*,d) via the embedding i :

Mo o(V,dt) — Mo o(P%,d). From (7.21), we know that

iu[Mo,o(V,dO)]"TM = c5q41(Va) N [Moo(P4, d)),

where V; is the vector bundle on "/\70,0 (P4, d) whose fiber over a genus 0 stable map
f:C =P is HYC, f*Op.(5)).

Since ¢€5441(Va) is a cohomology class of top degree, the degree of the O-cycle

Csd+1(Va) N [Moo(P%,d)] is given by integration over the fundamental class of
Mo,o(P*, d). Thus we obtain

(lo,0,d¢) = /_ csa+1(Va)-
Mo o(P4.d)

This formula first appeared in [Kontsevich2, Sect. 2.2]. We have abused notation

slightly, writing V; as if it were defined on Ho,o (P4, d), since as already explained,

its Euler class is a well-defined O-cycle on Mg o(P* d). In Section 9.2.1, we will

show how to compute this integral using equivariant cohomology and localization.

7.2. Definition via Symplectic Geometry

In this section, we give a brief outline of the ideas and techniques used in

the symplectic formulations of Gromov-Witten invariants. These definitions are

based on the theory of J-holomorphic maps in symplectic geometry and led to the

first rigorous treatment of quantum cohomology. Some of the basic ideas appear

in [Witten3], though the first explicit treatment of genus 0 symplectic Gromov-

Witten invariants for semi-positive symplectic manifolds is due to [Ruan2] and

[RT1]. The book [MS] can serve as an introduction to this approach. For higher

genus invariants in the semi-positive case, definitions were given in [RT1] for a

fixed complex structure, and then for varying complex structure in [RT2]. There

are now several definitions of Gromov-Witten invariants for general symplectic man-

ifolds [LTi3, Siebertl, Ruan3, FO]. We refer the reader to all of these for the

many details that will be omitted from our summary in this section.

7.2.1. Symplectic Manifolds and J-Holomorphic Maps. Let M be a

compact symplectic manifold of (real) dimension 2n. This means that M admits

a closed 2-form w such that wTM is nondegenerate at every point. Every Kahler

manifold has a natural symplectic structure given by its Kihler form, and one of

the powerful ideas in symplectic geometry is that any symplectic manifold (M,w)

is almost Kihler. In particular, the complex structure and Kéhler metric of a

Kahler manifold get replaced by an almost complex structure and an associated

Riemannian metric which are related to w.

There are several conditions that can be imposed on an almost complex struc-

ture on a symplectic manifold. We formalize two of them in the following definition.
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DEFINITION 7.2.1. Let (M,w) be a symplectic manifold, and let J be an almost

complex structure on M. Then J is tamed by w if

w(X,JX) >0 for allp € M and nonzero X € Ty M.

Furthermore, J is compatible with w if J is tamed by w and

w(JX,JY) = w(X,Y) for all vector fields X,Y on M.

Compatibility is equivalent to g(X,Y) = w(JX,Y) being a Riemannian metric

on M. For either condition, such J’s always exist and are all deformations of each

other. This implies, for example, that we can define the Chern classes ¢;(TM) of

the tangent bundle on a symplectic manifold by using any w-tamed J to give the

tangent bundle TM a complex structure. If J is tamed by w, then

Ba(X,Y) = 5 (@(X,TY) + (Y, IX)).
defines a metric, which reduces to g above if J is compatible with w.

The use of tamed almost complex structures has the advantage of making it

easier to achieve “generic” situations. On the other hand, more precise statements

can often be made if the stronger condition of compatibility is imposed.

Our main treatment follows the approach initiated in {Ruan2]. We will also

discuss extensions of this approach [RT1, RT2], which develops the theory of

Gromov-Witten invariants for symplectic manifolds which are semi-positive. This

means that for every homology class 3 € H>(M,Z) which is represented by a map

f:8% - M, we never have

ffiw >0 and 3 — %dimRM < chl(TM) < 0.

For example, every Calabi-Yau manifold is semi-positive in its natural symplectic

structure, as is P". Also note that every smooth projective variety of complex

dimension < 3 is semi-positive. We caution the reader that in the literature, semi-

positive sometimes has a slightly different meaning.

We next discuss curves lying on a symplectic manifold M. In algebraic geom-

etry, we define curves (and other subvarieties) by equations. This doesn’t work in

symplectic geometry, so instead we let C' be a Riemann surface and consider C*°

maps

f:C—-M

which are “holomorphic” in the following sense.

DEFINITION 7.2.2. Let (M,w) be symplectic and let J be an almost complez

structure tamed by w. A J-holomorphic map is a C®° map f : C — M from a

Riemann surface C to M such that the differential df : TC — TM is a map of

complez vector bundles with respect to the complex structure on C and the almost

complex structure on M.

Note that there is a d-operator which can be applied to maps f: C — M and

is defined by

(7.23) 8;=d+ Jodo jg,

where jc is the (integrable) almost complex structure on C._Note that being J-

holomorphic is equivalent to the Cauchy-Riemann equations 0, f =0 (apply J to

the definition of 8, and use J? = ~1). In particular, if J is integrable, then a

J-holomorphic map is the same as a parametrized complex curve in this case.
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The basic idea of a symplectic Gromov-Witten invariant is similar to what we

did in (7.2): we want to count the number of curves

(7.24) f:C — M such that f,[C] =B and f(p;)€ Z; fori=1,... n,

where as before, p1, ... ,p, are fixed points of C, 3 is a homology class in Hy (M, zZ),

and Zy,...,Z, are cycles on M in general position. In the approach of [Ruan2,

RT2], this is made precise by requiring f : C — M to be J-holomorphic for
a fixed generic choice of J (actually, the Cauchy-Riemann equations need to be

perturbed). The effect of genericity is to ensure that the relevant moduli spaces

have the expected dimension. The resulting invariants will depend only on w and

not on which J we chose. This is consistent with the algebraic case, for we will see

in Section 7.3 that the Gromov-Witten invariants from Section 7.1 don’t change

when we deform the complex structure. From the mirror symmetry point of view,

this is reasonable since these invariants appear in A-model correlation functions,

which depend only on the Kihler moduli.

One of the nice features of the symplectic approach is that many of the com-
plications of the algebraic case (e.g., moduli spaces being singular or having the

wrong dimension) go away when we use a generic almost complex structure. In

fact, (7.24) is much closer to the actual definition of Gromov-Witten invariant than

it was in the algebraic case. However, in more recent approaches to symplectic

Gromov-Witten invariants (for which semi-positivity can be dropped), analogs of

the virtual fundamental class are developed. In these situations, it is no longer

necessary to achieve the expected dimension.

To describe any of these approaches, we need to understand the relevant moduli

spaces. We now turn to this.

7.2.2. Moduli Spaces. We first follow the treatment in [Ruan2] (see {MS]

for an exposition). Here, the idea is to study J-holomorphic maps f : C — M

of class 8 € Hp(M,Z). We will fix the complex structure on C and the almost

complex structure J on M. For technical reasons, we need to assume that fis

simple, meaning that f doesn’t factor as C — €’ — M, where C — C' has degree

> 1. (If f is not simple, we say that it is a multiple-cover.) Then we let

M(C,J,B) = {f:C — M : f is J-holomorphic, simple, and f.[C] = g}.

A first result is that when J is a generic almost complex structure tamed by w,
the set M(C, J, B) has the natural structure of a real manifold of dimension

(7.25) (1 - g)dimgM + 2[ ¢, (TM).

To prove this, one represents M(C, J,3) as the fiber of a map between infinite

dimensional manifolds. For generic J. this map has a Fredholm linearization, and

then the implicit function theorem implies that the fiber M(C, J, 8) is a finite di-

mensiopal manifold. The dimension of the fiber is given by the Fredholm index,

which by the Hirzebruch-Riemann-Roch theorem gives (7.25). We should men-

tion that similar analyses are used to construct the moduli spaces appearing in

Donaldson theory and Seiberg-Witten theory.

‘The manifold M(C, J, 3) also depends nicely on J. More precisely, as we vary

J, the different M(C,J, 8) are all cobordant provided J is sufficiently generic.

However, because M(C, J, 8) is usually non-compact, this result is not as strong as

one would hope. One complication of this non-compactness will be highlighted in

the discussion following Conjecture 7.4.5 in Section 7.4.4.
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We next describe an alternate approach to these spaces considered by Ruan

and Tian [RT1}]. Here, one perturbs the notion of J-holomorphic map. Perturba-

~ tions are needed in part to deal with multiple covers, and as we will note, lead to

* compactified moduli spaces.

Recall that J-holomorphic means the Cauchy-Riemann equation 8sf =0. Over

the product C x M, let

v:piTC — pyTM

be a conjugate linear map, where p;, i = 1,2 is projection onto the i*® factor of

C x M. Then consider the inhomogeneous Cauchy-Riemann equation

(3sf)(p) = v(p, f(p)), pEC.

We say that f : C — M is a perturbed J-holomorphic map if it satisfies this

equation. Now suppose that J and v are generic and consider the set

M(C,J,u,fl)={f:C—>M:51f=u,f*[C]=6}‘

Notice that we no longer assume that f is simple. This is one of the advantages of

working with perturbed J-holomorphic maps. A discussion of how this relates to

the homogeneous case (when v = 0) can be found in Section 2.10 of [RT1]. One

can show that M(C, J,v, §) has a natural manifold structure of dimension (7.25).

So far, the complex structure of the curve C has been fixed. This is the situation

in [RT1], and it leads to invariants which can be used to define a topological

quantum field theory (Appendix B.6) including all genera. If we let the complex

structure vary (in physics language, the topological theory is coupled to gravity),

then we get symplectic analogs of the moduli spaces M, (X, ) considered earlier.

Since the spaces M—g,n are needed, we have to assume that 2g + n > 3. Because of

the singularities of M ,, however, one has to proceed carefully. In (RT2|, Ruan

and Tian define the space M¥ .(J, v, 8); which, roughly speaking, consists of all

perturbed J-holomorphic maps

f:(Cyph"' 1pn) — M

satisfying f.[C] = 3. Here, C is smooth of genus g, and the superscript 4 signals

that we are actually working with a finite cover T\;I_Z,n of My, This is typically

done by fixing a level structure and is needed in order to get a universal curve. Also,

the subscript 7 denotes that we are restricting to the subset of Mf;,n consisting of
n-pointed curves with trivial automorphism group.

As before, M% (J,v, B); has a natural manifold structure, and its dimension

is given by

(7.26) 2(1 - g)(3 dimg M = 3) + 2fze1 (TM) + 2n.

When M is a projective variety X, we have ffi a(TX)=- fB wx, and it follows

that this dimension is exactly the expected (real) dimension of My (X, 8) (compare

with (7.7)).

We thus have two types of spaces built from perturbed J-holomorphic maps,

namely M(C, J, v, 8) and MY (J, v, 8);. Each space has a natural compactification

called the Gromou-Uhlenbeck compactification. Because (M, w) is semi-positive, one

can prove that these compactifications are obtained by adding finitely many strata

of real codimension > 2. We will see below that M(C, J,v, 8} and MY _(J,v,8)1

lead to two different (but closely related) notions of Gromov-Witten invariant.
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We now describe a third approach to these moduli spaces due to [LTi3]. This

approach uses almost complex structures J which are compatible with w. 
The

notion of a stable C* map is introduced. These maps are C*t versions of stable

maps f : C — M. The curves C are exactly the same as those in the notion of

a stable map, and the marked points are again smooth points. Instead of f b
eing

an algebraic morphism, we have the following condition: for each component C; of

C, the composition of f with the normalization map C; — C; is Ct. Finally, the

stability condition is imposed for components ¢, such that f,{Ci] = 0, and not just

for components on which f is constant. There is a natural notion of equivalence of

C* maps induced by biholomorphisms of C.

There is an also analogous notion of J-holomorphic stable maps in this situa-

tion. Here, we require that the maps C; — C; — M be J-holomorphic.

If we fix the genus g, the number n of marked points, and the homology c
lass

B = f.[C], then the resulting set of equivalence classes of stable C* maps is denoted

by ?é(M ,g,n). This space has a natural topology and is the moduli space of

interest. Similar spaces are used in the approaches of [Ruan3, Siebert1].

7.2.3. Symplectic Gromov-Witten Invariants. The existence of nice com-

pactifications of M(C, J, v, 3) and M (J,v,0)1 implies that these spaces almost

have fundamental classes. (The issue is whether the boundary & has a neig
hbor-

hood U such that & is a deformation retract of U—see Remark 4.3 of (RT1].) If

we had the correct sort of fundamental class, then we could define Gromov-Witte
n

invariants using formulas similar to (7.10).

Given that we don’t have a nice fundamental class, there are two ways we can

proceed:

o Use transversality arguments to reduce the definition to counting the number

of points in an oriented intersection. This is the approach used in {R
T1,

RT2].

e As with virtual fundamental class discussed in Section 7.1, work in a larg
er

space. In {Ruan3}, Ruan uses a virtual neighborhood, which is obtained by

embedding the moduli space into a V-rnanifold. A related approach can be

found in [Siebertl], and the spaces _ffa(M ,g,n) defined above are used in

[LTi3] in a similar manner.

The second approach is more powerful since it applies to all symplectic manifolds,

not just semi-positive ones. Nevertheless, our discussion will focus on the first,

though we will give a quick mention of further ideas from [LTi3] as a representative

of the more general techniques. ’

Let’s begin with the invariants coming from M(C, J, v, §). Our goal is to define

the mized Gromou- Witten invariant

(727) (I)g,,@(alv'“ aaklfilv"”fil)v

where a;,8; € H*(M,Z) are cohomology classes satisfying

(7.28) T dega, + ) _gdeg §; = (1 — g) dima M + 22 (TM) + 2.

(In [RT1], Ruan and Tian use homology classes, so that our &, and 3; are dual 
to

theirs.) The rough idea is as follows. Fix points p1, . .- ,px on C. Then the mixed
invariant (7.27) should be the number of maps f : C — M in M(C.,J, v, 5) such
that f(p;) lies in a cycle dual to a; and f(C) meets a cycle dual to 3;.
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In order to define this precisely, we will represent the cycles dual to o; and

3, by pseudo-manifolds of M. By pseudo-manifold, we mean a continuous map

F:Y — M where Y is stratified so that each stratum has codimension at least two

in the next and F is smooth on each stratum. If (F;,Y}) and (G,, Z;) represent the

cycles dual to a; and 3;, then

F=T F x I Gy LY x I Z; — M+

is a pseudo-manifold which represents a cycle dual to the cohomology class oy @

R DA R R [ € H(M,Z).

On the other hand, we also have the fixed points p1,... ,px € C. This gives

the evaluation map

e: M(C, J,v, ) x Ct — M+

defined by sending (f : C — M,q1,...,q) € M(C,J,v,5) x C! to the point

(f(pl)v B f(pk)vf(ql)’ ce :f(Ql)) € M+,
We thus have two maps to M*+!. For generic J and v, one can show that

the images of these maps are cycles which intersect transversely (in particular, the

intersections occur at smooth points of the images). Furthermore, the degree con-

dition (7.28) implies that the images Im(F') and Im(e) are cycles of complementary

dimension. Hence the intersection consists of finitely many points! Since all of the

objects we’re dealing with have natural orientations, each P € Im(F) NIm(e) has

a sign €(P) = +1 determined by the orientations.

DEFINITION 7.2.3. Let (M,w) be a semi-positive symplectic manifold and 3 €

Ho(M,Z) be a homology class. Then, given oy, 3; € H*(M,Z) satisfying (7.28),

the mixed Gromov-Witten invariant is defined by

@9113(&17"'7aklfl1)--'1fll)= Z €(P)
Pelm(F)NIm(e)

Ruan and Tian [RT1] show that ®,5(e,..., 0| B1,...,0) is independent

of the choices of J, v, the points pi,... ,px € C, the complex structure of C, and

the pseudo-manifolds representing «; and §;. Their paper also includes numerous

properties and applications of the mixed invariants.

We can relate this to the algebraic invariants discussed in Section 7.1. Suppose

that (M, w) is a smooth projective variety with its Kéahler form. Let

TM. Hg,k+l(My fl) 4 M_g,k

be the map which takes a stable map, forgets the map and the last [ marked points,

and then contracts any resulting unstable components. This is an extension of the

map T, from (7.6), which is the case [ = 0. Also let [pt] denote the cohomology

class of a point in Mg . This represents a fixed curve C with a fixed set of marked

points (pi, ... ,pr). Then the invariant ®, s(a1,... ,ax| B1,... ,5) is morally the

same thing as

«/[‘fi (M) HLL ey (o) U H§=1 e;_w Biyur pt].
ERE » Tt

However, we are more interested in Gromov-Witten invariants of the type dis-

cussed in Section 7.1. For this reason, we turn our attention to the invariants built

from M4 L (J,v, B)1. These are the symplectic Gromou- Witten invariants

(729) ‘Dg,n,fi('fialr-' 70‘n),
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which are defined for cohomology classes v € H*(My,,Q) and o; € H*(M,Z)

satisfying

degy + Yo deg o = 2(1 — g)(3 dimgM —3) + 2ch1(TM) +2n.

The naive idea is that if Z is a cycle in Hg,n dual to v and Z; is a cycle in M dual

to oy, then ¥, , 5(v; a1,. .. , o) should be the number of perturbed J-holomorphic

maps f : (C,p1,...,pn) — M such that (C,p1,... ,pn) € Z C My, fu[C] = 8,

and f(p:) € Z:.
The precise definition of (7.29) is similar to what we did in the mixed case,

though the details are more complicated because not all classes in H, (Hg,n,Z)

are represented by pseudo-manifolds, and also because using MY . (J, v, 5); means

working with a finite cover H’;,n — Hg,n. This allows us to define an invariant

¥y . s(vi, ..., a,) which depends on the choice of finite cover. Then, dividing

this by the degree of the covering, we get an invariant ¥y, 5(7; @1,... ,an) which

is independent of u. Rather than give the details here, we will refer the reader to

[RT2] for the full definition.

Notice that if we fix ai,... ,an, then knowing ¥, , 5(v; 01,... , @) for all 4

determines a unique class ¥, , g(a1,... ,on) € H*(M, ., Q) such that

/; YUY L p(on,... ,an) = Y, na(vi01,-.-,00).
Mg,n

We call ¥, , 5(c1, ... ,a,) a symplectic Gromov- Witten class. As in the algebraic

case, the symplectic classes can be regarded as maps

(7.30) Y, np: H'(M)® — H* (M, ,,Q).

We will see later that algebraic and symplectic Gromov-Witten classes have similar

properties.

There are some nice relations between mixed and symplectic Gromov-Witten

invariants. For example, since a mixed invariant fixes the complex structure, it

should be no surprise that

D, 5(a1,. .. anl) =Yy, a(lpth a1, .., an).

To state the general relation between these invariants, let K, be the cycle in

M i1 obtained by taking the closure of the set

{(C,p1, ... s Prtt) EMQ.H, 1 (C,p1,--. ,pr) is a fixed point in Hg,k}'

Then one can show that

Qg 50, 0| B, 81) = Yy ki a((Kkiions - o, B, .05 B

This implies that all mixed invariants are special cases of the symplectic invariants.

A particularly relevant case is when g = 0. Since M 3 is a single point, it follows

that

(7.31) Do g{0n, g, 03| 04, ... ,00) = Yong(lpthhar,... ,a,).

A nice explanation of this formula can be found in [Voisin3].

We close this section with a quick mention of some of the ideas in the approach

of [LTi3|. Let ff,(M , g, n) be the moduli space described at the end of Section 7.2.2.



7.3. PROPERTIES OF GROMOV-WITTEN CLASSES 191

We define a generalized bundle E on F5(M, g, n) as follows. Given a stable C* map

f:C — M with C smooth, let A(}'l denote the space of continuous sections v of

Hom(TC, f*TM)

such that v o jo = —Jov. These are to be thought of as f*(TM)-valued (0,1)

forms on C. Note that the Cauchy-Riemann operator 3, is in A?'l, as is calculated

immediately using (7.23), J?2 = —1, and jé- = —1. The definition of A(}'l needs to

be slightly modified when C is not smooth (see [LTi3] for details) and is compatible

with the equivalence which defines .]?f;(M ,g,7n). The result is that the spaces A?;l

are the fibers of a generalized bundle E on F§(M, g,n).

By construction, 3 induces a global section of E. We thus have a section of an
infinite dimensional bundle on an infinite dimensional space. The idea is that we

would like something that plays the role of the Euler class of a bundle in the finite
dimensional case. It is shown in [LTi3| that if £ > 2, then this section gives E the

structure of an generalized Fredholm orbifold bundle, a notion introduced in [LTi3].

The main result is that to this data is associated an oriented Euler class, which is

a homology class on the base space of the bundle. This class is supported on the

zero locus of a carefully chosen perturbation of the section 3; of E. In the case of

interest, the homology class has dimension given exactly by the expected dimension

(7.26). This oriented Euler class plays the role of the virtual fundamental class, and

easily leads to a definition of symplectic Gromov-Witten invariants in the familiar

manner.

The Gromov-Witten invariants of [LTi3] extend the invariants of [RT2], which

are defined only when M is semi-positive. Note that it is not necessary to assume

that 2g +n > 3. There is also a related construction [Siebertl]. It is believed

that the differing symplectic Gromov-Witten invariants agree with each other, but

no proof has been written down as of this writing. In the next section we will

discuss to what extent the various symplectic invariants agree with the algebraic

Gromov-Witten invariants discussed in Section 7.1.

7.3. Properties of Gromov-Witten Classes

Our next task is to study Gromov-Witten classes and the relations between the

various definitions given in the previous two sections. We begin with a description

of the properties common to all of the definitions.

7.3.1. Axioms for Gromov-Witten Classes. In [KoM1], Kontsevich and

Manin propose a system of axioms for Gromov-Witten classes, and it is now known

that both the algebraic classes I, g from Section 7.1 and the symplectic classes

¥yng from Section 7.2 satisfy these axioms. In the algebraic case, this is proved
in [BM, LTi2, BF, Behrend], while in the symplectic case, the proof can be

found in [RT1, RT2, LTi3]. We will add another axiom to these, the Deformation

Axiom, which is proven in the algebraic case in {L'Ti2] and follows from symplectic

invariance in the symplectic case.

For simplicity, we will state the axioms for I, ,, 5. Recall from Section 7.1 that

if X is a smooth projective variety, then for ¢ > 0, n > 0 and n + 2g > 3, the
Gromov-Witten classes are maps

Ig,n,B : H*(XaQ)®n s H*(Mg,ny Q)
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Also, for g,n > 0, the Gromov-Witten invariants are maps

(Ig,n,B) s H* (X, Q)®n — Q.

When n + 2g > 3, these are related by

<Igynzfi)(a1"" ’afl-) =/___ Ig.n,fi(aly-“ aan)‘
s

In thinking about the axioms given below, the reader should recall the naive

interpretation (7.2) of Gromov-Witten classes. Namely, if Z; is a cycle in X dual

to a;, then Iy, g(en,. .. ,an) should be the cohomology class given by the set of

genus g curves (C,p1,... ,Pa) € M, , for which we can find f such that

(7.32) f:(C,p1,... .pn) — X is stable, f(p;) € Z,, and f.[C] = 8.

With this in mind, we now proceed to the axioms.

Linearity Axiom. The first axiom asserts that I, 5 is linear in each variable.

Naively, this is because a sum of cycles is simply their union.

Effectivity Axiom. The pext axiom says that for a smooth projective variety

X, I,ng = 0 if 3 is not an effective class. This makes sense because f.[C] is

effective whenever f : C — X is holomorphic map. In the case of a symplectic

manifold (M, w), this axiom is replaced by the observation that the invariants vanish

whenever |, sw < 0.

Degree Axiom. This axiom asserts that for a,... , @, € H*(X, Q)®", the coho-

mology class I , s(a1,... ,an) € H* (Mg.r, Q) has degree

2(g—1)dim X + 2 fpwx + 30, degas

if the a; are homogeneous classes. When the moduli space M—g,n(X ,3) has the

expected dimension (7.7) and has a nice fundamental class, this follows from (7.8).

In general, the Degree Axiom is a consequence of Definition 7.1.9 because the virtual

fundamental class has the expected degree.

The Degree Axiom implies that Iy, g(an,... ,an) is a top degree class if and

only if

(7.33) Sor dega; = 2(1 — g)dim X ~ 2f5wx +2(3g—3+n).

It follows that when considering the Gromov-Witten invariant (Ig n g)(01, ... ,@n),

we can always assume that (7.33) is satisfied (since the invariant is zero otherwise).

Using Definition 7.1.9, we see that this is valid for all n,g > 0.

In the literature, deg a; is sometimes replaced by its “algebraic degree” % deg ai,

so that if Z is a subvariety of codimension 4, then [Z] has degree i. This convention

is most useful when dealing with even-dimension cohomology.

Equivariance Axiom. The symmetric group S,, acts naturally on the cohomol-

ogy groups H*(X,Q)®" and H*(M,.,, Q). For the latter, the action is given by

permuting the points p; of (C,p1,... ,pn). This axiom asserts that the map

Ig.n.fi cH” (Xa Q)®n — H* (Mg‘nu Q)

is S,-equivariant. The intuition behind this should be evident from (7.32). For

Gromov-Witten invariants, equivariance means that

<Ig,n.fi)(041y e O, Qg1 e, Q) =

(_1)degu, deganp (Ig.n,fi>(ala e Ay, Qe :an)-
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Fundamental Class Axiom. If n + 2g > 4, then we get a natural map =, :

Mg,n — Mg n_1 by forgesting the last point. If [X] € HO(X, Q) is the fundamental

class of X, then this axiom asserts that

Ionplan,. .. onoy [X]) = m7 a1 5(e, . sanoy).

Using (7.32), this makes sense because f(p,) € X puts no condition on p,. When

dealing with a Gromov-Witten invariant, the Fundamental Class Axiom implies

(7.34) Tgns)(a1,... 0n1,{X]) = 0.

This follows because the above Gromov-Witten invariant can be nonzero only if
[g.nfi(al,..; an-1,{X]) is a class of top degree. Thus I, 3(a,... \Qp—1) i8

zero, since M, ., has smaller dimension. Note that (7.34) holds whenever =, is

defined. The discussion at the end of Section 7.1.5 shows that this is true if either

n+29g>4orf#0andn > 1.

Divisor Axiom. If n+2g > 4, then let 7, : M, — M, ,_1 be as in the previous

axiom. If o, € H*(X,Q), then

j"'n,u:Ig,n,fi(O‘l,' e, Qn_1,0n) = (ffian) Ig,n-—l.fi(aly" < Qn_1).

To see why this should be true in terms of (7.32), let f : (C,py,... ,pn) — X be

stable such that f.[C] = B and f(p;) € Z; for i = 1,... ,n — 1. Then f(p,) must

lie in f(C)N Z, = BN Z,, which means that there are |, 3 @ possible choices for

f(pn)- Hence we get the above formula.

For Gromov-Witten invariants, we see that if a, € H2(X,Q) and (7.33) is

satisfied, then

(Ig,n,,fl)(aly--- yan—lyan) = fBan (Ig,n—l,fi>(aly-~~ yan—1)~

As with the Fundamental Class Axiom, this holds whenever =, is defined, so that

by Section 7.1.5, this is true if either n +2g >4 or § # 0 and n > 1.

Point Mapping Axiom. This axiom describes what happens when 8 = 0. When

g =0, it states that if the o; are homogeneous cohomology classes, then

qU---Uan) [Mya] if $8, dego; =2dim XIpnoley, o) = {gfx 1 ) [ g, ] Otgr‘;ixse g O

To see why this is reasonable, notice that a map satisfying f.[C] = 0 must be

constant. Thus (7.32) reduces to f(C) € Z;N---NZ,. When 3 - dega; =

2dim X, the class has degree 0 by the Degree Axiom. This gives the top formula,

and all other classes vanish in this case.

This has a nice consequence for the Gromov-Witten invariants (I .p0). If we

compare the above condition }_" , dega; = 2dim X to (7.33), we see that n = 3

is special. More precisely,

fxalLJagUag ifn=3
7.35 Ion 1000, 0n) =
(7.35) {Zo,n,0) (21 an) {0 otherwise.

Unfortunately, this reasoning applies only when g = 0. The problem is that

Mgy n(X,0) = My, x X has the expected dimension only when g = 0. There are
formulas for I , ¢ for all g, but they can be rather complicated. We will see what

happens when g = 1 in (7.55) below, and the difficulties of the general case are

discussed in [KoM1, Sect. 2.2.5].
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Splitting Axiom. This axiom is a bit complicated to state. First suppose that we

have splittings g = g + g2 and n = n; +ng such that n; +2g; > 2. Notice that if we

have stable curves (C1,P1,... ,Pry+1) and {Ca2,41,... ,@n,+1) of respective genus

g1 and g2, then the curve C obtained from C; UC; by identifying pn,+1 with ¢n,41

gives a stable curve (C,p1,- .. 1P+ q1, - - - »Gny) Of genus g. Thus we get 2 map

(7.36) @ : My, n1 X Mgy nap1 — Mg

Then the splitting axiom asserts that ¢*Ig , (e, ... ,an) is given by the formula:

Z Zgij ngvfl-1+1yfix (al’ cee s Ongs TI) &® Igz,flrfl.fiz (1111 Qrnytly - - - s Ol,,_),
B=B1+B32 1.5

where T} is a homogeneous basis of H*(X, Q) and (¢*/) is the inverse of the matrix

(gs;) defined by gi; = [ T: UT;. (This means that the cohomology class of the

diagonal in H*(X x X,Q) is T, ; ¢”T: ® T;.) Because of the Effectivity Axiom,

the above sum is finite.

To see where this formula comes from, first note that the inverse image under

¢ of the maps (7.32) consists of maps

f : (Cl UC2,P1a-~- sPnysy P Pry+1s- -0 ,Pm‘I) - X

where £,[C1]+ f.[C2] = B, f(p:) € Z; and f(p) = f(q). The first of these conditions

corresponds to the decompositions 381 + 2 = £ in the above formula, and the last

condition means we want (f(p), f(g)) to be in the diagonal of X x X. Since the

class of the diagonal is Ei, J g97T; ® T;, we get the above formula.

Reduction Axiom. Here, we use the fact that gluing together the last two marked

points gives a natural map ¥ : Mg_1 .42 — Mg, If A, and g% are as in the

previous axiom, then

w*Ig,n,fl(ala v ao‘n) = Ei,jgij Ig—l,n+2,fl(o‘lv vy Qn,y Ti7 TJ)

This is reasonable because the inverse image under ¢ of the maps (7.32) con-

sists of maps f : (C,D1,...,Pns2) — X of genus g — 1 such that f.[C] = 8,

flps)€ Zi fori=1,... ,nand f(Pny1) = f(Pnt2). The last condition means that

(f(Brg1), f(Pry2)) lies in the diagonal of X x X. As above, the class of the diagonal

is ¥, ;9 T. ® T;, and the formula follows. ‘

Deformation Axiom. Let f : X — T be a smooth proper map with connected

base T, and set X, = f~1(t) for t € T. Thus, for each t € T and 8, € Ha(X,,Z),

we get a map

X 5 H (X, QP — H* (M0, Q).
Then, if 8; is a locally constant section of H2(X:,Z) and ai,... ,an are locally

constant sections of H*(X;,Q), ng,‘:y.,fl,(al’ ... ,Qn) is constant. The intuition be-

hind this is that Gromov-Witten classes should be invariant under deformation of

complex structure. This is clear when we use the symplectic definition of Iy 5 .

Among these axioms, the Splitting Axiom and the Reduction Axiom are prob-

ably the most important. As we will see in Chapter 8, they are closely linked to

proving that quantum cohomology is associative. In the papers of Ruan and Tian,

these two axioms are known collectively as the Composition Law.

Besides these axioms, [KoM1]| also includes a Motivic Aziom, which says that

Gromov-Witten classes should be induced by a class of the appropriate degree in
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the Chow ring of XTM x -—M_g‘fl. This axiom follows since algebraic Gromov-Witten

classes are defined using the virtual fundamental class [M, (X, 8)]"'"t.
We should emphasize that the intuitive explanations given for the above axioms

are not proofs. However, in the symplectic case, some of these “arguments” are

fairly close to the actual proofs (with the exception of the Composition Law—see

[RT1, RT2|). On the other hand, the proofs in the algebraic case [LTi2, Behrend]

are more sophisticated. As explained in {[BM], the above axioms reduce to five

essential compatibilities between the virtual fundamental classes [My (X, 8)]¥*.

7.3.2. Equivalence of the Various Definitions. In Sections 7.1 and 7.2 we

saw various definitions of Gromov-Witten classes and invariants. In the algebraic

case, we have two definitions since [LTi2] and [BF, Behrend| give slightly different

constructions of the virtual fundamental class. As we noted in Section 7.1.4, these

definitions should be equivalent, though the proof has not been written down.

In the symplectic case, the invariants defined in [LTi3] extend those of [RT2],

but we also have the symplectic invariants given in [Siebertl]. Again, one expects

these definitions to give the same invariants, but this has not yet been proved.

What’s really nice is that there has been substantial progress in proving that

algebraic and symplectic invariants agree. In particular, the algebraic and symplec-

tic invariants defined in [LTi2] and in [LTi3] are shown to coincide in [LTi4|, and

the algebraic and symplectic invariants defined in [Behrend] and [Siebert1] are

shown to coincide in [Siebert2]. Hence it seems likely that all of these definitions

agree on their common domain of definition.

There is one situation where this is known to happen. Let (I, )" de-

note the Gromov-Witten invariant defined by either the algebraic construction in

[LTi2] or the symplectic construction in [LTi3] (which generalizes [RT2]). Also,

let {Iy,»,3)%"° denote the Gromov-Witten invariant defined by either the algebraic

construction in [Behrend] (which uses the relative virtual fundamental class in

[BF}) or the symplectic construction in [Siebertl1]. Then the following is true.

THEOREM 7.3.1. Let X be a smooth projective variety acted on transitively by

a linear algebraic group. Pick classes ay,... ,an € H*(X,Q). Then

(Io‘nvg)LRT(al, N ,Oln) = (I(),nyg)BFs(Oll, ey Oln).

In addition, these invariants count the number of pointed maps f : P* — X satis-

fying (7.2).

PROOF. We may as well use the respective algebraic definitions of ({y » g

and (Io . g)®° for checking equality. Then Lemma 13 of [FP| shows that the

counting definition gives the algebraic Gromov-Witten invariant. In particular, the

virtual fundamental class coincides with the fundamental class (using any algebraic

definition of the virtual fundamental class). The group action is used to ensure that

we can find cycles Z; dual to o; which are in general position.

On the symplectic side, using the transitive group action, Li and Tian show in

[LTi1] that one gets the same number using the given complex structure Jo of X and

v =0. A similar comment applies to the symplectic definition of {Siebertl]. O

)LRT

Theorem 7.3.1 asserts that the invariants are equal, and its proof shows that

they really count the number of rational curves of the appropriate type. As we

will see in the next section, the enumerative significance of general Gromov-Witten

invariants is in general harder to understand.



196 7. GROMOV-WITTEN INVARIANTS

Finally, we should mention that in addition to the algebraic and symplectic

Gromov-Witten invariants discussed so far, there are also related invariants which

are of interest. In Chapters 9 and 10, we will encounter two of these, equivari-

ant Gromov- Witten invariants and gravitational correlators. These play a crucial

role in the work of Givental on mirror symmetry, as well as in related ideas and

developments.

7.4. Computing Gromov-Witten Invariants, I

Now that we know the definition and properties of Gromov-Witten classes and

invariants, it is time to compute some examples. In this section, we will discuss the

Gromov-Witten invariants (Ig , g)(a1,... ,an) for a variety of different spaces X.

Most of our examples will have genus ¢ = 0 or 1. Given the naive interpretation

(7.2) of Gromov-Witten invariants, we will also ask about their enumerative signif-

icance. As we will discover, these numbers sometimes have a complicated relation

to enumerative geometry.

In Chapter 8, we will see that quantum cohomology is built out of the invariants

{Io,n,5)- Chapter 8 will also introduce the Gromou- Witten potential, which has some

very interesting properties. In particular, it will shed some light on some of the

examples presented here. Hence this section is really the first of two sections dealing

with the computation and enumerative significance of Gromov-Witten invariants.

7.4.1. Tree-Level Gromov-Witten Classes. When g = 0, the classes Iy, 5

are a tree-level system of Gromov-Wiiten classes. The term “tree-level” refers to

the fact that stable curves of genus zero are trees of P!s (corresponding to tree-

like Feynman diagrams in quantum field theory, where the terminology originated).

Since we always require that n + 2¢g > 3, tree-level classes are defined for n > 3.

The moduli space My, is an orbifold of dimension n — 3, and its cohomology is

well-understood. This enables us to say a lot about the Iy, 5. In particular, we

have the following Reconstruction Theorem of Kontsevich and Manin.

THEOREM 7.4.1. Let X be a smooth projective variety with the property that

H*(X,Q) is generated by H*(X,Q). Also assume that we know the Gromov- Witten

invariants (Io3g)(01, a9, a3) for all B € Ha(X,Z) satisfying —fflwx < dimX +

1 and degas = 2. Then we can determine all tree-level Gromov- Witten classes

Iynplar,... ,a,) for all 3 € Ho (X, Z).

PROOF. We first show that all tree-level classes can be reconstructed from

Gromov-Witten invariants. We will use induction on n, and we can assume n > 3

since Mo is a point.

To describe the cohomology of My ., notice that the image of the map ¢ in

(7.36) is a divisor in My,. Furthermore, by permuting the points p,,... ,ps, We

get other versions of the map ¢, which give other divisors in My.,. By [Keell,

the cohomology of H* (']l—/I_O‘n, Q) is generated by the classes of these divisors. Using

this, [KoM1] shows that a cohomology class in H* (M., Q) not of top degree is

uniquely determined by its intersections with these divisors.

Now let Iy, g(a1,...,a,) be one of our classes. If it lies in the top degree,

it is (Ig.n.g)(01,...,a,) times the class of a point. If it doesn’t, then it is deter-

mined by its intersections with the divisors described above. However, when we

intersect with the divisor given by the image of ¢, we get ¢*lo,.a(a1,... ,a,). By

the Splitting Axiom, this is built out of Gromov-Witten classes which have smaller
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n. Furthermore, the Equivariance Axiom shows that the same is true for the in-

tersections with the other divisors. It follows that lo,5.4 (a1,--- , @n) is determined
by Gromov-Witten classes with smaller n. By induction, these are determined by

Gromov-Witten invariants, and we are done.

The next step is to study the invariants (ly »,g). The idea is that certain linear

relations among the divisors mentioned above give quadratic relations among the

{ Ionp) for different n and 3. These relations enable one to express any Gromov-

Witten invariant in terms of those listed in the statement of the theorem. In

particular, the inequality in the statement of the theorem is easy to explain. If the

o; are homogeneous classes, then (lo3,4)(01,az, 3) = 0 unless

deg(a;) = 2dim{Mo (X, 8)]"* =2( — [ wx +dim X ).Zeg(a) (Mo (X,8)] ( /flw{—k im )

Combining this with the obvious inequality ¥ deg(a;) < 2dim X +2 (still assuming

deg az = 2) leads to the desired inequality. The full details of the argument can be

found in [KoM1]. Below, we indicate how this works when X = P2 a

7.4.2. Genus Zero Invariants of the Projective Plane. We will compute

the tree-level Gromov-Witten invariants for the plane P2. Here, 8 = d[¢], where

¢ c P2 is a line and d > 0. To simplify notation, we write (g nq) instead of

(Inn,g). We first compute (Io,3,1)(lpt], [pt], [£]). This is easy! Given a map f:

(P, p1,p2,ps) — P such that f(p1) and f(p2) are preassigned points and f(p3) € ¢,

we get the following picture:

Since the degree is 1, the image of f is the line determined by the two points. Also,

since f(p1) and f(ps) are fixed and f(p3) is determined by the intersection £N f(BL),

we get a unigue map. It is then immediate to see that this is the only genus 0 stable

map f : (C, p1, P2, p3) — P? with arbitrary source curve C satisfying the required

conditions on the p;. Furthermore, it is straightforward to see that this stable map

occurs with multiplicity 1 in the definition (7.9) of the Gromov-Witten invariant.

;"‘figfiu Thus

(fo3.1)([pt], [pt], [4]) = 1.

Furthermore, according to Theorem 7.4.1, this is the only invariant we need to com-

pute, since one easily checks that (Iy3.1)([pt], [pt], {¢]) is the only Gromov-Witten

invariant satisfying the conditions of the theorem.

So what are the other invariants? By the Point Mapping Axiom, we can assume

d > 1. To compute {Iona)(21,.-. ,an), we can assume each o; is [P?], {¢] or [pt].

Also, by (7.33), we know that

] (7.37) S dega; =6d—2+2n.

For n = 0,1 this equation has no solutions, and for n = 2, 3, one can check that

(up to permutation), the only Gromov-Witten invariants are

(To2.1)([pt], [pt]) = (To 3,1 )([pt], {pt], (]} = 1.
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The first equality is by the Divisor Axiom or, more simply, {To2,1)(pt], lpt]) = 1

since there is a unique line through two points in P2

If n > 4, note that (Iona)(01,. .. ,0n) =0 if some a; = [P?] by the Fundamen-

tal Class Axiom. Similarly, if n > 4 and o, = [£], then the Divisor Axiom shows

that

<10,fl-,d)(a11 cevy Gn—d, [[D = d<I0,n—1,d>(ala s 10‘n—1)7

and we can proceed inductively. The only invariants remaining to compute are the

{(TIom,a)([pt), - ,[pt]). Since deg(pt] =4, (7.37) implies that n = 3d — 1. Thus we

want to compute

(7.38) Ng = (Ioa-1,a)([ptl, - - - , [pt])

3d-1 times

for d > 1. Because P? has a transitive linear group action, Theorem 7.3.1 shows

that N, gives the number of rational curves of degree din P2 passing through 3d—1

points in general position.

The numbers N can alternatively be defined as the degree of the Severi va~

riety of degree d rational plane curves. However, traditional methods in algebraic

geometry had previously only yielded the first few numbers. The new feature here

is that by interpreting Ny as a Gromov-Witten invariant, one gets the recursion

formula

_ 2 2f 3d—4 s, (3d—4
(7.39) Ny = Y NgNg (d1d2(3d1_2 ~did(gy 1))

d=d; +d2
dy.d2>0

Since N1 = (Ip.2,1){[pt], [pt]) = 1, this relation implies

Ny =1, N3 =12, N, =620, Ns = 87304, ...

This provides an illustration of how stable maps are often easier to work with than

embedded curves, even for answering classical questions about embedded curves!

Our proof of (7.39) will use the strategy outlined in the proof of Theorem 7.4.1.

We start with the Gromov-Witten class

(7.40) € = Ioaaa(lpt, - - ,lpt], [, [8) € H*(Mo.aa, Q)
e e

3d-2 times

By the Degree Axiom, this is a class of degree 2 dim Mo 34— 2, so0 that its intersection

with a divisor is a well-defined rational number.

Fortunately, M 34 has many interesting divisors. We will index the 3d marked

points on a stable curve in Mo 3q by theset T={1,...,3d—4,p,q,7, s}. In terms

of (7.40), this means & = -+ = Q3a-4 = Op = @ = [pt] and @y = &, = [4]. Now

partition T into disjoint sets A and B. As in the Splitting Axiom, this gives a

natural map

a8 Mojaj+1 X Mo g1+1 — Mosa

The image of @4 g is a divisor in ‘Mo .3q4. Furthermore, we have the fundamental
linear equivalence of divisors:

(7.41) ST Im(pas) ~ Y Imlpas)
r.s€A pqeB p,r€A q,s€B
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This follows because of the natural map ¢ : T/fg,gd — M 4 which forgets the first
3d — 4 points and contracts non-stable components. Under this map, the left hand

side of (7.41) is the fiber of ¢ over the stable curve:

b »

in Mo4. In a similar way, the right hand side of (7.41) is the fiber of ¢ over the

stable curve which has p,r on one component and g, s on the other. The cross-

ratio shows that Mj 4 ~ P! — {0,1, co}, and the above stable curve is one of three

boundary points of My, ~ P!. Since the boundary points are clearly linearly
equivalent, the same is true for the fibers of ¢ over these points, and (7.41) follows.

The next step of the proof is to intersect each side of (7.41) with the Gromov-

Witten class & defined in (7.40). Let’s start with the left hand side of (7.41). The

intersection of { with Im(yp 4, g) corresponds to the pullback ¢% g€, which we can

compute using the Splitting Axiom. In Section 7.3, we stated the Splitting Axiom

for one particular partition of the index set Z, but by the Equivariance Axiom, it

applies to all partitions. Thus, since the class of the diagonal in P? x P? is

A=pt]® [P + [ ® ] + [P ® [pt],

the Splitting Axiom and the Equivariance Axiom show that the intersection number

£ -Im(pa,p) is given by the formula

Taminsts ({0,418 1) (@48 € A, [pH]) - (Jo8141.00)(00:1 € B, [P2))
(7.42) + (Tojajsr,a (0,0 € A, 14]) - (JoBl41,da) (7 € B, [f])

+ (To,a)+1,4, (0,0 € A, [P?]) - (I, 151 41,0, ) (s, € B, [Pt]))

since ¢} g€ is a top degree class.

Although this formula looks complicated, most terms vanish because of the

degree condition for Gromov-Witten invariants. For instance, consider the invariant

(o, aj+1,4, (i, % € A, 7}, where 7 is one of [pt], [¢], [P?]. By our condition on 4, we

have o = a; = {{] and o; = [pt] otherwise. Hence (7.33) implies that the invariant

vanishes unless

|A| = 3dy +2 — 1degn.

Since |A| is fixed, this equation determines d; and deg~y. Hence at most one term

in (7.42) is nonzero.

Now assume that |A4[,|B| > 3. Then the Fundamental Class Axiom implies

that (Ig aj41,.) (@i € A, [P?]) = (Lo p41,45)(0i, % € B,[P?]) = 0. Hence the
nonvanishing term must have v = [¢], which in turn implies || = 3d; + 1 and

|B} = 3dy — 1. Then (7.42) reduces to

(IO,3d1+2,d1)({pt]1 ey {pt]aIEL [fl! [E]) : (10,3d2,d2)(Lpt]i ey {ptlv [E])
3d;—1 times 3d3—1 times
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By the Divisor Axiom and the definition of Ny, this reduces to d3d2 Ny, Ny,. Thus,

we have :

(7.43) € -Im(panp)= d3d, N4, Ny, when |A] = 3d; + 1.

Note also that d; > 0, d2 > 1 in this case.

On the other hand, if |B| = 2, we leave it to the reader to show that the

nonvanishing term of (7.42) is

(To,3a~1,a-1)({ptl; - - -, {pt], (4], €], [€]) - (Zo,3,1) ([pt], [pt], [€]).
N s

3d—4 times

Using the Divisor Axiom, this reduces to (d — 1)3N4_; Ny, which gives (7.43) with

dy=d—1and dy = 1.

Finally, if |A| = 2, the nonvanishing term is

(To,3.0)([€], 18], [P?)) - (Zo,3a-1,a) (P, - - - , [p2], [mt])-
Nt e’

3d—-2 times

The first term in this product is 1 by the Point Mapping Axiom, and the second is

N4. Thus, we get

(7.44) £- Im(ga,LB) = Ng when |A| =2, d1 =0, dy = d.

From here, it is easy to see that the intersection of the class £ with the left

hand side of (7.41) is

3d-4Ng + Y NyNydid (3d1 _ 1).
d=d) +d2
dy,d2>0

To see why, consider partitions 4, B of the index set T = {1,... ,3d — 4,p,q,r, s}

with r,s € A and p,q € B. As we vary over A, B, (7.44) occurs exactly once, when

A = {r,s}, and when d = d; + ds with dy,d2 > 0, (7.43) occurs exactly (33:1__41

times since |A| = 3d; + 1 means that besides r and s, A has 3d; — 1 elements chosen

from the first 3d — 4 elements of Z.

To complete the proof of (7.39), one shows by a similar argument that the

intersection of £ with the right hand side of (7.41) is

3d—-4
S NaNudd(g 4).

d=d;+d2
dsy ,d2>0

We leave the details to the reader—this is a good exercise in working with the ax-

ioms. Given the linear equivalence (7.41), we know that £ has the same intersection

with each side, and the recursion relation (7.39) follows immediately.

In the argument just presented (due to Kontsevich), notice that intersecting

(7.41) with £ gave Ny on one side but not the other. This was crucial for the proof of

(7.39), but happens much more generally. In fact, the proof of the Reconstruction

Theorem proceeds similarly, by intersecting (7.41) with various Gromov-Witten

classes to show how general tree-level invariants can be expressed in terms of the

special ones listed in the statement of Theorem 7.4.1.

There are other ways to prove the recursion relation for Ny. For example, in

Chapter 8, we will see how the machinery of quantum cohomology automates and

simplifies the argument given above. In particular, the original rigorous proof [RT1]

used the symplectic formulation of quantum cohomology. One can also give a more
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geometric version of the argument which dispenses with the formality of Gromov-

Witten classes but follows the spirit of what we did above (see [FP]). Alternatively,
one can give a completely self-contained argument using other algebro-geometric

methods (see [Ranl, CH1, CH2, Vakil3|). Generalizations of the numbers Ny,

are discussed in [DI, EK1].

Finally, we should mention that these methods give nice answers in other vari-

eties with transitive linear group actions. For example, tree-level Gromov-Witten

invariants for P and a smooth quadric threefold are computed in [FP)], and the
case of PTM is discussed in {Vakil3, GPa]. Other examples may be found in [DI].

7.4.3. Genus Zero Invariants of Calabi-Yau Threefolds. We will discuss

tree-level Gromov-Witten invariants for Calabi-Yau threefolds. Here, V' will denote

a smooth Calabi-Yau threefold. If 3 € Hz(V,Z) is nonzero, we put Nz = (Iy0.5).

PROPOSITION 7.4.2. The genus 0 Gromov- Witten invariants of V are com-

pletely determined by the Ng and the intersection numbers on V.

PROOF. We may restrict our attention to those Gromov-Witten invariants

{Io;ng){@1,... ,an) for which the a; are homogeneous. By the Degree Axiom,

we can assume that ), dega; = 2n. Since either «; is the fundamental class or

deg a; > 2, there are two cases to consider.

o One of the «; is the fundamental class, or

e dega; = 2 for all i.

In the first case, the Fundamental Class Axiom, Equivariance Axiom, and Point

Mapping Axiom say that the Gromov-Witten invariant is an intersection number

or 0. In the second case, the Divisor Axiom gives

{Ion,g){0, ..., 0m) =Ng/a1~--/ozn
B8 a8

if 8 # 0, while if 3 = 0, (7.35) implies that (Iy »0) =0 for n % 3 and that

Io30)(0n, @2, 3) = / o1 UagUas.
v

This completes the proof of the proposition. d

Example 7.4.3.1. Let V C P* be a generic quintic threefold and pick aline £ C V

(there are 2875 of them). We write H € H?(V,Z) for the hyperplane class. Then

the only nonzero Gromov-Witten invariants (up to permutation) are

<IO,3‘0)(a11a21 1) and <10,n,d)(H7"' 7H)7

where for simplicity, we write (I n ) instead of (I, 4p) in the above. Here,

n,d > 0 are arbitrary.

By the Fundamental Class Axiom, (Ipzo)(a1,02,1) = [, 1 Uag. Putting

Ny = (Ig‘()yd>, we get (I()‘n.d)(H,. .. ,H) = d"N, by the Divisor Axiom if d > 0.

Finally, (Io,30)(H, H,H) = fv H? = 5 by the Point Mapping Axiom.

For the quintic threefold V', the above example reduces finding Gromov-Witten

invariants to the problem of determining Ny = (Iy 9,4}, which by Example 7.1.6.1

is given by

Ng ={lppa) = /_ csar1(Va)-
My o(P4,d)
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The desire, of course, is to compute Ny in terms of rational curves on V. This is

still an open problem, due to the Clemens conjecture and the existence of multiple

covers. We will discuss each of these and explain their relation to the problem of

computing Ng.

As discussed in Chapter 2, one of the striking aspects of mirror symmetry is

the predictions it makes concerning rational curves on the quintic threefold V. The

difficulty is that we don’t know in general if V has finitely many rational curves of

a given degree. This leads to the Clemens conjecture, which goes as follows.

CONJECTURE 7.4.3. Let V C P* be a generic quintic threefold. Then for each

degree d > 1, we have:

(i) There are only finitely many irreducible rational curves C Cc V of degree d.

(i) These curves, as we vary over all degrees, are disjoint from each other.

(iii) If f : P! — C is the normalization of an irreducible rational curve ccv,

then the normal bundle Ny is isomorphic to Op:(—1) @ Op: (—1). '

Note that it is not claimed that the rational curves are smooth. That assertion

is false, since 6-nodal rational plane quintic curves C C V exist on a generic V

[Vainsencher|. It is known that there are finitely many rational curves on V

of degree less than or equal to 9. Also, as predicted by the conjecture, they are

all disjoint and are all are nonsingular with the exception of the plane quintic

curves C mentioned above. Furthermore, the smooth ones have normal bundle

Opi(—1) @ Op:1(—1). All of this is proved in [Katz2, JK1]. In Section 9.2.3, we

will show that the singular quintic curves in V also have the predicted normal

bundle, so that Conjecture 7.4.3 is true for d < 9.

But even if the Clemens conjecture were true for all d, we would still have the

problem of multiple covers. Suppose that we have an irreducible rational curve

C C V of degree %, with normalization map f : P! — V. Composing f with an

arbitrary degree k map g : P! — P!, we get a stable map fog: P! — V with

(f 0 g)u[P'] = k2 = d. Since g varies in a family, we get a family of stable maps

which is positive dimensional for & > 1. This shows that My 0(V,d) has positive

dimension, even though the expected dimension (7.7) is 0 since V' is a Calabi-Yau

threefold.

We need to determine the contribution of the above multiple cover family to

the virtual fundamental class [Mg o(V, d)]V'"* and hence to Ng. In Section 7.4.4, we

will see that when C C V is a smooth rational curve of degree % and normal bundle

N =~ Op1(—1) @ Op1(—1), the degree k multiple covers contribute k=3 to Ng.

For the moment, let’s be naive and assume that for all d, V has only finitely

many rational curves of degree d, all of which are smooth, disjoint and have normal

bundle Op1 (—1)&® Op: {—1). Then, if ny is the total number of such curves of degree

d, the above discussion suggests that

— -3
(7.45) Ng=3" ngkTM.

kld

since every rational curve of degree % contributes k=3 to Ng. Using the Divisor

Axiom, (7.45) implies

d\3

=d3 =d3Ny; = = ’
(7.46) (Iops.a)(H, H.Hy=d{Ip0q) =d Nd—g_:‘dn%(E) _%:,nkk
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vfor d > 1. This allows us to make contact with the formulas of Chapter 2 as follows.
Recall from (2.1) that the A-model correlation function is given by

> d

(7.47) (H, H,H) =5+ 3_nad* 11—
d=1

Since the right hand side of this equation can be written as

5+ i (Z nkka)qd,
d=1 k|d

the above formula for (Iy3,4)(H, H, H) tells us that

xR

(7.48) (H,H,Hy="> (Io34)(H,H,H)¢*
d=1

since {lo3.0)(H, H, H) = 5 by Example 7.4.3.1.

This is an important development, for although most of the above equations de-

pend on various assumptions, the formula (7.48) for (H, H, H) is rigorously defined.

This means that we finally have a firm understanding of the A-model correlation

function of the quintic threefold. Furthermore, when Chapter 11 proves the won-

derful formulas for (H, H, H) given in (2.26), it will use this rigorous version of

(H,H,H).

We can draw two conclusions from this discussion. The first is that the Gromov-

Witten invariants Ny = ({g0,4) are precisely what we need in order to formulate

mirror symmetry for the quintic threefold. However, the second conclusion is that

we still have a lot of work to do, for the problem remains of relating Ny to rational

curves on V without all of the assumptions made above. Hence we need to study

what the formula (7.45) really means. As we will soon see, the answer is more

complicated than one might expect.

7.4.4. Instanton Numbers of Calabi-Yau Threefolds. In order to better

understand the relation between Ny and rational curves on the quintic threefold,

our strategy will be as follows. We will define instanton numbers ny such that

(7.45) is automatically true, and then we will tackle the more subtle problem of

relating the ny to the actual number of degree d rational curves on V.

We will work in the following general situation. Let V be a smooth Calabi-Yau

threefold, and let 3 € H>(V, Z) be nonzero. Then it is easy to see that there exist

unique rational numbers ng, called instanton numbers, such that

(7.49) Ng=({lopg) = > nykTM>.
B=k~y

The sum is over all k£ > 0 in Z and v in Ho(V,Z) with 3 = k. The existence and

uniqueness of the ng is proved as follows. If 8 is indivisible in Hz(V, Z), we simply

put ng = (Iygg). Otherwise, ng is inductively defined using (7.49). This proves

existence, and uniqueness follows easily.

Given this definition of the instanton number ng, our first task is to motivate

the factor of k=3 in (7.49). At a purely formal level, this can be explained because it

gives nice formulas. For example, suppose that 3 € Hz(V,Z) is a nonzero effective

class and a;, ay, a3 € H%(X,C). Then, as a consequence of (7.49) and the Divisor



204 7. GROMOV-WITTEN INVARIANTS

Axiom, we have

{Io,3,8) (a1, a2, ar3) =Na/a1/a2/03
B8 6 8

(7.50) = ( > mk“”‘) /fl o /fl as /fl as
B=k~y

=Zn.,-/a1/a2/a3,
¥ ¥ vB=ky

where the last equality follows because kTM [;u = [ u when 8 = k7. Note how

this generalizes (7.46).

In Chapter 8, we will formalize the mathematical notion of the A-model cor-

relation functions. For a Calabi-Yau threefold V, the correlation function will be

given by

(o, 00,03) = > _(loga)(ar, a2, 03) ¢°,
B

where a; € H*(V,C) and ¢° = TM Js¢ for a complexified K3hler class w. Using
the Point Mapping Axiom and (7.50), this becomes

(7.51) ( ) / Uag+ S ¢. oy, g, 03) = oy Uag Uag + ng——-/cvq/ozg/ag
v 1-¢fJg " Jg " sB#0

by manipulations similar to the derivation of (7.48). This formula plays an impor-

tant role in mirror symmetry and has a close relation to quantum cohomology. We

will discuss (7.51) in more detail in Section 8.1.2.

There are also deeper reasons for the factor of k=3 in (7.49). This was mentioned

briefly in Section 7.4.3, and we now give a fuller treatment. Suppose C C V is

a smooth rational curve with normal bundle N =~ Om(~1) & Op:(—1), and set

v = [C] € Hy(V,Z). We want to compute the contribution of degree k multiple

covers of C to the Gromov-Witten invariant Ng = {Io,0,3), where § = k~.

Fix an isomorphism f : P! ~ C. Then a degree k cover g : P! — P! gives

a stable map f og € MgofV,8). Since g naturally lies in My o(P?, k), we get

an embedding 'M_O_O(Pl, k) — Mo,o(V, B3). Denote the image of this embedding by

Mi.c(V). We claim that My (V) is in fact a connected component of Mo (V, §).

To see this, consider an arbitrary family f : C — V of genus 0 stable maps

in the homology class 3 over a connected parameter space S, such that the stable

map over 0 € S is in My (V). We let # : C — S be the structure morphism.

QOur assumption on the normal bundle N of C implies the existence of an analytic

contraction map p : V — V which contracts C to a point p and is an isomorphism

off C and p. Consider the composition f = po f and note that f(=~(0)) is the point

p. Tt follows easily that f(xr~1(s)) is a point for all s € § by [CKM, Lemma 1.5}
Since f.[x~!(s)] = B, it follows that this point must be p as well. This establishes

our claim.

The virtual fundamental class Mg o(V, 8)*'"* is 0-dimensional, and by definition,

{{0.0.3) is its degree. The curve C' contributes to {Ip.0.g) as follows.

THEOREM 7.4.4. With the above assumptions on C, let 8 = kv = k[C] and let

Mp.c(V) be the component of HQ.(](‘/, B) containing all degree k multiple covers of
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C. Then the contribution to Ng = (Io.0.5) of the portion of the virtual fundamental

class [Mo.o(V, B)]"'* supported on Mic(V) is k3.

PrOOF. Historically, this result was first stated as the assertion that the con-

tribution of degree k multiple covers of C to {Toz.g) (a1, 2, 03) is

. (7.52) /7011[/012[7013

when o; € H2(V,C). The equivalence of this assertion and Theorem 7.4.4 follows

from the derivation of (7.50). In [CAGP], this assertion was implicitly conjectured

in the way the three-point function (7.47) was written, and Aspinwall and Morrison

sketched a proof in [AM1]. Their argument must now be regarded as incomplete,

since no direct comparison was made to any of the later definitions of the Gromov-

Witten invariant.

We will now sketch a proof due to Voisin [Voisin2]. As in Section 7.2, we

deform the complex structure of V to a generic almost complex structure J and

add a generic inhomogeneous term v. We consider perturbed J-holomorphic maps

g: P! — V with g.[P!] = 8. In the notation of Section 7.2, these maps form the

space M(P', J,v, 3). If J and v are sufficiently small and U is a sufficiently small

neighborhood of C in V, then the subset MY(P!, J, v, 8) consisting of maps whose

image lies in U is a component (not necessarily connected) of M(P!, J, v, 8). Fixing

three points p1, p2, p3 € P!, we get the evaluation map

Tyt MU(Plv']v VHB) — V3

which takes g to (g(p1), 9(p2), 9(p3)). The image of this map is 6-dimensional, has

a natural orientation, and can be compactified with a boundary of dimension 4 or

less. Hence the image of 7 gives a well-defined homology class in H%(V3,Z). The

main result of [Voisin2] is that since C is rigidly embedded, this class is precisely

the homology class of C'x C x C.

Assuming this result, let Ty, '3, '3 be Poincaré duals of a1, o, a3 in general

position. Since the number of points in which C' x C x C intersects I'; x 'y x I’ is

given by (7.52) (remember that [C] = ), the same is true for T'; xI'y xI"3 intersected

with the image of m;. Then the counting definition of the symplectic Gromov-

Witten invariant shows that we get a contribution of (7.52) to (I3 g) (@1, @2, a3).

More recent proofs of Theorem 7.4.4 apply to Ng, showing that degree k covers

of C contribute k3. In Section 9.2.2, we will describe Kontsevich’s approach

to proving this. We will do the case d = 2 in detail but refer to [Manin2| for

the general case. However, Section 9.2.2 will also present a simplified argument

due to Pandharipande. Other proofs of this theorem can be found in [LLY] and

[Gathmann2]. We will discuss the [LLY] proof in Section 11.1. o

We next discuss two examples which illustrate the sometimes subtle enumera-

tive meaning of the instanton numbers ng. Even for the quintic threefold, things

are not as simple as one would hope.

Example 7.4.4.1. Let V C P* be a generic quintic threefold. We will write the

instanton numbers ng as ny, where 8 = d[¢] and £ C V is a line. These are the

numbers which appear in (7.45) and (7.47) and which are computed by mirror

symmetry in the formulas given in Chapter 2.
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For d < 9, the relation between n, and degree d rational curves is especially

nice:

(7.53) If d < 9, then ng = number of rational curves of degree d in V.

This follows from Theorem 7.4.4 since the Clemens conjecture is true for d < 9.

Let’s explain why this is true in more detail. Since Conjecture 7.4.3 holds when

d < 9, the right hand side of (7.53) is finite. Let nj; denote the number of rational

curves of degree d lying in V. As we noted in Section 7.4.3, d < 9 implies that all

rational curves of degree d in V are smooth (except for d = 5) with normal bundle

Op: (~1) 8 Op: (-1) [JK].]

To prove (7.53), first suppose that d # 5 and let f: C' — V be a stable

map in My o(V,d). Since the curves are disjoint as we vary over all degrees < 9,

C = f(C’) must be a smooth curve of degree %, where k is the degree of f : ' — C.

In the notation of Theorem 7.4.4, f is in the component My,c(V') of Mop(V,d).

This shows that Mgo(V,d) is the disjoint union of these components, and then

Theorem 7.4.4 implies

Ny = Z n'% k3.
k|d

Given the uniqueness of the ng, n); = ng follows, and (7.53) is proved for d # 5.

Next suppose that d = 5. By [Vainsencher], V contains 17,601,000 6-nodal

rational curve of degree 5. Now let f : C' — V be a stable map in M o(V,5). In

this case, f(C’) can be either a line, a smooth curve of degree 5, or 2 6-nodal rational

curve of degree 5. This decomposes Mg o(V,5) into three types of corresponding

components, and Theorem 7.4.4 applies to the first two types. It remains to consider

what happens when f : ¢’ — C, where C is a 6-nodal rational curve in V. One

easily sees that f is the normalization map f : P! — C. Furthermore, we will show

in Section 9.2.2 that f has normal bundle N; = Op:(—1) @ Opi (~1). This implies

that the component of Mg o(V,5) corresponding to C'is a smooth point and that its

contribution to the virtual fundamental class is 1, consistent with Theorem 7.4.4.

Then the argument of the previous paragraph implies nf = ns, completing the

proof of (7.53).

Based on (7.53), it is natural to hope that proving the Clemens conjecture for

higher d would automatically imply that the corresponding instanton number is

the number of rational curves of degree d on the quintic threefold. For a long time,

many people believed this, but a recent observation of R. Pandharipande shows

that this hope is entirely too naive. In fact, for d = 10—the first open case of

Conjecture 7.4.3—we have the following conjectural formula for n1g:

(7.54) If the Clemens conjecture is true for all d < 10, then

n1o = 6 x 17,601,000 + number of rational curves of degree 10 in V.

We will prove this carefully in Section 9.2.3. The key point is that double covers of

the 17,601,000 6-nodal degree 5 curves in V cause complications. More precisely,

we will show in Section 9.2.3 that each such curve C contributes 6% to Njg rather

than 1. As we will see, this is because double covers f : C' — C come in two

flavors: those for which f factors through the normalization map, and those for

which C” is reducible and f is a local isomorphism in a neighborhood of one of the

6 nodes.
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Assuming Conjecture 7.4.3 for ¢ < 10 and that all C as above contribute 6% to
Nyo, we can derive (7.34) as follows. First, by definition, we have

Ny =mn, 10_3 -+ 7125_3 + Tl52—3 <+ Nyg.

Then, using ng = n; for d < 9 and the techniques used to prove (7.53), we obtain

Nig = 111072 + 13572 + (ns — 17,601, 600)272 + 17, 601,000 - 61 +nlg,

where nyg is the number of rational curves of degree 10. Then (7.54) follows easily
by subtracting these two equations.

Once we prove the Mirror Theorem for the quintic threefold V in Chapter 11, we

will be able to compute as many of the instanton numbers ng as desired. But in light
of the previous example, this still leaves us far from knowing the number of rational
curves of degree d on V. We first have the nontrivial problem of proving the Clemens
conjecture for ¢ > 10 (see [JK2] for some preliminary steps for 10 < d < 24), and
then we have the difficulty that not all of these curves are smooth. As we saw above,
multiple covers of such curves do not always contribute according to Theorem 7.4.4.

In fact, it is possible that this problem arises whenever d > 10 is a multiple of 5.
So even though the formulas of Chapter 2 have been completely proved, the quintic

threefold still has many unsolved problems to offer.

We next give an example which has even more subtle instanton numbers. Here,
we will see that the virtual fundamental class can enter in other ways besides

multiple covers.

Example 7.4.4.2. Let ¥ ¢ P(1,1,1,6,9) be the hypersurface of degree 18 defined
by

zp® + 218+ 238 +z3 + 75 =0.

One can show that ¥ has a unique singular point at (0,0,0,—1,1), and resolving
this singularity gives a Calabi-Yau threefold V. The exceptional locus is a divisor
E ~ P? lying in V. This is what happens generically, and P? C V implies that V
has infinitely many rational curves of all degrees.

In order to compute Gromov-Witten invariants, we need to describe some
classes on V. Following [CFKM], let L and H be the divisor classes on V de-
fined by equations of degrees 1 and 3 respectively. Because of the blow-up, one has
3L+ E € |H|, and one can show that L and H span H %(V,Z) and generate the
Kéhler cone. Furthermore, £ = LNH isalinein E ~ P?, and h = LyNL; is an ellip-
tic curve, where L; € |L| are generic. Then £ and h generate H*(V,Z) ~ H,(V,Z).

In this situation, let (I3, s) denote {Jo,3,[rh+se)- Then (7.50) becomes

(Tosrsi(on,az,03) = 3 n(%,%)/ 011/ 012/ as,
ghegt Jphept Jpntpk|ged(r,3)

where a1, as, a3 € H*(V,C) and n(r, s) is the instanton number for rational curves
C CV with C ~ rh + sé.

To see what kinds of numbers we get here, consider

(Io,3,02){L, L, L) = n(0,1) + n(0, 2)23.

By [CFKM)|, mirror symmetry predicts that n(0,1) = 3 and n(0, 2) = —6, so that
<Io‘3,0,2)(L, L, L) = —45. These numbers also follow from Theorem 11.2.16. Hence
Wwe have a negative Gromov-Witten invariant.
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These numbers can be explained as follows. First, C ~ £ implies that C is a

line in P2. The moduli space of such C’s is the dual P?. To calculate how this
contributes to n(0,1), recall our discussion of the virtual fundamental class from

Section 7.1.3. In the situation of Proposition 7.1.8, the construction reduces to

finding the degree of the Euler class (or top Chern class) of the obstruction bundle.

Furthermore, since we are working with embedded curves, the obstruction space of

3 line C C P? is HY(N), where N is the normal bundle of C. However, H'(N) is

dual to H(N) via the pairing

HY(N)® HY(N) — H'(A*N) ~ HY(T3) =C,

so the obstruction bundle is globally T} qu; = Tp:- 1t follows that the instanton

number is

n(0,1) = /P & (Tga) = (1)) x(B?) = 3.

Similarly, C ~ 2¢ implies that C is a conic in P2. The moduli space of conics is PS5,
Since this is smooth, calculating as above gives

n(0,2) = -/|P5 cs(Tps) = (—l)dim(w)x(]{”s) = —86.

This is the argument given in [CFKM)], but it is not complete, since the moduli

space of stable maps f : C — V with f.{C] = £ is not the same as the Hilbert

scheme of conics we are working with here.

The computation of n(0,1) can also be done in the symplectic setting—see

[Ruanl]. The fact that our naive calculation of n(0,2) produces a correct number

hints that there may be a generalization of the multiple cover formula for non-

isolated curves which allows for a broader geometric description of the ng in terms

of immersed curves rather than in terms of stable maps. Conjecture 7.4.5 below

deals with some of the subtleties involved. Further details and calculations for the

Calabi-Yau threefold V studied here may be found in [CFKM].

We will end our discussion of instanton numbers with a conjectural approach

to a symplectic definition of ng. We fix a symplectic structure on V (e.g., the

one defined by a Kahler form). Recall from Section 7.2.2 that M(P', J, 8) is the

space of simple J-holomorphic maps f : P! — V, where J is a generic almost

complex structure tamed by the symplectic form of V. By {MS, Chap. 2|, each

f € M(PL, J,33) is generically immersed in the sense that P! has a dense open set

U where df is injective and f~'(f(u)) = {u} for all u € U. There is a natural

action of PGL(2,C) on M(P', J,3), and we define a J-holomorphic curve on V' of

class (3 to be an orbit of this action.

We know that M(P!,J, 8) has real dimension 6 by (7.25). Since this is the

dimension of PGL(2,C) and the action is free, the orbits are the connected com-

ponents of M(P?, J, 3). Furthermore, each component C has a natural orientation,

so that we can define the sign ¢(C) to be +1 or —1 according to whether the map

¢ : PGL(2,C) = C is orientation preserving or not, where ¢ is given by the action

of PGL(2,C) on a fixed fo € C. We then get the following conjecture.

CONJECTURE 7.4.5. Let (V,w) be a Calabi-Yau threefold with its Kéhier form.

Fiz a generic almost complex structure J tamed by w. Then:
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() For any homology class 3 € Hy(V,Z), there are finitely many immersed J-

holomorphic curves of genus 0 and class 3. These curves are all embedded,
and no two intersect (even for different 3). Define the integers

ng = Y €0),
CeM(PY,J.3)

where the sum is over all connected components C of M(P, J, 3).

(1) Al J-holomorphic maps C — V of genus 0 are multiple covers of embed-
dings.

(%) For each B, ng can be expressed as a sum

ng =np 4+ > > ckC),
B=ky CEM(P',Jy)
k>1

where c(k,C) is an wmteger determined by the degree k multiple covers of C.

This conjecture says that ng should be the number of J-holomorphic curves

(counted with sign) in the class 3, together with certain contributions from multiple

covers of degree k when §3 is divisible by k. In particular, Conjecture 7.4.5 implies
that each ng is an integer. The symplectic definition of {{p,0,8) shows that ngs is a
sympiectic invariant, but as we will explain below, it is possible that n/j is not.

Again, the complication essentially arises from the multiple covers. The spaces
M(PL, J, 3) are not compact as we have remarked in Section 7.2, and multiple
covers are needed for the Gromov-Uhlenbeck compactification. As a consequence,

it is not even clear that the right hand side of the equality in Conjecture 7.4.5 is a

priori a finite sum.

The reader may wonder why we do not conjecture more simply that ng = nj

always. In fact, we know of no examples where this is false. On the other hand, there

is an analogous situation in {Taubes|, which analyzes multiple covers of elliptic

curves with trivial normal bundle in symplectic 4-manifolds. In that case, there is a

discrete invariant associated to double covers, and the value of this invariant changes
the contribution of these covers to the Gromov-Witten invariant. In addition, the

space of all J’s has certain real codimension 1 loci called walls such that when J
crosses a wall, the shift in this contribution is an integer. Additional J-holomorphic

curves of class 20 appear upon wall-crossing, keeping the Gromov-Witten invariant

unchanged. Furthermore, the shift in the contribution of the multiple covers of

the double cover is compensated for by the contribution of the multiple covers of
the new curves in the class 28. We are grateful to the authors of {IP] for their

explanation of both the work of Taubes and of their own paper, which studies
the connection between the invariant defined by Taubes and the Gromov-Witten

invariant. This discussion led to our formulation of Conjecture 7.4.5.

It is conceivable that a similar situation occurs for rational curves on Calabi-
Yau threefolds—there may be walls in the space of all .J ’s, and if the given complex
structure of V' lies in a wall, then there may two flavors of “generic”, depending

on which side of the wall a “generic” J is on. As happens in the g = 1 situation
mentioned in the previous paragraph, crossing a wall could potentially cause some

embedded J-holomorphic curves to turn into multiple covers. The hope is to define
a discrete invariant c(k,C) for each k > 1 and embedded .J-holomorphic curve C

such that when we cross a wall, the loss in nj is compensated for by the gain in

c(k,C) in such a way that the sum in Conjecture 7.4.5 remains unchanged.
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There is one case where part of Conjecture 7.4.5 can be proved. Suppose that
B is primitive, meaning that it is not a multiple of another class in Hy(V, Z) by an

integer > 1.

PROPOSITION 7.4.6. When 8 € Hy(V,Z) is nonzero and primitive, then

Tlg = Tl;;,

where njy is as defined in Conjecture 7.4.5.

PROOF. This follows from [Ruan2|. If we use the Li-Ruan-Tian definition of

Gromov-Witten invariant, then ng = (Igo,)“*" in the notation of Section 7.3.2.

By (7.50), the ng can be recovered from (I 3,5)**". Since V is semi-positive, we can

use the invariants ¥ 3 in place of the (Ig 3 5)"TM. Let a1, 2,3 € H¥(X,Z). In

terms of the symplectic Gromov-Witten invariants ¥ and & defined in Section 7.2.3,

we have

Wo,3,5([pt]; a1, o, a3) = ®g (a, b, cf)

by (7.31).

We can compute @, (o1, a2, a3]) using the methods of [Ruan2] because 3

primitive implies that all J-holomorphic maps f : P! — V with f.[P!] = 3 are

simple. Thus M (P!, J, 8) gives ail J-holomorphic P'’s in the class 3. Then consider
the evaluation map

M(P, ], B) xpcracy (P1)? — V3

defined by (f,p1,p2,p3) — (f(p1), f(p2), f(p3}). The closure of the image of this
map is a 6-cycle [, and by [MS, Sect. 7.2], ®g (a1, @2, a3]) is the intersection

number T' - (T'y x 'y x I's), where as in the proof of Theorem 7.4.4, I'y, '3, '3 are

4-cycles dual to oy, ag, 03.

We know that M(P!, J,8) is 2 union of connected components C. If we fix

fo €C, then acting on fy by PGL(2, C) gives an orientation-preserving isomorphism

C =~ ¢(C)PGL(2,C), where ¢(C) determines how to orient PGL(2,C). Using this,

the above map becomes

fo x fo x fo: (C)(P')® = C xpgrc) (P*)° — V2.

Since fo.[P'] = B, it follows that the intersection number of the image of this map

with 'y x I'y x '3 is €(C) ffl o ffl o ffl o3. Adding this up over all components

gives the required result. a

Similarly, Conjecture 7.4.5 is true for the quintic threefold for all degrees d such

that d < 9, d # 5. This is because we can already achieve a sufficiently generic

situation with J integrable, and then the argument of Example 7.4.4.1 applies to

yield ng = n;, where the n/, are defined in Conjecture 7.4.5.

7.4.5. Genus One Invariants. When g = 1, we get elliptic Gromov- Witten

invariants (I n,6)(1,... ,ar). These invariants were first discussed in [BCOV1]

and since then have been studied in various contexts. The examples given below

illustrate the often subtle task of determining the enumerative significance of a

Gromov-Witten invariant.

Example 7.4.5.1. We begin by studying elliptic Gromov-Witten invariants for

the projective plane P2. If £ < P? is a line, we will as usual write {I1.n.q4) instead of

I1n.die))-
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The first invariant to consider is (/1,1 o), which is surprisingly nontrivial. We are

dealing with constant maps (the degree is zero), but the Point Mapping Axiom from
Section 7.3 doesn’t apply. However, as explained in [KoM1], there are versions of
this axiom for every genus. For ¢ = 1 and X arbitrary, one gets

(7.55) (Iia0)(a) = . /); cdim x-1(Tx) U
24

for dega = 2. The problem is that the space of n-pointed genus 1 degree 0 maps
f:C—-Xis M, x X, which doesn’t have the expected dimension. Thus one must
compute the virtual fundamental class as in Section 7.1.5. This can be done using
Proposition 7.1.8, as will be spelled out in Example 10.1.3.3, and (7.55) follows

easily.

Applying (7.55) to X = P?, we obtain

I f]) = ! T { = !(I1,1,0)([€]) = Ty . a(Te) U] = —3

So Gromov-Witten invariants can be both fractional and negative!

We will consider an interesting related calculation in Example 10.1.3.3 after we

generalize Gromov-Witten invariants to gravitational correlators.

. Fortunately, the other elliptic invariants have a nice enumerative meaning. For

d > 1, define

Ni = (Laaa)(fpt],-- ., [pt]).
3d times

One can prove that N is the number of elliptic curves in P? of degree d which go
through 3d generic points. Thus N{ = Nj =0 and NJ = 1 since there is a unique
(smooth) elliptic curve through 9 generic points in the plane. For d > 3, all of
the curves counted by N} are singular. It is easy to show that all of the elliptic
Gromov-Witten invariants are determined once we know (I ;,0)([¢]) and N} for
d>1.

The main results concerning N} are various recursion relations. One example
can be found in {Getzlerl]. An elegant recursion was predicted in [EHX] using the
method of Virasoro constraints which we will briefly discuss in Section 10.1.4. The
formula, which was proven in [Pandharipande2], says that if N, is the number of

rational curves given by (7.38), then

1 /d 3d%dy — 2dqd 3d-1(7.56) Ni= 5 (3) Ny + § 1—9;2%1 Ni, <3d B 1).
de=d; +dz 1
dy,d2>0

The proof in [Pandharipande2] uses the geometric construction of a relation be-
tween codimension 2 strata in H4(M, 4, Q) discovered by Getzler, and then applies
the WDVV equation to be discussed in Chapter 8. Thus we can compute as many
N as desired. See [Ran3]| for an elementary proof.

In the elliptic invariants considered thus far, we have allowed the j-invariant to
vary. However, one can also study elliptic curves in P? with fized j-invariant. More

precisely, let Ej ; be the number of irreducible elliptic curves of given j-invariant and

degree d going through 3d — 1 generic points in P2. In [Tonel, Pandharipandel],
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it is shown that

(43" Ny if j#0,1728

(7.57) Egj= 3N, ifj=0

LNy i j=1728,

where Ny is as above.

Let’s try this calculation using Gromov-Witten classes. For simplicity, we will

assume that j # 0, 1728. Since we want to go through 3d — 1 points in P?, we begin

with the Gromov-Witten class

f;. = Il,3d—1,d([pt]y ceey [pt])

3d—1 times

By (7.33), this class has degree 6d — 4, which is two from the top since H1,34_1

has dimension 3d ~ 1. If we fix j, we get the divisor Z; C M, 34-1 consisting of all
pointed curves with this j-invariant. Then, naively, we might expect E; ; to be the

intersection of £ and Zj, i.e.,

(7.58) Eaj=¢-2Z;

We compute £ - Z; as follows. We have the natural map M1,34_1 - MU ~ Pl

which forgets the last 3d — 2 points and contracts non-stable components. Then Z;

is simply the fiber over j since j # 0,1728. However, the fiber over oo consists of

all elements of Ml,gd_l which map to a nodal curve. One easily sees that this fiber

is the image of the map % : My 3a4+1 — M1 341 which glues together the last two

points. It follows that Z; ~ Im(+), which means that

-2, =¢-Im(¥) = (I 3a1.4) ([Pt - - - » [pt], [pt], [P7)) +

(Il,3d+1.d)([pt]a v [ptL [e]$ [ZD -+

<Il,3d+1,d)({pt]’ R Lpt]a [P2]7 [pt])7

where the second equality is by the Reduction Axiom (used for the first time). From

here, the Fundamental Class and Divisor Axioms easily imply

£-Z; = £-Im(y) = d>Ny.

Comparing this to (7.57), we see that (7.58) is wrong. The reason is that Ej; ; counts

only irreducible curves in P2, while £ - Z; also includes reducible curves coming from

the boundary of M 34—,. In fact, the argument in (Ionel| computes Eg, by first

doing the above calculation and then (in the symplectic context) carefully taking

the boundary into account. We should also mention that in terms of the mixed

invariants and symplectic invariants defined in Section 7.2, we have

£ Z; =ra(lptll fpt]. .., Ipt]) = $130-1.2(Z55 [pt), - -, [pt])
3d-2 times 3d—1 times

(see especially the discussion following (7.30)). A discussion of the enumerative

significance of these and related elliptic invariants can be found in Remark 2.19 of

[RT2].
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Example 7.4.5.2. In P3| let £ be a line, and then define the numbers

Nap = (Ip.a+s (av20)/4)([€), - -, €], [pt], - ., [pt])
P -

a times b times

Nal.,b = <Il,a+b,(a+'-’b)/4)([e]7 sers [E]v {ptlv sy [pt]),
a times b times

where we assume that (a + 2b)/4 is an integer. By Theorem 7.3.1, we know that

N, gives the number of rational curves in P* of degree d = (a + 2b)/4 passing

through a generic lines and b generic points. Recursion relations for the N,, can

be found in {FP].

The elliptic invariants IV, i » can also be computed using recursion relations given

in the Appendix to [Getzlerl]. But, in contrast to the genus zero case, these are

not enumerative invariants. For example, one finds that all of the N}, computed in

the Appendix to [Getzlerl] are negative, and many are fractional as well. However,

if we form the linear combination

2d -1

12

where as above d = (a+2b)/4, then [GeP] shows that E, ; is the number of elliptic

curves in P? of degree d which pass through a generic lines and b generic points.

" Alternate methods for calculating N, , are also discussed in [Vakil3, GPa] along

with a generalization to PTM.

We should also note that it is also possible to study elliptic curves in P® with

fixed j-invariant. As for P?, one gets formulas relating the numbers of such curves

to the N, ;. Precise formulas can be found in [Ionel].

Ea,b = N;,b + Na,by

Example 7.4.5.3. Finally, we turn to the generic quintic threefold V' C P*. Here,

we begin with the elliptic analog of (7.51). Let ng be the instanton number of

rational curves on V of degree d, and let e; be a similar instanton number of

“elliptic curves” on V of degree d (the quotation marks will be explained below).

We will assume that these numbers are finite and think of the n4 and ey as counting

appropriate curves that are rigidly embedded. Then one has the formula

(7.59) (haa)(H) = Cigao($ker + 15 Tgjaknk,

where o‘(%) = Eu% { is the sum of the divisors of 7‘:-.

This formula was arrived at through physical reasoning [BCOV1], but so far,

there is no mathematical proof. However, we can give an intuitive explanation of

the formula as follows. We begin with the first sum of (7.59). Let f: (C,p) = V

be a stable curve whose image £ = f(C) is an elliptic curve such that C — E has

degree % and E C V has degree k. Then E is one of our e elliptic curves, and

since f(p) € EN H, there are k choices for f(p). Given f(p), there are % choices for

£ € C, but these are all isomorphic because C — E is a covering space. It remains

to count the number of covering spaces of E of degree %. This means counting the

number of sublattices of Z? of index %, which is well known to equal o‘(%).

The second sum of (7.59) is more subtle. For instance, consider the case k = d.

How do the ny “rational curves” of degree d contribute to {I11,4)(H)? To answer

this question, let Cy C V be rational of degree d. As usual, there are d possibilities

for f(p) € CoN H. Given Cy and f(p), we want to construct genus 1 stable maps

f:(C,p) — Co which have degree 1. This might seem impossible, except that the
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definition of stable map allows C to be reducible. This is what has been called a

degenerate instanton in the physics literature. Here, C = E Uy, where E is an

elliptic curve joined to Cp at one point, and f : C - Cy is the identity on Cy and

constant on E. Once we pick p € C mapping to f(p), we get a family of stable

maps of the sort we're interested in.

When k|d is a proper divisor of d in the second sum of (7.59), things are even

more complicated, mainly because of multiple covers. As in the genus zero case,

one has rational multiple covers to worry about, and in addition, we have multiple

covers arising from the well known degree 2 map from an elliptic curve to P!,

Calculations from physics [BCOV1] suggest that the answer is again 11—2, and this

has been proven mathematically when the normal bundle of the underlying rational

curve is Op1 (—1) @ Op: (—1) [GPa]. Hence, (7.59) holds in degrees d for which the

hypotheses of the Clemens conjecture 7.4.3 holds in all degrees dividing d, together

with a similar hypothesis on elliptic curves, assumed disjoint from each other and

from the rational curves.

A further complication is that even though eq is probably finite, it may count

more than just smooth elliptic curves on V. This is why we put “elliptic curves”

in quotation marks. The best illustration of what’s happening is given by e4, the

number of quartic “elliptic curves” on the quintic threefold. In [BCOV1], this

number is computed to be

es = 3721431625.

However, by [ES2], the number of smooth quartic elliptic curves on a generic quintic

threefold is

3718024750.

This differs from e;. As explained in [ES2], the discrepancy arises because e4

allows for singular curves. In particular, V contains a number of binodal quartic

plane curves, and each of these gives rise to a stable map contributing to e4. These

singular curves are counted as follows. If £ is one of the 2875 lines on V, then

any plane P C P* containing £ intersects V in £U C, where C is a plane quartic.

Generically, C is smooth, but it acquires two nodes for a finite number of special

planes P. In [Vainsencher], it is shown that there are 1185 special planes P. Since

3721431625 = 3718024750 + 1185 x 2875,

the numbers are consistent. This gives another example of the care required in

understanding the enumerative significance of a Gromov-Witten invariant.

7.4.6. Other Examples. Besides the examples listed so far, there has been a

lot of other work on Gromov-Witten invariants and enumerative geometry. Rather

than continue with an already long list of examples, we will instead indicate some

references for further reading.

The enumerative aspect of mirror symmetry goes back to 1991 with the stun-

ning predictions about rational curves on quintic threefolds appearing in [CAGP].

This led to a host of papers making enumerative predictions about Calabi-Yau man-

ifolds, including physics papers BCOV1, BCOV2, CdFKM, CFKM, HKTY1,

HKTY2, BKK, AM2, Font, KT1, KT2] and mathematics papers [Katz2,

Morrisonl, ES2, ES1, LTe, BvS, Voisinl, Meurer, HSS, Givental2, LLY,

Giventald, BCFKvS2]. An nice survey of the enumerative aspects of mirror

symmetry can be found in [Morrison6}.
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Although many unsolved problems remain concerning the enumerative geom-

etry of Calabi-Yau manifolds, much of the more recent work has dealt with other
types of algebraic varieties. This is partly due to the definition of Gromov-Witten

invariants for arbitrary smooth projective varieties, as described in Section 7.1,
which led to many of the examples and papers mentioned above. In addition, there
have been applications to rational surfaces [CM, G&P, Vakill], Del Pezzo surfaces

[Vakil2], blow-ups of P* [Gathmannl] and of convex varieties [Gathmann2),
complete intersections {Beauvillel], and nodal genus-2 curves in P? [KQRJ]. At

the same time, people have been inspired to see what can be done without using

Gromov-Witten theory, which resulted in papers by Crauder and Miranda [CM],

Ran [Ranl, Ran3] and Caporaso and Harris [CH1, CH2, CH3]| (see [Caporaso]
for a summary). There have also been studies of the Clemens conjecture on quin-

tic threefolds and other related Calabi-Yau threefolds {(JK1, JK2, EJS]. Taking
all of these papers into account, we see that there has been a surge of interest in

enumerative geometry in recent years. It may have started with mirror symmetry,

but it is now taking on a life of its own within algebraic geometry.

This brings us to the end of a long chapter. We have seen that Gromov-Witten

invariants provide a nontrivial link to symplectic geometry and play an important

role in contemporary algebraic geometry. One of the morals of this chapter is that

counting curves is deeper and richer than one might expect. However, there is more

" to the story, for we have yet to learn about quantum cohomology. As we will see in

Chapter 8, this will give further insight into the examples considered here and will

complete the circle of ideas needed to understand the mathematical formulation of

mirror symmetry.





CHAPTER 8

Quantum Cohomology

In this chapter, we will learn that there are actually two types of quantum

cohomology—the so-called big and small quantum cohomology rings. We will also

study the Gromov-Witten potential, which may be thought of as the exponential

generating function associated to the tree-level Gromov-Witten invariants. The

WDVV equation satisfied by the Gromov-Witten potential leads naturally to the

associativity of the big quantum cohomology ring and also has some interesting

consequences concerning the examples studied in Chapter 7. Another important

topic is the Dubrovin formalism, which shows how quantum cohomology gives a

variation of Hodge structure on the cohomology ring.

Quantum cohomology is the final ingredient needed in order to understand the

mathematical version of mirror symmetry. As we will see in this chapter, it gives a

clear statement of the three-point function. Furthermore, it leads to the variation

of Hodge structure mentioned in the last paragraph, which is a variation over the

Kihler moduli. One of the key ideas of mirror symmetry is that this variation of

Hodge structure corresponds, via the mirror map, to the geometric variation of
Hodge structure over the complex moduli space of the mirror family. This will

be explained in detail when we define mathematical mirror pairs and discuss the

Mirror Conjecture at the end of the chapter.

Historically, the idea of quantum cohomology first appeared in the physics lit-

erature in the guise of the chiral ring of a Calabi-Yau threefold. The chiral ring

was understood as a deformation of the ordinary cohomology ring [LVW], agree-

ing with the ordinary cohomology ring at large radius limit points. The quantum

product can be understood more generally in the context of topological quantum

field theories [Wittenl, Witten2]. This will be discussed in Appendix B.6. The

first mathematical construction of quantum cohomology was for semi-positive syrm-

plectic manifolds [RT1, MS].

Our approach to quantum cohomology in this chapter will be almost exclusively

algebraic. Expository accounts of quantum cohomology can be found in [Aluffi,

FP, MS, Morrison?7, Voisin3].

8.1. Small Quantum Cohomology

The small quantum cohomology ring of a smooth projective variety X is defined

using the Gromov-Witten invariants (Io 3 g) from Chapter 7.

8.1.1. Definition and Properties. Given a basis Ty = 1,Ty,...,Tm for

H*(X, Q) consisting of homogeneous elements, let g;; = fx TiUT}, and then (¢) =

(g;,)"! is the inverse matrix. Recall from Chapter 6 that w € H%*(X,C) is a

complexified Kahler class if the imaginary part of w is Kahler.
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DEFINITION 8.1.1. Let w be a complezified Kihler class on a smooth projective

variety X. Then, for a,b € H*(X,C), define

axb=3 3 (loas)a,bT) g7 ¢° Ty,
_ i3 BeH(X,2)

where gf = 2TM Js“. We call a + b the small quantum product of a and b.

As written, this definition is admittedly imprecise, as the sum over 8 could be

infinite, so a convergence result is needed. In Section 8.1.3, we will explain several

ways to give rigorous meaning to Definition 8.1.1, replacing ¢° by an appropriate
formal expression. This is in fact the common practice. Nevertheless, we prefer to

give the above incomplete definition because it makes the small quantum product

depend explicitly on Kahler moduli, which is one of the central ideas of quantum

cohomology. We ask the reader’s indulgence in “suspending disbelief” until we get

to Section 8.1.3, at which point the reader will see that all of the claims of this

section and the next, suitably interpreted, are perfectly rigorous.

We will use physics notation for “raising indices” and define

T =3 ¢7T,
3

so that T9,... ,TTM form the dual basis of Ty, ... , Ty, satisfying [, T°UT, = §;.

Then we can write the small quantum product more simply as

(8.1) axb=Y" > (loap)a,bT)¢" T,

i BEH(X,Z)

We will use this notation throughout this chapter and the next.

In Chapter 7, Gromov-Witten invariants were defined for rational cohomology

classes. In the above formula for %, we extend the definition to complex coefficients

by linearity so that (I3 g)(a, b, T,) makes sense for a,b € H*(X,C). Also note that

for B € H2(X,Z) and a,b homogeneous, the degree condition (7.33) implies that

the Gromov-Witten invariant {I53,5)(a, b, T;) in Definition 8.1.1 vanishes unless

(8.2) dega+degb+degT,—=2dimX—2/wx,
B

where wy is the canonical class on X. Thus the sum in the above definition is over

these 3’s. One can also check that the binary operation * doesn’t depend on which

basis T; we use.

In the case of a Calabi-Yau manifold, we have the following conjecture.

CONJECTURE 8.1.2. For a Calabi-Yau manifold, the sum in Definition 8.1.1

converges provided the imaginary part of w is sufficiently large.

For the time being, we will assume this conjecture. As stated earlier, Sec-

tion 8.1.3 will discuss how to avoid convergence problems by reinterpreting the ¢°.

Fortunately, there are some projective manifolds where the above sum is known to

behave nicely, giving a rigorous meaning to the small quantum product in terms of

Kihler moduli.

ProPOsITION 8.1.3. Let X be a smooth projective variety such that either

() X is Fano, or

(i) X has a transitive action by a semisimple Lie group.

Then the sum in Definition 8.1.1 is finite for any a,b € H*(X,C).
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PROOF. We need to show that there are only finitely many classes 3 on X
‘which satisfy (8.2) and are represented by a genus zero stable map. First suppose
that X is Fano. Neglecting torsion (which is finite), the 3’s represented by genus
"sero stable maps are lattice points in Hz(X,R). Being Fano means that —wy is
in the interior of the K&hler cone, so that the linear functional B — — ffi wx is
'positive on the closure of the cone generated by the effective B’s. It follows easily
that only finitely many 3's can satisfy — | swWx < C for any constant C. By (8.2),
this proves the proposition when X is Fano.

Next suppose that X is a homogeneous space G/P. Then the cohomology of
X is known, and the classes 3 represented by genus zero stable maps are non-
negative integer combinations of finitely many classes B1,-.. 8- such that each G;
is the image of a nonconstant map y; : P! — X, By (8.2), it suffices to show that
ffie wx < 0, or equivalently, that ffii ca(Tx) > 0.

The transitive group action implies that Ty is generated by its global sections,
which in turn implies that u} (T ) is also generated by global sections. Since 2 (Tx)
is a vector bundle on P', u}(Tx) ~ ®;Op:(a;) where the a; are all > 0. If we can
prove that some a; > O, then ffi‘_ ¢i(Tx) > 0 will follow. However, if this weren’t
true, then u}(Tx) would be trivial, and then the natural map Tp1 — p?(Tx) would
necessarily be zero since Tp: =~ Op1(2). This is impossible since 4i i nonconstant,
and the proposition follows. O

The second part of the proposition shows that the sum in Definition 8.1.1is
finite for any projective space, Grassmannian, quadric hypersurface, flag manifold,
or any product of such varieties.

We next show that H*(X,C) is a ring under the small quantum product.

THEOREM 8.1.4. H*(X,C) is a supercommutative ring with identity under the
small quantum product.

PROOF. By supercommutative, we mean

axb=(-1)d8adwby, g

similar to cup product. This follows because the Equivariance Axiom from Sec-
tion 7.3 implies (Ip 3 5}(a, b, T}) = (—l)deg"deg”(lgvg,"@)(b, 6,T;). As for an identity
element, let Ty = 1 = [X] € H(X,C) be the fundamental class of X. This is the
identity under cup product, and as we will now show, it is the identity under * as
well. We first observe that ({0,3,5)(a,To, T;) = 0 whenever 8 # 0. This is an easy
consequence of the Equivariance and Fundamental Class Axioms. It follows that

axTo=3 (haolaTo,T)T

=E(fxaUT})UT,)T

=aUTo=a,

where the second equality follows from the Point Mapping Axiom and the third
from the definition of 7*. Thus To is the identity element for *.

The final step is to prove that # is associative. The Splitting Axiom from
Section 7.3 will play a key role in the proof. Given homogeneous classes a, b, ¢ in
H*(X,C) , we first consider (@ + b) * c. Expanding via Definition 8.1.1 and using
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T = >, T}, we get

> ( S Y o o5 0, T o s, ) (T, c,n))gm ¢ T..
B tu N f=p1+82 T3

Now consider the Gromov-Witten class Ig 4,5(a,b, ¢, T;). The Splitting Axiom de.

scribes the pullback of this class via the map

@: Moz x Moz — Moy~ P!

defined in (7.36). Note that this pullback vanishes unless

Lsp(a,bc, ;) € H(My 4),

which henceforth will be assumed. Since ¢ is the inclusion of a point of P!, we can

regard

(8.3) ©* Iy 4,8(a,bc,T;)

as a number. Then the Splitting Axiom says that (8.3) is precisely the quantity in

the large parentheses in the above display.

Turning our attention to a = (b * ¢), we obtain

Z Z ( Z Z g’ (10,3,51 >(b7 ¢, Tr) (I0,3,/32>(a’ T, Ti)) gtu qfi Tu
B tu NP=pfi4+pF2 T8

But (Jo3,8,)(a, Te, Tt) = (—1)d€cdeeTe ([ 3 5.}(Te.a,T3) by the Equivariance Ax-

iom, and we also have

dega + deg T + degT; = 0 mod 2

by (8.2). It follows that

(To,3,.)(a, Tay Ty) = (—1) R (@B et aETI ([ 5 ,)(Ts, 0, T2).
Hence the quantity in parentheses in the expression for a * (b * ¢) is

(8.4) (—1)dese(degatdesT) g2 [\ o(b, ¢ 0, T}),

where @ is a map similar to ¢. Note that & is the inclusion of another point of P?,
so that it is linearly equivalent to .

Comparing the expressions for (a*b) ¢ and a = (bxc), we see that the theorem

will follow immediately once we show that (8.3) and (8.4) are equal. Hence it

suffices to show that

Ioap(ab,e,T) = (—1)descdesatdee T, 5(b,¢c,8,T}).

This is an easy consequence of the Equivariance Axiom and the congruence dega+

degb + degc + deg T; = 0 mod 2 obtained from (7.33). a

Note that the above proof has much in common with the methods used to

prove the recursion relation for the Gromov-Witten invariants of P? discussed in

Section 7.4.2. Here, there were signs to worry about because of the presence of

odd-dimensional cohomology classes. An intuitive explanation of associativity can

be found in [Morrison?].

Besides giving a ring structure, the small quantum product has other properties

as well. We first describe the degree of a « b. As examples in the next section will

reveal, a * b need not be homogeneous, even if a and b are. However, the degrees

which appear in a * b aren’t entirely arbitrary.
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PROPOSITION 8.1.5. If a,b € H*(X,C) are homogeneous, then their small

quontum product is a sum ax b=}, ¢ of homogeneous classes such that

deg ¢; = deg a + degb mod 2.

Furthermore, if the class of wx in H(X,Z) is divisible by an integer r, then

degc; = dega + degb mod 2r.

PROOF. Since g*/ # 0 only if degT; + degT; = 2dim X, the degree condition

(8.2) implies that in Definition 8.1.1, T; has a nonzero coefficient only if

dega + degb = deg T; —~ 2/wx.
I

The proposition now follows immediately. O

We can also describe the interaction of the small quantum product with the

intersection pairing on X, which we write as g(a,b) = [, a Ub.

PROPOSITION 8.1.6. For all a,b,c € H*(X,C), we have:

(i) glaxd,c) =g(a,bxc) = Z/jeHz(x,z) (In3,5)(a,b,¢) ¢°.
() fyaxb=g(a,b).

PROOF. It is easy to show that (T + T}, Tk) = 3_5{lo3,8)(T;, T;, Te) ¢°. Turn-

ing to g(T;, T; * Tk), supercommutativity of the intersection product implies that

9(T0, Ty x Tie) = (—1)desTldes Totdeg T) (T 4 T T3,

and as above we have g(T; * T, T;) = Zg([(),g'fi)(n,Tk,n)qfi. The first part of

the proposition now follows immediately from the Equivariance Axiom. To prove

the second part, observe that

/ a*b=/' Ty U(a = b) = g(Tp, a = b) = g(To * a,b) = g(a,b)
X X

since T} is the identity for cup product and the small quantum product. [

This proposition implies that H*(X,C) is a Frobenius algebra under * and g
(see Definition B.6.2).

Proposition 8.1.6 is also related to a slightly different approach to small quan-

tum cohomology, which begins with the three-point function (a, b, c) defined by

(8.5) (a,b,c) = Z (Io,3,8)(a,b,¢) ¢°.
BEH(X,Z)

We also call (a,b,c) the A-model correlation function. It is easy to see that the

small quantum product of a and b is the unique element a+b € H*(X, C) satisfying

glaxb,c)={(a,b,c) foralce H"(X,C).

In the literature, one often finds quantum cohomology defined this way [MS,

Morrison7, Voisin3]. Note also that (8.1) and (8.5) imply

(8.6) axb=) (a,5,T)T
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which gives another proof that quantum cohomology is determined by the three.

point functions. Finally, we should mention that Proposition 8.1.6 implies

(8.7) (a,b,c)::/ axbxc,
X

so that the three-point function is expressible completely in terms of the small

quantum product.

For a Calabi-Yau manifold, the small quantum product is especially nice.

COROLLARY 8.1.7. If V is Calabi-Yau, then the small qguantum product satis-

fies dega x b = dega + degb. Furthermore, if a € HPI(V) and b € HTM*(V), then

axbe HPa+s(V).

ProoF. The first assertion follows immediately from Proposition 8.1.5 since

wy is trivial. Now suppose that V has dimension d. For the second assertion, it

suffices by part (i) of Proposition 8.1.6 to show that

(Toag)(a,be)=0 if ¢¢ HiP =3y,

However, since M 3 is a point, Definition 7.1.9 implies that

(has)@be= [ aebes
1. (§)

where m; : Mo,3(V,8) — V3 is the evaluation map and £ is the virtual fundamental

class. Since £ is algebraic of the expected dimension d by (7.7), one sees that

714(§) € H2a(V?) is the homology class of an algebraic cycle. The proposition now

follows since the above integral is zero unless a ® b ® ¢ has type (d, d). O

Corollary 8.1.7 implies that éEg=OHp*p(V) is a subring of H*(V,C) endowed

with the small quantum product when V is Calabi-Yau. This will be useful when

we study the A-variation of Hodge structure later in the chapter.

8.1.2. Examples. We now compute some examples of the small quantum

cohomology ring.

Example 8.1.2.1. For P", we will use the cohomology basis H*, 0 < 1 < r, where

H is the hyperplane class and the exponent refers to cup product. We claim that

Hiti i+ji<r
8.8 H +H = .( ) * {qH1+J—r—l 1.+J >r+1,
where g = 2TM Je and £ is a line in PTM. To prove this, let 8 = dif) for d > 0. By

(8.2), the Gromov-Witten invariant (In 34)(H*, HY, H*) (where we write d instead

of B3) is zero unless

(8.9) i+j+k=r+dr+1).

Since i, j, k < r, we see that d can only be 0 or 1, and furthermore, d = 0 if i+j < r.

From here, it follows easily that H® + HY = H*"7 when i + j < r. In particular,

when 0 < i < r, H* means the same for both cup product and the small quantum

product.

To finish the proof, it suffices to show H « H" = q H®. In this case, we have

d=1 and k = by (8.9). Then one easily obtains

H«H ={lys,)(H,H ,H") g H".
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i As in Section 7.4.2, {los.1)(H, H", H") = (Ip 3.1)(H, [pt], [pt]) = 1 because the two
" points in IP" determine a unique line meeting H at a third point. This proves
= (8.8). Also note that (8.8) gives a nice example of Proposition 8.1.5 since wpr =

© Op-(—r — 1) is divisible by r + 1.

Since H® = [P"] is the identity element and HTM+! = g HY for the small quantum
product, the small quantum ring of P is isomorphic to

y CIH/(HTM+ - q).

The usual cohomology ring of PTM, on the other hand, is isomorphic to

CH]/(HTM).

Since ¢ — U as the imaginary part of w gets large, we see that the small quantum

product becomes cup product in the limit.

Example 8.1.2.2. In [Batyrev2], a definition is given for the “quantum coho-
mology ring” of a smooth projective toric variety X. It turns out that this ring

agrees with the small quantum cohomology ring if X is Fano, but can be different

otherwise. To avoid confusion, Batyrev’s ring will be denoted H*(X). In [QR], it
was shown that H(X) agrees with the small quantum cohomology ring for certain

projective bundles over projective spaces. In Example 11.2.5.2, we will explain why
H;(X) agrees with the small quantum cohomology ring in the Fano case {extending

the result of [QR]) and also give an example in the non-Fano case which shows that
H(X) is definitely not the same as the small quantum cohomology ring in general.

Example 11.2.5.2 will also show that in any case, H(X) is closely related to the

small quantum cohomology ring. We now turn to the definition and properties of

HZ(X). We will see that its properties resemble the properties that we expect from
quantum cohomology (as they must, at least in the Fano case).

We put X = Xg, where T is the fan in Ny giving X. We will assume that

v1,.-.,¥s € N are the primitive integral generators of the 1-dimensional cones in
Z, and for each v;, we have a torus-invariant divisor D; C X.

We begin by recalling the usual description of the cohomology ring of X over
C. To v; and D; we associate a variable z;, so that we get the polynomial ring

Clz1,...,2]. Now consider the following two ideals:

PE) = i_imwv)z,: me M)

SR(Z) = <:1:il---a:,~,‘ H{viy,...v, }Zoforalloe E).

(SR(X) is the Stanley-Reisner ideal of T). It is well known [Fulton3, Oda)] that
the map sending [D;] € H2(X,C) to z; induces an isomorphism

(8.10) HTM(X,C) ~=Clzy,...,z,]/(P(X) + SR(L)).

We also need a modification of this due to Batyrev [Batyrev2]. Section 3.2.3
defined P = {v;,,... ,v;, } to be a primitive collection if P ¢ o for all o € I, but
every proper subset of P does lie in some . Then one sees easily that

(8.11) SR(Z) = (zs- - 24 : {vi,,... v, } is a primitive collection).

Now consider quantum cohomology. For P", we went from C[A]/(A"*!) {cup
product) to C[A]/(h"*! ~ ¢) (quantum product). In order to generalize this to our
toric variety X, we first need some notation. Suppose that P = {viy,.-v, }isa

Primitive collection. Then the sum vp = v;, +- - - +v;, lies in some cone o € T, and
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hence can be written vp = ,vj, + -+ - + €1vj,, where vj,, ... ,v; are the generators

of o and ¢y, ... ,¢ = 0. This gives the nontrivial relation

(8.12) Ui, + v, —Cvy — - —avy =0

among vy,. .- ,Vs-

Such relations correspond to homology classes as follows. Since X is smooth,

Pic(X) = An—1(X) = H*(X,Z), and it follows that the dual of the exact sequence

(3.2) from Chapter 3 is

0 — Hy(X,Z) — Z° — N — 0,

recalling that A,.;(X,Z) is torsion free if X is smooth. Here, (A1,-..,;As) € Z°

maps to 3_;_, Av; € N. It follows that we have a natural isomorphism

(8.13) {5 2) €2°: T0 haws = 0} = H2(X, 2).

In particular, the relation (8.12) corresponds to a homology class which we will

denote 3(P) € Ha(X,Z) (compare with Lemma 3.3.2). In [Batyrevl, Thm. 2.15],

Batyrev shows that 3(P) is an effective 1-cycle.

Now, given a complexified Kéhler class w € HM(X) = H?*(X,C), define the

quantum Stanley-Reisner ideal

(8.14) SR,(Z)={(zi; - Ti,— q'/j(?)z;:~ ~zi:Pisa primitive collection)

where as usual g?(P) = €TM Js>, Then Batyrev defines the ring

(8.15) H:(X) =Clay,... ,z]/(P(Z) + SR.(Z))

(see Theorem 5.3 of [Batyrev2]). We will call H;(X) the Batyrev quantum ring.

To see how the ring (8.15) relates to to the usual cohomology ring (8.10), let

the imaginary part of w approach infinity. Then the imaginary part of [ 8(p) W also

gets large since B(P) is an effective cycle, and it follows that g?P) — 0. Thus the

quantum Stanley-Reisner ideal (8.14) turns into the usual Stanley-Reisner ideal

(8.11) as the imaginary part of w goes to infinity. This shows that the usual

cohomology ring of X is a limit of H7,(X).

Let’s check how this works for X = PTM. Here, the cone generators are €p, . .. , €r,

where €1, ... , ¢, generate the lattice and ep = — ST €. Thus the ideal P(Z) in

the description of H*(P",C) is

P(Z) = {(z, - Zo,.-. ,&r ~ To)-

Furthermore, note that P = {eo, ..., €} is the unique primitive collection. Since

eg + - + €. =0, the ¢;’s in (8.12) are 0. Thus the quantum Stanley-Reisner ideal

(8.14) is just

SR, (Z) = {zo- -2 — ).

Putting P(X) and SR, (L) together, (8.15) reduces to Clzo)/(x5t! — ¢°F)). Tt

remains to determine 3(P) € Ho(PTM,Z). Since 3(P) is effective and the relation

ep + -+ + e, = 0 generates the Z-module of all relations among the e;, we must

have 3(P) = [£] (see also Lemma 3.3.2 and the sentence following its proof). Hence

we recover our earlier description of the small quantum cohomology of P,

The ring H7(X) has other descriptions as well. If

(8.16) i@ = 3o bivi, 85,020,
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then a — b = (a1 ~ b1,... ,as — b;) gives an element B(a,b) € H:(X,Z) by (8.13).

In [Batyrev2], Batyrev shows that the quantum Stanley-Reisner ideal is given by

(8.17) SR,(E) = (g3 -2 — AWl . 2% : a;,b; a5 in (8.16)).

This description of SR, (X) shows that H(X) depends only on the 1-dimensional
cones of & and the complexified Kahler class w. It follows that different fans with

the same 1-skeleton have closely related quantum cohomology. For example, let X;

and X» be smooth toric varieties whose fans have the same 1-skeleton, and suppose

that their Kihler cones share a common wall in the GKZ decomposition described

in Section 3.4. Then X; and X, are related by a flop and hence might have

nonisomorphic (usual) cohomology rings. However, using the Batyrev quantum

ring, we can get from one to the other as follows:

usual - quantum - quantum _ usual

H*(X,,C) H:(X,,C) Hx(X.,C) H*(X,,C)

The arrow on the left tells us that as the imaginary part of w approaches infinity

in the Kihler cone of X, the Batyrev quantum ring of X; approaches its usual

cohomology ring. The arrow on the right is similar, except that now the imaginary

part of w goes to infinity in the Kihler cone of X,. Finally, the middle arrow is

what happens when w crosses the wall. This is possible because (8.17) allows us to

" change fans as long as we keep the same 1-dimensional cones.

We can think about the two descriptions of SR, (L) as follows: (8.17) uses only

the 1-skeleton and shows how to extend H*(X) over the whole GKZ decomposition,

while (8.14) uses the full fan (via the primitive collections) and shows how to take

the limit in any particular Kahler cone. See [Batyrev2] for further discussion and

examples.

Finally, when we let the imaginary part of w approach infinity, we have taken

the limit of the ideal SR, (Z) in a very naive way. The proper way to do this, of

course, is via a monomial ordering and a Grobner basis. In fact, the imaginary

part of w gives a monomial ordering—see the proof of Theorem 5.3 in [Batyrev2].

Furthermore, if we partition all possible Im(w)’s according to monomial orderings

they give, then we get a refinement of the GKZ decomposition called the Grobner

fan. This is described in [Sturmfelsl] and has been used in mirror symmetry to

study solutions of hypergeometric equations [HLY1, HLY?2].

Example 8.1.2.3. Finally, we consider the small quantum cohomology of a smooth

Calabi-Yau threefold V. We first show that most of the time, the small quantum

product agrees with cup product.

LeEMMA 8.1.8. If V is a smooth Calabi-Yau threefold, then

axb=aUb if either dega # 2 or degb# 2.

PrOOF. First observe that (In 3 g)(0, 02, @3) = 0 whenever 3 # 0and deg a; #

2 for some i. We proved this for the quintic threefold in Section 7.4.3, and the proof

works for any Calabi-Yau threefold. From here, the lemma follows easily. 0

It remains to compute the quantum product on H 2(V,C). First suppose that

V is a quintic threefold. As usual, we will write (Io,3,4) instead of {Io3,3). Then

the small quantum product is determined uniquely once we know H » H, where
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H € H2(V,Z) is the hyperplane class. By Corollary 8.1.7, Hx H € H*(V,C), and
then Definition 8.1.1 and [, H® = 5 imply that

o

H+H= %Z(Ig's_d)(}], H, H)q* H.
d=0

We also have the three-point function (H,H, H) from (8.5) and (8.7), which

here becomes
o0

(8-18) (H,H,H) =/ H«HxH= E(Ig,a,d)(H,H,H) ¢°.
v d=0

In Section 7.4.3, we saw that the right hand side of this equation is the A-model

correlation function (H,H,H) considered in Chapter 2. Hence the three-point

function of the quintic threefold is given by the small quantum product. As we saw

in (8.6), the converse is also true, for combining the above two formulas gives

H«H= (H,H,H)%Hz.

Thus the quantum product is Written in terms of the three-point function.

For an arbitrary Calabi-Yau threefold V, the situation is similar if we restrict

to classes a,b,c € H2(V,C). By (8.5) and (8.7), the three-point function is

{a, b, c}) =/Va=o<b=o<c=E(Io‘g,"@)(a,b,c)q"j

(8.19) s
= (Ioa0)(a:b,0) + > _(Too,6)d° / a / b / c.

40 8 s Js

We learned in Section 7.4.4 that there are instanton numbers ng such that

(8.20) (loos) =D nik TM%
B=kvy

which as in (7.51) leads to

B

8.21 a,b,c =/a*b*c=/anUc+ n —q——/a/b/c.(821) (abo= [ y PR T e b,
B0

This classic formula for the three-point function of a smooth Calabi-Yau threefold

was first given for the quintic [CAGP] and appears frequently in the literature

[Witten5, AGM3, Morrison5, Voisin3]. It makes good sense when the instan-

ton numbers ng are defined via (8.20), but we know from Section 7.4.4 that ng

need not count the number of rational curves on V with homology class 3. (How-

ever, Conjecture 7.4.5 asserts that ng should be closely related to the number of

J-holomorphic curves, counted with orientation, in the class 5

1t is very satisfying to see the three-point function of a Calabi-Yau threefold ex-

pressed in terms of quantum cohomology. Furthermore, as we saw in Section 8.1.1,

the converse is also true: we can construct quantum cohomology in terms of the

three-point function.

Example 8.1.2.4. In this example, we will study the effect of a flop on the

small quantum cohomology of a Calabi-Yau threefold V. In the terminology of
Section 6.2.2, suppose that ¢ : V — V is a primitive Type I contraction giving the

flop V — — — V' such that the proper transform of C C V is C' ¢ V', We have
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a natural identification H?(V) ~ H*(V") under which the Kahler cones K (V) and
K (V') meet along a common face of each.

In order to compare the quantum cohomologies of V and V’ , suppose that the
reducible curve C consists of rigidly embedded disjoint P!’s in the homology class
3. We will assume further that C is disjoint from all other curves whose classes
differ from 3.

In this situation, it is known that V and V"’ have the same Hodge numbers, but
may have different intersection forms. Thus the (usual) cohomology rings may be

nonisomorphic. However, their small quantum cohomology rings are very closely
related, as noted in [Witten5, AGM3, Morrison5]. Using (8.21), we write the
three-point function of V in the form:

¥ij ¥q qa,b,c=/anUc+n /a/b/c+ Ty /a/b/c.b=, T4 )" Js " s 2 L=avJy s Uy¥#8,0

In passing to V”, the first term on the right may change, as may the second. The
third term is unchanged, however. This is because the moduli spaces ngg(V, v) are
isomorphic to their counterparts on V', the isomorphisms preserving their virtual
fundamental classes. Now, an easy calculation (given in the above references) shows

that the sum of the first two terms

P/anUc+n5 /j/a/b/c
v 1-9°Jp Js Js

is unchanged when we pass from V to V' provided we transform a, b, ¢ via H 2(V) =

H?(V’) and B via the Poincaré dual of this map.
From a formal point of view, this says that the three-point functions of V and

V" are the same formal power series (under the above identifications), and one easily
sees that the same is true for the small quantum cohomology rings (with suitable
formal coefficients). However, the small quantum product on V converges (conjec-
turally) when the imaginary part of w is sufficiently deep in K (V), and similarly
for K(V’). Under the map H2(V) ~ H?(V"), the Kihler cones are disjoint, so that
the quantum cohomology rings V and V' are no longer isomorphic since we are
evaluating them at disjoint sets of w’s. What we get instead is an analytic contin-
uation of the three-point function of V' to that of V’. The situation is remarkably
similar to Example 8.1.2.2, where we studied the effect of a flop on the quantum
cohomology of a toric variety. As happened there, quantum cohomology allows us
to deform the (usual) cohomology ring of V' into the cohomology ring of V'.

All of this concerns a face of the Kéhler cone corresponding to a Type I con-
traction. In [Wilsond], the effect of a Type III contraction is studied.

The small quantum product has been an active area of research. In addition to
the examples just discussed, one can describe the small quantum cohomology rings
of other interesting varieties, including the following:

® Grassmannians. The small quantum ring of a Grassmanian was first de-
scribed in {Vafa2], followed by mathematical treatments in [Witten6, ST).

Other references are [MS, FP, Bertram, BCF]. Topics of interest include
quantum versions of the Giambelli and Pieri formulas, relations with the

Verlinde algebra, and the Vafa-Intriligator formula.



228 8. QUANTUM COHOMOLOGY

» Flag manifolds. The small quantum ring of a flag variety has a fascinating

relation with the Toda lattice. This was first described in [GK]. Other

references include [AS, Kim1, Givental3, CiocanF, Kostant].

o Fano manifolds. A lot of work has been done on the small quantum ring

of Fano manifolds. These include Grassmannians and flag varieties as wel]

as certain projective hypersurfaces and complete intersections. Papers on

this subject include [ST, Beauvillel, TX, CJ].

* Rational surfaces. The small quantum ring of a general rational surface

is described in [CM]. For a cubic surface, associativity of the quantum

product is essentially equivalent to the existence of 27 lines each of which

meets 10 others.

8.1.3. Coefficients. In the discussion so far, we have used cohomology with

complex coeflicients in defining the small quantum product. This is because

qfl=e2m}fflw eC

when w € H?(X,C) is a complexified Kihler class. However, the sum used in

Definition 8.1.1 is not known to converge. One way to avoid this problem is to

regard ¢° as a formal variable rather than a number. There are several ways to

make this precise.

For a Fano manifold, the sums appearing in Definition 8.1.1 are finite by Propo-

sition 8.1.3. In this case, we can let the coefficients be the semigroup ring

R=0Ql¢% 8 € Hy(X,Z)).

This means that each 8 € H2(X,Z) gives a formal symbol ¢? such that ¢% - ¢% =

¢%*% and an element of R is a finite sum of the ¢°’s with coefficients in Q.

An easy example is given by P", where we get the ring R = Qlg, ¢TM!] of Laurent

polynomials in ¢g. For any Fano manifold, the small quantum product is defined on

H*(X,R).

If X is an arbitrary projective manifold, this might not work because the sum

in Definition 8.1.1 may be infinite. Here, observe that by the Effectivity Axiom,

we can assume that 3 is effective. More precisely, we can assume that 3 lies in the

integral Mori cone M (X)z. Then consider

R = Q[l¢’; 8 € M(X)z]],

where the double brackets indicate that we allow infinite sums. The product of two

such elements is

Z agq”® - Z bag® = Z ( Z a,glbgz)q"j.
BEM(X)z BEM(X)2 BEM(X)z B=pr+52

This sum makes sense because for any 3 € M(X)z, the sum in parentheses is finite

since the free part of the Mori cone consists of lattice points in a strongly convex

cone. Thus R is a ring, which may be thought of as the formal semigroup ring of the

integral Mori cone. An example is given by the quintic threefold, where R = Q[[q]]

is the ring of formal power series in ¢q. In general, one sees easily that the small

quantum product is defined on H*(X,R).

Finally, when (M, w) is a symplectic manifold, we can define the small quantum

product using Definition 8.1.1, but now it is necessary work with cohomology over
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the Novikov ring A(w,Q). This ring consists of all formal sums

Z agqfl, a,BEQ

BEH2(M,Z)

such that for any C € R, the set

{B:a3 # 0 and /w<C’}
B

is finite. It is straightforward to show that A(w,Q) is a ring and that the small

quantum product is defined on H*(X, A(w,Q)).

There are other coefficients one can use as well. In the algebraic case, one

can replace R with its ring of invariants under a suitable automorphism group

[‘Morrison'l], and in the symplectic case, one often restricts the Novikov ring to

spherical homology classes [MS]. See also [Getzler1].

8.2. Big Quantum Cohomology

The quantum cohomology discussed in Section 8.1 doesn’t use the full enu-

merative information provided by the Gromov-Witten invariants (Ion,s). This is

because the small quantum product is defined in terms of (I3 3), while the more

interesting invariants often occur for n > 3. For example, we saw in Chapter 7 that

for P2, the numbers

Nd = <IO,3d—1,d>([Pt]y ey [pt])

3d—1 times

have some remarkable properties. Yet the small quantum product for P? uses

only Ny = {Io31)([pt], [pt],[¢]) = 1. In this section, we will explore a version of

quantum cohomology-—the so-called big quantum cohomology—which takes all of

the Gromov-Witten invariants into account.

8.2.1. H*(X,C) as a Supermanifold. Before defining the big quantum prod-

uct, we need to discuss the supermanifold structure of H*(X,C). Fix a homoge-

neous basis Tp = 1, T}, ... , T of the rational cohomology H*(X,Q), and for each

7;, introduce a variable t; of the same degree as T,. These variables are local co-

ordinates for the supermanifold H*(X,C). The t; supercommute, which means

that

t,'tj - ( _1)deg t; degt; tj ti,

and t? = 0 if t, has odd degree. Hence the ring Clto, . . . , =] is the tensor product of

a polynomial ring (the even variables) with an exterior algebra (the odd variables).

We define the partial derivative operator 9/0t; by

9 .k k—1
I (k. 42y = kthl >atl( T t ) T

for any monomial t* € C[tp, ... ,tm) Dot involving ¢,. Then we can compute OF/0¢;

for any F € Clto, ... ,tm], and it follows that

&F 8*F
= (— deg t; degt,

BeE, =~ (Y 5,00
All of this extends easily to the formal power series ring Cllto, - .. , tml]-
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The reader should consult [Manin3] for more about supermanifolds. As dis-

cussed in [Alvarez, Lect. 2|, supercommuting variables arise naturally in quantum

physics when studying fermionic systems.

8.2.2. The Gromov-Witten Potential. The key tool used to define the

big quantum product is the Gromov- Witten potential. As above, we fix a basis

To=1,Ti,... , T of the rational cohomology H*(X, Q). Then put v = Y70 t; T},

where ¢; is a supercommutative variable with deg?; = deg T}.

DEFINITION 8.2.1. Let w be a complezified Kéhler class on a smooth projective

variety X. Then the Gromov-Witten potential is the formal sum

M=) 3 %Uo.n,a)(’v")qfi,
n=0 BeH,(X,Z)

where ¢f = e*TM Jo v

In the above sum, when 8 = 0 we implicitly have n > 3 since Mon(X,0)

does not exist if n < 2. There is some variation in the definition of the Gromov-

Witten potential in the literature, as some authors truncate the series by assuming

n > 3 for all values of 8. This is especially appropriate when we want to relate the

Gromov-Witten potential to Gromov-Witten classes.

In order to make sense of this definition, we need to explain what (I, 5) (TM)

means. This is somewhat subtle because of supercommutativity. The idea is to

expand

= (Z:-otiTi)nv
regarding both 7T; and t; as supercommuting variables. We will use multinomial

notation, where an exponent vector o = (ag,-- - ,am) gives monomials T and

of total degree |a| = ag + -+ + am. Also set al = ag!---am!. A useful observation

is that each term t,T; of v is even, so that £;T; can be commuted as a unit. Then

the sign rules of the Gromov-Witten invariants give the formula

(5.2 om0 = S @) fomahT) .
Ja|=n

The factor (o) = %1 is the sign determined by the equation

(8.23) (t0T0)% - (tmTm)®TM = €(Q)TE0- - - Tom 120 - - £2m .

Substituting (8.22) into the definition of ®, we would like to regard @ as a formal

power series in the ring Cllty,. .. ,t,]] discussed in Section 8.2.1. However, the

convergence questions encountered in small quantum cohomology are present in

this case as well. To be rigorous, we may need to replace C with one of the rings

R, R or A(w,Q) from Section 8.1.3. Thus, in the discussion below, we will let C

denote one of the rings

Cllto, - - s tm]] or Rlfto,.-. ,tm]] or R[[to, ... ,tm]] or Alw,Q))[[to,- .. ,tm]]

as appropriate.

Since the Gromov-Witten potential ® incorporates all possible genus zero in-

variants, we can think of ® as the generating function of the tree-level Gromov-

Witten invariants. Because of the factorials and noncommuting variables, it is more

accurate to say that ® is the supercommautative exponential generating function of
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.. the {fo,n,8)- From the physics point of view, ® has a natural interpretation as the

genus 0 free energy.

¥ The Gromov-Witten potential is sometimes called the genus 0 Gromov-Witten

potential. The genus g Gromov-Witten potential can be defined in an analogous

fashion using genus g Gromov-Witten invariants.

A simple example of a Gromov-Witten potential is given by an elliptic curve E.

Since there are no nonconstant maps P! — E, we only need to consider the Gromov-
Witten invariant (o3}, which is determined by the Point Mapping Axiom. Let

Ty, = 1 € HYE,C), T3 = [pt] € H*(E,C), and pick T},T> € H'(E,C) with

AR T> = 1. Then one computes that

(8.24) ® = Ledts — totta,

The minus sign is due to €(a) in (8.22). We will discuss some less trivial examples

of the Gromov-Witten potential in Section 8.3.

Using the Gromov-Witten potential, we define the big quantum product as

follows.

DEFINITION 8.2.2. Let @ be the Gromov- Witten potential for a smooth projec-

tive variety X. Then define

where g* is as in Definition 8.1.1 and T* = 3", g*'T,. Extending this linearly gives

the big quantum product on the cohomology H*(X,C).

Note that since the Gromov-Witten invariants with n < 3 occur as coeflicients

of terms in ® which are at most quadratic in the ¢;, then their presence or absence

in the definition of the Gromov-Witten potential does not affect the definition of

the big quantum product.

In the elliptic curve example (8.24), the Gromov-Witten potential is & =

%tfits — foti1t2. Using the cohomology basis Ty, 71,713, T3 from before, one com-

putes the big quantum product

3o I ad

Br550% 10 = 5t,0t:00 |10820t 10%20%

since ¢t; and t; are odd variables. It is easy to see that the big quantum product

coincides with ordinary cup product in this case.

The following lemma is useful in working with the third partials of the Gromov-

Witten potential.

T «Tp = Hits —tot182) Ty =T

LeMMA 8.2.3. For all i, j,k, we have

2 Y Y Mb)@ T TorFververvalil o360 (Lis 45, 4k, .
Ot 0t, 0t o

PrRoOOF. Let o = (ag,... ,am) be an exponent vector with |a| = n such that

7 = a — e; — ¢, — e; has nonnegative entries, where e;, e;, ; are the standard basis

vectors. If we can prove that

ta8 tY
mf(a)(fo.n,fi)(T“)a = e(v){Ion,8) (T2, TJ,T/c,T"):y-!,
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then the lemma will follow from (8.22). First suppose that t;,t;,tx are odd. We
can assume that a; = a; = a; = 1, and using the sign rules for (Io»,s) and the ¢

we can write
iy

bl
tCl

f(a)Uo,n,fi)(T")J = e(v+ e + e + ex) (o 8) (T, T5, T3, T7) tlctjtiy.

Then differentiating three times gives

& . t
mé(a)%,n,fi)(T )=y teite+ ek)<Iu,n,g)(Tk,7},71,T')¥.

Hence it suffices to show

e(v+ei+e; +er){long) (T, Tj, i, T) = (7)o, 8)(T6, T, Teey T7).

To prove this, observe that by (8.23), €(y) = (—1)*¢+1)/2 where s is the number of

odd variables appearing in t” (we can assume the odd variables appear to the first

power). Also, (7.33) implies s+ 3 = 0 mod 2 since t;,t;, tx are odd. From here, the

desired result follows easily.

The other cases are similar and are left for the reader. [m}

8.2.3. The WDVV Equation and Associativity. Our next goal is to show

that H*(X,C) is a ring under the big quantum product. As in Section 8.1, the hard

part is associativity. But here, something remarkable happens, for the associative

property of big quantum cohomology is equivalent to a certain partial differen-

tial equation satisfied by ®, the so-called WDVV (= Witten-Dijkgraaf-Verlinde-

Verlinde) equation [Witten2, DVV1, DVV2].

THEOREM 8.2.4. The Gromov-Witten potential ® satisfies the equation

I

2 51.0,0t, 0 Btydtdl

e i_1\deg ti(degt,;+degty) ab

1) ; B1,0tx0ta ° Bty0t:OL

for all i, 5, k,1.

PROOF. We will only sketch the main ideas since a detailed proof can be found

in {KoM1]. For simplicity, we will also assume that H*(X,C) has only even coho- .

mology so that we don’t have to worry about signs. '

The proof will follow the same strategy used to prove the recursion relation

(7.39) for Gromov-Witten invariants of P2. In place of the class £ of (7.40), we will o

use the Gromov-Witten class e

Ifl.n+4,fi(’7n1 7-‘1.7 I‘:j, Tk: :Fl) € H‘(-MU.'H.+41 C)1

where v =i ¢, T;. This class will be evaluated on two linearly equivalent divisors

which we now describe. Let theset T = {1,... ,n,1,j,k,} index the n+4 arguments

of I 4,5 (this is a slight abuse of notation). As in the discussion preceding _(7,41),

each partition of Z into disjoint sets A and B gives a divisor im(p4 5) C Mo n+4-
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Then define

D(i,jlkl) = Y im(pa,B)
i,j€EA kleB

DGkl D) = 3. im(vas)
j.keEA ileB

Similar to what we did in (7.41), one can find a linear equivalence

Now consider the sum on the left hand side of the WDVV equation. Using

Tk =3, T, and Lemma 8.2.3, this can be written as

1 n [+1 n
> g Jom+2) (T T TarYTM) 9 ® (Tony+3,8.)(Too T, T, YTM2) @42,

where the sum is over ni,no, 81,2, b2,a,b. We will break this sum down into

smaller sums for which n; + nz =n and B1 + B2 = [ are fixed. By commutativity,

this smaller sum (corresponding to a particular choice of n and 3) can be written

as

1

3 i Gons3,8) (0TM T T3, Ta) 6% (T g ,0:) (T, v T T €,
nylng!

where the sum is now over ny,na2,81,82,b2,a,b with ny +nz =n and B1 + 52 = 8.

If we expand this sum using (8.22) and apply the Splitting Axiom, one can show

that the smaller sum reduces to

1

/ =Ionta,8(v" T T T, Tt) €7,
D(jlkD) TM

where D(i,jlk,1) is the divisor defined above. Hence the left hand side of the

WDVYV equation is the sum

o«
1

/ L Lomsas(yTM Ty Tjy Te, Th) .
D
. |

n=0 BeH,(X,Z) (i,51k,8) e

Applying the same process to the right hand side of the WDVYV equation, we

get the sum

o =]

1
/ L Lomras(r" T Ty T, T) 0.
D
Y

n=0 geH,(x,z)” Pl n:

By the linear equivalence (8.25), the above two sums are equal, and the theorem

follows immediately. u

It is now easy to show that big quantum cohomology is a ring.

THEOREM 8.2.5. H*(X,C) is a commutative ring with identity To = 1 under

the big quantum product.

PRoOF. The big quantum product is supercommutative by the Equivariance

Axiom from Section 7.3. We next show that Tp = 1 is the identity not only for
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cup product but also for the big quantum product. This is easy, for applying

Lemma 8.2.3 with T = [X] gives

‘83_'_‘1) = 3 1 I To, T, T, vTM) ¢°Bta0t, Bt => > 71 J0n+3,8)(T0, T T, VTM)
(8.26) n=0 geHa(X2)

= {Io3,0)(To, T}, Tic) = / T; U Tk = gji,
X

where the second and third equalities are by the Fundamental Class and Point

Mapping Axioms respectively. Since (8.26) implies Tp * T; = T,, we see that Tj is

the identity.

Finally, we need to prove associativity. Using T* = 5=, 9T} and the definition

of big quantum product, we get ’

sl e
T.xT;) % T, = ab leT,.(Tix J) ok ; ; atiatjata g Oty Ot Oty g

Expanding (T; * Ty) * T; in the same way and using the WDVV equation from

Theorem 8.2.4, we see immediately that

(T; * T.'I) * T = (_1)degT,(deg’1',-+deng)(1} *Te) * T,

and then associativity follows since * is supercommutative. Im|

This theorem shows that the WDVV equation implies associativity of the big

quantum product. The converse is also true, so that associativity is equivalent

to the WDVV equation. The is part of the Dubrovin formalism, which will be

discussed in Section 8.4:

We should also mention that big quantum cohomology interacts nicely with the

intersection product g(a,b) = f, a Ub. Similar to Proposition 8.1.6, one can show

that the big quantum product satisfies

(8.27) glaxb,e) = g(a,bxc)

for all a,b,c € H*(X,C). 1t follows that H*(X,C) is a Frobenius algebra under the

big quantum product, and we also get the formula

80Afl*n*Tk—m

There is a Kiinneth formula for the big quantum product [KoM2, Kaufmann].

Also, Section 10.1.1 will discuss an enlargement of the big quantum product called

the gravitational quantum product.

8.3. Computing Gromov-Witten Invariants, II

We now revisit some of the examples discussed in Section 7.4 to see how these

examples relate to big quantum cohomology and the Gromov-Witten potential.

8.3.1. Structure of the Gromov-Witten Potential. As we will see be-

low, explicit formulas for the Gromov-Witten potential can be rather complicated.

However, ® has a structure which makes the formulas easier to understand.
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We first show that ® is homogeneous once we assign appropriate degrees to its

variables. Using the notation of the previous section, we have the cohomology basis

.. and the supercommutative variables t,. By (8.22), a typical term of ® looks like

+G m

Toma)(TE0, . Ty I o,
R ag! am!

where ag + -+ - + am = n. However, we also have the degree condition (7.33), which

tells us that

aodegTo+---+amdeng=2dimX—-2/ux+2(3-0—-3+n).
B8

Using ag + - -+ + @Gm = n, we can rewrite this in the form

ao(deg Ty — 2) + -+« + am(deg Trm — 2) +2/ux = 2dim X - 6.
8

Hence the Gromov-Witten potential ® is homogeneous of degree 2dim X — 6 pro-

vided we assign the following degrees to tg, ... ,tm and ¢°:

t; has degree deg(T})—2

(8.28) ¢? has degree 2/uX.
8

Thus, for the t;’s, we subtract 2 from their previous degree (so their parity is

unchanged). For the ¢#’s, this requires that they be formal symbols, as in the rings

R, R or A(w,Q) from Section 8.1.3, rather than just numbers.

The homogeneity of the Gromov-Witten potential is very useful in practice.

It implies that many terms in the Gromov-Witten potential are zero for degree

reasons. Also, when applied to quantum cohomology, homogeneity says that the

coefficient of ¢ in T; * T; has degree deg(T;) + deg(T}) +2 ffi wx, just as we noted

for the small quantum product in the proof of Proposition 8.1.5. (However, when

interested only in the quantum product, the degree condition is typically easier to

use than homogeneity.)

As a simple example, consider the elliptic curve Gromov-Witten potential & =

%tgtg, — tot1ty from (8.24). This is homogeneous of degree —4 provided to,%1,%2,13

have respective degrees —2,—1,~1,0.

A useful property of ® is that by the Point Mapping Axiom, the terms cor-

responding to 8 = 0 reduce to ({Io30)(7*) = § [ ¥*. Hence we can decompose

the Gromov-Witten potential into “classical” and “quantum” terms (this is the

terminology of [FP]) as follows:

® = Plassical + (pqua.ntum

[T 3 dwane
n geHx(X.2)—{0}

Note that by the Fundamental Class Axiom, the variable f; appears only in the

classical part ®cjassical Of ®-

Another nice property of ® is that by the Divisor Axiom, the variables cor-

responding to divisors appear in exponential form in ®quantum. TO see why, or-

der the basis elements T, so that Ti,...,T. is a basis for H*{X,Q), and write
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v =tTo+8+¢ where 6 = 37_ ,T; and € = 3 .= . ;T;. Then, using the

binomial theorem and the Divisor Axiom, we obtain :

@--/’y + Y Sl 64N
n E#O

(8.29) = % /Xva > Z;;,%(Io,b,fifle")( /fl 5)

’7 + 2 E 5 To)(e)el2? ¢°
b fl#O

This formula is discussed in [KoM1, Prop. 4.4] and has some implications for

quantum cohomology (to be discussed in Section 8.5.1).

8.3.2. P? Revisited. For P2, we first compute the Gromov-Witten potential,

The cohomology basis is Ty = [P?] = 1, Ty = [{] and T> = [pt], so that by (8.28),

tg, t1,t2 have degrees —2, 0,2 and g = ¢ has degree —6. As usual, we write Gromov-

Witten invariants as {Iy,aq). In this notation, Ng = (onsd._l,d)(Ts ~1 is the

number of degree d rational curves passing through 3d — 1 generic points in P2,

We know that ® is homogeneous of degree —2, and the classical part of ® is

L(t¢t2 + tot?). A typical term of the quantum part is

N
(Io,a+b,d) (Tlav T 'aj'l')]' aq,

where 2b 4 (—6)d = —2 by homogeneity. This gives b = 3d — 1, so that the term

can be written

a1y (d01)® 31 () !{Tosa—1,a) (T2 ) Ba—1? al (3d- 1)‘q’

where d* comes from the Divisor Axiom. (This reproduces a calculation done

earlier in Section 7.4.2, though here it goes more quickly.) Thus the Gromov-Witten

potential of P? is

=Ny

1 .. g1

= (2t Y Naetr 22— g%,2(02+t0t1)+ Nge (3d—1)!q
d=1

Now we can have some fun. For indices (,7,k,l) = (1,1,2,2), the WDVV

equation from Theorem 8.2.4 becomes

(8.30) 222 + ®111P122 = B,

where the subscripts indicate partial derivatives. This is easy to work out since

Dok = g;x by (8.26). To exploit (8.30), note that Ny appears in ®32; in the term

1
N £3d—4 od

“GBa-aniz ¢

This suggests looking at terms containing t3d_4 4 in &2 112 and $,1;P122. In P12,

the terms with no t; are
.

1

Nd1 d:l2 | t3d1 -—2qu s
(3d, —2)! 2
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so that the term containing t5° *¢% in ®{), is

1 1
Ny, Ny,d2d2 

—

dlf§=d QAT (34 — 2)1 (3dz - 2)1°
We leave it to the reader to show similarly that the term containing tgd'“‘qd in

6111 P10z is

1 1
Ny, Ng,d3d tld—dgd,

dy+do=d A (3d1 - 1)' (3d2 - 3)' 2

From here, the recursion relation

3d—4 3d—-4Ny = 3 NgNg (d%dg( ) - didz( ))
dy +dy=d 3dy -2 3d; -1

follows immediately from (8.30).

It is also easy to determine the big quantum cohomology of P2. For example,

since ®g11 = 1, we have

Ty *Ty =To + 811171 + 2112T0.

In contrast, the small quantum product for P2 has T} * T} = T3, so there is a big

- difference between the two quantum cohomologies. Note also that associativity of

the big quantum product is essentially equivalent to the WDVYV equation discussed

in Section 8.4. Often, associativity is easier to use in practice. For example, (8.30)

follows directly from writing out (73 * Ty) * Tp = Ty * (T} * T3) and comparing

the coefficients of Tp. Hence the recursion relation for Ny is a straightforward

consequence of associativity of the big quantum product. As noted in [FP}, “the

quantum formalism has removed any necessity to be clever. One simply writes

down the associativity equations, and reads off enumerative information.” A sys-

tematic approach for doing this is discussed in [DI], and applications to P® and

quadric threefolds can be found in [FP]. See also [Kresch| for a deeper study

of associativity equations and their relation to Kontsevich’s First Reconstruction

Theorem {Theorem 7.4.1).

For P2, one can also generalize Ny to the number Ny(a,b,c), which counts

the number of rational curves in P? of degree d passing through a general points,

tangent to b general lines, and tangent to ¢ general lines at specified general points

on each line (for a + b+ 2¢ = 3d — 1). These invariants are studied in {EK1|, which

derives recursion relations for the Ny(a,b, ¢) extending the relations for Ny(a, b,0)

given in [DI]. Furthermore, one can use the Nu(a, b, ¢) to define a generalization of

the big quantum cohomology of P? called the contact cohomology ring [EK2].

8.3.3. The Quintic Threefold Revisited. We will first study the Gromov-

Witten potential of a quintic threefold V. A cohomology basis of H*(V,C) is given

by Ty = [V),T1 = [H], Tz = [}, T3 = [pt], and 1, ... , Y204, where the ; are a basis

of H3(V,C). The corresponding supercommutative variables will be tg, t1, £, 3 and

Ui, ... ,Uz04. Also let g;; = f,,viU~;. Then the classical part of @ is

1 5
Belassical = tata + totitz + Zt3 — D gijtousl;,

2 6 i<j

where the minus sign is due to (a) in (8.22).
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Turning to the quantum part, we know that & and ¢” have degree 0 and that ¢,
doesn’t appear in @quantum. Since to,t3 and the u; have positive degree by (8.28),

we see that ®quancum depends only on t;. But T is the class of a divisor (the

hyperplane section H), so that (8.29) implies

(8-31) q)qumtum = Z(IO,O,d)edthd:
d>1

where as usual we write (I p,4) instead of (Ipg,g). Thus the Gromov-Witten po-

tential of the quintic threefold is

1 5
Stits + totitz + ét'? - Z%‘jtouiw + Z(Io,o,d)(eth)d~d = 3

i<y d>1

From here, it is relatively simple to describe the big quantum product of V. It

coincides with cup product for all pairs of basis elements except for T} * T}, which

is given by

Ty *»Th = &11; 5.

Furthermore, one has

/ Ty *Ty 1 = @1y,
X

and, since T; is the class of H, ®;;; is given by the formula

=Y (looa)d®(e"q)* =) (log.a)(H,H,H)(e"g)".
d>1 d>1

If we replace e'' g with ¢ in these formulas, we recover precisely the small quantum

cohomology of the quintic threefold.

More generally, for any smooth Calabi-Yau threefold, we can write the Gromov-

Witten potential in an especially nice form. First observe that 3 % 0 implies

(8.32) (Iong)(@y,... ,0,) =0 unless the ¢; all have degree 2.

Then, if Ty,...,T; is our chosen basis of H2(V,C), (8.32) implies that ®qyancum i

a function of t,,... ,t,, and by (8.29), these variables appear in exponential form.

Hence ®giantum can be written

q)qua.nt.um = Z(IO,O,fl)effi é qfiy
B8#0

where § = 37_, t;T;. If we drop the factor of ¢ and let g = efs % = H{=let’ffi =,
then the Gromov-Witten potential is given by the elegant formula

(8.33) @ = Bajassicar + Y (l0,0,8) &
/%0

Using (8.32) and (8.33), we see that

8 /
s —5—=[ TUT;UTc+ (I,O,>/1;/T/qufi6t,-8tj0tk v J BZ#O 9,0,8 3 B 7 s

(8.34) = (Ioa o) (T, T, Te) + 3 (Io3,6)(T, Ty, Tit) @
A#0

= (T,,Tj, Tk).
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where the second equality uses the Point Mapping and Divisor Axioms and the

third equality uses (8.19). This shows that replacing the Gromov-Witten potential

with (8.33) transforms Definition 8.2.2 into the definition of the small quantum

product. It follows that there is essentially no difference between the big and smalil

quantum cohomologies for a Calabi-Yau threefold. One can also check that the

WDVV equations boil down to the associativity of cup product in this case. This

is very different from PZ, where the big quantum product and WDVV equation

contain much more enumerative information than the small quantum cohomology.

In Section 8.5.1, we will see that for general varieties there is essentially no

difference between the big and small quantum products, provided we set the pa-

rameters ¢; to 0 whenever T; has degree different from 2.

8.4. Dubrovin Formalism

The algebraic consequence of the Gromov-Witten potential is the big quantum

product. In this section, we will explore the main geometric consequence of ®, which

is the Dubrovin connection. In Section 8.5, we will use the Dubrovin formalism to

construct a naturally occurring variation of Hodge structure on the Kahler moduli

of a Calabi-Yau manifold.

Rather than define the Dubrovin connection just for the Gromov-Witten po-

tential ®, we will follow [Dubrovinl] and develop a more general theory which

" uses an arbitrary potential function F.

As usual, we have the basis Tp = 1,... , T of H*(X,C) and the associated

supercommutative variables to,... ,tm. We also have the matrix (g1} of the in-

tersection pairing and its inverse (¢*). Then let F' : H*(X,C) — C be an even

formal power series in the ¢;. In nice cases, F' will converge on an open set of the

supermanifold H*(X,C). Given F, we define the tensor Aj;x by

_ PF

Uk Bt.0t,0ts

If we indicate partial derivatives by subscripts, note that Ayjx = Fij:. Following

the usual physics convention for “raising indices”, we set

(8.36) Ak =3" ;0%
i

(8.35) A

We can now define two basic objects: the binary operation

I’,;*'I}':EAka
k

]

and the Dubrouvin connection

7] 7]
A —) = k=

v%:(atj) /\;Auatk’
where A is a nonzero complex number.

There is a strong relation between the binary operation * and the connection

V?*, where properties of one translate into properties of the other. Here is a brief

sketch of three important aspects of this relationship:

e Torsion and Commutativity. An easy consequence of (8.35) and (8.36)

is the identity

k degt, degt, 2k
Af = (—1)%BREH AT,
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Using this, one can prove without difficulty that the connection V> has

zero torsion (in the supermanifold sense) and that the binary operation « is

supercommutative.

e Curvature and Associativity. By computing the curvature (in the su-

permanifold sense) of the connection V*, one finds that (V*)? is a sum of
two terms. The first term vanishes since

2]

at
by (8.35) and (8.36), and the second term vanishes if and only if

ZA%Aik = (_1)degt,~(degt,+degtk) EAgkAlai-

a a

dAic] = (__1)degt. degt; a_t_AZ

We recognize this as the WDVV equation, and then it is easy to show

V> is a flat connection <= F satisfies the WDVV equation

<=> * is associative.

e Identity. We would like T to be the identity for . We have the easy

equivalence

Aoij = gi; for all i,j <= A}, = &; for all 4, 5,

and then it is straightforward to prove that

T is the identity for * <= Ag;; = g;; for all 4,5

= Vi (&) =2% foralli.

Proofs of these assertions can be found in {Dubrovinl, KoM1, Manin3|.

From here on, we will always assume that F satisfies the WDVV equation and

that Ag;; = gi; for all 4,7. This means that the Dubrovin connection V* is flat

and torsion free and that V3 acts as multiplication by X on g_ti- In terms of the
to

binary operation *, the consequences for H* (X, C) are as follows.

PROPOSITION 8.4.1. If F satisfies the WDVV equation and Ag;; = g;; for all

i,J, then H*(X,C) is a Frobenius algebra under = with Ty as identity.

ProoF. Our hypothesis implies that * gives a supercommutative algebra with

To as identity. So we only need to prove that it is Frobenius. However, another

consequence of (8.35) is

Aijk - (_1)degt.(degt]+degtk)Ajki.

We know also that F is an even function in the t;. These facts imply that

9(T: « T}, Tie) = g(T3, Ty + Te).

Thus H*(X,C) is a Frobenius algebra under *. ]

The potential functions ® and ®gp,,) we studied earlier satisfy the conditions of

Proposition 8.4.1. This is why the big and small quantum products make H*(X, C)

into Frobenius algebras.

The construction of the Dubrovin connection defines V* on the tangent bundle

of the supermanifold M = H*(X,C). If we identify %‘ with T}, then we get a
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connection V* on the trivial bundle H*(X,C) x M. One easily checks that this

new V> is given by

V3 (T)) = AT+ T,

o that we can think of the Dubrovin connection as being given by quantum mul-

tiplication. This point of view will be useful in the next section.

The Dubrovin formalism has some further aspects, which we now discuss. First

note that the theory described so far doesn’t use the homogeneity of ® mentioned

in Section 8.3.1. Translated into terms of the Dubrovin connection, homogeneity

means that there is an even vector field E, called the Euler vector field, which

interacts nicely with V*.
The second thing to observe is that V* is a one-parameter family of connections

V. If we regard A as an affine coordinate for P!, then [KoM1, Manin3| show

how V* extends to a connection 7> on the tangent bundle of H*(X,C) x P! with

singular points at A = 0,00. For X = P2, the Laplace transform of ¥* has some
surprising connections to the sixth Painlevé equation, as described in [Manin3).

The structure provided by the supermanifold H*(X,C) with the metric g and

the even potential function F satisfying the WDVV equation is an example of a

Frobenius manifold [Dubrovinl, Dubrovin2]. This has some interesting conse-

quences. For example, consider the power series expansion of F. Ignoring terms of

“degree < 2 in the t;, we can write F in the form

F=i Z Cat®.
n=3 |a|=n

Then define (I,) : H*(X,C)®* — C by the equation

e =y, w23,

where we are using the notation of (8.22). This allows us to write F' as

— 1
F=3 —{L)G"),

n=3

which should look familiar. In [Manin3], Manin proves the remarkable result that

for n > 3, there are maps

I, : H*(X,C)®" — H*(Mj.n,C)

which satisfy the Splitting and Equivariance Axioms and determine (I,) in the

usual way, i.e.,

(InMer,. .. o) = /_ In(ay,. .. o).
Mo.n

The In, n > 3, form what Manin calls a cohomological field theory, and the {I,) are

its correlation functions. The conclusion is that any even function F on H*(X, C)

satisfying the WDVV equation leads to a structure surprisingly similar to the

Gromov-Witten classes. We should also mention that the Kinneth formula for

quantum cohomology, which was mentioned in Section 8.2.3, holds more generally
for cohomological field theories [KoM2, Kaufmann|. One can also define higher

genus cohomological field theories [Manin3, KK].
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Finally, it is important to remember that when discussing the Dubrovin for-

malism, the function F' can be a formal power series. Hence the connections vA

may be formal connections, and for this reason they are sometimes called formal

Dubrovin connections. In this situation, we must use one of the coefficient rings

discussed in Section 8.1.3 in order to define the corresponding ring structure on

cohomology.

8.5. The A-Variation of Hodge Structure

In this section, we will show how small quantum cohomology gives a natural

variation of Hodge structure on the Kihler moduli space studied in Chapter 6.

This will enable us to formulate a precise mathematical definition of mirror pair in

Section 8.6.

8.5.1. Big versus Small Quantum Cohomology. In order to study the

A-model connection defined in Section 8.5.2, we need to understand the relation

between big and small quantum cohomology.

We have our usual setup with the cohomology basis Ty = 1,Ti,-.. ,Tm of

H*(X,Q), where Ty, ..., T. span H?(X,Q). The big quantum product, as defined

in Definition 8.2.2, is a formal power series in £g,t1,... ,tm and ¢%'=exp (2mi ffl u).

We begin by observing that the variables ti,... ,t, appear in exponential form in

this series. More precisely, Definition 8.2.2, Lemma 8.2.3, and the manipulations

used in (8.29) easily imply the following lemma.

LEMMA 8.5.1. If we set § = S.7_, t;T: and € = toTo + Y1 iy 6T, then the
big quantum product is given by

— 1

TixTy= 33 3 = Tomsss) (T T, Tey ") el ' T
k n=0 S )

Using this lemma, there are several ways to compare big and small quantum

cohomology. The simplest is to set the variables to,... ,tm = 0 in the formula for

T; = T;. In the notation of Lemma 8.5.1, we set § = e = 0, which gives

Tow Tylomsg= 3 2 o380 (T Ty, T) ° T
PR

Since

(8.37) T xeman Ty = 3 9 (To.3,6)(T0, T3, T) 4° T,
kB8

we see that

T, * T'J'|5=E=__O = T; *sman Tj)

so that the small quantum product can be regarded as the restriction of the big

quantum product.

However, since we want to use the Dubrovin formalism of Section 8.4, we will

take a slightly different approach, where we “restrict to H2(X)”. This means the

following. The big quantum product is defined (formally) on H*(X) in terms of

to,... ,tm and ¢?. Hence “restricting to H?(X )" means setting to = try1 = -+~ =
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tm = 0in the formula for T;+7;. This is equivalent to setting ¢ = 0 in Lemma 8.5.1,

which gives

(8.38) ToxTyl_g = 3. S Uoas)(T:, 15, Ti) ef2 P2 T,
kg

We will call this the restricted big quantum product. It is similar, though not

identical, to the small quantum product (8.37). The similarity is highlighted if we

note that

eatgh = eJa(b+2miv),

Thus, the exponential terms in (8.38) and (8.37) both involve the integral over 3

of an element of HZ(X), in one case § + 2miw and in the other 2miw.

Hence we can get these formulas to agree as follows. If we let w = 0 and set

@ = exp ([6) = exp ([, Lo, T4,

then the restricted big quantum product becomes

(8.39) T Tyl o= D 3 (Toss)(Ti T3, T) & T*.
k B

This compares very nicely with (8.37). From a formal point of view, we can

regard ¢° in (8.39) as a formal symbol depending on §,11,... ,¢- in an appropri-

- ate coefficient ring, and then we get the same formal series as (8.37) by using a

homomorphism of coefficient rings which sends g® to ¢8.

On the other hand, we can also relate (8.39) and (8.37) when regarded as formal

functions on H2(X) in the variables t1,...,t-. The idea here is that the functions

agree provided we set

1 r

8.4 = — t:.T;(8.40) “=om ,=Z1
in (8.37). Hence the convergence assumptions for (8.37) are the same as for (8.39).

With these conventions, the restriction of the big quantum product to H' 2(X)

is the small quantum product both formally and analytically.

8.5.2. The A-Model Connection. For the rest of the chapter, let V be a

Calabi-Yau manifold of dimension d > 3. Recall from Chapter 1 that the complex-

ified Kéhler space of V is the quotient

Kc(V) = {w € H3(V,C) : Im(w) is Kahler}/im H*(V, Z),

where im H2(V, Z) is the image of the natural map H*(V,Z) — H%(V,C). We will

now explain how the small quantum product *sman gives an interesting connection

over Kc(V).

As usual, we use a cohomology basis Tp, . . . , Trm of H*(V,Q). Furthermore, the

basis elements T3, ... , T lying in H2(V, Q) will be assumed to satisfy:

e Ti,...,T- are a basis of im H2(V, Z).

e Ty,...,T, are in the closure of the Kahler cone.

Since H2%(V) = 0, it is easy to see that such T1,... , T can be found.

Now introduce variables uy,. .. ,u, corresponding to T1,... , T, and set

(8.41) w = iu,—Ti e H3(V,R) +iK (V).
i=1
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Then, for any 8 € H,(V,Z), the function ¢® = ¢*TM Js“ is well-defined on Kc(V)
since T; € im H2(V,Z). In Chapter 6, we used t; instead of u;, but the reason for
using u; here will soon become apparent.

Now let *sman be the small quantum product on H*(V,C). This requires some

convergence assumptions, which we will defer until later. Then consider the trivial

bundle # = H*(V,C) x K¢(V) over K¢(V). We define the A-model connection V

on H by the rule

8.42 Vo (T;) =Ti*sman T3, 1<i<r, 0<j<m.24 J

Thus V is built from the small quantum product, thofigh it only multiplies by
elements of H2(V,C). Writing out V using the definition of small quantum product
gives

(8.43) Vo (T)) =Y. 3 (Toss)T:Ty,T)a° T .
’ k BEH(V,Z)

Note that this connection is defined on K¢ (V) and that ¢# is a nonconstant function
on this space. Thus V records the variation of the small quantum product as we

vary w.

Strictly speaking, V is only a formal connection since convergence of the series

in (8.43) is still conjectural. For the sake of exposition, however, we will regard V
as an honest connection. Section 8.5.3 will make precise convergence assumptions

concerning V.

The connection V has the following nice property.

PROPOSITION 8.5.2. The A-model connection V is flat.

ProoF. This will follow from the flatness of the Dubrovin connection V*,

provided we are careful in how we invoke the theory of Section 8.4.

We will apply the Dubrovin formalism to the Gromov-Witten potential with
q° = 1. This gives a flat connection V* on H*(V,C) defined by

(8.44) Ve (T) =ATi=Tj,

where » is the big quantum product and %g,...,t, are the usual variables for

H*(V,C). When we restrict V* to H*(V,C) as in Section 8.5.1, we claim that

1
4 =V f = —(8.45) V=v" for X g

Once we show this, the proposition follows immediately from the flatness of V*.
To prove (8.45), note that by (8.39), the restriction of the Dubrovin connection

can be written

Vi (T =233 (oas) (T, T;, i) o T,
kg

where we use the variables ty,... ,t. for H2(V,C). By Section 8.5.1, this becomes

(846) V?F‘ (T']) = AT’; *small T:]

under the substitution qf — ¢, provided ¢f is defined as in (8.40) to be

1 r

= — t,T;.@ 2w ; '
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The A-model connection is defined using variables uy,... ,u,, and comparing

the above equation to (8.41), we see that u; = (1/2m%)t;. In terms of the coordi-

nates 41, - . ,g- on the complexified Kahler space, this means

g; = exp(2miu;) = exp(t;),

and hence

0 _ 0 a2 —omied —om
at; ~ Ydg; Bu; B ot

From here, (8.45) follows immediately from (8.42) and (8.46), which completes

the proof of the proposition. O

(8.47)

In Chapters 10 and 11, we will find it more convenient to use the variables

t1,... ,tr rather than the u;,..., v, used in the definition of the A-model connec-

tion. For the rest of this chapter, however, we will continue to use uy, ... %, since

they relate more directly to the discussion in Chapter 6.

Also, in Chapter 10, we will encounter a twisted form of ¥*. This is the

Givental connection V9, which is defined by

v (YaT) =hY 32T 3 a5 T toman T,
* =0 j=0 =" 7=0

where £ is a parameter. For now, we can think of & as a nonzero complex number, *

but we will see in Section 10.2.3 that /i has an intrinsic meaning in C*-equivariant

cohomology. In terms of the Dubrovin connection V*, one has

V9 = AV for A=-h"l.

Strictly speaking, V9 is not a connection (because of the factor of A), but it still

makes sense to speak of its flat sections, which are just the flat sections of V"

8.5.3. Asymptotics of the A-Model Connection. In defining the A-model

connection V, we used an integral basis T3, ... , T- lying in the closure of the Kahler

cone of V. To study the asymptotics of ¥, let o be the simplicial cone generated

by T4, ... , T One easily sees that Int(c) C K(V), so that

D, = (H*(V,R) + ilnt(0)) /im H(V,Z) C Ke(V)

is an open subset of K¢ (V).

As we saw in Section 6.2.1, the map

w4+ -+ uTr e~ (q,.- 1 8) = (e2TMr, L. ,emiur)

induces a biholomorphism D, = (A*)", and under the inclusion (A*)" C AT, we

can regard 0 € A" as a large radius limit point in the terminology of Chapter 6.

Furthermore, assuming the cone conjecture from Section 6.2.1, this large radius

limit point lives naturally on the boundary of a smooth compactification of the

Kihler moduli space of V.

The convergence assumption we want to make concerning the small quantum

product is that the series in (8.43) converges for all w whose images under the above

map lie in some fixed neighborhood U of 0 € A”. Hence the A-model connection is

defined over U N ATM. However, for simplicity of exposition, we will assume that V

is defined over all of A".
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We now apply the methods of Chapter 5 to study the monodromy of the A-

model connection. In the partial compactification of Dy given by AT, the comple-

ment AT — D, = AT — (A*)" is a divisor with normal crossings Uj.,D;. Let T;

denote the monodromy about D;, which is determined by a loop around the origin

in the jth factor of (A*)". These monodromy transformations are computed as

follows.

PROPOSITION 8.5.3. The A-model connection V of a Calabi-Yau manifold V/

has regular singular points along ATM — D,,. Furthermore, the monodromy transfor-

mation T; is unipotent and, up to conjugacy, its logarithm N; = logT; is given by

cup product with —T);.

PROOF. By (8.47), the coordinates g; = TM1 of A” satisfy

7]
= omigi—

Bu, " lipg;

so that (8.43) and T* = ¥_, ¢** T, imply

1

(848) Ve @)=5=—3, Y (losa) Tl ¢ T
? TS peta (v

Since 3 is effective and T3, ... ,T;. are in the closure of the Kahler cone,

L, T I To

=g

has nonnegative exponents. In fact, we can assume that the exponents are positive

whenever 8 # 0. To see why, suppose that / BTj = 0 for some j. Then the Divisor

Axiom implies

(To3,8)(T5, T, Th) = ([ T) Jo,2,8)(Tk, T1) = 0

since 3 5 0. This allows us to regard the right hand side of (8.48) as a series where

¢” has positive exponents in the g; whenever 35 0 is effective.

By (8.48), the connection matrices of V relative to the basis Tg, ... , Tm have

at worst logarithmic poles along ATM — D,, which by Thm. 4.1 of [Delignel] shows

that we have regular singular points.

Now fix j between 1 and r. To compute the monodromy T;, we work on the

“slice® of AT given by ¢; = constant for i # j. This allows us to regard V as a

connection over A* with g; as coordinate, and the connection matrix of V is given

by (8.48) for our fixed j. To compute the residue of this matrix at g; = 0, observe

that if 3 # 0 is effective, then

(8.49) qfi — 0 as q; — 0

since ¢® has positive exponents in the g; for 3 # 0.

Then, by (8.49) and (8.48), the residue matrix of Vya_ at g; =01is
9

% ( ;(10,3,0)(1"17 T, Th) yls) fos0 5;—1 ( ; g /v T; VT U Tl)

We will denote this matrix by Resg,—o(V). By the definition of g**, one sees easily

that Resg,=o(V) is 1/(2mi) times the matrix representing the linear map given by

cup product with 7.

To finish the proof, we will use the facts from the second set of bullets following

(5.5) in Section 5.1.5. The point is that cup product with T, is nilpotent, so that
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Resg,=o(V) is also nilpotent. Hence its only eigenvalue is 0, which implies that the

matrix of 7; is conjugate to exp(—2miRes, =o(V)). This proves that 7; is unipotent

and that its logarithm N; is conjugate to cup product with —Tj. O

Although N; is conjugate to cup product with ~T7, we will see that care is

required in interpreting what this means. The situation will become more clear

once we understand the canonical extension of H.

Since ¥ has regular singular points, the bundle H over (A*)" has a canonical

extension H over ATM. The key idea to understanding ‘H is as follows: if s is a multi-

valued section of H which is flat for V, then 5 = exp(— 3, u;N;) sisa single-valued

section of H which extends naturally to H [CaK]. We can thus use sections § to

trivialize 7 over a neighborhood of 0 € A”. (Our signs differ from those in [CaK]

since we use a counterclockwise monodromy generator.)

One common way to express this is via the connection V¢, which is defined by

(850) Ve = V+Zijduj‘

An easy computation shows that the V°-flat sections are precisely those of the form

exp(~ 3_; u;V;) s where 5 i V-flat. Thus V¢ extends to a connection on H, and its

_ flat sections trivialize the canonical extension in a neighborhood of the boundary

point 0 € A".

We can think of our cohomology basis Ty as giving sections of H over (A )"

which trivialize the bundle. Our next task is to relate the Tj to the trivialization

given by V°-flat sections.

PROPOSITION 8.5.4. For each Tk, there is a unique V°-flat section 3 such that

51 = Tk + terms of higher degree and 5x(0) = T. Furthermore, the matriz of N;

acting on the 5x equals the matriz of cup product with —T; acting on the Tj.

PROOF. We first give the proof when dim(V) = 3. For simplicity, we will

restrict to even cohomology, so that the cohomology basis can be written as

Ty=1T,...,T..T,...,T7,T°,

where T7 € H4(V,Q) are dual to T; € H*(V,Q) for 1 < j <r, and T° ¢ H3(V,Q)

is dual to Ty. These classes are all integral.

We first describe a basis of flat sections of ¥ using the Gromov-Witten poten-

tial. We gave a nice formula for & at the end of Section 8.3.3, which here can be

written

. o+ 3

2= T [ (T + Ylloos) &
(8.51) ’ -

2mi)3 ,

C [ (e + e

T T. 
B

where ¢° = q{" 1---q£" and ¢; = exp(2miu;). As in the proof of Proposi-
tion 8.5.3, we can restrict the sum to 8 # 0 which are effective and satisfy f 5 T; >0

for all j. It follows that Py is holomorphic in the g; and vanishes at 0 € Ar. Then,
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in terms of @, one can easily check that the A-model connection is given by:

Ve (T%) =0

V;_(T") =6:T° 1<k<r

(8.52)
T 1<k<Vso;‘_i (T) = 27rz)3 Z auzaukaue Lsksr

Vg (To) =

where we have used (8.47). A straightforward calculation shows that a V-flat basis

of H is given by:

S =70

sF=TF—uT° 1<k<r

2

e =Tk~ o3 Z afkgug ‘+ (2;1')3 gu_q; T,
(8.53)

+ W(z‘b—;ujm)jfll

These sections are multivalued on (A*)” because of the way in which the u; appear

in the “topological” part of &, namely (2mi)3(f,, (37, w;T5)°)/6.

The next step is to compute monodromy. The basic observation is that going

around the j** slice of (A*)" takes u, to u; + 1. Putting this into the above flat

sections enables one to compute the action of 7; by expanding the partial derivatives

of the topological part of ¢ in powers of the u;. Taking the logarithm gives:

Ni(s%) =0

Nj(sk)-—jkso 1<k<r

(8.54) 8(®/(2mi)?)Nj(si) = Z Bu, BurBu; ———a—(0) s E/TUTkUfls,l<k<r

Nj(so) =~

In these equations, it is clear that the coefficients are precisely the entries of the

matrix of cup product with —T; acting on the given cohomology basis.

Once we know how N; acts on the flat sections of V, we can compute what

bappens when we apply exp(—3_ , %;V;). Proceeding in this way, we obtain the

following V¢-flat sections:

=70

F=TF 1<k<r

8 ‘I’hol 1 0%y
.5 = T; <k <L(8.55) Ske=Th = 27rz)3 Z 6ukaug -+ (274)3 Quy » lsksr

6<I>h01 2

So=To~ (27r1)3 Z 6u1+ (27‘ri)3‘1)h°lT0
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These V°-flat sections clearly have the desired form, and they have the value we

want at 0 € A" since &y, and its derivatives with respect to 5‘3—; = 27riqj% vanish

at 0. Finally, the operator exp(— Zj u,;N;) commutes with Nj, so that N; has the

same matrix with respect to (8.53) and (8.55). By (8.54), it follows that [V; acting

on (8.55) has the required matrix. 
.

This proves the proposition for the special case of even cohomology on a Calabi-

Yau threefold. When V has arbitrary dimension d > 3, one needs to use the

description of the flat sections of V given in Section 10.2.2 in Chapter 10. A

complete proof will be given in Corollary 10.2.6. ‘We defer the proof until then. [

This proposition shows that over ATM, we can naturally identify the canonical

extension H with the trivial bundle H*(V,C) x A". In particular, the fiber over

0 € A" is H*(V,C). Using this, we can now explain the action of the monodromy

logarithm N;. By Proposition 8.5.4, N; acting on the Ve-flat basis 3x is the same

as cup product with —T; acting on the T. Since 5,(0) = Tk, it follows that at the

fiber over 0, we have

(8.56) Nj(a)=-T;Ua, ac H*(V,C).

However, away from 0 € A", this may no longer hold. For example, when V has

dimension 3, the formulas appearing in the proof of Proposition 8.5.4 imply that if

_we regard Ty, 1 < k <, as a section of ‘H, then

1 828y

(2mi)3 Bujfur

Over most points of A”, this will differ from —T; U T%.-

We can also use Proposition 8.5.4 to give H an integral structure. We begin

with the natural integral structure on H*(V, C), regarded as the fiber over 0 € AT

Then a V-flat section s is integral if the value of 5§ = exp(—3_;u;N;)s at 0 is

an integral class in H*(V,C). The V-flat integral sections form a locally constant

sheaf Hz on (A*)7, and tensoring with R gives a locally constant sheaf Hg of real

vector spaces. In particular, there is an action of complex conjugation on H.

An interesting consequence is that if we regard Tj as a section of H, then it is

neither integral nor real at most fibers. For example, when V has dimension 3, one

can check that the V-flat sections defined in (8.53) are integral by our choice of the

cohomology basis. But these formulas also imply, for example, that

TF =s* +urs®, 1<k<r

Nj(Tk)=—TjUTk— 1<k<r.

Since s* and s are integral, T* is usually not even real, much less integral.
Note also that Hz is determined by the behavior of ‘H over 0 € A". Hence

it could happen that the integral structure of H depends on the choice of large

radius limit point. We conjecture that this is not the case, i.e., that all such points

give the same Mz. The proof should not be difficult, provided one makes suitable

convergence assumptions required for the existence of Hz.

Since we know the monodromy, we can also determine the monodromy weight

filtration of the A-model connection.

PROPOSITION 8.5.5. For a Calabi-Yau manifold V of dimension d > 3, the

monodromy weight filtration W, of V at 0 € A7 is given by

w:= @ H(V.C).
9>2d—i
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PROOF. The filtration W, is determined by N = Y_._, a;N;, where N, =

log(7;) and @; > 0. In (8.56), we saw that on the fiber over 0, N; is cup product with
—Tj, so that up to a sign, N is cup product with the Kahler class w = i 65Ty

on the fiber over 0. Since

Uwk : %V, C) >~ HE(V,C)

is an isomorphism by Hard Lefschetz, the procedure described in [Griffiths2] for

computing the weight filtration easily gives the above description of W;. In fact,

a key property characterizing the monodromy weight filtration is the isomorphism

Nk . Wik /Wark—1 ~ Wy_ . /Wy_x_1, which here is Hard Lefschetz. O

_ The weight filtration W, at 0 can be propagated to a filtration W, of the bundle

H via V. When we do this, we get the following result.

COROLLARY 8.5.6. The monodromy weight filtration W, of ¥V over A” is given
by the trivial bundle

wi= @ H(V,C)xam
i>2d—i

PROOF. At 0, we know that W; is determined by Tj with deg(T}) > 2d ~ i.

Hence, over A”, it follows that W; is determined by 5; with deg(Ty) > 2d — 1 (this

is the notation of Proposition 8.5.4). Since 5 = T} + terms of higher degree, the

corollary now follows easily. O

Also, using Proposition 8.5.5, we can characterize the monodromy of V as

follows.

COROLLARY 8.5.7. The A-model connection V has mazimally unipotent mon-

odromy at 0 € AT,

PrOOF. We know that the monodromy is unipotent, so that we need only

check conditions (i) and (i) of Definition 5.2.2. Since H!(V,C) = 0, the previous

proposition implies that dim Wy = dim W, = dim H?*4(V,C) = 1 and dim W, =

dim(H?¢(V,C) @ H**~%(V,C)) = 1 + r. Furthermore, if go € H2(V,C) is the
Poincaré dual of a point and gi,... ,9, € H*~%(V,C) are dual to T3,... ,T. €

H2(V,C) under cup product, then at the fiber over 0 € AT, we have

Ni(g;) = -Ti U g; = —(f, T2 U g;)90 = —6i; go,
where the first equality is by (8.56). The matrix (&;;) is obviously invertible, so

that we have maximally unipotent monodromy. O

This corollary helps explain why we put so much emphasis on maximally unipo-

tent monodromy in Chapter 5. Under mirror symmetry, the A-model connection

should correspond to the Gauss-Manin connection describing the variation of the

complex structure of the mirror (see Section 8.6 for a precise statement). Since
the A-model connection has nice boundary points with maximally unipotent mon-
odromy, the Gauss-Manin connection of the mirror should have the same property.

The A-model connection also satisfies an analog of the integrality conjecture
discussed in Section 6.3.1. To see why, note that by choosing T,...,7T. to be a
basis for H2(V, Z) in the proof of Corollary 8.5.7, then 90591+ . ,gr is a basis of
H?4(V,Z)® H?*~%(V, Z). Then the integrality conjecture follows immediately from
Ni(g5) = —6ij90. As might be expected, this behavior of the A-model connection
is one of the motivations for the integrality conjecture on the mirror side.
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Our final comment about the A-model connection concerns the basis Tp, ... , T

of H*(V). The T; can be regarded as sections of the canonical extension H, but

they are not flat for either ¥V or V¢, nor are they integral, except at 0 € A”.

However, if we look at their behavior on the graded pieces of the weight filtration

W., then a different picture emerges.

COROLLARY 8.5.8. If [T;] denotes the induced section on Grl¥, then the [T}]

form a basis of flat, integral sections of the canonical extension of Gr¥.

ProoF. Corollary 8.5.6 and the definition of V easily imply that [T}] is flat for

the induced connection on GrYY. One can also check that the monodromy is trivial

on GrY, so that ¥V and V¢ induce the same connection. This, together with the

integrality of T; above 0 € A", shows that [T}] is integral. They obviously form a

basis, so that we are done. ]

This corollary is interesting for the following reason. In Section 5.6.3, we stud-

ied the variation of Hodge structure coming from a family of Calabi-Yau threefolds

at a maximally unipotent boundary point. If you look back at the proof of Propo-

sition 5.6.1, you'll see that we began with a basis of Gr)¥ consisting of flat, integral

sections and then lifted back to get a basis of H. By Corollary 8.5.8, this is precisely

what the T; do in the A-model case.

" The last two corollaries show that the A-model connection is remarkably similar

to the Gauss-Manin connection of a family of Calabi-Yau threefolds. This similarity

will get deeper once we define the A-model Hodge filtration, which is our next topic

of discussion.

8.5.4. The A-Model Hodge Filtration. Our next task is to turn the A-

model connection into a variation of Hodge structure. For this, we need something

to play the role of the Hodge filtration. As usual, we will assume that V is a

Calabi-Yau manifold of dimension dim(V') = d > 3. Then set

(8.57) FP= H*V).
a<d—-p

This gives a decreasing fltration H*(V,C) = F® > F! > ---. In terms of the

bundle H = H*(V,C) x K¢(V), the subbundles

FP=FPx Kc(VYCH

determine a filtration of 7° = M.

Our basic claim is that the filtration F*, together with the A-model connection

¥, form a variation of Hodge structure of weight d, at least near a large radius limit

point of the complexified Kahler space K¢ (V). To formulate this more precisely,

recall that the integral classes T1,... , T, generate an open cone o C K (V). This

gives (A*)" € K¢(V), and then 0 € A” is the large radius limit point in question.

In Section 8.5.3, we defined an integral structure Hz on H, which in particular

gives an action of complex conjugation on H. Then proving that (H, V,Hz, F7) is

a variation of Hodge structure reduces to showing the following two properties:

* V(FP) C FP7' ® Qi for every p.
e FP g Fi-p+1 = H for every p.
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The first of these is easy to prove, since the small quantum product is compatible

with the Hodge decomposition by Proposition 8.1.7. The argument is as follows.

Given a € H**(V') with @ < d - p, we can regard a as a section of . Then

Vo (@) =T, *sman @ € Het1(y)

since T; € HVY(V). It follows that Vg _(a) is a section of FP~1 which proves

Griffiths transversality for V. )

However, proving the second property, that FP @ Fd~P+1 = H, will take more

work. For this purpose, we introduce the following pairing: if o € H*(V,C) and

B € H(V,C), then

(-DkEF/2 [ qUB fk+0=2d

0 if k+ £ # 2d.

If we think of o and 8 as sections of H, then the above formula for S(q, 8) still

makes sense, so that we can regard S as being defined on H.

The pairing S has the following useful properties.

LEMMA 8.5.9. Let S be the bilinear form on H defined above. Then:

(1) S has parity (—1)4, i.e., S(a, B) = (~1)¢8(8, a).

(#) S is flat with respect to V, i.e., for any sections o, 8 of H, we have

35 8(e,8) = 5(Vg_(a), ) + 5(e, Vg_(8))

foralll<i<r.

(#i) The monodromy logarithms N; are infinitesimal automorphisms of S, i.e.,

for any a, 8 € H*(V,C), we have

S(Nj(a), 8) + S(a, N;(8)) = 0.

(iv) S takes integer values on Hz, i.e, S(Hz, Hz) C Z.

(v) S(FP,FeP+1y =0 for all p.

PROOF. For the first part of the lemma, suppose that « € H*(V,C) and 8 €

HYV,C) with k+ £ = 2d. Then a UG = (~1)*¢3 U @, and the desired equality
S(a, 8) = (-1)%5(8, a) follows easily from the definition of S.

To prove the second part of the lemma, we can assume that a = Tjand 8 =T,

Then, using the definition of ¥V 2 in terms of quantum product with T;, we are

(8.58) S(a,8) = {

reduced to showing that

S(T’, *small 1}7 Tf) + S(T]) I’z *small T'l) =0.

We can assume that deg(T;) = k and deg(T;) = 2d — k — 2, since otherwise the

above equation is trivially true. Then deg(7} *sman T;) = k+ 2, so that

S(T, woman Ty, Ty) = (—1) <D (D +1)/2 / (T2 *oman Ty) U T
Vv

= ~(—1)k(k+l)/2/ (:n *small I}) *small L¢,
v

where the second equality follows since [, a*sman3 = f, U@ by Proposition 8.1.6.

A similar argument shows that

S(T‘JaT'a *small T(') = (_l)k(k+]1/2/ T] *small (I; *small Tf)
v
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Since T; has even degree, T} *gman T; = Tj *sman I;. Combining this with the

associativity of the small quantum product, we get the desired identity.

For the third part of the lemma, note that (i) implies S(Z;(a), T;(b)) = S(a,b)

for any a,b € H*(V,C), since 7;(a) and 7;(b) are obtained from a and b respectively
by parallel translation. Since the logarithm of a unipotent orthogonal transforma-

tion is an infinitesimal orthogonal transformation, the desired result follows.

To prove (iv), let s1,s2 be integral V-flat sections. Then S(s;, s3) is constant

by part (i%) of the lemma. Setting 3; = exp(- Zj u;N;) 54, part (442) implies that

S(31,52) = S(s1,s2) is also constant, so that S(s;,s2) = §(5,(0), 52(0)). Then
S(s1,32) € Z since 3;(0) is integral by the definition of Hz.

Turning to the final part of the lemma, suppose that o € H *5(V), a < d—p,

and 8 € H*f(V),e <p—1 =d—(d—p+1). Then a and 3 give sections of F? and
F@-P*1 respectively. Since a U3 has Hodge type (a +e,b+ f) with a4+ ¢ < d — 1,
aU g is not of type (d, d), and then S(e, ) = 0 follows immediately. O

One of the key steps in proving that ¥V and F° give a variation of Hodge

structure is to show that S polarizes a certain mixed Hodge structure. The mixed

Hodge structure in question comes from the filtration F* defined in (8.57) together

with the weight filtration from Proposition 8.5.5. One easily checks that

(8.59) FP N Fe=P AW, = Hipd-ktp(yy,

Since Gry¥ = H?¢~*(V,C), we can regard Gr’ as having a pure Hodge structure
of weight k such that (GrlV)P*—P = Fd-pd—k+p(V) 1t follows that (W., F*) is a
mixed Hodge structure.

Recall also that at 0 € A", the monodromy logarithm N; is given by cup

product with —~T;. It follows that V = Zj a;jlNj, a; > 0, is cup product with —w,

where w = 37 a;T; is a Kahler class. We saw in the proof of Proposition 8.5.5

that W, is the monodromy weight filtration of N. Then we have the following

observation from [CKS2].

PRroPOSITION 8.5.10. For any N = 37, a;N; with a; > 0 for all j, the mized

Hodge structure (W,, F*) is polarized by —N and S.

PROOF. We begin by recalling from [CaK| what it means for (W,, F*) to be

polarized by —N and S. The definition first requires that W, be the monodromy

weight filtration of IV (as noted above), that N(FP) C FP-! (obvious from the

definitions), and that N is an infinitesimal automorphism of S (this follows from

the proof of Lemnma 8.5.9). Furthermore, if & > d, the “primitive part” Py C G’rZV

is defined by

P = ker(L*=4F1 . Grl¥ — Gr¥_. o).

Then the final part of the definition of polarized mixed Hodge structure requires

that the pure Hodge structure on Px be polarized by S(-,(—N)*~9(-}) (the minus

sign is because our IV is the negative of the NV used in [CaK]). Thus, to prove the

proposition, we must show that if a € Pf *=P is nonzero, then

(8.60) S(P=*-Pq, (-N)~4(@)) > 0.

The key point is that we’ve set things up so that this becomes the usual po-

larization property of primitive cohomology. To see how this works, recall that

Grl¥ = H* ¥(V,C) and that (Gr}Y)P*¥~? = H4-P.d=k+P(V). As in the proof of
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Proposition 8.5.5, one sees easily that since N is cup product with —w, the primi-

tive part P, C Gr}¥ is precisely the usual primitive cohomology H2=¥(V,C) with

respect to w. Thus, if « € PP*"? = HI P4"F¥+P(V/) is nonzero, then the usual
Hodge-Riemann bilinear relation (5.1) implies that

(=1)@d-k)(2d-k)~1)/2 / wd—(2=k) A {(d=p)~(d=k+P) g A T > 0.
14

Using the definition of S, this reduces to (8.60) by easy algebra. a

We can now finally show that we have a variation of Hodge structure.

THEOREM 8.5.11. Let V be a Calabi- Yau manifold of dimension d > 3. Then,
in a neighborhood of U of 0 € ATM, (H,V,Hz,F") is a variation of Hodge structure

over UN(A®)" of weight d polarized by the bilinear form S.

PrOOF. The philosophy of the proof is similar to how we defined Hz, where the

integral structure over 0 € A" determined the integral structure of . In this case,
we will use the polarized mixed Hodge structure over 0 € A" from Proposition 8.5.10

to show that (M, V,Hz, F") is a variation of Hodge structure pear 0.

Our proof will use the powerful machinery of [CaK, CKS1], and our nota-

tion will follow these papers. We are grateful to the authors of [CaK] for ex-

plaining the relevance of their work to this situation. Let _1:) be the flag manifold

which classifies filtrations F* of H*(V,C) satisfying dim(FP) = Xe<d—p hab(V)

and S(F?, F4=p*1) = 0 for all p. Inside D) is the open set D which classifies those
filtrations which induce a polarized Hodge structure of weight d on H *(V,C).

The filtration F* defined in (8.57) lies in D since S(F?,F4P+1) = 0 by

Lemma 8.5.9. Then consider the set of filtrations exp(— Ej u;N;) F*, which is

contained in D since the N; are infinitesimal automorphisms of S. As defined in
[CaK], this is a nilpotent orbit provided that

* N;(FP) C FP~1.

e exp(—~ 3_; u;N;) F* € D when Im(u;) > 0.

We proved the first bullet in the discussion following the definition (8.57) of the

filtration F*. For the second bullet, let N = > ;a;N; with a; > 0. Then N gives

the weight filtration W, of Proposition 8.5.5, and (W., F*) is polarized by —N

and S by Proposition 8.5.10. It follows from Proposition (4.66) of [CKS1] that
exp(~ 3_; u;N;) F* is a nilpotent orbit. (We should mention that [CaK, CKS1]

write the nilpotent orbit as exp(}_, u;N;) F* since their N, is our —N;.)

In more down-to-earth terms, observe that the nilpotent orbit just defined

gives a filtration 7~ of H. The key idea, as explained in [CaK, p. 74], is as follows.

We can regard the filtration F* of H*(V,C) as lying in the fiber over 0 € A" of

the canonical extension # (this is the notation of Section 8.5.3). Then FP7 is the
subbundle obtained by propagating F” using V¢-flat sections of H, where V° is
from (8.50). In other words, a V°-flat section lies in 7 if and only if 5(0) € F?.

It follows that close to 0 in (A*)", (H, V,Hz,f' ) is a variation of Hodge struc-
ture coming from a nilpotent orbit. However, the filtration F* satisfies Griffiths

transversality and agrees with 7° at 0 € A”. As observed by Deligne [Deligne2,
Section 2.3], these conditions, together with Theorem (2.8) of [CaK], imply that
(H,V,Hz,F") is a variation of Hodge structure in a neighborhood of 0 in (A*).
This completes the proof of the theorem.
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In the terminology of [MorrisonT7], we call (H,V,Hz, F*) the A-variation of

Hodge structure. Given the way we’ve set things up, it is straightforward to show

that the limiting Hodge structure of the A-variation is precisely the mixed Hodge

structure (W., F*) considered in Proposition 8.5.10.

For the purposes of mirror symmetry, we need to consider an interesting sub-

variation of the A-variation of Hodge structure. Let TM99 be the bundle com-

ing from eag___OH PP(V), which is the middle part of the Hodge decomposition of

H*(V,C). Note that V preserves Hmiddle gince the small quantum product is com-

patible with the Hodge decomposition by Proposition 8.1.7. Then vmiddle gilf
denote the restriction of V to HTMddle. Notice also that &%_oH??(V') has a natural

structure over R, which by the procedure described in Section 8.5.3 gives a real

structure HF'ddl Finally, by abuse of notation, we will let 7~ denote the filtration

induced on HTMddle by the A-variation.

With these definitions, it follows easily from Theorem 8.5.11 that we get a real

variation of Hodge structure

(8.61) (eriddle7 vmiddle’ Hn'{‘iddle, ).

This is the middle A-variation of Hodge structure, though we will often refer to

(8.61) as the A-variation for short. All of the above results apply to (8.61). In

particular, it follows that (8.61) is polarized by the intersection form

®62) S@f=(1 [ aup acHY), BeHTINY).
v 

.

This follows by restricting (8.58) to @:zOH P2(V). We should also mention that

pmiddle hag 5 natural structure over Z when d = 3, because H(V) = H*(V,C)

and H2%(V) = H*(V,C) in this case. Hence in the threefold case we can replace
(8.61) with (meiddleY vmiddle’ngiddle’]:')_

We can also describe the behavior of (8.61) at 0 € A”. By Corollary 8.5.7,

we have maximally unipotent monodromy, and the limiting mixed Hodge structure

over 0 € AT is (W,, F*), where

we= @ H(V), FP= D H¥V)

25 >2d—k i<d—p

This follows by restriction of the descriptions of W, and F* given in Proposi-

tion 8.5.5 and (8.57) respectively. Furthermore, these formulas imply Wa; = Wais1

for all i and FP®Wap_z = &I_oH?7 (V) for all p. These are precisely the conditions

(5.11) for the mixed Hodge structure to be Hodge-Tate. Hence we have proved the

following proposition.

PROPOSITION 8.5.12. The limiting mixed Hodge structure coming from the var-

iation (Hmiddle ymiddle qymiddle =) 45 Hodge- Tate.

We conclude this section with a discussion of the three-point function of a

Calabi-Yau threefold and how it relates to the A-model connection.

Example 8.5.4.1. Suppose that V is a Calabi-Yau threefold. In Section 8.1.1,

we defined the three-point function (or A-model correlation function) (a,b,c) for

a,b,c € H%(V,C) and showed that it can be expressed as

<a1 b7 C> = / @ *small b *small C
v
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(see (8.5) and (8.7)). We will discuss two aspects of how (a,b,c) relates to the

A-model connection VTMddle which we write as V for short.

We begin by showing how to express {(a, b, ¢) in terms of the A-model connection.

The key observation is that by definition of V, we have

V(T *smatt Tk) = Ti *smait Tj *sman T + terms of lower degree in H*(V,C).

Since 1 = T, we easily see that

/V Vg Ve Vg l= /V T, xamat T *oman Te = (Ti T3, Ti)-

This formula can be written in the form

(8.63) (T, T, Tke) =K/1 UV&{V&_’TV&II,

which is very similar to the formula

/ QA Vo1 V(;zVoaQ
v

for the B-model correlation function or Yukawa coupling defined in Section 5.6.

In each case, the correlation function is built in exactly the same way from the

connection (A-model or Gauss-Manin), a section of F3 (1 or 2), and the intersection

pairing. As we will soon see, this similarity is an essential part of mirror symmetry.

The second aspect of the relation between {(a,b, c) and V is that not only does

V determine (a, b, c) as just explained, but the converse is also true. This follows

from the proof of Proposition 8.5.4. In terms of the Gromov-Witten potential ® as

given in (8.51), we replace (8.34) by

1 8

(864) (27{'1:)3 611.,'6’11.]‘611;: = <1-'i11-j7'7Tk>1

and it follows that (8.52) can be written as

V;a_.u_‘ (To) =0

Vo (TF)=6uT° 1<k<r

8.65(8.65) Ve (Te) = ST TH T, 1<k<r
¢

Vfi‘_i(To) =T;.

Thus V is completely determined by the A-model correlation functions {a, b, c).

A special case is where h?(V) = 1. Here, let H = T} generate H?(V,C} and

C = T! € H*(V,C) be the dual generator. Also let v = uy. Then, generalizing

what we did in Example 8.1.2.3, we have

H *gman H= (H,H,H)C.

Letting Y (¢) = (H, H, H) denote the three-point function, this becomes

(8.66) Hxman H=Y(g)C.
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It follows from (8.65) that the matrix of the A-model connection is given by

0 0 00

1 0 00

0 Y() 00

0 0 10

This matrix (5.62) appeared earlier in the proof of Proposition 5.6.1, which stud-

ied Calabi-Yau threefolds with 1-dimensional complex moduli. In particular, the

proposition showed that at a maximally unipotent boundary point, the Gauss-

Manin connection had the above form, provided that Y was the normalized Yukawa

coupling and that we used the mirror map as a local coordinate. As above, this

similarity is no accident—it is part of the mirror conjecture.

This example also provides a small preview of Chapter 10. The above matrix

implies that 1 = T} satisfies the equation
2

Vi (v% )1 0f:] = .

=\ Y(q)

In the language of Section 10.3, this is a quantum differential equation, and we will

see in Example 10.3.2.1 that the above equation implies the relation

H *gman H

H *sman H *small (_Tngfi'—)

in the small quantum cohomology ring of V. This relation is trivial, since the left

hand side is an element of H8(V), which is obviously zero. On the other hand, ¥ (q)

can be extracted from the above quantum differential equation (up to a constant),

so that quantum differential equations contain highly nontrivial information about

quantum cohomology. Chapter 10 will prove that in general, quantum differential

equations similarly give rise to relations in quantum cohomology. We will also give

examples to show that many of these relations are nontrivial.

8.6. The Mirror Conjecture

The final task of Chapter 8 is to state a mathematical version of mirror sym-

metry. For simplicity, we will focus on a local version. Hence the basic idea is that

near suitably chosen boundary points of the complex and Kihler moduli spaces,

the mirror map discussed in Chapter 6 should turn the Gauss-Manin connection for

V into the A-model connection VTMdd!e for the mirror V°. We begin with a precise

statement of what this means in dimension 3.

8.6.1. Mirror Symmetry for Calabi-Yau Threefolds. Assume that V

and V° are smooth Calabi-Yau threefolds. As in Section 6.3, we also assume that

we have suitably compatible compactifications of the complex moduli space M(V)

of V and the Kihler moduli space XM(V°) of V°. This means we have:

o A maximally unipotent boundary point po lying on a smooth compactifica-

tion M(V) of the complex moduli space of V.

o A large radius limit point go lying on a compatible smooth compactification

KM(V°) of the Kahler moduli space of the mirror V°.

e The mirror map (6.32), which maps a neighborhood of po € M(V) to a

neighborhood of go € KM(V°). We will assume that V' satisfies the in-

tegrality conjecture from Section 5.2.2. By Section 6.3.1, this specifies the

mirror map uniquely.
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As explained in Section 6.3.1, there are various choices to be made for matching p,

to go and for specifying the mirror map. We will assume that these choices have -

been made.

We also have two polarized variations of Hodge structure. On the complex

moduli space of V', we have the Gauss-Manin connection and the Hodge filtration

on the bundle HV given by H3(V,C). To prevent confusion, the Gauss-Manin

connection will be denoted VTM. On the mirror side, the Kihler moduli space of V°

has the A-model connection VTMddle and the Hodge filtration on the bundle H"°

given by HTMde(V°) = g3 (HPP(V°) = &3_oH?**(V°,C). Also, H" and HV*

have integral structures H} and Hj ° respectively. Finally, we have the following

polarizations:

e Since every class a € H3(V,C) is primitive, the form

Qap) = (-0 [aup=- [ aup
v v

polarizes (HY, VTM HY F*) by (5.1).

o In (8.62), we defined the form

S(a, B) = (~1) /V aUB, aeHPP(V), § e HP3F(V)

on &3_oHPP(V°). By Theorem 8.5.11, S polarizes (HV", vmiddle 3/¥° r*)

In addition to all of this, we also have several distinguished sections:

e For V°, HY” has the integral generator [pt] of W;, where [pt] € H*3(V°,Z)

is the class of a point. There is also the distinguished section 1 = Ty €

HO%(V,C) which generates F3 by (8.57). Note that S(1, [pt]) = 1.

o For V, the bundle %" has the section go as in the definition of a maximally

unipotent boundary point. Note that go is an integral generator of Wy, and

is unique up to +1. In addition, there are sections of 3. To get something

canonical, let ¥y = {go, 2). Once g is fixed, then Q/yo is the unique section

of F3 satisfying Q(Q/y0,90) = 1.

Then we can finally give a precise definition of mirror symmetry for Calabi-Yau

threefolds as follows.

DEFINITION 8.6.1. Given Calabi- Yau threefolds V and V° as above, we say that

(V,V°) is ¢ mathematical mirror pair if the mirror map lifts to an isomorphism

of the bundles HV and HY" in neighborhoods of py € M(V) and go € KM(V?°).
Furthermore, this isomorphism should preserve the polarized variations of Hodge

structure coming from VM and VTMiddle .and take the sections Q/yo and go of HY

to the respective sections 1 and [pt] of H"".

Adapting the terminology of [Morrison7], a mathematical mirror pair (V, V°)

can also be called a Hodge-theoretic mirror pair. Definition 8.6.1 is only a local

statement, but using the complex and Kahler moduli spaces as discussed in Chap-

ter 6, one can also formulate a more global definition of mathematical mirror pair.

Our next task is to discuss Definition 8.6.1 and give some equivalent formula-

tions. After that, we will discuss what the Mirror Conjecture means.

A first observation is that Definition 8.6.1 assumes that V satisfies the inte-

grality conjecture. As noted at the end of Section 8.5.3, the A-variation of Hodge

structure on V° always satisfies the integrality conjecture. Hence our assumption
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on V is reasonable since the bundle isomorphism of Definition 8.6.1 preserves the

integral structure.

A second observation is that there is at most one bundle isomorphism H" ~
H"° which is compatible with Definition 8.6.1. To see why, note that by [BG],

HV is generated by repeatedly applying Ve to 2 = Q/yo. On the mirror side, the

Lefschetz decomposition shows that HTM44¢(V°) is generated by H L1(V°) under

cup product, so that the same is true for the small quantum product, at least near

go. This easily implies that HV® is generated by repeatedly applying ypiddle 4o
Tp = 1. The desired uniqueness now follows immediately.

We next discuss Definition 8.6.1 in more down-to-earth terms. This can be

done using either correlation functions or potential functions, which will lead to

Theorem 8.6.2 and Corollary 8.6.3 below.

We first formulate what a mathematical mirror pair means in terms of cor-

relation functions. On V, we have the B-model correlation functions, also called

the normalized Yukawa couplings. Recall from the discussion following Proposi-

tion 5.6.1 that there are local coordinates qi,...,qr at po such that VTM has an

especially simple form (5.67), and Example 6.3.1.1 shows that the ¢;’s determine the

mirror map. If g; = exp(2miu;), then according to (5.68), the normalized Yukawa

couplings for V are given by

Kjkr-"/fi/\vf;,ng__sz“_fi
(8.67) v e

=Q(Q,vfizvfi?vfi_kn),

where 0 = /yo is the normalized 3-form, V = VM is the Gauss-Manin connection,

and the last equality follows from the definition of the polarization Q. These ar
e

the B-model correlation functions of V.

On the mirror side, we have T1,...,T- € H?(V°,Z) such that

(@1 yar) = (7TM, e¥TM) = [ u;Ty] € Ke(V°)

gives local coordinates at the large radius limit point go. Using these coordinates
,

(8.7) implies that the A-model correlation functions are given by

(8.68) (T, T4, T) =/ T; *smalt Tj *small Tk-
VQ

In terms of the A-model connection V = VTMiddle, (8.63) tells us that

(T3, T3, Tk) =./V° lUV%:Vg‘_jVBQ‘_k 1

=5(LVe Ve Ve 1),

where the last equality uses the definition of the polarization S.

(8.69)

THEOREM 8.6.2. If V satisfies the integrality conjecture and the mirror
 map

is defined as above, then (V,V°) is a mathematical mirror pair in the sense of

Definition 8.6.1 if and only if the B-model correlation functions Yy of V and the

A-model correlation function (T;, Tj, Tk) of V° satisfy

Yipk = (T T, T} for alld,j, k.
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PROOF. In one direction, the proof is trivial: if we have an isomorphism which
takes §2 to 1, VoM to Vmiddle and () to S, then the equality of correlation functions
follows immediately from (8.67) and (8.69).

Going the other way, assume that the correlation functions match up as desired.
We will use the g; as local coordinates for both the complex moduli of V and the
Kahler moduli of V°. The bundle %V has basis ey, €;,1 <j<r, e7,1<j<r, €

from the discussion following Proposition 5.6.1, and we know that e; = §) is our
distinguished section. Similarly, #"" has basis Tp, T;,1<j<r, T9,1<j<r T°
from the proof of Proposition 8.5.4, where Ty = 1 is the distinguished section. Then
sending e; — T; and e! — T* clearly defines a bundle isomorphism.

To complete the proof, we need to check that the connections are compati-
ble and that the polarizations and integral structures are preserved. Given our
assumption that the correlation functions match up, the former is an immediate
consequence of (8.52) and (5.67). The polarizations are equally easy to handle,
given the definitions of the forms Q and S and the descriptions of ;, &' in (5.66)
and T;,T" in Proposition 8.5.4.

It remains to consider the structure over Z. This is a bit delicate, since the above
bases are not integral. However, these bases extend to the canonical extension over
AT, and over 0 € A7, they are integral. The integral structure on HV° was defined
in Section 8.5.3 by saying that a VTMiddle_fiat section s is integral if exp(— 3 S uiN;) s

is integral above 0. The same is true for HY, and then it follows easily that the
integral structures are preserved by our isomorphism. a

This theorem is very nice, especially in the way it relates the definition of
mathematical mirror pair to the “classical” notion of mirror symmetry introduced
in Chapter 1. One drawback of this approach is that when the dimension r of the
complex moduli space of V is large, there are potentially many correlation functions

to consider, so that the computations become rather complex. One way to simplify

things is to use potential functions.

Let’s recall how this works. On V', we showed in Lemma 5.6.2 that there is
a potential function ®TM. As explained in Section 5.6.4, this is a function of uj,

where the mirror map is q; = €TM*%. Then, in these variables, Lemma 5.6.2 says
that the normalized Yukawa couplings (8.67) are given by

1 8o .(8470) ),'ijk = WW for a.ll %3 k.

Turning to V°, we have the Gromov-Witten potential ®*, which by (8.51) equals

' 2ni)3 -

e = (‘6—)/ (ZiarwT)* + D _(laos) ¢,
v 

B#O

loT gde TMwhere ¢° = ¢ and g; = exp(2wiw;). Similarly, recall that (8.64) says
that

1 53pcw .
(1,75, Ti) = WW for all 1,7, k.

Then Theorem 8.6.2 immediately implies that being a mathematical mirror pair
can be formulated in terms of potential functions as follows.
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COROLLARY 8.6.3. IfV satisfies the integrality conjecture and the mirror map

is defined as above, then (V,V°) is a mathematical mirror pair if and only if

@GM = @GW

up to quadratic terms in the u;.

In Section 8.6.2, we will explain how Theorem 8.6.2 and Corollary 8.6.3 apply

to the quintic threefold.

In the above discussion of Definition 8.6.1 and its various consequences, the

reader should keep in mind the convergence assumptions needed in order for the

A-model connection VTMiddle t5 make sense as an actual connection. There are two

ways to avoid this difficulty. The first approach is to note that in Theorem 8.6.2,

the equation

Yise = (T%, T3, Tk)

makes perfect sense as a statement about formal power series. So if this equality

can be proved, then convergence for (T, T;,Tk) follows immediately since Yj;i is

known to converge. Then the entire theory of Section 8.5 applies, and everything

is fine. Similarly, in the situation of Corollary 8.6.3, it suffices to prove

QGM P @GW

* as formal power series, and then everything goes through.

A potentially more interesting approach to the convergence problem would

be to create a theory of “formally degenerating variations of Hodge structure”,

as advocated in [Morrison7, Sect. 7.2]. This would require developing a formal

version of everything in Section 8.5, and then Definition 8.6.1 would be replaced

with a corresponding formal statement.

Now that we have a rigorous definition of mathematical mirror pair, the next

step should be to formulate a Mirror Conjecture, which would assert every Calabi-
Yau threefold V has a mirror V° such that (V, V°) satisfies Definition 8.6.1. Unfor-

tunately, this doesn’t work. Rigid Calabi-Yau threefolds V' (ones with only trivial

deformations, so that H>1(V) = 0) can’t have a mirror V° in the sense of Defini-

tion 8.6.1, since this would imply H'(V°) ~ H>!(V) = 0, which is impossible.

Hence the best we can hope for is a Mirror Conjecture which asserts the existence of

a mirror for certain Calabi-Yau threefolds. From this point of view, each of the mir-

ror constructions given in Chapter 4 leads to a Mirror Conjecture. In Section 8.6.4

we will explore in detail what this means for the Batyrev mirror construction.

We close our discussion of mathematical mirror pairs with an interesting ques-

tion suggested by Corollary 8.6.3. Given any function ®(ui, ... ,u,) such that

1 e

(27Ti)3 auiauj Buk

is holomorphic in g; = exp(2wiu;), we can use equations (5.67) to define a connec-

tion on a vector bundle, and we also get an obvious Hodge filtration. Using the

techniques of Section 8.5.4, one can show that this gives a variation of Hodge struc-

ture. We get lots of variations this way, because there are lots of possible functions

&. But which of these variations are geometric, i.e., come from a family of Calabi-

Yau threefolds? In other words, what is special about the potential function of a

Calabi-Yau variation? Mirror symmetry gives a partial answer, for if & comes from

a family of Calabi-Yau threefolds, then it should be the Gromov-Witten potential

Yijk =
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¥ of the mirror. This implies that the potential function ® has a very particular
form. Hence mirror symmetry gives some insjght into the general question of which

abstract variations of Hodge structure come from geometry.

8.6.2. Mirror Symmetry for the Quintic Threefold. Qur next task is to

compare the naive version of mirror symmetry for the quintic threefold presented

in Chapter 2 with the more sophisticated formulation given in Definition 8.6.1.

In Chapter 2, we stated mirror symmetry for the quintic threefold as

o 
ds g 

5 
gdz(8.71) 5+§"dd 1-¢¢ (1+55z)yo(2)2(zd‘1)

where the ny are the instanton numbers of the quintic threefold and z is the moduli
coordinate for the quintic mirror (called = in Chapter 2) such that the quintic mirror

family has maximally unipotent monodromy at z = 0. Furthermore,

wio) = 3 (58 (-n=0

5n

y1(2) = yo(2)log(—2) +5 Z gs?))s [ Z _7] (-1)"z"
n= j=n+1

g = exp(y1/yo)-
Then we have the following nice fact.

THEOREM 8.6.4. Definition 8.6.1 with V° = the quintic threefold and V = the

quintic mirror is equivalent to (8.71).

ProoF. Given what we now know, this is easy to see. By (8.21), we recognize

that the left band side of (8.71) is the A-model correlation function (H, H, H ) of

the quintic threefold, and in Example 5.6.4.1, we showed that the right hand side is

the normalized Yukawa. coupling of the quintic mirror. Then (8.71) implies that the
series defining the A-model connection converges, and as we've already noted, the

quintic mirror family satisfies the integrality conjecture by [Morrison2). Hence
the theorem follows from Theorem 8.6.2. O

In other words, once we prove the formulas in Chapter 2, the full-blown version
of mirror symmetry for the quintic threefold presented in Definition 8.6.1 is an im-
mediate consequence. However, the reader should not be deceived by the shortness

of the proof just given. A lot of work went into what we just said about each side of

(8.71). For the A-model, defining the ng required the definition of Gromov-Witten
invariant from Chapter 7, and understanding their enumerative significance was

also nontrivial, as explained in Section 7.4.4. Then we had to work out the Hodge
theory of the A-model in Section 8.5. On the B-model, we studied the Hodge theory

of the mirror family in Chapter 5, and as we saw in Example 5.6.4.1, we needed

some extremely explicit monodromy information to prove that the right hand side

of (8.71) was the normalized Yukawa coupling.

We next explain how mirror symmetry for the quintic threefold relates to the

potential functions, as in Corollary 8.6.3. This will be important, since this is how

Chapter 11 will prove mirror symmetry for the quintic threefold.

We begin by describing the A-model and B-model potential functions. These
a.re multivalued functions of ¢, but rather than writing them in terms of U =

zm log q, we will instead use t; = logq. As mentioned in Section &.5. 1, the variable
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¢, = 2miu; is more natural for the purposes of Chapter 11. For the A-model, this

means replacing (8.51) with the Gromov-Witten potential

5 o0

PV = B-t? + Z(IO’O'd) qd.
d=1

For the B-model, let ¥ be the normalized Yukawa coupling given by the right

hand side of (8.71). If we think of Y as a function of ¢; = logg, then the potential

function is a function ®°(t,) whose third derivative is Y. To describe @, let

2z = —z. If we regard yo,y: as functions of z, then these functions are given by

(6.56), and from (6.56) we also get functions y2, y3 such that yo, .- . ,ys give a basis

of solutions of the Picard-Fuchs equation (in terms of the variable z) of the quintic

mirror. Then the potential function has the following nice formuia.

PROPOSITION 8.6.5. The potential function of the quintic mirror family is

gon = 3(Ll_ )
2\yoyo Yo

regarded as a function of t; = log q using the mirror map ¢ = exp(v1/Y0)-

PRroOOF. We need to show that

ia_é(y.lyz; B
dt32\w Y Yo

We did this in Chapter 2, but let's review the argument for completeness. The

y; satisfy the Picard-Fuchs equation derived in Example 5.4.1. Replacing y; with

vi/yo and z with ¢ = e’t, Proposition 5.6.1 shows that the Picard-Fuchs equation

becomes

& (dy/aR _,
dt? Y o

Note also that £, = y; /yo by the definition of the mirror map. Using this equation

and the power series expansions of ¥ and the y;, we showed in (2.35) that

&2y 4 y3
L% _y 52Uy
dt yo dt3 yo !

From here, the argument following (2.40) implies the desired equation. O

Combining this with Corollary 8.6.3, we get the following theorem.

THEOREM 8.6.6. Definition 8.6.1 with V° = the quintic threefold and V = the

quintic mirror is equivalent to the equation

S/yiy2 Y3
V(P == —= - = ,(P(t)) 2(y0 Yo yo)

where the mirror map is ¥(¢t1) = y1/%-

We stated Theorem 8.6.6 in this form since the above equation is the “Mirror

Theorem” from [LLY] and is how we will prove mirror symmetry for the quintic

threefold in Theorem 11.1.1 in Chapter 11.
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8.6.3. Higher Dimensions. We next consider the case when V and V° are

smooth Calabi-Yau manifolds of dimension d > 3. As before, assume that we have

corresponding points pg € M(V) and ¢y € KM(V°). The complication comes

when we try to think about the two polarized variations of Hodge structure. We

will see that the situation is not quite as nice as the threefold case.

Let’s begin with V. Although we have a nice variation of Hodge structure on

H4(V, C), the polarization (5.1) only works on primitive cohomology, which need

not be all of H4(V,C). To remedy this, we fix a Kihler form w and consider the

Lefschetz decomposition. This implies that every @ € H%(V,C) can be written

Zj W Uag-n;, where ay_a; € Hg_2j (V, C) is primitive. Then we have the form

Qla, B) =Y (-4 (1) / w¥ Uy aj U Ba—sj-
j v

In general, this form is only defined over R (since w need not be integral), but it is

still a polarization by (5.1). It follows that once we pick a Kéhler structure on V,

we get a polarized real variation of Hodge structure (Y, VTM, HY, F*).

On the mirror side, we want to consider the A-variation of Hodge structure on

®3_oHPP(V°). Here, while we have the nice polarization form S given by (8.62),

the important observation is that in order to define VTMiddle we need to know

how HPP(V°) sits inside H??(V,C), since quantum cohomology is defined on the

latter. This means that we need to fix a complex structure on V°. Furthermore,

notice that ®§=0H P2(V°) is in general only defined over R. Hence, once we pick

a complex structure on V°, we get a polarized real variation of Hodge structure
(HV" , vmiddle’ HKO, }‘t)

We also have the distinguished sections § and go of Y and 1 = T} and [pt] of

HV’. Then we define higher-dimensional mirror pairs as follows.

DEFINITION 8.6.7. Given Calabi-Yau manifolds V and V° of dimension d,

where d > 3, we say that (V,V°) is a mathematical mirror pair if we can find a

Kdbhler structure on 'V and a complez structure on V° such that the mirror map lifts

to an isomorphism of the bundles HY and HY" in neighborhoods of po € M(V)

and go € KM(V?®). Furthermore, this isomorphism preserves the polarized real

variations of Hodge structure coming from Vo and VTMidde ond takes the sections

Q and g of HY to the respective sections 1 and [pt] of HY".

As in the threefold case, a mathematical mirror pair is sometimes called a

Hodge-theoretic mirror pair. The interesting aspect of this definition is the extra

data required—a Kéhler structure on V' and a complex structure on V°. This data,

when added to M(V) and XM(V°), means that we are using the mirror map on

the full SCFT moduli space, as pictured in (1.6) in Chapter 1. Notice also that the

definition is rather vague about how the extra data is chosen, in contrast to the

very specific choice of pg and gy. Hence it is probably best to regard Definition 8.6.7

as only a preliminary version.

Another uncertain aspect of this definition is that the A-variation is always

Hodge-Tate at the large radius limit point go, while the definition of maximally

unipotent monodromy does not imply that the variation of Hodge structure on

H4(V,C) is Hodge-Tate at the corresponding point py. Hence Definition 8.6.7 may

need strengthening.
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In spite of these limitations, Definition 8.6.7 does have a nice relation to d-point

functions, which are defined as follows. Suppose that the mirror map is given by

QL. 1Gr, 80d a8 usual, we use the g; as local coordinates for both complex and

Kahler moduli. Also let g; = exp(2miu,), and to simplify notation, let §; = 8/8u;.

In this situation, the B-model correlation functions of V are

1 ~ ~

= (_1)He-1/2 -Kl"-‘ld = ( 1) (27”'),1 -/‘;Q A v5;1 v5idn

for 1 € &,...,iq < r, and similarly the A-model correlation functions of V° are

(T‘H yree 1Tid) = / ’I‘il *small * * * *small Ti,,
VO

These correlation functions are related as follows.

PROPOSITION 8.6.8. If (V,V°) is a mathematical mirror pair in the sense of

Definition 8.6.7, then

Yipoiy = Ty Ti) forall 1<is,... ig <

PROOF. As in the proof of Theorem 8.6.2, Definition 8.6.7 implies that

(8.72) Q(Q, Vg‘.‘ vee V,sidfl) = S(l, Vsil cee V&d 1),

where on the left, V denotes the Gauss-Manin connection, and on the right, it

denotes the A-model connection. ~

To untangle the left hand side, first note that £ is primitive since it is a (d, 0)-

form, and similarly, the (0, d) component of Vs, - V5‘.d§ is also primitive. It then

follows without difficuity from the definition of @ that the left hand side of (8.72)

is the B-model correlation function Y3,...;,-

Turning to the right hand side of (8.72), observe that since the T;, all have

degree 2,

Vi Ve, 1= Ti, *small - * * *small Ti, + terms of degree < 2d.

Since 1 € HO(V°, C), the definition of S implies that the right hand side is

1UV5i1"‘V5,-d1=/ V&.»,"'Vfiidl=/ T}, *small * * * *smalt Tiy)
Ve veVQ

which is precisely the A-model correlation function (T, ..., Ti)- d

Although we get a nice correspondence of correlation functions when & > 3,

it is no longer the case that preserving these correlation functions is equivalent

to preserving the variations of Hodge structure. This is very different from the

threefold case. To see more precisely what this means, let’s work out an example.

Example 8.6.3.1. Suppose that V and V° are Calabi-Yau fourfolds. On V7,

we are only concerned with classes in @3_H??(V°). Pick a cohomology basis

T; € HY (V°) for 1 < i < rand Tk € H**(V°) for r+1 < k < 5. Also

let T € H22(V°) be the dual basis, so that (T, T%) = 6ke. Then the Degree

Axiom, Fundamental Class Axiom and Divisor Axiom show that for 3 s 0, the

only nonzero Gromov-Witten invariants we need to consider are (lo,3,6)(Ti, T, Te)

for 1 <4,j<randr+1<k<s. Define

Y= o3 s) (T T Te) ¢°TF,
8
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where the superscript “A” stands for “A-model”. Then it follows that all of the

enumerative information is carried by

V5,(T5) = T; *sman T;= Z Yz?k Tk’
k=r+1

where V is the A-model connection. In terms of the 4-point function (T, T}, Ts, T5)

defined above, note that

(T0,T5,Ta, To) = / T; *smalt Tj *small Ta *smant Tp
VO

(8.73) — [ (@i famat ) U (Ts 5eman )
VO

= > YA YA(TTY.
kf=r+1

where the middle equality follows from Proposition 8.1.6.

‘We now turn to the B-model on the fourfold V. Assume that V satisfies the

integrality conjecture at our chosen maximally unipotent boundary point and also

that the limiting mixed Hodge structure is Hodge-Tate. Then, as before, we can

find coordinates ¢,...,Q, such that if g = 2, then ¢; = V4, () for 1 < j < r

gives a basis of Wy 1 F3. If we now let e* be some basis of W, N F2, then we can

write

Vsle)= > VB
k=r+1

for some functions Yi]Bk (where, of course, “B” is for “B-model”).

Now suppose that (V, V°) is a mathematical mirror pair. By Section 6.3.2, the

derivative of the mirror map is e; — T for 1 < ¢ < r. If we apply Proposition 8.6.8,

we get an equality of 4-point functions, so that we can compute the A-model cor-

relation function (73,7}, T,, Tp) in terms of the B-model. But as shown by (8.73),

this no longer gives direct knowledge of the Gromov-Witten invariants of V°, which

are encoded in the Y}%,.

As pointed out in [Morrison7), what we're really interested in is an equality

Yi?k = Yi?k which would tell us how to find Gromov-Witten invariants using the

B-model. But this requires the full isomorphism HY ~ HY" and in particular
uses e — T* for r +1 < k < 5. The latter is equivalent to knowing the isomor-

phism H?2(V) ~ H?2?(V°). Hence we need the 4-dimensional version of the mirror

symmetry isomorphisms (1.5) considered in Chapter 1.

However, given a natural choice for an isomorphism H?*2(V) ~ H?2?(V°), it

should be possible to formulate a precise version of Definition 8.6.7 which implies

Yi?k = Y% As a consequence, we could predict the Gromov-Witten invariants

of V° in terms of the Hodge theory of V. This approach to mirror symmetry in

dimension 4, together with some examples, is discussed in [Morrison?]. Further-

more, if the isomorphism H%?2(V) =~ H%2(V°) preserves the real structure of the

limiting mixed Hodge structure, then Definition 8.6.7 is equivalent to the equality

Y,‘?k = Y3 for all i,5,k. So there is an analog of Theorem 8.6.2 in the fourfold

case, though it is a bit more complicated.
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Given the definition of mirror pair for dimension d > 3, one can now attempt

to formulate a general Mirror Conjecture, as is done in [Morrison7]. This will

be necessarily vague, however, given the existence of rigid Calabi-Yau manifolds

and the lack of a general description of the mirror. Hence we will not state such a

general conjecture, though the toric case will be discussed below.

8.6.4. The Toric Mirror Conjecture. As just noted, one of the difficulties

in formulating a general Mirror Conjecture is that given V', we do not know how to

find V°. In the toric case, the situation is much nicer since we can use the mirror

constructions given in Chapter 4. For simplicity, we will restrict to the case of toric

hypersurfaces, so that V° will be the Batyrev mirror of V. As we will see, we get

conjectures which are more specific in some ways but less specific in others.

We will assume that we are in the situation of Section 4.1. Thus we fix a

reflexive polytope A of dimension > 3 and let £ and X° be maximal projective

subdivisions of the normal fans of A and A° respectively. Then we get a minimal

Calabi-Yau toric hypersurface V C Xg and its Batyrev dual V° C Xgo.

In order to make some conjectures, Sections 8.6.1 and 8.6.3 suggest that we

should begin with the case when V" and V° are threefolds. Here, we get the following

Mirror Conjecture for Toric Threefolds.

CONJECTURE 8.6.9. If V C Xg and its Batyrev dual V° C Xgo are as above

end dim(V) = dim(V°) = 3, then (V,V?°) is a mathematical mirror pair in the

sense of Definition 8.6.1.

This is a nice conjecture, but in practice it is not quite what people usually

regard as the Toric Mirror Conjecture. This is because the toric case uses different

definitions of the moduli spaces and the mirror map.

Let’s recall how this works, assuming now that dim(V') = d > 3 is arbitrary. In

Chapter 6, we constructed the simplified moduli space -./\—A—simp(V) in Section 6.1.2

and the toric Kahler moduli space K Muoric(V°) in Section 6.2.3. To get boundary

points, let & be the cone generated by a basis 71, ... , T, of H2 ;.(V°, Z) lying in the

closure of the Kahler cone. We saw in Chapter 6 that o gives a maximally unipo-

tent boundary point pg € Msimp(V) (assuming Conjecture 6.1.4) and a large radius

limit point go € KMoric(V°). The cone o also determines explicit local coordinates

Z1,...,2- and qq, ... ,q, about py and qo respectively. Further, as explained in Sec-

tion 6.3.3, we can specify the toric version of the mirror map completely explicitly

in a neighborhood of py and gg.

In order to make some conjectures, we return to the case when V and V° are

threefolds. Here, we know that they are smooth by the comments following the

proof of Proposition 4.1.3. To further simplify things, we will first assume that

(8.74) H'Y (Xge) — HY (V)

is surjective. In the notation of Section 4.1.3, this means HYL (V°) = HM(V°)

and, by the proof of Theorem 4.1.5, is equivalent to H:;lly(V) = H>1(V). It follows

that the moduli spaces described in the previous paragraph are the spaces KM(V°)

and M(V') considered in Section 8.6.1.

We still have connections VTM and VTMddle and the corresponding variations
of Hodge structure. Furthermore, as explained in Section 8.6.1, the derivative of

the mirror map, the sections @ and 1, and the polarizations give a unique isomor-

phism HY ~ HV". But even if this isomorphism preserves the connections VTM
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and VTMiddle we can’t claim that it preserves the integral structures Hy and HY"®.
Here is the problem. The mirror map used in Definition 8.6.1 requires the inte-

grality conjecture and hence preserves the integral structure almost by definition.

In contrast, the toric definition of the mirror map given in Section 6.3.3 is poten-

tially different and in particular might not preserve the integral structure. Another
way to say this is that the monomial-divisor mirror map discussed in Sections 4.1.3

and 6.3.3 is not known to preserve the integral structure. In fact, as far as we know,

it might not preserve the real structure.

Conjecturally, of course, the two mirror maps are the same and V satisfies the

integrality conjecture. But in order to formulate a conjecture which doesn’t depend

on such assumptions, we will concentrate on those structures which only involve

the complex numbers. Thus, for V, we have the C-variation of Hodge structure

given by (HY, VTM, F*). This is “polarized” by the form @, which means a strong
form of the first Hodge-Riemann bilinear relation, namely (FP)* = F4~P for all p.

Similarly, for V°, we have (H"°, vTMiddle £*) which as in Section 8.6.1 is polarized
by the form S.

Also observe that by Proposition 8.5.5, the monodromy weight filtration on

H"" satisfies Gr}¥ = H2(V,C) = HY (V) at 0 € A". Similarly, on XY, we have
Gr}¥ = H*Y(V) at a maximally unipotent boundary point. This is a consequence of
the mixed Hodge structure being Hodge-Tate, which as we noted in (5.11), follows

from maximally unipotent monodromy.

In this situation, we get the following special case of the Hodge- Theoretic Toric

Mirror Conjecture.

CONJECTURE 8.6.10. As above, let V and V° be 3-dimensional Calabi-Yau

toric hypersurfaces which are Batyrev mirrors of each other, and assume that (8.74)

s onto. Then the mirror map lifts to an isomorphism of the bundles HY and HY°

in neighborhoods of py € /V(V) and gog € KM(V®). Furthermore, this isomor-
phism preserves the polarized C-variations of Hodge structure coming from VOTM

and VTMddle ong takes the sections Q0 and go of HY to the respective sections 1
and [pt] of HV". Finally, on Gr}¥ at po and qo, the induced isomorphism is the
monomial-divisor mirror map.

In this case, we can again formulate mirror symmetry in terms of A-model and

B-model correlation functions, similar to Theorem 8.6.2. As before, for V° we have

the usual the A-model correlation functions of (T3;,73,7%). For V, we define the

toric B-model correlation functions to be

),ijk=/ fi/\vsivsjvskfi
v

where §; = 2mig; 0/0q; and Q= £2/yo is the normalized 3-form. This differs from
the normalized Yukawa coupling defined in Section 5.6.4 in two ways:

o Here yo is any nonvanishing holomorphic solution of the Picard-Fuchs equa-

tion for 2 at the maximally unipotent boundary point. This means that we

only know yo and hence up to a constant. '
e We are using the toric version of the mirror map, which is potentially differ-

ent from the mirror map used in defining the normalized Yukawa coupling.

It follows that Y;; is only defined up to a multiplicative constant, which is why

there is no minus sign in the above formula, in contrast to Definition 5.6.3. But, as

we pointed out in Section 5.6.4, our computational techniques only determine Yijk
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up to a constant, unless we make an extremely detailed study of the monodromy.

Fortunately, there is still a potential function in this case (the proof of Lemma 5.6.2

still applies), so that there is in essence only one constant to worry about.

From here, it is easy to formulate a version of Theorem 8.6.2, which asserts

that Conjecture 8.6.10 is equivalent to

(8.75) Y. =(T.,T;,T) foralls, gk,

where we are allowed to multiply the Y;;x by a constant c (independent of i, j, k)

in order to achieve equality. We will omit the details of the straightforward proof,

Here is an example of what Conjecture 8.6.10 looks like when the moduli spaces

in question have dimension two.

Example 8.6.4.1. An example considered many times is the toric resolution V" of

a degree 8 hypersurface in P(1,1,2,2,2) and its Batyrev mirror V°. We know that

V has two-dimensional toric Kahler moduli (which in this case coincides with the

number of Kahler moduli), so that (8.74) is surjective. We begin by writing down

one of the A-model correlation functions for V.

In Example 6.2.4.3, we saw that a basis of the Kahler cone of V is generated

by classes denoted D3 and D;. From [CAFKM], these classes can be described as

follows: D3 = H is the proper transform of an ample class on P(1,1, 2, 2,2) defined

“by an equation of degree 2, and D; = L is the proper transform of a divisor defined

by an equation of degree 1. If E C V is the exceptional locus of the map V — V,

then H ~ 2L + E. As we noted in Example 6.2.4.3, H3 = 8 and L3 = 0.

The cone o generated by H, L (which here is the whole Kihler cone) determines

a large radius limit point for V' and a maximally unipotent boundary point for

V°. Local coordinates for the Kahler moduli of V' are ¢; = exp(2miu;), where

o = {u1H + ugL : uj,us > 0}. If we let h,£ be the dual basis of Hz(V,Z), then

B € Hy(V,Z) can be written 3 = ah + bf. Since H3 = 8 and ffiH = a, it follows

that (8.21) gives the equation

3 ,a.b

(8.76) (H/HH) =8 + > n(ab) —22
(@,5)#(0.0) L-die

where n(a,b) is the instanton number n,n4p¢ defined in Section 7.4.4. Naively,

n(a, b) is the number of rational curves on V in the homology class ah + bf, but as

we saw in Example 7.4.4.1. the relation between instanton numbers and rational

curves is more subtle than one first suspects. ’

Let’s use Conjecture 8.6.10 to obtain a conjectural formula for (H, H, H). This

will give predictions for all of the instanton numbers n(a,b) simultaneously. First

observe that the way we've set up the notation, we are using the Toric Mirror

Conjecture with V' and V° interchanged. We hope this will not cause too much

confusion. In the discussion below, we will use V for the Gauss-Manin connection

of V°. Then, according to (8.75), the Toric Mirror Conjecture predicts that

(H, H H) =Yy, = / QAVs, Vs, V5,0,
VQ

where §; = 27riq155‘—1;.

To compute the integral on the right hand side, we begin with z,, z», which

are the moduli coordinates of V°. Using these variables, we computed the Yukawa
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couplings

- i 3 ; -_LOQAVM;,_IVMB%Q, i1+j=3

in Example 5.6.2.1. We need to normalize 2 by dividing by ¥, and then switch to

the mirror coordinates ¢, ¢2. Since

. Io] Q1 621 Io] 1 622 a
6y =2 — 221 TIq1 7 3q1 P 3q1 Bz, + 72 80, 22 822

inserting the above equations into the formula for (H, H, H) yields

o - S (B o2 ()
q1 021\ rq1 0z a1 022)\3 05

3| == K ——) K%|.(z1 6q1>(22 Bql) * (22 Bql)
In Example 5.6.2.1, we computed the K% explicitly up to a single constant

¢ # 0, and in Example 6.3.4.2, we computed yo and ¢, explicitly as functions of

z1,22. The same can be done for g;, so that the above formula allows us to write

{(H,H, H) in terms of g1, ¢2.

Let’s first determine the constant c. We know that g; = 2, + --- by the toric

normalization of the mirror map (6.44), and by Example 5.6.2.1,

K30 = ¢

(1 —2562,)% — 5122222,

sothat K3 =c+.--. Since g9 = 1+- - -, the above formula for (H, H, H) implies

(H, H,H) = 27i)3c+ -

Since (H,H,H) = 8 + - --, we must have

_ 8

T (2mi)3”

which is similar to what happened in Chapter 2. Using this value for ¢, we then

get the expansion

23 2

(H, H,H) = 8 + 640 — S 10032 B 4640292 4
-—q -4 — Q192

3 23 43128838471 4 72224 — AL de 109799842 +
- ¢ 1- gl - g

As many terms as desired can be computed, depending on one’s patience and avail-

able computing power. Comparing this to (8.76), we get the instanton numbers

n(a,b). One can show that n(a,b) = n(a,a — b) when a > 1 (e.g,, n(1,1) =

n(1,0) = 640) and n(a,b) = 0 when b > a except for n(0,1) = 4. Hence the se-

ries for (H, H, H) determines n(a,b) for all (a,b) # (0,1). Further computations

with this and other examples of Calabi-Yau toric hypersurfaces can be found in

[CAFKM, HKTY1].

In Chapter 11, we will show in Example 11.2.5.1 that the above formulas fol-

low from Theorem 11.2.16. Also, using the detailed monodromy calculations in

[CAFKM)], one can actually prove that the integrality conjecture is satisfied in

this case and that ¥j,; is the normalized Yukawa coupling in the strict sense of

Section 5.6.4 once we set ¢ = 8/(2mi)3.
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We next turn to the case where V and its Batyrev mirror V° are still threefolds,
but we no longer assume that the map (8.74) is surjective. In this case, we have to
deal with the simplified moduli space vaimp(V) from Section 6.1.2 and the toric
Kiéhler moduli space XM oric(V?°) from Section 6.2.3.

One way to formulate a conjecture would be as follows. We have the bundles
HY and HY" on the full moduli spaces, and by restriction, we get bundles

Hyimp = restriction of HY to Miimp (V)

HY'. = restriction of HY" to KMoric(V°).toric

The restricted bundles inherit natural polarized variations of Hodge structure. Then

the Hodge-Theoretic Toric Mirror Conjecture would assert that there is a bundle
isomorphism M., ~ MY which preserves the polarized C-variations of Hodge
structure (as described in Conjecture 8.6.10). However, we do not state this formally
as a conjecture, because a bundle isomorphism ’H;{mp o Hé{,:ic requires that we

know an isomorphism H*'(V) = H}(V°), yet in the toric case, we only have the
isomorphism

2

poly
(V)= H.!tcric(VO)

coming from the monomial-divisor mirror map discussed in Sections 4.1.3 and 6.3.3.

‘Recall that Hg")lly(V) is the subspace of H*!(V) ~ H(V,8y) corresponding to
deformations obtained by varying the defining equation of V C Xx. So the problem
is that we don’t yet understand how to define ’H;mp ~HY..

However, we can formulate a fairly precise version of the Toric Mirror Conjec-
ture provided we replace ’H;{mp and HY .. with some slightly smaller bundles. To
see what this looks like, we begin with V°. Let i : V° < Xs. be the inclusion map
and define

H (V)= im(i' H*(Xs0) — H‘(V°)).

Note that H;. ;. (V°) consists of cohomology classes of type (p, p) since HP¥(Xso) =

0 for p # ¢. It follows that restricting to H .. (V°) gives the subbundle

Hiorie(V?) X KMuorie(V°) € HTMU(V°) x KMioro(V°) = Hipri.

We will denote this subbundle by 7HY.;., where the 7 stands for the toric subring
we are using.

When Xgo is convex (e.g., Xgo = P%} and V is ample, the argument of Propo-
sition 4 in [Pandharipande3] shows that Hy,,;.(V°) is a subring of H*(V°) with
respect to the small quantum product. We don’t know if this is true in general, so

we will further assume

(8.77) voric(V'°) is a subring of H*(V°) under *gmal -

Under this assumption, it follows that the A-model connection VTMiddk induces a

connection on T Ht‘f,iic. We claim that we in fact get a polarized variation of Hodge
structure. To prove this, we will assume that Xyo is smooth. Then we have the

following lemma.

LEMMA 8.6.11. If V° is a Calabi-Yau toric hypersurface in the smooth toric
variety Xgo, then the restriction of cup product is nondegenerate on He (V).
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PROOF. To prove the lemma, it suffices to show that

/ i*(a) Ui (8) = 0 for all B € H*(Xge) = i*(a) = 0.
Ve

However, by the projection formula, we know that

[ r@uir@=[ aupuw)
ve Xgo

and {HLY1, (3.36)] implies that for « € H*(Xgo), we have

aUV]=0in H*(X5o) == i*(a)=0in Hy,,.(V°).

These two facts easily imply the required nondegeneracy. a

Assuming (8.77), we can repeat the construction of Section 8.5 with Hég:ic

replaced by T’HX,;C. The polarization comes from the lemma just proved, and as
explained in Section 8.5.3, we get an integral structure on 7" H:f,:ic since HJ, ;. (V°)
is naturally defined over Z.

On the mirror side, we need to find a corresponding variation of Hodge struc-

ture. Here, we go back to the proof of Theorem 4.1.5, where we had the exact

sequence

— @,HY(V ND;,C) — H3V,C) — Gri H3(Z;,C) — 0.

In this sequence, the D; are the toric divisors of Xzo and Z; = TNV is the affine

hypersurface in the torus T' C Xz-. In the course of the proof, we eventually proved

R (Gr¥ H3(Z4,C)) = hZ) (V).
poly

This suggests that there is a natural isomorphism

(8.78) HZL (V) ~ H*YGrY H3(Z;,C))poly

induced by H2 (V) C H2Y(V) — H2Y(Gr¥ H3(Z;,C)), where the last map
comes from the above exact sequence. Since a proof of this has not yet been

written down, we will simply assume that (8.78) is an isomorphism.

Given this assumption, the natural way to create a variation of Hodge struc-

ture using fo',lly(V) is using the natural polarized variation of Hodge structure

on Gr{" H3(Z;,C) over the moduli space Miimp(V). We will denote the resulting
bundle by T’Hs‘gmp, where the 7° now stands for the torus we are intersecting with.

We can now state the Hodge- Theoretic Toric Mirror Conjecture for threefolds.

CONJECTURE 8.6.12. As above, let V and V° be $-dimensional Calabi- Yau

toric hypersurfaces which are Batyrev mirrors of each other, and assume (8.77)

and (8.78) and that Xgo is smooth. Then the mirror map lifts to an isomor-

phism of the bundles THY,, and THy,,, in neighborhoods of po € M(V )simp

and gy € W(V°)mric. Furthermore, this isomorphism preserves the polarized C-
variations of Hodge structure coming from VM and VTMiddle gng tokes the sections

$2 and go of HY to the respective sections 1 and [pt] of H". Finally, on Gr}’ at

po and qo, the induced isomorphism is the monomial-divisor mirror map.

Given the number of assumptions made in the statement of this conjecture, we

should regard it as “work-in-progress”. But we are hopeful that Conjecture 8.6.12

is reasonably close to what is true. One encouraging fact is that when (8.74) is

surjective, this conjecture reduces to Conjecture 8.6.10.
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Finally, we turn to the case when V' and V° have dimension > 3. Here, we

run into some immediate problems when trying to formulate a Toric Mirror Con-

jecture. The main problem is that a minimal Calabi-Yau V' may be singular when

dim(V) > 3. Yet we have defined Gromov-Witten invariants only for smooth pro-

jective varieties. Presumably this is only a technical difficulty—eventually, one

hopes that Gromov-Witten theory should be available for a wider class of vari-

eties. Furthermore, if the bundle isomorphism ’Hs‘{mp ~ MY, preserves the Hodge
filtrations, then we would have

(8.79) RPA(V) = h99(V°), p+q = dim(V).

‘We proved this for ¢ = 1 in Chapter 4, but for other g, the best result known is the

formula

REI(V) = A%4(V®), p+g=dim(V)

of (4.16) relating the string theoretic Hodge numbers of V' and V° {[BD]. When V

and V° are smooth, this reduces to (8.79), but when V is singular, A5%(V) may

differ from h?:?(V).

Of course, we can avoid this difficulty by assuming that V and V° are smooth,

though this would limit the scope of the conjecture. But then we would still need

to know how to define MY, = M} ;.. This requires more than just the equality of

Hodge numbers (8.79)—we would need actual isomorphisms H?9(V) ~ H%9(V°)

for p + g = dim(V"). This is the same problem we encountered in Section 8.6.3.

For these reasons, we will not state a Hodge-Theoretic Toric Mirror Conjecture

in the general case. It is possible that some version of Conjecture 8.6.12 is true

in higher dimensions, though more work is needed in order to state a precise con-

jecture. According to the Hodge- Theoretic Mirror Symmetry Conjecture stated in

[Morrison7, Lect. 8.2, the ultimate version of the conjecture should involve cer-

tain sub-variations of Hodge structure such as T’H:g:ic. However, finding a precise
version of this conjecture is still an open problem in algebraic geometry.

8.6.5. Conclusion. In this section, we have given a rigorous definition of

mathematical mirror pair (Definitions 8.6.1 and 8.6.7) and have considered vari-

ous versions of the Hodge-Theoretic Toric Mirror Conjecture (Conjectures 8.6.10

and 8.6.12). These show that we have a good idea of what mirror symmetry means

for threefolds, though more work needs to be done on Conjecture 8.6.12. But once

we get into higher dimensions, there are large chunks of the conjectures which are

not specified. We are a long way from a definitive Hodge-theoretic version of the

Mirror Conjecture, even in the toric case.

However, several “Mirror Theorems” have appeared recently in the literature.

These include a complete proof of mirror symmetry for the quintic threefold, as well

as results for Calabi-Yau toric hypersurfaces and more generally Calabi-Yau toric

complete intersections. In the latter case, one uses the Batyrev-Borisov mirror con-

struction from Section 4.3.! Also, Givental states “Mirror Theorems” which apply

to certain toric complete intersections which aren’t Calabi-Yau, and the “Mirror

Principle” of [LLY] applies to many situations beyond the case of a Calabi-Yau

threefold and its mirror.

! Discussions and examples of Calabi-Yau complete intersections in toric varieties can be found

in (BvS, LTe, HKTY2, Givental2, Giventald] and in the references listed in Section 7.4.6.
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In Chapter 11, we will see that although these “Mirror Theorems” make no

direct reference to the Hodge-theoretic versions of mirror symmetry discussed here,

they still share the basic idea of transforming the -hard problem of computing

Gromov-Witten invariants into something simpler. In the case of dimension > 3,

it is not clear how these results relate to Hodge theory. Thus, just as we don’t yet

have the definitive “Hodge-Theoretic Mirror Conjecture” in dimension > 3, neither

do we have the definitive “Mirror Theorem” in this case. The hope is that algebraic

geometers, as they continue to explore the mathematics of mirror symmetry, will

prove more general “Mirror Theorems” and formulate more precise “Mirror Conjec-

tures” which will eventually converge to a broad understanding of the phenomenon

of mirror symmetry. )

This chapter has brought us to a clearer conception of what the mathematical

version of mirror symmetry should look like. It is disappointing not to have a precise

statement of the “Mirror Conjecture” when dim(V) > 3, but this shouldn’t deter

us from examining the “Mirror Theorems” which have been proved so far. With

this goal in mind, we will next develop some of the needed machinery in Chapters 9

and 10, and then study some “Mirror Theorems” in Chapter 11.



CHAPTER 9

Localization

In this chapter, we define equivariant cohomology and explain the powerful
method of localization. The ideas and techniques we learn here will not only com-
plete some of the work begun in Chapter 7, but also provide some of the tools
needed to prove the Mirror Theorem in Chapter 11.

We begin in Section 9.1 with the definition and basic properties of equivariant
cohomology. We will also discuss the localization theorem [AB| and its various
corollaries. The basic idea is that when a smooth variety has a group action,
cohomology classes on the variety “localize” to classes on the fixed point locus,
which allow the calculations to proceed readily. We will see that the equivariant
Euler class of the normal bundle of the fixed point set plays an important role.

. As applications, we will describe localization for PTM and then use localization to
determine the number of lines on a generic quintic threefold. In general, localization
was first introduced in enumerative geometry using torus actions on Hilbert schemes
in the paper [ES2].

The main work of the chapter begins with Section 9.2, which applies localization
to the moduli space My, (P",d). The projective space P" admits a natural action
of the algebraic torus T = (C*)TM+!, which induces an action of T on Mon(P",d).
Following [Kontsevich2], we will learn how to describe the components of the
fixed point set using certain labeled graphs I' and how to compute the equivariant
normal bundle of the corresponding components of the fixed point set. Then, in
Sections 9.2.2 and 9.2.3, we will continue the study of Gromov-Witten invariants of
a Calabi-Yau threefold begun in Section 7.4.4. We first compute the contribution
of degree d multiple covers of a rigidly embedded smooth rational curve in the
threefold, and then we specialize to the quintic threefold and study the more subtle
question of double covers of a nodal rational curve of degree 5. This will give a
rigorous proof of the claims made about the instanton number nyp in Chapter 7.

The final section of the chapter gives a very quick introduction to equivariant
Gromov-Witten invariants and localization of the virtual fundamental class.

9.1. The Localization Theorem

We begin by defining equivariant cohomology. We give here a topological con-
struction, and refer to [EG] for an algebraic construction. Let G be a compact

counected Lie group, classified by the principal G-bundle EG — BG with EG,

whose total space EG is contractible. This G-bundle is uniquely determined up to
i homotopy equivalence. The example we will use is the algebraic torus G = (cHm,
f in which case BG = (CP*°)", and EG = 7{S®---®n:S, where m; : BG — CPTM is
‘ the i*" projection and S is the tautological bundle on CP* whose sheaf of sections

is O@pm (—l) .
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In Chapter 11, we will see that although these “Mirror Theorems” make no

direct reference to the Hodge-theoretic versions of mirror symmetry discussed here,

they still share the basic idea of transforming the hard problem of computing

Gromov-Witten invariants into something simpler. In the case of dimension > 3,

it is not clear how these results relate to Hodge theory. Thus, just as we don’t yet

have the definitive “Hodge-Theoretic Mirror Conjecture” in dimension > 3, neither

do we have the definitive “Mirror Theorem” in this case. The hope is that algebraic

geometers, as they continue to explore the mathematics of mirror symmetry, will

prove more general “Mirror Theorems” and formulate more precise “Mirror Conjec-

tures” which will eventually converge to a broad understanding of the phenomenon

of mirror symmetry. )

This chapter has brought us to a clearer conception of what the mathematical

version of mirror symmetry should look like. It is disappointing not to have a precise

statement of the “Mirror Conjecture” when dim(V) > 3, but this shouldn’t deter

us from examining the “Mirror Theorems” which have been proved so far. With

this goal in mind, we will next develop some of the needed machinery in Chapters 9

and 10, and then study some “Mirror Theorems” in Chapter 11.



CHAPTER 9

Localization

In this chapter, we define equivariant cohomology and explain the powerful

method of localization. The ideas and techniques we learn here will not only com-
plete some of the work begun in Chapter 7, but also provide some of the tools

needed to prove the Mirror Theorem in Chapter 11.

We begin in Section 9.1 with the definition and basic properties of equivariant

cohomology. We will also discuss the localization theorem [AB)] and its various
corollaries. The basic idea is that when a smooth variety has a group action,
cohomology classes on the variety “localize” to classes on the fixed point locus,
which allow the calculations to proceed readily. We will see that the equivariant

Euler class of the normal bundle of the fixed point set plays an important role.

. As applications, we will describe localization for PTM and then use localization to

determine the number of lines on a generic quintic threefold. In general, localization

was first introduced in enumerative geometry using torus actions on Hilbert schemes

in the paper [ES2].

The main work of the chapter begins with Section 9.2, which applies localization

to the moduli space My, (P",d). The projective space PTM admits a natural action
of the algebraic torus T = (C*)"*!, which induces an action of T on Mg ,(P", d).
Following [Kontsevich2], we will learn how to describe the components of the
fixed point set using certain labeled graphs I' and how to compute the equivariant
normal bundle of the corresponding components of the fixed point set. Then, in
Sections 9.2.2 and 9.2.3, we will continue the study of Gromov-Witten invariants of
a Calabi-Yau threefold begun in Section 7.4.4. We first compute the contribution
of degree d multiple covers of a rigidly embedded smooth rational curve in the
threefold, and then we specialize to the quintic threefold and study the more subtle

question of double covers of a nodal rational curve of degree 5. This will give a

rigorous proof of the claims made about the instanton number n;q in Chapter 7.

The final section of the chapter gives a very quick introduction to equivariant
Gromov-Witten invariants and localization of the virtual fundamental class.

9.1. The Localization Theorem

We begin by defining equivariant cohomology. We give here a topological con-

struction, and refer to [EG] for an algebraic construction. Let G be a compact

connected Lie group, classified by the principal G-bundle EG — BG with EG,

whose total space EG is contractible. This G-bundle is uniquely determined up to

homotopy equivalence. The example we will use is the algebraic torus G = (o4

in which case BG = (CP*°)", and FG = 7} S®---® .S, where 1; : BG — CPTM is

the i*M projection and S is the tautological bundle on CPTM whose sheaf of sections
is Ocpee (—1).
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9.1.1. Equivariant Cohomology. If now X is a topological space with a

G-action, put X = X x¢ EG, which is itself a bundle over BG with fiber X. For
future use, we let ix : X — X denote the inclusion of a fiber.

DEFINITION 9.1.1. The equivariant cohomology of X is defined to be

Hg(X) = HTM (Xg),

where H*(X¢) is the ordinary cohomology of X¢.

Equivariant cohomology enjoys many of the usual properties of ordinary co-

homology, such as existence of flat equivariant pullbacks and proper equivariant
pushforwards. These operations satisfy the usual properties of the corresponding
operations in ordinary cohomology [AB]. Note that Hg(point) = H*(BG). By

pullback via X — point, we see that in general H3%(X) is an H*(BG) module.
Thus H*(BG) may be regarded as the coefficient ring for equivariant cohomology.

Note also that iy : X — X induces a “forgetful” map % : H%(X) — H*(X).

Our primary interest is when G = (C*)". In this case, let M(G) be the charac-
ter group of the torus G. For each p € M(G), we get a 1-dimensional vector space C o

with a G-action given by p. If L, = (C,)¢ is the corresponding line bundle over BG,

then the assignment p ~— —c;(L,) defines an isomorphism v : M(G) ~ H?(BG),
which in turn induces a ring isomorphism Sym(M(G)) ~ H*(BG). We call ¥(p)

the weight of p.

In particular, if p; is the character of G = (C*)" defined by p;(t1,... ,tn) =t,,

then we let \; denote the weight of p;. Thus we get an isomorphism

(9.1) Hg(point) = H*(BG) =~ C{)1,... ,Anl-

We denote the line bundle L, by O(—);), so that \; = ¢;(O()\;)). Note that under

the identification (9.1), the map Tpoin: CaDl be thought of as a “nonequivariant limit”
which maps all A; to 0. More generally, for any X, the map 1% can be thought of

as a nonequivariant limit, which in particular maps all A; to 0.

In general, for a G-space X, an eguivariant vector bundle is a vector bundle E

over X such that the action of G on X lifts to an action of E which is linear on

fibers. In this situation, E¢ is a vector bundle over X, and the equivariant Chern
classes ¢ (F) € Hz(X) are defined to be the ordinary Chern classes c(Eg). If E
has rank r, then the top Chern class ¢ (E) is called the equivariant Euler class of

E and is denoted

Eulerp(E) € HL(X).

In Chapter 7, the Euler class was a homology class (the Poincaré dual of the top
Chern class), but from here on, we will find it more convenient to regard the Euler

class (ordinary or equivariant) as a cohomology class.

Example 9.1.1.1. The diagonal action of G = (C*)" on C* gives an equivariant

vector bundle E over X = point such that Eg ~ O(A\) & --- & O()\;). Thus

A1,-.. , A, are the weights of this representation. Since ); = 1 {O(A\;)), it follows

that

(9.2) E(E)=0k(A1y. -, M) €ClALL ..., ),

where o}, is the k*" elementary symmetric function.
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9.1.2. The Theorem of Atiyah and Bott. The next notion that is needed

is the localization theorem. Suppose that we have an action of a torus T = (C*)"

on a smooth manifold X. By [Iversen}, the fixed point locus XT is a union of

smooth connected components Z;. Let i; : Z; — X be the inclusion, and let NV,

denote the normal bundle of Z; in X. Since IV; is an equivariant vector bundle, it

has an equivariant Euler class

Eulerr(N;) € Hr(Z,).

The equivariant inclusion i; : Z; — X induces ¢} : H7(X) — H7.(Z;). In addition,

since Z, is a submanifold of X, we also have a Gysin map

it s Hp(Z;) — Hp(X).

This is because the induced map (Z;)7 — Xt has finite approximations by embed-

dings of submanifolds. The Gysin map has the property that for any o € H1.(Z;),

(9:3) i} oij(a) = a U Eulerr(N;).

Proofs of these assertion can be found in {Audin, App. A to Chap. 6]. Finally,

note that H:(Z;) is a module over H*(BT) = C[\y,..., A). If

Rr ’_“C()\l,... ,/\n)

is the field of fractions of H*(BT) ~ C[\;,...,As], then we get the localization

’ H3(Z;) ® Rr. An important observation [AB] is that Eulerr(NN;) is an invertible

element in H7.(Z;) ® Rr.

With this set-up, we have the following Localization Theorem proved in [AB].

PROPOSITION 9.1.2. There is an isomorphism

H}(X)®Rr — P HH(Z;) ® Rr

J

induced by the map o — (i;(a) /Eulerr(N;));. Purthermore, the inverse is induced

by (a;); = ¥, is1(@;). In particular, for any o € H.(X) ® Ry, we have

. ij(a)
o= | =————).; 4 (EulerT(NJ))

Let’s see what the localization theorem says about P".

Example 9.1.2.1. Consider the action of T' = (C*)"*! on X =P given by

(tor- e s tr) - (@oy- - Zr) = (85 ' To, - - , b7 1T0).

The inverses have been chosen so that (to,... ,¢.) acts on the homogeneous form

T; € H°(Op-(1)) as multiplication by ;.

We begin by defining the equivariant hyperplane class. First note that PT. is

the projectivization of the vector bundle O(—Xg) & - - - & O(—A;) over BT. Thus,

PL. = P(E3), where E* is the dual of the bundle E defined in Example 9.1.1.1 and

P denotes projectivization. This gives the tautological line bundle Opr (1), and we

let

p=c1(Op.(1)) € Hr(F").

One can check that p is the equivariant Chern class ¢ (Op-(1)). For this reason,

we refer to p as the equivariant hyperplane class.
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We next compute the equivariant cohomology of P". The standard formula for
the cohomology of a projective bundle (e.g., [GH, p. 606]) implies

(=p)" = a(BF)(=p) " + c2(EF)(—p)" "+ + e (Ey) = 0.

Note that the bundle denoted T in [GH] is Opz (~1) in our notation, so that

a(T) = —p. Since ck(Ef) = (=1)*cJ(E) = (=1)*ok(ro,.-., ) by (9.2), it
follows that

(94) [Ie-2)=0
=0

in H3(P"). We conclude that the equivariant cohomology of P* is

H3(P") = Clp, 2o, .. ,,\,]/ M-
i=0

Observe that by formally putting \; = 0, we recover the usual description of the

ordinary cohomology of P, replacing p by the ordinary hyperplane class H = ipeD.

To apply the localization theorem, we first need to understand the fixed points

of the T-action. We have r+1 fixed points g;, ordered as usual, so that the j*8 coor-
dinate of g; is nonzero, all other coordinates being 0. Note that (g;)r = P(O(=A;)),

so that Opy (—1) restricts to O(—A\;) on (g;)7. Accordingly, the tautological bundle

Opr, (1) restricts to O(};). This implies that

(9.5) #(p) = X,

Said differently, the T-action on Cg; is has weight —); because (to, . .. i) g =

tj‘l ¢; by definition. More generally, any element of H}:(PTM) can be written as a
polynomial F(p) in p with coefficients in C[Aq, ... ,A,], and (9.5) implies

96) 5(F(p)) = F(\,).

Since g, is a point, the normal bundle N; is given by the tangent space

N; = T,,P" = Hom(Cg;,CTM*'/C g;).

Hence the representation of T on N, has weights A; — Ax for k # j, so that

9.7) Eulerr(N;) = [T (A, = M)

k%

One now computes that the isomorphism of Proposition 9.1.2 is given by

A r

(9.8) p— (m—F— .(H#J.(Aj - /\i))j=o
To describe the inverse of this map, let

(9.9) ¢ =1 - 20

kst

Then (9.6) implies

Eulerp(N;) ifk=3j

0 otherwise.
(9.10) ii(;) = {
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Hence the final assertion of Proposition 9.1.2 tells us that

_— i (¢5) . i7(¢;) )
b; = Tkt AN =14 e =1,(1).’ kZ:O k (Hl;ék()‘k - /\Z)) g (Hg#]‘(/\] - /\Z)) ! ( )

Using H7(g;) = C[Ag, ... ,A/] and the projection formula (4 (@) Ul) = aUi;(l),

it follows easily that the inverse of (9.8) is given by

r r

(o) o= D Ud; =D a; 5
j=0 i=0

Thus g, - .. , ¢ form a basis of H7.(P") ® Rt as a vector space over Rr.

Finally, take an arbitrary element of H;(P") ® Ry and write it as above as a

polynomial F(p) in p with coefficients in Ry = C(Ag,...,A.). Then, using (9.6)

again, the final assertion of the localization theorem gives the identity

[Tis; (P — X&)

Fle) = ZF”H:(A )
This shows that Proposition 9.1.2 can be regarded as a far-reaching generalization

of the Lagrange interpolation formula.

From Proposition 9.1.2, we obtain an integration formula by pushing forward

to a point. For any variety X with a T-action, the trivial map X — point induces

an equivariant projection map wx : X7 — BT. The pushforward map wx; is given

by integration along the fiber and in this context is called the equivariant integral.

Accordingly, we will often write rx; as

. HA(X) — H*(BT).

Xr

Using the equivariant integral, we get the following corollary of Proposition 9.1.2.

CoROLLARY 9.1.3. For any o € H.(X) ® Ry, we have

/xT a=d /<Zj)r (%> '
i

Proposition 9.1.2 and Corollary 9.1.3 gives rise to the notion of localization. By

this, we mean the procedure of equivariantly restricting a class to each fixed point

component and dividing by the equivariant normal bundle of that component. This

reduces the calculation of an equivariant integral of a class to the sum over all fixed

point components of the equivariant integrals of the restrictions of the class.

Since we eventually want to apply this theory to the orbifold My ,(P",d), we

will actually need a slight variant of Corollary 9.1.3 for smooth stacks. As mentioned

in Chapter 7, the reader should consult {Vistoli] for intersection theory on algebraic

stacks and [BEFFGK] for an introduction to stacks.

Hence, suppose that an orbifold X is the underlying variety of a smooth stack.

This means that X admits local charts U/H, where as in Appendix A, U is smooth

and H is a small subgroup of GL(n,C) acting on U. When we have a T-action

on the corresponding smooth stack, we can locally (on T and X) realize this as an

action on U. Iu this way, we can still make sense of fixed point loci Zj, inclusions

i; : Z; — X, and equivariant normal bundles by locally working in U. Then we

get the following stack version of Corollary 9.1.3.
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COROLLARY 9.1.4. Let X be an orbifold which is the variety underlying o

smooth stack with a T-action. If « € H7.(X) ® R, then

for=Z ., ()
where a; is the order of the group H occurring in a local chart at the generic point

Of Zi-

9.1.3. Polynomials in Chern Classes. For many applications, we can for-

mulate Corollary 9.1.3 in more down-to-earth terms. Suppose that we have a vec-

tor bundle FE on a smooth variety X with a T-action, and we want to compute

[x P(ck(E)), where P is a polynomial in the Chern classes of E. We can put

this into an equivariant context by replacing ci(EF) by the equivariant Chern class

cf'(B) € Hi(X) defined in Section 9.1.1 and pulling back via the inclusion ipein.

To see that this gives [, P(ck(E)), consider the commutative diagram

X ~-— point

(911) ix l l ipoint
Xr -— BT

This implies i, © [, = [x © i%. Hence

/ P(E(E)) = / ix P(L(E)) = / P(ex(E)),
XT X X

as claimed above. The key point is that [ Xz P(cF(E)) is an equivariant integral

which can be computed by localization. More precisely, by combining the above

equation with Corollary 9.1.3, we will get an equation which computes [, P(ck(E))

in terms of the behavior of E on the fixed point set of the T-action on X.

To see what this says more explicitly, let’s see what happens when the fixed

point set X7 is finite. For each point Z; € X7, the restriction E|z, decomposes

into characters of T, say x}, ---.X;- Each x;‘ is a linear combination of the ba-

sic characters p; ... ,pn already defined. Here we are using additive notation for

characters, i.e., (01 + p2)(t) = p1(t)pa(t). Let us write x¥ = €5(p1,... , ppn) for this

linear combination, which we express symbolically as x}‘ = Zf (p).

Since p; has weight );, it follows that the weight of xf = 4\; (p) is f;‘? (A), where

f;(z\) denotes the linear combination of A1, ..., A, obtained by substituting A; for

pi in £5(p). Hence the action of T on E|z, has weights ££()), which implies

i5(ck (B)) = ¢t (Elz,) = ox(£5(A), -, £5(N))-

Furthermore, since Z; is a point, the normal bundle N; is the tangent space

Tz, X. If the characters of the T-action on Tz, X are t} »),--- ,t;i(p), where d =

dim X, then

(9.12) Eulerr(N;) = [] ().
k

*

We can now apply i, to the right hand side of the formula of Corollary 9.1.3.

Keeping the notation as above, we arrive at the following statement.
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PROPOSITION 9.1.5. Suppose that T' acts on X with isolated fized points Z;

and that E is an equivariant vector bundle on X. If P(ck(E)) is a polynomial in

the Chern classes of E, then

P(or(&3(N),... ¢
[ Py = 3 HAE SN,

§ACY!

where oy is the k'TM elementary symmetric function.

This is the formulation used for enumerative applications in [ES2]. If we repeat

the argument in the case of a general Z;, we are led to the formulation appearing

in [Kontsevich2].

We can also generalize Proposition 9.1.5 to smooth stacks. This is done by

replacing Corollary 9.1.3 by Corollary 9.1.4 in the above argument. The result is

that if we describe the stack by an orbifold, then we must divide each term in

the sum given in Proposition 9.1.5 by the order of the automorphism group of the

object associated with the corresponding Z,. We will illustrate this in Section 9.2.2

below.

Example 9.1.3.1. We calculate the number of lines on a general quintic threefold

V C P* using Proposition 9.1.5. In Example 7.1.5.1, we showed how to realize the

- scheme of lines on V as the zero locus of a section of the vector bundle Sym®U*

on the Grassmannian G(2,5) of lines in P*. Here, U is the tautological rank 2 sub-

bundle on the Grassmannian, so that the fiber U, over a line £ is the 2-dimensional

subspace of C> whose projectivization is £. Then an equation for V' C P* induces a

section s of the rank 6 bundle Sym®U*, and Example 7.1.6.1 shows that the number

of lines is the degree of the Euler class ca(SymsU *). This is the Gromov-Witten

invariant

(Io,o.1> =/ cG(SymSU*).
G(2,5)

We will use Proposition 9.1.5 with E = Sym®UTM and P(c(E)) equal to the

Euler class of Sym>®UTM*, using the natural action of (C*) on C5 given in coordinates

by

(Aly- s As) - (@ry oo ey 25) = (AT 1,0 -0, A5 M),

This induces an action of T = (C*)® on G(2,5) with 10 isolated fixed points L;

corresponding to the 10 coordinate lines in P*. Each L; isindexed by I ¢ {1,...,5}

with |I| = 2, so that L; is defined by the equations z; = 0 for all j € I. The normal

bundle of L; is just the tangent space to G(2,5) at L;, whose equivariant Euler

class we need. As in (9.12), we need to decompose the T-action on the tangent

space into characters, replace each p; by \;, and multiply together.

The tangent bundle of the Grassmannian is Hom(U, C3/U). The key observa-

tion is that at L; € G(2,5), the restriction U{y, has characters —p; for i € I. It

follows that the characters of the T-action on the tangent space at L; are

{pi—piliel, j&I}.

Hence the tangent space of G(2,5) at L; has equivariant Euler class

IT =2

iel, 7¢I
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The other ingredient we need is the equivariant Euler class of ¢}(Sym®U*), where
ir : {L;} — G(2,5) is the inclusion. This is computed using the characters of U*|, .
which as above are p; for i € 1. Hence the equivariant Euler class of i}(Sym®U*) i ‘

5

[T (axs, + (5 - a)r,,),
a=0

where we have written I = {3;,%2}.

Proposition 9.1.5 now implies

. [I_g(ari, + (5—a)Ai,)cs(Sym®UTM*) = £ ;./c(z,s) %::2 [Licr TLier (3 = A5)
where as above I = {i;,in}. All of the \; cancel as they must, and the answer is
computed to be 2875, the number of lines on a generic quintic threefold.

The calculation in the example just completed involves the simplification of a
sum of 10 rational expressions in the );, each of which has both numerator and

denominator equal to a product of 6 linear binomials in the )\;. While this may

be tedious to carry out by hand, it is very fast by computer. This method applies !

to give rapid calculations in the Hilbert scheme of lines, conics, and twisted cubics )

in projective spaces, as these are all smooth spaces with well understood torus

actions. For example, the calculation of twisted cubics on complete intersection

Calabi-Yau threefolds is given in [ES2]. There are two ingredients needed for these

calculations. The first ingredient is to find a smooth moduli space for the projective

curves in question together with a T-action whose fixed point locus and weights are

computable. The second ingredient is to represent the number in question as the

degree of a polynomial in the Chern classes of an equivariant vector bundle whose

weights at the fixed points are computable.

9.2. Localization in My, (P",d)

To find the number of degree d rational curves on the quintic threefold, it

was Kontsevich’s insight [Kontsevich2| that the method of Section 9.1.3 could

be applied by using the moduli space of stable maps described in Section 7.1.1.

The space Ho,n(w,d) is not smooth, but My ., (P",d) is a smooth stack, so that
Corollary 9.1.4 applies.

9.2.1. Kontsevich’s Approach. The natural action of T = (C*)TM+! on P~

induces a T-action on Mg ,(P",d). The fixed point loci and equivariant normal
bundles of the fixed point loci were worked out in [Kontsevich2] (see [GPa] for ;

the case ¢ > 0, including the localization formula for virtual normal bundles). We !

quickly sketch the main ideas and results.

A T-fixed point of Mo, (PT, d) consists of a stable map (f,C,p;,... ,pn) where
each component C, of C is either mapped by f to a T-fixed point of PTM or else

multiply covers a coordinate line. In addition, each marked point p;, each node

of C, and each ramification point of f is mapped to a T-fixed point of P". This

implies that if C; is a degree d; cover of a coordinate line via f, then homogeneous

coordinates on C; and the coordinate line can be chosen so that the cover is given

by (zo,21) — (Zg"ztli')
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From this, it follows immediately that the fixed point components Z; of the T-

action on Mo (P, d) can be described by combinatorial data. Let qo, - - . , ¢- denote

. the usual T-fixed points of P". To a stable map (f,C,p1». .., pn) We associate a tree

[ whose vertices v are in one-to-one correspondence with the connected components

¢, of f~*({qo,... ,¢-}). Thus each C, is either a point of C or a connected union

of irreducible components of C. The edges ¢ of I' correspond to those irreducible

components C, of C which are mapped by f onto some coordinate line £, C P".

The tree I' also has various labels. We associate to each vertex v the number

i, defined by f(C,) = g, and the set S, consisting of those i for which the marked

point p; is in C,. In addition, we associate to each edge e the degree d. of the map

fle. : Ce — Le. Then the connected components of Mg (P, d)T are in one-to-one

correspondence with connected trees I' with labels i,, Sy, and d. satisfying the

following conditions:

o If an edge e contains vertices v and v’, then 4, 5 i, and £, is the coordinate

line joining ¢;, and ¢; .

o {1,... ,'n.}=Uv5v.

We will refer to the data (T, iy, Sy,d.) as the graph of the stable map, and we

usually will abbreviate all this data by the symbol I'. Recall that the valence of

‘the vertex v, denoted val(v), is the number of edges connected to v.

The stable maps with fixed graph I' naturally define a substack

Mr C flo,n(]?’, d).

To study My, suppose we have (f,C,p1,...,Pn) € Myp. For each vertex v such

that C, is a curve, note that C, has n(v) = |S,| + val(v) special points—there are

|S,| marked points lying on C, and val(v) nodes where C, meets an irreducible

component C. for an edge e containing v. In fact, (flc,,Cv) plus the n(v) points

just described form a stable curve, so that we get an element of Mo,n(u)'
A more careful description of this is as follows. Given a collection {C,} €

gimc, <1 Mo,n(v) of n(v)-pointed genus 0 stable curves, we construct a curve Cby

linking C,, to C, via a new curve C. = P! at 0,00 € P* whenever there is an edge

e containing v and v’ {this can be done systematically). Then define f : C — P7

by contracting each C, to ¢, and letting fic, be (zo,z1) — (a:fi’,z‘f’). This gives
a morphism

Yr: H Mg n(vy — Mr.
dim C,=1

Note that n({v) can be defined for all vertices v and that dimC, = 1 « C, contains

a component of C contracted by f « n(v) = 3.

We define Mt to be the above product (and we let Mr be a point if there

are no contracted components). The map ¥r : Mp — My described above is not

an isomorphism, but rather a finite morphism. In terms of stacks, there is a finite

group of automorphisms Ar acting on My such that the quotient (in the stack

sense) is M. The group Ar fits into an exact sequence

(9.13) 0 — [[2/d.2 — Ar — Au(T) —0,

where Aut(T) is the group of automorphisms of I which preserve the labels. We can

explain this sequence as follows. The subgroup [], Z/d.Z arises from the covering
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transformations of the degree d. covers. The quotient map arises as follows. Each

g € Ar takes a collection {C,} € Mr of n(v)-pointed genus 0 stable curves to a

different collection {C}} such that f = ¥r({C,}) and f' = ¥r({C,}) are isomorphic

stable maps. This isomorphism identifies the connected components of f~!(¢;) and

(f)"Y(@:)- In particular, each C, is identified with some C., such that i, = i,,.

It is easy to see that the permutation of the set of vertices v — w is independent

of the choice of the C, and induces an automorphism a(g) of I' which preserves

labels. The map g — a(g) defines the map Ar — Aut(T') in (9.13), which is then

easily seen to be exact.

As a consequence, when Corollary 9.1.4 is applied to Mo (P, d), the number

ar appearing in the denominator of the term corresponding to the fixed component

Mpr is just the order of Ar.

Example 9.2.1.1. Let us compute the fixed point components of the standard

T-action on My o(P',2). The possible graphs I" are:

In these graphs, we have placed d. above the edge ¢ and i, below the vertex v. The

S, are empty in this case since there are no marked points.

This gives three components of the fixed point set of T acting on Mg o(P*,2).

The corresponding T-fixed stable maps are as follows in the three respective cases:

(¢) The curve C has two components, C = C; U C,. The map f restricts on

each component to an isomorphism flc, : C, = P!, and f(Cy N Co) =q1.

(#) The curve C has two components, C = C; U C,. The map f restricts on

each component to an isomorphism flc, : C; = P!, and f(C; N Cy) = gq.

(#i) The curve C is irreducible, and coordinates (29, z1) on C ~ P! can be chosen

so that f(zo, 21) = (28, 23).

In each case, we have Ar = Z,, hence ar = 2. In cases (i) and (i), the nontrivial

automorphism arises from the obvious automorphism of T', while in case (i), the

nontrivial automorphism arises from the double cover.

Example 9.2.1.2. We compute the fixed point components of the standard T-

action on Mg 1 (P?,2). The T-action on P? has three fixed points

do = (1107 0)9 q = (01 110)7 and g2 = (07 01 1)'

Accordingly, the possible graphs I' are:

{1}t 1 1{1} 1 {1} 2

i 7 k i j k 1 J

tFEG IFEk tE G JFEk i # ]

where we have added the label S, above the vertex v whenever S, is nonempty.

Note that the second graph corresponds to a stable map with source curve

C =C, Uy UCs with C, intersecting each of C; and Cj3 in a point and no other

intersections. The curve C) is mapped isomorphically by f onto the line joining

gi and q;, the curve C; is mapped to the point g;, and the curve C; is mapped
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isomorphically by f onto the line joining ¢; and gx. The marked point p; is a smooth

point of Cy. Note that f is stable since C> contains three special points, namely

p1, C1NCs, and CoNCs. The existence of a contracted component can be recognized

immediately from the middle vertex v of the graph, since n(v) =1+ 2=3.

To carry out calculations in My (P, d), we use Corollary 9.1.4. Hence we

need to describe the normal bundles of the components of the fixed point set.

In this context, we denote the normal bundle of Mr by Nr. References for the
calculation of its equivariant Euler class include [Kontsevich2, Giventald, GPa]

(the reference [GPa] includes the generalization to My ,(P",d), which requires a

localization formula for the equivariant virtual fundamental class).

Recall from Section 7.1.4 that the tangent space to the stack Mo ,(P",d) at
the stable map (f,C,p1,...,Pn) is the hyperext group

Extg (f* Q% — Q6(D),Oc),

where D = Y, p;. To understand this group, we use the long exact sequence for

Ext, which gives

0 — Hom(Q4(D),0¢) — H(C, f*Ter) —
(9.14)

: Ext!(f*Q}- — Q6(D), Oc) — Ext'(26:(D), Oc) — 0,

as well as Ext2(f*Q4. — QL(D), Oc) = 0, since H}(C, f*Tp-) = 0 by the convexity

of P*. For more general g and X, the exact sequence (9.14) must be replaced

by a similar exact sequence which calculates the tangent-obstruction complex, as

explained in Section 7.1.4

At a T-fixed point of My C Mo .(PT,d), we can find the weights of the T-

action on the tangent space using (9.14). Then we can determine the weights of

the T-action on the normal bundle Ny by looking at the T-action on the terms

in (9.14) and restricting to the “moving part”. Then multiplying these weights

together gives the equivariant Euler class of Nr in the usual way.

Before we can give the formula for Eulerp(Nr), we first need some notation.

Following [Kontsevich2|, we define a flag F to be a pair (v,e) such that e is an

edge containing the vertex v. We put ¢(F) = v, and we also let j{F) denote the

vertex of e different from e. Given a flag F = (v, e), we put

Airy = A
d. :

This is the element of H2(BT) corresponding to the weight of the T-action on the

tangent space of the component C. of C associated to the edge e at the point pr

lying over i,. We also let er be the first Chern class of the bundle on My whose
fiber is the cotangent space to the component associated to v at pp.

If v is a vertex with val(v) = 1, then the unique flag containing v will be denoted

by F(v). Similarly, if val(v) = 2, then the two flags containing v will be denoted

by Fi(v), Fa(v).

Wp =

THEOREM 9.2.1. The equivariant Euler class of the normal bundle Nr is a

product of contributions from the flags, vertices, and edges. More precisely,

Eulerr(Nr) = ef ef. e,
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where ef: , et and eg are defined by the formulas

ek = H (wr —EF)/ H (Airy = A5)
n(i(F))23 F#i(F)

d=[IT10Ow-% I @wnw+wnm) / II wre
v jFi, val(v)=2 val(v)=1

5.,=@ 5u=@

—1)4e (d )2 (A — A;)%de ak; + b
I | I G R W]

e a+b=d, €
ki,

ProOF. Complete proofs can be found in [Kontsevich2] and {GPa]. We will

instead sketch a small part of the proof which involves Lemma 9.2.2 below. Thig

lemma will be useful later.

We begin with the observations that Hom(QL (D), O¢) is the space of infinites-

imal automorphisms of (C,p1,... ,p,) and H°(C, f*Tpr) is the space of first order

deformations of the map f. Hence we see that

HO(Cv f*TP')/Hom(QIC(D)’ OC)

is the subspace Sr s of the tangent space to My corresponding to deformations of
the stable map f for which the moduls of the points py, ... , p, are fixed. Combining

this with (9.14) gives the exact sequence

0 — St,; — Ty Mo .(P",d) ~ Ext'(Q%(D), 0¢) — 0.

However, we also have the map

p : Ext'(Q4(D), Oc) — HO(C,Ext'(Q%:(D), Oc))

coming from the local-global spectral sequence for Ext. Since C is a curve, the

spectral sequence degenerates at E,, which shows that p is surjective. But the sheaf

Ext' (QL(D), O¢) is a torsion sheaf supported at the nodes of C, since QL(D)is

locally free at the smooth points of C. It follows immediately that

Ext'(Q4(D), Oc) ~ Ext' (2%, Oc),

so that we can regard p as a surjective map

w: Ext! (Q5(D),0c) — H(C,Ext (2%, Oc)).

By [DM], H%(C, Ext! (¢, @¢)) is the space of first order smoothings of C, forget-

ting both the map f and the marked points p;. The argument given in [DM] is

still valid in this context, even though the curve C need not be stable.

This discussion shows that £~ 1(p=1({0})) C TyMo(P",d) is the space of

first order deformations of f which preserve the nodes. Since the first order de-

formations of f coming from T;Mr obviously preserve the nodes, we see that

T Mr < k= 1(4~{{0}). Thus x o x induces a surjection

Nr ; — H°(C,Ext! (S, Oc)).

This map is compatible with the natural action of T on H%(C, Ext!(Q¢, O¢)).

We now state an important lemma from [Kontsevich2] which computes this

space explicitly. Let ¢; be a node of C, and let C},C} denote the two components

of C containing the point g;.
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LEMMA 9.2.2. There is a natural isomorphism

H®(C,Ext* (%, 0c)) ~ ) (T, C} © T, C3)

respecting the T-actions.

PROOF. Since the calculation is purely local, we let C be a local (analytic)

curve defined in a local surface S by the equation zy = 0, where (z,y) are local

coordinates on S. The components of C will be denoted by C; and C,, and let

q = (0,0). We compute the Ext! using the standard exact sequence

(9.15) 0— Ic/IE — Qklc = QL — 0,

where the first map sends [f] to df|c and the second map is pullback to C. The

long exact sequence for Ext"(-,O¢) applied to (9.15) gives

(9.16) Ext!(Q%, Oc) =~ coker (Ts|c — (Ic/I3)),

where (I¢c/I%)* denotes Hom(I /I, Oc). One computes that 2(8/0z) is the map

taking the generator zy of Io/I2 to y, while h(8/3y) takes zy to .

Intrinsically, this leads to the isomorphism

(917) Tpcl ® TpCZ >~ _Efil(Ql ) OC)

.defined by

{9.18) v @vz — [f = viva(filel,

using the identification (9.16). To make sense of this, we interpret v; and v, as

the restrictions to C; and C? of vector fields on S, with each v; tangent to C;. We

restrict the resulting function vivsf to C. The assignment f — viv2(f)|¢ is an

element of (Ic/I%)* for given vector fields vy, vs. Its value modulo the image of

h is easily seen to depend only on v; ® vz at the point p. In terms of the local

coordinates z,y, (9.18) sends the generator (9/9z) ® (8/8y) to the class of the

element of (Ic/I%)* taking zy to 1. This calculation shows that (9.18) indeed

defines an isomorphism (9.17).

The naturality of (9.17) shows that the isomorphism is compatible with the

natural T-actions on each side. a

In terms of proving Theorem 9.2.1, Lemma 9.2.2 is used in the formula for

Eulerr(Nr) in two places:

o The terms wr — ep occurring in el arise from the nodes of C where a con-

tracted component meets a component mapped to P with positive degree.

o The terms wp, () + Wp,(v) OCCUITINg in e} arise from the nodes where two

components meet, each of which is mapped to PTM with positive degree.

To complete the proof, one needs to understand the other terms in ef, e% and

ef. For example, one can show the following:

o The denominator of ef. arises from the weights of the T-action on the infin-

itesimal automorphisms in Hom(Q2k, O¢).

o The denominator of e} (resp. the first factor of ef) arises from a contribution

of the tangent space to P” at gy(r) (resp. ¢i(v))-

These follow without difficulty from (9.14). However, we've said nothing about the

terms appearing in ef, so that a lot of work remains to prove the theorem. As

already mentioned, fuil details can be found in [Kontsevich2, GPal]. a
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In the formula for Eulery(Nr) given in Theorem 9.2.1, it should be clear that

there are many cancelations between the three factors ef, e} and ef.. Therefore this

formula is not necessarily the most efficient way to calculate in specific examples.

The advantage of Theorem 9.2.1 is that it gives an easily automated algorithm for

calculating Eulerp(Nr). We will work out a nontrivial example of these formulas

(and verify their correctness) in Section 9.2.2 below.

We should mention that the identification

H°(C,Ext! (%, O¢)) ~ P(T,.Ci ® Ty, C3)

given in Lemma 9.2.2 appeared implicitly in [Mumford2, HM]|. We will use

Lemma 9.2.2 in Section 9.2.2 below. This lemma also plays a central role in the

proofs of the Mirror Theorem described in Chapter 11.

The T-representation associated to the right hand side of Lemma 9.2.2 arises

paturally in computations on more general spaces Mg (X, ), even though the

lemma does not apply as stated. This follows from the interplay between the

tangent space to Moy (X, 3) and the virtual fundamental class arising from the

long exact sequence for Ext*(f*Ql, — QL(D),Oc¢).

Example 9.2.1.8. One of the first applications of the theory developed here was

the calculation of the Gromov-Witten invariant Ny = (I o,4) of the quintic threefold

[Kontsevich2]. Recall from Example 7.1.6.1 that

Ny = /_ Euler(Vy),
Mo, o(P4,4)

where Vy is the vector bundle over Mg o(P*,4) whose fiber at (f,C) € Mo o(P*,4)

is HO(C, f*Op:(5)).

For the action of T = (C*)® on P*, one can write down all possible graphs Mr

and compute the corresponding equivariant Euler classes Eulerr(Nr). One can

also compute the weights of the restriction of Euler(V,) by explicitly representing

cohomology classes as Cech cocycles. We will explain how this can be done in

Section 9.2.2. When we then apply Proposition 9.1.5, the resulting computation is

large, but as noted in [Kontsevich2], “during 5 minutes on Sun” yields the answer

__ 15517926796875
=—

In terms of instanton numbers, one has Ny = 1, 4~% 4+ ny 273 + n4, and using the

known values n; = 2875 and n, = 609250, Kontsevich then obtained

ng = 242467530000.

This was the first rigorous computation of n4, confirming the prediction [CdGP]

of mirror symmetry. As we showed in Example 7.4.4.1, this means that a generic

quintic threefold contains exactly 242467530000 rational quartic curves.

Ny

9.2.2. Multiple Covers and Gromov-Witten Invariants. Suppose that

V is a Calabi-Yau threefold and that C C V is a smooth infinitesimally rigid rational

curve. Now that we know about localization, we can describe Kontsevich’s approach

to the calculation of the contribution of degree d covers of C to the Gromov-Witten

invariant (Ip g 4ic)). According to Theorem 7.4.4, the answer is 1/d3.

We fix an isomorphism P! ~ C, and our rigidity assumption implies that the

normal bundle of C C V is N 2 Opi(—1) @ Op (—1). The virtual fundamental
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class [Moo(V,d[C])]"'TM® is a O-cycle, and by definition, (lo0.q4ic)} is its degree. We
want to compute the contribution to (Io o.qic)) of the portion of the virtual funda-

mental class supported on the variety My (V) of degree d multiple covers of C.

In the discussion preceding Theorem 7.4.4, we proved that My o (V) is a connected

component of Mg o(V,d|C]).

The isomorphism P! ~ C induces an isomorphism My (V) ~ Mo o(P!,d), and

the latter is the space that we will use for our calculations. It is easy to see that

dim Mo o(P!,d) = 2d — 2. The first step in the proof is to represent the restriction

of [Mo,o(V, d[C])]"TM* to Moo(P!,d) as the Euler class of a suitable bundle.

This is done as follows. Consider a stable map f € Mo,o(Pl,d). Using the

exact sequence defining the normal bundle of C in'V

0— f*Tpr — f*Ty — f*(Opi(—=1) @ Ops(-1)) — 0,

we note that the hypotheses of Proposition 7.1.8 are satisfied, since

RHC, ' Ty) =k (C, f*(Op (~1) ® Op: (-1))) = 2d - 2,

where the last equality comes from Riemann-Roch. Then the proposition implies

that the restriction of the virtual fundamental class is just the Euler class of the

rank 2d — 2 obstruction bundle le,gz_(opx(—l) © Op1 (1)), where the universal

stable map is given by the family m; : Mo,1(P*, d) — Mo o(P!,d) of curves and the

. universal map is e; : My (P!, d) — PL.

It follows that Theorem 7.4.4 from Chapter 7 can be reformulated as follows.

THEOREM 9.2.3. Let C C V be a rigidly embedded smooth rational curve in a

Calabi- Yau threefold. Then the contribution of degree d multiple covers of C to the

Gromou-Witten invariant (Ip g qic)) 15

1
/_ Euler (Rimi.e1(Or (~1) ® Op (-1))) = -
Ma o(P.d) d

PRrooF. The idea of the proof is to compute the integral using localization of

stacks (Corollary 9.1.4) for the usual action of T = (C*)? on P'.

First consider the special case d = 2. In Example 9.2.1.1, we identified the

three fixed point components of the T-action on Mqo(P',2). Label the graphs

depicted in Example 9.2.1.1 consecutively as I';, T'z, T's. For each graph I';, we

will compute the weights of the T-actions on the normal bundle N, and on the

obstruction bundle R!m,e}(Op (—1) & Op1(—1)) restricted to Zr,.

We begin with I';, which is the labeled graph

The corresponding fixed point component Zr, is a single point, corresponding to a

stable map f, : C; U Cy — P! such that fi|¢, is an isomorphism and fi(p} = q1,

where {p} =C1 N C,.

We first compute the equivariant Euler class. There are 4 flags, 3 vertices, and

2 edges. Using the formulas given in Theorem 9.2.1, we obtain

Egl = 1/ (()\o — /\1)2(/\1 - /\0)2)

er. = ((ho = A1)2(A1 = Xo)) (221 — 2X0) /(ho — M1)?

e‘f-“ = ()‘0 - ’\1)4v
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and then

(9.19) Bulerr(Np,) = 2(A\ = Ao)?

follows immediately. To give more insight into where these formulas come from, we

will verify (9.19) by calculating the tangent weights in a more elementary way.

To describe the 2-dimensional tangent space to Mg o(P*,2) at f;, consider the

substack M (P!,2); C Mo o(P?,2) of O-pointed stable maps f : C; U C; — Pl

such that f|c, has degree 1. Note that fi € M(P',2);. There is a morphism

M(P,2); — P! taking f to f(Cy NCs) € P*. This morphism has degree 2 (as

a map of stacks) due to the automorphism switching C, and C>. The fixed point

Zr, = {f1} is in this manner mapped to ¢; € P!. The automorphism corresponds

to an automorphism of the graph I'; and will contribute an extra factor of 2 in the

denominator when we apply Proposition 9.1.5.

The tangent space to M(P!,2), at f, gives a tangent direction in T, Mo o(P?, 2)

which simply moves the point ¢;. Hence the weight of the T-action on this direction

is the same as the tangent weight to P! at ¢;. This weight is easily computed to be

A1 — Ap by our usual methods.

To find the remaining weight on T, HO,O(PL, 2), note that by a suitable diagram

chase involving the maps used in the proof of Theorem 9.2.1, the quotient

Ty, Mo o(P',2) /T, M(P*,2),

is naturally isomorphic to

H°(Cy U Cy, Ext’ Qc,ue,, Ocyue,))-

Then Lemma 9.2.2 implies that the quotient is isomorphic to

TpC1 ® TpCs.

All of these isomorphisms preserve the natural T-action. But each T,C; is isomor-

phic to T,, P! as a T-representation, so that the remaining weight is 2(\; — Ag).

Hence the weights of Ty Mo o(P?,2) are A; ~ Ag and 2(A; — Ag), which implies that

the equivariant Euler class is 2(A\; ~ A\g)?, in agreement with (9.19).

We now turn to the obstruction bundle Rlm;.e](Op:(—~1) & Opi(~1)). To

calculate its T-weights, we need only find the weights of R'm;.e}(Opi(~1)) and

duplicate the answer. The restriction of f;Opi(—1) to C; is just Og,(—1) for

i = 1,2, and then the normalization map induces the short exact sequence

0 — f{Op (—1) ~— Oc, (-1) ® Oc,(~1) — f{Og,(-1) — 0.

Taking cohomology gives

HY(CLU Gy, f10p1(=1)) = H°(B, O, (-1)),

which is 1-dimensional. But the action of T on Opi(—1) at ¢; is ~py, so that the

weight is —A;. Hence the weights of the obstruction bundle at f; are —X;, —A;.

The calculations at the fixed point Zr, associated to I'; are entirely analogous.

We just take the results of the calculation for I'; and switch g, A1, which gives

Tangent weights : Ao — A1, 2(Ag — A1)

Obstruction weights : —Xg, —Ag.



9.2. LOCALIZATION IN Mo, .(P", d) 291

Finally, we turn our attention to I's. There are 2 flags, 2 vertices, and 1 edge.

By Theorem 9.2.1, we get

ef, =1/ ((Ao — A)(A1 = X))

e‘f‘a ={A - Xo) (o — /\1)/((/\0 ; /\1) (8‘_1__'2-_)‘3))

o 2229 - A1)t

s = T o1

so that Eulerp(Nr,) = (Ao — A1){(A; — Ag). One can also obtain this result by

explicit calculations as we did for T';.

We also need the weights of the obstruction bundle at the fixed point I's.

Here, the fixed point is represented by the degree 2 map f3 : P* — P! defined by

f3(20, 21) = (23, 2}). Following the same format we did for Iy, it suffices to compute

the weight of the T action on H(P!, f3Op:(~1)) and duplicate the answer.

Consider the nonzero cohomology class of H!(P!, f;Opi(—1)) represented by

the Cech cocycle

L
2021

where U; = {z € P! : z; # 0}. The variable z; € H°(P*,Op: (1)) has weight ;,

_so that z; has weight -15)\1' since z; = z? via f3. It follows that 1/(zpz1) has weight

~(Ao + A1)/2. Hence the obstruction weights are —(Ao + A1)/2, —(Xo + A1)/2.

We now have of the ingredients needed to apply Proposition 9.1.5. Thus the

integral

€ Z%Uo N U, f30m (1)),

/_ Euler(R'm.e}(Op (1) @ Om(-1)))
Mo,o(P,2)

is equal to the sum

(M)(A1) (20)(Xo)

2(M1 —20)(2(1 —0)) 2(Ah0 — A1) (2(%0 — A1)
(=(ho +2)/2)(=(ho +A1)/2) _ 1

2(A1 — Aa) (Ao — M) 8

Note that each term has an extra factor of 2 in the denominator, due to the order 2

automorphisms at each of the fixed points, as noted in Example 9.2.1.1. This

completes the proof of Theorem 9.2.3 when d = 2.

For general d, [Manin2| gives a proof which combines the techniques discussed

here with clever combinatorial summing techniques. Instead, we will prove the

theorem for arbitrary d using a simplification due to R. Pandharipande. The idea

is to change the torus action on Opi(—1) ® Opi(—1) to simplify the calculation.

We first restrict the torus to the subtorus T/ = C* x {1} ¢ T = (C*)%. We let

% denote the restriction of Ao to T'. We will use the action of T” on Mpoo(P*,d)

obtained by restricting the action of T, but will use a different action of T/ on

Opi(—1) ® Op:(-1).

We equip Op1 (—1) ® Op:(—1) with a T"-action as follows. We put

t - (I(zo, z1), m(T0, 71)) = (I{tzo, 71), m(z0, t TM Z1)).

Here, | and m are homogeneous of degree —1 in (Zq,z;). Note that this action is

compatible with the action of T” on P'.
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We will now calculate the integral of Euler(R!m;.e}(Opi (1) & Op1(~1))) on
Mo,o(P, d) using the above T"-action and Corollary 9.1.4. It is easy to see that the
fixed point loci of the T’-action on Mo o(Pt, d) coincide with the fixed point loci of
the T-action. Let I’ be a graph corresponding to a fixed point component My of
Mgo(P!,d). We claim that if T' has more than one edge, then its contribution to
the localization formula vanishes.

This is straightforward to see. Let f: C — P! be a typical stable map in the
component Mr corresponding to I', and decompose C into components C;. Let
{ri} be the set of nodes of C. If there is more than one edge in I, then there exists
at least one node. Then we have the normalization exact sequence

0= f*(Or(=1) & O (-1)) — D(flc.)" (Or: (1) & Ops (-1))

— @f‘(oun(—-l) [<2] 0])1(—1)),-‘. — 0.

From the above exact sequence, we see that H'(C, f*(Op1 (-=1)&Op: {-=1))) contains
the subspace ®;H(C, f*(Op1(~1) & Op1(~1)),,). Since f € Mr, we know that
f(r;) is either go or 1. ¥ f(r;) = qi, then 1/z, is a local basis for Op1(—1) at
¢1. Thus T acts trivially on the first f*Op1(~1), factor. Similarly, if f(r;) = go,
1/z¢ is a basis for Op1(—1) at go, hence T” acts trivially on the second FrOp(—1),
factor. In either case, we see that the existence of a node implies that one of the
T'-weights of ®;H(C, f*(Op: (~1) & O(=1)),,) is zero. This weight contributes
multiplicatively to the restriction of the equivariant Euler class of the obstruction
bundle. It follows that the fixed point component M contributes 0, which proves
our claim.

Therefore we are reduced to a single graph T with one edge corresponding to a
degree d map, namely

For this graph, Mr is a single point with automorphism group Ar = Z/dZ, and as
usual, the corresponding map f : P* — P! is defined by f(z0,2;) = (28, 28%).

We will compute the weights of the restriction of the obstruction bundie using
the open cover Up,U; from the argument for d = 2 given earlier. For general d,
one can show that a basis for H(P’, f*(Op: (—1) @ Op: (~1))) is given by the Cech

cocycles

(9.20) (;O—Z?To) (OZ:F) 1<i<d-1

We know that zo,z; € H°(P!, Opi (1)) have weights /i, 0. Since z; = 28 via f, it
follows that 29, z; have weights /i/d, 0. Hence the cocycles in (9.20) have T”-weights
—ihi/d and (d — {)A/d for 1 < i < d~ 1, and thus the equivariant Euler class of the
obstruction bundle contributes (—1)¢~1((d — 1)!)2A24-2/424-2 in the localization
theorem.
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We also need to compute the equivariant Euler class of the normal bundle Nr.

Using Theorem 9.2.1 with Ay = A and A; = 0, we obtain

ef =1/((h-0)(0—h)) = —a~>

= 0-00-n/ (559 (55) -
o (CLAA)(a - 00 _ (~1)(dA

er = 24 = 424 ?

from which we conclude that

Eulerr(Np) = (—1)%71(d!)24%472 /g24-2,

Finally, since we are dealing with stacks, we also have the factor ar arising from

automorphisms of Mr. The exact sequence (9.13) shows that ar = d in this case.

This gives an extra factor of d in the denominator. Putting everything together,

Corollary 9.1.5 implies that the integral in question is equal to

(_l)d—l ((d - 1)!)2 h2d—-2/d2d—2 _ 1

d- (=1)3-1 (dl)? h2d~2/q2d~2 B’

as claimed. This completes the proof of the theorem. O

An entirely different proof of Theorem 9.2.3 is given in [LLY, Corollary 3.5].

" This proof uses ideas similar to those used in the proof of the Mirror Theorem given

in Section 11.1. We will explain this proof in Example 11.1.7.1.

9.2.3. Double Covers of 6-Nodal Quintics and n;5. When we studied

rational curves on a quintic threefold V C P* in Section 7.4.4, we showed that for

d < 9, the instanton number ny is the number of rational curves of degree d on

V. A crucial part of the argument is Theorem 9.2.3, which tells us how multiple

covers of rigidly embedded smooth rational curves contribute to Ny = (Ip0,4)-

However, as pointed out to us by R. Pandharipande, Theorem 9.2.3 does not apply

to double covers of nodal rational curves of degree 5 lying in V. This is similar to

pathologies about multiple covers of nodal curves noticed in [Katz3, BL]. Instead

of contributing 273 = g— as predicted by Theorem 9.2.3, we will prove below that

each such curve contributes 65 to Nig = (lo,0,10)-

Let’s first explain why V contains nodal rational curves of degree 5. If P C P4

is a plane, the curve C = V N P is a plane quintic curve of arithmetic genus 6. We

want to find rational curves among these C. The curve C would be rational if it

had 6 nodes. Note that C has a node at a point p if and only if the plane P is

simply tangent to V at p. It is one condition on P to be tangent to V. Hence we

expect 6 conditions on P to be tangent to V at 6 points. Since the curves C are

parametrized by the Grassmannian G(3, 5) of projective planes P C P*, and G(3,5)

has dimension 6, we expect a generic quintic threefold V' to contain a finite nonzero

number of 6-nodal rational plane quintic curves C. This naive dimension count can

in fact be made rigorous, and the number of such curves (inciuding multiplicity) is

known to be 17, 601, 000 [Vainsencher|. Below, we will show that the multiplicities

are generically all 1, so that a generic quintic threefold has precisely 17,601,000

6-nodal plane quintic curves.

We now let C,, be one of these nodal rational plane quintics on a generic quintic

threefold V. By a degree d multiple cover of C,, we mean a genus 0 stable map

f: C — C, with f.[C] = d[C,] = 5d. We can also think of a multiple cover as
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amap f: C — V factoring through C,,. We want to find the contribution of the
multiple covers to the Gromov-Witten invariant Nsq. A naive interpretation of the
multiple cover formula from Theorem 9.2.3 would suggest a contribution of 1 /d8.
We show that this is already false for d = 2. There are three steps involved:

e First, we will compute the normal bundle of the normalization of Ch.
e Next, we will show that the double covers of C, are a union of connected
components of HO'O(V, 10).

o Finally, we will prove that the restriction of the virtual fundamental class
[Mo,0(V,10)]"'"* to these components has total degree 6.

We begin with the first of these steps, which will tell us that Cr is rigidly
embedded in V. Note that we used this fact earlier in Section 7.4.4.

LEMMA 9.2.4. IfV is a generic quintic threefold and g : P! — C,, is the nor
malization of C, C V, then g has normal bundle Ny =Opi(~1) B Op(-1) in V.

PROOF. Since N, is a rank 2 bundle on P!, we have Ny = Opi(a) B Op1 (b) for
some @, b, and the adjunction formula implies a + b = —2 since V is Calabi-Yau.
Hence @ = b = -1 if and only if A%(P!, N,) = 0.

We will adapt the argument of [Katz2, p. 152-153] to this situation. Let
P = P(H®(P*, Op«(5))) be the projective space of quintics in P4, and let M be the
moduli space of genus 0 irreducible rational plane quintic curves in P*. Note that
M is fibered over G(3,5) with fibers isomorphic to open subsets of Moo(P2,5), so
that M is irreducible of dimension 20. Let

I={(D,V)eMxP:DcCV}

be the incidence correspondence. By the Riemann-Roch theorem, h9(D, Op(5)) =
20 for D € M. Since each curve D € M is a complete intersection in P4, it
is projectively normal. We can then compute that the fibers of the projection
m : I — M are projective spaces of dimension 105. Hence I is irreducible of
dimension 125, which is also the dimension of P.

Now let

Ii={(D,V)eI:rP,N,)>1},

where g : P! — D C V is the normalization map. By the above description of Ng,
we see that (D, V) € I — I if and only if Ny = Op1(—1) ® Opi (—1). We will show
in a moment that I — I; is nonempty. Assuming this, then by the irreducibility of
I, we have that dim J; < 124. Hence my(r 1) must be a proper subvariety of P, and
for any V € P — my(J1) we conclude that the assertion of the lemma holds for all
plane rational quintics on V.

So we are reduced to writing down a single example, which we now do. Let
(20, 21) be homogeneous coordinates on P!, and consider the curve D which is the
image of the map

(20,21) =
9.21( ) (zg + 23, zozl(zg + z?,zi + zg22), zozl(zg + 32{‘;21 + 22922 + zf), 0,0).
The curve D lies in the quintic threefold F = 0, where

F(zo, .. ,za) = 2321 + 3232} + 2002 + 612% — 237120 + 22222,

(9.22) — 24z023%5 — 25atz, — 3z3z,22 + 2wozizh — 40z3z2
: 

2

+ x%x% + dzozi T3 + 35x3x3 - zoxs ~ 10z3 T3+ 3
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and To, ... ,Z4 are coordinates on P*. A general quintic containing D has equation

of the form

(9.23) Fi+o3G+z4H=0,

where G, H are each homogeneous of degree 4.

From the normal bundle exact sequence

(9.24) 0— Tgn — g*Tv — Ng — 0,

we see that h%(P!, N,) = 0 if and only if A°(P!,¢g"Tv) = 3. By Riemann-Roch,

this happens if and only if H(P*, g*T}/) = 0. We will compute H!(P!, g*T/) using

a computational device from [Katzl], which we generalize slightly. Suppose that

f : C — P* with C arational curve, possibly reducible. Put £ = f*Opa(1). F=0

is an equation for V, let E , denote the pullback via f of the partial derivative of F
with respect to z;. Note that F; € HO(P',4L). Now consider the exact sequences

0 — Opi — O(1)° — Tps — 0

and

0 — Ty — Tps|y — Ov(5) — 0.

We can pull back these sequences via f, and combine them to get a map

) &, : H°(P, £)> — HO(P!,5L)

given by

4

(So,,.. ,S4) = ZS]E
i—0

An easy diagram chase shows that H*(C, g*T\) ~ coker ®v. Here, we have used

R (C,O¢c) = h1(C,g"Tps) = 0, where the latter equality follows from the convexity

of P4,

The normal bundle can then be computed directly using linear algebra (and

a computer). For example, letting G = z§ and H = z}, the matrix of &y is an

integer valued 30 x 26 matrix which we compute has rank 26. The resulting quintic

F+23G+z,H = 0 is singular, but the generic quintic of the form (9.23) is smooth,

so by semicontinuity of the rank, a smooth V can be found as well. 4

This lemma implies that when V' is generic, each 6-nodal rational plane quintic

curve occurs with multiplicity 1, so that V' has exactly 17,601,000 such curves.

We next turn to the second step of our study of double covers of C,, where

we show that such covers give rise to 7 connected components of Moo(V,10). Let

My 0, (V) © Mog(V,10) be the subspace classifying all stable O-pointed genus 0

double covers f : C — Cp. Then we have the following result.

PROPOSITION 9.2.5. My, (V) consists of 7 connected components of the mod-

uli space Mo o(V,10). Furthermore:

(i) One component is isomorphic to Moo(P*,2) and consists of double covers

which factor through the normalization.

(i4) The other 6 components are smooth points of Mo 0(V,10) and correspond to

double covers f : C, UC; — C,, such that f|c, is the normalization map and

f is a local isomorphism above one of the nodes of Cp,.
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PROOF. We start with double covers which factor through the normalization
map g : P! — C,. Let M; be the stack of stable double covers f : C — C,, which
factor through g, and consider the associated moduli space M; C Mo o(V,10).
It is immediate to see that these are the maps f € Mg o(V,10) which factor as
f = goh for some h: C — P in Mog(P!,2). We claim that M, is a component
of —J\ZOYO(V, 10). To see this, we analyze Moo(V, 10) infinitesimally at f € AM;.
Since MO,O(P1,2) is smooth (in the orbifold sense) and complete of dimension 2,
then to show that M) is a component, it suffices to show that the tangent space
to Moo(V,10) at such f also has dimension 2. As usual, this tangent space is
Ext! (0 — 0L, 00).

First suppose that (f,C) € My with C irreducible. Then C ~ P!, and the long
exact sequence for Ext®(f*()}, — Ql,, Op1) simplifies to

0 — HYP', Tin) — HO(f*Ty) — Ext!(f*0L — 0L, 0m) — 0

and the isomorphism Ext*(f*Q, — Ql,,0p) ~ H*(f*Ty). Using Lemma 9.2.4
and (9.24), we see that g*Ty 2~ Op: (2) ® Op1(~1) & Op: (—1), which implies that

Ty = Opi1(4) ® Opr (-2) ® Opr (~2).

This immediately implies Ext'(f*Q}, — Q,, Op ) has dimension 2.
It is also possible to have double covers (f,C) € M; where C has two com-

ponents, each mapping onto C, with degree 1. For these curves, we can again
compute that Ext'(f*0), — 0L, Oc) has dimension 2. We omit the details. This
completes the proof of part (i) of the proposition.

Now suppose that f : C — C,, is a degree 2 cover which does not factor through
the normalization map g. Write C = U;C,, and let d; be the degree of f on each
C;, so that 3, d; = 2. Note that there can be at most 2 components mapping to
C, with positive degree. If a tree of components C; were contracted by f, (i.e., if
d; = 0 for all curves C; in the tree), then it could meet at most 2 other components,
contradicting stability. Hence C can have only one or two components. If it had
just one component, then C would be normal, and f would factor through the
normalization g. So C = C; U C, is a union of two smooth rational components
and d; = dy = 1. It follows that f |c, is identified with the normalization map g,
and we only have to describe how to glue these two maps together. If f maps the
node of C to a smooth point of C,,, it is immediate to see that f factors through
g. Similarly, it is immediate to see that if f maps the node of C to a node of Chn,
then f factors through g if and only if the branches of C near its node are mapped
to the same branch of C,, at the image node. Thus, when f doesn’t factor through
g, it must map to both branches of C,, at the image node. In other words, f is a
local isomorphism above the node.

We conclude that there are precisely 6 double covers of C,, which don’t factor
through the normalization, one for each node of Cn. Let py, ... pe denote the nodes,
and let f; : C = C,UC>; — C, C V be the double cover which restricts to the
normalization map on each C,, takes the node of to p;, and takes C; and C5 to
opposite branches of C,, at p;.

The above argument shows that Mz ¢, (V) consists of the 6 maps fi,... , fg
together with the component Mg o(P',2) of double covers which factor through
the normalization. Hence, to complete the proof of the proposition, we need only
show that the f; are smooth points of Mo o(V, 10), or equivalently, that the tangent
space Ext’(f'Q% — QL. Oc¢) has dimension 0 at these points. By the usual exact
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sequence, it then suffices to show that the map

(9.25) Ext!(2,Oc) — H'(C, /i Tv)

is surjective. Let K be the kernel of fy2,, — QL. Using local coordinates, it is
easy to see that K is locally free of rank 2. Then surjectivity of (9.25) is equivalent

to HY(C, K*) = 0. We now turn to this computation.

We will prove that H'(C,K*) = 0 by an indirect argument. Consider the

incidence correspondence

(9.26) T={(p,D,V)eP*x M xP:pisanodeof DCV}

where as in the proof of Lemma 9.2.4, M is the moduli space of genus 0 irreducible

rational plane quintic curves in P*.

Observe that the set of irreducible rational curves with a node at a fixed point

is irreducible. This follows because the curves with a node at, say, (1,0,0,0,0) can

be parametrized by the map

(20, 21) — (@0(z0, 21), 202101 (20, 21), 202102(20, 21), 202123( 20, 21), 20 21 04(20, 21))

for some homogeneous forms a; with o of degree 5 and «; of degree 3 for 1 < i < 4.

In the above map, we have arbitrarily let (1,0) and (0, 1) be the two points mapping

to the node. Note that (9.21) is a special case of this construction. The set of all

-a; form an irreducible variety, and the desired irreducibility follows.

Using this, we can prove that the incidence correspondence Z defined in (9.26)

is irreducible. This follows from the previous paragraph by projecting onto P* x M

and then onto P*.

From here, the argument used in proving Lemma 9.2.4 reduces us to finding

one example of a (p, D,V) € T such that the H(C, K*) = 0. We take D to be

as in (9.22), letting p = (1,0,0,0,0). This node is the image of the two points

(1,0) and (0,1) under the parametrization (9.21). We can use Macaulay [BS] to

explicitly construct the curve C as a line-pair in P2, construct the map f as the

restriction of an explicit map P> — P*, then chase through the constructions to

build the sheaf K*. We then calculate that H!(C, K*) = 0, as desired. Note that

Macaulay computes in nonzero characteristic, but we can conclude the vanishing

generically anyway by upper-semicontinuity of cohomology. ‘ O

Finally, we compute the degree of the restriction of the virtual fundamental

class [Mg,0(V,10)]"' to the components described in Proposition 9.2.5.

THEOREM 9.2.6. If C, is a nodal rational plane quintic curve in the quintic

threefold V' C P*, then the contribution of double covers of C, to the Gromov-

Witten invariant Nig = <I0,0.10> 5 6%

PROOF. We begin with the component Mg (P!, 2) given by double covers
which factor through the normalization. Here, one simply follows the proof of

Theorem 9.2.3. The tangent and obstruction weights are unchanged from those

computed earlier, so that this component contributes 1/8 to Nig.

Turning to the 6 components represented by the maps fi, ..., fe, the key ob-

servation is that these are smooth points of the expected dimension. It follows by

the discussion following Definition 7.1.7 that [Mp,o(V, 10)]"'" restricts to the usual

fundamental class of a point, which is just the point with coefficient 1. Hence each

of the 6 components contributes 1 to Nyg, and the theorem is proved. (-
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9.3. Equivariant Gromov-Witten Invariants

We now give a brief discussion of equivariant Gromov-Witten invariants, be-
ginning with the case when g = 0 and X is convex for simplicity.

9.3.1. Genus Zero Invariants For X Convex. Suppose X is smooth and
convex. As in Section 7.1.5, this implies [Mo (X, 8)]"TM = [Mon(X,3)]. We can
then define genus 0 equivariant Gromov-Witten invariants as follows.

Suppose that X is equipped with an action by an algebraic group G. Then
h € G acts naturally on Mo (X, 8) by the formula h- f = 7,0 f, where 7, : X — X
is the automorphism of X associated to 4. In Section 9.2, we analyzed this action
in detail when X =P" and G = (C*)TMt1,

Since [Mo o (X, B)]"" = [Mon(X, B)], the definition of Gromov-Witten invari-
ant given in Section 7.1.6 simplifies to

(Tom,g)(eu1, .- - s 0n) =/| el{a) V- Uep(as),
Mo n(X,8)

where a; € H*(X) and

e Mo, (X,0) — X

is the evaluation map which sends a stable map f : (C,p1s-.. 1) — X to F(m:)
(see Section 7.1.2).

To make an equivariant version of this, first observe that e; is equivariant with
respect to the actions of G on Ho,n (X, 8) and X, so that we have an equivariant
pullback map

e : Ho(X) — HE(Monq(X, B)).

Furthermore, since X is convex, we know that M, (X, ) is an orbifold, which
means that we have an equivariant integral

/~ : Hg(Mo,n (X, B)) — H"(BG).
Mo n(X.8)g

We now have all of the ingredients needed for the definition.

DEFINITION 9.3.1. Suppose that X is smooth and convez, and let a;, ... ,a, €
H&(X). Then the ezpression

(longlalas, ... an) = /_ ei{a1) U - UeL(a,) € H*(BG)
Mo n(X,8)

s a genus 0 equivariant Gromov-Witten invariant.

We can relate this definition to ordinary Gromov-Witten invariants as follows.
From Section 9.1.1, we have the “nonequivariant limit” map Thoint © H*(BG) —
H*(point) = C, and we also have i% : Hz(X) — H*(X). Then the identity

i;oim<10,n,,8>G(al’ ce- 7an) = <Io’n"3)(i3(a1, s 7i;(a")
is proved using the commutative diagram (9.11) from Section 9.1.3. Thus equivari-
ant Gromov-Witten invariants are refinements of ordinary Gromov-Witten invari-
ants which carry more information coming from the group action.

Next suppose that F is an equivariant vector bundle over the smooth convex
variety X. If Y C X is a smooth subvariety defined by the vanishing of a generic
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section of F, then it is possible to define equivariant versions of certain Gromov-

Witten invariants of Y, even though Y itself has no group action. Rather than

discuss the general case, we will comment on one example of particular interest to

us.

Example 9.3.1.1. Suppose that V' is a quintic threefold. From Example 7.1.6.1,

we have the Gromov-Witten invariant

Ny = (Ip0q) = / Euler(Vy)
Mo o(P4,d)

where V; is the vector bundle over Ag o(P*, d) whose fiber at (f, C) € Mg o(P*, d)

is H°(C, f*®pa(5)). Since both Ay o(P*, d) and V; have natural actions by T =
(C*)3, we see that the equivariant version of this invariant is given by

Uooa)T = /_ Eulerr(Va) € H*(BT).
Mo o(P4d)r

One way to view the computation of N, described in Example 9.2.1.3 is that we ap-

plied Corollary 9.1.4 to compute the equivariant Gromov-Witten invariant (Io ¢ 4)1

and then took the nonequivariant limit to get the desired answer /Vy.

We will not make explicit use of equivariant Gromov-Witten invariants in what

“follows, though they appear implicitly in some of the formulas in Chapter 11. How-

ever, Chapter 11 will definitely use the strategy described above of working with

certain equivariant classes and then obtaining interesting results in the nonequiv-

ariant limit.

9.3.2. Localization of Virtual Fundamental Classes. To define equivari-

ant Gromov-Witten invariants for an arbitrary smooth projective variety X and

any genus g > 0, we need an equivariant version of the virtual fundamental class.

In the case when X has a C*-action, this has been worked out in [GPa], provided

that one uses the equivariant Chow group AS(X) of X.
There are two key points to the theory. The first, as one might expect, is to de-

fine an equivariant virtual fundamental class [M, (X, B)|&TM € AS (M, (X, 8)).
From here, one gets equivariant Gromov-Witten classes without difficulty. But

there is also a second key ingredient, which is a localization formula. This is no

surprise, since we've already seen how localization plays an important role in cal-

culating contributions to Gromov-Witten invariants.

The basic idea is that the construction of [BF, Behrend] associates an equi-

variant virtual fundamental class

[Y]er € AS7(Y)
to any algebraic scheme Y with a C*-action and C*-equivariant perfect obstruction

theory. When we apply this to Y = M, (X, 8) with the C*-action inherited from

the action on X, the perfect obstruction theory used to define the ordinary vir-

tual fundamental class inherits a natural C*-action, which gives [M, (X, 8)J& €

A (M, (X, ).
Also, as explained in [GPa), the equivariant virtual fundamental class localizes

nicely. In the above situation of a C*-action on Y with C*-equivariant perfect

obstruction theory, the components of the fixed point locus Z; inherit a C*-fixed

perfect obstruction theory, leading to an equivariant virtual fundamental class in
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AL(Z;). The virtual normal bundle N}TM to Z; is obtained from the “moving

part” of the virtual tangent space determined by the obstruction theory. Then the

localization formula (GPa] for the equivariant virtual fundamental class is

virt __ ;. [Z]]El'"[X]C‘ - ; 21 (Eulerc-(N]‘-’i“) ) ’

where as usual, Eulerc-(N;TMTM) is the equivariant Euler class of NyTMTM.

It is straightforward to generalize this to G = (C*)TM. This localization plays

a crucial role in Theorem 11.2.16. The localization methods described in [GPa]

also have some nice applications to Gromov-Witten invariants, including the multi-

ple cover contributions to genus 1 Gromov-Witten invariants mentioned in Exam-

ple 7.4.5.3.



CHAPTER 10

Quantum Differential Equations

This chapter will introduce an extension of Gromov-Witten invariants called

gravitational correlators and use them to define quantum differential equations. In

Section 10.1, we define the gravitational correlators and study their properties. Sec-

tion 10.2 then uses gravitational correlators to explicitly describe the flat sections

of the cohomology bundle with respect to the A-model connection constructed in

Chapter 8. These flat sections also allow us in Section 10.3 to define a formal

H*(X)-valued function J on H*(X). This function may be viewed as a generating

function built up from some of the more interesting gravitational correlators. In

particular, the A-model correlation functions of a Calabi-Yau threefold can be ex-

tracted completely from J. Quantum differential operators are then defined to be

differential operators annihilating J. We will prove that these operators give rise to

relations in quantum cohomology, which explains the intrinsic interest of J. This

function also plays a central role in Givental’s approach to the Mirror Theorem,

which will be discussed in Section 11.2.

10.1. Gravitational Correlators

In this section, we discuss the gravitational correlators and their properties.

These are invariants of smooth algebraic varieties and include among them the

Gromov-Witten invariants studied in Chapter 7. We define the gravitational cor-

relators in Section 10.1.1 and study their properties in Section 10.1.2. The section

concludes with a series of examples.

10.1.1. Definition of the Correlators. Before we can define the gravita-

tional correlators, we need to recall some facts about stable maps. Given a smooth

algebraic variety X and 3 € H,(X,Z), we have the moduli stack flg,n(X, B) from
Section 7.1.1, with associated coarse moduli space MQ,,.(X, B). There are also

evaluation maps

e; :mg,n(X,fl) — X, i=1,...,n

given by e;(f,p1,... ,Pn) = f(pi), as well as the map

Tn+1 :mg,rfl-l(Xv fl) — mg,n()(a:@)

defined by forgetting the last marked point and contracting unstable components.

Since M, .(X, 8) is not a fine moduli space for Mg (X, 8), it is not the param-

eter space for a universal curve. However, we claim that 7,4, is a stack-theoretic

version of the universal curve, with €41 : Tfig,n+1(x ,B) — X as the universal

stable map. To see why this is true, we will use the same symbols en+1 and T4y

for the corresponding maps formed from the coarse moduli spaces Mg,n+1(X ,3)
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AC(Z;). The virtual normal bundle NJ* to Z; is obtained from the “moving

part” of the virtual tangent space determined by the obstruction theory. Then the
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ple cover contributions to genus 1 Gromov-Witten invariants mentioned in Exam-

ple 7.4.5.3.



CHAPTER 10

Quantum Differential Equations

This chapter will introduce an extension of Gromov-Witten invariants called

gravitational correlators and use them to define quantum differential equations. In

Section 10.1, we define the gravitational correlators and study their properties. Sec-

tion 10.2 then uses gravitational correlators to explicitly describe the flat sections

of the cohomology bundle with respect to the A-model connection constructed in

Chapter 8. These flat sections also allow us in Section 10.3 to define a formal

H*(X)-valued function J on H*(X). This function may be viewed as a generating

function built up from some of the more interesting gravitational correlators. In

particular, the A-model correlation functions of a Calabi-Yau threefold can be ex-

tracted completely from J. Quantum differential operators are then defined to be

differential operators annihilating J. We will prove that these operators give rise to

relations in quantum cohomology, which explains the intrinsic interest of J. This

function also plays a central role in Givental’s approach to the Mirror Theorem,

which will be discussed in Section 11.2.

10.1. Gravitational Correlators

In this section, we discuss the gravitational correlators and their properties.

These are invariants of smooth algebraic varieties and include among them the

Gromov-Witten invariants studied in Chapter 7. We define the gravitational cor-

relators in Section 10.1.1 and study their properties in Section 10.1.2. The section

concludes with a series of examples.

10.1.1. Definition of the Correlators. Before we can define the gravita-

tional correlators, we need to recall some facts about stable maps. Given a smooth

algebraic variety X and 3 € Hy(X,Z), we have the moduli stack Mg,n(x, B) from

Section 7.1.1, with associated coarse moduli space M, (X, ). There are also

evaluation maps

e Myn(X,8) — X, i=1,...,n

given by e;(f,p1,... ,Pn) = f(pi), as well as the map

Tn4l - mg,n#—l (X7 fl) _ mg,n(Xh@)

defined by forgetting the last marked point and contracting unstable components.

Since —fig'n(X , 3) is not a fine moduli space for HQYN(X ,B), it is not the param-

eter space for a universal curve. However, we claim that 74, is a stack-theoretic

version of the universal curve, with epy : Mgne1(X,8) — X as the universal

stable map. To see why this is true, we will use the same symbols €n+1 and Tpeq

for the corresponding maps formed from the coarse moduli spaces Mg n+1(X, 8)



302 10. QUANTUM DIFFERENTIAL EQUATIONS

and M, (X, 3). We observe that for any (f,C,p1,... ,Pn) € My (X, B), there is
a natural isomorphism

(10.1) C/Aut(f) = w11 (f),

where Aut(f) denotes the finite group of automorphisms of the stable map f. This
is defined by sending p € C to (f : C — X,p1,... ,pn,p) if p is smooth and distinet
from pi,...,p,. However, if p = p; for some %, then p maps to the stable map
(f:CUP' - X,p1,...,0... 1PriPhy1), where P! is attached to C at p; and
P}, Py are distinct points of P! different from the attaching point. Finally, we
leave the case when p is a node to the reader. Since we can identify f with the

restriction of e,+; to r;j_l( f), our claim is proved. In the corresponding stack-
theoretic statement, the stack takes the automorphisms of f into account, so that

stack-theoretically, 7,+; is the universal curve.

The description of the fibers of 7, given in (10.1) shows that m,.; has tau-
tological sections s; : My n(X,8) = Mg 41(X, 3) defined by

si(f7 CaPl»-'- 1pn) = (f : CUP] i valv"' ’pg"" ’pnyp:-z+1)'

In terms of (10.1), this is the map which sends (f,C,py, ... ,Pn) top; €C.
Now let £, denote the “cotangent line at the i*® marked point”, i.e., the line

bundle on flg,n(X, B) whose fiber over the stable map (f : C — X,p1,... ,Pn) is
the cotangent space T,,,C. To make this rigorous, let w, .1 be the relative dualizing
sheaf of 7, ;. Then L; is defined to be the sheaf Siwn41. Note that £; is a line
bundle on the stack flg,n(X, B), though it need not be locally free on M—g,n(X, B).

Besides the the line bundles £; and the evaluation maps e;, we will also need
the virtual fundamental class [M, (X, 8)]"'*. By Section 7.1.4, this homology
class has degree 2(1 — g)(d - 3) — Qffi wx + 2n, where d is the complex dimension

of X. We can now make a definition.

DEFINITION 10.1.1. Given classes v1,... v, € H*(X) and nonnegative integers
d; for each i =1,... ,n, the invariant

_ [T ecy® vertry))
n

<Td17lv"' 7Tdn’7n>gn8=/ )
[Mg.n (X, )]V 15

is a gravitational correlator.

Note that gravitational correlators are only defined when M,.n(X, ) is defined.
This puts restrictions on the triples (g, n, 8).

The integral used in Definition 10.1.1 treats £; as if it were a line bundle on the
moduli space M—gvn(X ,B). Strictly speaking, this integral should be evaluated on
the stack M, ,.(X, 8). But if we think of the integrand as being pushed forward to
]\_fg_n {X,$), then the integral makes perfect sense when evaluated on M—g,n(X ,B3).
Here and in the remainder of the book, we will adopt this convention, which is
similar in spirit to the convention used for the bundles V; and their Euler classes
in Example 7.1.5.1.

Our terminology for gravitational correlators is motivated by similar termi-
nology used in physics. As outlined in Appendix B.2, the nonlinear sigma model

associates (a BRST cohomology class of) an aperator O+ to each cohomology class
7. The operators ©., yield other physical operators O; . for each integer i > 0 called
gravitational descendants. The relationship between the gravitational correlators
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and the gravitational descendants is given by the equation

Oayyire - 1 Ody v )e.3(10.2) (TayTse o T Tn) g3 = { ‘“Hn d;! )s .
J=1

The left hand side of (10.2) is the mathematical gravitational correlator from Defini-

tion 10.1.1. The expression (O4, +,,-.. ,Oq, . }g.2 On the right hand side of (10.2)

refers to the part of the physical correlation function (Oy4, +,,... , 0y, .+, ) which is

computed using maps f : ¥ — X with I of genus g and f.[X] = 3 and the grav-

itational descendant fields. The idea of a physical correlation function is sketched

in Appendix B.1. The factors in the denominator of the right hand side of (10.2)

are merely a matter of convention.

An important observation is that the Gromov-Witten invariants are precisely

those gravitational correlators with all d; = 0. If we abbreviate v as v, then this

means that in the notation of Chapter 7,

(711 G 1771)9,3 = (Igyflfl)('Yh .. v7n)'

In this chapter, we will use the simpler notation {yi,...,vn)q,s for Gromov-Witten

invariants. Another abbreviation we will use frequently is to write 7,1 as 7,;, where

1 € H%(X) is the fundamental class of X.

There are also useful combinations of the gravitational correlators, yielding

formal functions. We first recall our notation from Chapter 8. We have a basis

To=1,T1,... ,Tm for H*(X,Q). We also put v = 3. t;T; as in the definition of

the Gromov-Witten potential given in Section 8.2.2. If w is a complexified Kahler

class on X, then we define the genus g couplings

o0

1

(10.3) ((Tay Y1, s Taa Ynd)g = ZZ AT T Y s - . Y)e.84%,
k=0 8 k times

where as usual g% = ¢*TMJ/s“_ We sometimes abbreviate the gravitational correlator
inside the sum on the right hand side as

<T41717 cee s Tda T (’7)k>9n8
when there is no risk of confusion.

Similar to what we did in Sections 8.1.3 and 8.2.2, we can interpret the expres-

sion {10.3) as having coefficients in C, where C is one of the rings

Cllto,- .-, tm]] or Rl[te,--. ,tm]] or R[to,.-- ,tm]] or Alw, Q))[[to,- . ,tm]]

as appropriate. Thus the gravitational correlators and genus g couplings are well-

defined formal objects.

It is illuminating to rephrase this using a genus g gravitational Gromov- Witten

potential. We introduce supercommuting variables ¢, for 4 > 0 and 0 < j <

m with degt), = degT, such that ] is our usual variable ¢;. We then modify

the definition of the Gromov-Witten potential ¢ (Definition 8.2.1) to obtain the

genus g gravitational Gromov-Witten potential . We do this by replacing the

expression ¥ = 3. t;T; by the formal expression

> m .

Y= thrTy,
d=0 =0

then using genus g maps in place of genus 0 maps and expanding as in Section 8.2.2.

More precisely, we have the following definition.
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DEFINITION 10.1.2. Letw be a complezified Kihler class on a smooth projective

variety X. Then the genus g gravitational Gromov-Witten potential is the formal

sum

=Y Y Leed,
n=0 Be€H>(X,Z)

where ¢° = ¥ Js®

In the above sum, we only sum over pairs (n,3) for which M, (X, 8) exists.
Note that

a@grav

10.4 iy ; = ——s( 0 ) ((lenn de,.T’In)>Q atyl .. at;" t‘j’=0 for all d>0

where we use the sign convention for partial derivatives with respect to odd variables

from Section 8.2.1. In the special case where g = 0 and all of the d; are 0, then we

can write

' oe
T,y 1 = e(T Tidlo = -2

where @ is the ordinary Gromov-Witten potential.

It follows immediately that the big quantum product (Definition 8.2.2) can be

rewritten in the form

(10.5) Ty« Ty = Z((E, JTi)yo T,

where we have used g* to raise indices, putting T* = > g®'Ti. As explained

in Chapter 8, this comes from the Gromov-Witten potential ® via the Dubrovin

formalism. If we replace ® by ®§TM", we get a new associative product on H*(X)

defined by

as(DOa.v

Tixg Ty = Z@t@t@tk
This is the gravitational quantum product. The coefficients in the gravitational

quantum product can be viewed as belonging to one of the rings

Clita]] or R[] or R[] or Afw, Q)]
as appropriate.

10.1.2. Properties of the Correlators. The gravitational correlators just

defined have properties similar to the properties of Gromov-Witten invariants de-

scribed in Section 7.3. We only mention the ones we will use. These follow from

properties of the virtual fundamental class [BM, Behrend)].

Degree Axiom. This axiom states that for homogeneous classes v;, the gravita-

tional correlator

(Ta; M- » Tdy, ’7fl>9n3

can be nonzero only if

Sor1(2d, +degy:) = 2(1 — g)dim X — 2ffiwx +2(3g -3 +n).

This follows easily from Definition 10.1.1 and the formula for the dimension of the

virtual fundamental class.
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Fundamental Class Axiom. As in Chapter 7, 1, : Mg n(X,8) — Mgn_1(X,B8)

is the map forgetting the last point and contracting unstable components. This

map is defined if either n +2g > 4 or 3 # 0and n > 1. Let £; denote the line

bundle on M—g,n_.l (X, B) whose fiber is the cotangent space to the universal curve

at the i*h marked point. Then we have the identity

(10.6) c1(Li) = e (L) + B(i,nll,... dieLitl..n=1)

where the term b(i.nll,'.» ielibl..ne1) 10 (10.6) denotes the closure of the class of

stable maps whose source has components Cy,C2, with points {i,n} on Ci, and

points {1,... ,¢—1,i+1,... n—1} on Cy, with f constant on C;. Note also that the

virtual fundamental class of M (X, 3) is the pullback of the virtual fundamental

class of M, n—1(X, ), as we observed in (7.22). We combine this fact together

with (10.6) and the calculation in [Witten3] to arrive at

{Tdy Y11+« 1 Tdpoy Yn—1: L) g8 =

n—1

E (Td,Y1r - - Tdyoy Viels Tdim1%is Tdig Vi 1y -+ 1 Tdn_1 Yn—1)9.8»
=1

where any term involving 7_; is taken to be zero.

Divisor Axiom. Next, let D be a divisor. Then (10.6) and compatibility of the

virtual fundamental classes leads to

(le’ylv .. 1Td"_17n—lyD)g,fl = (ng)<Td1717 e 7Tdn—17n—-1>g,,8

n—-1

+ Z(Tdn’la e Ty V=1, Tdy 1D U Ys)s Ty Vit 1y - - Tdno1Yn—1}a.8-
=1

As with the Fundamental Class Axiom, this axiom is valid if either n +2g > 4 or

B#0and n > 1.

Splitting Axiom. To make this axiom easier to state, we shift viewpoint a bit

and extend the definition of Gromov-Witten classes to cover gravitational terms as

well. Using the same notation as Definition 7.1.9, if 2g+7n 2 3 and vi,...,vn €

H*(X,Q), we call the element of H* (Hg,n,Q) given by

Ty (T Y- s TdnTn) =

po~ o ([ er(£0* Upi(n 8-+ @ 3m) N (6))
i=1

a gravitational class, where £ is the virtual fundamental class and

PD: H‘(Hg,ny Q) = H69—6+2n—*(7\7—fg,n1 Q)

is the Poincaré duality isomorphism. Here, we are using our convention that we eval-

uate (10.7) by understanding the expression in parentheses as a class on M an(X,B)

which is then pushed forward to M, (X, 3). With this notation, note that

(10.7)

(10.8) <le71, e 7Td"7‘n>g,5 = _/T Igfl‘fi(rdl'yl, Cs 7Td,.'7n)'
dg.n

As in Section 7.3, we consider maps

@ —Mgl,n1+l(Xa fl) X Mgz,flg+l(X1 ,@) - Mg,n(X!,@)
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obtained by gluing together the sources of two stable maps to form a new stable

map. Then the Splitting Axiom is the assertion that

97"‘.[9,71”6(7'(1,71,... ,Td,,’)’n) = Z ng,fl1+1,fll (7'1’)’1,... 7Tdn17n17n) ®
i,8=p1+82

Igzyflzflfiz (T11 Tdp 1 Yoyt - - s Tn')'n)-

Dilaton Axiom. Our final axiom, which has no analog in Gromov-Witten theory,

is the identity -

ML T M- TaaYn)g,8 = (29 = 2+ )Ty 11, - -+ 2 Tan Yn)g.a-

To interpret this, we identify the universal curve Cyg (X, 8) — M (X, 8) with

the map Mpy1 1 Mg ni1(X, ) = My a(X, B) used earlier in the Fundamental Class
Axiom. With this identification, we see that the sheaf £, restricts on the fiber of

Tn41 Over a stable map (f,C,p1,...,pn) to the sheaf of dualizing differentials on

C which vanish at the p;. The Dilaton Axiom follows from the compatibility of the

virtual fundamental classes with respect to m,.; and the fact that sheaf £, has

degree 2g — 2 + n on each fiber.

Although gravitational correlators seem to be more complicated than Gromov-

Witten invariants, in the genus 0 case it was observed by [Dubrovin2] that genus 0

gravitational correlators can be calculated in terms of the Gromov-Witten invariants

{(*1+--- »Yn)o,g- Dubrovin’s proof uses the Divisor Axiom and Lemma 10.2.2 below.

We will instead describe briefly a different method due to R. Pandharipande. The

idea is to add 3 auxiliary marked points p,1, pr+2, Pn+3, pull back the integrand

of the definition of gravitational correlator to HOJH_;;(X , ), and then cup it with

the class

¢ =en 1 (H)Uep o(H),

where H is an ample class on X. Forgetting the first » — 1 marked points and

the map, we get a map s : Mg 43(X,8) — M;,s. We then cup ¢ with both
sides of the pullback via s of the lincar equivalence D(n,n + ljn + 2,n + 3) ~

D{n,n+3|n +1,n+2) described in (8.25). Using the Divisor, Fundamental Class,

and Splitting Axioms, one obtains a recursive scheme for calculating the genus 0

gravitational correlators in terms of genus 0 Gromov-Witten invariants. An example

of this method is sketched below in Example 10.1.3.1. Another approach to the

reduction of gravitational correlators is given in [KoM3|.

10.1.3. Examples of the Correlators. We now give a few examples to il-

lustrate the calculation of gravitational correlators. For convenience, when X = PT

and 8 = d[f], where £ C P" is a line, we will sometimes write M 4.(P",d) in place

of My (P, 03), and (1y7v4,... s TnIn)g,d in place of (T171,... , ThYn)g.8-

Example 10.1.3.1. We will compute some gravitational correlators for X = P!

As indicated in Section 7.1.2, Mg, (P!, d) has the expected dimension 2d + n — 2,
so it is not necessary to insert a virtual fundamental class into the computations.

We start by computing degree 1 invariants. Note that Mg, (P!, 1) > P!, where

the isomorphism takes f : (C,p) — P! to f(p). Under this isomorphism, £; is

identified with the cotangent bundle of P!, yielding the one-point gravitational
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correlator (r1)g., = —2. Next, let H be the hyperplane class of P! (the class of a

point). Then we have the Gromov-Witten invariant

(HYoy = (H,H,H)o1 = (Io31)(H, H, H) = (lo31)(pt, pt,pt) = 1,

where the first equality is by the Divisor Axiom and the last is obvious since there is

a unique automorphism of P! sending 0, 1,00 to any three distinct points p1, p2, P3-

We can now compute the gravitational correlator (H,71)o,1 in two ways. First,

the Dilaton Axiom gives

{(H,m)o1=—(H)oa=-1

Another way is to use the Divisor Axiom to obtain

(H,m)o1 = (1) -(m)oq +{Hlop=-2+1=-1L

We next compute the invariants (24, 1)oq and (T2q-1H,1)o,q for any & us-

ing the reduction process mentioned at the end of Section 10.1.2. To determine

(T2d—1H, 1)0,4, the first step is to note that the Fundamental Class Axiom implies

(TIH, ].)0,1 = (H)(),] = 1.

Now, for general d, take 3 extra marked points, and choose H as the ample class.

. We consider the class

a(£1)** Uel(H) Ue3(H) U ei(H),

which we cup with both sides of the pullback of the linear equivalence D(2,3|4,5) ~

D(2,5|3,4) via the map s : Mo 5(P',d) — Mo 4. We then integrate over Mo s(PL,d)

using the Splitting Axiom. Many terms are seen to be zero, and the nonzero terms

give

(10.9) (T2a—1H, 1, H, H)o,a{l, H, 100 = (T2a—1H,1,1, D)oa-1(H, H, H)o 1.

Note that (1, H,1)00 = 1 by the Point Mapping Axiom of Gromov-Witten theory,

and (H,H, H)p, = 1 as noted above. Then the Divisor and Fundamental Class

Axioms reduce (10.9) to

d*{r2q—1 H,)o,a = (T2a—3H, L)o,a-1-

This recursion, together with our calculation of (riH, 1)o,1, gives

(10.10) (raa—1H, 1)oa = (d‘l!)?

Turning our attention to (724, 1)o,d, the Fundamental Class Axiom implies

{(t2,1)0,1 = {T1)0,1 = —2.

Then, for general d, we consider the class ¢1(£1)%? U e3(H) U ej(H), cup with the

same linear equivalence as before, then integrate and use the Splitting Axiom. We

arrive at

(T2a, 1, H, HYo,a(1, H, )00 = (124, 1,1, L)o,a~1(H, H, H)o,1,

from which we obtain

d*(moq, Do.a + 2d(mag—1 H, 1}0.4 = {T2d~2, L)o.d~1
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by the Divisor and Fundamental Class Axioms. This recursion, together with our
formula for (r3,1)01 and (10.10) can be solved to give

-2 1 1(10.11) (r2a, 10,0 = W(l R E)'

This calculation of (10.10) and (10.11) is due to Pandharipande. These formulas
are implicit in [Givental2], as we will see in Example 11.2.1.1.

Example 10.1.3.2. Let V be a Calabi-Yau threefold. This implies that the
virtual fundamental class [Ho,n(V, )Y has dimension n. We will compute al}
of the gravitational correlators of the form {(tay,1)0,8. The Degree Axiom shows
that (r4y,1)o,g is nonzero only for 2d + degy = 4. Hence we need only consider
{72,1)0,8, (11.D,1)g,5 for a divisor D, and (C, 1)o,s = 0 for a curve C. We may also
assume 3 # 0.

Recall from Section 7.4.4 that we have Gromov-Witten invariants (Topg) =
ks ng kTM8, where the ng are the instanton numbers defined in Section 7.4.4. As

in Chapter 7, we put Ng = {(Zo,0,8)-

Now we can compute the desired gravitational correlators. We begin with
{72,1)0,5. Here, the Fundamental Class Axiom and the Dilaton Axiom imply

(12, 1)o,6 = (T1)o,
= —2N3,

and similar arguments show that if D is a divisor, then

(11D, 1)o,s = (D)o,g

= (f ,GD )Nfl-
Finally, if C is the class of a curve, the Fundamental Class Axiom tells us that
(C,1)o,3 = 0. We will use these computations in Section 10.3.2.

Here is an example where the virtual fundamental class plays a crucial role.

Example 10.1.3.3. Let X be arbitrary of dimension d. We will evaluate {T1)10-
A genus 1 stable map f : (C,p) — X with f. [C] = 0 is a constant map. It follows
that (C,p) is a stable 1-pointed curve, and then we easily get an isomorphism

Hl.l(xs 0) > X x Hl,l

which identifies f : (C,p) — X with (f(C),(C,p)). The expected dimension is 1,
while the actual dimension of M, ;(X,0) is d + 1. Thus the excess dimension is
d. Since f*Ox =~ 0%, we have h'(C, f*6x) = d. This shows that the hypotheses
of Proposition 7.1.8 are satisfied. In the notation of that proposition, we need to
compute the d*" Chern class of R‘rrg.e§ ©x. Using the above isomorphism, one
easily gets

Rlmo.e30x =~ P3R' 70, Ox7, ,® piOx,

where p; are the two projections of X x M—l,l and the 7, on the right hand side
is the usual map M, — M, , which forgets the second point. For simplicity,
let £ = Rlmy,Og ,, which is a line bundle on ;. Then Proposition 7.1.8
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and sd;_anda.rd facts about Chern classes imply that the virtual fundamental class

£ = [N[l‘o(X, 0)]"“t is given by

€ = ca(P3L ® piOx) N [M1,0(X,0)]

= (pjea(X) + pier (L) Upica—1(X)) N [M10(X,0)],

where the cg(X) = cx(©x) are the Chern classes of the cotangent bundle.

We can also describe _the line bundle £; in this situation. If £, denotes the

corresponding bundle on My, then £, = p} (£,) since no curves get contracted in

the map M, (X,0) — M. It is also known that Jz,, ally)= 5 [Mumford2].

We can now compute

<7'1)1,o=/_ - ally)
[M 1,1 (X0}

= _ pie(£1) U (pica(X) + pser(£) U piea—1(X))
XxMin

- /H e (Br) /X ca(X)

=57 ] e,

where the second equality uses (10.12) and the third follows since c{L)ue (L) =0
for dimension reasons.

In the literature, (10.12) is usually stated differently. By Serre duality, £ =

errg*(’)—,gl , I8 dual to mo.wg, the push-forward of the relative dualizing sheaf of

(10.12)

wo : —]\7[_1,2 — M—l,l- Itis customaryA to denote this sheaf by , and then, if we regard

the virtual fundamental class as a cohomology class, (10.12) becomes

(M 1,0(X,0)]"TM = pica(X) = prei(H) U pica—1(X)-

This formula was explained in [BCOV1] and reinterpreted in the context of stable

maps in [Katz3]. See also [Getzler1].

We can now recompute {T;)10 with a pleasantly surprising result. First note

that since £; = p;(El), the gravitational class I ;,0(7:) defined in (10.7) becomes

I 1(r1) = PD TM pau((ex(£2) UpI(1) M)

=c1(£1) U PD 7 pa. (pi (1) N€)
=y {L1) U 1,1,0(1),

where the second equality follows from the projection formula and I10(1) is a

Gromov-Witten class in H(My1). Then (10.8) implies that

(o= [ alf)Uhualt) = des(has(@) [ () = grdeg(Tiio(1))

where the deg(l110(1)) is defined using the isomorphism deg : H(M,,) ~ C

which takes 1 to 1.

To compute deg(ly 10(1)), let ¥ : Moz — M, ; be the map which glues to-

gether the first two marked points to produce a nodal genus 1 curve. Since Mo 3 is
a single point, we get

deg(1,1.0(1)) =.[1\71‘ ¥*I1,1,0(1).
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Combining the above two equations and using the Reduction and Point Mapping

Axioms from Chapter 7, we obtain

(e =53 ¥ I1,1.0(1)
24 J35,,

1 g
= Tos(L, T T2 ./Hu'ag 0,3( 4 J)

1 g

=572 079
Since g = —g’ if T; and T are both odd and g¥/ = g7* if at least one is even,g g J

this leads to (my)1,0 = 512 3=, (=1)*b;(X), where b;(X) is the i*" Betti number of X.

Comparing our two computations of (1)1, we arrive at the familiar formula

d

[ o) = S -aybicx).
X =0

10.1.4. The Virasoro Conjecture. We close this section with a brief de-

scription of an intriguing conjecture concerning gravitational correlators. Define

the gravitational potential to be the infinite sum

o0

_E : 29249Qgrav = K @grava

9=0

where & is a parameter. The partition function is then defined as

Z = e¥erav,

The Virasoro congecture asserts that there is a Virasoro algebra (B.27) of formal

differential operators in the ¢/, which annihilate Z [EHX)].

More precisely, the Virasoro algebra contains explicit differential operators L,

for n > —1 in the variables t), which satisfy [Ln,Lm| = (n — m)Lnim. Then the

equation L_; Z = 0 follows from the Fundamental Class Axiom [Witten3], and one

can also derive the equation LoZ = 0 from a combination of the Degree, Divisor,

and Dilaton Axioms [Hori]. It is conjectured that L,Z =0 foralln > —1. ~

It is sometimes possible to extend this algebra of differential operators to a

central extension of the full Virasoro algebra L,, n € Z. See Appendix B.3 for

the description of this central extension, especially (B.27). The central charge of

this representation is the Euler characteristic x(X) of X. It is not conjectured that

L,Z =0 for n < —1. In fact, by combining the commutation relation [L,,L_,] =

2nLg + (n® —n)x(X)/12 together with Z # 0, one can show that L,Z = L_,Z =0

is not possible for any n > 1.

In the case where X is a point, this conjecture becomes the Witten conjec-

ture [Witten3], which has been proven by Kontsevich [Kontsevichl]. One of the

key ideas in Kontsevich’s proof is that the partition function can be represented

as a matrix integral, an integral over a space of Hermitian matrices. This leads to

an intrinsic action of the Virasoro algebra. In physics, there is reason to believe

this more general partition functions can be similarly described as a matriz model,

which would lead to a natural action of a Virasoro algebra.

This method has been applied to predict rational and elliptic Gromov-Witten

invariants for projective spaces. For P?, the method yields (7.39) for rational in-

variants and (7.56) for elliptic invariants.
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The Virasoro algebra proposed by [EHX] can work only if every class in H*(X)

is of Hodge type (p,p) (see [Borisov2]). A modified pair of Virasoro algebras was

proposed in the general case by S. Katz, and it was shown in [EJX] that this

leads to correct predictions in examples. In formulating this conjecture, the Degree

Axiom is replaced by a similar axiom which uses Hodge types.

It was also shown in [EX] that the Virasoro conjecture, together with an addi-

tional hypothesis, leads to relations among genus g gravitational descendants, called

topological recursion relations {TRRs), since they reduce gravitational descendants

involving 7 to descendants involving Tx-1, leading to a recursion. The TRRs de-

scribed in [EX] are sufficient to determine the g = 2 Gromov-Witten invariants

for P2. Tt was pointed out to us by E. Getzler that the methods of [Getzlerl,

Getzler2| can be applied to give the same TRR, thereby proving the correctness

of the TRR derived in [EX]. We will give a TRR for g = 0 in Lemma 10.2.2 below.

To study this conjecture, [LiuT] writes L Z as (3,54 %9 ~>¥;,n)Z, where the

¥, are formal expressions in the t/, and ¢° (but not ). One can show that ¥y

depends only on gravitational correlators of genus < g. The main result of {LiuT)}

is that Wo, = O for all n > —1, provided that H*(X ) only has (p, p) Hodge types.

10.2. The Givental Connection

In Section 8.4, we showed that any potential function on the supermanifold

H*(X) leads naturally to a family of formal flat connections V* on the tangent

bundle of H*(X,C). When the potential function is the Gromov-Witten potential,

we get some especially interesting connections which are closely related to the A-

model connection studied in Section 8.5.

We will actually study a twisted version of the Dubrovin connection called

the Givental connection V9. In Section 10.2.1, we will describe how a basis for

the V9-flat sections can be written down in terms of the gravitational correlators.

We will discuss how this relates to the A-model connection of Chapter 8, and in

Section 10.2.3 will also explain how the parameter & in the Givental connection

relates to equivariant cobhomology.

The flat sections constructed in this section will be used in Section 10.3 to

define Givental’s function Jx , which in Section 10.3 will lead to quantum differential
equations and relations in quantum cohomology.

10.2.1. Flat Sections. Given a smooth projective variety X, we let @ de-

note the Gromov-Witten potential and * the big quantum product. But rather

than use the Dubrovin connection of ® defined in Section 8.4, we will instead fol-

low [Givental2] and modify this connection slightly. We identify 8/8t; with T; as

in Section 8.4, and think of the connection as being defined on a trivial cohomology

bundle over H*(X,C). We then define the Givental connection V9 by

(10.13) v;a_(zajcrj) =Y %%T,- -Y 6T+ T,
g 3 * i

where & is a parameter. In Section 10.2.3 we will identify A with a generator of

H?(BC*). This will be useful in Section 11.1.

Even though V is not a connection (because of %), we still use standard termi-

nology for connections and in particular the notion of a flat section. As noted in

Section 8.5.2, the Givental connection relates to the Dubrovin connection V* via
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the formula V¢ = AV~""". Hence the flat sections of (10.13) are the same as those
of the Dubrovin connection V> with parameter A = —A~1.

For each index i = 0,...,m, we define the formal section

(10.14) =T, +Zn-<n+1>2((fncr,,,:r, Yo T7.
n=0

Notice that {(t,T%, T;))o is a formal power series in tg, ... ,,,. If we use the formal
symbol “¢” to denote c1(£1), then we can write (10.14) formally as

(10.15) o=T +Z<<h T>> T4,

smOe a formal expansion of the denominator in powers of c/F leads to the expression

in (10.14) after replacing a power ¢ by 7,.

The sections s, behave very nicely in this situation.

ProposiTiON 10.2.1. The sections s, form a basis for the V9-flat sections. By
(10.13), this is equivalent to the equation

Os ]
A= =T,xs,, @,i=0,...m,
o,

where * denotes the big quantum product.

Before giving the proof, we need the following resuit from [Witten3d]. In the
language of Section 10.1.4, this lemma is a topological recursion relation.

LEMMA 10.2.2. For d;,dz,ds > 0 and 0 < j1, 2, j3 < m, we have

((Td1+1Tj177d21:7'27Td3Tj3>)0 = Z((deTj“Ta))O (T, sznszdaTja))Uv
a

where as usual, T* denotes the dual basis of T, with respect to cup product.

PrOOF. Consider for n > 3 ’che map from M, o.n(X,B) to a point, which we

write as 7 : Mg (X, B8) — M3 to take advantage of the functorial nature of

the spaces of stable maps. The map 7 can be thought of as the map taking
(f.C,m;,... ,pn) to the curve obtained from C by deleting p4,..., pn_and con-
tracting all unstable components. Let £] be the (trivial) bundle on M 0,3 whose

definition is analogous to that of the bundie £;. We compute that

(10.16) Ly =Ly ~ Z Df1yukiiz.33uLys
KJUL={4,... n}

where D(;;y is the closure of the set of stable maps f whose source contains the
points of I in one component on which f is constant, and the points of J in another

component as in the picture
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We now multiply (10.16) by [, c1(£a)% U ei(T.), integrate against the virtual

fundamental class, and use the Splitting Axiom. This gives

(Tav1T5 Tay Tz s Tas Tis Taa Tjy - - 5 Tan Tindo.g =

(10 17) z Zi('rdl:z}quthk,v'- . 7Ta)0.fi1 X
’ KUL={4.....n} &

8=81+062

a

(T, Td2 Tjzr Tdy Tjas Tdy, 1’3!1 yee 0.8

where K = {k1,...}and L = {l1,...}. The sign in (10.17) arises from the possibly

different ordering of the odd cohomology classes between the left and right hand

sides of the equation.

Upon expanding using (10.3), it can now readily be seen that (10.17) is a

coefficient in the desired equality

(ra 1T 7. Tz Tt Tis o = D _{(7ay Ty Ta)o (T 7, Ty, 72, T,))o-

Note that the reordering of odd cohomology classes leading to the sign in (10.17)

is precisely the same reordering as is done in comparing the variables on the right

hand side of the statement of the lemma with the left hand side. O

We can now prove Proposition 10.2.1, which asserts that the s, are flat sections.

PROOF OF PROPOSITION 10.2.1. We begin with the observation

0
E((le"/ly--- s Tan Ym0 = {(T% Tay V1, -+, Tdn Yn) )0s

which follows from (10.3) by an argument similar to what we did in the proof of

Lemma 8.2.3.

Using this, we compute from (10.14) that

05, > —n ;
A =2 2 h (T T T TV,

n=0 j

while from (10.14) and (10.5) we have

Txsa= 3 (T, To, Ty))oT? +
7

(10.18) 00

S S (T, 
Ty (T, TV, Te))o T

n=0 j,c

Lemma 10.2.2 implies that the second term on the right hand side of (10.18) is

SO S AT, i Ty Tl o T
n=0 c

After substituting this back into (10.18), we obtain the desired result. [

One consequence of Proposition 10.2.1 is that
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since Tp is the identity for the big quantum product. It follows that s, depends
on to via a multiplicative factor of e**/%. Because of this, we will often ignore the
dependence on ¢, since we can easily restore it by inserting a factor of eto/”.

In the sequel, we will sometimes restrict the base manifold of the bundie and
connection V9. In particular, we will restrict to the subspace

M = H%(X,C)® H*(X,C) c H"(X,C).

in Section 10.3. H Ty,...,7, form a basis of H2(X, Q), then the variables for
M are t5,t1,... ,t-. To see what V9 looks like in this case, first note that by
Section 8.5.1, the restriction of the big quantum product to H 2(X,C) is precisely
*smail, Provided we let ¢ = 1 in (10.3) and use the conventions explained in the
discussion surrounding (8.39). Then, since Ty = 1 is the identity for both big and
small quantum cohomology, it follows that the restriction of V¢ to M is given by

m m m

da;(1019) V%(ZajTJ) =fiz#1}'—za‘jfl*smalln
Y o=0 =0 % =0

for i=0,1,...,r. In particular, the sections S,4, when restricted to M, satisfy

Os ]fi,at:=fl",-*smaus,,, a=0,...,m i=0,...,r.

Once restricted to M, the formula for s, simplifies nicely.

PROPOSITION 10.2.3. Let § = Y1 tiT;. Then the restriction of s, to M can
be written as

Sa =et°/h(€6/hUTa+Zieffl6<eé/hUTa T Tj).
R—c /o,B0 j=0 ¢ 08

PRrOOF. First, we noted above that %y appears via the multiplicative factor
et/ Hence it suffices to prove the proposition when tp = 0. Using § = :=1 t.T;,
the gravitational coupling (10.3) becomes

(T To =Y 3 (raTa T3, (8o,
k=0 g8

where we set ¢° = 1 as explained above. Note that we are using the notation
introduced in the discussion following (10.3).

Since § is a divisor, we can simplify this expression using the Divisor Axiom.
When 8 # 0, an easy induction on & shows that we have the identity

k! u v1020) (T T 600 = 3 o ( /fi 6) rae (T UE*), Ty)ors,
p+v=k

where we set T, (T, U (v)*"*) = 0 if n — v < 0. We need a different identity for
B =0, since Mg (X,0) does not exist. Here, we use the Divisor Axiom to obtain

(1021) (TnTaa T_'n (6)k)0.0 = (Tn-k+1 (Ta @) 6k_1) sijé)0.0-

This clearly vanishes if k > n + 1, and if k = n + 1, it reduces to the integral
Jx TwUT;U6* by the Point Mapping Axiom for Gromov-Witten invariants. Finally,
if k < n+1, we have the identification M 3(X,0) ~ X which sends (f, C,p1,p2,03)
to f(C) € X. Also, MOA(X, 0) — Mo,a(X,O) is the projection X x My, — X,
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which makes it easy to show that £; is trivial on Mo 3(X,0) and hence has zero

Chern class. Thus (10.21) vanishes when k < n + 1, and we conclude that

(10.22) (1o T, T3, (6)F)00 = ( /X T,UT; U 6") Sent1.

Using (10.20) and (10.22), our formula for {{(7,Ts, Tj))o simplifies to

1 / 20 1 W
L [nunuet e XY 5 ([ 8) T us) T(n+ 1) Jx pripaar el ulv! ( 8 ) J

1 " hnd 1 .

= gy [ T UT US4 e G (T U6, T
B#0v=1

If we insert this expression into the definition of s,, we obtain

Sa = Ta+z ( i p—(n+1) (nj'— o /XT"‘ UT; U 6n+1)Tj +

b(10.23) =0 .

33 elo® ( S D = (Ta U 6”),1’,)0,;9)Tj.
B#0 j n>v v

This looks complicated, but using the identity

110.24) Z(/XWT,-) Ti =¢ forall ¢ € H*(X,C),
j

the large expression in parentheses in the first line of (10.23) simplifies to T, Uel/n,
As for the second line, the large expression in parentheses can be simplified by

setting k = n — v. This implies 5~(**1) = A=(**1~*, and then the expression

becomes
e o]

SRk (T, U M), Ty)o s
k=0

In the symbolic notation introduced in (10.15), this equals

<TaUe5/" T'>

E—c 'log

and from here, the proposition follows immediately. |

10.2.2. Flat Sections of the A-Model Connection. Suppose that V is

a Calabi-Yau manifold of dimension d. In Section 8.5.2, we defined the A-model
connection by the equation

vfi?‘;(Tk):Tj *small Ty 1S JST, 0<k<m,

where u; = zh-t;. If we restrict the Givental connection V¥ to A 2(V,C), (10.19) im-

plies that —2miV is precisely V9 for i = —2mi. For the remainder of Section 10.2.2,

we fix this value of A.

It follows that the sections s, defined in Section 10.2.1 restrict to flat sections

of the A-model connection V. We will use these sections using the following general
notation: given a cohomology class T € H*(V,C), let

TM 8/h 4

s(T)=‘=,'6/'-‘L,IT+ZZ«&Jfl‘s e—hTUZ,TJ) T7.
B#03=0 ¢ 0.8
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By Proposition 10.2.3, we see that s(T},) is the section s,, and it follows easily that

s(T) is a flat formal section of V for any T € H*(V,C). Following the practice

explained in Section 8.5.1, we will let g% = ele ®. so that s(T) can be written

m 5/h 4

(10.25) sflU:e”fiuT+§:§:f<%;¥£#F T3,
p0=0 ¢ 08

Using this formula for s(T), we can easily determine the monodromy of V.

We will assume that we are in the situation of Section 8.5.3, where T1, ..., T, are

integral classes lying in the closure of the Kahler cone of V. Furthermore, we

have variables g; = e% = ¢2TM% such that V is a connection in a neighborhood

of the origin in (A*)". We are making the same convergence assumptions as in

Section 8.5.3.

Now let 7; be the monodromy transformation given by going around the gtb
factor in (A*)".

THEOREM 10.2.4. The monodromy T; and its logarithm N act on the flat sec-

tions of the A-model connection as follows:

T;(s(T)) = S(e” T uT)

N;(s(T)) =-S(T; uT).

PROOF. Since g; = e®2, 7T; takes t; to t; + 2mi. We saw above that V is a

multiple of the Givental connection for 2 = —2mi, so that the action of 7; can be

written t; — t; — A.

We need to see what effect this has on (10.25). Since 6 = > _; t, Ty, T; takes §

to §+2miT; = 6 — K T;. This has no effect on = els® since T, and (3 are integral.
However, § also appears in e®/%, and here the effect of 7; is given by

S/h eG=AT/A _ o8/A=T5 _ 8/h | o=Ti

This last equality uses the fact that T; commutes with é since T; has even degree.

Inserting this into (10.25), we immediately get the desired formula for 7;(s(T)},

and then the formula for N;(s(T)) follows by taking logarithms. o

Theorem 10.2.4 shows that the monodromy logarithm N, is essentially given

by cup product with —T;. More precisely, N;(s(T,)) = —s(T; UT.) implies that the

matrix of cup product with —7T; relative to the cohomology basis {T,} is exactly

the matrix of N; relative to the basis of flat sections {s(T.)}. This is a fact we used

frequently in Chapter 8.

We can also use Theorem 10.2.4 to study the canonical extension of V. Recall

from Section 5.1.4 that since s(T') is a flat section of V, the section

3(T) = exp (- 532, log(g;)N;) s(T)

extends naturally to the canonical extension. Then Theorem 10.2.4 gives the fol-

lowing nice formula for 5(T').

COROLLARY 10.2.5. Given T € H*(V,C), the section 3(T) is given by

HT)=T+ qu%fif C,Tj>ofiri.
B0 3=0
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PROOF. This is easy. First observe that log{g;) =t; and A = —2m¢ imply that

5(T) = exp (A7 Lt,15) (T)

= s{exp (F1T,t5(~T5) UT)
- ( —6/5 UT),

where the second equality follows from N;(s(T)) = s((—T;) U T). Recall also that

&= 3_,t;T;. However, by (10.25), we have

/R (e=8/R

STy = o e uT) + 3o (T 1y
0 j=0 ¢

ST T (i 2T, T
B8#0 j=0

Putting these together, the corollary follows immediately. |

Notice how the formula for 5(T) involves only P = H,qf’a As usual, we can
assume that 3 is effective, and then [, 3 T; > O since T; is in the closure of the Kahler

cone. It follows that §(T') extends holomorphically to 0.

Using the above corollary, we can finally prove Proposition 8.5.4 from Chap-

ter 8. We restate the proposition as follows.

COROLLARY 10.2.6. For each homogeneous T € H*(V,C), the section 3(T)

satisfies 3(T) = T + terms of higher degree and 3(T)(0) = T. Furthermore, the

matriz of N; acting on the 5(T,) equals the matriz of cup product with ~T; acting

on the T,.

PROOF. The final statement of the corollary follows immediately from the com-

ments made after the proof of Theorem 10.2.4. For the other assertions, first note

that unwinding the symbolic notation used in Corollary 10.2.5 gives the formula

m o

() =T+, 3.3 Pr (T, T))o T .
B#0 j=0 n=0

Since V is Calabi-Yau, the Degree Axiom implies that all terms are 0 except for

those j’s which satisfy

2n + deg T +degT; =2d — 2, d=dim(V).

Since deg T7 = 2d — deg T}, we have deg T? = deg T' + 2n + 2. Hence, in the above

formula for 5(T), any nonzero term in the summation must have degree > degT.

Finally, we need to show that the value of 3(T) is T when ¢; = 0 for all i. We

noted earlier that in the above formula for 5(7), we can restrict to those 8 # 0 such

that the exponents of

¢ =TaTM
are all nonnegative. Hence it suffices to show that for each such 3, at least one

exponent is positive. But this is obvious, for otherwise we would have I 3 T; =0 for

all 3. This is impossible since 3 # 0 and the T; are a basis of H*(V,C). g
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‘When we first introduced the symbolic expression rz - in (10.15), it might have

seemed rather artificial. But given how it simplified the proofs of Theorem 10.2.4

and Corollary 10.2.5, this symbolic notation has more than proved its worth. We

will encounter this notation often i Section 10.3.

In the case of a Calabi-Yau threefold, we studied the flat sections of the A-model

connection in Chapter 8. Let’s compare those formulas with the ones derived here.

Example 10.2.2.1. Let V be a Calabi-Yau threefold. In Section 8.5.3, we con-

structed the flat sections of V using the Gromov-Witten potential

®= (27”) /(ZJ-IuJT) ‘*’ZNBQ
B#0

/ (Z;:l uj’I}):’ + Phot
v

from (8.51) (as usual, N3 = (Ip0,3)). Here, we are restricting to even cohomology.

In proof of Proposition 8.5.4, we gave formulas for the flat sections in (8.53),

and in (8.55), we applied exp(— Y, u;N;) = exp(—75; 3=, log(g;)N;) to these flat
sections. In particular, we obtained the formula

B‘I’hol 2
(10.26) So="Ty— (2m B Z auJ 7+ (27”_)3@,.011"

_ 27rz)

6

from (8.55). In this equation, Ty = 1 and T}, 1 < j <, is a basis of H2(V,C), and

then 77 € H4(V,C),1 < j < r,and T ¢ HS(V,C) are dual classes.

In the language of Section 8.5.3, 3p is a V°-flat section, and we showed that its

value at 0 is Tp. But Corollary 10.2.5 asserts that the section 5(Tp) is also V°-flat,

and Corollary 10.2.6 shows that its value at 0 is also Tp. It follows that 5o = 3(Tp).

To see what this implies, let’s write out 5(7,) using the above cohomology basis.

Since T = 1, the formula given in Corollary 10.2.5 becomes

@) =T+ P ({+= + JT9) T+0 0 ;} (<fi— Ofio z< -c’ 0,8

; <$’Tj>o,fiTj + <h— c’TO o,fiTO)'
Let’s see what happens when we compare coefficients of (10.26) and (10.27).

For the coefficient of 7°, first observe that

I M0,8

(10.27)

since all of the other terms vanish by the Degree Axiom. Then, comparing the

coefficients of 70 and using the above formula for ®, we obtain the identity

1

(27rz)3 =R 1)os
Since i = —2mi, this implies (72,1)0 3 = —2Nj, exactly as in Example 10.1.3.2.

Turning to the other terms in the summation in (10.27), one sees easily that

the coefficients of Tp and T; vanish by the Degree and Fundamental Class Axioms.

Finally, the equality of the coefficients of 77 in (10.26) and (10.27) is equivalent to

(1. Tyhep = ~{J, 3 Tj)Ng, which follows from the Divisor and Dilaton Axioms.
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10.2.3. The Parameter fi. We close this section with a brief explanation of

how the parameter i arises naturally from equivariant cohomology. Our discussion

is taken from [Givental2].

We consider P! with the C*-action t - (zo,%1) = (70, 1), and we also let

K € H2(BC*) be the corresponding generator, so that H*(BC") = C[#]. We can

compare this with the (C*)2-action given in Example 9.1.2.1 by the substitution

Ao — hand A; — 0. Tt follows that Ha.(P') =~ Clp, Rl/(p(p — h)}.

Let Rc~ = C(A) be the field of fractions of HTM(BC") (this is the notation of

Section 9.1.2). Then {p/A, (i—p)/k} is a basis for He-(P') ®y-(sc-)Rc- as a vector

space over Rg¢-. This basis is especially nice relative to the localization theorem

from Section 9.1.2. (Note that Rc- can be replaced with the smaller ring C{%, R

In Chapter 11, we will use the following important idea. Given a stable map

f:(P.p1,...,pn) — X, we set 3 = fu[P'] € Ha(X,Z). Then the graph of f

gives a natural element of My (X x P, (8,1)). One advantage this space has over

Mo,n(X,0) is that C* acts on X x P! by using the trivial action on X and the

above action on PL.

Because of the C*-action, we can use the equivariant Gromov-Witten invariants

defined in Section 9.3. To simplify the exposition, we will assume that X is smooth

and convex. Then X x P! is also convex, so that Definition 9.3.1 applies. Then,

given v € Hg. (X x P), we get the equivariant invariant

{Tonan)c=(Vs--- ) = ef(7) U -+ Uep(v) € H'(BC)../‘-M(,,,.(Xxpl,(fi,n)c.
We will find it convenient to regard this as an element of the field of fractions

R~ = C(h). Using these invariants, we define the equivariant potential function

Fp=Y ¥ e M.
n=08eH2(X)

To make this into a formal power series, we introduce some variables. Note that

Hed X x P*) ®-(gc-y Re = HTM(X) @c HE-(P') - (5cy Re--
It follows that given a cohomology basis T; of H*(X), {T; ® p/h, T ® (h — p)/R}

is a basis of the localized cohomology over Rc-. Then put

v=Y t;Ty®p/h+ > nT.® (R -p)/k
F] i

into the formula for F!. We can think of ¢; and 7; as taking values in R

Once we express F! in terms of the variables ¢;, 7i, some nice things happen.

First, consider the second derivative

& Ft

We will think of ® = (®;;) as a matrix-valued formal function. Then Givental

shows that the transpose of ® gives flat sections of V9.

PROPOSITION 10.2.7. If ®* denotes the transpose of ®, then forall j,

D e .
fi,gjq) =355 *® .

where s, is the flat section defined in (10.15).
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ProOF. The proof is similar to the proof of Proposition 10.2.1, although it is
somewhat simpler because we are dealing with equivariant Gromov-Witten invari-
ants rather than gravitational correlators. Details can be found in [Givental2]. O

Another nice aspect of ®;; is that it can be naturally interpreted in terms of
gravitational correlators. To see this, let

v =((z258),
By (10.15), this is the coefficient of T* in the expansion of s; in the dual basis,
where as usual {T"} is the dual basis to {7;}. We can regard 1¥;; as a function of
the t; and A, i.e.,

"fi'ij = ¢ij(t01 ey bmy fi')

Then this relates to the above function ®;; as follows.

LemmMa 10.2.8.

‘Ifi'j = — Z fi-z",[}ilc(to, oy tm, R) gkl ’I,[Jjg(To, coe s Tm, B).
k.2

PrOOF. This lemma is proved in [Givental2], so we will only give a brief
sketch of the proof. The point is that we compute the left hand side using lo-
calization, just as in Chapter 9. The C*-action on X x P! induces an action on
the space of stable maps. One sees that the fixed point locus consists of stable
maps f: C — X x P! with C = ¢’ U Cy U Coo which satisfy f(Cp) € X x {0},
f(Coo) € X x {00}, and f(C") C {z} x P! for some point z € X. The components
Co and Cu could be empty. The component ' meets Co and Cy at one point
each, and the h — ¢ factor in the definition of ¥;; arises from the application of
Lemma 9.2.2 to these two nodes. O

Finally, we should mention that these ideas can be used to give a different proof
of Proposition 10.2.1 which deduces the result from Lemma 10.2.8 and Proposi-
tion 10.2.7, again using localization.

10.3. Relations in Quantum Cohomology

In this section, we use the flat sections s, from (10.14) to study quantum
cohomology. We will regard V9 as a formal connection on the trivial bundle
M x H*(X,C) over the base M = H°(X,C) ® H2(X,C). Thus the variables
are to,t, ... ,t-, and V9 is given by the small quantum product as in (10.19).

10.3.1. Givental’s Function J. Following Givental, we define the function

(10.28) J=3 (s;,1) T,

J

where (o, 8) = |, x @ U 8 denotes the usual intersection pairing on cohomology. If
we use equation (10.14), the definition of J can also be written as

o m

(10.29) T=Jlto,-- tm, A7) =14+ 3 Y AU T, 1)) T
n=0a=0

We showed in Section 8.5.1 that the variables t1,...,t, appear in big quantum
cohomology as exponentials ¢; = e's. Then, when we regard the small quantum
product as the restriction of the big quantum product, the series giving *gmay is
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a formal power series in the ¢;. For simplicity, we will write *sman as * in what

follows.

Let P(h3/8t,et, i) be a formal power series in the quantities

hd/Bto, ... ,hD/Ot, €%, ... e k.

For definiteness, we can and will assume that the exponential terms are all to the

left of the derivatives, although this is not needed in Theorem 10.3.1 below.

If H*(X,C) is cohomology with coefficients in C = Cf[g1, ..., ¢-|], then we de-

note by P(T, q,0) the formal power series in H*(X,C) obtained from P(h3/0t, €, )

by the substitutions

ho/0t; — T, eli —gq;, h—0

and replacing composition of differential operators with quantum product.

The key result is the following.

THEOREM 10.3.1. Suppose P(h0/8t,e', h)J = 0, where P is a formal power

series with notation as above. Then the relation P{T,q,0) = 0 holds in small

quantum cohomology.

PrOOF. The following proof was suggested by B. Kim. Introduce the dual

Givental connection V9, which is defined by

) = Oa;
v:%(zlzfl“j) =AY SET,+ 3> 0T T
] i J

A quick calculation verifies the identity ’

9 — (79 79
(10.30) EE(G,H) = (V#%G,H) + (G, V%H)

for H*(X,C)-valued functions of tg, ... ,tm. One also calculates that

(10.31) Vot Vajor, L =Tox - *Tiy + RA(T, 0, F)

for some formal power series A in the T3, ¢; and A.

The expression PJ is defined to be 3, P(s;, 1) T3. Since Ty, ..., Tm are lin-

early independent, P.J = 0 implies that P(R8/0t, e*, B)(s;,1) = 0 for all j. Propo-

sition 10.2.1 also implies that V3 61,57 = 0 for all j. Then, by repeated application

of (10.30) and (10.31), one can show that

0= P(s;,1) = (s;, P(T,q,0)) + R (s;, B{(T,q,R)), j=0,...,m

for some formal power series B(T, g, k). This is an identity in /&, which allows us to

set i = 0 and obtain

<3j1P(T7Q70))=0y j=0,...,m.

Since the s; form a basis, we conclude that the relation P(T,q,0) =0 holds using

the small quantum product on H*(X,C). O

This theorem motivates the following definition.

DEFINITION 10.3.2. A differential operator P(h3/8t, et R) satisfying the hy-

pothesis of Theorern 10.3.1 is called a quantum differential operator. The equation

P(h3/Bt, et R)Y = 0 (which is satisfied by Y = J) is called a quantum differential

equation.
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Another way to think about Theorem 10.3.1 is as follows. If we let Pg, denote

the expression obtamed from P(hJ/8t, ef, k) by the substitution

2 <9
o Ve

then (10.30) implies that

(10.32) P (sj,1) = (55, Pgs1)

since s; is a flat section for V9. Thus, for the Givental function J, we have the

equivalences

(10.33) PJ=0 <> P(s;,1)=0 forall j <= Pg,1=0.

The first equivalence is from the proof of Theorem 10.3.1, and the second follows

from (10.32) since the s; form a basis. This explains the role of “1” in the formula

(10.28) for J.

Note that if P(T,q) = 0 is a relation in small quantum cohomology, then

P(h3/6t, et) need not be a quantum differential operator (see Example 10.3.2.1).

But if the relation P(T, g) = 0 is of at most second order, then it is easy to see that

P(RO/Ot, et) is a quantum differential operator, provided the exponential terms

are placed to the left of the derivatives. Also, Example 10.3.1.2 below will show

that in some special cases, quantum differential equations can be derived directly

from relations in quantum cohomology. Finally, we should also mention that in

Chapter 11, we will use Theorem 10.3.1 to calculate the quantum cohomology of

certain toric varieties in Example 11.2.5.2.

Our next task is to simplify the formula for J so that we can compute some

examples of quantum differential operators. The following lemma records two for-

mulas for J which will be used frequently.

LEMMA 10.3.3. The Givental J-function of X is given by the following two

formulas:

J= e“c“”"‘(l +y iqfi<51}c’ 1>0 fiTQ)B#0 a=0

= glta+8)/A (1 +y qfiPD’lel.(
B#0

e N BToa(x,9)) ).

where § = ] S 6T and ¢ = els?. In the second equality, PD is Poincaré duality
and e; : Mo2(X, 8) — X is evaluation at the first marked point.

ProOF. Recall that J is built from the flat sections s,, and since we are re-

stricting to M = H%(X,C) & H?(X,C), Proposition 10.2.3 implies that

e eS/huT, -

o= M OT SN (BT )
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Hence the Givental function J is given by

J= zm}sa, 1T
a=0

(10.34) = /A3 (fMUT 1) T +
a=0

m m 5/h ]

S S AT, (T,
a=0 80 j=0 B

The summation in the second line of (10.34) is easy to simplify:

ST UT, )T =) (/M Ta) T = /P,
a=0 a=0

where the last equality is by (10.24). The third line of (10.34) is easier, for one

easily sees that

; 1 fTy=To=1
77,1 = 7{ ) {0 otherwise.

Hence only the terms with j = O contribute to the third line of (10.34). It follows

that

i eShyT,
(10.35) J=e/ MR+ 3N P (——21) T( foriprd < h—c >0,fi )

We can simplify this further by observing that although the cohomology basis

{T.} and its dual basis {T} appear in (10.35), J is independent of which basis we

use. So we can replace {T,} with any other basis. Furthermore, we could even use

a nonhomogeneous basis, and since we’re using formal coefficients, we can use the

basis given by {e~/" UT,}. Since this has dual basis {¢’/* UT®}, we see that J

can be written as

m 5/h —6/h

_ to/hf 6/ g/eMU(eTM " UT,) §/m eJ=e" (e +fig¢0a§=0q < F—o ’1>0.fie U ),

which simplifies to the first of our desired formulas for J.

To prove the second formula, we observe that

(10.36) <£_’1> =/ 81(Ta)_
h—-c 0,3 [fio,z(X,fi)]"‘" A-c

By the projection formula for e, this is the same as

1 — .
-1 virt[ 1.upD (ern (5 0 PoatX.9177)).

If we apply (10.24) with ¢ = PDTM(e1.(1/(h — ¢)) N [Mo2(X, B8)]¥it)) and use

(10.36), we obtain

5 ()= 07 o (g st )
a=0 »

This shows that the second formula for J in the statement of the lemma is an

immediate consequence of the first. O
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An important consequence of Lemma 10.3.3 and the vanishing of (T, 1) 5 (by

the Fundamental Class Axiom) is that

(10.37) J = et/ 4 o(r7Y)),

as noted in [Givental4]. This fact is crucial to the statement of Theorem 11.2.2

in Section 11.2.

We now give two examples which give formulas for J and illustrate how quan-

tum differential equations give relations in quantum cohomology. We will give some

further examples in Section 10.3.2.

Example 10.3.1.1. Let’s compute J for X = P1. If H is the hyperplane section

(which is a point), then § = t; H and ffié =dt; for § =d € H*(P',Z) = Z. Then

Lemma 10.3.3 implies

=]

J = et (1 M dglqd«%, 1>0,d1 + <;7,—i—c’ 1>o,dH))'
Using (10.10) and (10.11), this becomes

o

1 -2 1 1— (to+t1H)Y /R d g—2d —{(2d+1) bt elJ=e <1+d§=1q (r @plth [—(d!)2 <1+2 + +d)}H))

menmno 3 () G2 () e+ 3)
It is straightforward to verify that J is annihilated by (Rd/dt;)® — e'*, so that

(Rd/dt,)? — et is a quantum differential operator. Then Theorem 10.3.1 yields the

small quantum cohomology relation H? = g after the substitutions hd/dt; — H

and €' - ¢, in agreement with Example 8.1.2.1.

‘We also get a very interesting formula for J as follows. Since H? = 0, the above

formula for J can be written as
-

1J = ltortiH)/R qd ,

d>=:o (AR=1(S5o; 1/9) H + dint)
and then, using H? = 0 again, we obtain

s 1J = eltort1 H)/h ¢ )

;, ((H + B)(H + 28) -- - (H + dR))’
We will see in Section 11.2.1 that this is a special case of Givental’s version of the

Mirror Theorem.

Example 10.3.1.2. Consider n-dimensional projective space X = P* and let H

be the hyperplane class of P*. We take our cohomology basis to be 1, H,... ,H",

with variables tg,t; corresponding to cohomology classes 1, H. If we let ¢ = e,

then the small quantum product satisfies H"*! = ¢** by Example 8.1.2.1.

Let’s show that this relation leads to a quantum differential equation. The

absence of any tg,t; dependence in the quantum powers H* for i < n implies that

the analysis used to obtain (10.31) leads in this case to the more precise identity

~ n+1

(V) 1= g
qi;



10.3. RELATIONS IN QUANTUM COHOMOLOGY 325

and since HTM*t! = e in small quantum cohomology, this becomes

(ezgl_)n-#ll =elt,

By (10.33), it follows that

d \n+1

(10.38) (fid_t,) — eh

is a quantum differential operator.

One can also go the other way. Proposition 11.2.1 asserts that for P*, Givental’s

function J is given by the formula

o>

1

10.39) J = elto+tn H)/RT gdta 
.

( dz=;) ((H+fi.)(H+2}7,)-..(H+dfi))n+1
For now, we note two things about this formula. First, for n = 1, it agrees with the

computation in Example 10.3.1.1 (once we set ¢ = ¢*') and second, for general n,

one can show that the right hand side of (10.39) is annihilated by the differential
operator (10.38). Hence, once we prove (10.39) in Chapter 11, it will follow that

(10.38) is a quantum differential operator, and then Theorem 10.3.1 will imply the

relation HTM*! = e't = g in the small quantum cohomology ring of PTM.

10.3.2. Calabi-Yau Threefolds. For the rest of the section, we will assume

that V is a Calabi-Yau threefold. We begin by explaining what the Givental J-

function looks like in terms of the Gromov-Witten invariants

Ng = (Io,0,5)

discussed in Section 7.4.4. As in Example 10.2.2.1, we restrict to even cohomology,

and we order the cohomology basis of H°V*"(V') so that Ty = 1, T1,. .. , T, generate

H*(V), and TY € H4(V,C), 1 < j < r, and T® € H5(V,C) are dual classes. Also

let 6 = Z:=1 T,

We now give a formula for J. Here, Lemma 10.3.3 gives the formula

J = elto+S)/h (1 +3 qfl(fi“2 D (nTa, 1o T* + R 3m, l)O,fiTO)).
B#0 a=1

This follows easily using the Degree and Fundamental Class Axioms. In Exam-

ple 10.1.3.2, we showed that

(nTa, o8 = (J5Ta)Np

(t2,1)0,8 = —2Njg,

so that the above formula simplifies to

(10.40) J = eltord)/A (1 +3¢ (rflNfi( Z (fs Ta)T“) — 253N TO)> .
B#C a=1

However, (10.24) easily implies that the Poincaré dual of § € Ha(V,C) is the class

Yozt (J3Ta)T® € HY(V,C). If we abuse notation slightly and let 8 denote this

class in H4(V,C), then we can rewrite our formula for the Givental function of a

Calabi-Yau threefold as

(10.41) J = etA(1 1 72y NpeP B - 28703 Nag® pt).
B#0 B#0
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If an independent method can be given for computing J, then by comparing co-

efficients with the above formula, the N3 can be computed. Givental asserts such

a method for toric complete intersections in {Giventald]. We will illustrate this

method for the quintic threefold in Example 11.2.1.3.

We pext explain how the Givental J function relates to the Gromov-Witten

potential and the small quantum product. The result is as follows.

PROPOSITION 10.3.4. If ® is the Gromov-Witten potential of a Calabi-You

threefold V', then the Givental J-function of V is given by

J—e*°/5<1+rr1§t Ta+ h_;,za@ T+ 5-3(21: gt—q’—mp)ro). g

Furthermore, for any 1 < 14,7 < r, we have

8%J

0t 6t

Proor. Recall from (8.33) that the Gromov-Witten potential is given by i

= /63+ZNBqfl———/6 + ®hoi,
B#0

- h—2e(tu+6)/h1fli x T}

where § =3 _, t,T,. Using this and (10.40), one sees easily that J becomes

J = ltoté)/h (1 +h? i k%] T* — 2R 3%y, TO),
) a=1 Ot

and multiplying this out gives ':

J= efo/’*(1 + RS 5-2152 + n-3153 +

5—22 0101 T8 4 5—352 aq)h“ T — 25 3@y, TO)

a=1 i

From here, we leave it to the reader to show that the desired formula for J follows

using the following identities:

" 8®hol _ L 9 0
‘5; 3. L (Z«lt Bt:)

(10.42) %53=%(/ 63)1"’:%27:“6?‘1%(/‘/63)1"0

22(/6%1‘) a;%%([/&)w.

Note that the second line uses the Euler formula and the third uses (10.24).

To prove the formula for 8%.J/8t,0t;, we differentiate the formula for J given i

in the statement of the proposition with respect to t; and t;. This easily gives

BT e 0 _ e

oot~ © (” . Granon, . T (Zt“atatat) )
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Using an identity similar to the first line of (10.42), we obtain

P (to+6)/h e o
o ZMT

= h2elto /AT 4 T

a

The second equality follows the discussion following the proof of Proposition 10.2.1,

which explained why the small quantum product is the restriction of the big quan-

tum product to M = H*(V)) @ H3(V). O

As an application of this proposition, let’s compute an interesting quantum

differential operator.

Example 10.3.2.1. Suppose that the Calabi-Yau threefold V satisfies h2(V) = 1.

Here, let H denote the generator of H2(V') and let C € H*(V) be the dual generator.

The point class will be denoted by pt € H8(V, Z), so we have HUC = pt. As usual,

the variables tg, ¢; correspond to 1, H, and we let g = e'*.

In Section 8.5.4, we studied the three-point function Y(q) = (H,H, H} and

noted the relation

in (8.66). Using Proposition 10.3.4, we see that

(fi'%)zJ =eltottt /Ry fr = gltotti H)/R Y(g)C.
1

This easily implies that

d 2 (hgf__)2‘] d 2

[ 1 = [ g2} plto+tiH)/h v _ (to+t1H)/R ucC =( dtl) ( 20 (hdtl) e C=e HuH 0

since H3(V) =0, so that

d 2 (5%2

(10.43) (fiit?) ( ) )
is a quantum differential operator. By Theorem 10.3.1, this gives the relation

H+«+Hx(H*xH/Y)=0

in the small quantum cohomology ring of V.

This above relation is rather trivial since H3(V) = 0. But the differential

equation (10.43) is still very interesting, mainly because of its striking similarity

to the Picard-Fuchs equation (5.63) derived in Section 5.6 for the Yukawa coupling

of a Calabi-Yau threefold. This is no coincidence and is a key part of mirror sym-

metry. We will pursue the relation between Picard-Fuchs equations and quantum

differential equations in Theorem 10.3.5 below.

We can also use this example to illustrate the comment made in Section 10.3.1

that the converse of Theorem 10.3.1 may fail, i.e., not all relations in quantum co-

homology give rise to quantum differential equations. For the Calabi-Yau threefold

V considered here, the relation H «+ H + H x H = 0 holds in quantum cohomology,
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yet (Rd/dt;}*J # 0. This is because a simple calculation using (10.30) gives the
equation

d\* _ @Y ay
(fia) (s51) =K Et?(sj,c) + 2fia<sj,pt>.

Since C and pt are independent cohomology classes and Y is nonconstant, it follows
easily that (Ad/dt1)*(s;,1) can’t vanish for all 5.

We conclude this section by explaining how Theorem 10.3.1 relates to the A-
model connection V discussed in Example 10.2.2.1. Here, recall that the natural
variables are u;, which are related to t; by t; = 2miu;. Now consider an operator
of the form

PV:P(VEe_,"" ,Va_g_:,qh..- ,0r ),

where g; = €TM/, We will assume that Py is a polynomial in the connection terms
with coefficients which are formal power series in the g;. We will also assume that
the g; are all to the left of the connection terms.

The operator Py can be applied to any section of the bundle on which the
connection V is defined. In particular, we have the section given by 1 = Ty, and
we say that Py is a Picard-Fuchs operator if

Pgl=0.

This terminology is inspired by mirror symmetry, for in the Mirror Conjectures
discussed in Section 8.6, the section 1 corresponds to the normalized 3-form 52 on
the mirror, and the usual Picard-Fuchs operators are those which annihilate Q.

Given an operator Py, write it as

(10.44) Py =3 Aa(g)V",

where o = (a1,... ,a,) is a multi-index and

Ve = v;é_l e V;jé_r .

Setting |a] = 3", a; as usual, we let m = maxg{|al 1 Aq(g) # 0} be the order of
Pg. Then define the fi-homogenization of P to be the differential operator

¢ _ kB \m—|e| : 2 @

(10.45) P(r8/0t, €', k) = za: (2—7”) Aq(e )(h Bt) ,

where (7id/0t)> has the obvious meaning. (We will see below why the 27 is neces-
sary.) Also set

Pn(T,q)= Y Aalq) T,
lal=m

where T is formed using T3,... , T, under the small quantum product in H*(V).
We can think of P, (T, g) as a quantum version of the principal part (or character-
istic form) of the operator Pg.

We can relate these objects as follows.

THEOREM 10.3.5. Let V' be a Calabi- Yau threefold and let Py be an operator
of order m as in (10.44). If P(h/8t, !, h) is defined by (10.45), then:
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(i) Py is a Picard-Fuchs operator if and only if P(hO/0t,et, k) is a quantum

differential operator. In other words,

Pgl=0 < P(hd/dt, e k) J =0.

(i) If Py is Picard-Fuchs, then P,,(T,q) = 0 in small quantum cohomology.

Proor. We begin by noting a special property of quantum differential equa-

tions in this case. Let J be as in (10.41), where i is regarded as a variable, and

let Jy denote the formula obtained from J by replacing A& by a nonzero complex

number fg. Then we claim that

(10.46) P(h3/0t,et B) J =0 <= P(hod/dt, e, hio) Jo = 0.

To see this, first note since P(A0/t, e', k) is homogeneous in K, P(h3/8t,¢t, k) =

RTMP, where P is an operator not involving /. Also note that i appears homoge-

neously in the coefficients of J. To see what this means, we multiply out (10.40) to

obtain

J=14+AY AT +h72Y BT + B3CT0,
J=1 =1

where A;, B;,C are functions of 1,. .. , ¢-. Using P(h0/0¢, €', k) = ATM P, it follows
easily that P(RJ/8t,et, B) J =0 is equivalent to

P1=PA;=PB;=PC=0 forallj

Since fig # 0, this is also equivalent to P(hod/8t, et, ko) Jo = 0, and (10.46) follows.

We can now prove the theorem. By (10.46), we can specialize /i to any nonzero

constant. Hence, for the rest of the proof, we can assume 7 = 2mi without any loss

of generality. We will soon see why this is the correct choice.

By (10.33), we know that

(10.47) P(ho/0t, e, B) J =0 == Pg,1=0.

where V¢ is the dual Givental connection and Pg, is defined by the substitution

a ~

o — V7,
J Bt

Now comes the key observation: since i = 2mi, the dual Givental connection VI is
precisely 2miV. It follows that

9 = Vi —V?J —21er% = Vs.z_j,

where the second equality uses t; = 2miu;. Since A = 2mi, comparing (10.44) and

(10.45) shows that P, is precisely the operator Py, and then (10.47) implies

P(hd/Bt,e' k) J =0 <> Pgl=0.

This proves the first part of the theorem, and the second part now follows immedi-

ately from Theorem 10.3.1. |

This theorem shows how the A-model connection of a Calabi-Yau threefold is

deeply connected to small quantum cohomology. But an even deeper connection

is to the B-model of the mirror, as predicted by mirror symmetry. In the next

chapter, we will prove some special cases of the Mirror Theorem, which will finally

link together all of the amazing mathematics we’ve been studying.





CHAPTER 11

The Mirror Theorem

The goal of this chapter is to prove some versions of the the Mirror Theorem,

with special emphasis on the quintic threefold. We also touch on some interesting

topics associated with the techniques in the proof. As noted in Chapters 1 and 2,

the proofs involve several new concepts not discussed previously.

We learned in Chapter 8 that there are several ways to formulate a “Mirror

Theorem”. The versions in Section 8.6 were stated in terms of variations of Hodge

structure. Here, we will take a different point of view and describe two closely

related approaches to the Mirror Theorem, both of which are based on equivariant

" intersection theory in the space of stable maps. The historically first approach, due

to Givental [Givental2], features the gravitational correlators defined in Chap-

4er 10. These correlators lead to the Givental J-function defined in Section 10.3.1,

and we will see that J plays an important role in Givental’s version of the Mirror

Theorem. Givental's methods extend to toric complete intersections [Giventald],

homogeneous spaces [Kim2], and in part to higher genus [Givental5]. The ap-

proach of Lian, Liu, and Yau [LLY], on the other hand, emphasizes the interplay

between the linear and nonlinear sigma models. Mathematically, the nonlinear

sigma model is understood in terms of intersection theory on moduli spaces of

stable maps, while the linear sigma model is understood in terms of intersection

theory on the projective spaces Ny of tuples of homogeneous forms of degree d on

P'. The main results are expressed in terms of the equivariant intersection theory

of N;. The method alse applies to certain non-compact varieties. We will explain

the [LLY] approach first, as fewer technical details are needed in the development.

In Section 11.1, we outline the proof of the Mirror Theorem for the quintic

threefold given in [LLY], stated here as Theorem 11.1.1. By Section 8.6.2, this

implies the Hodge-theoretic version of mirror symmetry from Chapter 8. In the

approach of [LLY], equivariant versions of Gromov-Witten invariants are encoded

in a sequence of equivariant cohomology classes Qg4 on the projective spaces Nj.

These are shown to be related to equivariant cohomology classes P, which are
associated to hypergeometric functions which give periods on the mirror family.

The proof relies on a direct comparison of B, and Q4. This is implemented using the

concepts of linked Euler data (Definition 11.1.3), itself based on the gluing lemma
(Lemma 11.1.2) for multiplicative cohomology classes, and mirror transformations
(Definition 11.1.10). We will also explain how this method applies to the multiple

cover calculation made in Section 9.2.2.

In Section 11.2, we turn to Givental’s approach to the Mirror Theorem. Here,

we will focus on the case of a complete intersection X C P", which we represent

as the zero locus of a section of V = ®%_,0pn{a;), a; > 0. In this situation, we

define two formal cohomology-valued functions Jv and I. The function Jy is

closely related to the Givental J-function of the complete intersection, while [y is
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the function studied in Section 5.5.3. In Section 11.2.1, we state Theorem 11.2.2,

which shows how to compute Jy, in terms of I, when Zf__.lai < n+1. For
V = Ops(5), this Mirror Theorem implies mirror symmetry for the quintic threefold.

More generally, in Section 11.2.2, we will consider a complete intersection X C ¥V

defined by the vanishing of a section of a vector bundle V on Y which is a direct
sum of line bundles. Here, we will give the general definition of J,, and discuss

the Quantum Hyperplane Section Principle, which conjecturally computes Jy,. We

will then prove Theorem 11.2.2, first for V = 0 in Section 11.2.3, and then for

general V in Section 11.2.4. The proof uses localization in equivariant cohomology,

applied to equivariant versions of Jy; and I,. When V = 0, the localization formula

(Corollary 9.1.4) from Chapter 9 leads to a recursion relation for the localizations

of Jy, that can be explicitly summed to yield Jy,. For general V, we don’t quite get

a recursion, so that more work is needed. The chapter will end with a discussion

of Givental’s version of the Mirror Theorem for toric complete intersections.

11.1. The Mirror Theorem for the Quintic Threefold

In this section, we sketch the proof of the Mirror Theorem for the quintic

threefold, following [LLY].

11.1.1. Statement of the Theorem. Let V C P* be a generic quintic three-

fold. We begin by recalling the Gromov-Witten invariant (Ipoq). Fix a positive

integer d and consider the maps

Mo, (PHd) =2 Pt

p— lWl
Moo(P4,d)

where m; forgets the marked point and e; is the usual evaluation map. Let V =

Opa(5), and put

© Vg = mei(V),

a vector bundle on Mp,o(P4,d). One easily checks that this agrees with the bundle
defined in Example 7.1.5.1. It follows that the above Gromov-Witten invariant is
given by

{(To,0,4) = /_ csd+1(Va).
My, o(P4,d)

In Chapter 7, this was denoted Ny, but here we will instead use Ky (as in [LLY])

since Ny will have a different meaning below. Also, csg+1(Va) is the Euler class of

Va4, which here will be denoted Euler(V,). In this notation, the above formula is

written

Ky =/ Euler(Vy,).
Mo,0(P4,d)

Notice that we wrote this as an integral over the moduli space Mg o(P*, d) and not

the stack Mo o(P*,d). This is because although V; is only vector bundle over the
stack, its Euler class Euler(V,) is a well-defined 0-cycle on M o(P4, d), so that the

above integral makes perfect sense. In what follows, we will often abuse notation

by speaking of Vy as if it were a vector bundle on M (P, d).
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We also know from Chapter 7 that K4 can be written

Kg=7 nakTM,

kid

where the ny are the instanton numbers discussed in Section 7.4.4. Furthermore,

by Section 8.3.3, the Gromov-Witten potential of the quintic threefold is

o(T) = -T3 +Y Kqe'T
d>0

so that & is the A-model correlation function. The goal of Section 11.1 is to show

that @ is determined by the Hodge theory of the quintic mirror family as specified

by mirror symmetry, thereby proving the formulas for ng given in Chapter 2.

In order to state the result proved in [LLY], consider the formal H*{P4,C)-

valued expression

—Hc/fiz Hm—o(5H mh) et

d>0 m—-l(H mh)®
where H is the hyperplane class. If we expand this in terms of powers of H, we

obtain

H H? H?
. 5H (yo—yxg +y2—h_2-_y3fi>
for certain functions y; = y;(t). We saw in Chapter 6 that the y; are a basis of

solutions of the hypergeometric differential equation

(BRI CRICIICICIIES
for the periods of the quintic mirror, as can readily be checked by the Frobenius

method. This was explained in the continuation of Example 6.3.4.1. Note that the

y; coincide with the coefficients of the function I from Section 5.5.3 associated to

the set 4 = ANM, where A is the convex hull of the set (4.13) of primitive integral

generators of the standard fan for P*. By Proposition 5.5.4, we know that the y;

satisfy the GKZ system associated to A.

We put ¥(t) = % We have already noted in Section 2.6.2 that the mirror map
0

is defined by q = exp(¥(t)). Then the Mirror Theorem of [LLY] goes as follows.

THEOREM 11.1.1. If ® is the Gromov-Witten potential of the quintic threefold,

then

S5(yiyz ¥s

SO =3 (yo Yo y0> ’
This formulation of the mirror conjecture for the quintic was first stated in

[Kontsevich3]. In Example 11.2.1.3, we will show that Theorem 11.1.1 follows

from the results of [Givental2], though the first fully detailed proof appeared

in [LLY]. We explained in Section 2.6.3 how this version of the mirror theorem

leads to “classical” mirror symmetry (2.26). Also recall from Proposition 8.6.5

that the right hand side of the equation in the above theorem is the “potential

function” for the variation of Hodge structure of the quintic mirror. As noted in

Section 8.6.2, Theorem 11.1.1 implies that the quintic mirror and quintic threefold

form a mathematical mirror pair in the sense of Defintion 8.6.1.
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The remainder of this section will be devoted to proving Theorem 11.1.1, and

we will sketch a second proof of this theorem in Section 11.2.

11.1.2. Linear Models of Stable Moduli. We next introduce a “linearized”

version of the space of stable maps which will play a key role in what follows. In

physics, this is analogous to going from a nonlinear sigma model to a linear sigma,
model. We will develop the theory for hypersurfaces of degree £ in PTM and later

specialize to the quintic threefold in P*4.

We begin by compactifying the space of degree d maps P' — P". The usual

moduli space My o(P", d) doesn’t do this, because a generic element of M o(PTM, d)
only determines such a map only up to reparametrization. Hence we will instead

use the space

My =MyoP* x P*,(1,d)).

Here, the generic element is a map P! — P! x P* whose image has degree (1, d).

The key observation is that reparametrizing the source doesn’t change the image,
which is the graph of a degree d map P* — P*. Hence M, compactifies the space

of such maps, as claimed.

For our second compactification, note that a degree d map P! — P" can be
represented by an (n + 1)-tuple (ayp, ..., ) of degree d homogeneous polynomials

on P1. This leads to the projective space

Ny =P(HY P, Op: (d))TMF),

where [P denotes the projective space of 1-dimensional subspaces. The role of N,

in the linear sigma model is explained in Appendix B.5 in the case n = 4.

Both My and Ny admit natural torus actions. In what follows, we will make
heavy use of Sections 9.1 and 9.2, so that the reader may wish to review these

sections before proceeding. Proposition 9.1.2 (and corollaries), Example 9.1.2 and

Section 9.2.1 are especially important.

Now let G be the torus G = C* x T, where T = (C*)**. We first describe the
G-action on P! x PTM we will use. Let ¢ € C* and (to, westn) € T = (C*)**. Then

{t,t0, .- ta) - ((wo,w1), (2o, - .. ,Zn)) = ((t w0, w1), (t5 2o, - . . , 871 20)).

As in Example 9.1.2.1, the inverses have been chosen so the action on homogeneous

forms induced by pullback via the G-action will have positive exponents.

We next describe the G-action My = Ho,o(Pl x P",(1,d)). Here, we use the
induced action coming from the G-action on P! x P*. This action is closely related
to the action of (C*)TM*! on My ,(P",d) studied in Section 9.2. Recall that we
gave a careful description of the components of the fixed point locus. Here, we are
interested in the components of the fixed point locus of the action of G on My, and

we get an analogous description, with the following modifications:

¢ Contracted components of a G-fixed stable map must map to a G-fixed point

of P! x P,

e Noncontracted components must cover a G-fixed curve in P! x P*. These

curves are of the form P! x {g;} and {p} x £, where g; € P is T-fixed, p is
0 or o0, and £ C PTM is a coordinate line.

e If 3=’ denotes the sum over components covering P! x {g;} and 3°” denotes
the sum over components covering {p} x £, then 5"'d; = 1 and 3> d; = d,

where d; are the degrees of the the coverings.
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These components of the fixed point locus of G are analogous to those occurring in

the proof of Lemma 10.2.8.

Finally, we describe how G acts on V. Here, the action is given by

(t,t0,--- s tn) - (ao(wo,w1), ... , an(wo,wr)) =

(tg tao(t TM wo, wr), - - -, tn lan(t TM wo, w1)).

This gives a linearized action of G on the projective space Ny. The G-fixed points

of N, are the points

Pir=(0,...,0,w5wd",0,...,0),

where the nonzero monomial occurs in the 3P location. The inclusion of Pir in Ny

will be denoted by iy, .

Let Ag,...,An generate H*(BT) as in Section 9.1.1, and similarly introduce a

generator /i for H*(BC*). This generator is called a in [LLY], but here we adopt

the notation of [Givental2] to keep notation consistent throughout the chapter

(although the sign of % is different in [Givental2}, corresponding to different con-

ventions regarding the C*-action).

We can describe the equivariant cohomology HE(Ng) in terms of A; and F.

The answer is similar to the one given in Example 9.1.2.1. By regarding p;, =

L0,...,0,wiwdTMTM,0,...,0) as a vector in HO(P, Op: (d))TMt!, we diagonalize the

action of G on HO(P!, Op: (d))TM+!. Given how G acts on Ny, the weight of G acting

on p; - is clearly —(\; +rk). Hence we get the same formulas as in Example 9.1.2.1,

provided the weights {\;} are replaced by {\; + r&}. In particular, (Ny)g is the

projectivization of the bundle ®; ,O(—A; —rh) over BG, and if « is the equivariant

hyperplane class of Ny, then in place of (9.4), we have the relation

(11.1) [Itc=x-rRy=0

in H5(Ny). Furthermore, as a special instance of (9.9), we put

(11.2) b= I (k=5 +sh)),

(4.8)5(ir)

since the A; + sk are the weights of the linearized G-action on N;. Recall that the

¢p,.. are a basis of H5(V4) as a module over H*(BG).

We note that any class Q € H5(Ng) can be represented by a polynomial in

&, R, and A;. Our discussion together with (9.5) shows that the class i;'_'r(Q) is

the element of H*(BG) = C[h, A] obtained by substituting A; + r# for . For this .

reason, it is reasonable to also denote i;, (Q) by Q(A; + rk). Note that this is

well-defined, by virtue of the relation (11.1). Similar notation will also be used

when Q is an element of an appropriate localization (in the sense of commutative

algebra) of the cohomology ring.

As a simple example of how the localization theorem applies to this situation,

let’s show that

(11.3) Qi+rh) =iy (Q) = /( . bp,,. UQ,

where f( Noe 18 the equivariant integral defined immediately before Corollary 9.1.3.

To see this, first note that if V;, is the normal bundle of p; . and Eulerg(N; ,) is
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its equivariant Euler class, then (9.7) implies

(11.4) Eulerg(Nis) = [ (\i+rh— () + sh)).

(G:8)#(,7)

Furthermore, adapting (9.10) to Ny, we easily see that

Eulerg(N; ) if (4,8) = (4,7)
0 otherwise.

(11.5) i, (Bp,) = {
We can now apply Corollary 9.1.3 to conclude that

5,6, UQ)
/m.»c V= Flaa) = (@

We should point out that the localization theorems from Chapter 9 use local-
izations (in the sense of commutative algebra) of equivariant cohomology. As in
Section 9.1.2, let Rt be the field of fractions of H' *(BT) =~ C[A;}. Then the tensor
product Hg(Ny) @ BT) R will be denoted RrHE(Ng). This is the localization
of Hi(N,) where nonzero polynomials in the A; are inverted. Similarly, if R¢ is
the field of fractions of H(BG) ~ C[\,, k], then we get the localization RcHE(Ng)
where nonzero polynomials in the ); and % are inverted.

We now assert that there is a natural G-equivariant morphism

(p:Md——)Nd

described as follows. Consider a map f : P! — P! x P" of bidegree (1,d). This
map represents an element of My. Reparametrizing the source P! as needed, we
can represent f € My by a map of the form

(11.6) {(wo, w1) — ((wi1,wo), (ao(wo, wr), ..., an (wo, un)),

where the o; are homogeneous forms of degree d in the coordinates (wo, w1) of P,
With this representation of f, we define o(f) = (ag, .., 00 ). We summarize this by
saying that specifying a parametrized degree d map is equivalent to specifying an
(n + 1)-tuple of homogeneous degree d forms on P! without a common factor.

The peculiar-looking switch of (wq, w1) to (w;, wp) arises because ¢ is required
to be C*-equivariant. For t € C*, ¢ - f is given by

(wo,w1) — ((tTM wy,wo), (ao, . . . van)) = ((wr, twe), {ag, - - - ,0m)).

To calculate (¢ - ), we must put ¢ - f in the standard form (11.6). We do this by
replacing wg by ¢~ lw,. The result is

(p(t ) f) = (ao(t—lw()»wl), atey an(t-—lw()a wl)):
which equals ¢ - (f) as claimed.

For an arbitrary stable map f, the description of o(f) = (ap,... ,an) comes
from studying contracted components. Let p; : P! xP* — P! and po : PP x P — P
be the two projection maps, and suppose that p; o f contracts a component to a
point p € P, while p; o f has degree d’ on this component. In this case, one can
show that the a, have a common factor L(wo,wl)d’, where L is a linear function
vanishing at p. We will use this fact in the proof of Theorem 11.1.4 below. For
a more explicit formula for ¢, see [Givental2] or [LLY]. These references also
prove that ¢ is a morphism on M, (the proof given in [LLY] is due to J. Li). In
[Givental2], what is actually constructed is a map Ly — N, where Ly is closely
related to My. We will define Ly during the proof of Lemma 11.2.12.
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11.1.3. Euler Data. Now fix an integer £ > 1 and set V = Opn(€). As in

Section 11.1.1, we have a diagram

Mo (P d) 2 pr

(].]..7) L=

Mo o(PTM, d)

and we define

Vd = fl],e;(V).

This is a bundle on the stack Ay o(PTM,d), though as in Section 11.1.1 we will abuse

notation and regard V; as a bundle on Mg o(P",d).
We now define some important equivariant cohomology classes. Consider the

natural projection 7w : My — Mg o(P", d) and define

xy = Eulerg(n*(V4)) € HS(M,).

Using the above map ¢ : My — Ny, we define

(11.8) Qa = ¢i(x¥) € HE(Na),

the equivariant pushforward of x}. We can regard Qg as the “linearization” of xJ.

We next define

e

(11.9) By = T] (tx - mh) € H5(Ny).
m=0

The definitions of P; and Q, are for the bundle V = Opn (£). In the special case

when V = Ops(5), the equivariant cohomology classes Py and Qg will play a central

role in the proof of Theorem 11.1.1.

The paper {LLY] defines P, and Qg for a much wider class of bundles V than
considered here. If we think of Opn(£) as associated to a hypersurface, then the

types of bundles considered in [LLY] include not only those associated to complete

intersections in PTM but also concaver bundles. We will define concavex bundles in

the remarks at the end of Section 11.1.5 below.

The way we’ve set things up, the bundle V = Opn (£) gives rise to the infinite

sequence of bundles {V3}32,. We also define V4 for d = 0 by letting Vy denote

the bundle V on P*. It is important to note that although these bundles live on

different spaces, there are still nontrivial relations among them. To see how this

works, pick 0 < r < d and define M (r,d — r) by the pullback diagram

M(rd—-r) 25 ¥ (P, 7)

(11.10) P2 | Le

Mo (P d-1) == P~

where e; is the usual evaluation map and the p; are projections. We can think of

M(r,d—r) as consisting of pairs of 1-pointed stable curves ((fi,C1,p1), (f2, C2, P2))

such that f;(p;) = fa(p2).- Then we have a diagram

M(rd-r) X Moo(PTM,d)
(11.11) e |

P'n
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where e; is the evaluation map (well-defined by the definition of M(r,d - r)).
Also, the horizontal map takes ((f1,C1,21), (f2,C2,p2)) to the 0-pointed stable
map (f, C), where C is the curve obtained from C1 U C; by identifying p; and D2,
and flc, = f; (again well-defined by how we defined M(r,d—r)).

When r = 0 or r = d, we must modify the definition of M(r,d — 7). Since
Mo, (PTM,0) is empty, we replace e; : My 1 (P*,0) — P* by 1pn : P* — P» ip
(11.10). For r = 0, this implies M(0,d) = Mo, ;(P",d), where in (11.10), p, is
identified with the evaluation map e; and P2 is the identity. Also, in (11.11), note
that ¢ is identified with the map m; : My, (P*,d) — Mo o(P",d) forgetting the
marked point. The case when r = d is similar.

Given this setup, we get the following gluing lemma.

LEMMA 11.1.2. If b is any multiplicative equivariant characteristic class for
vector bundles (such as the equivariant Euler class), then on M(r,d — r) we have

e1b(V)Y"b(Va) = pinib(V,)p3mib(Va—r).

(To make sense of this when r = 0 or r = d, we must interpret 775(Vo) as b(Vp) =
b(V) whenever it occurs.)

PROOF. The lemma is trivial when r = 0,d. Now suppose 0 < r < d and let
((f1,C1,11), (f2, C2,p2)) map to (/,C) as above. Then we have the exact sequence

0—=fV—fiVe ;v — vV, —0,

where p = fi(p1) = fo(ps). This in turn gives the exact sequence

0 — H°(C, f*V) — H°(Cy, £;V) © H(Cs, f3V) — V], — 0.

The lemma now follows without difficulty. O

The gluing lemma gives an identity which relates the equivariant Euler classes
Eulerc (Va) € HE(Moo(PTM,d)). Since Qg € Hg(Ny) is defined using Eulerg(Vy), it
is reasonable to ask if these classes satisfy a similar identity. But classes in Hx(N,)
are easy to study. The fixed point set is simple—it consists of the isolated points
P:-—80 that by the localization theorem, the class Qqis uniquely determined by
the i3 (Qa). This suggests that we seek an identity for the i;.-,,(Qd) which is
similar to Lemma 11.1.2.

We will make this precise in Definition 11.1.3 below. But before we can state
the definition, we need the map ~ : Ng — Ny defined by

(ao(wo, un), ... s ot (wo, w1)) = (ap(wr, wo), . . . , Qn (w1, we)).

This map is clearly T-equivariant, but it is not C*-equivariant. In [LLY], it is
shown that : HZ(Ny) — HL(N,) satisfies

R

(11.12) h=—h

i

We also recall from Example 9.1.2.1 that the fixed points of the action of G (or T)
on P* are denoted g;.
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DEFINITION 11.1.3. Let Q@ € RrH;(PTM) be an invertible class. A sequence

Q= {Qd} with Qd € RrHE(Ng), d > 0 is called an Q-Euler data if for all

T = Ldandi= , 1, we have

i;i(n)i;i,r(Qd) p,o(QT) Zpl Q(Qd—r)

where Qo = Q. The set consisting of all Q-Euler data is denoted A®.

We noted earlier that i, (Qa) = Qa(Xi + rh), and we know from (9.6) that

i5,(€2) = Q(X;). Hence the above equation can be written

QM)Qa(A: +1h) = Qr(A)Qu~r(A)-

Note that Q = Q since Q € RpH}(P"). So this equation is trivial when r=0.

Below, we will see that the sequences @ = {Qd} and P = {Pd} defined in (11.8)
and (11.9) are Euler data for @ = Eulerr(V) = Eulery(Opn(£)) = £p, where p is the

equivariant hyperplane class. The name “Euler data” was chosen in part because

Q is defined using the equivariant Euler class.
We first give the easy proof that P is an ¢p-Euler data.

Example 11.1.3.1. We first note that 2 = £p is invertible in RyHE(PTM). This can

be seen by localization (Proposition 9.1.2), since the restrictions i; () = Q(X;) =

. £)\; are all invertible. Also recall from (11.9) that

od

By = T] (es — mh).
m=0

Then P = {P,} being an p-Euler data is equivalent to the identity

or &d—r)

aI] (\i +rh) —mh) = [ (@ +mh) T (@ —mb),
m=0 m=0 m=0

which is immediately verified.

It will take more work to show that Q is an ¢p-Euler data.

THEOREM 11.1.4. The sequence Q = {Qa4} = {1x}%} is an €p-Euler data.

PrROOF. We need to show that

(11.13) ex; Qa(hi +7h) = Qr(A) Qu_r(Xs) for all r,i.

We begin by computing 25, ,_(Qd), which is given by

(11.14) Qo= [ 00 Qu= [ (6l
(Na)e (Ma)e

The first equality is from (11.3), while the second equality follows from the definition

of Qg4 and the projection formula. Our strategy will be to compute the integral on

the right hand side of (11.14) using the localization formula from Corollary 9.1.3.

We first identify which G-fixed components in My contribute to this integral.

Let ir : Mr C M, denote the component corresponding to the graph I'. Then,

when we apply Corollary 9.1.3 to this integral, Mr will contribute a term which

has

356" (Bp0.)) = (Plaze)" (0 37,y (B0:.)



340 11. THE MIRROR THEOREM

as a factor. Since ¢(Mr) must be one of the fixed points p;,,, the term correspond-

ing to Mr vanishes if (j,3) # (4,7) by the definition of ¢y, , from (11.2).

It remains to determine the components of the G-fixed point set which map to

Pir under @. For this purpose, we will use a variant of the map 1 from (11.12).

Given a point of M(r,d — r) represented by f; : (C;,p;) — P* with fy(py) =
Ja(p2) = g € P?, define C = CoUCiUC,, with Cy = P!, and 0 € P! is glued to

p1 € C, while 0o € P! is glued to p2 € C,. Then define f: C — P! x P" by

fleo(2) = (2,9)

flei(2) = (0, f1(2))

flea (2) = (00, f2(2))-

Then f € Mg, so that this procedure defines a map

(11.15) $:M(r,d~r) — Ma.

Let {Fy} be the set of T-fixed components of Mo, (P, k) whose marked point

is mapped to ¢;. Then F; x Fy;_, C M(r,d — 1), and we will identify this set with

its image under ¥. Thus we will write F. x Fy_, C M,.
We claim that the F, x Fy_,, as we vary over all possible F, and F,_,, are

precisely the components of the G-fixed point set which map to p;, under ¢. To

prove this, take f € F. x Fy_,. By definition, p; o f contracts Co, p2 o f has degree

r on C1, and p; o f has degree d — r on C,. Then the description of w(f) given

in Section 11.1.2 shows that ¢(f) = p; .. Using the more detailed description of ¢

given in [LLY], one can show further that F, x Fy_, is a component of the G-fixed
point set and that all components in ¢~1(p, ..} arise this way.

It follows that when we compute the integral on the right in (11.14) using

localization, we need only use components of the form F} x Fy_,.. We will first treat

the case where r # 0,d. The following notation will be useful. Let £y ; denote the

line bundle on Mo ; (P, k) whose fiber at f : (C,p) — PTM is the cotangent space
T,(C), as defined at the beginning of Section 10.1.1. Also, for any k and component

Fi, we let N(F}) denote the normal bundle of Fj in Hoyl(ll”",k). Finally, we

let m : Mo 1(P" k) — Mgo(P" k) be the map in (11.7) which was used in the
definition of the bundle Vi. Then, applying Corollary 9.1.4 to the integral on the

right hand side of (11.14), we claim that

Qulhs +78) = /( o O

= R2(en) N, (e [T = Ap) x

J#EL

(11.16) / 71 Eulerc(Vy) y

2 Jipry arEulerg(N(F)) (A~ 0(Lr))

/ 7y Bulerg(Vy—r)

Fo 4 (Fasrie aq—Eulerg(N(Fy—))(—k — C?(Ld—r,l)) ’

where aj is the order of the finite group of automorphisms associated to Fy. (In

[LLY], the a; are included in the definition of integration over orbifolds and hence
don’t appear explicitly in their formulas.) We now outline this calculation, omitting

many of the details.
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The automorphisms fixing a generic stable map f € F,. x Fy_, can only arise

from automorphisms of fi¢, € Fr and flc, € Fyq—r, so that the group of automor-

phisms needed in applying the localization formula has order a,a4—,. This explains

the factors of a, and a4_» in the denominators in (11.16).

We next need the equivariant Euler class of the normal bundle N(F, x Fy_,)

of Fr x Fy_, in My. This computation is the most technical part of the argument,

since there are several contributions to Eulerg(N (F. x F4_,)). We will be sketchy

at times and refer the reader to [LLY] for a more complete proof. To study this

normal bundle, let M*(k) C Mo :(PTM, k) be the set of stable maps which take the

marked point to ¢; € P*. Note that the normal bundle of this embedding is the

pullback of T,,P" via e;. Then consider the following diagram:

FoxFy, — M{r)xMi(d~r) — Mo1(P*r)x Mg;(P*,d—1)

i

M(r,d—r)

1%

My

where 9 is from (11.15). The definition of M(r,d —r) given in (11.10) shows that

ert(gi) = Mi(r) x M*(d — r) C M(r,d - r), where e; is the evaluation map from
(11.11). Hence the normal bundle of this embedding is also the pullback of T, PTM.

If we then compute the normal bundle of F;. x F;_,. C My, the above diagram

implies that in the equivariant K-group of F. x F4_,, we have

N(F. x Fy_.) = N(F,) + N(Fy_,) = 2T,,P" + T,,P" + N(@).

In this equation, we have omitted various pullbacks for clarity. When we take

equivariant Euler classes, we obtain (again omitting the pullbacks)

Bulera(N(F. x Fu-r) = SRR I vJFENTT 7

since Eulerg(T;,P") = I;x:i(A: — A;) by (9.7). This appears in the denominator in

the localization theorem, so that we can explain three more factors in (11.16).

It remains to consider the normal bundle of the map 3. First, we consider node

deformations, which we studied in Lemma 9.2.2. For p, = CyNC1, the lemma tells

us to look at ToCo®Ty, C1. Since Cp 2 P! equivariantly and L,.; is defined using the

cotangent bundle of C,, the weights are % and —c$(L,,1). This explains the factor

of i—c§(L,,1) in the denominator in (11.16), and deforming p; = CoNC; similarly

leads to the factor of —k — ¢ (L4—r1) in the other denominator.! Finally, we study

the deformations of f|c,. We know Cp = P!, and the definitions of M(r,d —r) and

1 show that such f’s take 0 and oo to (0, ¢) and (0o, g) respectively, for some q € P".

We can deform this map by allowing the first coordinates of (0,g¢) and (o0, g) to

vary. We identify these normal deformations to the infinitesimal automorphisms of

P* modulo those preserving 0 and oo. Using standard coordinates (zo, 21) on P,
this is given by the vector fields 200/8z, and 2,8/8zp, which gives a factor of —h2.

Since this appears in the denominator, we get the factor of ~A~2 in (11.16).

The final ingredient in using the localization formula is to identify the restriction

of ¢*(¢:r)XY = ¢ (¢:r)n" (Eulerg(Va)) to Fr x Fy_,. Since @(F, x Fy—) = pi,r,

the restriction of ¢*(¢;,-) is 45, (#:,), which is one of the factors in (11.16). As for

IThis is related to Lemma 10.2.8 and explains the i — ¢ in formulas such as (10.15).



342 1i. THE MIRROR THEOREM

the restriction of 7*(Eulerg(Va)), the gluing lemma (Lemma 11.1.2) implies that
on F,. x Fy_,, we get the identity

Eulerc(V)Eulerc(Vd) = Eulerc(Vr)Eulerc(Vd_,.),

where we have omitted the pullbacks for convenience. Since Eulerg(V) = £p, we

see that the restriction of xY to F, x Fy_, is

(fp) " 'niEulerg(V,) mjEulerg (Va-,).

These factors appear in the numerator in the localization formula and complete our

explanation of (11.16).

Performing a similar analysis for 7 = 0 leads to the formula

(1117) Qu(h) = —A7%, (dpo) 3 / n{Eulerc (Va)
AFa)g @aBulerg(N (Fy))(=hA — ¢f (La4,1))

We can now prove the theorem. If we consider the above formula with d
replaced by r and apply (11.12), we obtain

= e 7 Eulerg (V;)Qr(/\i) =Fh pi0 (¢P-’,o) ; /(‘F.r)c; a,Eulerc(JlV(F,.))(h — C?(tr,l)y

and furthermore, (11.17) with d replaced with d — r gives

A Y T waulerc(Vd_,.)Qd-—f(/\’l) =-h zp,_o (¢m.o ) Fdz-r »[F e a.i_rEulerc(N(Fd_,.))(—h — C?(Ld_r'l)) .

If we multiply these two equations and compare the result with ¢p multiplied by
(11.16), we see that our desired equation (11.13) reduces to the identity

t o (B6r) [T = M) = 5., (Bp00) 15,0 (Bp1.0)-
J#E

However, recall from (11.5) that i (@p:.) is just Eulerg(N; ), which was com-

puted in (11.4). Hence the above identity reduces to

II Gi-x+(-9n =2 =
(o)) e

II e-x-sm) TT u=n+sm),
(5:4)#(,0) G2)#(.0)

where on the left hand side, j ranges from 0 to d, while on the right hand side, j
ranges from 0 to d — r in the first product and 0 to = in the second. This identity

is easily verified, which completes the proof when r £ 0, d.

Since the Euler identity is trivial when r = 0 (see the discussion following
Definition 11.1.3), we only have to consider r = d. Here, one derives a formula for
Qa(A, + dh) similar to the formula for Qa()i) given in (11.17), and comparing these
formulas easily gives the desired identity. Details can be found in LrYy} O

11.1.4. Linked Euler Data. We now turn to an important concept. Let &

be the set of sequences P = {F,;}3 | with P; € ReHE(Ng) for all d, and note that
5., Maps RgHE(Ng) to Re.
P0

DEFINITION 11.1.5. Two sequences P,Q € S are linked if iy (Pa—Qq) € Re

vanishes at h= (\; — \;)/d for all i # 4, d > 0.
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To make this definition precise, we need to explain what i = (Ai—A;)/d means.
Define the subgroup G’ C G by

G = {(t,to,... ,ta) 1 t¥ = t;/t;}.

The inclusion G’ — G induces a map BG' — BG, which in turn induces a pullback
on cohomology res;; : H*(BG) — H*(BG'). It is easy to see from our discussion
in Section 9.1.1 that res;; is induced by restriction of characters. This implies
res;; (%) = res;;{(M — A;)/d), which we sometimes abbreviate more simply as k =
(A — A;)/d, understanding that we are interpreting these symbols as living in G'-
equivariant cohomology. Similarly, if a space X has a G-action, we get a restriction
map res;; : H5(X) — Hg (X). Then we get the composition

- i;i.o * resi; -(11.18) Hg(Ng) = He(pio) — He (pio),
and the condition of Definition 11.1.5 means that after tensoring with R, we have
resi; oty (Ps—Qq4) =0foralls £ 4, d. For later purposes, we note that the above
composition equals

* resi; * i;e,u *(1119) HG(Nd) ‘—""HG'(Nd) _’HG'(pi,O):

so that being linked also means that G50 O T€84;( Py — Qg) =0 for all i # j, d after
tensoring with R¢.

The subgroup G’ is of interest because it fixes the space of multiple covers of
the line g;g; C PTM. Consider the line L;; C Ny given parametrically by

Lij ={(0,...,0,aw,0,...,0,bw?,0,...,0)},

where a wg is in the j** position and bw? is in the i} position. Note that pio € Li;,
corresponding to a = 0. A general point of L, ; is the image under @ of a degree d
multiple cover of the line #%g; C PTM. The subgroup &' fixes L; ; pointwise, which
implies Hg (L ;) = H*(L; ;) ® H*(BG'). It follows that if u € L; ; is any point,
the restriction map

He (Liy) — H (u)
is independent of u. Thus the maps in the diagram

resiy

H&(Ng) — H&(Ng) — HE(Liy)

T~ i
S Ha ()

are also independent of u. Since (11.19) is the special case when u = Pio, We see
that in the “restriction” map i O T€S;; in the discussion following (11.19), we can
replace p; o by any point u € L;;. Hence P and Q) are linked if and only if they
agree on multiple covers of coordinate lines in P".

We now state a key result.

THEOREM 11.1.6. At h= (\; — A;)/d, i # j, we have

e
A (A = Ay)ip o (Qa) = ml=|0 (e/\i —me—).

In particular, the Euler data P and Q are linked.
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PROOF. We first recall that

©

By= H (¢x — mh).
m=0

By (11.18), we can think of & = (\; — );)/d in terms of the composition res;; ody, .
Then res;; o 43, (k) = (X\; — A;)/d, and Section 11.1.2 implies 15, o(%) = A;. Hence

4d

resi; o in o(Po) = [] (e,\,» -mfi’\’;—’\fl)),
m=0

and the final part of the theorem will follow once we compute res;; o ipo (Qa).

We proved above that the restriction of Qd can also be represented as the
composition 7}, o res;; (Qq) for any u € L; ;. In particular, we can choose

u=(0,...,0,wf,0,...,0,wf,0,...,0) € L;; C Ny,

where w¢ and w are in the j*b and ith positions respectively.
The strategy of the proof is that since Q4 = ¢ (xY), we can do the calculation

on M;. For u as above, consider the map f : P! — P! x P"* be defined by

flwo, wr) = ((wy,wo), (0,...,0,wg,0,...,0,wd,0,... ,0)).

This is an element of My, and we clearly have ©(f) = u. The key fact is that the
map ¢ : Mg — Ny is a local isomorphism in a neighborhood of these points. Now
consider the commutative diagram:

res;;

Hx(My) =% Hgp(Mg) - Hz(f)
e | wr | @ |

H3(Na) =% H&(No) = H(u)
Since the vertical map on the right is an isomorphism, it follows that it suffices to
compute i} o res;; (xy). ‘

Recall that x} is the equivariant Euler class of n*Va, so that over f, we need
to compute the weights of the G'-action on HO(P!, f*Op= (£)). A basis for these
sections is given by wZ'w!*~TM for 0 < m < ¢d. Since f has degree d, we see that
wo has weight A;/d while w; has weight \;/d. This is similar to what happened in

Chapter 9 in the discussion following (9.20). Thus the section wTwi*TMTM has weight

m(d>+(£d—m)d--Z/\z m( p >

Multiplying these weights together gives the desired formula for (N (Qa) at & =
(/\,‘ - /\J) / d. O

We also need a uniqueness result.

THEOREM 11.1.7. Suppose that P,Q are linked Q- Euler data with the property
that degy iy (Pa—~Qg) S (n+1)d—2 forall0<i<nandd>1. Then P =Q.

PROOF. We will give only a brief sketch of the proof. A complete argument
requires the Reciprocity Lemma [LLY, Lemma 2.4], which studies the consequences
of being Euler data. The proof begins by noting that {x°} = {1, &, k2, . .. } generates
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Hg(Ng) as an H*(BG) module. Since the intersection pairing is nondegenerate, it
suffices to show that

(11.20) / & (Pi—Qq) =0 foralls>0.
(Nd)e

Let L, denote the integral on the left hand side of the equation. The definition of
Euler data implies that P; and @4 depend polynomially on A, which implies that
L, is a polynomial in k. This will be important below.

The proof is by induction on d, so that we assume Pi=Q;for0<j<d~-1
(recall that Py = Qo = ). If we compute L, by localization (Corollary 9.1.3),
we get a sum over the fixed points p; . Since P is an Euler data, we can express

i;.»,r(Pd) in terms of P;,...,Py_; when 0 < r < d, and the same is true for Q.
By our induction hypothesis, it follows that only the terms with r = 0,d can
contribute to the integral of (11.20). Using [LLY, Lemma 2.4], one can show that
the localization formula for L, reduces to

(11.21) =% (/\f;li;(fi) R Elf)}:)‘ji(-h)>’

=0

where

“(11.22) Ai(R) (=1)¢ b, o (P — Qa)
A s (M = A9) TTs T, (M = (A5 + sB))

The denominator is explained in part by the formula

EulerG(Npe.o) = i;i‘o (¢Pi,0) = H (’\i - (’\j + Sfi)) .
(4,8)#(1,0)

The formulas (11.21) and (11.22) have % in both numerator and denominator.
But P, Q are linked, so that ip, o (Pa~ Qq) vanishes at i = (A; — A;)/d for all § £ i.
The factor A; —(X; +dh) in the denominator also vanishes at k= (\; — A;)/d, hence
cancels with a factor in i5.0(Fa — Qu). Furthermore, using [LLY, Lemma 2.4] and
the induction hypothesis, one can show that the other factors containing £ in the
denominator also cancel in (11.22). This shows that 4; is a polynomial in A. Then
(11.22) and the degree bound given in the statement of the theorem imply that

degpA; < (n+1)d—2-nd=d—-2.

Since L, is a polynomial in A for all s, (11.21) implies that A% must divide

(11.23) D (AR + (1) + dh)* Ai(—R)).
=0

We can now show A; = 0 for all i. Otherwise, let 7 be the minimum degree in
% of the nonzero terms of the A;, and write

A =a:ATM +0FTM ... a; %0 for some .

The degree bound on A; implies m 41 < d, so that the coefficients of ATM, ATM+! in
(11.23) must vanish. If d +m is even, the vanishing of the coefficient of ATM implies

i 2/\;-90.,‘ = 0,
=0
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from which we conclude a; = 0 for all 4, a contradiction. When d + m is odd, one
uses the coefficient of ATM*! in a similar way. ]

11.1.5. Hypergeometric Functions and Mirror Transformations. We
begin with some formal functions which take values in equivariant cohomology. Let
So denote the set of sequences B = {By}%, such that By € RcHE(P?) for all d,

We now associate a formal function to any B & S,. This is a generalization of
hypergeometric functions.

DEFINITION 11.1.8. For B = {Bi} € Sp and Q € Ry HE(PTM) invertible, we
define

/R oo Bdcdt

HGBl(t) =e P/ Q + — )
a=1 [0 [Toesr (P = Ak — mb)

where p € Hg(PTM) is the equivariant hyperplane class of PTM.

If we take the nonequivariant limit \; — 0, we get the formal expression

) B odtlim HGIBI(1) = e—Ht/li (Q + Bde >’ o

w2 HEBID 2 o TmnE )
where H € H?(P") is the usual hyperplane class and B = limy, .o By. This
is a formal function in Hg.(P") tensored with C(k). Since C* acts trivially on
P, we get a formal function in H*(P*) ® C(h), where A is now just a parameter.
We've seen formal functions of this sort in earlier chapters—Givental’s J-function
for X = P" from Chapter 10 is an obvious example. Furthermore, we will see below
in Section 11.1.7 that the formal functions HG[B)(t) play a key role in the proof
of the Mirror Theorem for the quintic threefold.

Our next task is to relate the HG[B](t) to the Euler data we've been studying.
Given 2 € RrHc(P*) invertible as in Definition 11.1.8, we let A9 denote the
set of all Q-Euler data. We also have A% ¢ S, where S is the set of sequences
Q = {Qa}3, such that Qy € RgH%(Ny) for all d > 1.

It’s not obvious that & has anything to do with So—for the latter, the entire
sequence lies in RgHE(PTM), while for the former, each term lies in the equivariant
cohomology of a different space. Fortunately, there is a natural way to get from S
to Sp. We have for each d the G-equivariant map defined by

(11.24) Ij:P* = N, (ag, ... ,an) = (aowd,. .. ,a,w?).

Notice that I, takes the fixed point ¢; € P* to the fixed point p; o € Nyg. Then we
define the map T : § — Sy by Z(P)y = I3(Fy).

Using Z, any (2-Euler data Q gives Z(Q) € S, which in turn determines the
formal hypergeometric function HG[Z(Q)](t). Let’s work this out in a familiar
example.

Example 11.1.5.1. For Q = £p, we have the £p Euler data P defined in (11.9). To
compute I(P), we first note that I’} (k) = p, where x € HE(Ny) and p € H:(PTM) are
the equivariant hyperplane classes. This follows immediately since I : P* — Ny is
an equivariant embedding of projective spaces.

Then, using the definition (11.9) of P, we obtain

4d 4d

I3(By) = I,;( IT (e - mh)) = T (to — mh).
m=0 m=0
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From this, we get the formal function

11.25 HGIT(P)(t) = e~PH/R — quo(ép mhk) it
(11.25) Z(P)(®) - sy

which coincides (up to the sign of i) with the function I, which was considered

previously in [Givental2] to describe the quantum cohomology of degree ¢ hyper-

surfaces in P*. In Section 11.1.7, we will see that when V = Op(5), the nonequivari-

ant limit limy, .o HG[Z(P)](t) gives the solutions yo, ¥1,Y2, y3 of the Picard-Fuchs

equation of the quintic mirror which we studied in Section 6.3.4.

)

Besides P, the other important {p-Euler data is @ from Theorem 11.1.4. Here,
we get the formal function

_ e;pt/h I5(Qq)e
Gl = (“+Z T

We can compute [7}(Q4) as follows.

LEMMa 11.1.9. Let ¢¢ = [[7_ [Ih_1(p — A — mh) € HE(PTM) denote the

denominator of the coefficient of e in HG[Z(Q)|(t). Then:

(2) If 1 and ey are as in (11.7) and L4 is as in the proof of Theorem 11.1.4,

then

I;(Qd) _ ¢d 81!( 1rfEulerc(Vd) >

A(h+cC(La1))

(i5) degn I5(Qq) < (n+1)d - 2.

Proor. We will prove part (i) by showing that for each i = 0,... ,n, both

sides have equal localizations at ¢;. For the left hand side, we have I4(g;) = p; 0, s0

that

Z Id(Qd) pio(Qd) Qd(Ai)~

If we combine this with (11.17), we obtain

w1 Eulerg(Vy)17 13(Qa) = 17, , (dp.0) Z/Fd)cadEulerG N(Fa))(R(R+cf (La1)))
However, if we let ¢q, = [[,.;(p — A;) as in (9.9), then (11.4) and the definition of

¢? easily imply

i;«,o (¢P«.0) = i;,- (¢Qi) i;‘ (d’d)w

so that the above formula becomes

w}Bulerg(Va)
(11 26) ’l- Id(Qd) = lq;(‘bq. q‘((bd Z/Fd)a adElflerG(N(Fd))(fi(fi+ch(,Cd'l))).

Turning our attention to the right hand side, we let

d_ leulerc(Vd)

B(h+ G (Lay))’
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so that we need to compute the localization of ¢%eyi(cy) at g;. We do this by

adapting (11.14) to P*, which gives

ig, (¢%en(aq)) =/(p-) ¢, 8% en(@a) =/(;_ e (¢q.6%) aa.
Mo, (P d))e

However, if we compute the integral on the right using localization, the factor of

¢, implies that we need only consider components of the fixed point set which

map to g; under e;. These are precisely the components {Fy} used in the proof of

Theorem 11.1.4, and then the localization formula, applied to this integral, leads

immediately to the right hand side of (11.26). This proves part (i).

For part (i) of the lemma, we know that Qg and hence I’5(Qq) are polynomials

in £, since Q is an Euler data. However, the definition of ¢¢ shows that degy ¢ =
(n + 1)d. Then the desired degree bound on I;(Qd) follows from part (7). O

Notice that the bound for degy I} (Qd) proved in the second part of the lemma
is precisely the degree bound needed for the uniqueness theorem (Theorem 11.1.7).

Our eventual goal is to relate HG[Z(P)](t) and HG[Z(Q))(t) in the case of the

quintic threefold. But neither these functions nor the Euler data P and O are equal.

So we need a method for transforming from one Euler data to another. This leads

to the following definition.

DEFINITION 11.1.10. An invertible map u : A? — A? is called a mirror trans-

formation if u(P) is linked to P for all P € A®.

As we will soon see, the mirror map discussed in Section 11.1.1 can be described
as a mirror transformation in the sense of this definition.

Our goal here is to construct a special class of mirror transformations x with

the property that we can easily relate HG|Z(P)}(t) and HG[Z(u(P))}(t). We begin

by considering some elementary transformations of the hypergeometric functions

HG[B](¢).

LEMMA 11.1.11. Given any B € Sy, and any f,g € e'Rr([e']], then there exists

a unigue B € Sy such that

e/ '"HG(B)(t + g) = HG[B](z).

PROOF. This is a straightforward formal power series calculation [LLY]. O

Using this lemma, we can now describe the-class of mirror transformations we

are interested in.

PROPOSITION 11.1.12. Given f,g € e'Rrle?]], there is a mirror transforma-

tion p: A% — A9 with the property that

J/"HGIZ(P)|(t + 9) = HG[Z(u(P)))(t).
for all Euvler data P € A%,

PROOF. Given f,g, the map B — B from Lemma 11.1.11 defines a transfor-
mation pg : So — Sp. In this notation, the previous lemma implies that

e//"HG(B](t + 9) = HG[uo(B)|(2)
for any B € Sp. To prove the proposition, it suffices to show that pqo lifts to a

mirror transformation u such that Z(u(P)) = po(Z(P)).
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Recall that Z: § — S is defined by Z(P)q = I(Py), for I; as in (11.24). To
define u, we need to construct a map going the other way, which we do as follows.
The isomorphism given by Proposition 9.1.2 for N; can be written in the form

i, .
RGHE(Na) = (Rg)V0°,

where (N4)® as usual denotes the G-fixed point set. This implies that in order
to specify an element w € ReHg(Ny), we merely need to specify its restrictions

iz, (w) for all 4,7. Accordingly, we define £ : Sp — S uniquely by the conditions

(11.27) ip, (L(B)a) = (i, () ~"45,(By) if,(Ba-r), 0<i<n, 0<r<dPi.r

for any B € Sy. In these equations, By = Q.

The map £ has some nice properties. First, we have Zo £ = ids,. To see this,
note that I4(g:) = pip and (11.27) for r = 0 imply

iq. (Z(L(B))a) = i, (13(L(B)a))

=1, (L(B)a) = (i5,(Q)) 4z, (Bo) ig, (Ba) = i, (Ba),

where the last equality follows since By = € RrH:(P"). By localization in

RrHE(PTM), it follows that I(L£(B)) = B. A second nice property of £ is that for

any B € Sp, £(B) satisfies the Euler identity in Definition 11.1.3, so if £(B)4 €
"Ry HE(Ng) for all d, then £(B) is an Euler data. Finally, it is also immediate from
the definition of £ that if @ € A? C S, then Q = L o Z(Q).

Now that we have £: S - Sand T: S — Sy, the map pg : Sy — Sp extends

topu=LopgoZ:S8 — S In the language of [LLY], p is the Lagrange lift of

po. When 4 is defined this way, note that Z o u = y o T follows immediately from

I oL = idg,. Hence it remains to show that u is a mirror transformation. Given

P & A%, the condition that P and u(P) are linked (i.e., that ir (Pa— u(P)a)
vanishes at ki = (A; — A;)/d) follows immediately from the explicit power series
computation used to establish Lemma 11.1.11. Finally, we need to prove that u(P)

is an Q-Euler data. The previous paragraph shows that u(P) automatically satisfies

the Eulerity condition, so that the final step is to show u(P), € RrHL(Ng). Here,

we refer the reader to [LLY, Lemma 2.15] for the proof. o

We now have almost everything we need to prove the Mirror Theorem. But

before beginning the proof, we should explain how Sections 11.1.3, 11.1.4 and 11.1.5

relate to [LLY]. The bundle Op~(£) we've been using is a special case of a con-

vez bundle, which is T-equivariant bundle V such that Eulery(V) is invertible in

RrHE(PTM) and H'(C, f*V) = 0 for every 0-pointed genus 0 stable map f : C — PTM.

Other examples of convex bundles are V = ®;0pn (£;), £, > 0. Similarly, [LLY] de-

fines a bundle V to be concave if the above conditions hold, except that we now

require H%(C, f*V) = 0 for every O-pointed genus 0 stable map f. Finally, a direct
sum of a convex bundle and a concave bundle is called concaver.

Given a concavex bundle V on P*, we define bundles V; on M o(P", d) as

follows. When V is convex, we use the formula Vi = mi.e}(V), just as in the

discussion following (11.7). For a concave bundle, however, we set V; = Rlm.e5(V).

Finally, if V is concavex, V; is the direct sum of these constructions applied to the

convex and concave parts of V.

Finally, suppose that V is a concavex bundle of the form ®;Opn (&), & # 0.

Using the V;, we define Q4 by (11.8), just as before. Furthermore, we can also
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generalize (11.9) and define

td —t:d—1

(11.28) B= H H (€ix — mh) x H H (€ + mh).
£,>0m=0 £;<0 m=1

The important point is that the results we proved for Q and P when V = Opn (£)
remain valid when V = @;0pn (£;)—see [LLY] for the details.

11.1.6. Critical Bundles. Before we can prove the Mirror Theorem for the

quintic threefold V C P*, we need to explain how the Gromov-Witten invariants

Ky = (Ipgq) of V relate to what we've been doing so far. In Theorem 11.1.13, we

will show that the K appear naturally in the hypergeometric function HG[Z(Q))(t)
for the bundle ¥V = Ops(5). We will also discuss a subclass of concavex bundles

(the critical bundles) which satisfy a modified version of this theorem.

Recall from Section 11.1.1 that the Gromov-Witten invariants Ky of V are

given by

Kg= / Buler(Vy).
Mo,0(P4,d)

In terms of the K, the Gromov-Witten potential @ of the quintic threefold is

written

58 =— K dt.d 3 +§ d€

Then we have the following result.

THEOREM 11.1.13. Let V = Opa(5) and define Qa as in (11.8). Then, in the
nonegquivariant limit \; — 0, we have

. - H & H®* & 20 H°

B
where H is the hyperplane class in H*(P*).

PRoOF. Since @ is an Euler data for = 5p, the nonequivariant limit of
Definition 11.1.8 gives

i AN1(2) = e—Ht/h o~ limy 0 13(Qa) gi HGI(@)(0) = e~ (s + 3 et ).
m=1

Now take the coefficient of e* in this expression and write it in terms of the basis

1.H,... H* of H*(P*):

o~ Hi/h hzn,\,—-oId(Qd) = Ao+ A H + AgH? + AsH® + AgH*.

Hm:l(H - mfi)5

We can determine the A; by multiplying this equation by H* and integrating over

P4, This gives

Ay = / er_H‘/h_liInA‘—_'O[;_((_?_d_)___
P [12_, (B — mh)
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We will leave it to the reader to check that the theorem is now a consequence of
the following formulas:

A2 ~dt)Ky k=0

(11.29) [ HEemH hm*'“" Lm0 Z3(Qa) h2dK, k=1
(H — mh)s

=1 0 k> 1

The case k = 0 of (11.29) appeared explicitly in {LLY], and the cases k > 1 are
implicit in [LLY].

To prove (11.29), we use the formula for I;(Qd) given in Lemma 11.1.9. Taking
the nonequivariant limit of this as A\; — 0, we obtain

‘ . 
d 

w1 Euler(V,

If we insert this into the integral on the left hand side of (11.29), we see that the
integral simplifies to

- 1Euler(V;)HEe—Ht/R, Y

/,u el'(fz(fi+c1(£d1)))
_ tEuler(V,)- - ch el Ht/h_T1

(11.30) /fio.l(P‘,d) A(h+c1{La,1))
—eiHt/h

= Euler(Vy) 11 (e ———'—)/Kl'o.o(P‘,d) (Va)mul e A(A + c1(La,1))
Since Euler(Vy) has top degree, this integral is just K4 times the degree 0 component

of the second factor in the integrand. Since m; has relative dimension 1, this is seen

to be the degree of

(A3 (—efHt - c1(L4,1))) k=0

kst (h‘ze'{H)

0

which simplifies to

k =

k>1,

A3(—dt+2) k=0

E2d

0

k=1

k>1

by integration over a fiber of m;. This establishes (11.29), and theorem is proved.

|

This theorem is actually valid in a more general context. An examination of

the proof shows that a key step is the argument following (11.30), where we use

the fact that Euler(V,) has top degree on My o(P?*, d). This leads to the following

definition.

DEFINITION 11.1.14. A concaver bundle V on PTM is called critical if the induced

bundle V4 on M o(P”, d) has rank equal to (n + 1)d +n — 3 = dim Mo o(P"®, d) for

alld > 0.
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When V is critical, Euler(V,) is a top degree class on Mo,0(P?,d), so that we

can define

Kd = / Euler(vd).
fio‘o(n’",d)

generalizing what we did for the quintic threefold. In this situation, Lemma 11.1.9

still applies since V is concavex, and the argument of Theorem 11.1.13 also applies

since V is critical. Hence we have proved that

A-3(2—dt)Ks k=0

(11.31) . / H*e—H/R }ilm,\,-_.o 3(Qa) _ A2d K, k=1

P Hm:l (H - mfi‘)n+1 k>1

See[LLY] for the details. We will see below that this has interesting applications.

In Section 11.1.3, we considered bundles of the form ¥V = Opn(£). The reader

can easily check that V = Op«(5) is the only critical bundle of this type. How-

ever, when V = @;Op~(£;), there are other critical bundles of interest. Here is a

particularly relevant example.

Example 11.1.6.1. Consider the concave bundle on P! given by

V = Op1(-1) ® Opr (1)

Here, V; is defined by

Va = Rimy.el (Op(~1) @ Op (—1)),

and for f € Mo 0(P?,d), one easily checks that

rank V; = dim HY(P*, f*Op: (1) & f*Op: (—1)) = 2d — 2 = dim Mg o(P*, d).

It follows that V is critical. Then (11.31) shows that the nonequivariant limit of

HGIZ(Q)](?) involves '

K= / Euler(Rlmy.€} (Op (=1) & Opr (=1))).
Mo,o(P!,d)

This is ezactly the integral computed in Theorem 9.2.3, which computed the mul-

tiple cover contributions of rigidly embedded smooth rational curves in Calabi-Yau

threefolds. We will soon apply the methods of [LLY] to give a second proof of this

theorem.

We should also mention that [LLY] contains a complete list of all critical bun-

dles on PTM which are direct sums of line bundles.

11.1.7. Proof of Theorem 11.1.1. It is now time to prove the Mirror The-

orem for the quintic threefold. For the rest of the section, we will assume that

V = Ops(5), and we will use P and Q as defined in Section 11.1.3. The key step

in the proof will be to comstruct two mirror transformations y and v such that

u(P) = v(Q). This will imply a relation between the hypergeometric functions

HGZ(P))(t) and HGI()](t), which in the nonequivariant limit A; — 0 will give
the desired result.
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In order to construct the desired mirror transformations, we first need to look

at HG[Z(P)](t) more closely. If we take the nonequivariant limit A; — 0 of (11.25),

we get 
-

. - — ,—Ht - Hf:: (SH_mh:)lim HGI(P)(t) = /MY =t oo se
(11.32) d=0 1lm=1

_ H H? H3
=5H yo—'yl—,l-+y272§'—y372§' -

These are the functions yg, y1, ¥z, y3 discussed in Section 11.1.1. They appear in

the mirror map ¥(t) = y;1/y¢ and also in the statement of Theorem 11.1.1.

‘We now construct mirror transformations 4 and v by using Proposition 11.1.12

twice. For u, we let

(1133) fi = —(ogu)i+ 223 A € eRrflel], =i<5dfl(i1)edt. 1 0 % k T 3 2 (d!)5 s

m
k=0 d=]1 m==1}

and g; = 0, and then Proposition 11.1.12 gives a mirror transformation u such that

(11.34) el P HGIT(P)(t) = HGZ(u(P)](t).

For our second mirror transformation, let fo = 0 and g» = ¥(z) —~ t € e'R[fe']], -

.where ¥ () = y; /yo is the mirror map. Applying the proposition a second time, we

obtain a mirror transformation v such that

(11.35) HEIZW@Q)I(E) = HGIZ(Q)(¥(1)).

We can relate the mirror transforms u(P) and v(Q) as follows.

THEOREM 11.1.15. u(P) = »(Q).

ProoF. We will follow [LLY]. We know that P, are linked Euler data by
Theorem 11.1.6. Furthermore, since x4 and v are mirror transformations, the pairs

P, u(P) and @, v(Q) are also linked. By transitivity, we conclude that uw(P), v(Q)
are linked Euler data. Thus, the theorem will follow from Theorem 11.1.7 once we

prove the degree bound

degy, i3, o (4(P)a ~ 1(Q)a) < 5d — 2.

Since iy, , = I3 0 iy, it suffices to show that

Id(:u'(P)d - V(Q)d) = (0 mod h:~2_
d

H:=0 Hm:l(p — Ak — mh)
However, by Definition 11.1.8, this is equivalent to

HGI@(@Q)I(t) = HGIZ(WP))|(¢) mod A7,

and then, using (11.34) and (11.35), we are reduced to proving

(11.36) eNMHGIZ(P)(t) = HCIZ(Q)](¥(t)) mod A2,

To prove this, we first expand HG[Z(P)](t) in powers of A~! to obtain

HGI(P)|(t) = Sp(yo ~ o + b E o M) + O(fi"")).

Then (11.33) and some algebra show that

eNMHGIZ(P)|(t) = 5p — frlsfiz—; +O(A72).
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Turning our attention to the right hand side of (11.36), we first observe that

degy, [;(Q4) < 5d — 2 by part (if) of Lemma 11.1.9. Then Definition 11.1.8 im-
plies

e"P/*(5p + O(KTM%))

=5p — A 15p%t + O(K2).

HGIZ(Q)]()

Since ¥ = y; /yo, we see that

HGIZ(Q)(¥() = 5p ~ A5 - + O(nTM2).
]

From here, the desired equation (11.36) follows immediately by comparing the above

expressions for e/*/"HG[Z(P)](t) and HGIZ(Q)](¥(t)). The completes the proof
of the theorem. 0

Note that the expansions of HG[Z(P)](t) and HG[Z(Q)](t) given in the above
proof explain how the mirror transformations 1 and v were chosen: the basic idea

was to make sure that the congruence (11.36) was satisfied.

COROLLARY 11.1.16. In the nonequivariant kmit A; — 0, we have

. - 1 . N
Jm HGZ(Q)N(¥(t)) = — lim HGI(P))(2).
i Yo 2i—0

ProoF. If we combine Theorem 11.1.15 with (11.34) and (11.35) and take the
nonequivariant limit, we obtain

dim HGIZ(Q)(¥ (1) = lim e/ "HGI(P)|(¢).

However, we know from (11.33) that f; = —(logyo)h + hs Z:=o Ak. This implies
limy, g e/2/% = 1/y,, and the corollary follows. a

It is now easy to prove Theorem 11.1.1. By Theorem 11.1.13, we have

}i{lgOHG[I(Q)](‘I’(t)) =

H o(¥() H2 B()®'((t) — 28(¥(t)) H35H(l—‘11(t)—h-+ B2 # He) - 25 ())F)’

and by (11.32), we also have

2

Jim HGIEP)() = 57 (s - s + 200y ~ a2y ).
Combining these equations with Corollary 11.1.16 gives

(1) H? _ $()@'(¥(t)) ~ 28(¥(2)) H_s)
5 h2 5 h3

_nH pH &H_S) _
yoh wh yh

Equating coefficients, an easy calculation yields

5

s -3 (55 5).
This completes the proof of the Mirror Theorem for the quintic threefold.

5H (1 - \Il(t)% + 2

=56H (l
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The proof just given is really nice, but it gets even better when we realize that
the work done in earlier in the section gives other significant results without much
more effort. Several examples of this sort appear in (LLY], but we will give only
one which is relevant to our purposes.

Example 11.1.7.1. As in Example 11.1.6.1, consider V = Op1(—1) & Op (~1).
By (11.31), we know that

(11.37) / e-’“/”M = 5*3(2 —dHK,,
P [T5=1(H — mh)?

where

Ki= /__ Euler(R'm1.e5(Opi (1) & Opu (~1)).
Mg, o(P!,d)

We can compute K as follows. YVe know that £ and Q are linked Euler data,
and Lemma 11.1.9 implies deg, I5(Q,) < 2d — 2. However, in this case (11.28)
shows that

d—1 d-1

Py=T] (= +mn)? = I1 (s = mm)2.
- m=1 m=1

Thus 73(£,) = T4, (p — mh)2, which also has degree < 2d — 2. It follows that the
degree condition of Theorem 11.1.7 is satisfied in this case, so that P = Q. Thus

/e‘m/" lim), —o 13(Qu4) =/ e~ Ht/N limy, .o I3(B))

P Hjn:l (H — mh)? P

_ / o~ He/n [y (B — mh)?
P 1%, .(H — mh)

m=

=/ emHtm L
o (H—dn)?

=832 -dt)d3,

where the last equality uses H2 = 0 in H*(P'). Comparing this to (11.37) implies
Ky = d~3, which completes our second proof of Theorem 9.2.3.

This example shows that we need to broaden our idea of what a “Mirror The-
orem” is, for the same ideas and techniques which lead to mirror symmetry for the
quintic threefold simultaneously lead to other interesting results. The paper [LLY]
represents an important step towards understanding the larger context of mirror
symmetry.

We will see in the next section that compared to [LLY], Giventals approach
to the Mirror Theorem has a parallel but different structure. He considers two
cohomology-valued formal functions Iy (11.38) and Jy, (11.52), then changes vari-
ables so that a uniqueness theorem applies. See Theorem 11.2.2 and {Givental2].
His method will be illustrated for the quintic threefold in Example 11.2.1.3, and
further comments comparing the two approaches will be made near the end of
Section 11.2.4.
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11.2. Givental’s Approach

In this section, we explain Givental’s formulation of the Mirror Theorem for
complete mtersections in projective spaces (Theorem 11.2.2). The technique in-
volves the construction of formal cohomology-valued functions Iy and Jy, where
Jy is a variant of the function J discussed in Section 10.3. The Mirror Theorem is
then the assertion that Iy, = Jy, after a change of variables.

The approach taken in [Givental2] is explained in more detail in [BDPP,
Pandharipande3], which can also serve as useful references for this section. The
case of the quintic is discussed in [Givental6]. We will sketch a slightly different
proof of Givental’s theorem for nef complete intersections in P*, combining ideas
appearing in {Givental2, Giventald, Kim2, Pandharipande3], to which we
refer the reader. Some of the needed ideas introduced in [Givental2] have al-
ready been explained in Chapters 9 and 10. We will also discuss toric complete
intersections and give some illustrative examples.

11.2.1. The Mirror Theorem for Nef Complete Intersections in P,
We consider a smooth complete intersection X C PTM of ¢ hypersurfaces of degrees
a1,...,0.. We put ¥V = @, Op=(a;), so that X is defined by the vanishing of a
global section of V. We will also assume that the anticanonical class of X is nef,
which in this context is equivalent to Zf-=1 a; <n+l.

Our first goal is to give a careful statement of Theorem 11.2.2, which relates
the two cohomology-valued formal functions Iy, and Jy, defined below. Of these two
functions, Iy is the more elementary. Following [Givental2, Kim?2}, we define

IV = IV(tO,tlyfi‘—l)
o0 £ aid(1138) = e(to+t1H)/h Euler(V) Z edh Hi:,lj Hm:l (a'iH + mfi')

=0 Tr=1 (H + mA)n+1
where H € H?(P") is the hyperplane class. The notation Iy(to, t1, A1) indicates
that we will sometimes think of Jy in terms of its expansion as a formal series in
powers of A~1. If X = P*, so that V is trivial, then I, will be denoted as Ipn.

The formal function Jy, on the other hand, is more complicated to define. In
Chapter 10, we studied the Givental function J = Jx. If dim X > 3, then H2(X )
is generated by i*H, and then Lemma 10.3.3 gives two formulas for Jyx:

J =e(to+hi'H)/h 1+ o edt; -—TL,I Ta
X ( ;; <h—c >0,d )

= elto+t1i”H)/h (1 + ZethD—leh (_fii_c n [MOQ(X, d)]virt)) )
d=1

Here, T, is a cohomology basis of H*(X), T is the dual basis, PD is Poincaré
duality, e; : Mg (X, @) — X is the evaluation map, and

(11.39)

T o

11.40 e > =S A D(n T 1( ) <f2—c’1 0.0 LE—: (eTa, 1)o.a

is the symbolic notation for gravitational correlators used in Chapter 10. Previously,
we wrote the Givental function simply as J, but since we need to distinguish between
X and P, we will now write it as Jx. The function J x plays a central role in the
theory of quantum differential equations (see Theorem 10.3.1).
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Notice that we can't directly compare [y and Jx since one takes values in

H*(PTM) while the other take values in H*(X). For this reason, we will introduce a

variant of Jy, which takes values in H*(PTM). Then Givental’s theorem will explain

how Iy and Jy are related when X is nef.

Our strategy for explaining the theorem will be as follows. We will begin with

the case V = 0, for here, Givental’s theorem is the simple assertion that Ipn = Jpn

(see Proposition 11.2.1 below). Then we will define Jy, for general bundles on P*

and state Givental’s Mirror Theorem (Theorem 11.2.2). Proofs will be deferred

until Sections 11.2.3 and 11.2.4. We will also explain how Jy relates to Jx and

show that Theorem 11.2.2 implies mirror symmetry for the quintic threefold.

At this point, we can make contact with the approach of [LLY]. Givental’s

function Iy reduces for ty = 0 to the nonequivariant limit limy, .o HG[Z(P)}(t1) in

the notation of [LLY], up to a change of sign in A. In comparing calculations in

this section with corresponding calculations in [LLY], we will no longer mention

this difference in sign explicitly. Furthermore, in the general case, the content of

Theorem 11.2.2 is that [, and Jy coincide after a change of variables. In the

approach of [LLY], the corresponding statement is the equality of HG[Z(P)](¢1)

and HGIZ(Q))(t1) after the same change of variables.
We are now ready to state Givental’s version of the Mirror Theorem in the

special case of projective space itself, X = P*. We define Ip~ by (11.38) with £ =0,

and define Jp~ as in (11.39).

PROPOSITION 11.2.1. For projective space PTM, we have Ipn = Jpn.

We will prove this in Section 11.2.3 below. However, in Chapter 10 we verified

Proposition 11.2.1 when n = 1, as we now recall.

Example 11.2.1.1. When X = P!, the first line of (11.39) simplifies to

b dty dty
€ eJP‘ - e(to-HxH)/fi(l + Z (EZF<TM—1H' 1)0,d1 + Ez—d—fi(’rzd, 1>O,dH))

d=1

by the Divisor Axiom from Section 10.1.2. Also, (11.38) forn=1and£{=01is

oQ

Ip = e(to-HxH)/fiZ edt1 L 5.
=0 ((H + R)(H + 2R)--- (H + dh))

We computed (To4_1H, 1}0,4 and {24, 1)g,4 in Example 10.1.3.1, and we used these

formulas in Example 10.3.1.1 to show that Ip: = Jp1.

From the point of view of Proposition 11.2.1, this process can be reversed.

Once we know Ip: = Jp:, expanding Ip: in powers of H (note H2 = 0 in H*(P!))

easily gives formulas for (Ts4_1H,1)pq and (724, 1)0,4- In this way, we can regard

Proposition 11.2.1 as computing the gravitational correlators of P!.

Our next task is to define J,, when V = @©f_,Opn (a;) as above. We first need

some notation. Given any d > 0, the space of sections H(C, f*(V)) forms a vector

bundle V, x over Mg »(P*,d) as f : C — P varies in Mo x(P", d). More precisely,

let meq1 : Mo g1 (P, d) = Mo . (PTM, d) be the map forgetting the (k+1)** marked

point and let eg.; : Mo g1 (P?, d) — P be evaluation at the (k+ 1) point. Then

vd,k = 7Tk+1,€:,+1(V).
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In particular, V4o = m.e](V) is precisely the bundle denoted V; earlier in the

chapter. One can also show that Vi = 7} (Var~1) when k& > 0.

Now fix i between 1 and k. For each f : C — P" in M+(P", d), we can consider

those sections of H°(C, f*(V)) which vanish at the i* marked point. These form
the fibers of a bundle V} , ; on M, «(P", d) fitting into the exact sequence

(11.41) 0 — Vi i — Vak — (V) — 0.

This implies that

(11.42) Euler(Va x) = Euler(V; ;. ;) U j(Euler(V)).

In particular, we get the bundle V;,, on Mo,2(PTM, d), and using this bundle, i

we define Jy by the formula i

Jy = elto+u )R gyler(V) x

(11.43) o 2 dn

1+ Srenfae)® UBuer(Vy, ) )-
d=1 b=0

In terms of the symbolic notation used above in (11.39), we can write this as

= Euler(V;(11.44) Jy = e(ttl'*'tll‘?')/’t Euler(V) (]_ +Zedt1eu( h( Z,2,1))>.
d=1

We note two important properties of Jy. First, when V = 0, the corresponding

complete intersection is X = P". Since P" is convex, the virtual fundamental

class of M 2(P", d) coincides with the usual fundamental class, so that the second

formula of (11.39) simplifies to

o0

1
= pl{tot+t: H}/R dt,Jpn =e (1+ E_le el!(fi_c))-

Since the Euler class of the zero bundle is 1, this agrees with (11.44) when V = 0.

Thus Jy = Jpn when ¥V = 0.

For the second property, consider the large expression in parenthesis in (11.43)

and observe that the coefficient of A~! contains a factor of

Euler(V) U ey1(Euler(V} 5 1)) = e1(Euler(Vy;2)) = 0.

We have used (11.42) in the first equality. The second equality follows since e;

factors through the map w2 : Mo 2(P", d) — Mo, (P", d) forgetting the second

marked point: we saw above that V; 5 = m3(V, 1), so that

721 (Euler(Vy2)) = mans (Euler(Vy,1)) =0

since the fibers of 75 have positive dimension. This implies that

(11.45) Jy = o)/ Eyler(V) (1 + o(A71)),

which is similar to the property (10.37) of the Givental J-function.

We can now state Givental's Mirror Theorem for complete intersections in PTM.

THEOREM 11.2.2. Let X C PTM be a complete intersection of { hypersurfaces of

degree a; with Zf=1 a; <n+1l. IfV =& 0(a;), then the formal cohomology-
valued functions Iy and Jy coincide after a triangular weighted homogeneous change

of variables:

to — to+ fe" )i+ h(e"), t1—t; + g(eh),
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where f,g,h are weighted homogeneous power series such that deg f = degg =

0, degh=1, anddege* =n+1-3_, a;.

As we observed earlier, the condition Zf=1 a; < n+1 says that the anticanonical

class of X is nef. In particular, the largest possible value of Zf=1 a;isn+1,
which occurs when X is an elliptic curve, a K3 surface, or a Calabi-Yau manifold of

dimension > 3. Notice also that this theorem includes Proposition 11.2.1 as a special

case (when V = 0). We will sketch a proof of Theorem 11.2.2 in Section 11.2.4.

Another useful comment is that the power series f, g, h in Theorem 11.2.2 are

uniquely determined from the coefficients of Iy. To see this, apply the change of

variables tg — to + f(et*)A+h(eTM) and t; — ¢; + g(e**) to Jy. Ignoring the factor

of eto/? in I, and Jy, after making this substitution in Jy, (11.45) gives

Jy = ef Buler(V)(1 + hATM L + (t1 + 9)ATM H + o(A71)).

Equating this with Iy, we see that

e/ — coefficient of 1 in Iy

(11.46) efh «— coefficient of 5711 in [y

ef(tl +g) —— coefficient of A~ 1H in Iy,

.where [y is (11.38) without the factor of Euler(V) (hence Iy = Euler(V)U ). It
follows that I, determines the coordinate change used in the Mirror Theorem, as

claimed. In particular, if

Iy = ettt )/ R Eyler(V) (14 o(ATM1))

holds already with the existing variables £g,t;, then we must have f =g=h =0

and Iy = Jy. Here is an example where this occurs.

Example 11.2.1.2. Let X C PTM be a hypersurface of degree £ < n. The as-

sumption on £ easily leads to Iy = elto+tt#)/2 Eyler(V) (1 + o(ATM1)), so that by

the above discussion, we have f = g = h =0 in Theorem 11.2.2. Thus

= LH + R)(LH +2R)--- (LH + deRO SWC.ELIUEx RNG.ES L B

praes ((H +R)(H +2R)--- (H + dh))

We will soon see that this has some interesting consequences for the small quantum

cohomology ring of X.

== ZHe““’H‘H)/"(

Before we can fully understand Theorem 11.2.2, we need to explain the relation

between Jx and Jy. For this, we will use the Gysin map 4 : H*(X) — H*T2(P")

induced by the inclusion i : X < P". Then we have the following result.

PROPOSITION 11.2.3. Leti: X «— PTM be the complete intersection determined

by V = @¢_,Opn(a;), and assume that dim X > 3. Then Jy = &1(Jx)-

PROOF. Our assumption dim X > 3 implies that H2(P") ~ H?(X). Thus both

Jy and Jx are formal functi_q_lgs of t; and t;. Note also that ¢ : X — PTM induces an

inclusion j : Mg 2(X,d) < Mo 2(P", d) such that the diagram

Moa(X,d) -2 Moa(P",d)
er | La

X SN P
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commutes, where e; is the evaluation map.

The key fact here is that we can compute the virtual fundamental class of

Mo 2(X,d). By definition, X is the zero locus of a section s of V. But s induces a

section § of the bundle V, x defined above. Asin Example 7.1.5.1, it follows that the

zero section of § (in the stack sense) can be naturally identified with Mo2(X, d).

This allows us to construct [M 2(X, d)]*** using the normal cone construction for

the vector bundle V), ». Generalizing (7.21), we then obtain

(11.47) Go((Mo2(X, d)]"TM) = Euler(Vs2) N [Mo2(P", d)].

Thus the virtual fundamental class of Mo 2(X, d) refines the Euler class of Vy 2.

We can now prove the proposition. We begin with the second formula for Jx

given in (11.39). Using the projection formula and the above commutative diagram,

one easily sees that

o0

n(Jx) = elto+t1 H) /A (1 + Z etre PD7L5, (h: i - n rMO,z(X, d)]virt)) )

In the symbolic notation 1/(h — c), the c refers to the Chern class c;(£1) of the

bundle £1 on Mp (X, d). This is the pullback via j of the bundle on Mo 2(PTM, d)

also denoted £;. It follows by the projection formula for j that

Js ('fi‘}_—z n [MOQ(X, d)]Virt) = fi_}.z N j. ([Ho,z(X, d)]vin)

= h_l-. N (Euler(Vaz2) N [Mo2(P, d)])

Euler(V,= _27_1_(;”) A [(Mo2(P",d)],

so that our formula for #(Jx) simplifies to

ig(Jx) = e(t°+hfl)/fi (1 -+ Z e‘“‘en (—-————Euler(Vd'z))> .
h—c

d=1

However, (11.42) implies

Euler(V,2) = Euler(V; ;) U e} (Euler(V)),

If we insert this into the formula just derived for #1{Jx) and use the projection

formula for e;, we obtain

sl Euler(V)
i(Jx) = eltett1H)/R Eyler(V) (1 +3 etuey ( u er( 4.2, 1)))

d=1

which is precisely the definition of Jy,. This proves the proposition. ]

Now that we know i1(Jx) = Jy, we next study whether or not any information

gets lost in going from Jx to Jy. We will use the following two observations:

e Since X is a complete intersection of ample hypersurfaces, the formula

i1(i*(a)) = o U Euler(V) shows that 4 is injective on the the image of i".

Note also that i*(H*(P")) C H*V*"(X).

e The Degree Axiom from Section 10.1.2 shows that Jx involves only the even

cohomology of X.
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When dim X > 3 is odd, He"*"(P") — H®"*"(X) is surjective by the Lefschetz

theorem. The first bullet shows that 4 is injective on H*'**(X), and combining

this with the second bullet, we see that Jx can be recovered from Jy = t{Jx).

On the other hand, when dim X > 3 is even, we will write dim X = 2m. Here,

Jx still takes values in Hev*"(X), but ¢* : H***(P") — H®"*"(X) need not be

surjective. The problem is that H2TM(X) has the Lefschetz decomposition

HTM(X)=C-¢"(HTM) ® HiTM(X),

where H3TM(X) is the primitive cohomology. The image of i* completely misses

HZTM(X), yet Jx will usually have a nonzero component in this space. There are

various notations for the image of * : H*(P") — H*(X). In the terminology of

Section 8.6.4, we call the image H, ..(X) since PTM is a toric variety. In [Givental3],

the image is denoted H*(V), which is notation we will use here. Using the above

decomposition of H>TM(X), we get

H**(X) = H'(V) @ H}TM(X)

since X is a complete intersection. This induces a decomposition

(11.48) Jx = J% + %,

where JY takes values in H*(V) and J% is the “primitive part” of Jx. To relate

this to ©1(Jx), recall that HZTM(X) is the kernel of 4 : H¥TM(X) — H*m+2(pn),

Hence, when we apply i1 to (11.48), we get Jy = i1(J%). We conclude that for an

even-dimensional complete intersection, Jy reflects that portion of Jx which comes

from PTM.

We can unify these observations by noting that the decomposition Jx = JY +

J% from (11.48) makes sense for any dimension (thus J% =0 when dim X is odd).

Then the above discussion shows that for all X, the expression J¥ can be recovered

from Jy = i!(J%). Hence the Mirror Theorem tells us how to compute some of the

genus 0 gravitational correlators of X associated to cohomology classes coming from

the ambient space.

One can also state a version of the Mirror Theorem which takes place entirely

within H*(V). If we write Iy = Euler(V) Iy, then i*(Iy) and J¥ are formal func-

tions which take values in H*(V). Also note that % is injective on H*(V) and takes

i*(fy), J% to Iy, Jy respectively. It follows that Theorem 11.2.2 is equivalent to

the assertion that i*(Iy) and JY become equal after a coordinate change of the

appropriate type. This is how Givental states the Mirror Theorem in [Givental3],
although he allows the ambient space to be a toric variety. We will discuss this

more general case in Section 11.2.5. We should also mention that our approach,

which uses H*(P") rather than H*(V), is based on [Kim2].

For an example of what the Mirror Theorem looks like in practice, let’s consider

the quintic threefold.

Example 11.2.1.3. The quintic threefold V C P* corresponds to V = Ops(5), s0

that Euler(V) = 5H. Here, H is the hyperplane class in H*(P*). Then

by = el 3 g SR (SH + 5dh)

= (H+h) - (H+dn))
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If we compare this with (11.32), we see the same formula, except for the sign of A

and a factor of eo/%. It follows that

H o2 H3_ 3Iy =e®/"5H (yo tug tegy +y3723—) .
where yo, ¥1,¥2,ys are the basis of solutions of the Picard-Fuchs equation of the

quintic mirror discussed in Section 11.1.1.

The Mirror Theorem tells us that I, equals Jy, after a suitable change of vari-

ables, and by (11.46), we can read off f, g, h from I,,. Hence the above formula for

Iy implies

el =y = f =log(w)
efh=0=h=0

dti+g)=m=g=2 -4,
Yo

which gives tg — to + fh = 1o + log(yo)h and ¢; — t; + g = y1/ye. Note that the

latter is precisely the mirror map used in Section 11.1.1. Now write Jy = Jy(to,t1)

and Iy = Iy (to,t1). Then Theorem 11.2.2 implies

Jv(to + log(yo) B, y1/90) = Iv(to, t1)-

If we let s = 1 /o and note that e(to+108Wo)R)/A = 4oto/R then the above equation

simplifies to

1
Jv(t(), 3) = —'Iv(to, tl)

Yo

Combining this with the above formula for I, we obtain

(11.49) Julto, s) = e/"5H (1 el el wH
0

However, we have some nice formulas for Jy from Section 10.3.2. We will use

the cohomology basis of H*(V) given by Ty = 1, T} = ¢*H, T! = i"H?/5 and

T = i*H3/5. Note that Tp and T are dual, and similarly for T} and T, If ®(s)

is the Gromov-Witten potential of the quintic threefold, then Proposition 10.3.4

implies that

Jv{to, s) = eto/® (1 + AT + AT (5) T + fi"’s(s@'(s) - 2@(5))T°).

If we apply i) and use Proposition 11.2.3, this becomes

H 3'(s)H? s®'(s)—28(s) H®
— pto/h = - -(1L50) Jufte,s) = e®/*5H 1+ R . - )

Now let s = ¥(t;). Then equating (11.50) with the formula for Jy(tg,s) given in

(11.49), we easily get

S/viy2 usBun) - 5(LE-2),
This is precisely the Mirror Theorem for the quintic threefold which we discussed

in Section 11.1.7. As we noted in Theorem 8.6.4, this implies the Hodge-theoretic

version of mirror symmetry stated in Section 8.6.

It remains to complete the discussion begun in Chapter 2. Recall that Sec-

tion 2.6.2 gave the above formulas for Iy, and Jy, and discussed how Theorem 11.2.2
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relates to mirror symmetry. Looking back at this section, one of the key formulas

was (2.34), which stated that when ¢t =0 and A =1, we have

(Iy/wo)' = (5+2875¢ + --- )(H® + sH*),

where / denotes d/ds. We then showed that the series in parentheses, namely

54 2875¢+ - - -, was the normalized Yukawa coupling Y of the quintic mirror. Thus

(11.51) (Iv/w)” =Y (H®+ sH*).

Let’s use this to show how Givental’s Mirror Theorem gives the “classical”

formulation of mirror symmetry for the quintic threefold. As we saw above, Theo-

rem 11.2.2 implies Iy /yo(to, t1) = Jv(to,s). It follows that

(IV/yO)" = JII’

where ' = d/ds. But Proposition 10.3.4 implies

Ji = R 2eltorsH)/R Ip o 1

where * is the small quantum product in H*(V'). Strictly speakiilg, we should write
i*(H) instead of H, but this makes the notation too cluttered. Now recall from

(8.66) that H + H = (H,H,H)C, where C € H4(V) is the class of a line in V.

Thus

Jy = h2eltors BN (g H H) C.

“Now let to = 0 and k= 1. Since #1(C) = H® € HS(P*), it follows that

Ty =a(Jv)" =¥ (3, H H) H® = (H,H, H) (H* + sH")

in H*(P4). If we compare this to (11.51), we immediately see that ¥ = (H,H,H).

Hence we recover the version of mirror symmetry discussed in Chapter 2.

Also note that mirror symmetry for the quintic threefold can be regarded as

one way of computing the instanton numbers nqg of V. A different way of extracting

the ny from the Mirror Theorem is explained in [Givental2].

We conclude our discussion of the Mirror Theorem by explaining another way

to relate Jy and Jx. The idea is to define a modified “quantum product” on H*(P")

[Givental2, Kim2| which can be used to construct Jy in the same way that J

arises from the ordinary smail quantum product, (10.15), and (10.28). This product

is carefully written down and analyzed in [Pandharipande3], where the product

is denoted by *x. For us, the most interesting property of xx is the following.

PROPOSITION 11.2.4. Suppose that X C PTM is a complete intersection. Then

the map i* : H*(P") ® C[[q]] — H*(X) ® Cl[q]] is a ring homomorphism, where

H*(X) has the small quantum product * and H*(F") has the modified quantum

product *x .

ProoF. This is proved in [Pandharipande3, Prop. 4], where it is attributed

to T. Graber. ]

Furthermore, the function Jy yields relations in the ring (H*(PTM) ® Cl[g]], *x)

just as in Section 10.3.1, where we saw that Jx yields relations in the small quantum

cohomology ring of X.

PROPOSITION 11.2.5. Suppose P(hd/8t1,e', R)Jy = 0, where P is a polyno-

mial in hO/Ot, whose coefficients are power series in ett,h. Then the relation

P(H,q,0) = 0 holds in H*(PTM) ® C[[g]] with the product *x.
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ProoOF. This is proven in [Pandharipande3, Lemma 3]. O

Combining Propositions 11.2.4 and 11.2.5, we get the following useful corollary.

COROLLARY 11.2.6. Suppose P(Ld/8t1,e"t,R)Jy = 0, where P is a formal

power series as above. Then the relation P(i*(H),q,0) = 0 holds in the small

quantum cohomology ring of X.

PRoOOF. From Proposition 11.2.5, we first conclude that P(H,q,0) = 0 in

H*(P") with the *x product. By Proposition 11.2.4, we get i*(P(H,q,0)) =

P(i*(H),q,0), the latter expression being evaluated in the small quantum coho-

mology ring of X. This expression is therefore zero as well. O

Here is an example of how we can combine Theorem 11.2.2 and Corollary 11.2.6.

Example 11.2.1.2, continued. Let X C PTM be a hypersurface of degree { < n. In

the first part of this example, we explained how the Mirror Theorem for ¥V = Opn (£)

gives the equality

Ty = Iy = gHelto+ts H)/h (1 N i gits _(CH + R)(CH +2R) - -- (¢H + den) ) '
5 ((H+R)(H+28) - (H+dr)"

An easy calculation shows that Iy, is annihilated by the operator

d\» d d
=) - - ot + (£ 1)R).(fidtl) € Z(Mdtl +h) (mdtl +(E-1) )

Since Jy = Iy, this operator also annihilates Jy. Then Corollary 11.2.6 implies

H" —qt(tH)" 1 =0

in the small quantum cohomology ring of the hypersurface X. This agrees with the

relation found in [Beauvillel)].

11.2.2. The Quantum Hyperplane Section Principle. So far, we've dis-

cussed the Mirror Theorem for a complete intersection X C P*. We now want to

put this in a broader context via the Quantum Hyperplane Section Principle for a

complete intersection. This principle is suggested in [Givental3] and formalized

in [Kim2|, where the quantum hyperplane section principle is explained for com-

plete intersections in a generalized flag variety. This principle is similar in spirit to

though broader in scope than the quantum restriction formula for restricting linear

sigma model correlation functions to anticanonical hypersurfaces [MP1].

We will formulate the principle in a general setting where it has not yet been

proven. Let ¥ be a smooth algebraic variety, and let X C Y be a complete inter-

section, the zero locus of a vector bundle V = @!{_, £;, where the £; are convex line

bundles on Y. Here, convezr has the same meaning it did in Section 11.1.5. Thus

HY(C, f*(£:)) = 0 for all 0-pointed genus 0 stable maps f: C — Y.

Given 3 € H;(Y,Z), we now generalize some of the constructions of Sec-

tion 11.2.1. In particular, we let Vg be the vector bundle over My (Y, 3) whose

fiber over f is the space of sections of HY(C, f*(V)). Letting m : Mo (Y, ) —

Mo k-1 (Y, 3) be the map forgetting the k*" marked point, then 7} Vs k-1 = Vs,k-

Also, for each i between 1 and k, the sections of H°(C, f*(V)) which vanish at the

i*" marked point form the fibers of a bundle Vi o0 Mon(Y,B). This bundle fits

into the exact sequence

0 — Vi, — Vai €V — 0.
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For simplicity, we will assume that Y is convex. We now define the formal

function Jy in H*(Y") as follows:

Euler(V}
(11.52) Jy==eflvWVfiEmedV)(1+-}:qfie“(--—ififiil)>,

h—-c
B#0

where e; as usual is the evaluation map and 1/(% — c) is the symbolic notation used

in (11.44). We are using the convention § = Y 7_, £;T;, where the T; range over a

basis for H2(Y"), and we set ¢° = ¢Js® When Y is the convex variety P", notice
how this reduces to (11.44). Also, for ¥ general (but still convex) and V = 0, one

can show that Jy = Jy without difficulty.

We put £;(8) = fB c1(£;), and define a second cohomology valued formal

function

Ty = elto9/" Byler(V) x

¢ £,(8) )
(l+ Z qfiHH6"=_°°(Cl(EJ)+mfi) 81!( 1 ))

onperr(y) =1 Ilm=—oo(c1(£5) + mA) hize
As in Section 5.5.3, we note that all but finitely many terms cancel in the product.

We now state the quantum hyperplane section principle. We will assume that

the Kihler cone of T is simplicial, generated by classes T;. We introduce corre-

Sponding variables t; and ¢; = e** as usual. We define the degree of the g: via
r

cu(X) —ei(V) = ) _(degq) Tr.
i=1

Note that if ¥ = P" and V = @&{_,0(a;), then degg=n + 1 — Zf___l a;.

CONJECTURE 11.2.7. As above, let X C Y be a complete intersection corre-

sponding to V. Assume that Y is conver ond that degq; > 0 for all 5. Then

the formal vector-valued functions Tv and Jy coincide ofter a unique triangular

weighted homogeneous change of variables:

to — to + folg)h+ h(a), i — ti + fi{q)

where h, fo.. .., f are weighted homogeneous power series and deg fo = deg f; =

0, degh = 1.

Let’s first see what this conjecture says when ¥ = P". We begin with Propo-

sition 11.2.2, which asserts Ipn = Jpn. By (11.38),

o

1
(11.53) Ipn = ltotts H)/ANTM d 

,

d;o T2, (H + mA)n+?
where g = ef'. In the remarks following (11.44), we noted that Jp» = Jy for ¥V =0.

Then (11.44) implies

o0

1
. = eltottiHY/N dty )(11.54) Jpn =€ (1 + ;:le elu_(fi ))

-c

This follows since the Euler class of the trivial bundle is 1. Comparing these two

expressions, we conclude that

1 1
11.55 (=311 = .

(159 =) - E e
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Now substitute this into the above formula for Ty, and notice that L;(3) is just a;d

in this case. It now follows easily that T coincides with Iy, as defined in (11.38).

This shows that for P*, the Quantum Hyperplane Section Principle stated in

Conjecture 11.2.7 is equivalent to the Mirror Theorem from Theorem 11.2.2, once we

prove Proposition 11.2.1. This is typical of how Conjecture 11.2.7 works: combining

(11.55) with the Quantum Hyperplane Section Principle tells us what the Mirror

Conjecture should be for complete intersections in P*. This same reasoning applies

more generally, so that once we know the right hand side of (11.55) for ¥ convex, we

immediately know that the corresponding Mirror Theorem should be for complete

intersections in Y.

As evidence for Conjecture 11.2.7, we note from the above discussion that

proving Theorem 11.2.2 will verify the conjecture for Y = P”. A proof is given

for complete intersections in generalized flag manifolds in [Kim2], and an applica~

tion to the virtual numbers of rational curves in Calabi-Yau complete intersection

threefolds in Grassmannians and complete flag manifolds is given in [BCFKvS1].

In general, the Quantum Hyperplane Section Principle appears to give sensible

results for a variety of ambient spaces. In addition to complete flag manifolds stud-

ied in [Kiml, BCFKvS1], the Quantum Hyperplane Section Principle produces

verifiable results for certain varieties of nets of quadrics (see [Tjgtta]).

11.2.3. Proof of Proposition 11.2.1. We now sketch a proof of Proposi-

tion 11.2.1, which asserts that

Ipn = Jpn,

where Ipn and Jp~ are given in (11.53) and (11.54). Our treatment follows the

conventions of {Kim2], which was inspired by [Giventald4]. The key step in the

proof will be the recursion given in Lemma 11.2.9. In Section 11.2.4, we will prove

the Mirror Theorem (Theorem 11.2.2) by combining the methods used here with

some important new ideas.

Our strategy will be to create equivariant versions of Ipn and Jp- and prove

they are equal by the localization techniques similar to what we did in Chapter 9

and Section 11.1. We will use the standard action of T = (C*)**! on P?, as

described in Example 9.1.2.1. This induces an action on 3 2(P", d) such that the

evaluation map e; : My 2(P"*,d) — P" is equivariant.

We begin by defining an equivariant version of the form (11.54) of Jpn:

o 1

— pltot+tip)/h de-,(11.56) Jr=e (1+}_1q el'(h—cT)>’

where cr is a symbol for the equivariant Chern class ¢7 (£;). We also set ¢ = e'1,

and as usual, p is the equivariant hyperplane class of P*. The expression Jr takes

values in Hy(PTM), and we can recover Jp~ by taking the nonequivariant limit A, —

0, p — H, cr — ¢;1(L;), or more precisely, by Jp= = ipa(Jr), where ip~ is as

defined in Section 9.1.1.

It is convenijent to drop the exponential factor in (11.56) and put

= 1
S=1+;qd€1!<h_cT)7

so that Jp = eltottip)/h g
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We next decompose S into pieces which are easier to study. We let Z; =

Jpnyp S'U i, where ¢, = [Ti.i(p — Ak) is the basis of H7.(P") ®y-(gT) Rr from

Example 9.1.2.1. The important fact is that the Z; are sufficient to determine S,

and henf:e Jr and ultimately Jpn, since we can recover S via § = Z?:o Z; U ¢,

where ¢* is the basis dual to ¢;.

The projection formula implies

/ eu( 1 )U¢i=/ er{di)

@ryy Ni—er Toa(Pn dyr B—cCT’

so that we can write Z; in the form

(11.57) Z = 1+§:qd/ ei(¢)
d=1 T\fio,z(l’".d)'z' k- T

We now note a simplification. Since dim Mo 2(P",d) = (n + 1)d +n — 1, any

cohomology class on Mg 2(PTM,d) of degree less than (n + 1)d +n — 1 has vanishing

integral. Note in addition that ¢; has cohomological degree n. When we expand

1/(h — cr) as a geometric series in powers of ¢r/h and substitute into (11.57), we

conclude that the terms involving c& can only contribute to the expansion of (11.57)

for k > (n+ 1)d — 1. Thus, we may harmlessly truncate the geometric series. For

.reasons that will become clearer soon, we truncate somewhat less than we are able

to, beginning our expansion with c% (which we can do, since d < (n + 1)d - 1).

Using the identity

11.58 o~ b _ (et L( 1.5 ) ,cz__-:dhk+l - (F) fi—CT’

we obtain in place of (11.57) the alternative form

o0

7\¢ ef(¢:) ct(11.59 Zi=Zig =1+ (2 / el e
) ' ,; (’i) Toa®rd)r P—CT

We will evaluate the integrals appearing in Z; using localization on 7\70'2(]?’", d)

in the form of Corollary 9.1.4. Each integral

/ e1(#:) cf
Mo, 2(PTM,d)7 h—cr

will be a sum over the components of the fixed point set, which by Section 9.2.1

are described by certain labeled graphs I'.

Let " be a graph corresponding to a fixed point component Mr of Moo (P, d),

and as in Section 9.2.1, we have the inclusion map ir : My — Mo 2(P?,d). Our first

task is to identify those components which contribute to the above integral under

localization. Recall that the fixed points of T acting on PTM are ¢; for 0 < j < n.

Then observe that if(ej(¢:)) vanishes unless e1(Mr) = ¢;- This follows because if

e (Mr) = gj for j # 1, then

ir(el(d:)) = i5,(¢:) = 0,

where the last equality is by (9.10). This implies that when we localize the above

integral, we can restrict the sum to those I for which el(fip) = ¢;. (Note the

similarity to what we did at the beginning of the proof of Theorem 11.1.4.)
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Since the equivariant hyperplane class p restricts to A; over g;, (9.10) implies

that s7.(e7¢:) = i3, (¢:) = [11s(A — Ax). We also use the symbol ¢ to denote the

restriction of the symbol cr to Zr. More precisely, we define

1 - Zfi_ k+1) T(z £1)k

h— k=0

Finally, we let ar be the order of the automorphism group of a typical stable map

with graph I". Then Corollary 9.1.4 gives

= = (9\¢ of Tligs s — M)(11.60) Zi(g:R) =1+ ; (fi) ;( )/—m ar (A — cr)Eulerr (Nr)’(M

where Zg) means that we sum only over those I" satisfying e1 (M) = ¢;.

‘We can further reduce the number of components M to consider as follows. If

(f,C,p1,p2) € My, then e;(Mr) = ¢; implies that e1(f) = f(p1) = g We will let

C’ C C be the component of C containing p;. We then distinguish the following

2 cases:

Type A: The component C' C C containing p; is mapped by f onto a curve.

Type B: The component ' C C containing p; is mapped by f onto a point.

‘We claim that Type B graphs I do not contribute to Z;, since c¢g = 0 when T is of

Type B.

To prove that ¢ = 0 for Type B graphs, we need to recall the description of

Mr given in Section 9.2.1. The graph I' has vertices which correspond to connected

components of f ~*({go, ... ,qn}). Since I has Type B, we know that C” lies in some

connected component C, of f~1(g;), where v is the corresponding vertex of I'. As

in Section 9.2.1, the number n(v) is defined to be the number of marked points in

C, together with the number of nodes in C, which connect C, to a component C,

of C on which f has degree d. > 1. Since we are working on Mo (P, d), there

are at most 2 marked points. Furthermore, there at most d nodes of the above sort

since 3, d. = d by the definition of I". It follows that n(v) < d + 2.

The number n(v) is important because, as explained in Section 9.2.1, Mofi(,,) is

a factor in the product which gives M. Our strategy will be to study the restriction

of ¢ to M n(y). Since n(v) < d+2, it follows that dim Mg () = n(v) —3 < d— 1.

Furthermore, cr in this case is induced from the equivariant Chern class s ¢ T(Ly) of

the corresponding bundle Ly on My n(v). However, T acts trivially on M, n(v), SO

that HT(MO n(v)) ~ (MO n(v)) ® H*(BT). In addition, T acts trivially on £,

which implies ¢? (El) = ¢1(£;) ® 1 under the above isomorphism. Since c1(£1) has

degree 2 and dlmMOn (vy £ d—1, we have ¢;(£;)? = 0. This proves that cg = 0,

as claimed.

Since graphs of Type B don’t contribute to the integral, we let Z{f denote the

sum over Type A graphs. We continue to assume that e; (M) = ¢; even though

our notation suppresses the index i. Then (11.60) becomes

of Tigs (A = M)(11.61) —1+ZZA( ) / o ar(h—c;:)EulerT(Nr)~d=1 T M

Using this, we can prove the following lemma.



11.2, GIVENTAL'S APPROACH 369

LeMMA 11.2.8 (Regularity Lemma). The erpression Z; is an element of the

ring Q(As, B)[[q]]. The coefficient of each q% is a rational function of A\; and h which

is requlor at each B = (A — A;)/k, for all j #1 and k>1.

PROOF. We need to examine the coefficient of ¢? in (11.61). For this purpose,

suppose that T has type A. The factor of Eulerr(Ny) in the denominator is in

H}(Mp) and hence is rational in the \;. So it remains to analyze cr.

Recall that cr = T (i7(£1)). In Section 10.1.1, we defined £; to be the line

bundle on Mg (P, d) whose fiber at (f,C,pi,p2) is the cotangent space T C.

In order to compute cf (i5(L£;)), we need to compute the weights of T acting on

T,,C when (f,C,p1,p2) € Mp. As above, let C’ C C be the irreducible component

containing p;. Since I has Type A, we know that (' is mapped to the line g;g; with

degree d’. At g € %g; =~ P!, the cotangent space T P! has weight A; — A; (this

follows by the techniques used in Example 9.1.2.1), and since f |c’ has degree d’, the

T-action on T, C = T, C” has weight (A;—Ai)/d. Tt follows that cp = (A;~ )/ d,

which tells us that

/ B Mleuhi—Ae) / (A5 = M)/ TTes(Xs = Ae)

(3r)r ar(h — cr)Eulerr(Nr) " gty an(A— (A A;)/d’)Eulerr(Nr)

* in this case. From here, the desired result is now easily verified. d

The lemma just proved shows that we can substitute i = (A\; —A;)/d in Z; and

obtain a well-defined expression. This is needed for the recursion lemma, which

goes as follows.

LEMMA 11.2.9 (Recursion Lemma). For integers i # j with 0 < i,j <mn, put

1

C.s(d) = ,

D=7 Tk, )ty e (i = A+ A5 = As)/d)

where m ranges from 1 to d in the product in the denominator. Then

Eay¢__Cuild) gr A A=AZi(q,fi)=l+§dz=:l(g) /\i—/\Jj+dfiZj(E Jd ,Jd )

ProoF. This recursion will be derived from (11.61). As noted in the discussion

following (11.57), we could have truncated the geometric series for 1/(% — cr) to

begin with the term cg-""'l)d_l JATM+D4 in (11.58). Had we done so, we would have

been led to the recursion appearing in [Givental2]. The choice we made here leads

to the recursion relation appearing in [Kim2] and avoids the change of variables

for q used in [Givental2].

The graphs I" occurring in (11.61) are all of Type A. For (f,C,p1,p2) € Mrp,
we know that f(p1) = g, and if ¢’ C C is the component containing p;, then there

is j # i such that flo : C' — g; is a cover of degree d’. In this situation, the

definition of I implies that C' = C"UC”, with C" corresponding to a graph I and

ps € C". If we let p = C' N C”, then ¢; = f(p). Furthermore, if we regard p as

the first marked point on C”, then (flcr,C”,p, p2) is a 2-pointed stable map with
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graph I in Mg o(P"TM,d”), where d = d’ + d”. For these graphs, we claim that

ar = d'af.

Ay — N
cr = 2 7

(11.62) A=A
Eulerr(Nt) = Eulel‘T(Nrn)( 7 - Cl"") X

(TTOm(252) + - M),
m,k

where Hf,;) 15 a product over 0 < m < d’ — 1 and 0 < k < n with the restriction

(m, k) # (0, 5).
The formula for ar arises because we have a cyclic group of order d’ of au-

tomorphisms of f|c/, as in (9.13) and the subsequent discussion. We proved the

formula for ¢r in the proof of Lemma 11.2.8. Finally, the calculation of Eulerr(/Nr)

proceeds by filtering the equivariant normal bundle Nr. The factor of Eulerp(Np+)

arises from deformations of f|¢~. The factor

Aj— X

dl

arises from the application of Lemma 9.2.2 to the node p, similar to what we did

in the proof of Theorem 11.1.4. The last factor comes from deformations of flc-

which fix the point p. The deformations are given by the vector fields v, x =

dzi"mzj’»"a/azk with 0 £ m < d’. Here, zo, ... ,Zn are coordinates on P” and z;, z;

— cpn

are coordinates on C’ such that f|¢ is given by z; = z;", T; = zf. The weight of

Um i 1S clearly

— A

d/
)+,\i—,\k.

Note that the vector fields vy ik do not fix p and hence do not contribute. Also, the

vector field vg,; is (up to a scalar) the image of the vector field z;0/8z; of C’ fixing

p1 and p. This comes from an automorphism of the stable map, so that we must

also exclude vg,;. Then multiplying the remaining weights gives the final factor in

the formula for Eulerr(Nt).

We now substitute (11.62) into (11.61) and calculate that Z; is given by

o0 ’ 4

(a/M* (g =2/ )" Tigss i =e)
Z; =1+ =;;_:1 (TLises Qg =2D)(B= (g =X)/@)(@) Tk (s = Xa) /& +20 = i)

) 4t

; a (5=2)/d) Tleg,(25=2e)X <1 + Z Z(J)(%) f(.-fipu)r EulerT(NPu)apu((Aj?i,-)/d’——cru))'
d’=1T"

(11.63)

In obtaining (11.63), we have inserted cancelling factors of ITiw; (2 ~ Ak} and also

used d =d' +d".

We can now prove the desired formula for Z; by noting the following, starting

with (11.63). The last line of (11.63) is just

Z(a(Xy = A)/(@R), (A = M) /d),
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as can be seen from (11.60). As for the first line, note that the large fraction
contains

.

) s=xran
as a factor. Thus the lemma reduces to proving that the remaining factor is C; ;(d').

In other words, we need to show that

((As = X:)/d) Tiga( = Ae)

(TTigs P = 20)) T (M5 = M)/ + Ac = M)

To prove this, put A(m, k) = m(};j — As}/d + A; — A, and note the following three

identities involving A(m, k):

(d’)!()‘j;'\i)dl = f] A(m, i)

A= Ae = ZZOL, k)
A — A = A(d, k).

(11.64) Cij(d) =

This enables one to express both sides of (11.64) in terms of the A(m, k), together

with a factor of (d')! in the denominator. After a little cancelling of some of the

A(m, k)’s on the right hand side, we achieve the desired result. O

At a first glance, it may not be obvious that the identity proved in Lemma 11.2.9

is a recursion. This becomes clearer when we write Z; in the form

Zi(g,B) = Zia(h) ¢,
d=0

where Z; o(h) = 1. Then for d > 1, Lemma 11.2.9 implies that

_ Ci'j(d’) /\j - )\,‘ d” ] )‘j - )\i

Zah)= 2, TN ¥R ( an ) Za @ )
d=d’ +d

d'>1

Since d’ > 1, it follows that Z, 4 is determined by the Z; 4 for d” < d. Then, since

Lemma 11.2.9 also implies Z; o = 1, we see that Z; is uniquely characterized by the

identity in the lemma.

Now that we have the recursion lemma, we can finally prove Proposition 11.2.1.

PROOF OF ProPOSITION 11.2.1. The plan of the proof is to create an equi-

variant version Iy of Ip» and show that it leads to the above recursion. Recall from

(11.53) that Ipn is given by

d

Ton = gltortLH/R el )
e zd: (H+h) - (H+dh))TM?

Consider the equivariant expression

[o~]

1
RS S P ,

d=0 H?:o [Trei(p — A; + mh)
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whose nonequivariant limit is Ips. Our goal is to prove Iy = Jp. We begin by
decomposing Ir the same way we did Jr. Hence we drop the exponential factor
and let

— 1
§'=) ¢— ,dgo ITj=0 [Toms (p = A5 + mh)

and then we set Z] = f(P")T 5" U ¢;. We compute Z] as follows. Adapting what we

did in (11.3) to P", we see that Z] = i} (S') = S’()\;). This implies

=~

1
Zi=1+) ¢ - .

dgl 3=0 an=1(>‘i —Aj +mh)
It is clear from this equation that Z] lies in Q(A, 5)[[¢]] and satisfies the regularity
of Lemma 11.2.8. Furthermore, a direct calculation shows that Z] satisfies the
recursion of Lemma 11.2.9. By the uniqueness noted in the discussion following the

proof of the lemma, we get Z; = Z! for all 4.

To finish the proof, we recall from the discussion following (11.56) that

n

Jr = e(*°+txp)/hz Z; U ¢t

i=0

Since similar reasoning implies

i=0

we conclude that Ir = Jr. Then the desired result Jpn = Jpn is obtained by taking

the nonequivariant limit A; —» 0, p — H. O

11.2.4. Proof of Theorem 11.2.2. In order to prove the Mirror Theorem

stated in Section 11.2.1, we will generalize the steps used in the proof of Propo-
sition 11.2.1. However, the recursion we get in this case (Lemma 11.2.11) is sig-

nificantly weaker, so that we will also need Lemmas 11.2.12, 11.2.14, and 11.2.15
below. Our treatment is based on [Givental2, Pandharipande3], though we use

some conventions from (Kim2, Giventald]. Implicit in our discussion is a proof
of Conjecture 11.2.7 for complete intersections in projective space.

Just as in the proof of Proposition 11.2.1, we begin by giving an equivariant
version of Jy. From the definition of Jy, given in (11.44), we define

Eulerr (V) , )))

(h=cr) ’

Since the Euler class of the trivial bundle is 1, this reduces to (11.56) when ¥V = 0.
Note that T acts naturally on V = &¢_, Op-(a;), so that Eulerr (V) , ;) makes sense.

As in Section 11.2.3, we drop the exponential factor and put

o

(11.65) Jp = eltotPH)/R Eylers.(v) (1 + }: qden(
d=1

(11.66) Sy = Sy(g, k) = EulerT(V)(l + {2 oo (Eul(;rT_(:;)“)D

d=1

We also put

- Eulerr(V), ;)
Sy =1+ queu(fi)’

d>0 T
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so that Sy = EulerT(V)S'v. As we have seen in Example 11.1.3.1, p is invertible
after tensoring with the field of rational functions in the A;, hence the same is true

of Eulerp(V) = (Hf=1 a;)pt. In particular, Sy is uniquely determined by Sy, and
can be expressed as

Sy = (Eulerp(V)) 1Sy,

where we again allow rational functions in the A; to make sense of this. In the

rest of this chapter, we will frequently adopt similar notation, using a tilde over a

symbol to denote division by Eulerp(V).

Finally, we put

Ziy= / Sy U =1, (Sv).
®TM)r

We want to study whether Z; , has the same behavior as the function Z; studied in

Section 11.2.3. The first step is easy, for it is straightforward to show that (11.57)

generalizes to

(11.67) Ziy=1+ iq“ / Bulerr (Vaa,) e1(9). iy = .

d=1 _fiu,z(P",d)T h- cr

However, the truncation we did in (11.58) and (11.59) no longer works in general

because of the presence of Eulerr(V,,,). Hence, instead of using localization to

go from (11.539) to (11.60), we instead apply localization to the integrals appearing

in (11.67). This easily gives

(11.68) Z.y =1+ i g¢ Z(i) / it (Bulerr(Vy, 1)) Hk# (A = Ax)

. " d=1 T (Mr)r ar (A — cr)Eulerp(Nr) ’

where ") has the same meaning it did in (11.60).
Before continuing the proof, we will pause to make an interesting observation

about truncation. The key point is that the Mirror Theorem requires a change

of variables because we can’t truncate in general. For example, truncation does

work if V = @f_,0(a;) satisfies Zf=1 a; < n. The straightforward verification uses

the fact that V,, has rank d Y{_; a; < dn. Thus d + rank(V},,) < d + nd, so
d+rank(Vi,,) < (n+ 1)d — 1, as required by an argument analogous to the one

preceding (11.58). In this case, the proof below simplifies considerably, becoming

much more like what we did in Section 11.2.3. The result is that when Zle a; <mn,
the Mirror Theorem asserts that Iy, = Jy. In other words, Theorem 11.2.2 holds

with fo = fi = h = 0 in this situation. Note that we saw a special case of this in

Example 11.2.1.2. In general, when Zf___l a; < n+ 1, we will see how the lack of
truncation complicates the recursion and forces us to change variables.

Returning to the proof of the Mirror Theorem, we note the following result of

[Pandharipande3|, which generalizes Lemma 11.2.8.

LEMMA 11.2.10 (Regularity Lemma). The expression Z;y is an element of the

ring Q(Ai, h)[[g]]. The coefficient of each g% is a rational function of A; and A which
is regular at each A = (X — A;)/k, for all j #i and k > 1.
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ProoF. For a graph I appearing in Z%’ ), we need to study the integral

/ if‘(E“lerT(thi,z.x)) Hk;éi()‘i - k)

(¥r)r ar(h - cr)Eulerr(Nr)

In Section 11.2.3, we divided the graphs I' into Type A and Type B graphs. For
graphs of Type A, the proof of Lemma 11.2.8 shows that cr = (A; ~ );)/d’ for some

d > 1 and j # i. Hence for these components, the above integral becomes

/ i (Bulerr (Vg 5 1)) Il (M = X&)
(Mr)r ar(fi bt ()\J bt )\i)/d’)EulerT(Np) :

As in Lemma 11.2.8, this expression is clearly rational in );, A and is regular at

h= ()\, - /\J)/k for k 2 1.

Now suppose that I' is of _’Iype B. In this case, we showed in the discussion
preceding Lemma 11.2.8 that cf = 0. Thus, when we expand the factor of i — cr
in the denominator of (11.69) into a geometric series, we can ignore all terms

which involve ¢f/1**? for k > d. Thus, we only need consider those terms with
k < d. Each such term is a rational function of the J); times a positive power of
i~ and hence is clearly a rational function of % and the \; satisfying the claimed
regularity. O

As in Section 11.2.3, this lemma shows that we can substitute i = (X; — A;)/d
in Z; v and obtain a well-defined expression.

LeEMMA 11.2.11 (Recursion Lemma). Let V = @f_,Opn(a;), and for integers

1#jwith0<4,7 <n, put

OV (@) = T, (axd 4+ m(dy = A)/d)
TM a! H(k,m);é(g,d),k;ét (i = Ae +m(X; — Ni)/d)’

where m ranges from 1 to d in the product in the denominator. Then the difference

= Zla -3 30 (& )dXT(?T{fiZ V()
j#i d=1

is in Ro[RTM][lq]).

ProoF. The identity

1 cryd 1 = k= (k+1)= (L) Rh—on (%) h-—cr+;_()CP
shows that we can rewrite (11.68) as

v =1+ ZZ(')( ) / CgiE(EulerT(vt’u'l)) [eselAi — 28)
d=1 T (Mr)r ar(A — cr)Eulerr(Nr)

(11.69)

+ terms which are polynomial in A~ 1.

Furthermore, we noted in the proof of Lemma 11.2.10 that cg = 0 for Type B

graphs. Hence the above formula becomes

yv=1+ }:Z"‘( ) / cfir (Bulerr(Vy5,)) TTeses(2a = 2i)
“ d=1 T (Mr)T ar (ki — cr)Eulerr(Np)

+ terms which are polynomial in A7,
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where as in (11.61), Z? means that we sum only over graphs I' of Type A with

e1(Mr) = q;. Working modulo polynomials in A1, the above equation is the same

as (11.61), except for the factor i} (Eulerp(V}5,)) in the numerator. Hence, if

we follow the argument of Lemma 11.2.9, we are led to an expression analogous

to (11.63), with some extra factors in the numerator. These factors can be identified

with the numerator of C'i‘f ;(d") by computing the weights of the T-action on the

bundle V},; (we omit the details of this argument). It follows that R; is zero

modulo polynomials in A=, and the lemma is proved. d

If one compares this lemma to the ¥V = 0 version given in Lemma 11.2.9, we

see that R; = 1 in that case. So for V trivial, we get a genuine recursion, where the

coefficient of ¢% in Z; is determined by the coefficients of qd' in the Z; for d' < d.
But when V is arbitrary, we only know that R; is a polynomial in £~!. Hence

we don’t get a recursion in the same way we did when V = 0. Thus, to complete

the proof of Theorem 11.2.2, something new is needed. The basic idea is that

once we supplement the regularity and recursion of Lemmas 11.2.10 and 11.2.11

with the “double construction” given in Lemma 11.2.12 below, we will have enough

properties to force uniqueness. This will finally be achieved in Lemma 11.2.14.

LEMMA 11.2.12 (Double Construction Lemma). Let z be a variable and write

V= GBf=1 Opr(a;). Then the ezpression

n ’\i )

i=0 +117#t

M= Z; v(qeTM" B) Ziv (g, —h)

is in H*(BT)[Hl{g, ).

PROOF. Recall the map ¢ : My — N, and the bundle V4 discussed in Sec-

tion 11.1.2, where My = Mg g(P! x P*,(1,d)). Here, we will use a variant of this

construction. We will consider Mg 5(P* x P, (1, d)), which has the evaluation maps

e1, e : Mo a(P* x P, (1,d)) — P! x P". Following [Givental2], we define

La = e7 ({0} x P*) N ezt ({oo} x PTM).

Let i1, be the inclusion of Ly in Mg (P xPTM,(1,d)). Thereisamap u: Li— Ny

defined by g = @ o m o mp ©iL,, Where my is the map induced by forgetting the

k*h marked point, for k = 1,2. This map is discussed in [Givental2], where Ny is

denoted by Lj.

Also recall the map 7 : My — Mo o(PTM, d) induced by the natural projection

P! x P* — PTM. We get from this a map 7 : Ly — My o(P", d) defined by 7 =

rom omsoir,. Then define X = Eulerg(7*Va). We assert the identity

= d wr(r)z TV - A Zj ) Aiz zh
(11.70) Z q (Ld)ce Xqg = Z —m e i,V(qe ) fi)Zi,V(‘L —h)

d=0 i=0

Once we prove (11.70), the desired conclusion follows, since p~(x) and Eulerg(Va4)

are in H%(M,) and hence have polynomial dependence on i and the A;.

We will prove (11.70) using the localization formula of Corollary 9.1.4. Since

the argument is very similar to the proof of Theorem 11.1.4, we will only sketch

the computation, omitting most of the details. A complete proof of (11.70) in the

case when 3_, 2; =n -+ 1 can be found in [Pandharipande3, Lemma 7).
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We begin by examining the coefficient

(11.71) / e Rz gV
(La)e

of ¢% in the left hand side of (11.70). The first step is to identify the fixed point
components of L. These are very similar to the fixed point components which
arose in the proof of Theorem 11.1.4.

First, fix an ¢ with 0 < ¢ < n and let ¢; be the corresponding T-fixed point ofP". For each r with 0 < r < d, let F” be one of the components of Mg 3(P", )T
consisting of stable maps for which the first marked point is mapped to the fixed
point ¢; € P*. If in addition r < d, choose a component F; . of Hgyg(Pn, d-nr)T
consisting of stable maps for which the first marked point is mapped to ¢; € P*. We
now describe a component of (L)€ which is isomorphic to F) x F__. We will abuse
notation by denoting this component by F.x F,__. A typical map f € Fl x F__
has source curve C' = Cy U C, U O, with Co=P! with f: C — P! x pn given by

f!CO(Z) = (27 qi)

fle(2) = (0, f1(z))

flea(z) = (o0, f2(2)).

The curve C, contains two marked points (P1,m) and fi : (Ch,pl, ;) — P" is an
element of F,. In addition, C, contains two marked points (p5,p2) and the map
f2 : (Ca,ph,p2) — P" is in Fj_,. Finally, we attach 0 € C, to pi € C) and we
attach oo € Cj to py € Cp. Then the map f: (C,p1,p2) = P! x P" is an element
of Lq, and the set of all such maps is the component F x F}__ that we set out
to describe. We leave the simpler description of the components corresponding to
7 =0 or 7 = d to the reader.

We now describe the contribution of this component to the integral (11.71)
by localization. We begin with the restrictions of the terms in the integrand toF! x Fj_,. Note that u(F’ x F}_.) is the G-fixed point p; . of Ny, as follows from
the discussion in Theorem 11.1.4. We thus see that u*(k) restricts to ); + 5 onF[ x F}__ by the discussion in Section 11.1.2.

We next compute the restriction of XY to F!'x F d—r Letting py and p; be the
projections onto the first and second factors of F; x F;_, respectively, we have the
exact sequence

0= Pi(Vrgalr) ® 05 (Vi 0y lry ) — (FVa)lrixr;_ =~ Vo ®c Opixpy_ — 0.—

To see where this exact sequence comes from, we consider its fibers. The fiber overf € F/x F}__ of the map (‘TT‘Vd)lF;XF‘;_r ~ Vg, ¢ OF;XF;_, is the restriction map

HYC, f*V) — H(Co, fI5, V) = V.
The kerne] of this map consists of pairs of sections of f;'V and f2V which vanish attheir respective marked points P71 and p,. These are the fibers of IV 21lF:) and
P35V 51lr:_ ) respectively. This exact sequence shows that ¥) restricts tod=r

)\,' (zjaj)EulerG (V,l,,ll ,Fr' )EHIEI'G(V&_T,ZJ IFé_r)’

since V,, = (8;0pn(a;)),, bas weight ), >, a5
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Finally, we compute the equivariant Euler class of the normal bundle. The

result is

Eulerg(N (F. x F_.)) = [J(h = 4;) x
J#EL

(B — ¢T(L,1))Eulerg(N(FL) (=h~ cf (Lar,))Bulerg (N (Fj_.))

Hj;éi(’\i - ’\j) Hj;éi(’\i - )‘j) '

(The reasoning for not doing the obvious cancelation will soon become clear.) The

calculation is quite similar to the calculation of Eulerg(N (F- x F4_,)) in the proof

of Theorem 11.1.4. The only difference is that Eulerg(N(F. x Fy_r)) had a factor

of —A2 due to deformations of automorphisms of P! which deform 0 and co. This

factor is not present in Eulerg(N(F. x F_.)), since the composition with the

projection to the P! factor of P* x PTM of all maps in Ly always fixes 0 and oo by

definition of Lg.

Putting all of this together, we see that the contribution of F! x F}__ to the

integral (11.71) is

X3, 85 REVTERY
Hj#i()‘i = A5)

/ i};(EmerG(V;,z,l)) IT (0 = A9)
(Fl)a o (A — cp:)Eulerg(N(F))

-

/ i};_r(EulerG(V:i—r,Z,l)) Hj;ei()\i - /\j)

(Fi_)a ag—r(—h - cF;_r)EulerG(N(Fé_r)) :

In the above, a, and aq—, are the orders of the relevant finite automorphism groups,

and cr; and cp,__ are the restrictions of eI (L) and cF'(La—r,1) to Fy and Fy__

respectively.

By Corollary 9.1.4, it follows that the integral (11.71) is obtained by summing

the above contribution over all F’ and F);__ and then summing from ¢ = 0 to n.

Then multiplying by ¢¢ and summing over all d > 0 gives the left hand side of

(11.70).

In order to relate this to the right hand side of (11.70), recall the formula for

Z; v given in (11.68): :

Z. (q fi) -1+ i qd Z(,’) / if‘(EulerT(szi,Z,l)) Hj;éz‘()‘i - )‘j) )
wWWi\g, o = (fir)'r ar(fi - cr)EulerT(Np)

As explained in (11.60), Zif) is the sum over all components Mr in the fixed point

locus of Mg (PTM,d) which map to g; under e;. If we switch from d to r, we can

then write the above formula as

et % (Bulerp (V5 ) I 2 (Re — A7)
Ziv(gh)y =1+ Z q Z/ = 2 i ; :

“t & S ar (R — cp; )Eulerr(N(F)))

Furthermore, we can replace T with G = C* x T since C* acts trivially on P".

If we now expand the right hand side of (11.70) using this formula for Z;y, one

easily sees that the result is precisely the expression for the left hand side of (11.70)

described in the previous paragraph. Hence we have proved (11.70), and the lemma

follows as explained earlier.
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The formula for Z;,y just given shows that Z;y can naturally be regarded as

a formal power series in A~!. Hence it is surprising that the expression W(z, k)

defined in Lemma 11.2.12 is a polynomial in i. As we will see, this will play an

important role in the proof of the uniqueness lemma (Lemma 11.2.14).

We next unify the properties of the Z;y as expressed in the previous three

lemmas. Hence we will consider collections {Z;}7, such that Z; € Q(};)[[FTM?, q]]

for all 7. Then, following [Pandharipande3], we make the following definition.

DEFINITION 11.2.13. We say that a collection {Z;} is of class P if

(i) Z:(0,K) =1 for alli.

(%) Z; satisfies the regularity condition satisfied by Z;y in Lemma 11.2.10.

(1) Z; satisfies the recursion condition satisfied by Z;y in Lemma 11.2.11.
(tv) If we define W(z,h) as in Lemma 11.2.12 using Z; in place of Ziy, then

W (z, k) lies in H*(BT)[H)[lg, ]]-

Note that {Z; v}y is of class P by the three lemmas mentioned in Defini-
tion 11.2.13. We can now state the crucial uniqueness lemma.

of class P. If for all 0 < i < n, we have Z; = Z! mod k2 whe=n these expressions
are ezpanded formally in powers of TM%, then Z; = Z] for all i.

Proor. We will follow the proof of [Givental4, Kim2]. Put Z; = }", Z; 4%,

and write Z] similarly. We know that Z,, = io = 1 since {Z;} and {Z} are

of class P. Hence we can inductively suppose for some do > 0 that Z, 4 = Zl 4

for 0 £ d < dy and 0 < i € n. Being of class P implies that the recursion of

Lemma 11.2.11 applies to both {Z;} and {Z}. Combining this with our inductive

hypotheses, we see that for all i, Z] ; — Z, 4, can be expanded as a polynomial in

R Put

LEMMa 11.2.14 (Uniqueness Lemma). Suppose that {Z;}7, and {Z!}2, are

Di(R) = Z{ 4, — Zi.g, = B2 (A;h71 + B; + O(h))

where A;, B; € C(A;) and r; > 0. .Since Z; = Z! mod /=2, Zi"do = Z; 4, will follow

once we show that r; can be taken to be 0 for all 4.

Hence we need to prove that r; > 1 implies 4; = B; = 0. For this purpose,

let W and W’ be the expressions built from {Z;} and {Z!} respectively using the

formula of Lemma 11.2.12. Then our inductive assumption easily implies that the

coefficient of g% in W’ — W is given by

i )\,‘ Zj a;

= [l = A)
If we substitute the above formula for D; into this expression and simplify, we see

that the coefficient of g% in W' — W has the form

T /\1 Z] a;

i=0 Hj#i(’\i =)
Since {Z,} and {Z]} are of class P, we know that W and W’ are polynomials in

k. Thus A~2r (A:dpz + 2B;) is a polynomial in A, and it follow r; > 1 implies
A, = B; = 0. This completes the proof of the lemma. ]

e (e®h Dy (k) + Di(—h)).

MR (Aydoz + 2B; + O(h)).

Before proving the Mirror Theorem, we need two more ingredients. First, we

need to assign weights to the variables which occur. We assign the weight 1 to
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each of the variables \;, p, i, and weight n + 1 — 3 a; to g. Below, when we use

the term “homogeneous”, it will be with respect to these weights. Then we have

the following lemma which shows that being of class ‘P is unaffected by certain

coordinate changes.

LEMMA 11.2.15. Consider formal power series f(q) € qQl[q]l, end g{(q),h(q) €

gH*(BT){[g]], each homogeneous with degrees deg f = degg = 0,degh = 1. Then,

if {Z:}Y1g is of class P, so is {Z]'}]o, where

Z(g,h) = e(f(q)+h(q)/h+9(q)/\t/h)Zi(qeg(q)’ B).

Proor. For the case when Zj a; = n+1, a careful proof can be found in

[Pandharipande3, Lemma 10]. That argument easily generalizes to > ,8; < n+1l,

so that we will omit the details. O

At last we sketch a proof of Givental’s Mirror Theorem for nef complete inter-

sections in PTM.

PROOF OF THEOREM 11.2.2. We need to show that Iy, and Jy agree after an

appropriate homogeneous change of variables. As in the case when V = 0, our

strategy will be to create equivariant versions of Iy and Jy and then prove an

equivariant version of the theorem.

The equivariant version of Jy is Jr from (11.65). Dropping the exponential

from Jp gave Sy in (11.66), and then dropping Bulerr(V) gave Sy. Finally, we

obtained Z;y by the formula

Ziy = / Syue = i;,-(s'v)-
®TM)r

»

We know that Jp is uniquely determined by the Z;y, and {Z; v} is of class P

by Lemmas 11.2.10, 11.2.11 and 11.2.12. Note also that with the above weights,

Sy, is homogeneous of weight 0. This can be seen from (11.66) and three easy

facts: the bundle V, , has rank Y_5_, a;d, the fibers of e; : Mo(P",d) — P"

have dimension (n + 1)d — 1, and a typical term in the expansion of 1/(h—cr) is

k. /RET!. We leave the details to the reader.

Turning our attention to the equivariant version of I, we define

oo £ ajd

(11.72) 5'{;(11, B =1+ qu I;-[J=1 dm::l(a]p + mh) ,

d=1 Hj=o [Tzi(p — A +mh)

and then let

Ip = eto+t2)/ A Bulerr(V) Siy(g, A).

The nonequivariant limit of It as A; — 0 is clearly Iy. Also observe that 5’{, is
homogeneous of weight 0. Finally, we define

Zy= [ Sus =58
®TM)r

One can verify that {Z], }{, is of class P. We omit the details of the straightfor-

ward but somewhat lengthy verification.

In order to compare Iz and Jp, first note that

Jp = ettt/ % Eylerr (V) (1 + o(ATM1)).
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This follows from the same argument used to prove (11.45), which gave the asymp-

totic expansion Jy, = elto+:1H)/R Eyler(V)(1 + o(FTM1)).

Now consider a change of variables of the form to — 1o + f(@)h + h(q), t; —

t1+¢(q), and let J be the expression obtained from Jr by this substitution. Then

the above asymptotic expansion implies

T = eltotta?)/R Bulerr (V) (ef @ + e/ @h(q)hTM! + e/ Dg(q)phTM! + o(ATM1)).

If we expand It in the same manner, we see that there is a unique choice for f, g, h

such that I = J# mod A~2 (this is similar to what we did in (11.46)). Also note

that f,g are homogeneous of degree 0 and h is homogeneous of degree 1 since Sy,

and S}, are homogeneous of degree 0.

In order to prove the theorem, we must show that I = Jjl. With this goal in

mind, first note that the change of variables t; — t; + g(q) takes g = % to ged(®),

It follows that applying the change of variables to

Jr = etto+tP)/R Bylerr (V) Sy(q, B)

gives

J4 = elto+f(@i+h(a)+(t1+9(a)p) /R Eulerr (V) gv(qeg(q)fi)

= e(0+01P)/R Bylerp (V) ef (D+1{(0)/A+9(0)p/h G (409(9) Ry

= elto+41P)/% Bulerr(V) 53 (g, A),

where

51 (g, ) = F(@+h(@)/+0(@P/h § (409(9) R).

If we then set

zr, = / Sy U =13 (8Y),
®)r

then It = Jy, is equivalent to Z; , = Z}, for all 4.

We next claim that the collection {Z]'), }2., is of class P. To prove this, observe

that the above formulas for §)) and Z!,, imply

Z!y (g, k) = ef (@+h(a)/h+g(a) /R Zi,v(qeg(q), B).

since 45, (p) = A;. It follows from Lemma 11.2.15 that {Z,,}7 is of class P since

{Ziv}isois.
Now the theorem follows easily. We know that {Z; 1} and {Z;',,} are of class P,

and It = J7 mod h~? implies Z],, = Z', mod A~2 for all 5. Hence the hypotheses

of the uniqueness lemma (Lemma 11.2.14) are satisfied, and we conclude that Z] |, =

Z",, for all i. As noted above, this implies I = J#, and taking the nonequivariant

limit as A; — O show that Iy, equals Jy after the required change of variables. This

completes our proof of the Mirror Theorem. 0

We now make a few remarks on the relationship between the approaches to the

Mirror Theorem discussed in this section and in Section 11.1. The recursion relation

given in Lemma 11.2.11 plays a similar role to the gluing identity of Lemma 11.1.2

in Section 11.1.3. Combining the recursion relation with the polynomiality property

of the double construction in Lemma 11.2.12 corresponds to the Eulerity property

discussed in Section 11.1.3. Furthermore, the uniqueness property of Lemma 11.2.14

corresponds to Theorem 11.1.7 in Section 11.1.4. Note also that the —2 appearing
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in the bound 5d—2 in the statement of Theorem 11.1.7 corresponds to the matching

of 2 coefficients (those of 1,%7!) in the proof of the uniqueness lemma given here.

Finally, both approaches use mirror transformations to identify two different formal

series. A more detailed comparison of these two approaches appears in an extensive

footnote in [Givental5], which also gives a genus 1 version of the mirror theorem.

11.2.5. Toric Complete Intersections. We next turn to the extension of

the Mirror Theorem to complete intersections in smooth toric varieties [Giventald].

The main result is reproduced as Theorem 11.2.16 below. We will then discuss

how the Toric Mirror Theorem relates to one of the main themes of this book,

namely mirror symmetry for Calabi-Yau manifolds as given by the Batyrev mirror

construction. The section will conclude with some interesting examples.

Suppose that Xz is a smooth toric variety associated to a fan %, and assume

that £,...,Ls are line bundles on Xy generated by global sections. Then put

V = @f.,L; and let X C Xz be a smooth complete intersection defined by a

generic global section of V. In this situation, we want to define cohomology-valued

functions Iy and Iy which generalize what we did in Section 11.2.1.

We first set up some notation. For each p € X(1), we abuse notation and

let D, also denote the cohomology class of the associated divisor D, in H 2(Xx).

Following (Giventald], we put £;(8) = ffi ¢1(L;) and D,(B) = ffi D,. We also pick

#n integral basis Ti,..., T, of H*(Xg,Z) which lie in the closure of the Kahier

cone. As usual, weset § = Y ., tT;.

We now define two cohomology-valued formal functions. We begin with Iy,

which is given by

Iy = el +9/" Bujer(V) x

(11.73) T 15, 1592 (o (£0) + m) T, e oo (Do + mB)

BEM(Xx) Hf:lvn(r)n=-oo(cl(£i) + mh) Hp H‘r?':,n:(e)oo(DP +mh)

swhere ¢; = e% and ¢° = IT_, ¢g; Ti. Note that if X is the standard fan for P", then
we recover (11.38). Turning to Jy, we define

Jy = eto+9/A Buler(V) x

1.741 ) (1+ZQBPD“1€1*(

570

where [M 2( Xz, 8)]'*" is the virtual fundamental class of Mo,2(Xs,8) and PD is

Poincaré duality. Note that when Xz is convex, [Mo 2(Xs, B)]¥'" is just the usual

fundamental class and the formula for Jy can be simplified. For example, when X5,

is the convex variety PTM, (11.74) reduces to (11.52).

In this situation, the variables ¢; have degrees. As in Section 11.2.2, we define

deg ¢; by the equation

Euler(Vj, )
h— e (Ll) n [MO,Z(XEy fi)]Vir‘)>y

Cl(Xfi) - C]_(V) = Z(deg q,-) Tl
1=1

We will assume that X C Xy is a nef complete intersection in the sense of Sec-

tion 5.5.3, which means that —(Kx, + Zf=1 L;) is nef on Xy. When this occurs,

we will assume that the basis Ti,... ,T. of H?(Xg,Z) has been chosen so that
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—(Kxy + Zf=l L;) lies in the cone generated by the T;. This can always be ar-
ranged in the nef case. It follows that degg; > 0 for all 4.

We can now state Givental’s version of the Toric Mirror Theorem.

THEOREM 11.2.16. Let X C Xg be a nef complete intersection, and let I,

and Jy be as in (11.73) aend (11.74). Then Iy and Jy coincide after a triangular

weighted homogeneous change of variables:

to = to+ fo(Q)h+ h(g), ti—t;+ filg) for1<i<r,

where fo, f1... , fr, h are weighted homogeneous power series and deg fo =deg f; =

0, degh =1.

PROOF. As one might expect, the strategy of the proof is to create equivariant
versions of Iy and Jy. This is why toric varieties are important, since the torus

T C Xs provides the needed group action. However, the formula (11.74) shows

that we also need an equivariant version of the virtual fundamental class, and since

localization plays such a central role in the proof, we see why a localization formula

for the equivariant virtual fundamental class is essential. Hence we make contact

with some of the issues discussed in Section 9.3.2.

We will not prove Theorem 11.2.16 here. The proof given in [Giventald] was

incomplete at the time it was written. In particular, the proof was predicated on

the existence of a good localization formula for the equivariant virtual fundamental

class, as indicated above. Such a localization formula has since been established

in [GPa]. Given the importance of Theorem 11.2.16, it would be desirable to have
the remaining details of the proof written down carefully. We have full confidence

in the conceptual framework created by Givental and believe that these details will

be forthcoming, much as was done in {|BDPP, Pandharipande3] for Proposi-

tion 11.2.1 and Theorem 11.2.2. O

Orne can also ask how the formal function Jy defined in (11.74) relates to the

Givental function Jx from Section 10.3.1, where i : X — Xy, is the zero locus of

a general section of V. The basic idea is that Jy should compute those genus 0

gravitational correlators corresponding to cohomology classes which come from the

ambient space. Thus we expect Jy to contain some but not all of the information

present in Jx. In one case, the relation between Jy, and Jx is easy: when V = 0,

we have X = Xy, and here one can show without difficulty that Jxy = Jy,. When

V is nonzero, the situation is more complicated, since Jy, takes values in H*(Xg)

and Jx takes values in H*(X). For Xy = P, we showed in Proposition 11.2.3

that Jy = 41(Jx). This is true more generally when Xy is convex and V is ample.

However, we don’t know if Jy = 41(Jx) holds in the situation of Theorem 11.2.16.

One problem is that H?(Xg) — H?(X) need not be surjective, so that Jyx may

involve more variables than Jy. If we let H*(V) be the image of i* : H*(Xg) —

H*(X), then it may be that we first need to take an appropriate projection of Jyx
onto H*(V)—this might be called the “toric” part of Jx—and then Jy, should be

t; applied to this toric part. In general, we feel that the exact relation between Jy

and Jyx is a question worthy of further study.

Finally, we should also make some comments about what Theorem 11.2.16 says

in the case of a Calabi-Yau complete intersection. As in Chapter 4, we will suppose

that A is a reflexive polytope and Xy is the toric variety obtained from a maximal

projective subdivision. We will further assume that Xy is smooth.
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For simplicity, we will consider the case when V C Xy is an anticanonical

divisor, which we can also assume to be smooth. Then the nef hypothesis of The-

orem 11.2.16 is certainly satisfied, so that Jy, and Iy are related by a coordinate

change. As just explained, Jy tells us about the genus 0 gravitational correlators

coming from the “toric” part of V. So presumably the formal function Iy should

tell us something about the mirror V°.

We studied this in Section 5.5, and let’s review what we discovered there. First

recall from Section 5.5.3 that Iy, satisfies the GKZ equations determined by a set .A

described in (5.42). Since Z(1) = A° N M — {0}, we see that A = (A° N M) x {1}.

Now let V° be the Batyrev mirror of V', which is determined by the reflexive

polytope A°. Then recall from Section 5.5.2 that the GKZ equations for A =

(A° nm) x {1} are Picard-Fuchs equations for ¥°. This looks good, except for

the following two complications. First, the GKZ equations don't contain all of the

Picard-Fuchs equations, so that we haven't proved that Iy, comes from periods of

V° (though this is claimed in [Givental4| without proof). Second, Section 5.5.2

doesn’t deal with the full moduli space of V°, but rather the smaller moduli space

given by deformations of V° coming from the ambient toric variety.

It follows that we don't yet have a complete understanding of how Theo-

rem 11.2.16 relates to mirror symmetry as discussed in earlier chapters of this

book. In the case when the Calabi-Yau hypersurface V is a threefold, we are hope-

ful that the conjectures made in Section 8.6.4 should follow from Theorem 11.2.16.

We will give an example of how this works in Example 11.2.5.1 below. In general,

the relation between mirror symmetry and Theorem 11.2.16 is a question which

should definitely be investigated further.

We will close this section with two examples which illustrate the power of

Theorem 11.2.16. The first is an example that we have seen many times before

in this book, namely Calabi-Yau hypersurfaces in the minimal desingularization of

P(1,1,2,2,2).

Example 11.2.5.1. Let T be the fan obtained from the usual fan for P(1,1,2,2, 2)

by subdividing the cone spanned by (-1, -2, -2,—-2) and (1,0,0,0), inserting the

edge spanned by (0, —1,—1, —1). For this fan, we have

(1) = {(-1, -2,-2,-2),(1,0,0,0), (0, 1,0,0),

(11.75) (0,0,1,0),(0,0,0,1),(0,-1,-1, -1)},

where we have abused notation slightly and identified an edge with its primitive

generator.

This fan is the unique maximal projective subdivision of the standard fan of

P(1,1,2,2,2). Note that the convex hull of the points listed in (11.75) is the poly-

tope A° used in Batyrev’s construction. In this context, we now get Calabi-Yau

hypersurfaces V C Xg. In Example 6.2.4.3, we showed that the Kahler cone is

spanned by the classes of the toric divisors D; and D3, indexing toric divisors us- -

ing the order in (11.75). We noted in that example the linear equivalences Dy ~ D»,

D3 ~ Dy ~ Dg and Dg ~ —2D; + D3, which allow us to express all divisor classes

in terms of Dy and Ds. We also observed that V € [4D;|. In the notation of this

section, we therefore put V = Ox.(4D3).

We order the Kahler cone generators as (D3, D1) to keep notation consistent

with earlier chapters. Let {81, 52} be the basis of M(Xy) dual to {Dj, D1}, so

that a general element 8 € M(Xx) is 3 = dy 01 + d282. The intersection numbers
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computed in Example 6.2.4.3 imply 8 = DD, and 5; = D§—2D2D; (here, we are

thinking of 3; as an element of H®(Xy) via Poincaré duality). In Example 6.2.4.3
we also observed that |D,| defines a map Xy — P, so that D? = 0.

To see what the Toric Mirror Theorem says in this case, we begin by writing

out Iy. Adapting (11.73) to the present example shows that

I = elto+Da+Du/m 4 p § <Zl 22 x

(11.76) » o
ey (4D3 +mA) 1% __ (D3 — 2Dy + mh) )

1% (D) + mA)2 [1%_, (Ds + mh)3 [122-%% (Dy — 2Dy + mh)

Notice we have put z; = e’ fori = 1,2. We use z; rather than g; in order to be con-
sistent with Chapters 5 and 6. The coordinates z; were defined in Example 6.1.4.1

and are used in numerous examples in these two chapters.

The Toric Mirror Theorem says that Iy, equals Jy after an appropriate change
of variables. Furthermore, since

Jy = e(to+6103+t2D1)/h4D3(1 + o(fi,_l)),

we can read off the change of variables by expanding I, Using (11.76), we get

(11.77) Iy = €e*/"4D, (yo+y1 1,;,1 +9n 212 +Y2.1 D;,lD +y2 21},35' +Ys—3— ;aDz),

where

S D Fm—
&> 24 (d21)*(dr1)3(dy — 2d2)!

Vg =tigo+ Y 2zl @ ,)2(d1(,‘;‘j& 7y AV (4dh) — 3W(d1) — W(d; ~ 2dy))
dy >2d;

dl d2( 1)d1+1 (2d2 - dl - 1)'(4d1)’

+ 2 CECEd; <2d;

4dY12 = tayo +41>2242 11252 (ds 1)2((11(1)&2()11 &) (2¥(d; — 2dz) — 2¥(d2))

& (1B FH2dy — dy - 1)’(4d1)’
-2 Z 52 (d202(d; 13

dy<2d;

Here, we have used the classical function

Un) =3 %
t=1

Notice that yo, 711 and y; 2 are functions of ¢, t;.

Using this, one easily sees that the functions fo, fi, f2, h from Theorem 11.2.16
are given by

el =yo, fi = ‘*""tlva y—lz—tz,h:(),
Yo Yo
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so that the coordinate change is ty — to+ fohi and £ — t;+ fo = y1;/yo fori = 1, 2.

Hence, for

(i ta) moa(tnta)
(s1,82) = ) :

wo(ti t2) * yolts, t2)

the Toric Mirror Theorem implies that

Iy(ty, t2)

Yo (t11 t2)

Setting q; = e*, the above change of variables becomes

) = (o (222). 0 (2)).
which is the mirror map in this case. The coordinate g2 was computed by a different

method in Example 6.3.4.2. The results are in complete agreement.

We will next explain how (11.78) relates to the “classical” notion of mirror sym-

metry, as formulated in terms of the A-model and B-model correlation functions.

Our strategy will be to show that Iy/yo satisfies some differential equations which

involve the B-model correlation functions. Hence Jy satisfies the same differential

equations, which will lead to the desired equality of correlation functions.

We start with I,. We know from Proposition 5.5.4 that Iy satisfies the GKZ

equations coming from V°, but as noted above, these don’t give all of the Picard-

Fuchs equations of V°. However, we computed the missing Picard-Fuchs equations

in Example 5.5.2.1—see (5.39) and (5.41). A straightforward computation shows

that I, satisfies these equations. (There should be a general theorem to this effect,

but we don’t know a proof.)

The Picard-Fuchs equations constructed in Example 5.5.2.1 used a particular

choice for the holomorphic 3-form Q. We also know that yo is the unique period

(up to a constant) which is holomorphic at 2, = 22 = 0. It follows that Q = Q/yo

is the normalized holomorphic 3-form (up to a constant), so that Iy /yo satisfies

the Picard-Fuchs equations for .. This remains true if we switch variables from

z; = et to q; = e%i.

In terms of the coordinates ¢;, the normalized Yukawa couplings of V° lead to

some nice Picard-Fuchs equations. In this situation, the normalized couplings are

given by

(11.78) Jv(s1,82) =

Yije = QA V5,5, Vs, Q,
T (2m)? Sy

where §; = 8/8s; and V is the Gauss-Manin connection of the mirror family. This

agrees with the definition given in Section 8.6.4, since there we wrote ¢; = ey

while here we are using g, = ¢*2.> Using the cohomology basis T} = ¢*(Ds), T> =

i*(D1) of H?(X), our goal is to prove

(11.79) (T3, T5, Ty = Yaje foralli,j, k.

27This could a priori differ from the normalized couplings defined in Definition 5.6.3. There,

we assumed the integrality conjecture and used the mirror map as defined in Section 6.3.1. Here,

we don’t assume the integrality conjecture and we use the toric version of the mirror map from

Section 6.3.3. Using the detailed description of the monodromy given in [CAFKM], one can check

that these agree in this case. But we prefer to show that one can still get good results without

knowing everything about the monodromy.
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Recall from Example 8.6.4.1 that we can compute Yi;x explicitly. Hence (11.79)
gives explicit formulas for all of the A-model correlation functions (T}, T;,Tk) of V.

To prove (11.79), we first note that we can describe the Gauss-Manin cop-
nection using the Y;x. More precisely, we claim that H3(V°,C) has a basis

€0y €1, €2, €', €%, €3 such that ey = and

Vs (eo) = e, Vi(es) =Y Yisuek, Vs (e)) = 6,5€% Vs (e2) =0,
k

just as in (5.67). For the normalized Yukawa coupling defined in Section 5.6.4, this
was proved in Proposition 5.6.1 and the discussion following the proof. Although

the proof required the integrality conjecture, everything carries over to our situation
provided we work over C rather than Z.

Using the above basis, it is straightforward to compute that

v (Yuzvgl -~ Y11Vg Vs,

. Y&y — Y111Y122
Ji=0

since € = ep. Hence this is a Picard-Fuchs equation, and since Iy /yo satisfies the
Picard-Fuchs equations, we obtain

52 8°
i(Ynzg;? 'YlllT_nan)I Jvo = 0

9s; Yi: —YiuiYize vise ==
By the Toric Mirror Theorem (11.78), we conciude that

Fod 22

(11.50) 0 (tonty s
Os, Y3, — YinYio

where we are ignoring the dependence on t;,. We should mention that explicit

calculations show that Y3, — Y111 Y122 is not identically zero.

Our next step is to relate this to the Givental function Jy of V. The inclusion
i : V C Xy induces an isomorphism i* : H?(Xg) — H2(V), and we showed
in Example 6.2.4.3 that the Kahler cone of V is spanned by T} = i*(D3) and
Tp =1"(D1). Thus Jv and Jy can be regarded as functions of s;, 52 (again ignoring
to). However, we don’t know that #(Jv) and Jy are equal. When the ambient
space is P", we proved equality in Proposition 11.2.3. But our proof used the
convexity of P", which no longer is true for Xz. However, examining the proof of
Proposition 11.2.3, one can check that 4(Jy) = Jy still follows, provided that

(11.81) 3+ (Mo2(V, B)]"TM) = Euler(V.) N [Mo2(Xs, B)]"TM.
We suspect this is true, but we don’t yet have a complete proof. Hence, for the
remainder of this example, we will assume that (11.81) holds. In particular, this
allows us to assume that 41(Jy ) = Jy.

One can also check that i is injective in our case. This, together with (11.80)
and #/(Jy ) = Jy, implies that

)Jv(sl, s2) =0,

2 2

(11.82) 72 (Ymnz‘%g — Yl sl
) 08y Y&, — YinYia

The factors of & were added in order to make (11.82) a quantum differential equation
in the sense of Section 10.3. In order to apply Theorem 10.3.1, we expand (11.82)

)Jv(sl, s2) =0.
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to obtain

(mrzs‘% L T )73 952 s, 4, ) =0,

Y. —YinYiz ( a, k) ) Jv(s1,82)

where P(h9/0s, q, ) is some differential operator. Then Theorem 10.3.1 implies

that the substitution A9/8s; — T;, h — 0 gives a polynomial relation in the small

quantum cohomology of V. Thus

Yieh*D+«T ~YinThi*Ti+x T3

Yis — YinYiz
=0

in H*(V). Since

/ T+ Ty * Tpe = (T3, T, Tk)
v

by (8.7), the above equation implies

Y (T, T4, 1) - Vi (T, T, Ta) = 0.

The argument just given works for general subscripts, so that

Yiik (To, To, Te) — Yabe (T5, T, Tie) = 0

for arbitrary 1 < i,j,k,a,b,¢ << 2. From here, it follows easily that there is a

= constant ¢ such that

(Ti, Tj, Tie) = cYijx foralld, g, k.

Regardmg (T3, Ty, Tk) as a formal function of g;, g2, we have that (Ty,T1,h)(0,0) =

[, T3 = 8. Thus, in order to show ¢ = 1, we must show that ¥1;,(0,0) = 8.

For this, let N7 be the logarithm of the monodromy transformation about the

boundary divisor z; = 0 in the complex moduli space of V°, keeping the notation

of Example 5.6.2.1. The explicit calculations in [CdFKM] show that there are

integral flat sections %, a; of which are part of a Z-basis and satisfy (a2, =1

and N3(3?) = —8az. Note that the monodromy in [CAFKM] was taken with

the orientation opposite to the one taken here. An argument similar to that of

Example 5.6.4.1 leads to Y3;;(0,0) = 8. Hence ¢ = 1, and we have proven (11.79).

In Example 8.6.4.1, (T3, T1, T:) was denoted (H, H, H), and we have now proved

the formula for this correlation function given in that example. We can also relate

(11.79) to the Hodge-theoretic version of the Mirror Conjecture from Section 8.6.4.

As explained in the discussion surrounding (8.75), the equality of the A-model and

B-model correlation functions up to a constant implies that Conjecture 8.6.10 holds

in this case. More precisely, we have proved that for the threefolds V and V° consid-

ered here, this conjecture follows from Theorem 11.2.16 and (11.81). Furthermore,

using the previous paragraph, one can show that (V°, V) is a mathematical mirror

pair in the sense of Definition 8.6.1.

However, there is more that can be said about this example, for we have yet to

use the full power of the Toric Mirror Theorem. As we will see below, the equality

(11.78) will give us a remarkable formula for the Gromov-Witten potential of V.

We will use the following basis of the even cohomology of V:

T() = 1, T] = i*(Da), T2 = i'(Dl),

i"(DiDs) o _ (D3 ~2D1Ds) 1o _ i*(D1D3)
T! =

4 4 ’ 4
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One can check that 77,72 are dual to T},T; under cup product, and similarly
for 7° and T,. In this situation, we have variables tg, 51, sz, and according to
Proposition 10.3.4, Jy is given by the formula

I eto/"< -+ fi (SIT] + 3212) (asl 632 )

-3 
——

h (S] —_— 82 2@) )5

where ® is the Gromov-Witten potential of V.

We still are assuming (11.81), so that Jy = 41(Jv). Since i1(i*(a)) = o U 4D;3,
applying % to (11.83) gives

D, 8% DiD3 8% D - 2D, DyD= to/h4 .._i —_ _—
Jy(81,82) =€ D3(1+31 3 + 82 3 +631 12 +632 4K2

% o® D, D3o® T 913 )* (31651 * 52532 ) 4ard
To compare this to Iy /yo, note that (11.77) can be written in the form

I 4, 43) = e/, (1 +¥1Ds w2Dy | ya1+2y:2 DiDy
¥ Yo B vo R Yo h?

+ yig_ Dg - 2D1D3 + .LL%DID:L;

Yo 12 y B )
We will write the mirror map (s;, 82) = (¥1.1/Y0, ¥1,2/%0) 85 (51, 52) = ¥ (¢, 2).

As we saw in (11.78), the Toric Mirror Theorem implies that the above two expres-
sions are equal via the change of variables (s;,s;) = U(t1,t2). Comparing coef-
ficients, we see that the Gromov-Witten potential of V' is given by the following
explicit formula:

2(11.84) B(E(y,t2)) = 2(&_1M R &),
Yo Yo Yo Yo Yo

where ¥(t1,%2) = (y1,1/y0,¥1,2/¥0) is the mirror map. This is remarkably similar
to the formula for the Gromov-Witten potential of the quintic threefold derived in
Section 11.1.

A final observation is that comparing the above formulas for Jv and Iy, /yy also
gives some nice formulas for the A-model correlation functions. For example, we
know that

Hence, if we differentiate Jv(s1,82) = Iy [yo(t1, t2) twice with respect to s; and
compare the coefficients of D; D3, we obtain

_ 0% o1+ 2y(11.85) ML T = 5 (T)

This formula for (T, T}, 7}) is much easier to derive than the formulas considered
in Example 8.6.4.1. Apother way to view ( 11.85) is that it gives an elegant formula
for the normalized Yukawa coupling ¥7,;.

This example is very suggestive, for many of the computations should generalize
to other toric Calabi-Yau threefolds. In particular:
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o The formula (11.84) should generalize to any Calabi-Yau threefold V which is

a nef complete intersection in a toric variety Xg. Since H 3(Xg) = HY(V)

need not be surjective, one would have to define the “toric” part of the

Gromov-Witten potential of V. Then this toric part should be expressible

explicitly in terms of Iy /ye by a formula similar to (11.84).

e The Gromov-Witten potential is a potential function for the A-model cor-

relation functions (T3, T}, Tk). Hence (11.84) implies that the coefficients of

Iy /yo give an explicit potential function (in the sense of Lemma 5.6.2) for

the B-model correlation functions Y;;, of V°. It should be possible to prove

this directly, without using the Toric Mirror Theorem.

o In (11.85), we in essence gave a simple formula for ¥3;;. In general, there

should be similar formulas for the normalized Yukawa couplings of V° in

terms of Iy /yq. As above, it should be possible to prove this directly,

We feel that there are many interesting open questions which concern 3-dimensional

nef compilete intersections in toric varieties.

For our second application of Theorem 11.2.16, we will study what happens

when V = 0, so that X is the toric variety Xx. In this case, we will see that the

Toric Mirror Theorem combines nicely with earlier results to describe the quantum

cohomology of X5;.

Example 11.2.5.2. In this example, we will show that if X = Xx is a smooth

Fano toric variety, then the Batyrev quantum ring H,(X) from Example 8.1.2.2

agrees with the small quantum cohomology ring. We carry this out by combining

Theorem 11.2.16 and Proposition 5.5.4. We will also see that when —Kx is nef

instead of Fano, H(X) may differ from the quantum cohomology ring, though

Theorem 11.2.16 still implies that there is a relation between the two rings. We

will illustrate this for X = F,.

Since we are considering the toric variety X = X itself, we let V be the trivial

bundle in (11.73), and accordingly write Iy and Jy as Ix and Jx respectively. Note

that when X = PTM, this agrees with notation used in Proposition 11.2.1. We have

0

(1186) Ix = e(tu+5)/h Z qfi HP HT;=—OO(DP + mh) ’
serrixy 1L, [15:% (D, +mh)

where § =3 . t;T; and D,(8) = ffi D,. We also have the formulas (11.39) for Jx

from Section 11.2.1. Then we get the following generalization of Proposition 11.2.1.

PROPOSITION 11.2.17. If X = Xy is e smooth Fano toric variety, then we have

Ix=Jx.

PROOF. We know from (10.37) that Jx = e(toT8/R(1 4 o(kTM1)). If we knew

that the same were true for Ix when X is Fano, then the change of variables

in Theorem 11.2.16 would be the identity, and then the proposition would follow

immediately from the Toric Mirror Theorem. Hence it suffices to show that

(11.87) Ix = eorD/R1 4 o(ATMH)).

To prove this, fix 3 in the Mori cone M(X) and p in L(1), and consider the

fraction

H?n-—-—-co(DP + mfi‘)

T2 (Dp +mh)m=—0oQ
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from (11.86). We will study the leading term when this is expanded as a power
series in i1, ¥ D,(8) > 0, then the leading term in k~! is easily seen to be

L p-nm
(Do (B!

If D,(B8) = 0, then the fraction is just 1, and if D,(B) = -1, then the fraction is
just D,. Finally, if D,(8) < ~1, then the leading term in s~ is

(-1)"P@-1p, (=D, (8) — 1) A~ (Pa(8)+1)

In all cases, the leading power of 5! is at least D,(8) and is strictly greater if and
only if D,(8) < 0.

Now, fixing 8 and multiplying over all P, we see that the leading power of 7!
in the coefficient of ¢” in the expansion of (11.86) is at least 3" »Ds(8). However,
we saw in Chapter 3 that 3 - D, = —Kx. It follows that in the coefficient of q°,

the leading power of 57! is at least — ffi K.

Since X is Fano, we see that — ) 5 K x is strictly positive, so that the leading
power of TM! is at least one. However, in order to prove (11.87), we must show that
it is at least two. The above discussion shows that the only way the leading power
can be 1 is if — f; Kx =1 and D,(8) > 0 for all p. Since ~Kx = 2o Dy we see
that there exists po such that D,,(8) = 1 and D,(8) = 0 for all p # po. We must
show that this can’t occur.

We will use Lemma 5.5.3 from Section 5.5.3 with k = 0. For B € Hy(X,Z), the
lemma implies

(11.88) > . D,B8)v, =0,

where v, is the primitive generator of pNN. This follows because D,(8) = (D,-B).
In the situation of the preceding paragraph, (11.88) leads to v,, = 0, a contra-
diction. This completes the proof of (11.87), and the proposition now follows
immediately from Theorém 11.2.16. O

We will next use Ix = Jx to study the small quantum cohomology ring of X
when X = Xy is Fano and smooth. The basic idea is that by Section 5.5.3, Ix
satisfies a certain GKZ system. Hence Jy satisfies the same equations, and then the
theory of quantum differential equations from Section 10.3 will imply the desired
relations in quantum cohomology.

To carry out this strategy, we need to see what Proposition 5.5.4 looks like in
this situation. We are dealing with the case when V = ®F_, L; is the zero bundle,
so that k = 0. Then (5.42) reduces to

A={y,:pe (D)},

and the lattice A of Lemma 5.5.3 is precisely the lattice of integer relations among
the v,. Furthermore, the lemma identifies H>(X,Z) with A via the map which
takes 3 to the relation (11.88).

But A is also the lattice of the corresponding A-system, which means that for
each 8 € A, (5.47) gives the operator

Qg = H afp(fi)_ H 3;Dn(fi)

D,(8)>0 D,(8)<0
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since 3 corresponds to the relation (11.88). In this formula, 8, = 8/8X,, and ¢° is

defined in terms of A, via

(11.89) ¢ =[r0-®
P

by (5.43). If we now let

F=ef Z qfi Hp H?n:—oo(DP +m)
D, )

then Proposition 5.5.4 implies Dflf == (0 for all 8.

Note that [ is obtained from Ix by setting to = 0 and £ = 1. We can simply

multiply I by e*/®, but we need to handle /i more carefully: we put / back in using

the operator Og 5 obtained from Uz by replacing each 9, by /0,. Thus

Ugn = H (F‘Bp)Dp(fl)_ H (wp)—Dp(fl)-
Dy(8)>0 D,(B)<0

We omit the easy proof that Dfif = 0 implies g slx = 0.

We next define
-

D,,3,h= H App(fl) Dfl,h

D,(8)>0

and observe that O} ,Tx = 0. If we set §, = A,0,, then adapting (5.51) to the

present situation implies

Qpn = I #6s(h6, — B)--- (B8, — (Dp(B) — D)
D,(8)>0

11.90

( ) —‘Ifl H Mp(h‘sp"h)"'(fifip"("Dp'fl"l)h)-
DP(B)<O

Since X is smooth and Fano, Proposition 11.2.17 implies that Ix = Jx, and

we conclude that D;,‘ sJx = 0. But before we can apply the theory of Section 10.3,

we need to write O , as a differential operator in AB/8t;. Recall that the t; are

variables associated to the basis T, of H?(X,Z). We can relate these to the X, as

follows. If we let 8; € Ha(X,Z) be the dual basis to the T;, then set

q; = H AE»(B])'

P

Then one can easily show that

S Ts
] 2
7

equals ¢® as defined in (11.89). Setting g; = e, we see that ¢° has its usual
meaning relative to the t;.

In general, we can’t express A8, in (11.90) in terms of the %d/8t;. The key

observation is that the dual torus 7° = M ® C* acts on the A, via m®t- A, =

t(m'"fl>)\p for m ® t € T°. The variables g; are invariant under this action, and as



392 
11. THE MIRROR THEOREM

we observed in (5.48), for T°-invariant functions, we have

g(11.91) R, = JZDp(fij)hE.

This identity allows us to write (11.90) in terms of hO/8t;, which means that 0 5 isa quantum differential operator in the sense of Section 10.3. Then Theorem 10.3.1implies that 0% » gives a relation quantum cohomology under the substitutions

hiHI}, h—s 0.
ot;

Applying this to (11.90), we obtain the relation

(11.92) H DPe8) = ¢B H D;D‘,(g)

D,(B)>0 D,(8)<0

in the small quantum cohomology of X.
We can use this to show that the Batyrev quantum ring H}(X) is isomorphicto the small quantum cohomology ring of X as follows. Let H* (X) have the smallquantum product *, and let Clz,] be a polynomial ring with a variable z, for each# € L(1). Then z, — D, defines a ring homomorphism Clz,] — H*(X), and using(11.92), we see that the ideal

I 220 - ¢ II 2@ s¢ HQ(X’Z)>

Dy(B)>0 D,(8)<0

is in the kernel of this map. But as 8 varies in Hs(X,Z), the relations (11.88)

2 D= 3 -D,(8w,
D, (8)>0 D,y(8)<0

span the lattice A. It follows that the above ideal coincides with the ideal (8.17),which is the form of the quantum Stanley-Reisner ideal SR, (X) given in [Batyrev2,Definition 5.1]. Thus SR, (T) lies in the kernel of our map Clz,] — H*(X). Thiskernel also contains the ideal

PE)=(TCi . (muv)z;: me M),

so that we get a well-defined ring homomorphism

Cle,l/(P(E) + SR.(T)) — H*(X).
Since Example 8.1.2.2 defined the Batyrev quantum ring H(X) to be the abovequotient ring, we obtain a ring homomorphism

¢ H(X) — H*(X),
where we remind the reader that B~ (X) is a ring under the small quantum product.We now claim that % 1s an isomorphism. To prove this, remember than wealways assume that our basis T; of H*(X) lies in the interior of the Kihler coneof X. This allows us to take the limit as ¢; — 0, in which case the above map ¢becomes the isomorphism describing the usual cohomology ring of the toric varietyX. Since we are dealing with finite dimensional vector spaces, it follows that ¢ isan isomorphism in a neighborhood of 9; = 0. Furthermore, if we think of the q°as formal variables, it follows that ¢ is an isomorphism, so that when X is smoothand Fano, the Batyrev quantum ring coincides with the usual small quantum ringof X, as claimed.
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If we weaken the hypothesis that X is Fano and instead assume that —Kx

is nef, then Theorem 11.2.16 still applies, but the result we get is more compli-

cated because Ix = Jx may fail to hold—there may be a nontrivial change of

variables involved. The key point is that when —K'x is only nef, we may have

Ix # elto+8/R (1 L o(hTM1)). Then Theorem 11.2.16 says that Ix and Jx are re-
lated by a nontrivial change of variables. In this situation, we still get interesting

relations in the small quantum ring of X. Proposition 5.5.4 still applies, so that

Qg nlx = 0, where Oy ; is given by (11.90). But rather than 0 ,Jx = 0, which

leads to (11.92) by Theorem 10.3.1, we first have to change variables, so that we

will get a “twisted” version of (11.92) in H*(X). This is the precise sense in which

H*(X) is related to small quantum cohomology of X.

We will illustrate this for X = F,. We consider the standard fan ¥ for F, with

2(1) = {(11 0), (0,1), (-1,2),(0, _1)}7

where we have identified the 1-dimensional cones of ¥ with their primitive gener-

ators as usual. We denote the corresponding toric divisors by Dy, Dy, D3, D4, and

we will abuse notation by letting D; denote its divisor class in H%(F;). The Kahler

cone of F; is spanned by the class f of a fiber and the section H satisfying H? = 2.

In terms of the toric divisors, we have Dy = D3 = f, Do =H —2f, and Dy = H.

We have —Ky, = 3_ D; = 2H, which is nef. Note that D, is the —2 curve on F.

The Mori cone is generated by the —2 curve and the fiber, i.e., by H — 2f and f.

We need to compare the functions Iy, and Jr,, and since a change of coordi-

nates will be required, we will follow the notation of the previous example and use

variables z; = e* for Iy, and g; = €% for Jy,. The cohomology basis of H2(F;) is

T, =fand To = H.

Our first study Ir,, which is given by

IFn(tl,tz) = e(to+t1f+t2H)/fi Z 2P x

BEM(F2)

Moz (f +8)* Mmoo (B = 2f + ) [Tone oo (H +m0B)
2 (f+mh2 [P —of + mk) [[E2___(H +mh)m=-—0oQ m=--0oQ N=-0C

As in the proof of Proposition 11.2.17, we are especially concerned with the coeffi-

cient of A~} in the expansion of Iy,. The argument of that proof shows that this

coefficient is determined by those effective classes 8 such that —Ky, - 8 = 0 and

D; - 8 < 0 for precisely one 7. It is easy to compute that the only such 3 are given

by 3 = kD3 for any k > 0. For this 3, we have D; - 8 =D3-8 =k, Dy - 8 = —k,

and Dy-8=0.

Now suppose that 8 = kD2 = k(H — 2f) for some k > 1. Then one computes

that 28 = 2/ #2H'% = ;% and the coefficient of z¥ in the above formula for I, is

[ gea (B —2f +mh) (-1,
- _— -1

S = ) g e,

It follows that

Ir, (£1,82) = e(tu+t1f+t2H)/h(1 ~(H = 2f)F(z0)k~ + o(h—l))’

where

Fa) =3 Q%;!T)Qllzf.
k=1
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Theorem 11.2.16 requires

f0=07 fl =2F(z1)1 f2=_F(zl)v h=0a
and then the Toric Mirror Theorem implies

Jr, (81, 82) = Ig, (t1,82),
where

(s1,82) = (t1 + 2F (e, t, ~- F(e')),

or, putting z; = e* and ¢; = e*,

(11.93) (91,92) = (21627 (1), zge=Fla)),
Surprisingly, the change of variables s; = ¢; + 2F(z1) appeared earlier as (6.59) inChapter 6. If we compare this with (6.60), we see that

s log(1—221‘\/1—421) 1*221—\/1—1211= ? = -2z 
2z

This implies z; = ¢, /(1 4+ ¢1)?, and then one easily sees that the inverse of theabove coordinate changes are given by

o 4

(11.94) (e1222) = (s (1 + @)

and

(11.95) (t1,t2) = (s1 — 2log(1 + €), 52 + log(1 + e1)).

These coordinate changes appear (with different variable names) in [Giventald] inan example which considers the projective bundles P(Op: ® Oa(~-1) @ Op1(-1))and P(OP] <) OPI <) OPI (—2)) on Pl.
Now let’s compute some relations in H,(F2) and in the small quantum coho-mology of Fo. Let 8 € H, (F2,Z) be the Poincaré dual of f. We want to computethe operator D},’h. We let A; correspond to D; and 6; = \;8/0\,. Using (11.90),

one computes that

D,IB,h = M1M2 — 22

since 28 = z, (recall that we are now using z; rather than g;). By ( 11.91), we have

8 o 8= Are— — 2h—— =h_——ok o Mg M (Ene
and then Proposition 5.5.4 implies

8 8 811.9 R (B —2h—) - Ir, (t1,t2) = 0.(11.96) ( i ("a; ~ 25 22> Fa(fr, o)
In the Batyrev quantum ring HZ(F2), this corresponds to the relation
(11.97) H-(H-2f)=z,.

Now we apply the Toric Mirror Theorem to see what this says about Jg,. Thekey point, of course, is that the change of variables will give a slightly differentdifferential equation. If we apply the chain rule to (1 1.95), we get

3 8\ l-gq /, 0 d 8 8("’”55 2"la::)*“—1+q1 (”'afz ‘”‘5;)* "o = 5y
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Combining these and using the fact that ¢, is independent of ¢; by (11.93), we

obtain

1—-q d 8 3 ) l-q, 9 3 3 I-qA—(h— —2h—) — = h—(h— —2R—) ~1+¢11< 6t2( Oty Bt1> %2 1+q 3t2( Oty 5t1> 1+¢11Z2
o 7]

=he— (R — 2} — -By ( By le) (1 -aq),

where the last line uses z; = q2(1 + q1) from (11.94).

In the above display, the operator on the left annihilates Iy, (£1, t2), so that by

Theorem 11.2.16, the operator on the right annihilates Jg,(s1, s2). Hence

a a3 a
Ao —2h-—— ) - qo(1 —o ( Bos le) @(l-aq)

is a quantum differential operator, so that by Theorem 10.3.1, the substitution

ho/8sy — T = f, RO/Bsy; — To = H,

gives the relation

(11.98) Hx(H-2f)=ql-aq)

in the small quantum cohomology of Fo. On the other hand, (11.97) shows that

H-(H ~2f) = 23 = q2(1 + q1) in the Batyrev quantum ring of F;. We conclude

that these rings are not the same.

We should also mention that there is a more elementary way to compute small

quantum cohomology on F», because F; is a deformation of Fy = P! x Pl. Let f

again be the fiber of Fy, and let s be the section coming from the fibration over the

other P1. Since F; and Fy are deformation equivalent, they have the same quantum

cohomology by the Deformation Axiom. Identifying their cohomologies, we see that

the fibers f correspond, and H = s + f. Since P! x P! is Fano, we can compute its

small quantum cohomology using the Batyrev quantum ring of Fg. This gives the

relations

sxs=¢q/, fxf=g¢"

We then compute .

Hx(H=2f)=(s+f)x(s—f)=sxs—fxf=q¢ —¢°=q¢f -1

Since ¢f = of Yq5'7 = g and "~/ = of (=D g (A1)
above calculation agrees with (11.98).

= g1¢2, We see that the





CHAPTER 12

Conclusion

We have now reached the end of the book. Along the way, we have seen some

wonderful mathematics and hopefully have learned something about the phenom-

enon of mirror symmetry. In this final chapter, we will look back at what we've

done and what remains to be done. We will also discuss briefly some of the many

aspects of mirror symmetry not covered in earlier chapters.

12.1. Reflections and Open Problems

In the process of studying mirror symmetry, we’ve used an amazing amount of

algebraic geometry: we've discussed toric varieties, variations of Hodge structure,

mixed Hodge structures, differential equations with regular singular points, hyper-

geometric equations, the Frobenius method, Kahler cones, moduli spaces of many

sorts, symplectic geometry, algebraic stacks, enumerative geometry, the Clemens

conjecture, equivariant cohomology, and localization—just to mention a few. The

way in which mirror symmetry draws together so many parts of algebraic geometry

indicates that our common enterprise is more deeply connected than we realize.

But there is more to mirror symmetry than simply making intense use of known

mathematics. In this book, we have also witnessed the introduction of new ob-

jects into the study of algebraic geometry, including Kahler moduli, stable maps,

Gromov-Witten invariants, quantum cohomology, the A-variation of Hodge struc-

ture, quantum differential equations, Euler data, and cohomology-valued formal

functions. When one combines these with some of the ideas from physics which are

still mathematically ill-defined, we get some glimpses of what 21st century algebraic

geometry may have in store for us.

We also want to emphasize that the subject of mirror symmetry is richer—

much richer—than what is presented in this book. Besides a simply enormous

physics literature which we have barely touched upon, there are also numerous

mathematical aspects of mirror symmetry we haven’t covered at all. We will give

a partial list in Section 12.2. But even when we restrict ourselves to the vision of

mirror symmetry presented in the previous chapters, there is much that remains to

be done, as we will now explain.

12.1.1. What is Mirror Symmetry? The basic problem is that we have yet

to formulate a fully satisfactory version of the Mirror Theorem or even the Mirror

Conjecture. If we look back at what we’ve done so far, we can discern three distinct
flavors of mirror symmetry:

e In Section 8.6, we explored the suggestion made in [Morrison7] that a

mathematical version of mirror symmetry should be formulated as an iso-

morphism between the A-mode} variation of Hodge structure of a smooth

anm
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Calabi-Yau manifold and the geometric (or B-model) variation of Hodge
structure of its mirror.

¢ In Section 11.1, we studied the work of [LLY], which formulated the Mirror
Theorem as an equivalence of Euler data P and Q@ after a mirror transforma-
tion. This implies a relation between certain hypergeometric cohomology-
valued functions, from which we could compute the Gromov-Witten poten-
tial of the quintic threefold.

¢ In Section 11.2, we discussed the theorems in [Givental2, Giventald],
where the Mirror Theorem is formulated as the equality of the cohomology-
valued functions Iy and Jy after a mirror transformation. The resulting
equation gave an equivalent description of the Gromov-Witten potential of
the quintic threefold.

These three approaches were previewed in Section 2.6 and intersect beautifully
in the case of the quintic threefold in P*. But the above approaches to mirror
symmetry also have some distinct differences, such as the following:

¢ The Hodge-theoretic approach of Section 8.6 only makes sense for Calabi-
Yau manifolds. ’

¢ The techniques of [LLY] apply to a variety of situations, including the quin-
tic threefold and the multiple cover formula studied in Section 9.2.2. But as
of this writing, these results are limited to P* as ambient space.!

¢ The theorems stated in [Givental2, Givental4] apply when we have a nef
complete intersection X in a smooth toric variety Xs. There are nontrivial
results even in the case when X = Xy, but these techniques do not apply
to the multiple cover formula, for example.

The last two, of course, are exciting because one is finally able to actually prove
some of the wonderful formulas of mirror symmetry. Their limitation becomes
apparent when we remember the way equivariant cohomology and localization are
used in the proofs of the Mirror Theorems in Chapter 11. These techniques require
the presence of a group, which explains why toric varieties play such a prominent
role. However, recall that these results also apply to more than just the Calabi-
Yau case. It follows that the approaches of [LLY] and [Givental2] may be part
of a broader “toric” version of mirror symmetry which includes Calabi-Yau toric
complete intersections as a special case.

On the other hand, the Hodge-theoretic version presented in Section 8.6 has
nothing to do with toric varieties. Any projective Calabi-Yau manifold V has
an A-variation of Hodge structure, and one can ask if this is the same as the
geometric variation of some other Calabi-Yau, which would then be the mirror
V*°. Furthermore, as indicated by the remarks following Example 11.2.5.1, the
relation between the Hodge-theoretic version of mirror symmetry and Givental’s
version of the Mirror Theorem has yet to be worked out. Finally, as we will see
in Section 12.2.6, there are versions of mirror symmetry which involve much more
than what’s been discussed in previous chapters. All of this suggests that we are
still far from a complete understanding of the mathematics of mirror symmetry.

Finally, we remind the reader that according to physics, mirror symmetry is the
equivalence of two physical theories which are at present ill-defined mathematically.

!We just learned (November 1998) that the authors of [LLY] will soon annocunce a toric
version of the material covered in [LLY]. When their preprint appears. we should have a detailed
proof of a Toric Mirror Theorem.
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As these theories get put on firmer mathematical foundations, we will get a deeper

understanding of the mathematics of mirror symmetry. This may fill in some of the

gaps just mentioned but also may lead us in completely unanticipated directions.

12.1.2. Open Conjectures. As just explained, the major open problem in

mirror symmetry is to formulate and prove a general Mirror Theorem. Related

to this, there are also interesting questions about the existing versions of the Mir-

ror Theorem. For instance, we should better understand the connection between

Givental’s version of the Toric Mirror Theorem from Section 11.2.5 and the Toric

Mirror Conjectures from Section 8.6.4. In Example 11.2.5.1, we used this result

together with (11.81) to derive formulas (11.84) and (11.85). It would be highly

desirable to see how far these formulas can be generalized.

However, the problems presented by the Mirror Theorem aren’t the full story.

The reader should also remember that as we developed the tools needed to state

the versions of mirror symmetry considered in this book, we encountered some

interesting unsolved problems along the way. We will now review some of these

conjectures, with the hope of encouraging people to work on them.

We begin with four conjectures concerning complex and Kihler moduli which

we discussed in Chapters 5 and 6:

e The Integrality Conjecture from Section 5.2.2 explains how the integer struc-

. ture of the weight filtration should interact with the monodromy at a max-

imally unipotent boundary point.

e Section 6.1.2 constructed some distinguished boundary points on the sim-

plified moduli space of a Calabi-Yau toric hypersurface. Conjecture 6.1.4

asserts that these are maximally unipotent boundary points.

e The Cone Conjecture from Section 6.2.1 states that the Kahler cone of a

Calabi-Yau manifold V of dimension > 2 should be rational polyhedral mod-

ulo the action of Aut(V).

e Conjecture 6.2.8 in Section 6.2.3 describes the toric part of the Kéhler cone

of a Calabi-Yau toric hypersurface.

All of these are interesting conjectures in their own right as well as being important

components of mirror symmetry.

Besides these moduli conjectures, there are plenty of other open problems re-

lated to mirror symmetry for algebraic geometers to think about. Here are some

that we find especially interesting:

e When we studied the GKZ equations in Section 5.5.2, we saw that these

equations gave some but not all of the Picard-Fuchs equations. There

should be a description of the missing Picard-Fuchs equations. Also, the

cohomology-valued formal function Iy, should satisfy the Picard-Fuchs equa-

tions of the mirror.

e Section 5.6.3 discussed the normalized Yukawa couplings and potential func-

tion of a Calabi-Yau threefold at a maximally unipotent boundary point.

When the threefold is a toric complete intersection, it should be possible

to compute the Yukawa couplings and potential function in terms of an

appropriate Iy, as we did in Example 11.2.5.1.

o There are questions concerning the virtual fundamental class [M, (X, 8)]**
which deserve further study. Section 7.3.2 discussed equivalences between

the various definition of Gromov-Witten invariants and virtual fundamen-

tal classes. There is also the question of how [M, (X, 3)]""TM relates to
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[Mgn(Y,B)]"'" when X is a complete intersection in Y. We saw in (11.81)
that this is important to understanding the relation between Givental’s func-
tions Jx and Jy.

» The definition of quantum cohomology involves an infinite sum, and in Sec-
tion 8.1.1 we conjectured that this sum converges in a neighborhood of a
large-radius limit point. Note that this conjecture is needed in order for the
A-variation of Hodge structure to make sense.

As above, we feel that these are interesting problems, independent of their connec-
tion to mirror symmetry.

Some of the most important unanswered questions in this book concern enu-
merative geometry. Initially, the predictions of [CAGP] for the quintic threefold
appeared almost magical—somehow, physics seemed to give effortless solutions to
enumerative problems which lay far beyond the reach of standard methods in al-
gebraic geometry. Since then, mirror symmetry has emerged as a powerful tool for
computing Gromov-Witten invariants, bu understanding the enumerative meaning
of a Gromov-Witten invariant remains a nontrivial problem. Even for the quintic
threefold V', the instanton number nyo has a potentially complicated relation to
degree 10 rational curves on V because the Clemens conjecture is not known in
degree 10. Even if it were known, n1¢ would not be the number of such curves, as
we explained in Section 7.4.4. Another good problem is Conjecture 7.4.5, which
attempts to give a direct definition of instanton numbers, rather than defining them
indirectly in terms of the Gromov-Witten invariants (o,0,) (as we did in the text).
But these questions about instanton numbers are only part of the picture. As shown
by the examples and references given in Sections 7.4 and 8.3, mirror symmetry has
led to an explosion of papers on enumerative geometry, many of which have nothing
to do with Calabi-Yau manifolds or Gromov-Witten invariants.

As we said in the preface, this book should be regarded as a report on the
work-in-progress known as mirror symmetry. While some parts of the field have
solid foundations, qthers are still in a rapid state of flux. The definitive book on
mirror symmetry has yet to be written. Nevertheless, we hope that the somewhat
limited view of mirror symmetry presented in our book has conveyed some of the
wonder and excitement of this amazing area of algebraic geometry.

12.2. Other Aspects of Mirror Symmetry

Having now completed our main goal, we note that there are many other as-
pects of mirror symmetry that we have not treated in this book. Mirror symmetry
continues to be an active area of research as of this writing, and many new ideas
are being developed. This has led to other new developments in mathematics and
physics. We do not even attempt to give a complete list here, but instead give a few
samples. Of the topics discussed below, some are purely mathematical in nature,
while others are more closely related to the physics, though all have interesting
things to say about the mathematics.

12.2.1. Rational Curves on K3 Surfaces. Fix a generic K3 surface con-
taining a divisor class C with €2 = 29 — 2. Then |C| is a g-dimensional linear
system of curves of arithmetic genus g. Let n(g) be the number of rational curves
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in this linear system. Yau and Zaslow [YZ] conjectured the amazing formula

o

1+ n(9)e’ = 9/A(g),
g=1 )

where A(q) is the usual modular form of weight 12. A mathematical exposition

including proofs of intermediate steps was first written in [Beauville2]. The idea

is that each rational curve occwrring in this linear system is assigned a multiplic-

ity equal to the Euler characteristic of its compactified Jacobian (the same Euler

characteristic appears in [YZ] as well). This multiplicity can be related to stable

maps [FGvS]. In addition, it is also shown in [FGvS] that the multiplicity is al-

ways positive, so that the Yau-Zaslow formula has a definite meaning as a count of

rational curves with appropriate multiplicities.

The Yaun-Zaslow formula has been generalized in [G&ttsche] to a conjecture

about curves with nodes on algebraic surfaces. A generating function is proposed

to count the number of curves with n nodes in n-dimensional families of curves.

In the case of a K3 or Abelian surface, the conjectured generating function can be

expressed in terms of quasi-modular forms. This conjecture has been proven for K3

surfaces in [BL], and we supply a little more detail in this case. Consider a linear

system of curves C with C? = 29+ 2n —2. Then |C] is a (g +n)-dimensional linear

.system of curves of arithmetic genus g + n. The set of curves in |C] with n nodes

can be expected to form a g-dimensional subfamily. Let N,(n} denote the number

of curves of geometric genus g with n nodes passing through g generic points in

this linear system. Then it is proven in [BL] that

o0 d g q

;Ng(n)qn = (ZEGz(Q)> @)’

where G2{g) is the Eisenstein series

1 o

Galg) =—5; + :4_:_1 a(k)g",

o(k) being the arithmetic function 3 ,, d. Note that G2 and its derivatives are

quasi-modular functions.

12.2.2. Mirror Symmetry for K3 Surfaces and Arnold’s Strange Du-

ality. In the late 1970’s, various people showed how a certain duality for K3 surfaces

could be used to explain Arnold’s strange duality for exceptional unimodal critical

points. In recent years, it was realized that this duality for K3 surfaces is part of the

two-dimensional version of mirror symmetry [Dolgachev3, Kobayashi, Ebeling,

GN1, GN3J.

Mirror symmetry for a K3 surface has a different flavor. For a Calabi-Yau

manifold V of dimension > 2, the Kihler cone is open in H?(V,C), but for a K3

surface S, this is no longer true, and the relation between the Kihler cone and the

lattice H2(S,Z) is quite subtle. Hence it is no surprise that lattice theory plays an

important role in the mirror symmetry of K3 surfaces. We saw some hints of this

in the Voisin-Borcea construction given in Section 4.4.

One can also do string theory on a K3 surface S, as explained in [AMS3].

There is still a SCFT moduli space, but because h%9(S) # 0, the deformations of

the complex and Kahler structures no longer decouple, so that we no longer get the
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local product structure pictured in (1.3). This subject is too large to be summarized
in a few paragraphs. We refer the reader to [AM3, Aspinwall] for further details
and references to the literature.

12.2.3. The McKay Correspondence. ¥ G ¢ SL(n, C) is finite and C*/G
has a resolution ¥ with Ky = 0, then the McK. ay correspondence [Reid6] asserts
that irreducible representations of G shonld give a basis of H*(Y,Z) such that the
character table of G corresponds to Poincaré duality on Y. This conjecture has
consequences concerning the physicist’s Euler number [Vafal, Roan2] and the
string theoretic Hodge numbers of Batyrev and Dais [BD].

12.2.4. Hyper-Kihler Manifolds. A compact complex manifold M is holo-
morphically symplectic if it has a closed nondegenerate holomorphic 2-form. By the
Calabi-Yau theorem, M has a metric and a quaternionic action parallel with re-
spect to the Riemannian connection, so that M is hyper-Kahler. In [Verbitsky],
Verbitsky proves that a hyper-Kahler manifold is its own mirror.

12.2.5. D-branes and T-Duality. In this book, we have regarded mirror
symmetiry as the equality of two SCFTs associated to a mirror pair (V,w) and
(V°,w®) (see the discussion in Chapter 1). The states in the SCFTs are called
perturbative states, and these include the states corresponding to cohomology classes
on V and V°. Inrecent years, it has been realized that the theory can be enlarged in
a sense to include non-perturbative states, including those associated to D-branes.
A D-brane is essentially the worldvolume swept out by a p-dimensional object as it
propagates through spacetime. These objects are sometimes called Dp-branes for
definiteness, and they are (p+ 1)-dimensional due to the extra time dimension. For
example, a D1-brane looks exactly like a string worldsheet (as drawn in Chapter 1).
The states themselves arise from open strings whose boundaries lie on the D-brane.
See [Polchinskil] for a survey of D-branes. The physical theories associated to
(V,w) and (V°,w®), including non-perturbative states, are presumed to be equal,
making mirror symmetry an even stronger assertion.

In [SYZ], Strominger, Yau and Zaslow argue that mirror symmetry is what
physicists call T-duality. We give a quick outline of the idea. Note that the moduli
space of points on V° is isomorphic to V° itself. This is again naturally identified
with a part of the moduli space of DO-branes on V°. To see this, recall from
Chapter 1 that string theory is a 10-dimensional theory, of which V° contributes
6 dimensions. The time dimension is one of the remaining 4 dimensions. For
any point p € V°, as p propagates in time, it sweeps out the worldline of a DO-
brane. Mirror symmetry predicts that this should correspond to a part of the
moduli space of D3-branes on V. Further analysis suggests that the mirror V° of
a Calabi-Yau manifold V' should be the moduli space (suitably complexified and
compactified) of certain special Lagrangian tori on V. Asexplained in [Morrisons],
T-duality may in this manner eventually lead to a purely mathematical construction
of mirror symmetry. In this description, both V and V° admit maps to the same
3 (real) dimensional base, with generic fiber a (real) 3-torus. The fibers of V and
V*° in this fibration are presumed to be dual tori, hence the name “T-duality”.
This could lead to a topological construction of mirror manifolds. Aspects of this
assertion have been checked for the Voisin-Borcea threefolds [GW] and K3 surfaces
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[GW, Morrison8)]. For elliptic K3 surfaces, T-duality is related to the Fourier-

Mukai transform [BBRP)]. Interesting consequences for topology are conjectured

in [Gross3].

12.2.6. Homological or Categorical Mirror Symmetry. In 1994, Kont-

sevich [Kontsevich3] proposed a “homological” version of mirror symmetry where

the Mirror Conjecture is formulated as an equivalence of categories. In this situa-

tion, V° being mirror to V means that the derived category of coherent sheaves on

V° should be equivalent to the derived category of Lagrangian submanifolds of V'

with unitary local systems. The basic idea of creating a category out of Lagrangian

submanifolds is due to [Fukaya]. In [PZ], it is suggested that one may want to

restrict to special Lagrangian submanifolds of V. Note that Lagrangian submani-

folds use the Kahler structure of V (the A-model), while coherent sheaves use the

complex structure of V° (the B-model). '

It is explained in [Kontsevich3] that certain deformations in the Lagrangian

category associated to V should lead to a construction of the quantum cohomology

of V as a deformation of the ordinary cup product. The deformations here take

place naturally over all of H*(V), rather than just over H}(V) as in the definition

of the A-model connection in Section 8.5. Since this should be related to the

. deformation theory of coherent sheaves on V°, this suggests a rich structure which

goes beyond the usual deformations of complex structure. A hint of what this may

entail is given by the formula

(12.1) HH"(V°)= € HY(V°,APOys),
pHa=n

where HH stands for Hochschild cohomology. This cohomology group is to be

identified with the tangent space to a thickening of the complex moduli space

of V°. Note that the summands in (12.1) are precisely the (p,q) eigenspaces of

the operators (Q, Q) from the N = 2 superconformal algebra written in the first

line of (1.2). The idea of a thickening of the moduli space with tangent space

(12.1) first appeared in [Wittend]. It is very nice that these spaces should arise

naturally in mathematics. As explained in [Kontsevich3], HH?(V°) consists of

the usual first-order deformations of the complex structure of V° together with

certain non-commutative deformations of the sheaf of algebras Ov., together with

some terms which are still mysterious from the point of view of deformations. Since

H?*(V°,0ys) and HO(V°, A2©y-) vanish for Calabi-Yau threefolds of dimension at

least 3, these last two terms are not a problem, but the meaning of HHTM(V°)

for n # 2 is still something of a mystery. Also, [Kontsevich3] points out that

the Lagrangian category of V has a conjectural A, structure. (However, an A.-

category is not a category in the usual sense—composition is no longer associative—

so that one needs to be careful here.) This again suggests that on the mirror side,

there should be richer structures in the category of coherent sheaves on V°. All of

this is evidence that we have not yet discovered the full scope of mirror symmetry.

An example of this equivalence of categories has recently been worked out in

[PZ] for the case of an elliptic curve. This article also points out that T-duality

could follow from the homological version of mirror symmetry. In this context,

given a point p € V°, the coherent sheaf Oy, of the subvariety {p} C V° should

correspond to a certain special Lagrangian submanifold of V. This is a version of
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the idea discussed in Section 12.2.5, where the mirror V° is the moduli space of
certain (real) Lagrangian tori in V.

12.2.7. X3 and Elliptically Fibered Calabi-Yau Manifolds. Calabi-Yau
manifolds with K3 fibrations or elliptic fibrations have been the subject of numerous
papers in mathematics and physics. The interest of these fibrations is quite natural
mathematically. In the study of linear systems on Calabi-Yau manifolds, K3 and
elliptic fibrations play a special role because they arise naturally in the log-minimal
model program for Calabi-Yau manifolds. In the ordinary minimal model program,
one tries to understand varieties as fibrations where the fibers are minimal models.
The analog for log-minimal models of Calabi-Yau varieties is for the fibers to be
Calabi-Yau of lower dimension. A classification of these fibrations is begun in
[Oguiso].

Mirror symmetry has also been studied for K3 fibrations. It is suspected that
the mirror of the fiber should influence the mirror of the total space. This idea is
discussed in [GN2], and examples of such spaces can be found in [AKMS, HLY3].

K3 and elliptic fibrations arise in physics as well, for different reasons. The
main impetus for the study of K3 fibrations has been duality. More specifically,
type II string theory associated to a Calabi-Yau threefold is believed to be dual to
a heterotic string theory associated to the product of a K3 surface and an elliptic
curve. This means that for certain parameter values of the respective theories, the
theories become identical. Vector bundles on K3 surfaces are part of the data needed
to define this particular type of heterotic string theory. Numerous mathematical
checks of this have been performed.

Elliptically fibered Calabi-Yau threefolds arise in physics as spaces that can be
used to construct models for F-theory [Vafa3]. Since bundles also play a key role in
F-theory, this suggests further study of principal bundles over Calabi-Yau manifolds
with elliptic fibrations [FMW1]. Mathematical studies of these bundles can be
found in [Donagi, FMW?2]. Closely related to this is a duality between F-theory
and heterotic string theory. This duality arises in theories resulting from Calabi-Yau
threefolds which admit both K3 fibrations and elliptic fibrations. Such dualities may
be viewed as an extension of the analogous result in one dimension lower. Duality
of F-theory associated to elliptically fibered K3 surfaces and heterotic string theory
on an elliptic curve is supported mathematically by a beautiful identification of
the moduli of bundles on an elliptic curve with the moduli of certain types of
Weierstrass models of elliptically fibered K3 surfaces.

12.2.8. Conifold Transitions. A conifold transition occurs when a Calabi-
Yau threefold acquires nodal singularities and has a resolution which is still Calabi-
Yau. The SCFT arising from heterotic string becomes singular through this tran-
sition. However, it has been shown in [GMS] that type 1T string theory can avoid
singularities at conifold transitions {roughly speaking) since electrically charged
black holes associated to a vanishing cycle (thought of as a 3-brane?) on the orig-
inal manifold become massless when the Calabi-Yau becomes singular, and this
singularity compensates for the singularity in the theory that we mentioned before.,
These black holes then become elementary particles on the resolution. Assuming

2The D3-branes considered in Section 12.2.5 are special kinds of 3-branes. D-branes were notgenerally accepted until after [GMS] was written. It is now agreed that the 3-branes in [GMS)are in fact D3-branes.
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a Kihler version of Reid's fantasy [Reid5], one could then connect the physi-

cal theories coming from any two Calabi-Yau threefolds. This has been verified

for Calabi-Yau threefolds which are hypersurfaces in weighted projective spaces

[ACIM, CGGK], though the singularities may be non-nodal. Some aspects of

conifold transitions related to mirror symmetry are discussed in Section 6.2.4.

It is conjectured in {Morrison9} that the mirror of a conifold transition is a

conifold transition (and more generally, that the mirror of an extremal transition is

an extremal transition). This is checked in examples in [BCFKvS1, BCFKvS2].

12.2.9. Calabi-Yau Complete Intersections in Flag Manifolds. Here,

the key observation, made in [Sturmfels2], is that the Grassmannian G(k,n) can

be deformed flatly to a projective toric variety P(k,n). Furthermore, according to

[BCFKvS2|, P(k,n) is Fano, i.e., it comes from a reflexive polytope. Using this,

the authors of [BCFKvS1| give a mirror construction for a Calabi-Yau complete

intersections V' C G(k,n) by combining the Batyrev-Borisov mirror construction

from Chapter 4 with the extremal transitions discussed in Sections 6.2.4 and 12.2.8.

The basic ideas goes as follows. Suppose that V' C G(k,n) is a complete

intersection of hypersurfaces of degree d;,...,d,. As we degenerate G(k,n) to

P(k,n), V degenerates to a toric complete intersection V C P(k,n). We resolve

this using the smooth crepant resolution f’(k, n) — P(k,n), which then gives a
resolution V’ — V. If we view this as going from V’ to V by contraction and then
from V to V by smoothing, then we get one of the extremal contractions discussed

in Section 6.2.4 (in this case, the transition is a conifold transition because the

singularities of ¥ are especially mild). As we discussed in that section, mirror

symmetry suggests that there should be a “mirror” extremal transition, where the

mirror V’° of V' degenerates to V° and then resolves to the mirror V° of V.

In this situation, the mirror V* of V' C P(k, n) is known by the Batyrev-
Borisov mirror construction described in Section 4.3. By working out the corre-

sponding degeneration and smoothing, [BCFKvS1] is able to describe an explicit

mirror construction for Calabi-Yau complete intersections in a Grassmannian.

To computing Gromov-Witten invariants using this construction, [BCFKvS1]

introduces the factorial trick, which the paper describes as a naive version of the

Quantum Hyperplane Section Principle from Section 11.2.2. Another tool used in

[BCFKvS1] is the relation between quantum cohomology and quantum differeu-

tial equations, which we discussed in Section 10.3. Since the quantum cohomology

of a Grassmannian is known, one obtains a lot of information about the quantum

differential equations (called the quantum D-module in [BCFKvS1]). Then, us-

ing the Toric Mirror Theorem from Section 11.2.5 and the generalization given in

[Kim2|, the instanton numbers of numerous 3-dimensional Calabi-Yau complete

intersections in Grassmannians are computed.

All of this can be done in greater generality. Let F(n1,...,ne, n) denote the

(partial) flag variety consisting of all flags 0 ¢ Wy C --- € W, C C" where

dim W, = n;. In [GL), it is shown that F(n,,...,n¢ n) degenerates to a toric va-

riety P{ny,...,ne,n), generalizing the result of Sturmfels mentioned above. Since

P(ny,...,ng,n) is Fano by [BCFKvS2], it follows that the above construction

can be applied. We should also mention the paper [Batyrev5], which reviews the

constructions just described and considers what happens in general when a Fano

variety degenerates to a Fano toric variety.
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12.2.10. Other Topics from Physics. There is a long list of recent de-velopments in the physics of mirror symmetry which weren’t discussed in earlierchapters. Some of these have already been mentioned in this section, but there aremany others. For example, arguments from physics lead to the expectation that asupersymmetric field theory can be obtained as a limit of string theory as certaincurves in a Calabi-Yau manifold are contracted. Thus Calabi-Yau geometry givesa tool for analyzing these supersymmetric theories, especially their gauge-theoreticaspects. These field theories have “periods” that can be solved using mirror symme-try, leading for example to a derivation of the Seiberg-Witten curve and differentialwithout assuming any duality conjectures. See [KKV, KMV } for the use of mirror
symmetry in this regard and [KV, BJ PSV, BV] for other situations where quan-tum field theories are constructed using Calabi-Yau geometry. These theories arecalled geometrically engineered theories. An introduction to these theories can befound in [Mayr]. Mathematically, geometrically engineered theories give explicitpredictions for the dimensions of smoothing components in the extremal transitionsdiscussed in Section 6.2.4. The simplest example is the conifold transition, wherethe prediction from physics in [GMS] matches the mathematics. The mathematicalcalculation of the smoothing dimensions in this case follows from [Clemens|. Asof this writing, there is no mathematical proof of the correctness of the predictionfrom physics. This prediction was checked in examples in [KMP].
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Singular Varieties

Although complex manifolds are an important part of mirror symmetry, there

are many situations where singular varieties occur naturally. For example, the

Batyrev construction from Chapter 4 deals with potentially singular hypersurfaces

in simplicial toric varieties. This appendix will review the types of singularities we

will encounter.

All varieties considered in this book are Cohen-Macaulay, which means that all

of the local rings are Cohen-Macaulay. The key feature of a Cohen-Macaulay variety

X is that it has a dualizing sheaf, usually denoted wx. When X is smooth, wx is

the usual sheaf %, where d = dim(X), and because of this, we will often write

the dualizing sheaf of a general Cohen-Macaulay variety as fi‘}( Cohen-Macaulay

. varieties are nice because they behave well with respect to duality theory—see

[Odal] for a careful discussion. Another notation for 0% = wy is Ox (Kx), where

Kx is the canonical divisor. Note that in general, Kx is only a Weil divisor.

By standard commutative algebra, the dualizing sheaf wy of a Cohen-Macaulay

variety X is a line bundle & Kx is a Cartier divisor < all of the local rings are

Gorenstein. In this case, we say that X is Gorenstein.

A.1l. Canonical and Terminal Singularities

A point of a normal variety X is a canonical singularity provided that r Ky is

Cartier near the point for some positive integer r and there is a local resolution of

singularities f : Y — X such that

(A1) rKy = f*(rKx) + Y_ a:E;,

where the sum is over all exceptional divisors E; of f and a; > 0 for all i. Further-

more, if a; > 0 for all ¢, then the singularity is terminal. If X is Gorenstein, then

we can take r = 1 in the above equation.

These types of singularities arise naturally when studying canonical models and

minimal models of threefolds and higher dimensional varieties. More background

on the singularities themselves can be found in [Reid1] and [Reid4]. For Calabi-

Yau varieties, their relevance is obvious because the canonical class plays such a

prominent role in the definition of Calabi-Yau. For example, a minimal Calabi-

Yau variety V, as defined in Definition 1.4.1, has Gorenstein Q-factorial terminal

singularities. It follows that if V is not smooth, then any resolution f : W — V is

no longer Calabi-Yau. This is because the singularities of V are terminal, so that

Kw = Ky + Y, a; E; is nontrivial since Ky =0 and a; > 0.

Another source of these singularities comes from toric varieties. In [Reid1],

it is shown that Gorenstein toric varieties have at worst canonical singularities.

Below, we will see that the same is true for Gorenstein orbifolds.
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velopments in the physics of mirror symmetry which weren’t discussed in earlier
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supersymmetric field theory can be obtained as a limit of string theory as certain
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called geometrically engineered theories. An introduction to these theories can be
found in [Mayr]. Mathematically, geometrically engineered theories give explicit
predictions for the dimensions of smoothing components in the extremal transitions
discussed in Section 6.2.4. The simplest example is the conifold transition, where
the prediction from physics in [GMS] matches the mathematics. The mathematical
calculation of the smoothing dimensions in this case follows from [Clemens]. As
of this writing, there is no mathematical proof of the correctness of the prediction
from physics. This prediction was checked in examples in [KMP].
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Singular Varieties

Although complex manifolds are an important part of mirror symmetry, there

are many situations where singular varieties occur naturally. For example, the

Batyrev construction from Chapter 4 deals with potentially singular hypersurfaces

in simplicial toric varieties. This appendix will review the types of singularities we

will encounter.

All varieties considered in this book are Cohen-Macaulay, which means that all

of the local rings are Cohen-Macaulay. The key feature of a Cohen-Macaulay variety

X is that it has a dualizing sheaf, usually denoted wx. When X is smooth, wx is

the usual sheaf 0%, where d = dim(X), and because of this, we will often write

the dualizing sheaf of a general Cohen-Macaulay variety as fi‘)i( Cohen-Macaulay
varieties are nice because they behave well with respect to duality theory—see

[Odal] for a careful discussion. Another notation for Q% = wx is Ox(Kx), where

Kx is the canonical divisor. Note that in general, Kx is only a Weil divisor.

By standard commutative algebra, the dualizing sheaf wx of a Cohen-Macaulay

variety X is a line bundle < Ky is a Cartier divisor < all of the local rings are

Gorenstein. In this case, we say that X is Gorenstein.

A.l. Canonical and Terminal Singularities

A point of a normal variety X is a canonical singularity provided that rKx is

Cartier near the point for some positive integer r and there is a local resolution of

singularities f : Y — X such that

(A.1) rKy = f*(rKx) + ) a.E;,

where the sum is over all exceptional divisors E; of f and a, > 0 for all i. Further-

more, if a; > 0 for all i, then the singularity is terminal. If X is Gorenstein, then

we can take r = 1 in the above equation.

These types of singularities arise naturally when studying canonical models and

minimal models of threefolds and higher dimensional varieties. More background

on the singularities themselves can be found in [Reid1] and [Reid4|. For Calabi-

Yau varieties, their relevance is obvious because the canonical class plays such a

prominent role in the definition of Calabi-Yau. For example, a minimal Calabi-

Yau variety V, as defined in Definition 1.4.1, has Gorenstein Q-factorial terminal

singularities. It follows that if V is not smooth, then any resolution f: W — V is

no longer Calabi-Yau. This is because the singularities of V' are terminal, so that

Kw = Kv + 3, 6:E; is nontrivial since Ky =0 and a; > 0.

Another source of these singularities comes from toric varieties. In [Reid1],

it is shown that Gorenstein toric varieties have at worst canonical singularities.

Below, we will see that the same is true for Gorenstein orbifolds.
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A.2. Orbifolds

We begin by recalling what it means for a variety to be an orbifold.

DEFINITION A.2.1. A d-dimensional variety X is an orbifold if every p € X
has a neighborhood analytically equivalent to 0 € U /G, where G C GL{d, C)isafinite subgroup with no complez reflections other than the identity and U C C% is q
G-stable neighborhood of the origin,

In this definition, a complez reflection is an element of GL(d, C) of finite order
such that d — 1 of its eigenvalues are equal to 1. The group G in Definition A.2.1
is called a small subgroup of GL(d,C), and (U/G, 0) is called a local chart of X atp. Note that G is unique up to conjugacy by a theorem of [Prill].

The terms orbifold and V-manifold are interchangeable, and are the same asbeing quasi-smooth. For a toric variety, these are equivalent to being simplicial,
and here, the group G is Abelian. Thus a simplicial toric variety has at worst finiteAbelian quotient singularities.

A key intuition is that “over Q”, orbifolds behave like manifolds. For example,
the singular cohomology of a compact orbifold satisfies Poincaré duality, but only
with Q coefficients. Similarly, for a complete toric variety, the combinatorial de-
scription of H*(X, Z) when X is smooth works for *(X, Q) when X is simplicial.

We next study Gorenstein orbifolds. It is well known that every Gorenstein
orbifold has at worst canonical singularities [Reid1]. However, we also have the
following folklore result, which says that in the terminal case, a Gorenstein orbifold
has rather small singularities.

PROPOSITION A.2.2. If a Gorenstein orbifold has at worst terminal singulari-
ties, then its singular locus has codimension > 4.

PROOF. We can reduce to C?/G, where G is a small subgroup. Given g € G
of order r, let { be a primitive rth root of unity and write the eigenvalues of ¢ as
¢* where 0 < a; < r. By [Reid1], Gorenstein implies 218 =0modr, and by[Reid2], terminal implies 3" a; > r.

According to [Prill], the singular locus of C /G is the set

{.’E € CTM: g{x) = x for some g € G — {1}}/G.
If the singular locus has codimension < 4, then we can find ¢ # 1 in & whose
eigenvalues (suitably reordered) are ¢°,¢% (% 1,...,1. Then the Gorenstein and
terminal conditions imply r|(a+b+c) and a+b+c > . It follows that a+b+c¢ = 2r.
Then, applying the terminal criterion to 97! easily yields a contradiction. We leavethe details to the reader. 

O

When the orbifold is also toric, Proposition A.2.2 is proved in [Batyrev4,Thm. 2.2.9]. In dimension three, the proposition has the following immediate corol-
lary.

COROLLARY A.2.3. A 3-dimensional Gorenstein orbifold with at worst termi-nal singularities is smooth. 
0

In terms of the definition of Calabi-Yau from Chapter 1, we see that an orb-ifold V of dimension d is Calabi-Yau if and only if its canonical class is trivial
and H*(V,O) =0fori=1,... ,d— 1. This is because trivial canonical class imn-plies Gorenstein, which for an orbifold implies canonical. Furthermore, the above
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corollary shows that a 3-dimensional minimal Calabi-Yau orbifold is smooth, since

minimal implies that the singularities are at worst terminal.

We next define a suborbifold of an orbifold.

DEFINITION A.2.4. Given an orbifold X, a subvariety Y C X is a suborbifold

if for every p € W there is a local chart (U/G,0) of X at p such that the inverse

image of Y in U is smooth at 0.

It is easy to see that a suborbifold of an orbifold is again an orbifold. However,

the converse is not true: a subvariety of X which is an orbifold need not be a

suborbifold. This is because the singularities of a suborbifold are intimately related

to the singularities of the ambient space.

A.3. Differential Forms on Orbifolds

There is a nice theory of differential forms for orbifolds. Given p € X, consider

a local chart (U/G,0). Then a C* form on U/G is defined to be a G-invariant

C® form on U. There is a natural notion of patching of forms defined on different

charts. This enables us to define the de Rham cohomology groups Hp (X, R),

which are isomorphic to the usual ones (see [Satake]).

We can also do Hodge theory on orbifolds. Holomorphic p-forms on an orbifold

are defined using local charts (U/G,0) and are called Zariski p-forms on X. They

determine a sheaf we will denote fi‘)’( The Zariski sheaves have the following simple
characterization.

PROPOSITION A.3.1;\ If X is an orbifold and j : Xo C X ts the inclusion of the

smooth locus of X, then % = j.(Q% ), where Q% is the usual sheaf of holomorphic

p-forms on the complex manifold Xj.

An orbifold X is Cohen-Macaulay, and one can show that if d = dim(X), then

Q% is the dualizing sheaf of X. Thus our notation is consistent with the previous

section. The sheaves % have various other nice properties, including:

e There is a differential d : % — Q%" such that (Q%.d) is a resolution of
the constant sheaf Cx. R N R

e There is a natural product 0% ® Q% — (% such that the natural map

0% — Hom,, (%7, Q%) is an isomorphism.

We can also define Hodge groups HTM7{X), and the Dolbeault theorem

HY(X, Q%) = HPU(X)

applies in this situation (see [Baily1]). For an orbifold, the natural map to inter-

section cohomology

H*(X,Q) — IH*(X,Q)

is an isomorphism. Since the intersection homology of a projective variety has a

natural Hodge structure (see [Saito]), we see that H*(X,C) = ®pi o= HPY(X) has

a pure Hodge structure (but only over Q) and satisfies the Hard Lefschetz theorem.

This has interesting consequences for the combinatorics of simplicial polytopes (see

[Fulton3, Section 5.6]). Other references for the Hodge theory of orbifolds are

[Steenbrinkl, Steenbrink2].

A Kahler form on an orbifold is a real, smooth (1, 1)-form which is positive at

every point (on a chart (U//G,0), this means its pullback to U is positive). For

more details about Kahler forms on orbifolds, see [AGM1, Baily2].
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A.4. The Tangent Sheaf of an Orbifold

Any algebraic variety X has a tangent sheaf ©x. When X is smooth, we
also know that ©x is dual to D%, and that H'(X,O) classifies infinitesimal
deformations of X. The first of these facts continues to hold when X is an orbifold.

PROPOSITION A.4.1. If X is an orbifold, then Ox =~ Hom,,, (0%, 0x).

PROOF. Let Q% be the sheaf of Kihler 1-forms on X. The universal property
of ) implies O = Homg, (%,0x). ¥ j : Xo — X is the inclusion of the
smooth part of X, then the argument of page 128 of [Oda] shows that we can
compute Home, (-, Ox) by restricting to Xo- From here, the proposition follows
easily. 

0

As for H'(X, ©x ), recall that the infinitesimal deformations of a general variety
X are classified by Ext'(0}, Ox). For an arbitrary orbifold, this may differ from
H'(X,Ox). But there is one case where they agree.

PROPOSITION A.4.2. If X is a Gorenstein orbifold with at worst terminal sin-
gularities, then H'(X,Ox) classifies infinitesimal deformations of X.

PROOF. A result of [Schlessinger] implies that Ext'(QY, Ox) vanishes for
an orbifold if its singularities have codimension at least three. This is true by
Proposition A.2.2, and then the result follows immediately from the local to global
spectral sequence for Ext. 

O

By [Batyrev4, Thm. 2.2.9], this proposition is also true for varieties, not nec-
essarily orbifolds, which have at worst terminal toroidal singularities.

For an arbitrary orbifold X, one can also prove that ©x = 5.0x, and that
Q% is the double dual of QL. When X is a Gorenstein orbifold, the isomorphism
Q%! ~ Hom,, (%, %) and Proposition A.4.1 imply that

(A.2) 0% l~exeid.

We can apply this to Calabi-Yau varieties as follows.

PROPOSITION A.4.3. The infinitesimal deformations of a minimal Calabi- Yau
orbifold V of dimension d are classified by

H(V,6v) ~ B (V,Q7).
PROOF. A minimal Calabi-Yau orbifold has Gorenstein terminal singularities,

so that H'(V,©v) classifies infinitesimal deformations by Proposition A.4.2. Then
we are done by (A.2) since ¢ is trivial. 

g

A.5. Symplectic Orbifolds

Finally, one can define orbifolds in the > category, and there is also the notion
of a orbifold diffeomorphism. Then a symplectic orbifold is a C* orbifold with a
closed, nondegenerate 2-form (this is defined using local charts). Furthermore, the
process of symplectic reduction works naturally in this case. See [Audin, 11-3.6]
for the details.
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Physical Theories

In this appendix, we summarize some of the key points of physical theories

mentioned in this book. The first section gives background on some basic physical

theories, leading up to quantum field theory by the progression

Classical Classical Quantum
— —_—

Mechanics Field Theory Field Theory

Each of these theories has a Lagrangian and a Hamiltonian formulation. In quan-

tum field theory, we will see that Lagrangians are better suited for path integrals

while Hamiltonians lead to an algebra of self-adjoint operators on a Hilbert space.

We can easily pass from a Lagrangian to a Hamiltonian formulation, so we will

always start with a Lagrangian.

* It will be helpful if the reader has some familiarity with the rudiments of clas-

sical mechanics {as in [Arnold]). We will discuss classical field theory, quantum

field theory and some gauge theory. The remaining sections of the appendix will de-

scribe nonlinear sigma models, conformal field theories, Landau-Ginzburg theories,

gauged linear sigma models, and finally topological quantum field theories.

We refer the interested reader to the lecture notes [DEFJKMMW] from the

1996-97 IAS Quantum Field Theory program for a more detailed and more math-

ematical treatment of some of the theories considered in this appendix.

B.1. General Field Theories

In this section, we explain what a field theory is. We do not attempt to be self-

contained, but rather will give some simple examples of the kind of theories that

are mentioned in the main text while omitting some essential background material.

For more details, see [Rabin], whose treatment we follow closely but not exactly.

We will start with a classical theory of fields on a spacetime M. Typical

examples of M can be 4-dimensional Minkowski space or the world sheet of a

string (i.e., a Riemann surface). A classical field on M will be loosely defined as

either a function, a differential form, a section of a bundle on M, or a connection

on a bundle. It is not desirable at this point to limit the scope of our discussion

by making a more precise definition. We will obscure this further by sometimes

speaking of fields as if they were functions.

Physical dynamics is determined by the Lagrangian density, which is a func-

tional of the fields and their derivatives.! The choice of Lagrangian is greatly

constrained by symmetries, and is determined by the particular physics that the

field theory is supposed to model. The basic principle of dynamics is that the fields

LThis is imprecise, since we need to be able to integrate the Lagrangian density. The reader

will note that we will always multiply the Lagrangian density by a suitable volume form before

integrating.
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must be minima of the action, which is an integral of the Lagrangian density over
volumes V' C M. The classical field equations can then be determined from the
Euler-Lagrange equations for the action integral, assuming the values of the fields
at different points are treated as independent dynamical variables. This will need
to be modified when the Lagrangian has symmetries, as we will discuss later in this
section.

As our first illustration, we take M = M? to be Minkowski 4-space. To set
Dotation, we use coordinates z = (29,z',2%,2%) on M, with z° denoting time.
Sometimes, we will write instead z = (t, &), with & denoting the spatial variables
and t denoting time. We further let 8; = 8/8z*, and put § = (80,01,82,8;). We
also will use the Lorentzian inner product on M4 of signature (1, 3), so that for
example, the wave operator 93 — Zle 87 can be denoted by O =§.5. The symbol
d*z will denote the Euclidean volume density on M.

We now consider a scalar field of mass m. Mathematically, this is a real valued
function ¢(z) on M*. This field satisfies the Klein-Gordon equation

(B.1) (0 + m*)¢(z) =0.

This equation can also be obtained from the action over V ¢ M , which is defined
to be

= _1 5 - 5 — m2o2) — oy(B2 S=S()=1 /V $2(89 - 5p — m2¢?) /V dzL (6, 5p),
where

(B3) £(6,59) = 3 (363 — m?4?)
is the Lagrangian density. As usual, @ is stationary for the action S provided that
we have the Euler-Lagrange equation

5_£_“.5*£=0
69 6¢)

where 6£/6¢ and 6£/6(5¢) denote variational derivatives. Applying this to (B.3)
yields (B.1).

We next recall the Hamiltonian formulation of classical mechanics. We start
with a Lagrangian function L = L(q, g, t), where ¢ = g;(t) are coordinates, t is
time, and the dot denotes a time derivative. Intrinsically, L is a function on the
tangent bundle Ty of M. The conjugate momentum of q; is defined to be p; =
OL/dg;, which is natural terminology since for a free point particle in the presence
of a potential, the conjugate momentum of the coordinate function g; is just the
corresponding component of the momentum. Note that (p:,q:) form a system of
local coordinates on the cotangent bundle T3;. The manifold T}, has a canonical
symplectic structure, which in local coordinates is described by the form

w=de,~/\dqi. V

(B.4)

The equation p; = JL/g; locally defines a map Ty — Ty, which we assume to be
an isomorphism.

We define the Hamiltonian via

H= ZPNI} - L.
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The Hamiltonian is a function on T3;, where we have used the above isomorphism

to interpret L as being defined on Ty, Then Hamilton’s equations are

) )
Yo dg;’

though for our purposes, the equivalent equations

3

; 0AOH 0AOGH
(B.5) A=[A,H]=§:(—————-—),

—1 0g; Ipi Op: O

where A = g; or p;, are easier to generalize. The expression (4, H ] is an example

of a Poisson bracket. Intrinsically, the symplectic form w defines an isomorphism

I: Ty — Tw, and the Poisson bracket of two functions f, g may be rewritten as

[f, 9] = (df, I(dg))- -

Hamilton’s equations are a consequence of the Euler-Lagrange equations for the

action L. Notice also that we have the commutation relations (using the Poisson

bracket defined above)

[qia qJ] = [piipj] =0

25, p5] = 45

+ We now quantize this classical system. We get a Hilbert space ‘H of states,

such that functions f on T}; get replaced by self-adjoint operators f on H. The

classical values of f are reproduced as eigenvalues of the operators. For example,

if there iS a state ¥ € H for which qg - ¢ = g0, then we think of ¢ as a quantum

state corresponding to a particle whose ith coordinate has the value q°. Similarly,

the eigenvalues of the operators p; are identified with classical values of the ith
component of the momentum. The inner product on the Hilbert space H can be

used to determine the probabilities of observing a quantum state to have a definite

classical value. '

Following the method of canonical quantization, we replace the Poisson brackets

(B.6) with the commutators

(B.6)

(@i, ;] = [Pis Ps} =0

(@i, Pj| = i6i;5.

The equations of motion (B.5) get replaced by the statement that (assuming no

explicit time dependence in H) that the propagation of a state through a time

interval ¢ is given by the unitary operator

(B.7) U, = e ¥t

where we have chosen units in which Planck’s constant # is 1. This is a lightning

description of the Schrddinger picture of quantum mechanics, where the operators

are constant and the states evolve in time. Quantum mechanics can equivalently
be formulated using the Heisenberg picture, where the states are constant and the

operators evolve in time. The Schrodinger and Heisenberg pictures can be compared

by conjugation with U;. In particular, an operator A in the Schrodinger picture

gets replaced with the time-dependent operator A(t) = U7'AU, in the Heisenberg

picture. We then calculate

(3) LAW) = -ilA@,H,
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which is the quantum-mechanical version of (B.5). In (B.8), we have used the usual

definition of the commutator of operators [A,H] = AH — HA. In quantum field

theory, we will use the Heisenberg picture without further comment.

Adapting this to field theory, we define the conjugate momentum 7 (z) to be

6L

= 5@er
Assuming that we have a single field ¢(z), the Hamiltonian (or energy) H is defined

as the spatial integral (i.e., the integral over the variables not contaiming the time

variable) of 7(z)8¢(z)—L, where L is the Lagrangian density. The Hamiltonian is a

functional of ¢(x) and 7(x}, so that the derivatives of ¢(z) have been eliminated. In

terms of H, the Euler-Lagrange equation (B.4) yields Hamilton’s equations for the

propagation in time of any observable O, which mathematically is just a functional

of the fields ¢(z) and x(z). These equations, analogous to (B.5), are

. 80 6H 60 6H

0=io,a= [ (6¢<z> 5n(@) () 5¢<x)) de' dz'dz’,
and letting O = ¢ or 7 gives Hamilton’s field equations

¢=I¢,H|, #=][r H]

In the case of our scalar field ¢(z), the conjugate momentum is m(z) = Gy¢(x)

and the Hamiltonian is given by

(B.9) =3 / (n(2)? + |98 (2) + m?¢?)dz" de2dz.

The Poisson brackets (field analogs of (B.6)) are

[¢("E’ t)’ ¢(g’ t)] = {W(fv t)1 7!'(.17, t)] = O

[9(Z, 1), n(F,t)] = 6(Z ~ ).

The next step is to proceed to a quantum field. This step is not well-defined

mathematically in the desired generality. The idea is that we seek a Hilbert space

H of states, and that classical fields ¢(z) get replaced by quantum fields, denoted

(), which are operators on H depending on & and behave as distributions in

the variable z. The classical values of the fields are reproduced as eigenvalues of

the operators. For example, if there is a state 1 € H for which &(z) - ¢ = Hzyw

for some function f(z), then we think of this quantum state as corresponding to

the classical field with value ¢(z) = f(z). The inner product is used to determine

relative probabilities much as in ordinary quantum mechanics.

Using canonical quantization, we let TI(Z, t) denote the operator-valued distri-

bution corresponding to 7(Z,t) and replace the Poisson brackets (B.10) with

[2(2.1), (4, )] = [II(Z,¢), (7, 2)] = 0

[2(Z,1), 11(y,t)] = i6(Z ~ §).
These equal-time commutators are identities of operator-valued distributions.

We now show how this formalism gives an interpretation of the quantum field

®(z) as being comprised of quanta of particles. Namely, if we return to the Klein-

Gordon equation (B.1) and apply standard Fourier transform methods for solving
PDEs, we can write the classical field ¢ in the form

(B.10)

dk? dk? dk®

£/ (27’()32E;:'
(B.11) o(@) = [ (alB)ei®-Ee) 1t (BremiFo-sen)
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for certain complex conjugate functions ¢ and a' of k= (k' k%, k%). In (B.11), we

have put Ex = V'k - k + m?. The Klein-Gordon equation (B.1) is satisfied because

of B = k-k+m?, and on the mass shell defined by Ex = v k- k +m2, the expres-
sion dk' dk? dk3 //Ex is invariant under Lorentz transformations of (Ex, kY, k2, K3).

The quantity Ej is the total energy of a relativistic particle of mass m and momen-

tum k. For the mathematician who has never seen this, it is worth pointing out

that for |k| < m we have the approximation Ez ~ m + (E-k)/(2m). The first term
is the rest energy of the particle (usually written E = mc?, but we have chosen

units where ¢ = 1), and the second term is the classical kinetic energy of a particle

of mass m and momentum k.
Back in the quantum theory, we claim that a(k), a!(k) have natural particle

interpretations. To begin with, a(k), af(k) are operator-valued distributions, and

one can show that they satisfy the commutation relations

[a(E), a(k")} = [a*(E),af (F)] =0

(a(k),a! ()] = 8(k — F').

Furthermore, one also shows that substitution back into the Hamiltonian (B.9)

yields

(B.12)

H= / (E,;a*(E)a(E) + })-E,;zs(fi)) dk? dk? di®,

where § is the 3-dimensional zero vector. The last term is mathematically mean-

ingless, since it is an infinite scalar operator. The solution is to simply ignore this

term, as the subtraction of a constant from the Hamiltonian has no effect on the

dynamics. We finally arrive at

(B.13) H= / Exa" (R)a(F) k! dk? dk’.

This bas a nice intuitive description. The commutation relations (B.12) and the

Hamiltonian (B.13) show that application of an operator a(I;) will decrease energy.
Since the vacuum is to be the lowest energy state, we may define the vacuum state

V as the state annihilated by all of the a(k). Using (B.12) and a(B)(V) =0, it

follows that the state af(E')(V) is an eigenstate with energy (= eigenvalue) Ep;:

H(a'(E)(V)) = / Egal(B)a(R)a'(K')(V) dk* dk* dk®

= / Ezal(k) (af(E')a(E) +6(k — E’)) (V) dk! dk? dk®

= Ega' (K) (V).

This leads to the interpretation of aT(E) as a creation operator: its application

creates a scalar particle of momentum k. Similarly, a(E) is an annihilation operator,

so that its application annihilates a particle of momentum k.
Our conclusion is that in general, the formula (B.11) expresses the quantum

field ®(x) as a superposition of elementary particle states.

While we don’t expect the above to be convincing to those who are seeing

this for the first time, we want to explicitly make the point that by starting with

a Lagrangian density and formal quantization procedures, we have arrived at the
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quantum structure of matter and a reformulation of dynamics in terms of these
quanta. This is another way of saying that the dynamics of a quantum field are
completely determined by the Lagrangian density. We should also mention that it is
possible to put some (but not all) of the above on a firm mathematical foundatjon~—
see [Rabin, Lect. 8].

So far, we have concentrated on the Hamiltonian formulation of quantum field
theory. As mentioned earlier, there is also a Lagrangian formulation, which involves
the notion of a path integral. Suppose that at times t < ¢’ the classical fields
have values ¢o(Z,t) and ¢:1(Z,t'). We will let |go(Z, t)) and |¢;(Z,t')) denote the
quantum states with respective eigenvalues ¢o(Z, t), ¢1(Z,t') under the operator-
valued distribution ®(Z,t). In other words, we have

(B'14) (7, t)l¢0(f7 t)) = ¢0(-'Ev t) |¢0(5’ t»’
with a similar expression for ¢;. The left hand side of {B.14) involves the action of
an operator and the right hand side involves multiplication by a distribution.

The Hilbert inner product of these two states is (¢, (£,t') | po(Z,1)). Its physical
meaning is that its squared norm gives the probability density for the state ¢o(Z, t)
to propagate into ¢ (Z,t'). Formal calculations suggest that if S(¢) is the action
generalizing (B.2), then

(#1(Z,) | go(£,2)) = N / [Dg]eiS®
where on the right hand side, the path integral is over the space of all paths within
the space of fields with initial point ¢ and with terminal point ¢;. The factor N is
a suitable normalization factor, and [D¢] is an appropriate measure on the space of
paths. The path integral {or functional integral) is not well-defined mathematically
at present.

The path integral also allows for the computation of certain physical correlation
functions, sometimes called n-point Sunctions. Pick n points x1,... ,2, € M. The
n-point function is formally defined to be

(8.15) (@) #(@)) = N [[Del6(z1) - glz)es®
These are functions of the points z1,... ,z, and of the types of fields associated
to these points, but not the particular values of the fields, as these are integrated
over. In our example of a scalar field, there is only one type of field, but for example
the Yukawa couplings are a type of three-point function where different types of
fields are associated to the different points. The Yukawa couplings are three-point
functions in a topological quantum field theory, which greatly simplifies matters. We
will discuss topological quantum field theories in Appendix B.6.

These quantities are of intrinsic physical interest. For example, the two-point
functions are just the Green’s functions of the theory. In a very real sense, one
Can argue that the n-point functions contain all of the physical predictions of the
theory.

While path integrals such as (B.15) cannot be formulated rigorously, there are
some accepted heuristics for their calculation that do have partial justifications.
The most important one is the stationary phase method, whereby the path integral
can be “localized” to an integral over the space of stationary points of S, a space
which is often finite-dimensional. As a naive explanation of how this arises, note
that if ¢g is stationary for S, then the phase of '5(®) will vary slowly near ¢y,
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allowing a nonzero contribution to the path integral locally near ¢o. If ¢p is not

stationary, then the more rapidly oscillating phase will tend to cause cancelation.

Thus states near ¢o are more likely to occur and contribute to physical processes.

This point provides a link between a classical and a quantum field theory. The

stationary phase method is rigorous for finite-dimensional parameter spaces; but in

a path integral, the spaces are infinite-dimensional.

There is a subtlety here that may be worth mentioning. In the path integral

(B.15), the terms ¢{z.) are distributions, hence commute. On the other hand, the

operators ®(x;} do not commute in general, so there appears to be an inconsistency.

The resolution is to define the time-ordered product T(®{z;)--- ®(zn)) to be the

operator obtained by applying the ®(z;} in chronological order. Then we have

VI T(@(z1) - B(zn)) | V) = N / (Del(z1) - B(an) 5@

where V again denotes the vacuum state.

We will also need some understanding of a gauge theory. Here, the action is

invariant under a continuous group of local transformations on M. This group is

usually infinite-dimensional, the typical example being Yang-Mills theory, where

the gauge group is the space of maps to a finite-dimensional Lie group. Our very

modest goal is to explain the role of what is called gauge fizing in the context of our

discussion of quantum field theory, as well as the notion of a conserved quantity.

The simplest example is the classical theory of electricity and magnetism in

the absence of charged matter. We make no pretense at being self-contained here,

and are merely attempting to give a flavor. The interested reader is referred to

(BD)] for more details. We take M = M 4 to be Minkowski 4-space with the usual

coordinates (z°,... ,z%) = (t, 7). The field will be a real 1-form ¢ = Aydr,? which

is the electromagnetic potential. We also let A= (A1, A2, As). The field strength

of ¢ is defined to be F = dp = Fyjda* A dzd. The electric field E and magnetic field

B can be extracted from the field strength by putting

3

F=Fde Aded =dt A (S Eidz?) + B - (da* Ada? A da®),
7

i=1

where - is contraction with B, thought of as the vector field B!9/8z*. With these

identifications, the electromagnetic field strength F' is a closed 2-form, which is

equivalent to two of the Maxwell equations

VxE=-B, V-B=0

The other two equations arise from the Lagrangian density

1 o 1 =

(B.16) L= —EF}J-F” = §(|E]2 - 1BP).

Here, the Euler-Lagrange equations take the form

- . -

$. F=0, VxB=E,

2We follow the Einstein summation convention and sum over repeated upper and lowe
r

indices. Also, indices are raised and lowered without comment by contraction with the metric

tensor g;; = diag(l, -1, =1, =1).
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and the Hamiltonian is computed to be

H= %/UEP +1B?)dz? A da? A de®.

The field strength F' = d¢ and hence the associated Lagrangian £ are un-
changed by the addition of an exact form to ¢ = A;dz’, i.e, by a substitution which
has the form

OA(z)

dzt

where A(z) is an arbitrary real function on M. This substitution is associated to the
gauge group of local transformations *A(%); in fact, if we identify ¢ = +/—1A4;dz’
with a connection form on a principal U{ 1) bundle over M, then the gauge trans-
formation ¢*A*) on the U(1) bundle induces (B.17). It is therefore suficient to
choose a slice of the parameter space of the ¢ = A;dz* which has the property that
every possible ¢ is equivalent to one of the ¢ in the slice via a gauge transformation
{B.17). Such a slice is called a gauge choice®. We will make the gauge choice in
two steps as follows. First, we can assume that

(B.18) Ap=0.

Unfortunately, we can’t just make this gauge choice and then quantize, since we
also need to satisfy the Euler-Lagrange equation 6L£/6A0 = 0. This is Gauss’ law
V- E = §, which becomes ¥ - aj/at = 0 since Ag = 0. Hence V - A is independent
of time. Now solve Poisson’s equation to find a time-independent function f with
v §f =V A Replacing ¢ = A;dz* by ¢ — df does not affect Ay, and thus we
can assume that our gauge choice also satisfies the equation

(B.19) V-A=V-(Ay, Az, A3) =0.

In general, when a gauge choice is made, we cannot simply ignore a field that has
been “gauged away.”

We can now follow a quantization procedure similar to that for the Klein-
Gordon field by fixing the gauge choice (B.18) and (B.19). We make a Fourier
expansion

(Bl?) Ai— A, +

dk! A dk2 A dk3
2

(B.ZO) A(;[) = /J;E}(k) (aj(k)e-lk'z + a} (k)e‘k'l‘) __.W

with the following notation. The €, are 3-dimensional polarization vectors, which

are orthogonal to k by the Fourier transformation of the second gauge condition
(B.19). This is why there are two independent polarization vectors. Finally,
k = (ko, k) satisfies kg = {k| since each component of A(z) is a solution of the
4-dimensional wave equation (this follows from Maxwell’s equations).

We are led to the interpretation of the a;{k) and a;(l_c.) as operators which
respectively annihilate and create a quantum of the electromagnetic field with mo-
mentum & and polarization € (k). This is consistent with our earlier discussion of
a;(k) and a;(l;)

3From the path integral point of view, restricting to such a slice is clearly necessary, since oth-
erwise the gauge symmetries would cause the same path to be counted more often than necessary,
giving undesirable infinities.
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It is a crucial fact (Noether’s theorem) that continuous groups of symmetries

give rise to conserved quantities as follows. Letting the fields transform infinites-

imally as ¢ — ¢ + ¢ under an infinitesimal gauge transformation {where € is an

infinitesimal parameter), the quantity

6L

55:9"

has zero divergence, and is called a conserved current. As a consequence, the

spatial (fixed time) integral of a conserved current is constant in time, and is called

a conserved charge.

When we discuss conformal field theories in Section B.3, the gauge group will

be the conformal group. We will see the need to make a similar gauge choice, and

we will see that the gauge group leads to similar conserved quantities which play

an important role in the theory.

The quantum field theory discussed so far applies best to bosons, which are

particles of integer spin. Several classical (i-e., non-quantum) bosonic fields can be

combined by multiplying the fields, and this multiplication is commutative. But

in order to describe field theories for fermions (particles of half-integer spin}, one

starts with classical fields which multiply in an anticommutative fashion. There are

several ways to formulate this; one way to axiomatize anticommuting variables is

through the use of superspaces. This will be described briefly in Section B.4. The

quantization procedure for fermionic fields requires a modification of the procedure

sketched above for bosonic fields. We will see some examples of fermionic variables

in the nonlinear sigma models described in the next section. A good introduction

to the difference between bosonic systems and fermionic systems can be found in

[Alvarez, Lect. 1 and 2].

(B.21)

B.2. Nonlinear Sigma Models

To define a nonlinear sigma model (or sigma model for short), we start with a

Kihler manifold (X,g) and a closed 2-form B. The sigma model will be a theory

built upon maps from Riemann surfaces T to X. We think of amap f: X — X as

describing the propagation of a string through X, and T is the world sheet swep
t

out by the string as it propagates. The Riemann surface ¥ is not fixed in the

theory, but can be arbitrary. This allows for arbitrarily complicated ways in which

a string can split up into two or more strings or have several strings join up. In

other words, allowing Riemann surfaces of arbitrary genus automatically includes

interactions between strings in the theory. This is a general feature of all string

theories and not just sigma models.

The nonlinear sigma model also has anticommuting fermionic fields, which are

sections of certain bundles on ¥ given in the following table.

Field | Bundie

v | KE @ f(T%%)

(B.22) Wi | KPP fr(TYY)
¥t | Kie (T

v | Kie (T

Here, K is the canonical bundle of X, X is its complex conjugate (antiholomorphic)

bundle, K*/? is a choice of a square root of K (i.e., a spin bundle on L), Tx
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is the complexified tangent bundle of X, and we have the usual decomposition
Tx = T}(’O & T,%l. The indices 1, range from 1 to n = the complex dimensjon
of X, with the understanding that { will be used for holomorphic indices, while
¢ will be used for antiholomorphic indices. Notation has been chosen to allow us
to abuse notation by identifying the objects introduced in the above table with
certain of their coefficients; the meaning should be clear from the context. We
do this as follows. Pick a local holomorphic coordinate z on T and local complex
coordinates z* on X. Then for example %% can denote a section of K1/2® f *(T}(O)

or its coefficient of (dz)!/2®8/0z*, where (dz)!/? denotes a local generator of K1/2,
Notationally, z* is synonymous with Z.

We now can define the action §. We will also let indices I ,J run over all
possible values of 4,3, i.e., over both holomorphic and antiholomorphic indices, so
that z’ ranges over the 2n coordinates z, z', where as above n is the complex
dimension of X. We put

§= / ('1‘(91.1 +1iBy;)8,2 ;27
E 2

Wasy < V=1 - )
(B-23) + S50l Dyl + T gawl Dsvl

+ R b o )(VD)dz iz,
where R is the curvature tensor of the metric ¢ on X and D, is deduced from the
Levi-Civita connection of the metric f*(g) on T. Note that § depends on both the

map f:¥ — M and the 4n fermionic fields Ph, ¥

This strange-looking action is quite natural. Its bosonic part reduces to the
area of X after the equations of motion have been taken into consideration. The
fermionic terms have been added in such a way to maintain conformal invariance

{to be discussed later in this appendix) and so as to be supersymmetric; that is,
there is an infinitesimal symmetry of the action which perturbs fermions in bosonic
directions, and vice versa. Actually, there are two of them since a sigma model has
N = 2 supersymmetry. The supersymmetries are rather complicated. They can be

written as follows:

5zt = \/——~la_wi + vV=la,yt

bz* = V=la_¢’ +v—la.vt

6yl = —& 8.a" — V=To ¢/ Ti gTM

51,[;3_ = -a_8,7 — \/—_lé+1/J5_I’§fiwi‘

Syl = —a,8:z' — V=Ta il ym

bt = —a,8:3" — V=1a_ylTi, o,

(B.24)

where a_ and @_ are infinitesimal holomorphic sections of K% while ay and d

are infinitesimal antiholomorphic sections of K~%. Applying the transformations
(B.24) and using the Kahler condition, one can show that the integrand of (B.23)
is altered by an exact form, hence the action S is invariant.

In the heterotic string theory, the Lagrangian must be modified somewhat so
that some of the fermionic fields 1. live in a 16-dimensional space containing the
root lattice of Eg x Eg. This allows the resulting theory to contain an Ex x Eg gauge
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group, and this plays a role in the definition of the Yukawa couplings. These are the

correlation functions (or n-point functions) in our theory. We should also mention

that in the heterotic theory, the equations of motion for the fermions decouple

into left- and right-moving equations (which in this context can be thought of as

holomorphic and antiholomorphic parts}. Hence the sigma model gives a (2,2)

string theory, which means that there are 2 holomorphic and 2 antiholomorphic

supersymmetries.

It is easier to compute the correlation functions of interest to us using the twisted

theories, namely the A-model and the B-model. These theories differ from the

sigma model, but some of their correlation functions (including the ones mentioned

in Chapter 1) can be shown to coincide with corresponding correlation functions in

the sigma model.

The action for these theories is identical in form to (B.23), but the fields Wi
have different meanings. For the A-model, we replace (B.22) with

Field | Bundle

Wy | £

Vi | K®f(T%")
v | K@ (Tx°)

Wi | f(TxY)

while for the B-model, we use instead

Field | Bundle

W | K®f(Tx")
v | (TR
v | K ® f(Tx°)

Wi | T

In other words, the fields coincide locally with the corresponding fields in the sigma

model, but globally are twisted by the bundles K i, K%, or their inverses.
These models are still supersymmetric (but now have only IV = 1 supersymme-

try). Furthermore, if V and V° are a mirror pair, then the A-model derived from a

Calabi-Yau manifold V is mirror symmetric to the B-model derived from its mirror

manifold V° (for corresponding choices of the complex structure of V° and Kahler

structure on V). 
)

We start with the A-model. Here, we can view the fields ¥ and o as the

holomorphic and antiholomorphic parts of a section of f*(Tx). Also, the A-model

associates to each k-form 1 on X the local operator Oy(z) defined as follows. We

can write the k-form as n = Ay,..1,(z)dzTM A --- A dz'*, where each dz’ is either

dx® or dz* = dz*. Then the corresponding local operator is defined to be

(B.25) On(z) = hy,..1 (@)X - xTM (@),

where the x! equal either ¥ or ¢° and should be regarded as anticommuting

operators on a Hilbert space H.

The first term of (B.23) simplifies to [; f*(w), where w = B + iJ as usual,

J here being the Kihler class of the metric g. There is some simplification if the

equations of motion {the generalized Euler-Lagrange équations discussed above) are

used, and the remaining terms can then be compactly written in terms of a certain
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fermionic operator, the BRST operator Q. This operator is the supersymmetry
transformation that survives the reduction in supersymmetry from the original
N = 2 theory to the twisted N = 1 theory. In fact, modulo the equations of
motion, we have

S= %L{Q, V}(%dz/\dz) + %/Ef‘(w),

where V is a certain field whose particulars will not concern us and {Q,V} is
the anticommutator. Without going into any detail, the BRST operator plays an
important role in quantum field theories. We have Q? = 0, and the operator bo
defined by 60{0) = {Q, O} essentially defines a complex whose cohomology is
called the BRST cohomology of the quantum field theory. We have the following
formula for the anticommutator.

{Qa On} = —Odrlv

which shows that n — O, gives a map from the de Rham cohomology H*(X) of X
to the BRST cohomology.

We now let w,... ,w, € H3(X ), and turn to the calculation of the n-point
correlation function (O, - - - O,, ). By (B.23), the Euler-Lagrange equation coming
from z* is 8z°/0Z = 0, so that f is holomorphic. The path integral accordingly
reduces to an integral over the space of holomorphic maps. We next put y = £, =]
and write the integral as a sum over 7Y, writing the term for v = 0 separately. The
result is

<ow1"'ow,.>=/ wy A Awy +
X

3 [IDalipxiDRe I VI T] 0, e
7#0

=/ 1251 /\"'/\Wn'f‘ZN'y.uiq’yy
X Y

where the notation g7 is as explained in Chapter 7, and where N, ., is loosely
defined as follows. Pick points Pis.-- ,Pn € P! and choose representative cycles Z;
whose fundamental class is Poincaré dual to the classes w;. Then N, .., denotes the
number of holomorphic maps f : P! — X such that f{p:) € Z, for each 1. This is not
quite a rigorous definition because the set of such maps may be infinite, but can be
made precise through the notion of a Gromov-Witten invariant, which is discussed
in Chapter 7. As explained in Chapter 8, these invariants are the crucial ingredient
in the construction of quantum cohomology. As we will observe in Appendix B.6,
the A-model is a topological quantum feld theory, which implies that the three-
point correlation functions define an associative ring structure. The second equality
above results from carrying out the appropriate integral over the space of critical
Points of x and 7. This is an example of the stationary phase method mentioned in
Appendix B.1. The nonconstant holomorphic maps f : & — X are called worldsheet
instantons, and the above form of the n-point function is called an instanton sum.

For the B-model, the field n* = ¥} + ¢* transforms as a section of f ‘(Tf('l ),
and similarly, 6; = g;;(¥*, — o) transforms as a (1,0)-form. The B-model also has
local operators, which come from (0, g)-forms with values in /\pT)l(‘O. If we write
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such a form § locally as

A A 9
32]1 82]'?’9 =R TrgEr A AdET®

ty...1q

then the local operator Op is defined by

Op = b3\ 7rmTM - "85, - B3y

As with the A-model, we get a simplified version of the action when the equa-

tions of motion are taken into consideration. The BRST operator of this theory,

again denoted @, satisfies {@, 0y} = —Osg. Thus the association 8 — O maps the

Dolbeault cohomology HI(X, AP (T}Y’O)) to the BRST cohomology of the B-model.

The B-model correlation function follows by computation from the simplified

form of the action just mentioned. In principle, this correlation function could

contain an instanton sum, but certain non-renormalization theorems say that this

is not the case. Another way to argue this point is by mirror symmetry: the A-

model correlation function does not depend on complex moduli, hence the B-model

correlation function of the mirror manifold does not depend on the Kahler moduli.

However, each term with v # 0 in an instanton sum explicitly depends on the

Kahler moduli due to the term g”. A different, heuristic argument for the absence

of instanton corrections was given in Section 1.2.

Finally, we note that in order for our sigma model to avoid certain quantum

anomalies, (X, g) must in fact be a Calabi-Yau threefold. The requirement that X

have real dimension 6 will be explained in Appendix B.3, and the Kahler condition

is essential for N = 2 supersymmetry. Finally, the Calabi-Yau condition, which

was discussed briefly in Section 1.3, is more subtle and would require a digression

into renormalization of quantum field theories that is beyond the scope of these ap-

pendices. See [Hiibsch] for an exposition of more of the details. Also, a discussion

of supersymmetric sigma models can be found in [GO].

B.3. Conformal Field Theories

Roughly speaking, a conformal theory is a theory of fields on Riemann sur-

faces which respects the group of conformal transformations of surfaces. We will

attempt to make this more precise. A detailed introduction to the subject appears

in [Ginsparg]. The connection to string theory is that the Riemann surfaces occur

as the surface swept out by the string as it propagates in time. We will therefore

refer to this Riemann surface as the world sheet.

A conformal mapping of a Riemann surface is a self-mapping preserving angles

and orientation. Such mappings are holomorphic. We want to study conformal

mappings locally by working in a two-dimensional disk A with complex coordinate

z = z+iy. Unfortunately, there is no group of local conformal transformations, since

neighborhoods will not be preserved and so mappings cannot be composed. On the

other hand, there is a well-defined conformal algebra—an infinitesimal conformal

transformation induces a real vector field on the underlying real surface which can

be written in local holomorphic coordinates as f(2)8/0z + f(2)0/0%, where f(z) is

holomorphic. It is customary to separate holomorphic and antiholomorphic parts

by choosing bases ¢, = —z""'9; and Z,, = —z+19; which satisfy the Virasoro

algebra relations

ln,lm] = (n = M)lntm, [y n] = (0 —m)emin-
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The conformal algebra can be recovered from the Virasoro algebra as the subalgebra
generated by the ¢, + &, and (¢, — Z,). A conformal field theory includes a
répresentation of the Virasoro algebra, though one needs to be careful because
certain representations are subject to quantum anomalies.

We next define the fields of interest in a conformal field theory.

DEFINITION B.3.1. A primary field of weight (h,}) is a field ®(z,%) which
transforms as ®(z, z) (af/az)h(af/az)hq)(f(z),f'(z)) under a conformal trans-
formation z — f(z).

In other words, the expression ®(z,2)dz" ® dz” is invariant when ®(z,z) is a
primary field.

The gauge group of a conformal field theory is the local conformal group. As
in Section B.], this means that we need to make a gauge choice. Using the local
coordinate z = x + iy, the gauge choice is determined by fixing the metric & on the
world sheet to be h = dz? + dy?. But as in Section B.1, we must also remember to
impose the conditions §S/6h* = 0 from the Euler-Lagrange equations.

Unfortunately, the quantization is not quite as straightforward as in the case of
electricity and magnetism. For instance, maintaining conformal invariance requires
the introduction of certain auxiliary fields, called ghosts, in the process of quanti-
zation. Additional ghosts are needed for supersymmetry. In addition, although the
Euler-Lagrange equation 68 /6h* = 0 holds classically, it works a little differently at
the quantum level. To explain what happens, we introduce the energy-momentum
tensor with components

T, = L95
¥ VR 6hii

which is a symmetric tensor. Here, h as usual denotes the determinant of the matrix
hi; and h*" denotes the inverse matrix. In holomorphic coordinates, the energy-
momentum tensor has components T(z) = Ty, T(2) = Tis, and T,;. Similar
to what we did in {B.21), the conservation law arising from conformal invariance
under h ~ @h for any function ¢ leads to T,; = 0. Energy-momentum conservation
thus leads to the conclusion that T(z) is holomorphic while T(z) is antibholomorphic
(explaining the notation}. Hence, the classical equations of motion {from the Euler-
Lagrange equations) include the constrajnts T(z) = T(z) = 0.

In the quantum theory, these equations are modified using radial quantization.
This means that in local coordinates, the equal time curves are chosen to be con-
centric circles, whose radii are the curves with fixed spatial coordinate (the world
sheet of a string contains one spatial coordinate and one time coordinate locally,
but the distinction between space and time is not invariantly defined). Formal ma-
nipulations and the fact that T(z) is a conserved quantity yield that if ®(z,Z) is a
primary field of weight (h, k), then there is an identity of operators, the operator
product expansion:

_ Bw@(w, w) _T(2)® =" 7) + W\ W)(2)@(w,w) C—wp ®(w, ) + S R{z,w, ),

where R(z,w,®) remains finite when z = . There is a similar formula forT(2)®(w. w). This transformation property of T suggests that T should be a pri-
mary field of weight (2,0). Unfortunately, if this were true, it would lead to a
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quantum anomaly. Hence, the actual formula requires another term in the opera-

tor product expansion:

2 2 0T

(B.26) T()T(w) = L2 + T(w) + 2T
(z—-w)t (z—-w)? z—w

where ¢ is a constant known as the central charge. Expanding T(z) = 3, Ln z—(n+1)

and substituting into (B.26), we get by contour integration

(B.27) (L, Ln] = (2 = M) Ly + -195(1»3 — 1) 6ntm.0

where 8,4mo is the identity operator for n +m = 0 and is zero otherwise. In

other words, quantum mechanically, we do not get a representation of the Virasoro

algebra, but rather a representation of a central extension of the Virasoro algebra.

We should mention that (B.27) appears in Section 10.1.4 in our discussion of the

Virasoro conjecture.

For perturbative string theory to be consistent, we need an anomaly-free rep-

resentation of the Virasoro algebra itself. By (B.27), we avoid getting a central

extension provided the overall central charge c of the theory vanishes. In the con-

formal field theory arising from the sigma model on a manifold X of real dimension

2k, each boson z! contributes +1 to ¢ while the 2k fermion pairs ¥, 1/); each con-

tribute +1/2, for a total contribution of 2k - 1 + 2k - 3 = 3k. But as we have seen,

“quantization requires ghosts to remain invariant under reparametrization of the

world sheet (the conformal group) and supersymmetry. The ghosts which compen-

sate for world sheet reparametrization contribute —26 to ¢ while those compensating

for supersymmetry contribute +11. The equation 3k —26+11 = 0 is satisfied only

for 2k = 10. Four of these dimensions are taken to be the spacetime dimensions of

our familiar world (for example, Minkowski four space is a common model), leaving

6 free real dimensions. This is the reason for restricting to Calabi-Yau manifolds of

complex dimension 3.

A similar but simpler argument shows that a consistent bosonic string must

propagate in a 26-dimensional space.

We close with a few comments about the representation of the N = 2 super-

conformal algebra given by a sigma model (X, g). This representation contains the

operators T'(z), T(Z) as above. In addition, the holomorphic supersymmetries give

a U{1) = SO(2) symmetry acting naturally on the sigma model fermions

(5:)Yo

The conserved current resulting from this U(1) symmetry is denoted by J(z). The

spatial integral of J is the operator @ which appeared in Section 1.1 as the gen-

erator of the right-moving (holomorphic) sector of the theory which infinitesimally

rotates the two supersymmetries. Similarly, we obtain J from the antiholomorphic

supersymmetries and the U(1) action on

()
which leads to an operator Q for the left-moving (antiholomorphic) sector. We have

seen above how H!(X,Tx) and H 1(X,Q)) become operators in the theory; apply-

ing these operators to the vacuum state, we obtain quantum states corresponding

to H'(X,Tx) and H'(X,Q%). These states are eigenvectors for the operators Q, @
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as discussed in Section 1.1. One of the main motivations for mirror symmetry js
the effect of changing the sign of the generator () on the corresponding eigenvalues.

B.4. Landau-Ginzburg Models

The Landau-Ginzburg (LG) theories we describe here are also supersymmet-
ric theories. For definiteness, we will restrict discussion to theories with (2,2)
supersymmetry. These can be described using the formalism of superspaces and
superfields. We digress now to describe this formalism.

A supermanifold is a topological space M with local coordinates

(..., 2%y, ... TM)

where the variables z* commute with each other and with the y*, while the g
anticommute. While a precise mathematical definition can be given (see [Manin1)),
the above rough definition suffices for present purposes. We can think of M as a
manifold with local coordinates (z!,...,z") together with extra anticommuting
variables y*. A superfield is just a function on superspace. A superfield can be
written uniquely as a sum Y, fr(z)y’, where f;(z) is a function of zt,... zTM,
I'={i,...,4} C {1,...,m} is an index set, and y' = y" ...y* if T has been
written with 4} < ... < é;. In Section 8.2.1, we showed that H*(X,C) has a natural
structure as a complex supermanifold.

In our case, the underlying manifold is the world sheet Z, so we will take n = 2.
To obtain (2, 2) supersymmetry, we will also require m = 4. The variables z! and
z? will be replaced by a local complex coordinate z, while the y* will be denoted
by * and 6, where i = 1, 2. The 6%, 8" are not merely local expressions, but they
are spinors, i.e., they transform as spinors under one of the {1-dimensional) spin
representations of so(2), with 6,62 belonging to one of the representations and
6',8? belonging to the other representation. For more details about spin geometry
from a mathematical perspective, the reader is referred to LM].

Thus, a superfield ® can be locally expressed as

® = f(z) + ¢:i(2)8"+ $:(2)8 + Fij(2)0°07 + .- |

where some quadratic terms in the anticommuting variables, and all of the higher
order terms in the anticommuting variables, have been omitted. There are su-
persymmetry transformations Q*, Q* that can be explicitly written down, and the
anticommutators take on a simple form {see, for example, [WB] for the analogous
formulas for 4-dimensional supersymmetry). This leads to the construction of the
N = 2 supersymmetry algebra. Note that the supersymmetry transformations are
not to be confused with the U(1) charges Q, @ that we have discussed earlier.

The space of all superfields gives a representation of the N = 2 supersymmetry
algebra. The subspace of chiral superfields is an invariant subspace. This can
be constructed by explicitly writing down differential operators D; in superspace
which commute with the Supersymmetry operators, and defining a chiral superfield
to be a superfield ® satisfying D;® = 0 for = 1,2 (see e.g., [WB] for a definition
of chiral superfields). The operators D; involve differentiation with respect to the
anticommuting variables. In fact, D; includes a term 8/88*, which can be defined
in the natural way. Thus chiral superfields behave much like holomorphic functions
do in ordinary space.

Landau-Ginzburg theories are certain supersymmetric theories which can be
simply described by a superpotential, which is a weighted homogeneous polynomial
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F(®1,...,®%) of 2-dimensional chiral superfields. Here, weighted homogeneous

refers to the assignment of a weight d; to ®;. In the case of interest to us, we will

choose F to be weighted homogeneous of degree d = Y_, d;.

In the action for the Landau-Ginzburg theory, the important term is

(B.28) / d?zd*0F (®,),

where z is a local holomorphic coordinate on the world sheet, ®; are chiral super-

fields, and 67 are fermionic superspace coordinates. Writing ¢; for the top (bosonic)
components of the ®;, the classical equations of motion give dF/0¢; =0. There is

the obvious classical solution ¢; = 0, and in a Landau-Ginzburg theory, this is the

only solution.

Turning to the quantum theory, there is a unique vacuum state associated to

the unique classical vacuum. Denoting the vacuum state by V, we can create new

states as P(¢;)(V) for any polynomial P. These states are clearly isomorphic to

the Jacobian ring C[¢1, ... , 9x|/(8F/0¢:), also called the chiral ring.

In the previous paragraph, notice how quickly we moved from something fairly

exotic sounding (fermionic superspace coordinates, etc.) to something well known

to algebraic geometers (the Jacobian ring of a weighted homogeneous polynomial).

The condition that the origin is the only solution of F/0¢; = 0 is the same as the

“ondition for quasi-smoothness of the hypersurface F' = 0 in the weighted projective

space. This is typical of how standard mathematical objects can suddenly appear

in the middle of these physical theories.

We are actually interested in related theories, namely Landau-Ginzburg orb-

ifolds. In the case we are interested in, we let n be a primitive d*® root of unity

and take an orbifold by the action of (n#,..., 4x). By this, we mean that we

don't just consider well-defined superfields on the world sheet X, but rather those

that transform by the i*® power of 7 at the ends of a string. The resulting states

are said to belong to the 5P twisted sector. This will give rise to twisted vacua

Vi. We can create more states by forming expressions of the form P(¢;)(V;). The

Landau-Ginzburg orbifold will contain those states which are invariant under 7.

As we will see below, there is a close connection between Calabi-Yau manifolds

and Landau-Ginzburg orbifolds. For now, we illustrate with one example from a

different viewpoint.

Example B.4.1. Suppose ®1,... , ®s have respective weights 1, 1, 2, 2,2, and let F

be weighted homogeneous of weight 8 in the variables ®,,. .. , ®5. Before working

out some of the states in this theory, we note that this example is related to degree 8

hypersurfaces in P4(1,1,2,2,2), which were studied in (CAdFKM, HKTY1]. This

weighted projective space has A; singularities along the P? defined by z1 = z2 = 0.

Blowing this up yields a ruled threefold over P? as exceptional divisor. Restricting

to the hypersurface, the exceptional divisor becomes a ruled surface over a quartic

(genus 3) curve. The image of the Abel-Jacobi map for the family of fibers is thus a

3-dimensional subspace of H>!. It can be shown that these correspond to deforma-

tions of the Calabi-Yau threefold that cannot be realized as a hypersurface inside

P4(1,1,2,2,2). This 3 dimensional subspace is complementary to the codimension

3 subspace H>. (V°) of H>1(V°) consisting of deformations of the hypersurface.
poly

A geometric description of these deformations is given in Example 6.2.4.3.
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Let’s now turn to the LG theory. We have the states P(¢;)(V). It turns out
that the states which correspond to the moduli parameters of the theory are those
for which P has degree 8. We thus get the degree 8 component of the Jacobian ring,
which has dimension 83. This construction is familiar from algebraic geometry.

So where are the 3 missing deformations? They appear in one of the twisted
sectors—the fourth, to be precise. The twisted vacuum Va4 is not invariant, and to
correspond to a deformation, it turns out that P(#;)(Vy) must be such that P has
weight 2. But the variables ¢3, @4, ¢5 are invariant under the action of 7%, while &
and ¢ are not. So the states are just P(gs, ¢a, #5)(Va), which is 3-dimensional, as
expected.

The above discussion is based on calculations in [Vafal], whose work also
includes miraculous formulas for cohomology of Calabi-Yau manifolds derived from
considerations of Landau-Ginzburg theory.

B.5. Gauged Linear Sigma Models

The gauged linear sigma model (GLSM) of Witten is a very useful model which
in an appropriate sense “interpolates” between Calabi-Yau models and Landau-
Ginzburg theories. As with the Landau-Ginzburg model, this theory can be formu-
lated in terms of chiral superfields, which were outlined in Appendix B.4. For more
details, see [Witten5]. A mathematical comparison between the GLSM and the
nonlinear sigma model discussed in Appendix B.2 plays a crucial role in the mirror
theorems discussed in Chapter 11.

The GLSM is a gauge theory, with gauge group U(1)® for some s. Associated
to the gauge group are 2-dimensional wvector superfields V,, a = 1,...,s. The
theory also contains k +r chiral superfields ®;,,i=1,... ,kand P;, j=1,... ,rof
respective charges Q;, and g;, with Zj %.a = —3_; Qi,o for each a. The charges

tell us how the superfields transform under the symmetry U(1), (= the a*® factor of
U(1)®). The theory will also be determined by a superpotential W, which as we will
see relates equations of Calabi-Yau hypersurfaces to Landau-Ginzburg potentials.
The superpotential is a holomorphic function of the superfields which is invariant
under the U(1)° action. We restrict our attention to superpotentials of the form
W =3, P.Go(®s,...,8,).

The action itself is a sum of four terms

(B29) S= Skin + SW + Sgauge + SD,9,

whose precise form will not concern us. The only point we will make is that the
action is a function of all the superfields. There are a few constants in the action
which measure the strength of certain couplings in the theory: e; is the gauge
coupling for U(1);, and r, determines the strength of a certain supersymmetric
interaction. These constants enter explicitly in (B.30) and (B.31) below.

For the time being, we will make the simplifying assumption r» = 1 and write
P instead of P;. Thus the superpotential is W = PG for some polynomial G. (We
will return to the case r > 1 later in the section.) When we group the terms in
the action into commuting (bosonic) and anticommuting (fermionic) variables and
take the equations of motion into consideration, the bosonic part of the action is

1
(B.30) Ulgnp) =3 5D} +>_ |FY

j J a
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with

(B:31) D; = -&§( L Qulesl® ~ alpl” - ;)

and

(B.32) S ez =167 + 1o Y ||

In (B.31) and (B.32), the ¢; and p are certain bosonic components (the top com-

ponents) of the superfields ®; and P. In other words, the ¢; and p can be thought

of as ordinary functions.

We will see that the solutions to the classical equations of motion look very

different for different values of the ;. Witten refers to the transitions as phase

transitions in the theory [Witten5].

Example B.5.1. Suppose that k =5, s = 1, and Q;1 = 1 for each i. Choose a

superpotential W = PG(®4,...,®s), where G is a general quintic polynomial in

the ®;. To minimize the potential, we see that each term (B.31) vanishes, and each

term on the right hand side of (B.32) vanishes. Note that the vanishing of (B.31)

says that Z?=1 |¢:|2 — 5|p|® — r1 = 0. There are two cases to consider:

e r; > 0. In this case, the vanishing of (B.31) shows that (¢1,... ,05) #

0. Then the vanishing of |p|? 5, |(8G/8¢;)|* implies that p = 0, since

(¢1,... ,¢s) # 0 and G is general (i.e., smooth). The vanishing of (B.31)

now says that 3 |#:|2 = r;. We can now take the gauge symmetry into

consideration and mod out by U(1), which acts by scalar multiplication on

{(¢1,.-- , ¢5) by choice of the Q;. This leave us with P*. Finally, from the

right hand side of (B.32) we see that we now put G = 0; this leaves us with

the space of classical solutions equal to the quintic threefold.

e 7, < 0. In this case, the vanishing of (B.31) shows that p # 0. Then

from the vanishing of the terms on the right hand side of (B.32) we see

first that each 8G/8¢; must vanish. Since G is general, this implies that

(¢1,.--,¢5) = (0,...,0). The vanishing of (B.31) then gives lpl = /—71/5.

The value of p itself is then well-defined up to the gauge transformation

p — uBp where u € U(1). Note that if u is a fifth root of unity, then p is

preserved. We thus get a Landau-Ginzburg orbifold.

Thus the GLSM interpolates between Calabi-Yau theories and Landau-Ginzburg

theories.

More generally, we can describe a GLSM in terms of toric geometry as follows.

The U(1)* action on the ®; gives an action of C* with coordinates ¢1, ... ,¢x.

Using the terminology of Section 3.3.3, this action is Hamiltonian and its moment

map u: C° — R? is given by

1

w00 = 3( T Qulsd? - 3 Qualad?).
i 1

Then one can show that the Calabi-Yau phases of the GLSM correspond (roughly)

to when 7= (r1,... ,rs) lies in a certain cone in R® which is the Kahler cone of the

toric variety

Xe=p HA/UQ)
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Here, we are using the symplectic construction of toric varieties discussed in Sec-
tion 3.3.4. This method of constructing toric varieties is a crucial ingredient of a
GLSM. Furthermore, G € Clg,,... ,$x] is a homogeneous polynomial in the sense
of Section 3.2.3, so that the vanishing of G = 0 gives a Calabi-Yau hypersurface
inside of X. Hence, as we vary 7, the Calabi-Yau phases of the GLSM correspond
to certain cones in the GKZ decomposition of Section 3.4. But we also have other
phases of the theory, such as the Landau-Ginzburg ones, which come from cones
outside the GKZ decomposition. These correspond to cones in the enlarged GKZ
decomposition or enlarged secondary fan described in [MP1].

So far, we have been assuming r = 1 in our discussion. When r > 1, the
superpotential is W =}~ P,G,, where G, are again homogeneous polynomials (in
the toric sense). A Calabi-Yau phase of such a GLSM would still give a toric variety,
but now we would have the Calabi-Yau complete intersection Gy = ... = G, =
to consider.

There is an important difference between the linear sigma model and the non-
linear sigma model. For definiteness, consider the above example, supposing that
71 > 0, so that we are in the Calabi-Yau phase. In the nonlinear sigma model, we
have fields which are local coordinates on P*. In the linear model, we have fields
which are coordinates on C%, then we mod out by scalars. Thus, for the nonlinear
sigma model, we need to consider holomorphic instantons, which are holomorphic
maps from genus 0 curves C to P4 of a certain degree d which lie on G = 0. For the
GLSM, we use 5-tuples (Hi(s,t),..., fs(s,t)), where the fi are homogeneous of a
fixed degree d and which satisfy G (f1;--., fs) = 0. In the above, (s,t) are thought
of as homogeneous coordinates on P!. But this is not an exact correspondence: a
5-tuple (f1(s,t),..., f5(s,t)) need not arise from a degree d holomorphic map, as
the f; can have a common factor and therefore attempting to interpret it as a map
will result in lower degree after removal of base points. These 5-tuples or natve
instantons are easier to deal with, and have been used to give strong support for
mirror symmetry in the context of the GLSM (see [MP1]). The map ¢ : My — N,
defined in Section 11.1 can be described as comparing holomorphic instantons and
naive instantons.

B.6. Topological Quantum Field Theories

In Appendix B.1, we gave a brief introduction to general quantum field theories.
Such a theory is described by a Hilbert space H of states and certain operators on H
which encode the propagation and interaction of particles. We now explain what it
means to be a topological quantum field theory (TQFT). We will see that Frobenius
algebras and quantum cohomology arise naturally in this context.

Let’s start by discussing a point particle theory. Let H be the space of states.
If H is the operator associated to the Hamiltonian function H by the quantization
procedure, then as noted in (B.7), the propagation of states in time is given by the
unitary operator exp(—~iHt). We can describe this propagation schematically by an
interval of length t. We can associate to each endpoint of the interval the Hilbert
space H, and to the interval the operator

PR A

This is a (0 + 1)-dimensional quantum feld theory. The 0 refers to the dimension
of the endpoints, to which H is associated. The +1 refers to the additional time
dimension which is needed to connect the endpoints.
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To make the transition to TQFTs, we ask for which (0+ 1)-dimensional theories

does the operator exp(—iHt) depend oniy on the topology of the interval. This is

easy to determine, for we are asking when exp(—iHt) is independent of t. By

differentiation at t = 0, we conclude that necessarily H = 0. Thus exp(—iHzt) is

the identity for any t. In other words, this system has no dynamics whatsoever,

and is completely trivial and uninteresting as a physical theory.

Such theories are (0 + 1)-dimensional topological quantum field theories. As

we will see, {d + 1)-dimensional TQFTs are far from trivial when d > 0.

We now give an axiomatic definition of a topological quantum field theory. We

use complex coefficients for definiteness. In order to incorporate fermions, we would

need to use supervector spaces, which are Z/2Z-graded vector spaces satisfying

natural sign rules [Maninl]. We leave the necessary revisions to the interested

reader. See [Quinn] for a broader treatment.

DEFINITION B.6.1. A (d+1)-dimensional topological quantum field theory con-

sists of the following data:

e To each closed oriented d-dimensional manifold Y is associated a finite-

dimensional complex vector space Z(Y). This vector space behaves functo-

rially under isomorphisms of Y.

e To each (d + 1)-dimensional oriented manifold X whose boundary 0X 1s

. a closed oriented d-dimensional manifold is associated an element Zx €

Z(8X). This element behaves functorially under isomorphisms of X.

This data satisfies the following additional azioms:

Axiom 1: Z() I Y3) = Z(Y1) @ Z(Ya).

Axiom 2: Considering the empty set as a closed d-dimensional orented man-

ifold, we have Z(B) =C.

Axiom 3: Considering the empty set as a (d + 1)-dimensional oriented man-

ifold with empty boundary, we have Zp =1 € Z(8) =C.

Axiom 4: LetY denote Y with the opposite orientation. Then Z(Y) ~ Z(Y)",

this isomorphism behaving functorially under isomorphisms of Y. In partic-

ular, if X = (UL, Y;) I (I4_,Y)), then we may view

Zx € Home(®F, Z(Y3), ®5212(Y))),

where we have used this aziom together with Aziom 1. We also assume that

with the natural identifications, Z+ is the adjoint of Zx.

Axiom 5: Let I denote the oriented interval [0,1]. Let Y be any closed ori-

ented d-manifold without boundary, and put X =Y xI. Then 0X = yuvy.

We require

Zx =1zv) € Home(Z(Y), Z(Y)),

where we have used Aziom 4.

Axiom 6: If3X =Y, 11 Yz and 80X’ = Y, 1 Y5, then we can glue X and

X' together along Ya to form a new manifold X Uy, X' with boundary

¥, U Ys. By Aziom {, we write Z(0X) = Hom¢(Z(Y1), Z(Yz)), Z(6X") =

Home(Z(Yz), Z(Ya)), and Z(8(X Uy, X)) = Home(Z (Y1), Z(Y3)). We re-

quire that Zxuy, x» = Zx’ © Zx.

These axioms are easy to understand when d = 0. We can put H = Z(point),

which is a finite-dimensional vector space over C, and then Axiom 5 applied to
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Y = point says that Z; = 15. This was the conclusion of our discussion of (0 + 1)-
dimensional TQFTs at the beginning of the section. Furthermore, since S! is an
oriented 1-dimensional manifold with empty boundary, we have Z (Shezw=c.
We can calculate this number as follows. We realize S1 as a union of two copies of
the unit interval I:

We now use Axiom 6 with:

X =1I,Y =0, Y; =point II point, X’ =71, Y3 =0.

Combining this with Axioms 2, 4, and 5, we calculate that Z(8") = dim H. Since
an arbitrary l-dimensional manifold is a disjoint union of $!, §7, I and 1, the
above axioms imply that a (0 + 1)-dimensional TQFT is uniquely determined by
H = Z(point}. Furthermore, one can show that all finite-dimensional complex
vector spaces H come from (0 + 1)-dimensional TQFTs in this way.

We now turn our attention to the case when d = 1. Qur goal is to characterize
(1+1)-dimensional TQFTSs. For this purpose, we will need the following definition.

DEFINITION B.6.2. A commutative Frobenijus algebra is o commutative, asso-
ciative algebra (A,*) with a unit 1, together with a nondegenerate inner product
{, ) on A, satisfying

(B.33) {a*b,c) = (a,bxc)

for alla,b,cec A.

In the literature, other equivalent definitions are sometimes given. For instance,
a trace map € : A — C satisfying certain properties is given in some axiom systems.
With our conventions, we simply put €(e) = (a, 1).

Frobenius algebras have very rich structure. We can define a three-point corre-
lation function {, , ) : A%3 - C by

{a,b,¢) = (axb,c)

forall a,b,c € A. Combining (B.33) and commutativity, we see that the three-point
function is totally symmetric in its arguments. Similarly, for any n we can define
the n-point correlation function by

(B.34) {ai,... 10n) = (1% ... % an_1,an),

which can be shown to be totally symmetric in each of its arguments.
Now suppose that we have a (1 4 1)-dimensional topological quantum field

theory. Fix once and for all a standard oriented closed disk A — {z : |z] € 1},
and let S denote its boundary. We put H = Z(S!), and denote by Ty the element
Zx € Z(0A) = Z(S') = H. We will show that H has a natural structure as a
Frobenius algebra with Tp as identity element.

It is easy to construct an inner product on H. The isomorphism 5T~ 5t given
by complex conjugation induces by Axiom 4 an isomorphism H ~ H*. We let (.0
denote the corresponding nondegenerate inner product on H.
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We next need to construct a product * : H ® H — H. For this, consider the

“pair of pants” X given by

(B.35)

Choose oriented isomorphisms of the boundary components of ¥ with STIISTII ST,
the two copies of 51 corresponding to the left band boundary circles of (B.35) and

the S! corresponding to the right hand boundary circle. By Axiom 4, we get an

element Zs. € Home(H ® H,H). Let * denote the product on ‘H defined by Zsx.

PROPOSITION B.6.3. The product = is commutative and associative. The ele-

ment Ty is an identity for =, and for all a,b,c € H, we have the identity

{axb,c) ={a,bxc).

« Thus H is a Frobenius algebra under .

Proor. The chosen isomorphism 8% == ST 11 ST II S! can be replaced by

another such isomorphism obtained by composing it with the isomorphism of St II

ST II §! which switches its first two components. Commutativity follows by func-

toriality. Now glue A to a boundary 571 in (B.35), forming a space we call X. Using

Axiom 6, we identify Zx with the endomorphism ¢ — To = ¢ of H. On the other

band, X has an orientation-preserving homeomorphism to the cylinder 5* x I. By

Axiom 5, we see that Zx = ly. Comparing these two computations, we see that

T, is the identity for . Now choose an isomorphism of 8T with ST II ST 11 ST
Then Zz € Home(H ® H ® H,C), where we are abusing notation by using the

same symbol Zs as before. If we compose this identification of the boundary of

¥ with the isomorphism ST ~ S! on the third boundary component, we compute

Zs(a,b,¢) = (a = b,c). Making this identification on the first boundary compo-

nent, we are led to Zs(a, b, ¢) = (a,b = c). The equality (B.33) follows. Finally, to

prove associativity, let =’ be a 2-sphere with 4 disks removed and identify 8% with

ST 11 ST 11 ST II S'. This gives Zs: € Homc(H ® H ® H,H). Now decompose X’

into 2 pairs of pants as follows:

(axb)xc

This shows that Zs:(a,b,c) = (a = b) x c. However, since we're dealing with a

topological quantum field theory, we can decompose 3’ into 2 pairs of pants in a
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different way, namely:

a* (bx*c)

This second picture gives Zx (a, b, ¢) = ax(bxc). Combining this with the previous
computation of Zs:(a,b, c), we conclude that (a * byxc=ax*(bxc), as desired. O

It is not hard to see that a (1+ 1)-dimensional TQFT is uniquely determined by
the finite-dimensional Frobenius algebra M described in Proposition B.6.3. Rather
than give a proof, we explain how the axioms work in practice. For example, the
2-torus T2 can be obtained by gluing together two cylinders. A straightforward
modification of the calculation of Z(S!) in the (0 + 1)-dimensional case shows that
Z(T?) = dimH. Gluing together two disks to get 52, we are led to Z(§8%) =
(To, To). Computing Z(Z) for otber closed oriented 2-dimensional surfaces T is
equally straightforward.

Once we have the Frobenius algebra M of a (1 + 1)-dimensional TQFT, one
can also interpret the n-point functions (B.34) in terms of the TQFT. For example,
when n = 4, let &' be a 2-sphere with 4 disks removed, and identify the boundary
of ¥ with ST IT 87 I1 ST II 1. Then, adapting the argument given in the proof
of Proposition B.6.3, one can show that the 4-point function (a, b, c,d) is given by

{a,b,¢,d) = Zs(a, b, ¢, d)

for all a,b,c,d € H. More generally, the n-point function can be defined using a
2-sphere from which n disks have been removed.

As we have observed in Appendix B.2, the A-model is a (1 4 1)-dimensional
TQFT depending on a choice of complexified Kihler class. So what is the underlying
Frobenius algebra? We have already identified X with H *(X) in Appendix B.2. It
turns out that the inner product is defined by

(T1,Ty) = / T, UTh,
X

and the product * is just the quantum product’ We thus get an associative quan-
tum cohomology ring. The trace map is (T) = Jx T. If X is general (i.e., not nec-
essarily Calabi-Yau), this quantum product arises from the physical theory known
as the topological sigma model. As we have seen, the quantum product is encoded
by the pair of pants (B.35), which can be glued together to get Riemann surfaces of
higher genus T, with disks removed. Orienting the boundary circles appropriately,
we get genus g correlation functions Zs,, - H®TM — C. These generalize the n-point
correlation functions discussed above, which are all genus 0 correlation functions.
Identifying H with H*(X, C), these higher genus correlation functions are identified
with some of the invariants of [RT'1]. Note that in [RT1], the complex structure

#We actually have to work with supervector spaces here. This is clear. since quantum product
is not commutative, but rather supercommutative (Theorem 8.1.4).
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was fixed. Hence the invariants are purely topological, not depending on the com-

plex structure.

The Frobenius algebra structure is how physicists knew of the existence of

quantum cohomology before mathematicians could prove it. We have given an ex-

tensive mathematical treatment of quantum cobomology in Chapter 8. The physical

explanation of quantum cohomology was observed in [LVWI.
Finally, we should also mention that (2 + 1)-dimensional topological quantum

field theories are related to the Jones polynomials. A nice exposition can be found

in [Atiyah].
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critical

curvature tensor, 420

D-brane, 402, 404

deformations

infinitesimal, 57, 153, 175

of a minimal Calabi-Yau orbifold, 410

of an orbifold, 410

non-polynomial, 58, 147

polynomial, 57, 61

discriminant locus, 104, 122, see also

Calabi-Yau, toric hypersurface,

nondegenerate

example of, 125, 147, 158, 159

principal component, 122, 125

dominance conjecture, 117, 155

double covers of 6-nodal quintics, 293-297

contribution to Gromov-Witten invariant

and virtual fundamental class, 297

covers factoring through normalization,

295-297

covers not factoring through

normalization, 295, 296

moduli of, 295

tangent space of, 296

dual cone, 31

dualizing sheaf, 11, 46, 407, 409

Dubrovin connection, 239, 311, 312

definition of, 239

Euler vector field of, 241

flatness of, 240, 244

formal, 242

homogeneity of, 241

potential function of, 239

torsion of, 240

WDVV equation for, 240, 241

Dubrovin formalism, 234, 239-242, 244,

304, see also cohomological field theory

binary product of, 239

connection of, see Dubrovin connection

electromagnetic potential, 417

energy-momentum conservation, 424

energy-momentum tensor, 424

enumerative geometry, 16, 215, see also

Gromov-Witten invariant, enumerative

significance of

equivariant characteristic class, 338

equivariant Chern class, 276, 280, 366

equivariant cohomology, 27, 101

definition of, 276

explanation of parameter i, 319
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localization of, 277, 336, see also

Localization Theorem, for

equivariant cohomology

of P, 277, 278, 335

restriction map, 343, 344

equivariant hyperplane class, 28, 101, 335,

346, 366, 368

definition of, 277

of Ny, see Ny, projective space,

equivariant hyperplane class of

equivariant integrai, 280, 335, 367, 368,

373, 376, 377

definition of, 279

equivariant vector bundle, 276, 298

Euler characteristic, 310

Euler class, 173, 289, 351, 358, 360

equivariant, 276, 292, 336, 338, 341, 342,

344, 377

of Nr, 285, 287-289, 291, 293, 370
of zero bundle, 358, 365, 372

stack versus coarse moduli space, 181,

184, 302, 332, 337

Euler data, 27, 28, 345, 348-350, 380

definition of, 339

examples of, see P and §

hypergeometric function of, 346, see H G,

of Euler data

linked, 343, 345, 353, 355

definition of, 342

mirror transformation of, 348, 352,

353, 381, see also HG, mirror

transformation of

multiple cover interpretation, 343

uniqueness theorem for, 344, 348, 353,

355, 380

Euler I'-function, 162, 163, 165

Euler integral, 160, see also GKZ system

. Euler’s constant, 162

Euler-Lagrange equation, 412414, 418,

421, 422, 424

for electricity and magnetism, 417

evaluation map, 172, 179, 189, 205, 210,

222, 298, 301, 332, 357, 360, 365, 375

excess dimension, 308

for moduli of stable maps, 182

in intersection theory, 182

excess normal bundle, 173, 174

expected dimension

in Kuranishi theory, 174

of moduli of stable maps, see stable

maps, moduli of

of zero locus, 173

extremal transition, 143, 144, 146, 405, 406

compatibility with mirror symmetry, 144,

148

dual, 147, 148, 158, 159, 405

example of, 146148, 158

mirror, see extremal transition, dual

INDEX

relation to SCFT moduli, 144

toric, 145

Type I, 143, 145

Type 11, 143

Type I11, 143, 145

F-theory, 404

face of a cone, 31

fan, 31, see also projective subdivision
complete, 32

flip of, see flip

Grébner, see Grobner fan

secondary, see secondary fan

simplicial, 32

smooth, 32

support of, 31

supported on a linear circuit, see linear

circuit, supported by a fan

symmetries of, 48

toric variety of, 32, 51

Fano variety, 46, 218, 219, 223, 228, 405

fermion, 2, 419-421, 425

relation to supercommuting variables,

230, 419

fermionic

field, 419, 420, see also sigma model,

fermionic fields of

variables, 419, 427, 428

Feynman diagram, 196

Feynman integral, 2, 7, see also path

integral

field

bosonic, see bosonic, field

classical, 411, 414, 416

fermionic, see fermionic, field

primary, 424

quantum, 414, 416

theory, 411, 414, see also conformal field

theory and quantum field theory

field strength, 417, 418

flag manifold, 219, 228, 254

complete intersection in, 364, 366

Calabi-Yau, 405

flag of graph T, 285, see also localization in

Mo n (P, d), fixed point loci
flip, 137, 139

example of, 141

geometric significance of, 137, see also

fiop, generalized

trivial, 137, 138, 141, 142, 156

flop, 43, 133, 147, 225, 226

example of, 141

generalized, 137

trivial, 137

Fourier transform, 414, 418

Frobenius algebra, 221, 234, 240, 430, 435

definition of, 432

gives (1 + 1)-dimensional TQFT, 432, 434

n-point function of, 432, 434



three-point function of, 432

trace map of, 432

Frobenius manifold, 241

Frobenius method, 26, 77, 161-163, 333

example of, 162, 165

in cohomology ring of P4, 164

fundamental class, 172

Gale transform, 44

gauge choice, 418, 419, 424

gauge fixing, 417

gauge group, 417, 419, 420, 424, 429

for electricity and magnetism, 418

gauge theory, 417, 428

gauged linear sigma model, 12, 42, 45, 334,

428-430

action of, 428

bosonic part of, 428

correlation function of, 364

example of, 429

gauge group of, 428

mirror symmetry for, 430

phases of, 143, see also phases

Calabi-Yau, 429

Landau-Ginzburg, 430

relation to toric geometry, 429

Gauss-Manin connection, 8, 25, 75, 82, 151,

250, 259, 265267

connection matrix, see connection matrix

definition of, 74

fiat integral section, 82, 106, 111, 150,

151, 387

of a Calabi-Yau threefold, 106, 108, 109,

251, 257, 258

relation to normalized Yukawa coupling,

105

generalized Berglund-Hiibsch transposition

rule, 70

generalized fiop, see fiop, generalized

generalized Fredholm orbifold bundle, 191

oriented Euler class of, 191

genus g coupling, 303, 312

genus g gravitational Gromov-Witten

potential, 303

definition of, 304

geometric quotient, 37, 117

geometrically engineered theory, 406

ghosts, 424

GIT quotient, 117, 120, 122

Givental [-function

Iv, 26, 27, 100, 358, 379, 380

definition of, 356

example of, 364

for a convex variety, 381

for a toric variety, 381, 383

for hypersurface in P(1,1,2,2,2), 384

for quintic threefold, 26, 98, 101, 164,

361, 362

457

satisfies Picard-Fuchs equations of

mirror, 101, 121, 128, 383, 385, 399

Ty, 365, 366

I, 98-101, 128, 164, 359

satisfies A-system, 98, 391

equivariant version of [pn, 371

equivariant version of Iy, 379, 382

for F, 393, 394

for P!, 357

for PTM, 357, 365, 371

for a toric variety, 389

when —Kx is nef, 393

Givental J-function, 25, 320-325, 358, 359

Jv, 26, 358, 359, 379, 380

definition of, 358

example of, 364

for a convex variety, 365

for a toric variety, 381-383

for hypersurface in P(1,1,2,2,2), 384,

388

for quintic threefold, 26, 362

gives relations in modified quantum

cohomology, 363

gives relations in quantum

cohomology, 364

symbolic notation for, 358

definition of, 320

equivariant version of Jpn, 366

definition of S, 366

definition of Z;, 367

equivariant version of Jy, 372, 382

definition of Sy, 372, 373

definition of Sy, 372, 373

definition of Z; v, 373

for F2, 393, 394

for P!, 324, 357

for PTM, 324, 325, 346, 357, 365

for a Calabi-Yau threefold, 325-329

formula for, 325, 326

in terms of Gromov-Witten potential,

326

second partials of, 326, 363

for a toric variety, 389

when —Kx is nef, 393

for hypersurface in P(1,1,2,2,2), 386,

388

for quintic threefold, 25, 362

formulas for, 322, 356

gives relations in quantum cohomology,

321

primitive part of, 361

relation between Jx and Jy, 359, 360,

382, 386, 400

symbolic notation for, 322, 356, 360

toric part of, 382

Givental connection, 316

definition of, 311

dual, 321, 329
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flat sections of, 311-313, 319

restriction of, 314, 322

symbolic notation for, 312

relation to Dubrovin connection, 245

restriction to H%(X,C) & H2(X,C), 314,

320

restriction to H2(V,C), 315

GKZ decomposition, 43, 44, 60, 120, 121,

139, 143, 155, 161, 225, 430

enlarged, 43, 430

examples of, 50-52, 124, 127, 140

GKZ system, 95, 96, 100, 101, 122-123,

125, 158-166, 333, 383, see also

A-system and hypergeometric

equations

GLSM, see gauged linear sigma model

gluing lemma, 338, 342, 380

Grébner basis techniques, 84, 86-88, 90,

225

Grdbner fan, 121, 225, see also secondary

fan

Grassmannian, 167, 173, 219, 227, 228, 281,

293, 405

Calabi-Yau complete intersection in, 405

threefold, 366

gravitational class, 306, 309, see also

gravitational correlators

definition of, 305

gravitational correlators, 25, 196, 211,

301-311, 320, 382, 383, see also genus

g gravitational Gromov-Witten

potential and genus g coupling

axioms for, see also gravitational class

Degree Axiom, 304, 310, 311, 317, 318,

325, 360

Dilaton Axiom, 306-308, 310, 318

Divisor Axiom, 305-308, 310, 314, 318,

357

Fundamental Class Axiom, 305-308,

318, 324, 325

Splitting Axiom, 305-307, 313

coefficients, 303

definition of, 302

genus O correlators in terms of

Gromov-Witten invariants, 306

genus O correlators of P!, 306, 357

recursion for, 307, 308

genus O correlators of Calabi-Yau

threefolds, 308

genus 1 correlator (71)1.0, 308, 309

relation to Euler characteristic. 310

recursions coming from TRRs, 311,

see also topological recursion

relation

relation to Gromov-Witten invariants,

303

symbolic notation for. 315, 356

gravitational descendants. 302, 311

INDEX

relation to gravitational correlators, 303

gravitational Gromov-Witten potential, see

genus g gravitational Gromov-Witten

potential

gravitational potential, 310

gravitational quantum product, 234, 304

coefficients, 304

Griffiths transversality, 74, 76, 102, 103,

111, 252, 254

for projective hypersurfaces, 83

for the A-variation of Hodge structure, _

see A-variation of Hodge structure,

Griffiths transversality for

Griffiths-Dwork method, 83--87, 94, 96,

see also Picard-Fuchs equation

description of, 84

examples of, 87-90

for projective hypersurfaces, 83-85

for toric hypersurfaces, 8587

limitations of, 86

for weighted projective hypersurfaces, 85

Gromov-Uklenbeck compactification, 187,

209

Gromov-Witten class, 200, 212, 220, 232,

305, 309

axioms for, 191-195, 304

Composition Law, 194

Deformation Axiom, 194, 395

Degree Axiom, 192, 198, 201, 265

Divisor Axiom, 193, 198, 200-203, 212,

235, 236, 239, 246, 265, 307

Effectivity Axiom, 192, 228

Equivariance Axiom, 192, 199, 201,

219-221, 233, 241

Fundamental Class Axiom, 193, 198,

199, 201, 212, 219, 234, 235, 265

Linearity Axiom, 192

Motivic Axiom, 194

Point Mapping Axiom, 193, 197, 200,

201, 204, 211, 219, 231, 234, 235,

239, 307, 310, 314

Reduction Axiom, 194, 212. 310

Splitting Axiom, 194, 196, 198, 199,

219, 220, 233, 241

definition in simplest case, 171

definition of, 183, see also

Gromov-Witten invariant, algebraic

definition and virtual fundamental

class

intuitive definition of, 168

of P2, 198, 199

role of fundamental class, 172

symplectic, 190

tree-level, 196

Gromov-Witten invariant, 7, 9, 15, 16, 24,

25, 28. 265, 266, 273, 281, 298-301, 307

algebraic definition, 168-184. see aiso

virtual fundamental class



in general case, 183

in simplest case, 171

intuitive idea of, 168

role of fundamental class, 172

arises in physics, 422

axioms for, 192, 193, see also

Gromov-Witten class, axioms for

computing, 196-215

elliptic invariants of P2, 210-212, 310

elliptic invariants of B3, 213

elliptic invariants of the quintic

threefold, 213, 214

genus 0 invariants of P2, 197-201, 236,

237, 310

genus O invariants of Calabi-Yau

threefolds, 201-210, 308, 325,

see also instanton number and

multiple cover

genus 0 invariants of the quintic

threefold, 184, 201203, see also

quintic threefold, Gromov-Witten

invariants of

genus 2 invariants of P2, 311

other examples, 201, 214, 405

recursion for invariants of P2, 198, 200,

211, 220, 232, 237

recursion for invariants of P3, 213

enumerative significance of, 195, 196,

198, 202, 211, 212, 214, 262, 400,

see also instanton number,

enumerative significance of

equivalence of algebraic and symplectic

definitions, 195

equivariant, 196, 298-300, 319

definition of, 298

nonequivariant limit of, 298

of quintic threefold, 299

of zero section of equivariant bundle,

299

symplectic definition, 184, 188-191, 205,

208, 209

equivalence of definitions, 191, 195

intuitive idea of, 186

Li-Tian approach, 190

relation between mixed and symplectic

invariants, 190

Ruan-Tian mixed invariant, 188, 189,

210, 212

Ruan-Tian symplectic invariant, 189,

210, 212

tree-level, 196, 230

used to define A-model correlation

function, 221

used to define Gromov-Witten potential,

230

used to define quantum cohomology, 218

Gromov-Witten potential, 28, 109,

230-234, 244, 247, 303, 304, 389

INDEX 459

classical part, 235

definition of, 230

equivariant, 319, 320

genus 0 free energy, 231

genus g, 231

homogeneity of, 235

of P2, 236

of a Calabi-Yau threefold, 238, 239, 256,

261, 318, 326

expressible in terms of periods of

mirror, 333, 389

toric part of, 389

of an elliptic curve, 231, 235

of the quintic threefold, 28, 237, 238, 333

quantum part, 235

structure of, 234-236

third partials of, 231, 234

WDVYV equation for, 232-234, 236, 237,

239

Gysin map, 171

Gysin spectral sequence, 59

Hamilton's equations, 413, 414

Hamiltonian, 412-415, 430

for electricity and magnetism, 418

Hamiltonian action, 40, 429

moment map of, see moment map

Hamiltonian vector field, 40

Hard Lefschetz Theorem, 250, 409

Heisenberg picture, 413

HG

definition of, 346

mirror transformation of, 348, 349, 353,

354, see also Euler data, linked,

mirror transformation of

of P, 28, 101, 164, 347, 352-354, 357

of @, 28, 347, 350, 352-354, 357

of Euler data, 346

Hilbert scheme, 208, 282

Hirzebruch-Riemann-Roch theorem, 175

Hochschild cohomology, 403

Hodge diamond, 4, 5

Hodge numbers, 4, 6, 66, 227

Calabi-Yau toric complete intersection,

63

Calabi-Yau toric hypersurface, 56—60,

119, 145, 146

string theoretic, 60, 63, 273, 402

Hodge structure

degeneration of, 75

Hodge filtration of, 73, 105, 153

limiting, 76, 111

integer lattice of, 73, 76, 260, 268

mixed, 76, 253

Hodge-Tate, 80, 105, 255, 264, 266, 268 -

limiting, 75, 105, 255, 266, see also

monodromy weight filtration

of an orbifoid, 409
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of weight k, 73

polarized, 74, 107, 253, 258, 267

pure, 59

variation of, 25, 74, 107, 109, 152, 158,

253, 254, 258, 267

C-variation, 268, 271, 272

comes from geometry, 262

formally degenerating, 261

real, 255, 264

Hodge-Riemann bilinear relation, 74, 254,

268

Hodge-Tate, see Hodge structure, mixed,

Hodge-Tate

holomorphically symplectic, 402

homogeneous change of coordinates in the

Mirror Theorem, see weights of

variables

Hopf fibration, 49

hypergeometric equations, 90-101, 161,

333, see also A-system and GKZ

system

hypergeometric functions, 95, 164

p-adic, 20

generalized, 20

HG, see HG

hyper-Kihler, 402

indicial equation, 77, 79, 80, 163

instanton

corrections, 9, 423

holomorphic, 8, 430

naive, 430

sum, 422, 423

worldsheet, 422

instanton number, 8, 203-210, 226, 308

definition of, 203

divisibility properties of, 24

elliptic analog of, 213, 214

enumerative significance of, 205-208

example of, 205-208, see also quintic

threefold, instanton numbers of

for quintic threefold, see quintic

threefold, instanton numbers of

symplectic definition of, 208-210, 400

integrality conjecture, 105-107, 109, 110,

112, 151, 155, 157, 250, 258, 259, 262,

266, 268, 270, 385, 386, 399

statement of, 82, 150

intersection homology, 409

intrinsic normal cone, see normal cone,

intrinsic

intrinsic normal sheaf, 178, 179, see also

normai cone, intrinsic

Iy, see Givental [-function, Iy

Jacobian ideal, 84, 86, 90

Jacobian ring, 427, 428

J-holomorphic curve, 209

definition of, 208

INDEX

J-holomorphic map, 185

moduli of

dimension of, 186, 187

fundamental class of, 188

Li-Tian approach, 188, 190

Ruan approach, 186

Ruan-Tian approach, 187

multiple cover, 186

perturbed, 187, 190, 205

simple, 186, 208, 210

stable, 188

Jones polynomial, 435

Jv, see Givental J-function, Jy

K3 surface, 359

mirror symmetry for, 401

rational curves on, 400

vector bundles on, 404

with involution, 6567

Kahler

cone, 12, 120, 127, 128, 130, 150, 225,

227, 365

behavior when complex structure

varies, 134

closure of, 128, 132, 135, 142, 153, 243,

245, 267, 316, 317, 381

face of, 132134, 144, 146, 158, 227

jocally polyhedral, 132

of a Calabi-Yau threefold, 132, 144,

146, see also movable cone

polyhedral, 39, 129

simplicial, 97

toric part of, 135, 136, 138, 139, 399

form on an orbifold, 409

moduli, see moduli, Kahler

space, see complexified, Kihler space

Kg, 333, 350, see also N4, Gromov-Witten

invariant for the quintic threefold

for a critical bundle, 352

in multiple cover case, 352, 355

Kiein-Gordon equation, 412, 414, 415, 418

Kodaira-Spencer class, 133

Kodaira-Spencer map, 153

Kuranishi map, 175, 177

Lagrange lift, 349, see also Euler data,

linked. mirror transformation of

Lagrangian, 1, 412, 420

Lagrangian category, 403

Lagrangian density, 411, 412, 414-416

for electricity and magnetism, 417, 418

Lagrangian submanifold, 403

special, 11, 402, 403

Landau-Ginzburg

model, 426

orbifold. 6, 143, 427, 429

potential, 428

theory, 426-429



large radius limit peint, 115, 128-131, 136,

138, 149, 150, 152, 153, 155, 156, 245,

251, 257, 264, 267, 269

equivalence of, 131, 152

example of, 141

tangent space at, 158

lattice of linear relations, 39, 41, 44, 136,

138, 140, 155, 159, 224, 390

example of, 50, 93, 95, 124, 126, 160, 164

relation to .A-system, 91, 97, 99

Laurent monomial, 35, 118, 126

Laurent polynomial, 35, 116, 117, 122, 155

Lg, 336, 375

fixed point loci, 376

normal bundle of, 377

map u to Ng, 375

Lefschetz decomposition, 259, 264, 361

Lefschetz Theorem, 361

left-moving

fermions, 2, 421

sector, 425

Levi-Civita connection, 420

L;, see cotangent line £;

limiting weight filtration, see monodromy

weight flitration

linear circuit, 136, 138

example of, 136, 140, 141

shrink the GKZ decomposition, 139

supported by a fan, 137, 139

linear sigma model, see gauged linear

sigma model

local operator, 421, 423

localization, 279, 280, 366, 382, see also

Localization Theorem

of stacks, 289

localization in Mo, (P, d), 282-293

fixed point loci, 282, 340, 348, 367, 368,

376, 377

description of, 283

example of, 284, 285, 289

graph of, 283, 289, 290, 367, 368, 370

normal bundle of, 285-287, 289, 291,

293, 370, see also Euler class,

equivariant, of Np

Type A graph, 368, 369, 374

Type B graph, 368, 374

torus action on, 282

Localization Theorem

applications to enumerative geometry,

282

applied to P", 278, 279

computing instanton number n4, 288

computing lines on quintic threefold, 282

for equivariant cohomology, 277, 319,

338, 339, 347-349

for polynomials in Chern classes, 281,

291-293

INDEX 461

for smooth stacks, 280, 281, 289, 368,

373, 375, 377

for the equivariant integral, 279, 335,

339-342, 345, 348, 376

proving multiple cover formula, 289

Lorentz transformation, 415

low energy limit, 10

M(X), see Mori cone

Macaulay, 297

mathematical mirror pair, 4, 11, 25, 56,

242, 387, 397

global, 258

higher dimensional, 264-267

definition of, 264

for fourfolds, 265, 266

limitations of, 265

Hodge-theoretic, 258, 264

of Calabi-Yau threefolds, 257-262

definition of, 258

in terms of correlation functions, 259,

262

in terms of potential functions, 260,

262

quintic mirror and quintic threefold,

262-263, 333

matrix integral, 310

matrix model, 310

maximal degeneracy, 121, see also

maximally unipotent, boundary point

maximal projective crepant partial

desingularization, 55

maximal projective subdivision, see

projective subdivision, maximal

maximally unipotent .

boundary point, 82, 93, 102, 104, 105,

109, 110, 113-115, 119, 121, 128,

131, 138, 149, 151-1586, 159161,

251, 257, 266~269

definition of, 81

equivalence of, 115, 120

example of, 89, 90, 125, 127, 142

existence of, 116, 120, 399

tangent space at, 158

monodromy, 18, 19, 78-82, 109, 113, 127,

153, 163, 264

1-dimensional moduli, 78-81

r-dimensional moduli, 81-82

Maxwell's equations, 417, 418

McKay correspondence, 402

My, 334

fixed point loci, 334, 339

description of, 334

graph T, 339

normai bundle of, 341

map @ to Ny, 336, 337, 339-341, 344, 375

torus action on, 334

minimal model, 6

Minkowski sum, 33, 63
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Mirror Conjecture, 328

for Calabi-Yau threefolds, 258, 261

for quintic threefold, 262, 333

higher dimensional, 267

relation to Givental Mirror Theorem, 383

toric, 112, 267-273, 383, see also Mirror

Theorems, Givental, toric

example of, 269, 270

for threefolds, 267

higher dimensional, 273

Hodge-theoretic, 56, 112, 268, 272,

273, 387

mathematical, 271

statement of, 268, 272

mirror construction, 261

Batyrev, 53, 56, 60, 70, 72, 120, 123-125,

135, 139, 143, 144, 146, 148, 155,

261, 267, 268, 271, 272, 381, 383

quintic threefold, 61

Batyrev-Borisov, 62, 63, 100, 147, 405,

see also nef-partition

for Calabi-Yau complete intersections in

fiag manifolds, 405

Greene-Plesser, 53, 56, 89

Voisin-Borcea, 65, 68—-69, 72, 401, 402

complex and Kiahler moduli, 68, 69

relation to Batyrev construction, 70

Yukawa coupling, 69

mirror coordinates, see mirror map

mirror map, 5, 9, 56, 60, 82, 109, 128, 143,

147-166, 257, 385

definition of, 150, 157

choices to make, 150, 152, 154

data needed to define, 150

indeterminacy in definition, 150

justification from physics, 158

role of integrality conjecture, 150, 151

derivative of, 152154, 158, 266, 267,

see also mirror map, definition of,

choices to make

for quintic threefold, see quintic

threefold, mirror map of

mirror coordinates, 110, 112, 152, 259.

265

definition of, 149

toric, 148, 151, 155-159, 267, 268, 270,

272

definition of, 155, 156

for quintic threefold, 156, 157

not the identity, 148

resolving the lack of uniqueness, 156

via hypergeometric functions, 159-166

mirror pair, 5, 6, 9, 53, 56, 402, 421,

see also mirror construction

Hodge-theoretic, see mathematical

mirror pair, Hodge-theoretic

mathematical, see mathematical mirror

pair

physics deflnition of, 4

mirror symmetry, 1, 4-6, 9, 10, 16, 35, 46,

53, 82, 107, 111, 115, 116, 128, 129,

131, 142, 144, 147, 152, 250, 256, 261,

266, 328, 423, 426, see also Mirror

Conjecture and Mirror Theorems

categorical, see mirror symmetry,

homological

classical, 9, 13, 24, 27, 333, 363, 385

earliest evidence for, 60

enumerative aspects of, 214

for a K3 surface, 401

for gauged linear sigma models, 430

for quintic threefold, see quintic

threefold, mirror symmetry for

for rigid Calabi-Yau, 65

Hodge-theoretic, 25, 154, 362, see aiso

mathematical mirror pair,

Hodge-theoretic

homological, 11, 403

mathematical, 11, 112, 217, 242, 257,

274, 397, 402, see also mathematical

mirror pair and Mirror Conjecture

relation to Givental Mirror Theorem, 383

toric, 56

Mirror Theorems, 6, 273, 274

broader conception of, 355, 398, 403

Givental, 356, 398

class P, 378-380

computes genus 0 gravitational

correlators, 361

coordinate change lemma, 379-381

Double Construction Lemma, 375, 378,

380

example of, 359, 364

for Fz, 394

for P!, 324, 357

for PTM, 325, 357, 366, 371, 372

for hypersurface in P(1,1, 2,2, 2),

383-386, 388

for nef complete intersection in PTM,

356, 358, 359, 373, 379, 380

genus 1 version, 381

how to find change of variables, 359

quintic, 26, 361-363

Recursion Lemma, 369, 371, 372, 374,

37 ., 378, 380

Regularity Lemma, 369, 373, 375, 378

toric, 381, 382, 387, 389, 391, 405,

see also quantum cohomology,

small, of a smooth toric variety

Uniqueness Lemma, 378, 380

Lian-Liu-Yau, 28, 263, 332, 334, 349,

354, 380, 398

application to multiple covers, 355

toric, 398

quintic, 24-29, 263, 332, 334, 352, 354,

362



4

mirror transformation, see Euler data,

linked, mirror transformation of and

HG, mirror transformation of

missing mirrors, 72

moduli, 1,

complex, 3-5, 9, 56, 81, 82, 113-128, 131,

144, 148, 149, 264, 423

1-dimensional, 78, 79, 82, 84, 87, 102,

105, 107, 109, 257

compactification of, 114, 115, 117,

119-121

coordinates, 114, 123, 124, 155, 159,

267 )

dimension of, 118, 119

example of, 123-127, 139, 147

maximally unipotent boundary point,

see maximally unipotent, boundary

point

of a Calabi-Yau threefold, 78, 79, 82,

102, 105, 107, 109, 121, 257, 258, 260

of a Calabi-Yau toric hypersurface, 92,

93, 116-127

polynomial, 61, 116-119, 124~126, 138,

147, 383, 427

simplified, 95, 117-127, 135, 138, 142,

155, 156, 267, 271

Kihler, 3-5, 11, 12, 56, 82, 116, 127-149,

152, 218, 245, 264, 423

1-dimensional, 149

boundary, 143

compactification of, 132, 135, 136,

142-144, 152

coordinates, 128, 129, 267

enlarged, 132-134, 136, 142

example of, 139-142, 146

global, 142

large radius limit point, see large

radius limit point

of a Calabi-Yau threefold, 132-134,

142, 257, 258

of a Calabi-Yau toric hypersurface,

134-143

partial compactification of, 128-132,

134, 138, 141, 142, 150

toric, 60, 120, 134, 135, 138, 141, 155,

156, 267, 271

SCFT, 3-5, 128, 144, 145, 264, 401

example of, 147

stable maps, see stable maps, moduli of

moment map, 41, 44, 45, 49, 143, 429

example of, 50

monodromy theorem, 75

monodromy transformation, 75, 77, 81,

114, 316

logarithm of, 75, 81, 111, 114, 142, 246,

247, 249, 316

of A-model connection, see A-model,

connection, monodromy of

463

quasi-unipotent, 75

unipotent, 75, 77, 78, 114, 246, 247

maximaliy, see maximailly unipotent

monodromy weight filtration, 76, 80, 81,

104, 105, 115, 149, 150, 154, 161, 250,

268

of the A-model connection, see A-model,

connection, monodromy weight

filtration of

monomial ordering, 225

monomiai-divisor mirror map, 57, 60, 158,

268, 271, 272

Mori cone, 39, 98, 228

of a toric variety, see toric variety, Mori

cone of

movable cone, 133, 142

reflected, 134, 142

multiple covers, 202, 207, 209, 288, 343,

see also instanton number

contribution to Gromov-Witten

invariant, 202, 204, 288-294, 352

Lian-Liu-Yau’s proof, 355

Pandharipande’s proof, 291293

proof for d = 2, 289291

contribution to virtual fundamental

class, 202, 205, 294

elliptic, 209, 214, 300

of 6-nodal quintics, 293, 294, see also

double covers of 6-nodal quintics

of non-isolated curves, 208

multiple mirrors, 45, 60, 121

Ny

Gromov-Witten invariant for P2, 198

Gromov-Witten invariant for the quintic

threefold, 201

projective space, 334, 375

equivariant cohomology of, 335

equivariant hyperplane class of, 335

fixed points of, 335, 340

torus action on, 335

weights of, 335

nef complete intersection, see toric

complete intersection, nef

nef-partition, 62, 63, 97, 100

dual, 63

nets of quadrics, 366

nilpotent orbit, 254

nilpotent orbit theorem, 76

node deformations, 341

Noether’s theorem, 419

non-linear sigma model, see sigma model

non-perturbative state, 402

non-renormalization theorem, 7, 8, 423

nonequivariant limit, 28, 346, 350-354, 357,

366, 372, 379, 380

definition of, 276

normal cone, 172, 174, 177, 178, 181, 360

intrinsic, 178, 179
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example of, 179

refines Euler class, 173

virtual, 177

normalization exact sequence, 290, 292

normalized 3-form, 21, 104-106, 110, 112,

151, 258, 259, 268, 328, 385, see also

Yukawa coupling, normalized

normalized d-form, 154

Novikov ring, 229

observable, 1, 2, 36, 414

obstruction bundle, 208, 289, 290, 292,

see also weights of a representation,

obstruction

obstruction space, 175

obstruction theory, 178, 300

perfect, 174, 180, 299

definition of, 179

equivariant, 299

example of, 179

for virtual fundamental class, 180

octahedron, 51

Q-Euler data, see Euler data

open conjectures, 399, 400, see also Mirror

Conjecture

Calabi-Yau threefold

B-model potential function in terms of

Iy, 389, 399

Yukawa coupling in terms of Iy, 389,

399

complex geometry

integrality conjecture, 82, 399

maximally unipotent boundary points

in simplifled moduli space, 120, 399

convergence of quantum cohomology,

218, 400

enumerative geometry

Clemens conjecture, 202, 400

enumerative significance of a

Gromov-Witten invariant, 196, 400

symplectic definition of instanton

numbers, 208, 400

Kihler geometry

cone conjecture, 130, 399

toric part of Kahler cone of a

Calabi-Yau toric hypersurface, 138,

399

Picard-Fuchs equations

Iy is a solution, 101, 399

missing equations in .A-system, 94, 399

relation between Jx and Jy,, 386, 400

virtual fundamental class

equivalence of definitions, 176, 399

for a complete intersection, 386, 400

operator product expansion, 424, 425

orbifold, 12, 32, 38, 54, 171, 407

Calabi-Yau, see Calabi-Yau, orbifold

definition of, 408

diffeomorphism, 42, 45, 410

INDEX

Goreristein, 407, 408, 410

Hodge theory on, 409

infinitesimal deformations of, 410

integration over, 340

Kahler form on, 409

symplectic, 42, 410

tangent sheaf of, 410

P(1,1,2,2,2) and its toric blow-up, 49, 89

Calabi-Yau hypersurface in, 427

A-model correlation function of, 269,

386, 388

Givental function I, 384

Givental function Jy/, 386, 3884
Givental function Jy,, 384, 388

Gromov-Witten potential of, 387, 388

Hodge numbers of, 146

instanton numbers of, 269, 270

Kihler cone of, 146, 269, 383

Kihler moduli of, 146, 147

mirror map of, 158, 159, 164-166, 270,

385, 388

Mirror Theorem for, 383; 386, 388

moduli coordinates of, 269

SCFT moduli of, 147

toric Kéhler cone of, 148

toric Kahler moduli of, 148, 269

GKZ decomposition of, 50, 124, 146

Mirror Conjecture for, 269

mirror of Calabi-Yau hypersurface in, 88,

95, 103, 123, 145, 164

A-system of, 96, 385

discriminant locus of, 147

Frobenius method, 165

Gauss-Manin connection of, 269, 385,

386

Hodge numbers of, 146

homogeneous coordinate ring of, 89

moduli coordinates of, 89, 95, 148, 158,

387

monodromy of, 270, 385, 387

periods of, 164, 165, 385

Picard-Fuchs equations of, 90, 96, 103,

158, 165, 385, 386

satisfies integrality conjecture, 270, 385

simplified moduli of, 147, 148

Yukawa couplings of, 103, 104, 125,

385, 388

polytope of, 88

pair of pants, 433, 434

partition function, 310

path integral, 416-418, 422, see also

Feynman integral

period, 19, 20, 27, 75, 92, 94, 95, 159, 333,

see also Picard-Fuchs equation,

solutions of

period domain, 254

perturbative state, 402

phase transition, 429



phases, 46, 143, see also gauged linear

sigma model

P, 27, 28, 101, 164, 343, 346, 353

definition of, 337

for a concavex bundle, 350

in multiple cover case, 355

is Euler data, 339

physicist’s Euler number, 60, 402, sec also

Hodge numbers, string theoretic

Picard-Fuchs equation, 19, 75, 77, 80, 81,

84, 102, 103

computing via A-system, see A-system

computing via Griffiths-Dwork method,

see Griffiths-Dwork method

examples of, 87-90

missing equations in .A-system, 94, 95,

101, 383, 385, 399

normalized, 27, 105-107

of a Calabi-Yau threefold, 79, 105, 327

of a Calabi-Yau toric hypersurface, see

Calabi-Yau, toric hypersurface

of mirror of a Calabi-Yau toric complete

intersection, 100, 101

of the quintic mirror, see quintic mirror,

Picard-Fuchs equation of

solutions of, 19, 96, 101, 149, 156, 160,

161, 263, 268, see also Frobenius

method

Picard-Fuchs ideal, 74, 77, 94

associated D-module, 74, 75, 101

Picard-Fuchs operator, 328, 329

fi-homogenization of, 328, 329

gives relation in quantum cohomology,

329

principal part of, 328

Picard-Lefschetz transformation, see

monodromy transformation

Planck’s constant A, 413

Poincaré duality, 82, 381

for orbifolds, 171, 172, 183, 305, 408

Poisson bracket, 413, 414

polytope, 33

facet of, 33

integral, 33

Newton, 35, 60

normal fan of, 34, 51, 53, 135

normalized volume, 59

polar, 34, 46, 51, 53, 120

duality, 35

reflexive, 60, see reflexive polytope

ring, 34, 36, 37

simplicial, 409

toric variety of, 34

potential function, see B-model, potential

function and Gromov-Witten potential

prestable maps, 179

primitive cohomology, 83, 86, 253, 264, 361

definition of, 74

INDEX 465

primitive collection, 38, 50, 223-225

ampleness criterion, 40

primitive contraction, 132, 143; 148

Type 1, 133, 134, 143, 144, 147, 226, 227

Type 11, 133, 134, 143

Type 111, 133, 134, 143, 146, 227

principal A-determinant, 122

projective subdivision, 54, 55, 137

definition of, 53

maximal, 54-56, 60, 62, 63, 116, 135,

267, 382

definition of, 53

simplified, 136, 139141, 143, 146

definition of, 135

pseudo-manifold, 189

Q, 27, 28, 340, 343, 344, 347, 348, 350, 351,

353

definition of, 337

for a concavex bundle, 349

in multiple cover case, 352, 355

is Euler data, 339

quantization, 10, 413, 415, 418, 419, 424,

425, 430

canonical, 413, 414

radial, 424

quantum D-module, 405

quantum anomaly, 423—425

quantum cohomology, 7, 25, 82, 101, 200,

422, 430, 435

big, 229, 230, 304, 312, 314, see also

Gromov-Witten potential

associativity of, 232, 234, 237, see also

Gromov-Witten potential, WDVV

equation for

convergence of, 230

definition of, 231

degree condition for, 235

Kiinneth formula for, 234

of P2, 237

of a Calabi-Yau threefold, 239

of the quintic threefold, 238

relation to small quantum product,

242, 243

restriction of, 242—244, 314, 320, 327

ring structure of, 233, see also

Frobenius algebra

used to define Givental connection, 311

coefficients, 228-230

gravitational, see gravitational quantum

product

modified, 363

relations in, 363

small, 217-228, 230, 314, 315, 320, 326,

359, 363, 364

associativity of, 219, 228

convergence of, 218, 227, 228, 244, 245,

400



466 INDEX

definition of, 218

degree condition for, 221, 222

effect of a flop, 226, 227

of (1 + 1)-dimensional TQFT, 434

of Fz, 393-395

of P7, 222, 223, 237, 325

of a Calabi-Yau manifold, 218, 222,

252

of a Calabi-Yau threefold, 225-227,

239, 327, 329

of a Grassmannian, 227, 405

of a smooth toric variety, 223, 390, 392,

393, see also Batyrev quantum ring

of the quintic threefold, 225, 226, 238

other examples, 227, 228

properties of, 221

relation to big quantum product, 242,

243

relations in, 321, 322, 325, 364, 387,

390, 392

ring structure of, 219, see also

Frobenius algebra

used to define A-model conrection,

243, 244

quantum corrections, 12, 18, 148

quantum differential equation, 321, 324,

327, 329, 356, 386, 390, 405, see also

quantum differential operator

quantum differential operator, 321, 322,

329, 392, 395

derived from relations in quantum

cohomology, 322, 324

example of, 324, 325, 327

gives relations in quantum cohomology,

321, see also quantum cohomology,

small, relations in

quantum field theory, 413-419, 422, 430

Hamiltonian formulation, 416

Lagrangian formulation, 416

two-dimensional, 1

Quantum Hyperplane Section Principle, 26,

364-366, 405

for P, 365

for a convex variety, 365

relation to Givental Mirror Theorem, 366

quasi-smooth, 60, 86, 116, 408, see also

orbifold

quintic mirror, 17, 122, 333

A-system of, 93, 94

solutions of, 101

B-model correlation function of, 17,

21-23. 27, 29, see also correlation

function, B-model

B-model potential funct.on of, 263, 333

complex moduli of, 18, 262

construction of, 17, 61

Frobenius method, 162

Gauss-Manin connection of, 25

homogeneous coordinate ring of, 62

monodromy of, 111, 112, 262

Picard-Fuchs equation of, 20, 21, 26, 81,

87, 88, 95, 163, 333

solutions of, 23, 101, 110, 157, 160,

162, 164, 333, 353, 362

refiexive polytope of, 61

satisfies integrality conjecture, 82, 110,

150, 157

Yukawa coupling of, 21, 157

normalized, 21-23, 2& 27, 110-111,

262, 363, see also quintic mirror,

B-model correlation function of

quintic threefold, 15-29, 352, 429

2875 lines on, 23, 24, 157, 173, 281, 282

A-model correlation function of, 15, 16,

22, 23, 27, 28, 203, 226, 262, 333,

363, see elso correlation function,

A-model

big quantum cohomology of, 238

Fermat, 143, 174

Gromov-Witten invariants of, 173, 174,

201-203, 293, 332

equivariant, 299

formula for, 184, 201, 281, 332, 350

via localization, 288

Gromov-Witten potential of, 28, 237,

238, 333, 350, 362, 388

instanton numbers of, 16, 23-25, 205,

207, 262, 293, 333, 363, see also

instanton number

computatijon of ng, 288

subtleties of n1g, 16, 206, 297

Kéhler moduli of, 15, 18, 22, 157

mirror map of, 18-20, 22, 23, 26, 28, 110,

156, 157, 162, 263, 333, 353, 362

mirror of, see quintic mirror

mirror symmetry for, 15, 18, 20, 22, 23,

262, 263, 288, 333, see also Mirror

Theorem, quintic

Mirror Theorem, see Mirror Theorems,

quintic

rational curves on, 1, 15, 16, 24, 202,

206, 288, 293, see also Clemens

conjecture

6-nodal quintics on, 16, 206, 293, 295,

297

normal bundle of, 294

smail quantum cohomology of, 225, 226

virtual fundamental class of, 173, 180,

181, 184

raising indices, 218, 239, 417

rational polyhedral cone, 31

strongly convex, 31

Reciprocity Lemma, 344

Reconstruction Theorem. 196, 197, 200

Recursion Lemma, see Mirror Theorems,

Givental, Recursion Lemma



recursion relation

differential equations, 95, 162, 163

Gromov-Witten invariants, see

Gromov-Witten invariant,

computing, recursion

reflexive Gorenstein cone, 62, 64

duality of, 64

index of, 64

relation to nef-partitions, 64

relation to refiexive polytopes, 64

refiexive polytope, 6, 35, 47, 53-55, 63, 96,

116, 118, 134, 135, 144, 145, 155, 267,

382, 383, 405

Batyrev duality for, 46, 56

classification of, 47

definition of, 46

example of, 49, 51, 71, 88, 124, 125, 139,

146 .

for quintic mirror, 61

reflexive sheaf, 37

regular singular point, 20, 75, 77, 246, 247

regular triangulation, 43, 44

Regularity Lemma, see Mirror Theorems,

Givental, Regularity Lemma

Reid’s fantasy, 143, 405

renormalization, 2, 7, 8, 423, see also

non-renormalization theorem

residue map, 83, 86

residue matrix Res(V), 77, 79, 246

Ricci curvature tensor, 10

Riemann-Roch Theorem, 289, 294, 295

right-moving

fermions, 2, 421

sector, 425

Satake-Baily-Borel compactification, 132

Schrédinger picture, 413

secondary fan, 43, 117, 120, 121, 135, 136,

142, 143, 148, 155, 156, see also GKZ

decomposition

enlarged, 430

example of, 50, 51, 124, 126, 140

secondary polytope, 120

Seiberg-Witten curve, 406

semi-ample, 54

semi-positive, 185, 187, 189, 210

Serre-Grothendieck duallty, 55

Severi variety, 198

T-convex, see cpl(X), T-convex

sigma model, 3, 4, 6, 7, 9-11, 15, 168, 302,

334, 419-423, 428-430

A-model, 421

action of, see action, of sigma model

B-model, 421

fermionic fields of, 419, 421, 425

supersymmetric, 421, 423

topological, 434

twisted, 421, 422

singularity, 407410

INDEX 467

Q-factorial, 11, 55, 407

canonical, 11, 12, 407, 408

Cohen-Macaulay, 407

Gorenstein, 11, 12, 55, 116, 407

terminal, 11, 54, 55, 116, 407, 408, 410

toroidal, 410

small subgroup, 408

sparse resultant, 122

spin bundle, 419

spin geometry, 426

spinors, 426

stable Cf map, 188, 191

equivalence of, 188

stable maps

automorphisms of, 281, 283, 284,

200292, 340, 341, 368, 370, 377

definition of, 169

family of, 169

graph construction, 319, 334

moduli of, 16, 27, 173, see also

localization in Mo, (P",d) and My

coarse, 169, 170, 178, 181, 301

dimension of, 170

expected dimension of, 171, 175, 180,

187, 192, 211, 306, 308

stack, 170, 175, 180, 181, 301, 302,

357-359, 364

tangent space of, 175, 285, 290

universal, 179, 301, 302, 305

stack, see algebraic stack

Stanley-Reisner ideal, 223, 224

quantum, 224, 225, 392

stationary phase method, 417, 422

string theory, 1, 2, 7, 419, see also

superstring theory

limit of, 406

periods of, 406

suborbifold, 55, 409

supercommutative, 219, 221, 229, 230, 233,

234, 240, 434

superconformal

N = 2 algebra, 2

N = 2 representation, 56

field theory (SCFT), 2, 4, 6, 7, 9, 10, 12,

17, 53, 56

superfield, 426, 427, 429

chiral, see chiral superfield

supergravity, 10

supermanifold, 229, 230, 239, 426

partial derivatives on, 229, 304

tangent bundle of, 240

superpotential, 426, 428, 430

quintic, 429

superstring theory

duality of, 404

heterotic, 2, 3, 404, 420, 421

type I, 2

type 11, 2, 145, 404



468

supersymmetric field theory, 406, 420, 426

supersymmetry,.1-3, 7, 10, 424-426,

see also sigma model, supersymmetric

N = 2 algebra, 426

transformation, 2, 420, 422, 426

supervector space, 431, 434

support function, 32

upper convex, 33

strictly, 33, 35

support of a fan, see fan, support of

symplectic

action, 40

manifold, 40, 184, 185, 209, 228

semi-positive, see semi-positive

orbifold, 42, 410

reduction, 41, 42, 44, 45, 143, 410

symplectic quotient, see symplectic,

reduction

T-duality, 402, 403

tangent functor, 176

tangent weight, see weights of a

representation, tangent

tangent-obstruction complex, 176, 178-180,

285

for virtual fundamental class, 178

perfect, 174, 181

definition of, 176

example of, 177

three-point function, see correlation

function, three-point

time-ordered product, 417

Toda lattice, 228

topological quantum field theory, 167, 168,

217, 416, 422, 430435

(0 + 1)-dimensional, 431, 432

(1 + 1)-dimensional, 432

gives Frobenius algebra, 432, 434

(2 + 1)-dimensional, 435

(d + 1)-dimensional, 431

definition of, 431

relation to A-model, 434

topological recursion relation, 311, 312

topological sigma model, 167

coupled to gravity, 167, 187

toric complete intersection, 6, 62

Calabi-Yau, 6, 62, 382, 430

nef, 96, 97, 128, 381, 382, 389

Toric Mirror Theorem, see Mirror

Theorems, Givental, toric

toric part of cohomology, 134, 143, 156,

158, 267, 361, 382

definition of, 57, 271

toric variety, 32, 382, 407

affine, 32, 129

automorphism group, 47, 48, 58, 61, 62,

116-118, 125

dimension of, 48

roots, 48, 124, 126

INDEX

Batyrev quantum ring of, see Batyrev

quantum ring

Chow group of, 32, 36

cohomology ring of, 223, 392

complete, 32

divisors on, 33

ample, 33, 35, 40

generated by global sections, 33

global sections of, 34g

semi-ample, see semi-ample

examples of, 49-52

Fano, 46, 47, 49, 51, 53, 389-393, 395,

see also reflexive polytope

homogeneous coordinate ring of, 36,

47-50, 85, 92, 117, 125, 430

ideal-variety correspondence, 38

Kibhler cone of, 38, 39, 41, 392, 393, 429

Mori cone of, 39, 40, 383, 389, 393

Picard group of, 32, 224

quantum cohomology of, see quantum

cohomology, small, of a smooth toric

variety

simplicial, 32, 37, 38, 41, 47, 48, 408

smooth, 32, 381

via fans, see fan, toric variety of

via homogeneous coordinates, 37

via polytopes, see polytope, toric variety

of

via symplectic reduction, 41, 42, 45, 430

TQFT, see topological quantum field

theory

TRR, see topological recursion relation

tube domain, 130

V-manifold, 408, see also orbifold

vacuum state, 415, 417, 425, 427

Vafa-Intriligator formula, 227

vanishing cycle, 19

Va.k, 364, see also Va

V;s,‘k‘i, 364, see also V)

d

for Opn(£), 337, 340, 344

for a concavex bundle, 349, 351, 358, 375

for quintic threefold, 181, 184, 201, 288,

299, 302, 332

in multiple cover case, 352

Va ik, 357, 358, 360

v{,‘,m, 358, 372, 373

vector superfield, 428

Verlinde algebra, 227

Virasoro algebra, 310, 311, 423-425

central extension of, 310, 425

Virasoro conjecture, 310, 425

consequences for

gravitational descendents, 311

Gromov-Witten invariants, 310, 311

Virasoro constraints, 211

X



virtual fundamental class, 16, 172, 174-183,

191, 207, 288, 294, 299, 302, 305, 306,

308, 313, 358, 360, 381

compatibility with forgetful map, 182,

305

compute using Euler class, 182, 208, 211,

289, 308, 309

definition of, see also obstruction theory

and tangent-obstruction complex

Behrend-Fantechi approach, 178, 179

Behrend-Fantechi definition, 179

equivalence of definitions, 176, 195, 399

Li-Tian approach, 176-178, 181

Li-Tian definition, 177, 178

degree is expected dimension, 178, 192,

222, 304

equivariant, 299, 300, 382

localization formula for, 285, 300, 382

example of, 177, 179

for a complete intersection, 386, 400

in PTM, 360

for Calabi-Yau threefold, 288, 289

for Fermat quintic, 174

for quintic threefold, 173, 180, 181, 360

properties of, 180-183, 195, 304

relative, 180

virtual neighborhood, 188

virtual normal bundle, 282, 300

virtual normal cone, see normal cone,

virtual

virtual tangent space, 300

WDVYV equation, see Dubrovin connection

and Gromov-Witten potential

weighted homogeneous polynomial, 426,

427

weighted projective space, 6, 49, 50, 53, 70,

71, 140

criterion to be Fano, 47, 50

weights of a representation, 276, 278, 280,

285, 292, 344, 369, 370

obstruction, 289292, 297

of normal bundle, 285, 289

tangent, 278, 281, 285, 287, 290, 297

weights of variables, 358, 365, 378, 379

Witten conjecture, 310

world sheet, 1, 2, 10, 419, 422427

non-perturbative corrections, 7

worldvolume, 402

Yang-Mills theory, 417

Yukawa coupling, 7-10, 416, 421, see also

correlation function

normalized, 104-112, 257, 259, 268, 386

definition of, 110

in terms of periods, 389, 399

minus sign, 8, 21, 107

of the quintic mirror, see quintic

mirror, Yukawa coupling of
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relation to mirror map, 109-112, 151

relation to the Gauss-Manin

connection, 105, 108

of a Calabi-Yau threefold, 102-112, 256,

259, 327

1-dimensional moduli, 102, 105-107

2-dimensional moduli, 102-104

r-dimensional moduli, 107-109

toric, 268, 269, 385, see also correlation

function, B-model, toric

differs from normalized coupling, 268

Zariski p-form, 409


