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Modern enumerative geometry is not so much
about numbers as it is about deeper
properties of the moduli spaces that
parametrize the geometric objects being
enumerated.

A. OKOUNKOV,

Lectures on K-theoretic computations in enumerative geometry



Preface

This text1s an expanded version of the lecture notes I wrote for the PhD course Intro-
duction to enumerative geometry — Classical and virtual techniques I gave at SISSA
in the fall of 2019. The goal of the course was to provide a gentle introduction,
aimed mainly at first-year graduate students, to the subject of enumerative geometry,
highlighting the differences and the analogies between the modern approach to the
subject (based on virtual fundamental classes) and the classical approach (before
virtual fundamental classes were introduced). A natural bridge between classical
and modern enumerative geometry 1s provided by the theory of torus localisation.
In some sense, these lecture notes can be thought of as an introduction to equivariant
cohomology and localisation. Indeed, Chaps. 7-9 are entirely devoted to this subject
in the classical setup, in particular to the use of the Atiyah—Bott localisation formula.
Chapters 10 and 11 constitute an upgrade of this important classical technique to the
virtual setting.

Another possible way to read this book 1s as an introduction to the Hilbert
scheme of points Hilb" X on a nonsingular variety X. Chapter 6 is entirely devoted
to this space. We take a slow path: in Chap.4, we first get acquainted with the
Grassmannian, and later, in Chap. 5, we explore more complicated moduli spaces —
Quot schemes and Hilbert schemes — 1n full generality. After explaining in Chap. 6,
a hands-on approach to the construction of Hilb” A¢ and of the Quot scheme of
points Quot , (O®", n), we discuss special properties in the cases d < 3, focusing
in particular on the critical structure of the Quot scheme Quot ; 3 (0%, n), namely on
how one realises this space as the zero locus of the differential of a regular function
on a smooth variety.

We present a series of calculations involving Hilb” X, with special focus on
dim X = 3. On the classical side, we express 1n a purely combinatorial fashion the
Euler characteristic of the Hilbert scheme of points in arbitrary dimension. On the
modern side, we explain the seminal calculation by Maulik—Nekrasov—Okounkov—
Pandharipande of the degree 0 Donaldson—Thomas invariants of a toric Calabi—Yau
3-fold X, thus proving the relation

DT = (—1)"x (Hilb" X).

Vil



Viil Preface

This calculation was chosen as a concrete way to see the virtual localisation formula
in action, after seeing the classical localisation in Chap. 9. In Chap. 12 we shall
give a short overview, with an explicit example, of the DT/PT correspondence and
the link between Donaldson—Thomas invariants and Gromov—Witten invariants of
projective Calabi—Yau 3-folds (MNOP Conjecture).

To keep the text as self-contained as possible, Appendices A and B will serve
as short introductions to deformation theory and intersection theory, respectively.
On the other hand, Appendix C 1s a slow motion tour towards perfect obstruction
theories and virtual fundamental classes.

We finally point out that we do not claim any originality in this text, except
possibly for the exposition.

This text 1s meant to be accessible without a strong background in algebraic
geometry, although some familiarity with elementary aspects of scheme theory,
basic theory of coherent sheaves and intersection theory might make the reading
smoother. In any case, we shall review some preliminaries in Chap. 3. In addition,
here 1s a list of excellent references that we will refer to in the text whenever
necessary:

e For scheme theory at various levels, see [58, 111, 152, 228],

e For toric varieties, see [47, 81],

e For quotients 1n algebraic geometry (GIT), see [51, 175, 176, 180],
e For intersection theory, see [59, 80],

e For deformation theory, see [113, 209] and [74, Chapter 6],
e For derived categories and derived functors, see [122].

Regarding more advanced material, the reader 1s referred to Pandharipande—Thomas
[193], Okounkov [185] and Szendrdir [219] for beautiful surveys (technically
more advanced than this text) on Donaldson—Thomas theory and other modern
enumerative theories.

Finally, the reader will find a number of exercises disseminated along the text, of
varying difficulty.

Trieste, Italy Andrea T. Ricolfi
June 2022
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Chapter 1 )
Introduction Check for

Abstract We attempt to sketch a (certainly incomplete) overview of some the
mathematical ideas that shaped the field of enumerative geometry throughout the
past few decades. These ideas will be explained and made more precise in later
chapters.

Enumerative geometry is an old, fascinating and fast-growing subject, where
progress is influenced by more and more sophisticated techniques as the years go
by. Part of the reason of this unstoppable force lies in the fact that enumerative
geometry is tightly linked with and shaped by many areas of Mathematics and
Physics, ranging from representation theory to string theory, touching upon the
theory of integrable systems, gauge theory, mirror symmetry, combinatorics and
much more.

The subject underwent a dramatic transformation starting around 25 years ago,
in the late 1990s. As we emphasise in this text, the transformation started with
the introduction of virtual fundamental classes by Li—-Tian and Behrend—Fantechi,
following the initial insights by Kontsevich. Before their introduction, enumerative
geometry was focusing on answering specific questions (example: how many
twisted cubics lie on the general quintic hypersurface in P*?), but as Okounkov’s
quote in the epigraph of this book neatly illustrates, the modern viewpoint is to focus
on the deep structure of moduli spaces, and to view enumerative invariants attached
to these spaces as just a shadow of such richer structure. This can be seen as the
modern incarnation of an evergreen principle: always go as deep as possible, until
you’ve found all available symmetries. If we had contented ourselves computing the
Euler characteristic of a manifold, we would have missed Poincaré duality; if we had
contented ourselves with Poincaré duality, we would not have Hodge theory.

The way I picture enumerative geometry at the present time is as a huge ‘galaxy’
where each star is a moduli space of potential interest to many observers: algebraic
geometers, physicists, representation theorists to name a few. Sometimes, several
stars are connected with one another by a mathematical or physical theory (or both):
beautiful constellations are born! Gromov—Witten theory and Donaldson—Thomas
theory are examples of such constellations.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 1
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2 1 Introduction

Different stars have a different brightness to the human eye, and some may only
be observed through a suitably powertful telescope. Telescopes, 1n this comparison,
are the nourishment of Mathematics: ideas.

The brightest stars can be seen by our well-trained eyes today without the need
of a tool. For example the Grassmannian: it was Mumford’s point of view that
the Grassmannian 1s the ‘ideal’ moduli space, being nonsingular, compact and
the relations 1n its cohomology ring being (after massive nontrivial work) entirely
understood. The intersection theory of the Grassmannian, called Schubert Calculus,
was Mumford’s model (see Towards an enumerative geometry of the moduli space
of curves, 1983) in the formulation of a new intersection theory—governed by the
so called ‘tautological classes’—of the moduli space of stable curves M, of genus
g. Nearby stars, part of the same constellation (namely Gromov—Witten theory) are
the moduli spaces of stable n-pointed curves M, ,, whose tautological intersection
theory was set up by Faber—Pandharipande and for which a great deal of progress
has been made 1n the past 30 years. One of the first telescopes to be constructed
was Witten’s Conjecture, proposed 1in 1991 in the paper Two dimensional gravity
and intersection theory on moduli space, and first proved by Kontsevich in 1992.
Said conjecture claimed that integrals of cotangent line classes over M, , are
governed by the KdV (Korteweg-de-Vries) hierarchy, a pretty extraordinary link
with the theory of integrable hierarchies that Witten made following the idea that
matrix models (governed by the KdV hierarchy), should be related to quantum
gravity. Many other proofs of Witten’s Conjecture appeared in the meantime, see
for instance Kim—Liu [135], Kazarian—Lando [134], Jarvis—Kimura—Vaintrob [129]
and Mirzakhani [168, 169].

Other telescopes that have been constructed to observe the same constellation
are, for instance, the series of papers by Faber containing a deep analysis of
the tautological intersection theory of the moduli space of stable curves of low
genus [67, 68], along with a beautiful conjecture describing the structure of the
tautological ring of M, see [69]. One of the most recent great ideas in the
subject was Pixton’s proposal (see Conjectural relations in the tautological ring
of Mg, 2012) of an explicit set of relations amongst tautological classes on

M, », Including and generalising the Faber—Zagier relations on M, which were
indeed proved to be relations by Pandharipande—Pixton [190]. One of the most
important open problems in the subject 1s to understand whether Pixton’s set of
relations contains all tautological relations. Confirming this would be the analogue,
for My ,, of understanding Schubert Calculus. Proving Pixton’s conjecture might
require mathematicians to build a new telescope.

Another constellation 1s Donaldson—Thomas theory, born in the late 1990s from
a gauge theoretic approach by Richard Thomas towards the construction of a
holomorphic version of the Casson invariant, enumerating bundles on complex
Calabi—Yau 3-folds (see A holomorphic Casson invariant for Calabi—Yau 3-folds,
and bundles on K3 fibrations, 2000). It 1s fair to say that this approach has deep
roots 1in Physics. The universe seen from a string theory point of view 1s, roughly
speaking, made of 10-dimensions, 4 of which correspond to Einstein’s space-time
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and 6 of which are ‘small’, in particular not perceived by our senses (to oversim-
plity); compact complex Calabi—Yau 3-folds are conjectured to host these 6 real
dimensions, and strings are supposed to propagate within such spaces. Mathematics
models strings as curves, and a generating function of curve counting invariants
on a given Calabi—Yau 3-fold X can be seen, in naive terms, as the probability
amplitude for the propagation of strings in X. But there are several notions of a
‘curve’ 1n algebraic geometry, so there are several generating functions available,
and they are all hard to compute. It 1s nevertheless reasonable to conjecture that all
curve counting theories, at the end of the day, will turn out equivalent to each other
(in some nontrivial way). This has been conjectured indeed, as we discuss in the
next paragraph. All in all, studying Calabi—Yau 3-folds, and invariants attached to
them, from a mathematical point of view, one hopes to gain some knowledge on the
physical picture, and viceversa.

Donaldson—Thomas theory 1s not disconnected from Gromov—Witten theory. In
fact, the ‘MINOP Conjecture’ by Maulik—Nakrasov—Okounkov—Pandharipande (see
Gromov—Witten theory and Donaldson—Thomas theory, I, 2006) essentially states
that the two constellations are the same, one being just the other one suitably
‘rotated’ 1n the night sky. We briefly discuss this conjecture, now proved almost in
full generality by Pandharipande—Pixton, at the end of this text. In the next chapters,
we will slowly build the machinery needed to understand what it means to ‘do a
calculation’ in Donaldson—Thomas theory. My (very personal) fascination for this
subject lies 1n at least two facts. Firstly, the main characters of Donaldson—Thomas
theory, namely Hilbert schemes on 3-folds, and more generally moduli spaces of
sheaves on 3-folds, are geometrically impossible to understand systematically, and
yet amazing statements can be made about invariants and structures attached to
them. Secondly, as already mentioned, the theory 1s not confined within itself, but
has the ability to intersect many other fields. This 1s what makes the theory not
only able to advance fast, but also flexible in terms of formal manipulations and
interpretations.

In the early 1990s, I was in kindergarten. Thus I claim no real understanding
of what was going on in the subject around those years. I certainly am not able
to tell this ‘story’ in a satisfactory way. As mentioned earlier in this introduction,
through an example, one of the classical questions of enumerative geometry was
the enumeration of rational curves of degree d on the (general, say) quintic 3-
fold X C P*, one of the most studied Calabi—Yau 3-folds. The case d = 1 was
known classically, through Schubert Calculus: the answer 1s 2875 (see e.g. [109] or
Sect.9.3). The case d = 2, yielding the answer 609,250, was confirmed in 1986
by the work of Sheldon Katz [133]. The answer in the case d = 3, where the
answer 1s 317,206,373, appeared 1in 1995 in the work of Ellingsrud and Strgmme
[63]. However, a few years earlier, in 1991, a striking prediction came along from
Physics: Candelas, De La Ossa, Green and Parkes used mirror symmetry to predict
the number of rational curves on X, for all degrees [36]. Mathematicians (those
who were ‘there’, unlike the author), were blown away. As it turned out, the work
of Ellingsrud and Strgmme confirmed Physics’™ prediction. Mathematicians later
understood that the numbers announced in 1991 have, in fact, a subtle relation
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with the actual numbers of rational curves that one would like to count. This of
course did nothing but confirm the interest of both communities in understanding
what mirror symmetry really 1s and what 1s the correct way to formulate it. In this
sense, the book [46] by Cox and Katz 1s an amazing step forward, also in terms of
setting up a bridge between the mathematical language and the Physics’ language.
I wanted to mention the above episode as an instance ot a recurring phenomenon in
enumerative geometry, that can be phrased (in oversimplifying terms, of course) as:
Physics might be years ahead of Mathematics, but mathematicians do catch up at
some point: some telescopes just take long to build.

My hope 1s that this text will help young mathematicians to learn enough in
order to be willing to contribute to the beautiful subject of enumerative geometry,
or at least to enjoy its depth as much as we all enjoy the depth of our Universe while
we stare at the night sky.




Chapter 2 )
Counting in Algebraic Geometry Shethie

Abstract In this introductory chapter we give a rather informal overview of
the most prominent aspects of enumerative geometry, both in its classical and
modern flavours. By classical enumerative geometry we mean, essentially, the
subject of intersection theory on various classical moduli spaces (such as the
Grassmannian), before virtual fundamental classes were invented—this is what the
adjective ‘classical’ refers to. On the other hand, modern enumerative geometry was
born with virtual fundamental classes in the late 1990s.

This chapter, in which we work entirely over C for the sake of concreteness,
is a slow motion tour through the unexpected difficulties one faces when trying to
perform rigorously one of the most naive operations in mathematics: counting.

2.1 Asking the Right Question

The typical question in classical enumerative geometry asks how many objects
satisfy a given list of geometric conditions. The presence of this ‘list’ makes
the subject tightly linked to intersection theory, which explains why we included
Appendix B at the end of this text.

Examples of classical problems in the subject are the following:

(1) Given an integer n > 0, how many lines £ C P"*! are incident to 21 general
(n—1)-planes A1, ..., Ay, C prtle (Answer in Sect. 9.4, preview in Sect. 4.4)

(2) How many lines £ C P3 lie on a general cubic surface S C P3? (Answer in
Sect.9.2)

(3) How many lines £ C P* lie on a general quintic 3-fold ¥ C P*? (Answer in
Sect.9.3)

(4) How many Weierstrass points are there on a general genus g curve? (Answer in
[95, Chapter 2.4] but also in Sect. 2.5 below)

(5) How many smooth conics are tangent to five general plane conics? (Answer and
much more in the fantastic books by Eisenbud—Harris [59] and Griffiths—Harris
[95, Chapter 6.1]).
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Problem (1) can be tackled via classical Schubert Calculus, 1n the spirit of the
work by Kleiman and Laksov [137]. As for Problem (2), one of the cornerstones
of classical geometry 1s the theorem stating that there are exactly 27 lines on any
smooth cubic surface. See e.g. Van der Waerden’s book [234] and Manin’s work
[155].

Let us consider the examples (1), (2) and (3) above: the objects we want to count
are lines in some projective space, on which we 1impose some geometric constraints,
such as intersecting other linear spaces or lying on a smooth hypersurface. Let us
pause for a second: 1n (1), we impose incidence with 2n linear spaces. Why exactly
2n? We immediately see that in order to even get started we have to ask ourselves
the following:

Question 1. How do we know how many constraints we should put on our objects
in order to expect a finite answer? In other words, how do we ask the right question?

See Sect. 5.5 for a full treatment of the topic ‘expectations’ in the case of lines
on hypersurfaces: we will confirm that the expected number of lines on a general
hypersurface Y C P” of degree d is finite (neither zero nor infinity) precisely when
d = 2n — 3. Here 1s a warm-up example to shape one’s intuition.

Exercise 2.1.1 Let d > 0 be an integer. Determine the number m; having the
following property: you expect finitely many smooth complex projective curves
C C P? of degree d passing through m, general points in P?. (Hint: Start with
small d. Then conjecture a formula for m ).

2.2 Counting the Points on a Moduli Space

The main 1dea to guide our geometric intuition in formulating and solving an
enumerative problem should be the following recipe:

(A) construct a moduli! space M for the objects we are interested in,
(B) compactity M if necessary,

(C) impose dim M conditions to expect a finite number of solutions, and
(D) count these solutions via intersection theory methods.

None of these steps 1s a trivial one, in general. The last two, 1n a little more detail,
would 1deally go as follows: each ‘condition” we impose 1n step (C) 1s described by
a cycle Z; € M which is Poincaré dual to a Chow class a; € A*M, and the
intersection of these cycles 1s represented by the product ¢ = a1 U --- U« €
AU M AL where ‘U’ is the ring multiplication in the Chow ring A* M.? The fact

I'The Latin word modulus means parameter, and its plural is moduli. Thus a moduli space is to be
thought of as a parameter space for objects of some kind.

2 We refer to Appendix B.1 for the definition of the Chow group/ring A, X of a scheme X. As a
sensible approximation, the reader can replace A, with homology H,.
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that o lies 1s the top degree (1.e. iIn maximal codimension) means that

Z codim(Z;, M) = dim M,
=1

which we have achieved in the third step having ‘asked the right question’. The final
step asks us to compute the number

/ a =deg(aN[M]) € Z,
M

where deg,: AxM — A.pt = Z 1s the pushtorward on Chow groups along the
structure morphism M — pt (ct. Definition B.1.3), which exists by compactness of
M.

To 1llustrate another important point in the subject we exploit Problem (2) above.
The theorem stating that there are precisely 27 lines on a smooth cubic surface
S C P3 is one of the cornerstones of classical enumerative geometry; an account of
this beautiful result can be found 1n van der Waerden’s book [234], while for a more
detailed description of the geometry of those lines we refer the reader to Manin’s
work [155]. So, if we try and apply the above recipe to Problem (2), as our M 1t 1s
natural to take the Grassmannian of lines in P (informally introduced in Chap. 4,
more thoroughly 1n Sect. 5.1), which 1s a compact 4-dimensional smooth algebraic
variety (or complex manifold). Imagine we have found a sensible algebraic variety
structure on the set Mg C M of lines lying on the surface S. If we have done
everything right, the space Mg consists of finitely many points, and now we need
to count these points. In mathematical terms, the only sensible operation we can
perform 1s to take the degree of the (0O-dimensional) fundamental class of M. But
then 1t 1s natural to ask ourselves:

Question 2. How do we know this intersection-theoretic degree i1s the answer to
our original question? In other words, how to ensure that our algebraic solution 1s
actually enumerative?

In more technical terms, how do we make sure that each line £ C § appears as
a point in the moduli space Mg with multiplicity one? The truth 1s that we cannot
always be sure that this 1s the case. It will be, both for Problem (2) and Problem (3)
(by Lemma 5.5.4 and Theorem 9.3.3 respectively), but not in general. However,
we should get used to the 1dea that this 1s not something to be worried about: 1f a
solution comes with multiplicity bigger than one, there usually 1s a good geometric
reason for this, and we should not disregard it (see Fig.3.1 for a simple example
of a degenerate intersection where this phenomenon occurs). More precisely (but
not too precisely), if a point on the moduli space 1s ‘fat’, 1.e. nonreduced, i1t means
that the geometric object 1t corresponds to has nontrivial deformations, and thus it
1s natural to count 1t with some multiplicity—in this sense, one may say that our
original enumerative question was too naive. A short, incomplete introduction to
deformation theory 1s given in Appendix A for the reader’s convenience.
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Remark 2.2.1 Compactness of M (in the above example, the Grassmannian) is
used 1n order to make sense of taking the degree of cycles. Intuitively, we need
compactness in order to prevent the solutions of our enumerative problem to escape
to infinity, like for instance it would occur if we were to intersect two parallel lines
in A”.

We emphasise that compactness really 1s a non-negotiable condition we have
to ask of our moduli space—with an important exception, that will be treated in
later sections: the case when the moduli space has a torus action. In this case, if
the torus fixed locus M' C M is compact, a sensible enumerative solution to a
counting problem can be defined by means of the localisation formula, one of the
most 1important tools in enumerative geometry (and in these notes). The original
formula due to Atiyah and Bott will be proved in Theorem 8.5.1. A virtual analogue
due to Graber and Pandharipande [94] will be proved in Theorem 10.3.8, and the
latter will be applied to the study of O-dimensional Donaldson—Thomas invariants of
local Calabi—Yau 3-folds (arising from non-compact moduli spaces carrying a torus
action).

One more fundamental notion in counting problems, transversality, 1s discussed
in the next subsection, by means of an elementary example.

2.3 Transversality, and Counting Lines Through Two Points

Let X be an algebraic variety, x € X a point. Denote by 7, X = (m, /m%)* the
Zariski tangent space of X at x, where m, C Oy . 1s the maximal i1deal in the local
ring attached to x.

Definition 2.3.1 (Transverse Intersection) Let Y be a quasiprojective variety.
We say that subvarieties Z1,...,Z, of Y intersect transversely at a smooth
point y € Y if y is a smooth point on each Z; and codim((); Ty Z;, TyY) =
Y ;codim(T,Z;, T,Y).

Consider the enumerative problem of counting the number of lines in P? through
two given points p, g € P>. Let N pg be this number. Then, of course,

r if p # g,
Npq: :
o 1p=yqg.

The answer N, = oo corresponds to the cardinality of the pencil Z, = P! of lines
through p (see Fig.2.1). For the sake of completeness, the formula N,, = 1 will be
proved in Sect. 9.1.

The point we want to make in this section 1s that

the answer ‘1’ can be recovered in the degenerate setting p = g.
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Fig. 2.1 The unique line

through two distinct points,

and the infinitely many lines q

through one point in the plane P

Remark 2.3.2 (Let Us Not Cheat) To obtain the answer relative to the picture on the
left, we have to notice that the two cycles

zp={tcP|pee|cr” z,=lecP|qget|cr

intersect transversely in the dual projective space P>*, and we can use the intersec-
tion product on P?* to compute Z p 2Ly = #Z, N Z,;) = 1. Now, using basic
intersection theory, it 1s clear how to obtain the answer ‘1’ also 1n the case p = g.
Since we are working in P?* = P?, we know that any g # p yields a homologous
cycle Z, ~ Z,, and again the intersection product yields 2129 =Z,-Z; =1.Butin
general we will not be working in such a pleasant ambient space and thus we will
not know whether algebraic deformations such as Z,, ~ Z,, leading to a transverse
setup, are available.

Now, the case p = ¢ 1s a ‘degeneration’ of the case p # ¢, and we certainly
want our enumerative answer not to depend on small perturbations of the geometry
of the problem. Why do we want that? Just because we are reasonable people: we
were already taught how to be reasonable when our first Calculus teacher told us
that a decent function is at least continuous.’

Next we explain how to get the ‘correct’ answer

corrected
N oy =1

by means of the excess intersection formula, one of the most important tools 1n

classical enumerative geometry. We mention it not only because 1t 1s a beautiful

piece of intersection theory, but also because it lies at the very roots of modern

enumerative geometry, lying right at the foundation of the idea of virtual classes.
Before we start, we need to recall the following important notion.

3 Ultimately, we are going to study invariants, e.g. Donaldson—Thomas invariants. They deserve to
be called that precisely because they don’t change if we slightly (but holomorphically) deform the
variety they are attached to.
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Definition 2.3.3 ((Co)normal Sheaf) The conormal sheaf of a closed immersion
of schemes X < M defined by an ideal .¥ C Oy is the quasicoherent* Ox-module

Cxm = I I,
and the normal sheaf 1s 1ts Ox-linear dual,
Nxym = Homey (I .77, Ox).

The sheaves €x,m and Nx,y are locally free (of rank d) when X — M is a
regular immersion (of codimension d).

Example 2.3.4 If X — M = P’ is a hypersurface of degree d, then the ideal sheaf
of X in P" is the invertible sheaf Opr (—d), so Ny pr = Opr (d)|x.

Notation 2.3.5 Let X — M be a closed immersion. We set

Nx/m = SpeC@X SymEx/m.

It 1s naturally a scheme over X. With a slight terminology abuse, we will also refer
to i1t as the normal sheaf to X 1n M.

Exercise 2.3.§ Let X %NM be a closed immersion, M —> Ma morphism, set
X =X Xy M and let g: X — X be the induced map. Show that there 1s a natural
injective map of sheaves A5 78 g* Nx/m, which is an isomorphism whenever

M — M is flat. Deduce that there is a closed immersion
X/ g Nx/m = Nx/m xx X
of schemes over X. (Hint: Try to construct a surjection g*€x/y — €5 /i involving

the conormal sheaves. If in need of further hints, see [214, Tag O1R1]).

Also recall (see [111, I1.8.13] for a reference) that on any projective space P we
have the Euler sequence

0— Op — Opr (NPT > T — 0, 2.1)

where Opr (1) is the hyperplane bundle and 7pr is the algebraic tangent bundle.

Now back to our problem. The P! of lines through p can be neatly seen as the
exceptional divisor E 1n the blowup B = Bl,, P?, cf. Fig. 2.2.

41t is coherent as long as M is locally noetherian. Quasicoherent and coherent sheaves are recalled
in Definition 3.2.2.
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Fig. 2.2 The blowup

7: B — P2 of the plane in
one point
E
T
Y
Looking at the fibre diagram
E—B
gl a l”
2
p——FP (2.2)

we know by Exercise 2.3.6 that there is an injection of locally free sheaves /g,p =
Og(—1) C g*nN /P2 The excess bundle (or obstruction bundle)

Ob,, — P!

of the fibre diagram (2.2) is defined as the quotient of these two bundles [80,
Section 6.3]. But the short exact sequence

0 — Op(—1) = Op ® TyP* — Ob,, > 0
is nothing but the Euler sequence (2.1) on P! twisted by O (—1). Therefore
Ob,, = Toi(—1) = Op1 (2 — 1) = Gpi(1).

Note that we can repeat the process with ¢ # p, which would yield 7 ~!(¢) = pt. In
this case we get Ob,, = 0. We can now write a universal formula for our counting



The excess bundle (or obstruction bundle) Obpp → P1
of the fibre diagram (2.2) is defined as the quotient of these two bundles
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problem: if M, = 7~ 1(q) is the ‘moduli space of lines’ through p and ¢, the
virtual number of lines through p and ¢ 1s

f e(Ob,,) = 1,
M

Pq

forall (p,q) € P? x P2. The Euler class e(V) of a vector bundle V is its top Chern
class—see Sect. 3.3 or Appendix B.2. Note that the rank of Ob,, 1s the difference
between the actual dimension of the moduli space, and the expected one.

Remark 2.3.7 Note that, unlike in Remark 2.3.2, we have now obtained

corrected
Neorrected

as an intersection number on the actual moduli space Z, = Pl = E.

Remark 2.3.8 (Usually It’s Worse) Unfortunately, in more complicated situations
(but also not that complicated), we often do not even know whether the geometric
setup we are studying 1s a degeneration of a transverse one. If 1t were, we would
like to dispose of a technology allowing us to ‘count’ in the transverse setup and
argue that the number we obtain there equals the one we are after. This sounds like
a reasonable wish, but i1t 1s way too optimistic. We should not aim at this: not only
because counting 1s often difficult also in transverse situations, but mainly because
we simply may not have enough algebraic deformations to pretend that the geometry
of the problem 1s transverse.

Example 2.3.9 (You Can’t Always Achieve Transversality) A (—1)-curve® C on a
surface S cannot be ‘moved’ algebraically on S to another curve C’ such that C and
C’ intersect transversely!

This discussion allows us to formulate another intrinsic difficulty in enumerative
geometry. Suppose, just to dream for a second, that we are able to solve all
enumerative problems in generic (transverse) situations, and we know that the
answer does not change after a small perturbation of the initial data.

Question 3. How do we ‘pretend’” we can work in a transverse situation when there
1s none available (e.g. in Example 2.3.9)?

The modern way to do this is to use virtual fundamental classes (ct. Sect. 10.1
and Appendix C).

> A (—1)-curve on a surface S is a curve C C S such that C.C = —1, where the intersection
number C.C can be seen as the degree of the normal bundle N¢ /s = Os(C)|c to C in §.
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Two More Words on Excess Intersection

Problem (5), known as ‘the five conics problem’, is a typical example of an excess
intersection problem. See [59] and [95] for a thorough analysis and solution of this
problem. As we shall see in Sect. 5.4.1, a natural compact parameter space for plane
conics is

M=P,

and the set of smooth conics is an open subvariety U C M. The answer to
Problem (5) is a certain finite subset of U. Let Cq, ..., Cs5 be general plane conics.
The conics that are tangent to a given conic C; form a sextic hypersurface Z; C M,
so we might be tempted to say that the answer to Problem (5) is the degree

/ oe1U~-~Uot5=65,
PS

where o = pd_1 [Z;] € AI(PS) is the divisor class of a sextic® and
pd: A'(P7) = A4(P) denotes the Poincaré duality isomorphism. However, the
cycles Z; share a common two-dimensional component, namely the Veronese
surface P> C P° of double lines. Therefore their intersection is 2-dimensional
(far from transverse!), even though our intuition suggests that 5 hypersurfaces in
P3 should intersect in a finite set. Note that this issue arose precisely because we
insisted to work with a compact parameter space: double lines are singular, hence
lie in the complement of U. But working with U directly was forbidden, because it
is not compact!

The excess intersection formula is a tool that allows one to precisely compute
(and hence get rid of) the enumerative contribution of the excess locus, namely the
locus of non-transverse intersection among certain cycles—in this case the cycles
Z1, ..., Zs. The way it works is precisely via blow-ups, generalising the procedure
of the previous section; often more than one blowup is required to separate the
common components of the nontransverse cycles. In the case of the five conics
problem, only one blow-up is required.

In principle, after blowing up the excess locus, checking that the proper
transforms are disjoint in the exceptional divisor, and blowing up again if necessary,
one reaches the correct answer to the original question, but in practice it is often
very hard to keep track of multiple blow-ups; the calculation becomes less and less
intuitive and the modular meaning of the blowups appearing might be quite unclear.

6 Recall that the Picard group PicP"™ = A!(P") = H2(P", Z) = Z is generated by the hyperplane
class & corresponding to Opr (1), and the cohomology class of a degree d hypersurface in P"
corresponds to the class d - h.



The excess intersection formula is a tool that allows one to precisely compute
(and hence get rid of) the enumerative contribution of the excess locus, namely the locus of non-transverse intersection among certain cycles—in this case the cycles Z1, ... , Z5


Poincaré duality isomorphism. However, the cycles Zi share a common two-dimensional component, namely the Veronese surface P2 ⊂ P5 of double lines. Therefore their intersection is 2-dimensional (far from transverse!), even though our intuition suggests that 5 hypersurfaces in P5 should intersect in a finite set. Note that this issue arose precisely because we insisted to work with a compact parameter space: double lines are singular, hence lie in the complement of U
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Fig. 2.3 The nine 1

intersection points C; N Cy %

In Exercise 2.3.11 you will compute an excess bundle for a more complicated
problem than finding the number of lines through two points. Before tackling it, it
1s best to solve the following exercise.

Exercise 2.3.10 Show that the vector space V of homogeneous cubic polynomials
in 3 variables 1s 10-dimensional. Identity

PV = P’

with the space of degree 3 plane curves C C P?. Show that, for a given point p € P?,
the space of cubics passing through p forms a hyperplane

P® C PV.

Exercise 2.3.11 Let C; and C, be two plane cubics intersecting transversely in nine
points py, ..., po € P? (cf. Fig.2.3). Every cubic in the pencil P! C P’ generated
by C1 and C; passes through pq, ..., pg. However, if the nine points were general,
there would be a unique cubic passing through them. Find out where the answer ‘1’
1s hiding in this non-transverse geometry. This example 1s also discussed in [193,
Section 0].

2.4 Before and After the Virtual Class

Virtual classes were introduced by Li—Tian [150] and Behrend—Fantechi [21], on
the wave of Kontsevich’s groundbreaking ideas [140]. Before virtual classes were
introduced, excess intersection theory on a moduli space M was the way to go to
solve enumerative problems regarding the objects parametrised by M. Often, in
practice, one needs several applications of the excess intersection formula in order
to get to the final solution of the problem. One can see the virtual class as a way of
packaging all the excess intersection theory in just one cycle class

(M € AuM,
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and appropriate integrals’ against this cycle yield the enumerative answer we are
after. Of course, integration against [M]"" is in general very hard, reflecting the
difficulties arising from the classical methods.

Virtual fundamental classes allow one to think that even a horrible moduli space
M, say a singular scheme of impure dimension (cf. Fig. 5.2 for a drawing of a nasty
scheme), has a well-defined virtual dimension d"'" at any point p € M, and this
number 1s constant on p. It is given as the difference

d"'" = dim T, M — dim Ob

p’

where Ob is part of the data (a perfect obstruction theory) defining [M]'", and
both dimensions on the right hand side may (and will) vary with p. The virtual
fundamental class 1s a Chow (or homology) class

[(M]' € Agir M — Hygyir (M, Q),

encoding the ‘deformation theory of points’ p € M 1n the sense that, heuristically,
one may picture M, locally around p, as being cut out by dim Ob |, equations inside
the Zariski tangent space T, M. Naively speaking, one may think of M as being

e smooth and unobstructed, when there are no equations (1.e. Ob = 0),

e smooth and obstructed, when the equations are linearly independent (1.e. Ob £ 0
1S a bundle)

e whatever, when Ob # 0 1s not locally free and so dim Ob |, varies unpredictably
with p € M.

There are just a handtul of cases where integrating a cohomology class on the
moduli space @ € A*M — H?*(M, Q) against [M]""" is accessible (at least in
theory):

(a) The moduli space M 1s smooth. In this case [M]'" = ¢(Ob) N [M], hence

] o =deg) (e(Ob) Nar), «a e H"(M,Q).
[M]Vlr

Of course, one needs to compute Ob effectively for this formula to be helpful.
Note that this includes the case Ob = 0, which gives MV = [M].

(b) The moduli space t: M < A 1s the zero locus of a section of a vector
bundle V — A, where A 1s a smooth projective variety. In this case, we have

L [M]Y = e(V) N [A], hence

] Ca=degy(e(V)Na), o e€H(A, Q).
[M]Vlr

’ Recall that we assume M to be compact.
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(c) The moduli space M has a torus action. In this case, one applies the Graber—
Pandharipande virtual localisation formula [94], that we review 1n Sect. 10.3.

It 1s clear that, since the machinery of the virtual class was invented, for any
moduli space M we may want to study, we can ask the following question:

Does M have a virtual class?

It the answer 1s yes, then we can define enumerative invariants attached to M
(and often much more). What these invariants actually mean, geometrically, might
be mysterious. For instance, they may be negative or rational. In any case, nowadays,
defining a virtual class on a given space has become part of the thrill. In other words,
a sensible portion of the working enumerative geometer’s effort 1s directed towards
defining the problem, rather than stating 1t and solving it.

As a matter of fact, many (often badly behaved) moduli spaces turn out to have a
virtual fundamental class. These include:

(1) the moduli space of stable maps M, , (X, B) to a smooth projective variety X
(see [17] or Appendix C.6.3),
(11) the moduli space M )Ig (o) of w-stable torsion free sheaves with Chern character

a on a smooth polarised 3-fold (X, H) such that H(X, K ¥ 1) =+ 0 (see [221,
Theorem 3.30]),

(111) the moduli space P)I({ (o) of stable pairs with Chern character « on a smooth
polarised Calabi—Yau 3-fold (X, H) (see [124, Section 4]).

All this richness gives rise to three amongst the most modern counting theories
(ordered from the oldest to the youngest):

Gromov—Witten theory = intersection theory on M, , (X, B),
Donaldson—Thomas theory = intersection theory on M g (o),

Pandharipande—Thomas theory = intersection theory on Pg ().

All these theories can be seen as more complicated (virtual) analogues of a well
established theory:

Schubert Calculus = intersection theory on the Grassmannian G (k, n).

No ‘virtualness’ 1s arising in Schubert Calculus, because—as already observed
by Mumford [174] when he 1nitiated the enumerative geometry of the moduli space
of curves—the Grassmannian 1s the 1deal moduli space one would like to work
with: 1t 1s compact, smooth and, put in modern language, unobstructed. It does have
a virtual fundamental class, but because of these properties it happens to coincide
with its actual fundamental class.
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2.5 Warming Up: Counting Weierstrass Points

In this section we solve Problem (4), following [87] verbatim. We use this as an
example of the following toy model situation: the moduli space 1s the zero locus
of a section of a vector bundle; 1n this case it has expected dimension 0, since the
vector bundle 1s in fact a line bundle on a curve.

Let C be a smooth projective curve over C. A linear system on C 1s a pair (£, V)
where Z is a line bundle on C and V C H%(C, &) is a linear subspace. If deg & =
d and dim¢ V =r + 1, then (£, V) is said to be a g, on the curve C.

Letv € V \ 0be asection, P € C a point. One defines

Ol‘dpv = dim@ffp/vp . pr € ZZQ

to be the order of vanishing of v at P, where £p 1s the stalk of £ at P.

Definition 2.5.1 (Weierstrass Point) Let (£, V) be a g,. A point P € C is said
to be a ramification point of (£, V) 1if there exists a section v € V \ 0 such that
ordpv > r+1. A ramification point of the canonical linear system (K¢, H(C, K¢))
1s called a Weierstrass point.

Itis clear that P € C 1s a Weierstrass point if and only if K¢ (—g P) has anonzero
global section, where g 1s the genus of C. In the language of the previous sections,
we are interested 1n ‘counting’

WP = { Weierstrass pointson C } C M = C.

Definition 2.5.1 can be phrased also in the following way, which was used for the
first time by Laksov [143] to study ramification points of linear systems on curves
in arbitrary characteristic. There exists a map

D':CxV — J %, (P,v) — D" v(P), (2.3)

where J"Z is the r-th jet bundle associated to & and D" v € HY(C, J7 %) is a
natural section defined by v, that 1s locally represented by the partial derivatives of
order at most r of the local functions representing v. The vanishing of D" v at P
is equivalent to the condition ordpv > r + 1 of Definition 2.5.1. The map D’ is
a map of vector bundles of the same rank r + 1, so it 1s locally represented by an
(r +1) x (r + 1) matrix. The condition D" v(P) = 0 then says that (2.3) drops rank
at P. This 1n turn means that P 1s a zero of the Wronskian section

Wy = det D" € H (c, A”“J'”sz)
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attached to (£, V). In particular, WP has a natural scheme structure given by the
zero scheme of the section Wy . The fotal ramification weight of (£, V'), namely the
total number of ramification points (counted with multiplicities), 1s, by definition,

wty = f C1 (/\”HJ’”SZ) = deg, (Ar+1Jr°<Z>.
C
It can be computed by means of the classical short exact sequence

O—>£Z®K&®’”—>J"3—>J”_15£—>O

of jet bundles (see [87, Proposition 1.7] and the references therein for a proof). By
induction, one obtains a canonical identification

+1 _ p®r+l r(r+1)/2
NTIZL =L QK. .
Using that deg K¢ = 2g — 2, one finds the Brill-Segre formula
wty =(r+1)d+(@g@—Dr(r+1) (2.4)

attached to (&, V). For instance, since h°(C, K¢) = g, the number of Weierstrass
points (counted with multiplicities) 1s easily computed as

WtHO(C,Kc) — LC] (/\gjg_lKC)
— deg,- (Ag Jg—ch) (2.5)

=(g—1Dg(g+1).

The zero locus of the Wronskian section Wy 1s reduced when C 1s general. Thus,
going back to Problem (4), we have found that there are (g — 1)g(g + 1) Weierstrass
points on a general curve of genus g.

Example 2.5.2 Formula (2.5) gives the 24 flexes on a plane quartic (a general curve
of genus 3). Indeed, K¢ = Oc¢ (1) for such a curve, and a flex 1s by definition a
ramification point of the linear system cut out by lines.



Chapter 3 )
Background Material Chock t

Abstract In this chapter we recall standard preliminaries from algebraic geometry,
such as schemes, properties of morphisms of schemes and sheaves. We will also
sketch the algebraic definition of Chern classes, and conclude the chapter with a
brief overview on representable functors, that will be needed to define fine moduli
spaces and universal families. By k we will always mean an algebraically closed
field. Most of the time 1n later chapters, we will set kK = C.

3.1 Varieties, Schemes, Morphisms

We start recalling standard notions from scheme theory. All rings are commutative
rings with unity 1 # O throughout the text.

3.1.1 Schemes and Their Basic Properties

The notion of scheme used 1n this text 1s the standard one (see e.g. [ 152, Chapter 2]),
namely that of a locally ringed space (X, Ox) that i1s locally isomorphic to
(Spec R, Ospec r), where R 1s a commutative ring with unity and the set Spec R
of prime 1deals p C R 1s equipped with the Zariski topology: the closed subsets are
those of the form V(I) = {p € Spec R | p D I }. The category of affine schemes
1s dual to the category of commutative rings; more precisely, an affine scheme
1s a scheme of the form Spec R, for R a commutative ring. The global sections
Ox(X) = HY(X, Ox) = I'(X) form the ring of regular functions on X, which
can be seen as morphisms X — Spec Z[¢]. In fact, (Spec, I') 1s an adjoint pair of
functors Rings = Sch®P, which yields

Homsch (X, Spec Z[7]) = Homgings(Z[], I'(X)) = I'(X).

If x € X 1s a point, we denote by (Ox x, my, K(x)) the local ring of germs of regular
functions at x, and if f: X — Y is a morphism, we denote by f#: Oy — f+Ox the
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induced map on sheaves. Let S be a scheme; an S-scheme 1s a pair (X, f) where X
1saschemeand f: X — Sisamorphism. It § = Spec R toraring R, we talk about
R-schemes. The category of schemes over S 1s denoted Schg, and the category Sch
of all schemes agrees with Schgpecz. A morphism (X, f) — (Y, g) in Schg 1s a
morphism p: X — Y suchthatgo p = f.

A topological space X 1s called irreducible it whenever one can write X = V1 U
Vo, with V; C X a closed subset, one has that either Vi = X or Vo, = X. A scheme
1s irreducible 1f 1ts underlying topological space | X| 1s irreducible.

Definition 3.1.1 (Dimension) The dimension dim X of a scheme X 1s the supre-
mum of the lengths ¢ of the chains Vo C Vi C .- C V, C X of wrreducible
closed subsets. It X 1s a scheme, then dim X = sup,; dim X;, where { X; }; are the
irreducible components of X (i.e. the maximal irreducible closed subsets of X). We
say that X 1s of pure dimension (or simply pure) it all 1ts irreducible components
have the same dimension.

It a topological space X 1s irreducible and ¥ C X 1s a closed subset such that
dimX =dimY,then X =Y.

Definition 3.1.2 (Quasicompact, Finite Type) A morphism of schemes f: X —
S 1s quasicompact if the preimage of every affine open subset of S 1s quasicompact.
We say that f 1s locally of finite type 1f for every x € X there exist Zariski open
neighbourhoods x € Spec A C X and f(x) € Spec B C § such that f(Spec A) C
Spec B and the induced ring homomorphism B — A is of finite type, 1.e. A 1s
1somorphic to a quotient of B[xq, ..., x,] as a B-algebra, for some n. We say that
f 1s of finite type 1t 1t 1s locally of finite type and quasicompact.

Definition 3.1.3 (Locally Noetherian) A scheme X is locally noetherian if every
point x € X has an affine Zariski open neighbourhood x € Spec R C X such that
R 1s a noetherian ring. If X 1s locally noetherian and quasicompact, then it 1s called
noetherian.

An important property of noetherian schemes 1s that they have a finite number of
irreducible components, or, more generally, of associated points (cf. Sect. 3.1.3).

Exercise 3.1.4 Let f: X — S be a morphism of schemes; show that if § 1s
(locally) noetherian and f 1s (locally) of finite type, then X 1s (locally) noetherian.
Show that a morphism from a noetherian scheme 1s quasicompact.

A scheme of finite type over a field Kk, 1.e. a k-scheme X — SpecKk, 1s then
noetherian. For instance, affine n-space

Ay = Speck[xq, ..., xg].

On the other hand, even though for any noetherian ring R (e.g. a field),
the affine scheme Spec R[xi,...,x,]| is noetherian, the natural morphism
Spec R[x1, ..., x| — Spec R is not locally of finite type.
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Definition 3.1.5 (Immersions) A morphism of schemes f: X — S 1s a closed
immersion (resp. open immersion) 1t f induces a homeomorphism between X and a
closed subset (resp. an open subset) of S, and the induced local homomorphism
ff . Os, rx) — Ox x 1s surjective (resp. an i1somorphism) for all x € X. A
closed (resp. open) subscheme of a scheme S 1s the image of a closed (resp. open)
immersion. A morphism X — § 1s called an immersion 1f 1t can be factored as
X — Y — §, where X — Y 1s an open immersion and ¥ — § 1s a closed
1mmersion.

All immersions are locally closed immersions, 1.e. can be factored as a closed
immersion followed by an open immersion.! On the other hand, a locally closed
immersion X — § 1s an immersion as long as § 1s locally noetherian, in which case
1t 1s also quasicompact. Also note that any open or closed subscheme of a noetherian
scheme X 1is still noetherian, and for every affine open subset U C X thering Ox (U)
1s noetherian. However, note that this 1s not true for every open subset in general.

Definition 3.1.6 (Reduced and Integral) A scheme X is reduced if for every point
x € X the local ring Oy  1s reduced, 1.e. it has no nilpotent elements besides 0 €
Ox , the additive 1dentity. A scheme 1s integral it it 1s reduced and irreducible.

Exercise 3.1.7 Let R = K[u, v]/(uv, v*). Consider the affine scheme X = Spec R.
Show that the point x € X corresponding to the maximal i1deal (#, v) C R 1s the
unique point such that Oy . 1s not reduced.

For any scheme X, there 1s a unique reduced closed subscheme i : Xieqg — X
having the same topological space as X. In particular, the complement X \ Xicq 1S
empty. See [152, Section 2.4.1] for more details.

Example 3.1.8 The prototypical example of a nonreduced scheme 1s the curvilin-
ear” 0-dimensional affine scheme

D, = SpecKk|[¢t]/t", n > 1.

One can show that quasicompact reduced schemes are precisely those schemes for
which the regular functions on them are determined by their values on points. The
function

04t eKk[t]/t",

I Beware that some references treat ‘immersion’ and ‘locally closed immersion’ as synonyms, see
e.g. [214, Tag 0110]. Here we follow Liu’s terminology [152, p. 96].

2 A k-scheme is curvilinear if its embedding dimension is 1. The embedding dimension of a k-
scheme Y is the smallest integer e such that ¥ embeds as a closed subscheme inside a smooth
k-scheme of dimension e.
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i.e. the image of ¢ under the canonical map K[7] — K[¢]/¢", vanishes at the unique
point of D,,, and yet it 1s not the zero function!

Let S be a scheme. Given two S-schemes X — Sand Y — §, their fibre product
1s an S-scheme X xs Y — § equipped with two projections

p: XXsY —-> X, qg:XXxXgY—=>Y

fitting 1n a commutative diagram
X xsV 25 x
| I
d l
Y

> S

which 1s universal among all such commutative diagrams: whenever there exists a
scheme Z — S withtwomaps pz: Z — Xandgz: Z — Y suchthat Z - X —
S agrees with Z — Y — §, there exists a unique morphism ¢: Z — X Xg Y such
that pz = p o @ and gz = g o @. Fibre products exist in the category of schemes
Sch = Schgpecz, see [214, Tag O01JL]. See also Example 3.5.14 for a rephrasing of
their existence in terms of representable functors. It 1s easy to see that, for affine
schemes, the universal property just described 1s dual to the universal property of
the tensor product for algebras; in particular, if X = Spec A, ¥ = Spec B and
S = Spec R, then X xXgY = Spec(AQg B) canonically. If f: X — §1s a morphism
and s € §, then the fibre of f over s 1s the fibre product X; = X X g Spec K(s).

Let f: X — § be a morphism of schemes. The universal property of the fibre
product, depicted 1n the diagram

Y — i

A \
A

X xXg X — X

id\ )l( f lf

> S

yields a canonical map Ar: X — X xg X, called the diagonal. It is a locally
closed immersion [214, Tag O1KH]. The map f 1s said to be separated (resp. qua-
siseparated) 1if A ¢ 1s a closed immersion (resp. quasicompact). A k-scheme X is
said to be separated if the structure morphism X — Speck 1s separated. If S 1s
locally noetherian and f: X — S 1s locally of finite type, then it 1s quasiseparated.
A closed immersion 1s always of finite type, hence quasicompact, thus separated
implies quasiseparated.

Definition 3.1.9 (Affine Morphism) A morphism f: X — § 1is affine 1if the
preimage of every affine open subscheme of S i1s affine.

In fact, f: X — S 1s atfine if and only if X is isomorphic (over §) to Spec, &,
where &/ 1s a quasicoherent sheat of Og-algebras [214, Tag 01S5], in which case
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one recovers &f = f,Ox, where f: X — § is the structure morphism. Usually,
we will write Spec instead of Specy, . See [214, Tag O1LQ] for the “global Spec’
construction; it 1s an example of representable functor, see Example 3.5.15.

3.1.2 Varieties, Fat Points and More Morphisms

Let Kk be an algebraically closed field.

Definition 3.1.10 (Algebraic Variety) An algebraic variety over kK (or simply a
k-variety) 1s a separated scheme of finite type over SpecK.

Remark 3.1.11 Some references include reducedness (Definition 3.1.6) and/or
irreducibility 1n the definition of algebraic variety. Other references (see e.g. [152,
Section 2.3.4]) exclude separatedness. We will use a more classical definition of
algebraic variety (namely integral, separated scheme of finite type over a field) in
Appendix B, in order to be uniform with the terminology used in [80].

An affine variety 1s a K-scheme of the form Spec A, where A = K[x1, ..., x,]/1
for some 1deal I. Note that A is reduced 1f and only 1f 7 1s a radical 1deal. Thus
a separated k-scheme 1s an algebraic variety if 1t admits a finite covering by affine
varieties. Note that, reassuringly, affine varieties are algebraic varieties, since atfine
morphisms are separated [214, Tag 01S5], and an algebraic variety X over Kk 1s
affine 1f and only if the structure morphism X — Speck is affine in the sense of
Definition 3.1.9.

An algebraic variety X 1is projective if 1t admits a closed immersion into
projective space

Py = ProjKk[xo, x1, ..., x,],

for some n. In other words, X has to be of the form V. (J) =
ProjK[xg, x1,...,x,]1/J for J a homogeneous ideal in K[xg, x1, ..., x,]—see
[152, Section 2.3.3] for the notation V1 (—). A variety 1s quasiprojective if 1t admits
a locally closed immersion in some projective space, 1.e. it 1s closed in an open
subset of some P,. The same abstract scheme can of course be a (quasi)projective
variety in many different ways.

Notation 3.1.12 We shall often write simply A" (resp. P") instead of A (resp. Py),
when no confusion can arise around the base field.

Example 3.1.13 The rational normal curve of degree d 1s the image of the closed
embedding ¢y : P! — P? defined by

(u :v) — (ud cu? st vd).

This 1s the d-th Veronese embedding, determined by the complete linear series
(Opi (d), HO (P!, Opi(d))). It d = 3, we get as image of (3 a twisted cubic 1n P3.
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The following definition will be relevant when we will discuss the Hilbert scheme
of points in Chap. 6.

Definition 3.1.14 (Finite Schemes) An algebraic k-variety X is finite if Ox (X) is
a finite dimensional k-vector space. In this case, we say that £ = dimg Ox (X) 1s the
length of X.

Definition 3.1.15 (Fat Points) A fat point (of length £) over Speck is a k-scheme
of the form X = Spec A, where A is a local Artinian k-algebra with residue field k
(such that dimg A = £).

Alternatively, fat points can be seen as those K-schemes X such that the
composition X;eg < X — SpecK is the identity.

The scheme D, of Example 3.1.8 1s an example of fat point of length n over
Spec k. See Example 3.4.3 for an example of a very peculiar fat point. Fat points
are 1mportant in deformation theory (and indeed they appear in Appendix A). The
fat point D, 1s particularly important. Indeed, the Zariski tangent space T, X of a
scheme X at a point x € X, which by definition 1s the k(x)-vector space (m, / mi)*,
can be 1dentified with

Hom, (D>, X) ={h: D) — X | h(0) =x },

where 0 € D5 1s the unique closed point of D».

Example 3.1.16 Consider the scheme
X, = Speck[x, y1/(y —x*,y —a), a €k

For a # 0, this scheme consists of two reduced points, corresponding to the
maximal 1deals

(x £ va,y —a) CK[x, y].
Fora = 0, we get
Xo = Spec k[x]/x2 = D»,

a point with multiplicity two. See Fig. 3.1 for a visual explanation in the case k = C
(although only the real points are visible).

Fig. 3.1 The intersection X, y = x2
of a parabola with the line
y=a

y=a
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Exercise 3.1.17 Show that an algebraic variety X 1s both affine and projective if
and only 1f it 1s finite. In particular, X = Spec Ox (X), where Ox (X) 1s an Artinian
k-algebra, and dim X = 0. Show that, for any £, the only reduced finite k-variety
of length ¢ is the disjoint union | [,.,., Speck, and more generally every finite
k-variety is a disjoint union of fat points. (In other words, as mentioned above,
a fat point over k could be defined as a finite k-scheme X — Speck such that

Xred = Speck).

Exercise 3.1.18 Classify all finite dimensional C-algebras of length 2 and 3 up to
1somorphism.

Exercise 3.1.19 Give an example of a scheme X whose underlying topological
space consists of finitely many points, and yet 1s not finite.

We finish this section recalling a few more properties of morphisms of schemes.

A stronger notion than separatedness 1s properness. A morphism f: X — § 1s
proper 1f 1t 1s separated, of finite type, and universally closed. The latter means that
for every base change ' — S, the induced map X xg T — T 1s topologically
a closed map. The valuative criterion for proper morphisms says that a finite type
morphism f is proper it and only 1f for every valuation domain A with fraction field
K there exists exactly one way to fill in the dotted arrow 1n a commutative square

SpecK — X

N
il f
.

SpecA - > S

in such a way that the resulting triangles are commutative. Such property can be
rephrased by saying that for any A as above the map of sets

Hom(Spec A, X) — Hom(Spec K, X) XHom(Spec k,s) Hom(Spec A, )

defined by v — (v oi, f o v) 1s a byjection.
All closed immersions are proper.

Definition 3.1.20 (Finite Morphisms) A morphism is finite if it 1s both proper and
affine. It 1s quasifinite if 1t 1s locally of finite type, quasicompact, and has finite
fibres.

Theorem 3.1.21 (Chevalley) A proper quasifinite morphism of noetherian
schemes is finite.

Projective morphisms provide other examples of proper morphisms. We postpone
them to Definition 3.2.8.
An 1mportant notion in moduli theory 1s flatness.

Definition 3.1.22 (Flat Morphisms) A morphism of schemes X — § is flat at
x € X if the induced map of local rings f7: Os ) — Ox .y is flat. The morphism
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1s flat 1f 1t 1s flat at every point x € X. It 1s moreover called faithfully flat if it 1s flat
and surjective.

Example 3.1.23 Consider the closed subscheme Z = Speck[x, v]/(y — x?) C AZ.
Consider the morphism Z — A' = Speck[] defined, at the level of rings, by
t — y. Then f 1s flat (cf. Example 3.1.16).

All flat morphisms are open maps, in particular they have open image. Faithtully
flat morphisms are epimorphisms in the category of schemes.

Let A and A be local Artinian k-algebras with residue field K. We say that a
surjection u: A — A is a square zero extension if (keru)? = 0.

Definition 3.1.24 (Unramified, Smooth, Etale) Let f: X — S be a locally of
finite type morphism between k-schemes. Then f 1s unramified (resp. smooth, étale)
if for any square zero extension A — A of fat points over K and for any solid
diagram

SpecA —— X

n T

l’ ya l

SpecA —— S

there exists at most one (resp. at least one, exactly one) way to fill in the dotted
arrow 1n such a way that the resulting triangles are commutative.

From the definition, it follows that

étale = smooth 4+ unramified.

Definition 3.1.25 (Normal Scheme) A quasicompact integral scheme X is normal
if for every closed point x € X the local ring Oy , 1s normal (i.e. integrally closed
1n 1ts field of fractions).

Definition 3.1.26 (Normalisation) A normalisation of X 1s a pair (Y, i), where Y
is a normal scheme and p: ¥ — X is a morphism such thatif u': Y — X is a
dominant morphism (i.e. 1" has dense image) from a normal scheme Y’, then there

exists a unique morphism6: Y — Y such that po 6 = u’.

Proposition 3.1.27 ([152, §4.1.2, Prop. 1.22 and 1.25]) Let X be an integral
scheme. Then there exists a normalisation morphism w: Y — X, unique up to
unique isomorphism (of X-schemes). Moreover, a morphism f:Y — X is the
normalisation morphism if and only if Y is normal, and f is birational and integral.
If X is a variety, the normalisation : Y — X is a finite morphism.
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Example 3.1.28 The following facts are often useful to keep in mind (some sheaf-
theoretic notions such as ‘locally free’, and the tangent sheaf, are yet to be
introduced).

e A finite morphism f: X — § to a locally noetherian scheme 1s flat if and only
if f 1s affine and f,Oyx 1s finite locally free. See [214, Tag 02KB].

e A morphism X — § of finite type k-schemes 1s smooth (of relative dimension
d) if and only if it 1s flat and the fibres Xy — Speck(s) are smooth (of pure
dimension d) for every s € S. See [111, I11.10.2].

e A morphism X — S of nonsingular k-varieties is smooth if and only if the
tangent maps (see Definition 3.2.7 for the definition of the tangent sheaf) Ty , —
Ty, r(x) are surjective for all x € X. See [111, I11.10.4].

e A morphism X — § of finite type k-schemes, where X 1s Cohen—Macaulay
(see Definition 3.2.43) and S 1s smooth, 1s flat whenever the fibres have the
same dimension. This 1s miracle flatness—see [214, Tag O0R4] or the original
reference [158, Theorem 23.1].

e A proper morphism X — Y of varieties which 1s injective on points and on
tangent spaces 1s a closed immersion. In fact, a morphism of finite type between
locally noetherian schemes 1s a closed immersion if and only 1f i1t 1s a proper
monomorphism.

e Let X be an integral scheme, S a normal locally noetherian scheme, f: X — §
a proper birational morphism. Then Og — f,Ox is an isomorphism, and there is
an open subset V' C § (whose complement has codimension at least 2) such that
f~Y(V) > Visan 1somorphism and Xy = f ~1(s) has no isolated points for all
s € §\V [152, Ch. 4, Corollary 4.3].

e Let § be a normal, locally noetherian integral scheme, and let f: X — S be
a separated, quasifinite, birational morphism of finite type. Then f 1s an open
immersion. This 1s one of the many formulations of Zariski’s Main Theorem
[152, Ch. 4, Corollary 4.6].

A morphism of smooth C-varieties inducing an 1somorphism on tangent spaces
1s €tale.

 An €tale injective (resp. bijective) morphism 1s an open immersion (resp. an
1somorphism).

The following are all consequences of Zariski’s Main Theorem:

(1) A birational proper morphism X — § of noetherian integral schemes has

connected fibres whenever S 1s normal.

(11) Let X, § be noetherian integral schemes, with S normal. A bijective, birational,
proper morphism X — § 1s an isomorphism.

(111) A finite (or even integral) birational morphism f: X — S of integral schemes
with § normal 1s an 1somorphism [214, Tag OAB1].

(1v) A biyective morphism of smooth C-varieties of the same dimension 1s an
1somorphism.
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3.1.3 Schemes with Embedded Points

On a locally noetherian scheme X there are a bunch of points that are more relevant
than all other points, in the sense that they reveal part of the behaviour of the
structure sheaf: these points are the associated points of X.

Let R be a commutative ring with unity, and let M be an R-module. It m € M,
we let

Ammp(m)={reR|r - m=0}CR

denote 1ts annihilator. A prime 1deal p C R 18 said to be associated to M 1f p =
Anng(m) for some m € M. The set of all associated primes 1s denoted?

APr(M) = {p | p 1s associated to M }.

Lemma 3.1.29 Let p C R be a prime ideal. Then p € APr(M) if and only if R/p
is an R-submodule of M.

Proof If p = Anng(m) for some m € M, consider the map ¢,,: R — M defined by
¢m(r) = r - m. Since its kernel is by definition Anng(m), the quotient R /p is an R-
submodule of M. Conversely, given an R-linear inclusion i : R/p < M, consider
the composition ¢: R — R/p < M. Then ¢;()(r) =r -i(1) =i(r +p) = ¢(r)
forall r € R, 1.e. ¢ = ¢;(1). O

Note that if p € APr (M) then p contains the annihilator of M, 1.e. the 1deal

Amr(M)={reR|r-m=0forallm e M} C R.

Definition 3.1.30 (Isolated Primes) The minimal elements (with respect to inclu-
sion) 1n the set

(P C R [pDAmg(M) |

are called isolated primes of M.

From now on we assume R 1s noetherian and M # 0 1s finitely generated. We
have the following result.

Theorem 3.1.31 ([228, Theorem 35.5.10 (a)]) Let R be a noetherian ring, M #* 0
a finitely generated R-module. Then APr (M) is a finite nonempty set containing all
isolated primes.

31 personally have no problem with the more common notation Assg(M), but I chose to use
APg (M) not to upset anyone.
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Definition 3.1.32 (Embedded Primes) The non-isolated primes in AP (M) are
called the embedded primes of M.

Moreover, we have the following facts:

 the R-module M has a composition series, 1.e. a filtration by R-submodules
O=MyC M C.---CMyg=M

such that M; /M;_1 = R/p; for some prime ideal p;. This series 1s not unique.
However, for a prime 1deal p C R, the number of times it occurs among the
p; does not depend on the composition series. These primes are precisely the
elements of APr(M).

e Anyideal I C R has a primary decomposition, 1.e. an expression as intersection
I=q1N---Ngy

of primary ideals. A proper ideal ¢ C R 1s called primary 1f whenever a product
xy lies in g, either x or a power of y lies in q. Put differently, every zero-divisor in
R /g 1s nilpotent. One verifies that the radical of a primary 1deal 1s prime, and one
says that q is p-primary if ,/q = p. One can always ensure that the decomposition
is irredundant, 1.e. removing any ¢; changes the intersection, and ,/q; # ,/q; for

alli # j.

Exercise 3.1.33 Let / C R be an ideal. Show that the set

L Vai |,

1s determined by /. Then show that elements of APg(R/I) are precisely the radicals
of the primary 1deals 1in a primary decomposition of /. In symbols,

APR(R/D) = { Vai }; -

Exercise 3.1.34 Let R = K[x,y], I = (xy,y?) and M = R/I. Show that
APR(M) = {(y), (x, y) }.

The most boring situation 1s when R 1s an integral domain, in which case the
generic point £ € Spec R 1s the only associated (and clearly 1solated) prime. More
generally, a reduced affine scheme Spec R has no embedded primes (in particular
no embedded points, see below), 1.e. the only associated primes are the 1solated
(minimal) ones, corresponding to its irreducible components.
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Fig. 3.2 A thickened

(Cohen—Macaulay) curve Q
with an embedded point and

two 1solated (possibly fat)

points. Code for this picture

modified from
ArXiv:1504.02920

Let R be an integral domain. For an ideal I C R, one often calls the
associated primes of I the associated primes of R//. The minimal primes above
I = Anng(R/I) (1.e. containing /) correspond to the irreducible components of the
closed subscheme

Spec R/I C Spec R,

whereas for every embedded prime p C R there exists a minimal prime p’ such that
p’ C p. Thus p determines an embedded component—a subvariety V () embedded
in an irreducible component V (p’). If the embedded prime p is maximal, we talk
about an embedded point (Fig. 3.2).

Fact 3.1.35 An algebraic curve (an algebraic variety of dimension 1) has no
embedded points if and only if 1t 1s Cohen—Macaulay (the formal definition 1s given
in Definition 3.2.43). However, there can be nonreduced Cohen—Macaulay curves:
those curves with a fat component, such as the affine plane curve Speck[x, y]/x% C
A%, These objects often have moduli, i.e. deform (even quite mysteriously) in
positive dimensional families. See [53, 54, 229, 230] for generalities on multiple
structures on schemes and [37] for a careful study of their moduli in some special
cases.

Remark 3.1.36 An embedded component V (p), where p 1s the radical of some
primary 1deal g appearing in a primary decomposition I = ¢1 M- --MNde, 1s of course
embedded in some irreducible component V (') C Spec R/I, but V(q) is not a
subscheme of V (p'), because the fuzziness caused by nilpotent behaviour (i.e. the
difference between g and its radical p) makes the bigger scheme V (q) D V(p) ‘stick
out’ of V(p’) C Spec R/I.

To fix ideas, consider R = k[x, y] and I = (xy, y?). A primary decomposition
of I 1s

I=(x,y)"N(Q).

Then p = (x, y) 1s the radical of q = (x, y)?, and if we set p’ = (y) we have the
inclusion V (p) C V(p'). However, V(q) = Spec R/q is not scheme-theoretically
contained in V (") = Spec R/y because y ¢ .
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In general, a subscheme Z of a scheme Y has an embedded component if there
exists a dense open subset U C Y such that Z N U 1s dense 1in Z but the scheme-
theoretic closure of ZNU C Z does not equal Z scheme-theoretically. For instance,
if Y 1s rreducible, we say that p € Y supports an embedded point of a closed
subscheme Z C Y if ZN (Y \ p) # Z as schemes. In the example contained
in Remark 3.1.36, where ¥ = A? and Z = Speck[x, y]/(xy, y?), the scheme-
theoretic closure of Z N (A \ 0) C Z is not equal to Z.

3.2 Sheaves and Supports

3.2.1 Coherent Sheaves, Projective Morphisms

All sheaves on a scheme X in this text will be sheaves of Oy-modules, as treated 1n
[111, II.5]. On any locally ringed space (X, Ox), the category Mod Ox of sheaves
of Ox-modules 1s abelian [214, Tag 01 AG].

Definition 3.2.1 (Locally Free Sheaf) Let X be a scheme. We say that F' €
Mod Oy 1s free 1f 1t 1s 1Isomorphic to @;‘2 I fora possibly infinite set 1. A free sheaf
of rank r € N on X 1s a sheaf F' of Ox-modules isomorphic to @;?r (1.e. take I of
cardinality ). A locally free sheaf of rank r on X 1s a sheaf F' such that there exists
an open covering X = _J; U; for which F|y, is free of rank r, for all i.

Definition 3.2.2 (Coherent Sheaf) A quasicoherent sheaf on a scheme X is an
Ox-module F such that every point x € X has an open neighbourhood U C X on
which there 1s an exact sequence

@%I‘Ue @?J‘U% F‘U—>O

for some (possibly infinite) sets I and J. A quasicoherent sheat F 1s coherent 1if 1t
satisfies the following additional conditions:

1. 1t 1s finitely generated, 1.e. every point x € X has an open neighbourhood U C X
such that there 1s a surjective morphism O ;?" ly — F|y for some positive integer
n, and

2. for any open subset U C X, for any positive integer n, and for any morphism
S @;?” lu — F|u, the kernel of s 1s finitely generated.

Example 3.2.3 (Structure Sheaf) The structure sheaft Oy 1s always quasicoherent; it
1s coherent when X 1s locally noetherian. If X 1s locally noetherian, a quasicoherent
sheaf 1s coherent if and only 1f 1t 1s finitely generated, 1f and only 1f F'(U) 1s a finitely
generated Oy (U)-module for every open affine subset U C X.
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Example 3.2.4 (Relative Cotangent Sheaf) Let f: X — S be a morphism of
schemes. The diagonal Af: X — X xg X 1s a locally closed immersion, so we
can find an open subscheme U C X xg¢ X and a closed immersioni: X <— U. Let
J C Oy be the corresponding ideal sheaf (see Example 3.2.21 and Remark 3.2.22
for more details on ideal sheaves). Then Q2 =i*( ¢/ 7 2y = (*@x /v (also denoted
{2x/s) 1s the (quasicoherent) sheaf of relative differentials (or relative cotangent
sheaf) associated to f. It does not depend on the factorisation X «<— U — X xg X.
It 1s coherent whenever f 1s of finite type and § 1s noetherian [152, Ch. 6,
Proposition 1.20].

We will only consider coherent and quasicoherent sheaves on locally noetherian
schemes, taking advantage of the fact that (quasi)coherent sheaves on a locally
noetherian scheme X form an abelian category [214, Tag 01XY]. Such categories
will be denoted

Coh X C QCoh X.

Example 3.2.5 It X = SpecKk, where k 1s a field, then Coh X 1s equivalent to the
category of finite dimensional k-vector spaces.

Notation 3.2.6 Let F'* = Zome, (F, Ox) denote the Ox-linear dual of a coherent
sheaf ' € Coh X on a locally noetherian scheme X. Note that it 1s a coherent sheaf
on X (a more general statement can be found in [214, Tag 01CM]). We save the
notation F = R#omg, (F, Ox) for the derived dual of a complex of Ox-modules
F, so that when F is a sheaf we have F* = h°(FV), where h' denotes the i-th
cohomology sheaf of a complex of Ox-modules. Similarly, we set %xti@X (F,E) =

h (R#Aome, (F, E)), tor any two complexes F' and E of Ox-modules. We refer to
[122] for a thorough treatment of derived functors such as R#Zomep, (—, —).

Recall the correspondence between locally free sheaves on X and algebraic
vector bundles V' — X, sending F to the X-scheme

m: V(F) = Specy, Sym F* — X.

Under this correspondence, the global sections H%(X, V(F)) of V(F) (i.e. sections,
or right inverses, of the map 77) correspond to Ox-linear homomorphisms Oy — F,
1.e. F' 1s the sheaf of sections of V(F), and the fibre 71 (x) ¢ V(F) over a point
x € X 1s naturally identified to the sheat-theoretic fibre F(x) = Fy/my - Fy =
Fr ®oy , K(x).

A locally free sheaf (resp. vector bundle) of rank 1 1s called an invertible sheaf
(resp. line bundle).

Definition 3.2.7 (Tangent and Cotangent Sheaves) Let f: X — § be a mor-
phism of schemes. We set Ty = Tx/s = #ome, (27, Ox) and Q’f = N'Q . (See
[214, Tag O1CF] for the construction of the sheaf-theoretic exterior algebra of an
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Ox-module.) If X 1s smooth over § = Speck and i = 1, we denote by
T°X =V(Qx), TX=V(Tx)

the total spaces of the locally free sheaves Q2xy and Ty = #Homep, (2x, Ox). These
are respectively the cotangent bundle and the tangent bundle of X. So, for instance,
a 1-form on X is an element of HY(X, T*X) = Homx (Ox, Qx).

We now pause for a second to define the class of projective morphisms. We refer
to [214, Tag O1NM] for the relative Proj construction, but note that Proj Sym(—) =
P(—), where P(—) will be introduced in Notation 5.1.5.

Definition 3.2.8 (Grothendieck [100, Definition 5.5.2]) A morphism of schemes

f: X — §i1ssaid to be projective 1f there exists a quasicoherent sheaf ' on S such
that f factors as

X 1 ProjSymF —— §

where i 1s a closed immersion. We say that f 1s quasiprojective 1f 1t factors as
X — Y — §, where X < Y 1s an open immersion and ¥ — § 1s projective.

Definition 3.2.9 (Relative (very) Ampleness) We have the following notions:

 An 1nvertible sheaf & on a scheme X 1s called ample 1if X 1s quasicompact
and every point y € X has an affine open neighbourhood of the form Xy =
{x € X|s,#0}, where s € H (X, Z®") for some n > 0.

e Let f: X — S be a morphism. An invertible sheaf £ on X 1s f-ample if f 1s
quasicompact and for every open atfine subset U C § the line bundle Z| ;-1
1s ample [214, Tag 01 VH].

e Let f: X — § be a morphism. An invertible sheat & on X 1s f-very ample 1s
there 1s a quasicoherent Og-module F and a locally closed immersion ¢t: X —
P(F) over § such that & = *Op(r) (1), where Op(r)(1) is the universal quotient
bundle on P(F) [214, Tag O1VL].

If f 1s quasicompact, then an f-very ample invertible sheaf 1s f-ample. A
morphism f: X — § such that X admits an f-ample invertible sheaf 1s necessarily
separated. By [214, Tag O1VL], if & 1s a line bundle on X, then it 1s f-very
ample on a quasicompact morphism f: X — § if and only 1t f 1s quasiseparated,
* ¥ — £ issurjective and the associated map X — P(f,.Z) is a locally closed
1mmersion.

Remark 3.2.10 A morphism f: X — § 1s projective if and only if f 1s proper
and there 1s an f-very ample invertible sheat on X. Note that the above notion of
projectivity 1s in general different from the one found in Hartshorne [111, 11.4].
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3.2.2 Properties of Sheaves: Torsion Free, Pure, Reflexive, Flat

Recall that a module M over a commutative ring A 1s forsion free if whenever am =
0 € M one has that either a 1s a zero-divisor or m = 0. To simplify matters, we will
restrict to the case where A 1s an integral domain. Globally speaking, this means
working over integral schemes.

Definition 3.2.11 (Torsion Free Sheaf) Let X be an integral locally noetherian
scheme. A coherent sheaf ' € Coh X 1s forsion free if for every x € X the stalk F
1s torsion free as an Ox -module, 1.e. if for any a € Ox , \ O the map F, — F,
defined by T — art 1s 1njective.

Note that F 1s torsion free if and only 1f for every affine open subscheme U C X,
the Ox (U)-module F (U) 1s torsion free.

Exercise 3.2.12 Let X be an integral locally noetherian scheme. Confirm that a
subsheaf of a torsion free sheat on X 1is torsion free. Prove that an extension of
torsion free sheaves 1s torsion free.

Recall the dualisation functor (—)* = #ome, (—, Ox). The natural transforma-
tion id = (—)** of functors Coh X = Coh X induces a natural Ox-linear map

vp: F — F*™,

Its kernel 1s the torsion subsheaf of F, 1.e. the subsheaf T'(F) C F whose sections
over U C X are given by those elements T € F'(U) such that there exists a nonzero
a € Ox(U) tor whichat =0 € F(U). Clearly then, F' is torsion free if and only if
T (F) = 0, 1f and only 1if vg 1s injective.

Definition 3.2.13 (Reflexive Sheaf) Let X be an integral locally noetherian
scheme. Then F € Coh X 1s called reflexive it v 1s an 1somorphism.

Example 3.2.14 As shown in [112, Corollary 1.2], F* is reflexive, for all F €
Coh X on a noetherian integral scheme X.

Let I’ be a coherent sheat on a smooth irreducible k-variety X. In particular, for
every x € X, the stalk F is a finitely generated module over Oy ,. It 1s free if and
only if F, has homological dimension 0, 1.e. Ext"@X,x (Fx, N) = 0 for all finitely
generated Ox ,-modules N and for all i > 0. There 1s a closed subset

S(F)={xe X | Fyisnotfree} C X

of codimension at least 1, called the singularity set of F'.

Lemma 3.2.15 ([184, p. 76]) Let F be a coherent sheaf on a smooth irreducible
k-variety. Then codim(S(F), X) > 2 if F is torsion free, and codim(S(F), X) > 3
if F is reflexive. In particular, a torsion free sheaf on a smooth curve is locally free,
and so is a reflexive sheaf on a smooth surface.
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In particular, a reflexive sheaf on a smooth 3-fold 1s locally free away from points.
In fact, one has the following more general result due to Hartshorne.

Lemma 3.2.16 ([112, Corollary 1.4]) On a regular scheme X, a reflexive sheaf is
locally free away from a closed subset of codimension at least 3.

Definition 3.2.17 (Rank) The rank of a coherent sheaf F' on a smooth irreducible
k-variety X is the integer

rk F' = rkF‘X\S(F).

Exercise 3.2.18 Show that the rank 1s additive on short exact sequences.

Lemma 3.2.19 ([184, Ch. 2, Lemma 1.1.15]) A reflexive sheaf of rank 1 on a
smooth irreducible k-variety is a line bundle.

Definition 3.2.20 (Determinant) Let X be a smooth irreducible k-variety. Let F
be a coherent sheaf on X. The determinant of F 1s the line bundle

kk
det FF = (/\rkFF) .

Example 3.2.21 (Ideal Sheaves) Let X be an arbitrary scheme. If (: Z < X 1s a
closed subscheme, then ¥z = ker(Ox — 1,07), called the ideal sheaf attached to
t, 1s quasicoherent (and coherent if X 1s locally noetherian).

Being a subsheaf of a free sheaf, .¥7 is torsion free. In codimension 1, there
1s a bijection between the set of effective Cartier divisors on a scheme X and the
1somorphism classes of pairs (£, s), where £ 1s an invertible Oxy-module and s €
HY(X, &) is a regular section, i.e. the associated map Ox — < is injective. The
correspondence assigns D +— (Ox (D), sp), where Ox(D) = .7} and sp is the
image of 1 € Ox under the canonical map Ox — Ox (D). In the opposite direction,
a pair (£, s) defines the effective Cartier divisor D = Z(s) C X.

On the other hand, 1deal sheaves of subschemes of codimension at least 2 inside
a smooth 1irreducible K-variety X are precisely the torsion free sheaves of rank 1 and
trivial determinant.

Remark 3.2.22 Given a closed immersion (: Z < X as above, the functor
t«: QCohZ — QCoh X induces an equivalence between Coh Z and the subcat-

egory of Coh X of coherent Oy-modules annihilated by .#7z. See [214, Tag 01XY]
for more details.

If f: X — Y 1s a quasicompact morphism of schemes, the scheme-theoretic
image of f 1s the smallest closed subscheme im( f) of Y through which f factors.
It 1s equivalently defined by the (quasicoherent) ideal sheat

Jim(r) = ker (Oy — [ Ox).
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It Z C Y 1s a closed subscheme defined by the ideal sheaf .¥; C Oy, then the
scheme-theoretic preimage f~1(Z) = Z xy X C X is defined by the ideal sheaf

Tz = [ Iz-Ox C Ox. (3.1)

See e.g. [214, Tag 02RA].

Definition 3.2.23 (Flatness) Let f: X — S be a morphism. A sheaf I € QCoh X
1s flat over S (or S-flar) if for every point x € X, with image s € §, the module F
1s flat over Og ; via the ring map fx#: Os s — Ox x. For instance, Ox 1s S-flat if and
only if X — § 1s flat as a morphism of schemes (Definition 3.1.22). If we consider
the 1dentity map on § = X, we simply say that F 1s flat.

Example 3.2.24 A coherent sheaf F' € Coh X on a noetherian scheme 1s flat 1f and
only if it is locally free [111, I11.9.2 (e)]. A flat coherent sheaf on an integral scheme
1s torsion free.

Example 3.2.25 Let f: X — Y be a morphism over a base scheme S, with Y — §
flat. Let ¥ € QCoh X be S-flat. Then, by transitivity of flatness, f,F 1s S-flat. If
f 1s affine, then the converse also holds, 1.e. F' 1s S-flat if and only 1f f, F 1s S-flat
[214, Tag 01U2].

Example 3.2.26 Let f: X — § be a projective morphism of locally noetherian
schemes. Let F' € Coh X. Then F 1s S-flat if and only it f, F'(m) 1s locally free for

m > 0.

Proposition 3.2.27 (Generic Flatness [214, Tag 0529]) Let f: X — S be a
morphism of finite type with S reduced. Let FF € Coh X. Then there is a dense
open subset U C S such that f~'(U) — U is flat and F| -1y is flat over U.

Lemma 3.2.28 ([112, Proposition 1.6]) A coherent sheaf on a normal integral
scheme X is reflexive if and only if it is torsion free and normal, where ‘normal’
means that for every open subset U C X and for every closed subset Z C U of
codimension at least 2 the restriction map F(U) — FU \ Z) is an isomorphism.

3.2.3 Supports

The support of a coherent sheaf F' on a locally noetherian scheme X is the following
closed subscheme of X. Consider the map ar: Ox — Home, (F, F') defined on
local sections by sending f to the Ox-linear map m — fm. The kernel of o p—the
sheaf-theoretic annihilator ideal of FF—defines the closed subscheme

j: Supp ' — X,
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which can be viewed as the minimal closed subscheme of X over which the natural
morphism F — j,j*F is an isomorphism. Set-theoretically, Supp F' consists of
those points x € X such that F, # 0. This set is not closed for an arbitrary sheaf of
Ox-modules, but it is for coherent ones [214, Tag 01XY]. The support of a coherent
sheaf on a proper S-scheme X — S, where S is a base scheme, is proper over S.

Exercise 3.2.29 Let FF € Coh X be a coherent sheaf on a smooth n-dimensional
variety X. Show that

S(F) = |_J Supp(&l,, (F. Ox)).
i=1

Confirm that if n = 3 and F is reflexive, then S(F) = Supp(%xtI@X (F, Ox)).
(Hint: prove first that the homological dimension of Fy is at most e if and only
if &t (F, Ox)x = Ext’@XX(Fx, Ox.x)=0foralli > e.)

Definition 3.2.30 (Dimension of Sheaves) The dimension of a coherent sheaf F €
Coh X, denoted dim F, is the dimension of Supp F C X. We say that F is pure of
dimension d if dim Supp E = d for all subsheaves 0 # E C F. Thus we see that a
torsion free sheaf is pure of maximal dimension.

Exercise 3.2.31 Show that on a smooth n-dimensional variety X, a coherent sheaf
F of dimension d is pure if and only if

n — dim %xﬂ@X (F,0x)>q+1

forallg >n —d.

We have the following chains of implications for sheaves on an integral locally
noetherian scheme X.

X noetherian ...+ - flat < ~--.._ X a Dedekind scheme

k'—‘.' - "\
free == locally free == reflexive == torsion free === pure
- Y. - . -

¥.

Xreg.uiar, diu.nk <2 norm.avl‘ onx ﬁérrnal max dime‘n.sion
The scheme-theoretic support behaves well under flar base change [214, Tag
089C]. However, the following remark is the origin of several issues around the
existence of Hilbert—-Chow type morphisms.


https://stacks.math.columbia.edu/tag/01XY
https://stacks.math.columbia.edu/tag/089C

We have the following chains of implications for sheaves on an integral locally noetherian scheme X.
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Remark 3.2.32 Let X — S be a finite type morphism of locally noetherian
schemes. It is not true that the support of an S-flat Ox-module is flat over S, see
e.g. [120]. For another example,* consider the union of planes

X = SpecKk[x, y,z, w]/(z,w) N (x + 2,y + w)

mapping to S = Speck[x, y] with the natural morphism f: X — S sending each
plane isomorphically onto S. Then f is not flat by [111, III, Ex. 9.3]. Consider the
blowup of A% at the origin V(x, y, z, w) C A4, and the strict transform 7 : X — X
of the subvariety X C A*. We denote by ¢ the composition

¥ xLos
We consider the coherent Ox-module ' = m,0%. Since f is affine, by Exam-
ple 3.2.25, to prove that F is flat over S it is enough to prove that f F is flat over S,
i.e. locally free over Os. But f, F = q.03 = @?2, since ¢ : X > Sisa degree 2
cover.
On the other hand, the canonical morphism Ox — Zomey (7+O%, m.0%) is
injective, therefore X = Supp(F), in particular Supp(F) — S is not flat.

Exercise 3.2.33 Find other examples of the phenomenon described in
Remark 3.2.32.

Definition 3.2.34 (Support of Sections) Let F be an Ox-module on a scheme X.
Let s € HY(X, F) be a global section. The set-theoretic support of Supp(s) is the
set of points x € X such that the image of s along the map H*(X, F) — F, is not
Zero.

Exercise 3.2.35 Let X be a scheme, F € Mod Ox. Show that Supp(s) C X is
closed for every section s € HO(X, F).

3.2.3.1 Another Notion of Support: Fitting Ideals

Let F be a coherent sheaf on a scheme X, and leti > —1 be an integer. Given a
presentation

0% 25 0¥ — F —5 0

4 Thanks to Warren Cattani for providing it.
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of F, one defines the i-th Fitting ideal of F to be the ideal sheaf Fit;(F) C Ox
locally generated by the minors of ¢ of size f — i. In more precise terms, Fit; (F)
defines the closed subscheme’

ZF =D, i 1) =2 (Af—"qs) < X.

The ideal Fit; (F) is quasicoherent and of finite type. It only depends on F, not on
the particular presentation chosen. Moreover, its formation commutes with arbitrary
base change [214, Tag 0CZ3], in the sense that given a morphism f: Y — X and a
coherent sheaf F on X, one has

Fit;(f*F) = ' Fiti(F) - Oy C Oy,
which by Eq. (3.1) is equivalent to the scheme-theoretic identity
*F

z/

1

=flzhHh =2z xxv.

In particular, Fitting ideals can be defined even in the absence of a global
presentation as above, thanks to the above properties and the fact that coherent
sheaves do admit local presentations by definition; thus the ideals

Fit; (F) C Oy
are well-defined for every F' € Coh X. Set-theoretically, Z lF is the locus of points
x € X such that dimg)(Fx ®py , K(x)) > i + 1, in particular Zfl = X forall F.
Clearly one has a descending chain of closed subschemes
X=z5>2z{>z{ >---o0

induced by the canonical inclusions

0 = Fit_|(F) C Fito(F) C Fit;(F) C --- C Ox.

Definition 3.2.36 (Fitting-Support) The Fitting-support of a coherent sheaf F on
a scheme X is the closed subscheme

ZE = V (Fity(F)) — X.
As proven in [214, Tag 0CZ3], one has closed immersions

Supp(F) AN zZl —> X

5 The precise definition of Dy (¢) will be given in Eq. (3.3).


https://stacks.math.columbia.edu/tag/0CZ3
https://stacks.math.columbia.edu/tag/0CZ3
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where Supp(F) = V(Anng,(F)) < X is the scheme-theoretic support of F.
However, topologically there is no difference, i.e. one has

ISupp(F)| = |ZE,

and therefore one can find a coherent sheaf Fjy on Zg such that (1, Fy = F, where
L Zg < X is the immersion as above. Of course, Fop = j.j*t*F.
The following result may turn out useful in practical situations.

Proposition 3.2.37 ([214, Tag 0CZ3]) If F is a coherent sheaf on a scheme X, and
i > 0, then the following conditions are equivalent.

e Fislocally free of rank i.
e Fit;_1(F) = 0 and Fit; (F) = Ox.
e Fitg(F) = 0 fork < i and Fity (F) = Oy fork > i.

Let, once more, F' be a coherent sheaf on a scheme X. The open subscheme
X\Z f < X represents (in the classical sense of Definition 3.5.7) the set-valued
functor Sch(;(p — Sets sending

(T 8 X) . {x} if g*F is locally generated by at most i sections
@ otherwise.

On the other hand, the locally closed subscheme Z ﬁ 1\ Z lF < X represents the
functor GIF : Sch(;(p — Sets sending

(T kN X) . {x} if g*F islocally free of rank i
7 otherwise.

Setting SiF = Zl.F_ 0\ ZI.F , one has that the disjoint union ]_[izo SI.F represents the
functor Ggm: Sch(;(p — Sets sending

(T

X) . {x} if g*Fisflatover T
@ otherwise.

Moreover, F|¢r is locally free of rank i. The proof goes by observing that Ggat =
=0 G,F :

Definition 3.2.38 (Flattening Stratification) The stratification ][, S/, along
with the canonical morphism

[IsF - x.

i>0


https://stacks.math.columbia.edu/tag/0CZ3
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is called the flattening stratification attached to F € Coh X.

Flattening stratifications can be defined more generally, but then they do not
always exist. As explained in [214, Tag 052F], in practical situations it is often
useful to identify the index set defining the flattening stratification.

3.2.4 Derived Category Notation

This subsection is purely meant to set up some notation for later. We refer to [122]
for a thorough guide to triangulated and derived categories and derived functors. In
general, by D(&/) we mean the (unbounded) derived category of an abelian category
.

Let X be a locally noetherian scheme. For x € {+, —, b, %, [a, b]}, we let
D*(Mod Ox) denote the full subcategories of D(Mod Ox), where the decoration
x indicates the location of the (possibly) non-vanishing cohomology sheaves. The
decoration ‘b’ stands for bounded complexes, and ‘¥’ stands for no decoration. We
use the same convention for D*(QCoh X) and D*(X) = D*(Coh X).

By D(’;coh(Mod Ox) C D*(Mod Oy), resp. D, (Mod Ox) C Décoh (Mod Oy),
we denote the full triangulated subcategory of complexes with quasicoherent,
resp. coherent cohomology. The cohomology sheaves of an object E € D(Mod Ox)
are denoted i (E) € Mod Oy.

Definition 3.2.39 (Perfect Complex [222, Section 2]) A complex E €
D(Mod Ox) is called perfect (resp. strictly perfect) if it is locally (resp. globally)
quasi-isomorphic to a bounded complex of locally free Ox-modules of finite type.
We write Perf X C Dgcoh(Mod Ox) for the full triangulated subcategory of perfect
complexes on X. Finally, E € Perf X is said to be of perfect amplitude in [a, b] if
E is Zariski locally isomorphic to a complex [E¢ — .- — E”] of locally free
sheaves of finite rank.

Remark 3.2.40 On a noetherian scheme, an object E € D, (Mod Ox) is nothing
but a pseudo-coherent complex [214, Tag O8HC], and a perfect complex is
characterised as follows: it is a pseudo-coherent complex E of finite Tor-dimension.
The latter means that there exist integers a < b such that E is isomorphic in
Dgeon(Mod Ox) to a complex C such that C' = 0 for i ¢ [a, b, and with C'
flat for all i. Equivalently, one has 4’ (G ®]5X E) = 0 for every G € Mod Ox and
everyi ¢ [a, b].

A quasicompact scheme X is said to have an ample family of line bundles if there
is a collection { &} };<; of invertible sheaves on X such that for every x € X there is
ani € I, anintegern > 0 and a section s € HO(X, 3i®") such that x € X and X is
affine [214, Tag OFXQ]. If X has an ample family of line bundles, then every perfect
complex on X is strictly perfect, see [24, I1.2.2] or [222, Proposition 2.3.1(d)].


https://stacks.math.columbia.edu/tag/052F
https://stacks.math.columbia.edu/tag/08HC
https://stacks.math.columbia.edu/tag/0FXQ

A complex E ∈ D(Mod 𝒪X) is called perfect (resp. strictly perfect) if it is locally (resp. globally) quasi-isomorphic to a bounded complex of locally free 𝒪X-modules of finite type.


Finally, E ∈ PerfX is said to be of perfect amplitude in [a, b] if E is Zariski locally isomorphic to a complex [Ea → ··· → Eb] of locally free sheaves of finite rank
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We recapitulate some known results on the identification of various triangulated
categories of sheaves:

* By [214, Tag 08DB], if X is quasicompact and semiseparated (i.e. has affine
diagonal) the canonical functor D(QCoh X) — Dgcon(Mod Ox) is an exact
equivalence (see also [28, Corollary 5.5] for the proof in the case where X is
quasicompact and separated).

* By [24, Corollary 11.2.2.2.1], if X is noetherian, the canonical functor p® X)) —>

'éoh (Mod Oy) is an exact equivalence.

* By [214, Tag OFDC], if X is noetherian and regular of finite dimension, the

canonical functor Perf X — DP(X) is an exact equivalence.

3.2.5 Dualising Complexes, Cohen—Macaulay and Gorenstein
Schemes

Let Y be a quasicompact and quasiseparated scheme, f: X — Y a proper flat mor-
phism of finite presentation. Let f* be the right adjoint of R f, : Dgcon(Mod Ox) —
Dgcon(Mod Oy), which exists by [214, Tag 0A9E]. A standard reference for this
statement—known as Grothendieck duality—is [178, Example 4.2]. It is also proved
in [178, Section 6] that if f is a proper morphism of noetherian separated schemes,
the natural morphism

Rf,.R¥#ome, (F, f'E) — R#omp, Rf,F, E) (3.2)

is an isomorphism in D(Mod Oy) for all F € D(QCoh X) and E € D(QCohY). A
proof of the isomorphism (3.2) assuming f is a morphism essentially of finite type
between noetherian separated schemes can be found in [128, Equation 1.6.1]. We
refer the reader to Neeman [178] and Lipman [151] for very informative discussions
around the history of Grothendieck duality, as well its more modern versions.

As a special case, if f as above is a smooth proper morphism of relative
dimension d, where X and Y are of finite type and separated over a base scheme
S, then f' agrees with the functor L f*(—) ®15X Q’j,[d]. The object

@} = f'Oy € Dgcon(Mod Ox)

is the relative dualising complex attached to f. One has functorial isomorphisms
f'E=Lf*E ®L for all E € Dgcon(Mod Oy), as well as a canonical morphism
Try: R f*a) — @y, corresponding to the identity id € Homy (% Iz f) under the
adjunction 1somorphlsm

Homx(a)}, a)}) = Homy(Rf*a)}, Oy).


https://stacks.math.columbia.edu/tag/08DB
https://stacks.math.columbia.edu/tag/0FDC
https://stacks.math.columbia.edu/tag/0A9E

Rf∗Rℋom𝒪X(F, f!E) → Rℋom𝒪Y (Rf∗F,E)


The object
ω• f = f!𝒪Y ∈ Dqcoh(Mod 𝒪X)
is the relative dualising complex attached to f.


Grothendieck duality


if f as above is a smooth proper morphism of relative
dimension d,where X and Y are of finite type and separated over a base scheme S,then f! agrees with the functor Lf∗(−) ⊗L
𝒪X
�d f[d].
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Moreover, R f.®% has vanishing cohomology in positive degrees, and the natural
map Ox — RZompy (a)}, a)}) is an isomorphism [214, Tag OE4L].

Example 3.2.41 ([214, Tag OBQV]) Let Y be a noetherian scheme, X = P(&) =
ProjSym & where & is a locally free sheaf of rank d + 1 over Y with determinant
Z. Then, letting f: X — Y be the canonical morphism, one has an isomorphism

f*g ® Op(g)(—d — 1)[d] :;a)}

So, for instance, the relative dualising complex of IP";} — Y is the shifted line bundle
@Plé(—d — DI[d].

Example 3.2.42 ([214, Tag OBRT]) If Y is a noetherian scheme and f: X — Y is
a smooth proper morphism of relative dimension d, we have an isomorphism

sz”}[d] S 0},

so in particular, as in the previous example, w} sits entirely in cohomological degree
—d.

Definition 3.2.43 (Cohen—-Macaulay and Gorenstein Schemes) Let X be a
locally noetherian scheme with dualising complex w$%. Then X is called

* Cohen—Macaulay if »$ has only one nonvanishing cohomology sheaf;
* Gorenstein if w% has only one nonvanishing cohomology sheaf, which is a line
bundle.

A morphism ¥ — § with locally noetherian fibres is said to be a Cohen—
Macaulay (resp. Gorenstein) morphism if it is flat and it has Cohen—Macaulay
(resp. Gorenstein) fibres.

Definition 3.2.44 (Relative Dualising Sheaf) Let f: ¥ — S be a Cohen-—
Macaulay morphism of relative dimension d (which means the fibres are pure of
dimension d). Then

wp=h(f'6s) = (%)

is called the relative dualising sheaf attached to f.

Example 3.2.45 If f: Y — S is a smooth and proper morphism to a noetherian
scheme S, then wy = Q?, which is a line bundle.


https://stacks.math.columbia.edu/tag/0E4L
https://stacks.math.columbia.edu/tag/0BQV
https://stacks.math.columbia.edu/tag/0BRT

Let X be a locally noetherian scheme with dualising complex ω•
X.Then X is called • Cohen–Macaulay if ω• X has only one nonvanishing cohomology sheaf; • Gorenstein if ω• X has only one nonvanishing cohomology sheaf, which is a line bundle.
A morphism Y → S with locally noetherian fibres is said to be a Cohen– Macaulay (resp. Gorenstein) morphism if it is flat and it has Cohen–Macaulay (resp. Gorenstein) fibres.


If f : Y → S is a smooth and proper morphism to a noetherian scheme S,then ωf = �d
f, which is a line bundle.


Definition 3.2.44 (Relative Dualising Sheaf) Let f : Y → S be a Cohen– Macaulay morphism of relative dimension d (which means the fibres are pure of dimension d). Then
ωf = h−d(f!𝒪S) = h−d(ω• f) is called the relative dualising sheaf attached to f
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3.3 Degeneracy Loci and Chern Classes

Let X be an n-dimensional integral scheme of finite type over an algebraically
closed field k. If s € HO(X, F) is a section of a vector bundle F = Spec Sym &* —
X, corresponding to a Ox-linear homomorphism s : Ox — & to alocally free sheaf
&, then the zero scheme Z(s) < X of s is, by definition, the closed subscheme
corresponding to the ideal sheaf

7 = image(F* 1> 0x) C Ox.

More generally, let ¢ : E — F be a homomorphism of vector bundles correspond-
ing to a map of locally free sheaves ¢: & — F (denoted the same way) of ranks
e =1k &, f =1k %. Then, for every k < min { e, f }, one has a natural section

/\k+1¢ c HO (X, /\k+1E* ® /\k-'rlF) ,
and the k-th degeneracy locus of ¢ is defined as the closed subscheme
Di(p) = Z (A1) —— X. (3.3)

It is supported on the locus of points x € X such that rk¢(x) < k, where
¢(x): E(x) = F(x) is the k-linear map induced by ¢ on the fibres over x € X.

We use these notions to define Chern classes of a vector bundle E =
SpecSym &* — X (but see Appendix B.2 for a more systematic approach in
the algebraic setup, or [115, Chapter 3] and [167] for the topological construction
of Chern classes). Let e be the rank of E, and for simplicity assume E is globally
generated, i.e. that there are global sections o1, ...,0, € HO(X , E) such that for
all x € X the fibre E(x) = k€ is spanned by o1 (x), ..., o.(x). Of course we must
have ¢ > e (and E is isomorphic to the trivial bundle k¢ x X if and only if ¢ = ¢°).
Let us choose e general sections s, . .., Se—1, and foreveryi =0, ..., e let

Ge—iv1 KT x X 5> E

be the map determined by so, ..., s.—;. The case i = 0 is apparently excluded
since we only fixed e sections, so let us start with the case i = 1. The line bundle
det E = A°E — X, corresponding to the invertible sheaf A¢&*, is equipped with
the canonical section A¢¢p, € HO(X, det E) = Homy (Ox, A°&). This section has a
well-defined zero locus

De—1(¢e) = Z (Ae¢e) CcX,

6 Indeed, a map of locally free sheaves of the same rank is an isomorphism if and only if it is
surjective [214, Tag 01C5].


https://stacks.math.columbia.edu/tag/01C5

We use these notions to define Chern classes of a vector bundle E =
Spec Symℰ∗ → X
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supported on the locus where ¢, is not surjective (i.e. s, . . . , Se—1 fail to be linearly
independent).
The identity’
ci(det E) N[X]1=[Z (A°Pe)] € A1 X (3.4)

defines the first Chern class ¢i(det E) € A'X.

Definition 3.3.1 (Chern Classes) The first Chern class of E is c|(E) =
ci1(det E) € A'X. More generally, consider the zero locus

Dewi(@eivn) = Z (A geiin) = X.
For all i > 0, one can define ¢; (E) € A’ X via the identity
G (E)NIX1 = [Z (AT i) | € AriX.

Thus we obtain the following slogan:

¢;(E) is ‘Poincaré dual’ to the locus where e — i + 1

general sections of E become linearly dependent.

Example 3.3.2 (Euler Class) 1f i = 0, we see that we would be requiring e + 1 >
e = rk E general sections of E to be linearly dependent. This of course would
happen over the whole of X, therefore it is natural to set co(E) = 1. At the other
extreme, if i = e, we are forcing one section to be ‘linearly dependent’, i.e. we are
forcing it to vanish. Thus the top Chern class ¢, (E), also known as the Euler class
e(E), represents the vanishing locus of a general section of E.

3.3.1 The Thom—-Porteous Formula

When nonempty, the closed subscheme (3.3) has codimension

codim(Dy (), X) < (e —k)(f — k). (3.5

7 The definition of Chow groups A, X will be recalled in Appendix B.1.



ci(E) is ‘Poincaré dual’ to the locus where e − i + 1 general sections of E become linearly dependent.


Thus the top Chern class ce(E), also known as the Euler class e(E), represents the vanishing locus of a general section of E.
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In fact, let m denote the expected dimension of this degeneracy locus, i.e. set m =
dim X — (e — k)(f — k). Then Fulton [80, Chapter 14] constructs a Chow class

Di(¢) € AnDi(e)

whose pushforward along the closed immersion ¢: Dg(¢) < X has a closed
(determinantal) expression in terms of the Chern classes of E and F only. To start
with, let us review the definition of D (¢). Setd = e —k andlet p: G(d, &) — X
be the structure morphism of the Grassmann bundle G(d, &) defined in Sect.5.1
(see in particular Remark 5.1.7). Let Z(sy) € A, Z(sp) be the refined Euler class
(cf. Sect. B.3.1) attached to the section

sp € H'(GWd, &), $* ® p*F)

corresponding to the map s = p*¢ls: & — p*E — p*F, where the first
homomorphism is the inclusion of the universal subbundle living on G(d, &). Note
that Z(s4) is an element of the m-th Chow group of Z(sy) since dimG(d, &) =
dim X + (e — k)k, so that
dimG(d, &) —rk($* @ p*F) =dimX + (e —k)k — (e —k) f
=dimX — (e —k)(f — k)
=m.

Note, also, that p maps Z(s¢) C G(d, &) onto Di(¢) C X, i.e. we have a (proper)
restricted morphism p: Z(sg) — Dk (¢). Then Fulton defines

Dy () = pxZ(sp).

Now, for a general series ¢ = Zk cr with ¢ € A*X, let Aflp)c be the p x p
determinant |cy4 j—il1<i, j<p, 1.€.

Cq Cq+1 - Cq+p—1
AP, Cq—1 Cq 7 Cqtp-2
g €= . .
Cq—p+1 Cq—p+2 "+ Cq

Then, by [80, Theorem 14.4 (a)], one has

D) = AT e(E - F)N[X] € AnX.
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This is the celebrated Thom—Porteous formula. The expression c(E — F) is defined
in Appendix B.2 in terms of the total Chern classes of E and F'. It is defined formally
by the identity

e

f
c(E —F)- Zci(F) = Zci(E).

i=0 i=0

If X is Cohen—Macaulay and (3.5) is an equality, then

Di(¢) = [Dr(#)].

3.4 Ciritical loci

Throughout these notes we use the following terminology.

Definition 3.4.1 (Critical Locus) Let U be a smooth k-scheme, f € HO(U ,0p) a
regular function. Then the vanishing scheme

Zdfycu

of the exact I-form df e HY(U, T*U) = Homy (Oy, Q) is called the critical
locus attached to (U, f).

Example 3.4.2 Let U = A' = Speck[f] and n > 1 an integer such that n + 1 is
not a multiple of chark. Then the fat point D, = Speck([t]/t" C U is a critical
locus, being the vanishing locus of the differential of the function ! € k[t] =
HY(U, o).

Example 3.4.3 Let A = H*(G(k, n), C) be the cohomology ring of the Grassman-
nian of k-planes in C". Then A has a unique maximal ideal, and ¥ = Spec A is a fat
point. In fact, Y is a critical locus. This is proved in [25, Proposition 5.9], we only
give a sketch here. One starts with the presentation

A=Clxy,...,xx)/1,

where x; = ¢;(8*), for & — Ogk,n) Sc C" the universal rank k subbundle,
and where I encodes the relations among xi, ..., x; arising from the identity
i ($*)c (@%) = 1, where ¢; is the Chern polynomial. Define polynomials
Wi(x1, ..., xx) fori > 0 by a formal expansion

—logc(S$*) = Z Wi(xi, ..., xot.

i=0



Definition 3.4.1 (Critical Locus) Let U be a smooth k-scheme, f ∈ H0(U, 𝒪U) a regular function. Then the vanishing scheme
Z(df) ⊂ U
of the exact 1-form df ∈ H0(U, T∗U) = HomU(𝒪U,�U) is called the critical locus attached to (U, f).
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Set W = (—1)"*'W,,,1. This is the polynomial expressing the Newton polynomial

1 n+1
n41 Z i

I<i<k

interms of xy, ..., xx, where &1, . . ., o, are the Chern roots of §'*, defined through
the identity ¢;(§™*) = Hliigk(l + «;t). Then the ideal I is equal to the Jacobian
ideal

ow ow
ax; T Oxx |

So Y = Spec H*(G (k, n), C) is a critical locus in the sense of Definition 3.4.1.

3.5 Representable Functors

In this section we define representable functors and recall the statement of the
Yoneda Lemma. More details and examples can be found, for instance, in [232].
This material will be needed in Chap. 5.

We start by making the following assumption.

Assumption 3.5.1 All categories are assumed to be locally small, i.e. we assume
that Home (x, y) is a set for any pair of objects x and y.

Let C and C’ be (locally small) categories.

Definition 3.5.2 (Fully Faithful, Essentially Surjective) A (covariant) functor
F: C — (' is called:

(1) fully faithful if for any two objects x, y € C the map of sets
Home (x, y) — Home (F(x), F(y))

is a bijection.
(ii) essentially surjective if every object of C’ is isomorphic to an object of the form
F(x) for some x € C.

The following observation is quite useful.

Remark 3.5.3 A fully faithful functor F: C — C’ induces an equivalence of C with
the essential image of F, namely the full subcategory of C’ consisting of objects
isomorphic to objects of the form F(x) for some x € C. Put differently, a functor is
an equivalence if and only if it is fully faithful and essentially surjective.



A fully faithful functor F:  → � induces an equivalence of  with the essential image of F, namely the full subcategory of � consisting of objects isomorphic to objects of the form F(x) for some x ∈ .
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Definition 3.5.4 (Natural Transformation) A natural transformation n: F = G
between two functors F, G: C — C’ is the datum, for every x € C, of a morphism
nx: F(x) = G(x) in C’, such that for every f € Hom¢(x1, x2) the diagram

Fr)) —— G(x))

| Jew

F(ra) —2— G(x2)

is commutative in C’.
Definition 3.5.5 (Natural Isomorphism) Let C, C' be two categories. Let
Fun(C, C’) be the category whose objects are functors C — C’ and whose

morphisms are the natural transformations. An isomorphism in the category
Fun(C, C') is called a natural isomorphism.

Let C be a (locally small) category. Its opposite category C°P, by definition, has
the same objects of C, and its morphisms are

Homeop (x, y) = Home(y,x), x,y€eC.
Consider the category of contravariant functors C — Sets, i.e. the category
Fun(C°P, Sets).
For every object x of C there is a functor hy : C°? — Sets defined by
u+— h,(u) = Home(u, x), ueC.

A morphism ¢ € Homcopr (1, v) = Home (v, u) gets sent to the map of sets

hy(@): hy(u) > hy(v), ar> aod.
Consider the functor

hc: C — Fun(C®P, Sets), x — hy. (3.6)

This is, indeed, a functor: for every arrow f: x — y in C and object u of C we can
define a map of sets

hru: he(uw) = hy(u), a+— foa,
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with the property that for every morphism ¢: v — u in C there is a commutative
diagram

hru o foa

hy (W) ——— h, () U—>X ————— U —> )
hy (¢)J/ Jhy (@) I I
hs o oo

hy (v) ;U) hy(v) Ua—¢>x ' u foaod y

defining a natural transformation

hs:hy = h,.

Lemma 3.5.6 (Weak Yoneda) The functor h¢ defined in (3.6) is fully faithful.

Definition 3.5.7 (Representable Functor) A functor F € Fun(C°P, Sets) is repre-
sentable if it lies in the essential image of h¢, i.e. if it is isomorphic to a functor hy
for some x € C. In this case, we say that the object x € C represents F.

Remark 3.5.8 By Lemma 3.5.6, if x € C represents F, then x is unique up to a
unique isomorphism. Indeed, suppose we have isomorphisms

a:hy>F, b:h,SF
in the category Fun(C°P, Sets). Then there exists a unique isomorphism x = y
inducing b~! oa: hy S hy.

Let F € Fun(C°P, Sets) be a functor, x € C an object. One can construct a map
of sets

gx: Hom(hy, F) — F(x), 3.7

where the source is the hom-set in the category Fun(C°P, Sets), which is indeed a
set by Assumption 3.5.1.
To a natural transformation n: h, = F one can associate the element

gx(n) = nx(dy) € F(x),

the image of id, € h, (x) via the map 7, : hy(x) = F(x).

Lemma 3.5.9 (Strong Yoneda) Let F € Fun(C®P, Sets) be a functor, x € C an
object. Then the map g, defined in (3.7) is bijective.



ucing b−1 ◦ a : hx �→hy.
Let F ∈ Fun(op, Sets) be a functor, x ∈  an object. One can construct a map of sets gx : Hom(hx, F) → F(x), (3.7)
where the source is the hom-set in the category Fun(op, Sets), which is indeed a set by Assumption 3.5.1. To a natural transformation η : hx ⇒ F one can associate the element
gx(η) = ηx(idx) ∈ F(x),
the image of idx ∈ hx(x) via the map ηx : hx(x) → F(x). Lemma 3.5.9 (Strong Yoneda) Let F ∈ Fun(op
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Proof The inverse of g, is the map that assigns to an element § € F(x) the natural
transformation 7 (x, £€): hy = F defined as follows. For a given object u € C, we
define

n(x, &) he(u) — F(u)

by sending a morphism f: u — x to the image of & under F(f): F(x) — F(u).
O

Exercise 3.5.10 Show that Lemma 3.5.9 implies Lemma 3.5.6.

Definition 3.5.11 (Universal Object) LetF: C°P — Sets be a functor. A universal
object for F is a pair (x, §) where £ € F(x), such that for every pair (u, o) with
o € F(u), there exists a unique morphism «: u — x with the property that
F(a): F(x) —> F(u) sends &£ to o.

Exercise 3.5.12 Show that a pair (x, §) is a universal object for a functor F: C°? —
Sets if and only if the natural transformation n(x, &) defined in the proof of
Lemma 3.5.9 is a natural isomorphism. In particular, F is representable if and only
if it has a universal object.

In classical moduli theory, one is interested in the category
C = Schg

of schemes over a fixed base scheme S. Its objects are pairs (X, f), where X is
a scheme and f: X — § is a morphism of schemes. Sometimes one just writes
(f: X — S) to denote an object of Schg. A morphism (X, f) — (¥, g) in Schg
is a morphism p: X — Y such that g o p = f. One has the following important
notion in moduli theory.

Definition 3.5.13 (Fine Moduli Space) Let 9: Schy’ — Sets be a functor. If an
S-scheme M — S represents 1, then M — S is called a fine moduli space for the
moduli problem defined by 1.

To say that M — S is a fine moduli space for a functor 9 in particular says
that M — S is unique up to unique isomorphism, and by Exercise 3.5.12 it has a
universal object £ € M(M — ) in the sense of Definition 3.5.11.

Example 3.5.14 The existence of fibre products in the category of schemes Sch =
Schgpec z amounts to the representability of the functor Sch®® — Sets sending a
scheme A € Sch to the set

Homgcn (A, X) XHomgy(4,s) Homgen (A, Y).



Definition 3.5.11 (Universal Object) Let F: op → Sets be a functor. A universal object for F is a pair (x, ξ) where ξ ∈ F(x), such that for every pair (u, σ) with σ ∈ F(u), there exists a unique morphism α : u → x with the property that F(α) : F(x) → F(u) sends ξ to σ


Definition 3.5.13 (Fine Moduli Space) Let M: Schop S → Sets be a functor. If an
S-scheme M → S represents M,then M → S is called a fine moduli space for the moduli problem defined by M.


In particular, F is representable if and only if it has a universal object.
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Example 3.5.15 (Global Spec) Let S be a scheme, & a quasicoherent Og-algebra.
Then the S-scheme Spec,, o — S represents the functor Schgp — Sets sending

WU 5 $) > Homg_aio(, 8400).

Example 3.5.16 Let S = Speck, where k is an algebraically closed field. A family
of smooth projective curves defined over a k-scheme U is a smooth projective
morphism C — U such that all geometric fibres C, — Speck(u) are smooth
projective curves. If V. — U is a morphism, then C xy V' — V is a family of
smooth projective curves defined over V. This shows that the association

U +— { families of smooth projective curves defined over U }

defines a functor 91, : Schﬁp — Sets. However, this functor is not representable (cf.
Remark 3.6.2 for an explanation): there is no k-scheme M € Schy such that 9, =
Homy (—, M). There is, however, a scheme M, which coarsely represents My, see
Definition 3.6.4. An even better notion is the moduli stack M, for which we refer
to the excellent references [6, 7, 55]. See also Sect. 12.3.1 for a short introduction to
M and, more generally, to stable maps.

The notion introduced in the following definition will be needed in the proof of
Theorem 5.1.4.

Definition 3.5.17 ([214, Tag 01JI]) Let F: Sch°®® — Sets be a functor. A
subfunctor H C F is said to be representable by open immersions if for every
U € Sch and & € F(U) there is an open subscheme Vy C U such that a
morphism f: U’ — U factors through Vj if and only if F(f)(9) lies in the subset
HU") c FU').

3.6 More Notions of Representability, and GIT Quotients

3.6.1 Fine Moduli Spaces and Automorphisms

Given a scheme S and a functor 9: Schgp — Sets, an object M in Schg along
with an isomorphism

M = Homgeh, (—, M)

is a fine moduli space for the objects parametrised by 91. It is common to hear that
when the objects n € 9M(U — S) have automorphisms, the functor 9t cannot
be represented. This is, for instance, the case for the moduli functor of smooth (or
stable) curves of genus g. Even though this is the correct geometric intuition to have,


https://stacks.math.columbia.edu/tag/01JI

family of smooth projective curves defined over a k-scheme U is a smooth projective morphism  → U such that all geometric fibres u → Spec k(u) are smooth projective curves. If V → U is a morphism, then  ×U V → V is a family of smooth projective curves defined over V. This shows that the association
U �→ { families of smooth projective curves defined over U } defines a functorMg : Schop k → Sets. However, this functor is not representable (cf.
Remark 3.6.2 for an explanation): there is no k-scheme M ∈ Schk such that Mg ∼= Homk(−,M). There is, however, a scheme Mg which coarsely represents Mg


Given a scheme S and a functor M: Schop
S → Sets, an object  in SchS along with an isomorphism M ∼= HomSchS (−,)
is a fine moduli space for the objects parametrised by M. It is common to hear that when the objects η ∈ M(U → S) have automorphisms, the functor M cannot be represented. This is, for instance, the case for the moduli functor of smooth (or stable) curves of genus g. Even though this is the correct geometric intuition to have,
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I learnt in [85] that for a general functor the presence of automorphisms does not
necessarily prevent the existence of a universal family.

Exercise 3.6.1 Construct the functor 9t: Sets°®? — Sets of isomorphism classes
of finite sets. Show that it is representable (by what set?), even though every finite
set has automorphisms.

Remark 3.6.2 In geometric situations, the presence of automorphisms does prevent
representability whenever one can construct a family of objects n € MU — S)
that is isotrivial (i.e. it becomes the trivial family after étale base change) but not
globally trivial. This is for instance the case for families of curves: the moduli map
U — Mg associated to an isotrivial family X — U of smooth curves of genus g,
say with typical fibre C, would have to be constant for continuity reasons; but the
same is of course happening for the trivial family C x U — U, so the functor of
smooth curves of genus g cannot be represented.

3.6.2 More Notions of Moduli Spaces

There are a couple of weaker notions than the notion of a fine moduli space
encountered earlier.
Let us fix a base scheme S and a set-valued functor Mt: Schy’ — Sets,

Definition 3.6.3 (Moduli Space) A pair (M, n), where M € Schg and n: 91 —
hjys is a natural transformation of functors, is said to be a moduli space for 9t if
it is universal, i.e. for any other pair (M’, i) as above there is a unique morphism
f: M — M'in Schg such that hy o n = 1/, as the diagram

shows. We also say, if this condition is satisfied, that M corepresents .

Definition 3.6.4 (Coarse Moduli Space) Set S = Speck. A moduli space (M, n)
for 91 such that 5y is a bijection is called a coarse moduli space for .

Clearly, one has the chain of implications
M isfine = M iscoarse = M corepresents IN.

These are strictly inequivalent notions. For instance, if X — § is a smooth
projective morphism of k-schemes of finite type and L is a relatively very ample



I learnt in [85] that for a general functor the presence of automorphisms does not necessarily prevent the existence of a universal family.


Exercise 3.6.1 Construct the functor M: Setsop → Sets of isomorphism classes of finite sets. Show that it is representable (by what set?), even though every finite set has automorphisms.


In geometric situations, the presence of automorphisms does prevent representability whenever one can construct a family of objects η ∈ M(U → S) that is isotrivial (i.e. it becomes the trivial family after étale base change) but not globally trivial. This is for instance the case for families of curves: the moduli map U →g associated to an isotrivial family  → U of smooth curves of genus g, say with typical fibre C, would have to be constant for continuity reasons; but the same is of course happening for the trivial family C × U → U, so the functor of smooth curves of genus g cannot be represented.


Definition 3.6.3 (Moduli Space) Apair (M, η),where M ∈ SchS and η : M → hM is a natural transformation of functors, is said to be a moduli space for M if it is universal, i.e. for any other pair (M�,η�) as above there is a unique morphism f : M →M� in SchS such that hf ◦ η = η�, as the diagram
hM hf hM shows. We also say, if this condition is satisfied, that M corepresents M.


Let us fix a base scheme S and a set-valued functor M: Schop
S → Sets,


Definition 3.6.4 (Coarse Moduli Space) Set S = Spec k. A moduli space (M, η) for M such that ηk is a bijection is called a coarse moduli space for M. Clearly, one has the chain of implications M is fine ⇒ M is coarse ⇒ M corepresents M.
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line bundle on X, for any polynomial P there is a functor sm{ : Sch(;p — Sets
that assigns to U — S the set of isomorphism classes [%] of U-flat families of
semistable sheaves & € Coh(X x g U) with Hilbert polynomial P in the fibres of
q: XxsU — U.Two such isomorphism classes [#] and [ ] are further identified
ifF =2 F ®q*Z, where Z is a line bundle on S. This functor is corepresented
by a projective scheme M f , as proved in [123, Theorem 4.3.7]. However, as soon
as there is a strictly semistable sheaf (i.e. a semistable sheaf that is not stable), ‘Dﬁf
cannot be represented.

3.6.3 Quotients in Algebraic Geometry in a Nutshell

Let G be an algebraic group over an algebraically closed field k of characteristic 0,
i.e. a group object in the category of (integral) k-varieties. This means that there is a
factorisation hg : Schﬁp — Groups — Sets of the functor of points of G, where the
second arrow is the forgetful functor (so G(B) = Homg (B, G) is naturally a group
for every k-scheme B).

If X is a k-variety, a (left) G-action on X is a k-morphismo: G xx X — X
such that 0 (B): G(B) x X(B) — X(B) is a group action on the set X(B) =
Homy (B, X), for every k-scheme B. A pair (X, o) as above will be simply called a
G-scheme. If x € X is a k-point, then its orbit, denoted O(x) C X, is by definition
the image of the morphism o, : G = G xk {x} <> G xx X — X. Note that O(x)
is locally closed in X, and smooth (this uses flatness of o, and the fact that algebraic
groups in characteristic 0 are smooth by Cartier’s theorem). The preimage of the
point x € X along oy is denoted G, and is called the stabiliser of x.

Definition 3.6.5 (G-Equivariance) Let (X, ox) and (Y, oy) be G-schemes. We
say that a morphism f: X — Y is G-equivariant if the diagram

GXkXL)X

idg x fl lf

[
GX Y —— Y
commutes. When oy = pr,, we say that f is G-invariant.

Let (X, o) be a G-scheme. The first notion of quotient (the coarsest one) is that
of a categorical quotient, which by definition is a pair (¥, w) such thatw: X — Y
is a G-invariant morphism, subject to the universal property that any G-invariant
morphism f: X — Z factors as oy omw: X — Y — Z for a unique morphism
af: Y — Z.

Exercise 3.6.6 Show that a G-scheme (X, o) admits a categorical quotient if and
only if the ‘functor of orbits’ Schﬁp — Sets sending B +— X(B)/G(B) is



Let G be an algebraic group over an algebraically closed field k of characteristic 0, i.e. a group object in the category of (integral) k-varieties. This means that there is a factorisation hG : Schop
k → Groups → Sets of the functor of points ofG,where the
second arrow is the forgetful functor (so G(B) = Homk(B,G) is naturally a group for every k-scheme B).


If X is a k-variety, a (left) G-action on X is a k-morphism σ : G ×k X → X
such that σ(B) : G(B) × X(B) → X(B) is a group action on the set X(B) = Homk(B,X),for every k-scheme B.Apair (X, σ) as above will be simply called a G-scheme.If x ∈ X is a k-point, then its orbit, denoted O(x) ⊂ X, is by definition the image of the morphism σx : G�→G×k { x } �→ G×k X → X. Note that O(x) is locally closed in X, and smooth (this uses flatness of σ, and the fact that algebraic groups in characteristic 0 are smooth by Cartier’s theorem). The preimage of the point x ∈ X along σx is denoted Gx, and is called the stabiliser of x.


Definition 3.6.5 (G-Equivariance) Let (X, σX) and (Y, σY) be G-schemes. We say that a morphism f : X → Y is G-equivariant if the diagram
idG f
G kXX G kYY
X f Y
commutes. When σY = pr2, we say that f is G-invariant.


Let (X, σ) be a G-scheme. The first notion of quotient (the coarsest one) is that
of a categorical quotient, which by definition is a pair (Y, π) such that π : X → Y is a G-invariant morphism, subject to the universal property that any G-invariant morphism f : X → Z factors as αf ◦ π : X → Y → Z for a unique morphism αf : Y → Z.


3.6 More Notions of Representability, and GIT Quotients 55

corepresentable (in the sense of Definition 3.6.3). The corepresenting scheme is
the target of the categorical quotient morphismz7: X — Y.

Categorical quotients often exist, but they are rarely related with the notion of
quotient we would like to have, namely that of an orbit space. Note that also in the
differentiable category a quotient is not easily achieved: a free action is required
in order to get a smooth manifold parametrising orbits. In the algebraic category,
one has the following basic example: if X = Spec A is an affine k-variety acted on
by a reductive® algebraic group G, then the ring of invariants A® < A is finitely
generated, and the morphism Spec A — Spec A® corresponding to the k-algebra
inclusion A¢ <> Aisa categorical quotient. If A = Kk[xy, ..., x4] is acted on by
G = C* viat - x; = tx;, there is a unique fixed point (the origin in A? = Spec A),
and all orbits have this point in their closure, which forces AG =k

More sophisticated notions of quotients are the following.

Definition 3.6.7 (Good and Geometric Quotients) Assume G is affine, let X be
a G-scheme and 7 : X — Y a surjective morphism. Then

1. we say that & is a good quotient if 7 is affine, G-invariant and satisfies:

* asubset U C Y is open if and only if 7 ~!(U) C X is open,

e the natural morphism Oy — w0y is an isomorphism onto the subsheaf
(+0x)¢ C m,0x,

e g takes closed G-invariant subsets to closed subsets of Y, and if Z;, Z, are
disjoint closed G-invariant subsets of X, then 7 (Z;) N 7w (Z,) = @.

2. we say that & is a geometric quotient if it is a good quotient and its geometric
fibres are orbits of geometric points of X.

The morphism 7: SpecA — Spec AC described above is always a good
quotient.
There are implications

geometric => good = categorical.

Let X be a projective k-scheme with a fixed G-action. Let % be a G-linearisation
on an ample line bundle & over X. This notion is defined in Definition 10.2.1,
where it is referred to as a G-equivariant structure (but in GIT, the terminology
‘linearisation’ is most common). The ring R = ,.,H’(X, Z®") contains the
finitely generated Z-graded algebra RC and satisfies X = Proj R. The inclusion
RC C R defines a rational morphism

fo: X --» Proj RC.
8 Over a field of characteristic 0, reductive means that every rational G-representation is completely

reducible. Another way to say this is: the functor QCoh®(pt) — QCoh(pt) taking a G-
representation V to its invariant part V¢ C V is exact.



Categorical quotients often exist, but they are rarely related with the notion of
quotient we would like to have, namely that of an orbit space. Note that also in the differentiable category a quotient is not easily achieved: a free action is required in order to get a smooth manifold parametrising orbits. In the algebraic category, one has the following basic example: if X = SpecA is an affine k-variety acted on by a reductive8 algebraic group G, then the ring of invariants AG �→ A is finitely generated, and the morphism SpecA → SpecAG corresponding to the k-algebra inclusion AG �→ A is a categorical quotient. If A = k[x1, ..., xd] is acted on by G = C× via t · xi = txi , there is a unique fixed point (the origin in Ad = SpecA), and all orbits have this point in their closure, which forces AG = k.


1. we say that π is a good quotient if π is affine, G-invariant and satisfies:
• a subset U ⊂ Y is open if and only if π−1(U) ⊂ X is open, • the natural morphism 𝒪Y → π∗𝒪X is an isomorphism onto the subsheaf (π∗𝒪X)G ⊂ π∗𝒪X,
• π takes closed G-invariant subsets to closed subsets of Y,and if Z1, Z2 are disjoint closed G-invariant subsets of X,then π(Z1) ∩ π(Z2) =∅.
2. we say that π is a geometric quotient if it is a good quotient and its geometric fibres are orbits of geometric points of X.


There are implications
geometric ⇒ good ⇒ categorical


The inclusion RG ⊂ R defines a rational morphism
fϑ : X ��� Proj RG.
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Definition 3.6.8 (Semistable Locus) The maximal open subset XV™5(%#) C X on
which fy is defined is called the ¥ -semistable locus.

Note that we have an explicit description of X?™5%(%) C X. This open subset is
the complement of the closed subscheme Proj R/RY - R C Proj R, where Rf C R¢
is the irrelevant ideal induced by the grading on Rz:’. Put differently, a point x € X
belongs to X?~5%(%) if and only if there is an n > 1 and a section s € HO(X, Z®")C
such that s(x) # 0.

Definition 3.6.9 (Stable Locus) The ¢-stable locus is the open subscheme
Xrs(¥) ¢ X consisting of points x € X?-s5(P) such that G, is finite and
O(x) N X"™(Z) C X?™5(Z) is closed.

Remark 3.6.10 The open subschemes
X" c XUN@) C X

change with ¢, and they might be empty.

A fundamental result (proved e.g. in [175, 180]) in geometric invariant theory is
the following. Say G is a reductive group acting on a projective k-scheme X. Let ¢
be a G-linearisation on an ample line bundle & over X. Then 7: XV™5%(¥) —
Proj R is a good quotient for the initial G-action. Moreover, there is an open
subscheme Y5 C Proj RC such that 7 =1 (Y$) = X?Y(%), and the restricted
morphism 7: X?Y(Z) — Y*'is a geometric quotient. This can depicted in a
diagram

XSt () open X755 ) open
geometrici goodj ///‘ .

open

Yt e ProjRY

where the square is cartesian, and since Proj RC is projective, it be seen as a
compactification of the geometric quotient Y,

Notation 3.6.11 Good quotients as above are often denoted
X /s G or XU(2£)/G,

whereas geometric quotients are often denoted (somewhat sloppily) X? (%) /G.



Definition 3.6.8 (Semistable Locus) The maximal open subset Xϑ-ss(ℒ) ⊂ X on which fϑ is defined is called the ϑ-semistable locus


where the square is cartesian, and since Proj RG is projective, it be seen as a compactification of the geometric quotient Yst.


Notation 3.6.11 Good quotients as above are often denoted
X ϑ G or Xϑ-ss(ℒ)/G, whereas geometric quotients are often denoted (somewhat sloppily) Xϑ-st(ℒ)/G.


Chapter 4 )
Informal Introduction to Grassmannians Check for

Abstract In this chapter we introduce, via a hands-on approach, one of the most
popular moduli spaces in algebraic geometry: the complex Grassmannian G(k, n),
classifying k-dimensional linear subspaces of the vector space C".

We will see that G(k, n) is a smooth projective algebraic variety of dimension
k(n — k), naturally embedded in PV, where N = (Z) — 1. It is naturally identified
with the set of (k — 1)-dimensional linear subspaces of P"~!, and when we think of
it in this manner we denote it by G(k — 1, n — 1). The variety G = G (k, n) admits
an affine stratification, whose strata are parametrised by partitions A contained in
a k x (n — k) rectangle. The closures of the strata, called Schubert varieties, are
usually denoted €2, and generate the Chow group A.G. The Schubert cycles are the
classes 0, € A*G determined by the relation o; N [G] = [€2,]. To determine the
ring structure of A*G, one has to compute the products oy, - o;, between these cycles.
These computations in A*G go under the name of Schubert Calculus. The simplest
example is G(0,n — 1) = G(1,n) = P*~!, in which case A*P*~! = Z[h]/h",
where £ is the hyperplane class.

4.1 The Grassmannian as a Projective Variety

We work over C for the sake of concreteness. In this introduction to Grassmannians
we mainly follow [59]. Fix integers 0 < k < n andlet V = C". Define N = (}) — 1.
Form the set

G = G(k,n) = G(k, V) = { k-dimensional linear subspaces H C V }.

Pick an element

H eG.
If{vi,..., vk} C Visabasis of H then vy A --- A v is the free generator of the
line
ANH c Aky =) = eV
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The variety G = G(k, n) admits an affine stratification, whose strata are parametrised by partitions λ contained in a k × (n − k) rectangle. The closures of the strata, called Schubert varieties,are usually denoted �λ and generate the Chow group A∗G.The Schubert cycles are the classes σλ ∈ A∗G determined by the relation σλ ∩[G]=[�λ]. To determine the ring structure ofA∗G, one has to compute the products σλ ·σμ between these cycles. These computations in A∗G go under the name of Schubert Calculus
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So we get a set-theoretic map
G- IP’(/\kV) = pV

sending H +— [v1 A - - - A vi]. Why is this map well-defined? Let us view H as (the
space generated by the rows of) a full rank matrix H = (a;j) € My x,(C) and let us
fix abasis { e, ..., e, } C V. Then a basis of ARV s given by

{en Ao nei }1§i1<~~~<ik§n :

So in this basis the element v| A - - - A vy € AFV writes uniquely as

VIA- - AV = Z pil,,.,-k-e,'l/\-~-/\€ik=zpl'€l,
1

I<ij<---<ix<n

where the coefficient p;y = p;;..;; € Cis the minor of the (k x k)-matrix given
by extracting from H the columns corresponding to I = (iy, ..., ix). Of course
different choices of H may produce the same H. But H is unique up to the left
action of GLx on M, (C). Summing up, we have a commutative diagram

AHNO —— AV 0 VIA AV ——> Y pr-er
/Cxl l/cx I I
P (AFH) —— P (AFV) i A Avd ——— (pD1

where the vertical maps are quotient maps. Up to now, we have identified a point
H e G with the corresponding point (the unique point!) of P(A¥#) and we have
defined a map t: G — PV by sending H to its Pliicker coordinates (py);.

Exercise 4.1.1 Prove that the map ¢ is injective.

In fact, G can be identified with an irreducible algebraic set sitting inside PV,
thanks to the following exercise.

Exercise 4.1.2 Show that the kernel of the homomorphism
Clpi.ip|1<ii < - <ix<n]—>Clxj|1 <l <k, 1<j=<n]
sending p;, .. ;, to the Pliicker coordinate det(x;j)1<i<k, j=ij,...,i; 1S a homogeneous

prime ideal J. Confirm that elements of G correspond bijectively to the points of
the homogeneous vanishing locus V. (J).
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A bit of work shows that the ideal J is generated by quadratic polynomials—see
e.g. [59, Section 3.2.2]. These polynomials define the so-called Pliicker relations.
Then one can realise

G =V4(J) CProjClpii |1 =iy <+ <ix <n] =PV

as a closed subvariety of projective space, cut out by quadrics.

We shall see in Theorem 5.1.4 that G solves a precise moduli problem, for which
it is a fine moduli space in the sense of Definition 3.5.13. This means that G carries
a universal subbundle & — V ® Og = @g" of rank k, also called tautological,
for the fibre of & < V ® Og over a point [H] € G is precisely the vector space
H — V represented by the point [H].

Granting the existence of &, one can show the following.

Exercise 4.1.3 Let V. = HY(P""!, Gzi-1(1)), with basis xo, x1, ..., Xx4—1, the
homogeneous coordinates on P"~!. Show that the embedding G < PV is defined
by the line bundle O5 (1) = A¥S*, and that HO(O5(1)) = AYHO(Gpa-1(1)). (So in
this setting x;; A --- A x;, are the (Z) = N + 1 homogeneous coordinates of PV).

Exercise 4.1.4 Show that, if Y is a homogeneous space (i.e. a variety equipped with
a transitive action by an algebraic group K) defined over an algebraically closed
field k, and Y has a smooth point p, then Y is smooth everywhere. Deduce that
G (k, n) is a smooth variety (Hint: use K = GL(V) = GL,).

Example 4.1.5 The Grassmannian G(2,4) = G(1, 3) of lines in P3 is a smooth
quadric hypersurface in P, the vanishing locus of the single homogeneous polyno-
mial

p12p34 — p13p24 + prap2s = 0.

This is the smallest Grassmannian that is not a projective space.

4.2 Schubert Cycles

By Example 4.1.5, the Grassmannian G = G (k, n) is smooth and projective, so its
Chow group is a ring and can be graded by codimension

dimG _
A*G = @ AlG, dimG = k(n — k).
j=0



We shall see in Theorem 5.1.4 that G solves a precise moduli problem, for which
it is a fine moduli space in the sense of Definition 3.5.13. This means that G carries a universal subbundle 𝒮 �→ V ⊗ 𝒪G = 𝒪⊕n
G of rank k, also called tautological,
for the fibre of 𝒮 �→ V ⊗ 𝒪G over a point []∈ G is precisely the vector space  �→ V represented by the point [].


the Grassmannian G = G(k, n) is smooth and projective, so its Chow group is a ring and can be graded by codimension
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Now we think of points [H] € G = G(k — 1, n — 1) as linear subvarieties of pr1.
So, let us fix a flag

F: pt=FhCFICF C---CF_ =P,

where each F; = P/ is a linear subvariety of P! of dimension i. Let us look at the
set of k-tuples

g ={(ay,...,a) |n—k>a > >a,>20}.
Foralla = (ay, ..., ar) € o, define the closed subset

Zo(F)={[H] € G | dim(H N Fy_pqi-1-q) =i — 1foralli =1,...,k} CG.
(4.1)

These are called the Schubert subvarieties of G. Their classes in A,G are indepen-
dent of the choice of flag, so we shall just denote them %,. Let us set

cq = codim(X,, G).
The Schubert cycles o, € A“G are defined by o, N [G] = [X,4] € AG. They have

a number of interesting properties, for instance:

1. Their codimension satisfies cq = )| -; < ai-

2. By defining @ < b if and only if a; < b foralli = 1,...,k, one sees that
¥p C ¥4 if and only if a < b.

3. There is an isomorphism

Lo =%\ [ 3 =AM,

a<b

for all @ € o/. The locally closed subvarieties Ea C G are called Schubert cells,
and they form an affine stratification

G= ]_[i,.

acd

with closed strata given by the Schubert cycles.
Example 4.2.1 Leta = (1,0, ...,0). Then ¥, = X is the locus of k-planes A C
C" meeting a given (n — k)-plane. It is a hyperplane section of G < PV

Recall the following standard result in intersection theory.

Proposition 4.2.2 ([226]) If a scheme Y has an affine stratification, then A.Y is
freely generated by the classes of the closures of the strata.



Proposition 4.2.2 ([226]) If a scheme Y has an affine stratification, then A∗Y is freely generated by the classes ofthe closures ofthe strata.
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Exercise 4.2.3 Using Proposition 4.2.2, show that

1. A.G is a free abelian group with basis parametrised by </, the set of partitions of
length at most k contained in a k x (n — k) rectangle,
2. There is a Z-module isomorphism A,G S A¥ Z" mapping

[Ea] = el4a; ZANEERIVAN €k+ay

where ey, ..., e, are the canonical basis elements of Z". In particular, the
fundamental class [G] is mapped to e A --- A ek.

3. There is an isomorphism Agimg—iG = (/\kZ"),-, where the right hand side is the
direct sum of the Z-modules Spang(e144, A - -+ A ef1q,) such that Zj aj =i.

The core of Schubert Calculus (intersection theory on Grassmannians) is the
following: if we understand the intersection theory of projective space (which we
do), then we understand that of every G(k,n), by taking exterior powers and
using the Leibniz rule. More precisely, let V be a finite dimensional vector space.
The Chow group A.G(k, V) of the Grassmannian is naturally isomorphic to the
k-th exterior power Ak AP(V). The same formula holds for Grassmann bundles
(introduced in Sect. 5.1): if F is a vector bundle over a connected noetherian scheme
S, then

AG(k, F) = AYAP(F),

and the key point is that the Schubert cycle o; acts on the exterior algebra of A, P(F)
as a derivation of order i, see e.g. [86, 89].

4.3 The Chow Ring of G(1, 3)

Let G = G(2,4) = G(1, 3) be the Grassmannian of lines L C P3, so that

d={(a1,a2) |2>a1>a,>0}

={2,2),(1,1),(0,0),(2,1),(2,0),(1,0) }.
We fix a flag of linear subvarieties
F: {PYCMCHCP,

where {P} = Fo, M = F| = P, H = F, = P2. We denote by X4, (F) the
Schubert subvarieties ¥4, 4,)(F) introduced in Eq. (4.1). We have

Saas(F) = (L € G | dim(L N Fa_g) = 0, dim(L N F3_g,) > 1},



The core of Schubert Calculus (intersection theory on Grassmannians) is the
following: if we understand the intersection theory of projective space (which we do), then we understand that of every G(k, n),by taking exterior powers and using the Leibniz rule. More precisely, let V be a finite dimensional vector space. The Chow group A∗G(k, V) of the Grassmannian is naturally isomorphic to the k-th exterior power ∧kA∗P(V).


the key point is that the Schubert cycle σi acts on the exterior algebra ofA∗P(F) as a derivation of order i
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where we keep the dependence on the flag for later convenience. We can write them
all explicitly as follows:

Yp={LeG|PeL, dm(LNM)=1}={M}
Yu={LeG|LNM+#0, LCH}={LeG|LCH}
Y00 = {L € G|L meets a plane, and meets p3 inaline} =G
),={LeG|PeLCH}
Yow={LeG|PelL}
Sio0={LeG|LNM#P}.

Of course, we used that L always intersects a plane in P3.

The Chow classes of the Schubert varieties, in terms of the basis elements of
A2Z%, are respectively

ez Ne4, exNe3, epNey, exNeq, erNeq, e1Nes.

Let us set 24,0 = Xg4,. In order to calculate the Schubert cells ialaz, it is useful to
look at the following inclusions:

p)
(_/ \
pt= Xy — Xy ¥ — G

~ 7

211

Exercise 4.3.1 Verify by direct calculation that f]am = pd-(@tar),

Let us now focus on the problem of determining the ring structure of A*G. For
the moment, we have the free abelian group decomposition

A*G = ?[Gzzl &) ?[ng &) ?[011] <) Z[sz &) ?[Gg &) ?[Gol,
A%G A3G A2G AlG AG

which induces the decomposition

AG=Z-esnes@®Z-ex NesDZ-et NexDZ-exNesDZL-eg NesDZL-e1 Nes.

Remark 4.3.2 Any two points in G are rationally equivalent. This is true in every
Grassmannian.
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To calculate the products in A*G, we work with two generically situated flags
at the same time: we will intersect a cycle taken from the first flag with a cycle
taken from the second flag. Such cycles are generically transverse by the following
transversality result (that we can apply because we are working over C).

Theorem 4.3.3 (Kleiman Transversality [59, Theorem 1.7]) Let G be an alge-
braic group acting transitively on a variety X over an algebraically closed field of
characteristic 0. Let Y C X be a subvariety. Then

(a) given another subvariety Z C X, there exists a dense open subset U C G such
that g - Y and Z are generically transverse forall g € U.
(b) If G is affine, then [g - Y] = [Y] in the Chow group A, X.

Moreover, the result of the intersection of Schubert cycles coming from gener-
ically situated flags only depends on the equivalence classes of the cycles we are
intersecting by the Moving Lemma [59, Theorem 1.6]. Thus everything is well-
defined. Now, let us fix two flags

F: {PYCMCHCP

F': {P'YcM cH cCP.

4.3.1 Codimension 4

We have to evaluate
0121, 022, o011 - 02, 01021 € A%G.
Let us start with the self-intersection 0121. We have
IEnNTl={LeG|ILCHNH'}| =1.
This unique line is of course H N H'. Hence
0121 = 07).
Similarly,
TN =|{LeG|PeL, PelL}|=|{PP} =1
Hence again

2
05 = 022.
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Since P’ ¢ H, we find
Zn Ny =|{LeG|P eLCH}| =0,
thus
o11 -0 =0.
The last calculation is
SN l={LeG|LAM#0, P eLCH} =1,
corresponding to the line determined by P’ and M N H’. Thus

01 - 021 = 022.

4.3.2 Codimension 3

We have to evaluate
o1 -07, 011 - 0] € A3G.

We see that

SINE,={LeG|LNM#Y, PPeL}=2xj
with respect to the flag F”: { P’} C £ C (P’, M) C P3. Thus we get

o103 = 03].

Similarly,

SINTn={LeG|LNM#W LCH}=%]
with respect to the flag F/: {R} C £ ¢ H' C P3, where R = M N H'. Thus

01011 = 021-
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4.3.3 Codimension 2

We have to evaluate 012 € A’G. Here things get tricky because this product is not

a Schubert cycle. What we know is that we can write 012 = aoq] + oo in A2G.

We have to determine « and 8. The strategy is to intersect both sides with cycles
in complementary codimension in such a way that one of the summands vanishes.
Doing this twice allows us to recover o and § in two steps. So, using also relations
previously obtained in codimension 4,

2
oi o2 = (o) + Boz) - o2

of - o11 = (@011 + Boa) - o1
yield, respectively,

022 =01 021 = fon

02 =01 - 021 = @} = aom,
showing @ = 8 = 1, and finally

2
oy = o011 + 02.

Exercise 4.3.4 Use the intersections we computed above to show that there is a ring
isomorphism

A*G(1,3) = Zlot, o2l .
(013 — 20107, 01202 — 022)

4.3.4 A Famous Intersection Number on G(1, 3)

We use our computation of A*G(1,3) to perform a calculation with a precise
enumerative meaning: it solves Problem (1) from the Introduction. We will also
solve this problem via torus localisation in Sect. 9.4.

Proposition 4.3.5 There is an identity

/ of‘ =2.
G(1,3)
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Proof We can compute
4 242
o = (01)
2
= (011 +02)
=o? + 201102 + 07

=02+ 0+ 0.

The result follows from the fact that o7 is the class of a point. m]

4.4 The Leibniz Rule and the Degree of G(1,n + 1)

We start by reproving Proposition 4.3.5 using a slightly different formalism. We
invite the reader to open the paper [86] and the book [88] to learn more about
derivations on Grassmann algebras and their powerful enumerative applications.
The Chow ring A*G(l, 3) is generated by o1, 02 as a Z-algebra. We let them act

linearly on Z* by setting o;e j = ei+jif i + j < 4 and O otherwise. Extend their
action to A?Z* = A,G(1, 3) by imposing the Leibniz rule

01 N [Zga,] = 01(€14a, A €244)) = O1€14ay N €24a; + €14ay A O1€244,

o2 N [Ealaz] = O'2(€1+a2 AN eZ—i—al)

= 02€|+ay N\ €24q; + 01€14a, N O1€244, + €14ay N\ 02€244,-

Then o; maps (A2Z%) to (A2Z*) i, where (A2Z4)j = 0if j > 4. Itis easy to
check by induction that

. VAN .
olj(u AV) = Z <;)al'u A a{_lv.
i=0
Then Proposition 4.3.5 can be proved as follows: we have
MVZAN )
014 N[G(,3)] = of‘(el Aer) = Z <i)ol’e1 A 0147’e2,

i=0

and since 014 maps e; A ey to a multiple of e3 A ey (the class of a point), the only
two surviving terms are those corresponding to j = 2 and j = 3. Thus

40@13—4/\ Nesnes= (4 4 Aes =2
oy N[G(A, )]—(2>€3 e4+(3>€4 63—[<2>—(3)}e3 es =2-e3ANey.
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This argument can obviously be generalised. For instance A,G(1, n+ 1) = A2Z2*"
and the degree of G(1, n 4 1) with respect to its Pliicker embedding is obtained by
intersecting 2n = dim G(1, n 4 1) hyperplane sections. The class of a hyperplane
section is, by Exercise 4.1.3, the first Chern class of Ak S* and this equals o1 on
every Grassmannian. The Pliicker degree

f of" = deggi ni1) (“12" NG, n+ 1)])
G(ln+1)

is the coefficient of e,1 A e,42 in the expansion of 012" (e1 A e2). This is

m 2n 2n 2n 2n
[of] (61/\62)=Z ; el4i Nexyop—i = a7 nl €n+1 N eny2,

i=0
so that
2n)!
/ o= G “2)
G(Ln+1) (n+ D'n!
A 1 (2
which are the well known Catalan numbers C,, = w1 (n")

Exercise 4.4.1 Prove the identities

(0f —02)(e1 A er) = er Aes,

a102(e1 A e2) = ez A eq,

0'22(61 Aer) = e3 Aeq.
We will see in Proposition 9.4.1 that (4.2) agrees with the number of lines ¢ C
P"*1 that are incident to 2n general (n — 1)-planes A1, ..., Ay, C P"T!. The case

n = 2, involving 4 lines in P3, is treated for instance in the seminal paper [137] by
Kleiman and Laksov.



so that � σ2n (2n)! 1 = G(1,n+1) (n + 1)!n! , which are the well known Catalan numbers Cn


(4.2)


We will see in Proposition 9.4.1 that (4.2) agrees with the number of lines � ⊂
Pn+1 that are incident to 2n general (n − 1)-planes �1, ... ,�2n ⊂ Pn+1


Chapter 5 )
Relative Grassmannians, Quot, Hilb fleckir

Abstract In this chapter we introduce three important examples of fine
moduli spaces used in algebraic geometry: relative Grassmannians (including
Grassmann bundles), Hilbert schemes and Quot schemes. We use the notion of
(quasi)projectivity introduced in Definition 3.2.8 throughout.

The technical way to define fine moduli spaces is via representable functors
M Schgp — Sets, introduced in general in Sect. 3.5. The basic idea is as follows.
First of all, every S-scheme M trivially ‘represents’ its own functor of points, which
is the functor h 4 : Schgp — Sets sending

U + hy(U) = Homg(U, M).

Let 7 be a class of. . . things. Suppose there is a notion of ‘family of things’ defined
over any scheme U € Schg, and one can ‘pullback’ such families along arbitrary
maps V — U in Schg. Then one would say that an object M € Schg is a ‘fine
moduli space’ for the objects in 7 if the functor 9t assigning to a scheme U the set
of ‘families of objects in 7 defined over U’ is isomorphic to hyy = Homg(—, M).

A fine moduli space is special in this sense: its points have a ‘label’, just as the
items of a phone book. We know precisely each point’s name and address, so we
can always find it on the moduli space (Fig. 5.1). This is, as we shall see, the power
of universal families.

5.1 Relative Grassmannians

5.1.1 The Grassmann Functor and Its Representability

Fix a noetherian scheme S and a coherent sheaf F on §. Let Schg be the category
of locally noetherian schemes over S. Recall from Sect.3.2 that, for a locally
noetherian scheme U, we denote by Coh U the abelian category of coherent sheaves
on U. For any integer d > 1, the Grassmann functor

Gy(F): Schgp — Sets

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 69
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three important examples of fine moduli spaces used in algebraic geometry: relative Grassmannians (including Grassmann bundles), Hilbert schemes and Quot schemes.


A fine moduli space is special in this sense: its points have a ‘label’, just as the
items of a phone book. We know precisely each point’s name and address, so we can always find it on the moduli space (Fig. 5.1). This is, as we shall see, the power of universal families.


For any integer d ≥ 1, the Grassmann functor
Gd(F) : Schop S → Sets
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Fig. 5.1 Each point of a fine
moduli space has a well
precise label. The figure
depicts the Hilbert scheme of
a scheme X, whose points

zZcX
correspond to closed .
subschemes Z C X Hilbx
is defined by
g equivalence classes of surjections g*F — Q
U-=S§ 5.1
U =95 { in Coh U, with Q locally free of rank d G-

where two quotients p: g*F — Q and p’: g*F — Q' are considered equivalent if
there exists an Oy -linear isomorphismv: Q = Q’ such that p’ = vo p. This functor
is indeed set-valued by [214, Tag 01BC]. Note also that g*F is coherent since both
U and S are locally noetherian.'

Notation 5.1.1 When F is locally free of rank n, and 0 < k < n, we set G(k, F) =
Gy« (F).

Exercise 5.1.2 Show that two surjections p: g*F — Q and p': g*F — Q' are
equivalent if and only if ker p = ker p’ as subsheaves of g*F.

Exercise 5.1.3 Show that G;(F) is a Zariski sheaf. This means that for every S-
scheme U and Zariski open covering U = Ui U;, for any tuple (6;); with 6; €
Gy (F)(U; — §) such that 9i|U,-mUj = 9/|U,ﬂUj there is a unique 0 € Gy (F)(U —
S) such that 8|y, = 6;.

We shall see in Theorem 5.1.4 that G4 (F) is representable. By definition, this
means that there is an S-scheme p: G4(F) — S such that for every g: U — S
there is a functorial bijection

Gu(F)(U 5 $)S Homs(U, G4(F)), o+ ay. (5.2)
Now take U = G4(F), g = p, and consider

idg,(F) € Homg(G4(F), G4(F)).

I'To conclude that the pullback of a coherent sheaf, along a morphism of locally noetherian
schemes, is still coherent, use that the pullback always preserves quasicoherent modules [214,
Tag 01BG] and finitely generated modules [214, Tag 01B6], and use Example 3.2.3.


https://stacks.math.columbia.edu/tag/01BC
https://stacks.math.columbia.edu/tag/01BG
https://stacks.math.columbia.edu/tag/01B6

is defined by (U
→− S) �→ g [ ] • ⊂ Hilb '
equivalence classes of surjections g∗F �Q in Coh U, with Q locally free of rank d
( (5.1)
where two quotients p : g∗F � Q and p� : g∗F � Q� are considered equivalent if there exists an 𝒪U-linear isomorphismv : Q�→Q� such that p� = v◦p. This functor is indeed set-valued by [214, Tag 01BC]. Note also that g∗F is coherent since both U and S are locally noetherian.1


Gd(F)(U →− S)�→ HomS(U,Gd(F)), α �→ αg. g
Now take U = Gd(F), g = ρ, and consider idGd(F) ∈ HomS(Gd(F),Gd(F)).
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The element in G4(F)(p) mapping to idg,(r) via (5.2) is the fautological exact
sequence

08— p'F—0—0 (5.3)

over G4 (F). Note that if F is locally free of rank » then & is a locally free sheaf of
rankn —d over G(n — d, F) = G4(F). The sequence (5.3) is called ‘tautological’
because of the following universal property: if g: U — § is any morphism and
a € G4(F)(g), then the equivalence class of the pullback surjection

k k *
agp F — a, @

coincides with .
The next result states that there is a fine moduli space associated to the Grassmann
functor.

Theorem 5.1.4 Let F be a coherent sheaf on a noetherian scheme S, and let d > 1
be an integer. The functor (5.1) can be represented by a projective S-scheme

p: Ga(F)— S.

The proof relies on the general result that a Zariski sheaf G, that can be covered
by representable subfunctors G;, with each inclusion G; < G representable by
open immersions (cf. Definition 3.5.17), is itself representable [214, Tag 01JF].

Sketch of Proof Note that the functor (5.1) makes sense for (S,F) =
(SpecZ, @gi’écz), in which case for any 0 < k < n we denote G"—k(@gécz) =

Gk, @é%’écz) according to Notation 5.1.1. Let us grant the statement of the theorem
in this case: for a proof of representability, relying on the above local criterion, we
refer the reader to [214, Tag 089R]. On the other hand, the argument presented in

[182, Section 5.1.6] shows that the resulting scheme
G(k, @g%’écz) — SpecZ

is projective.

Now, for a noetherian scheme S and the free sheaf F' = @?", the statement of
the theorem follows by base change along the unique morphism S — SpecZ. If F
is only locally free, we can choose an open covering S = |J; S; and confirm that
G(k, F) is covered by open subfunctors isomorphic to Gk, @_g?"). But these are
representable, and G(k, F) is a Zariski sheaf by Exercise 5.1.3, thus the Grassmann
functor is representable in the locally free case, too.


https://stacks.math.columbia.edu/tag/01JF
https://stacks.math.columbia.edu/tag/089R

The element in Gd(F)(ρ) mapping to idGd(F) via (5.2) is the tautological exact sequence
0 → 𝒮 → ρ∗F → 𝒬 → 0 (5.3)
over Gd(F). Note that if F is locally free of rank n then 𝒮 is a locally free sheaf of rank n − d over G(n − d,F) = Gd(F). The sequence (5.3) is called ‘tautological’ because of the following universal property: if g : U → S is any morphism and α ∈ Gd(F)(g), then the equivalence class of the pullback surjection
α∗ gρ∗F � α∗ g𝒬
coincides with α.


The proof relies on the general result that a Zariski sheaf G, that can be covered by representable subfunctors Gi , with each inclusion Gi
�→ G representable by
open immersions
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As for projectivity in the locally free case, let p*F — @ be the universal
surjection. To see that p: G(k, F) — S is projective, one checks that the
determinant

% =det@ € PicG(k, F)

of the universal quotient bundle is very ample relative to p, so it gives a closed
embedding

1 Gk, F) <> P(poZ) <> P (AkF) . (5.4)

Note that the target of ¢ is separated over S and a local calculation shows that
G(k, F) — S is proper, thus the embedding ¢ is indeed proper, by Stacks Project
[214, Tag 01WO].

Now for the actual statement: if F is a coherent sheaf, there is an open covering
S = Ul- S; such that F; = F|s, admits a surjection E; — F; from a locally free
sheaf E;. We get closed subfunctors j; : G(k, F;) — Gi(k, E;) defined by sending

[F; > T1 +—> [Ei - F; —T].

By the same argument as before, the open representable subfunctors G(k, F;) C
G(k, F) cover G(k, F), which is then representable. Projectivity is a local calcula-
tion based on the closed embeddings j;. O

Notation 5.1.5 When d = 1 and F € Coh S, it is customary to denote G| (F) =
P(F), which by definition is Proj Sym F [214, Tag 010A]. Assume F is locally
free of rank n. A closed point in the fibre P(F); over a geometric point s € § is
represented by a surjective morphism Fy — A, where dimg) A = 1. So in our
notation, if V is a k-vector space, by P(V) = ProjSym V we mean the space of
hyperplanes in V, whereas the space (V \ 0)/k* of lines through the origin 0 € V
is naturally identified with P(V*).

Remark 5.1.6 The embedding (5.4) is called the Pliicker embedding. It generalises
the embedding of Exercise 4.1.1. Note that if F = C" is the trivial bundle over a
point, then det §* = det @, which confirms that the hyperplane class of the Pliicker
embedding is o1 = ¢1(Q) = c1($¥).

Remark 5.1.7 When F is locally free of rank n, and 0 < k < n, the S-scheme
Gk, F) = G,_;(F) is called the Grassmann bundle associated to F, and the
structure morphism p: G(k, F) — S is smooth of relative dimension k(n — k).
Note that the kernel of a surjection between locally free sheaves is automatically
locally free. Hence in this case, a closed point in the fibre G(k, F), over a point
s € § corresponds to a surjection F(s) — A, where dimg) A = n — k. More
precisely, if V(F) = Spec Sym F* — S is the geometric vector bundle arising from


https://stacks.math.columbia.edu/tag/01W0
https://stacks.math.columbia.edu/tag/01OA

When d = 1and F ∈ Coh S, it is customary to denote G1(F) = P(F), which by definition is Proj SymF


if V is a k-vector space, by P(V) = Proj SymV we mean the space of hyperplanes in V, whereas the space (V \ 0)/k× of lines through the origin 0 ∈ V is naturally identified with P(V∗).


When F is locally free of rank n,and 0 <k ≤ n,the S-scheme G(k, F) = Gn−k(F) is called the Grassmann bundle associated to F,and the structure morphism ρ : G(k, F) → S is smooth of relative dimension k(n − k). Note that the kernel of a surjection between locally free sheaves is automatically locally free.
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the locally free sheaf F, then for every geometric point s € S one has

G(k, F); = G(k, F) xs Speck(s) = G(k, V(F);) = G(k, F(s)).

Example 5.1.8 Letk =n — 1 and F = @;e". Then the above construction yields
the relative projective space

G —1,02") = Pi~! = ProjSym 62" % .
The tautological surjection p*F — @ is the familiar

@gg",l = Ogr-1(1).

Indeed, we do know from the functorial description of projective space [111, II,
Theorem 7.1] that an S-morphism U — P?l is equivalent to the data

(‘g;s(hsl’ '-'7sn—1)

where £ is a line bundle on U and s; are sections generating £—and moreover
such tuple is considered equivalent to (£’; s, 51, ..., s, _,) if and only if there is
an isomorphism of line bundles ¢: ¥ = &’ such that d)*s{ = s;. But this is the
datum of a surjection @f?" — £, up to equivalence, which is precisely a U-valued
point of G(n — 1, @?").

Example 5.1.9 1If S = Speck, we recover the usual Grassmannian (cf. Chap. 4 for
k=0C)

Gk,n)=Gk—-1,n—-1)

of k-planes in k" (or, equivalently, of projective linear subspaces Pﬁ_l — Pﬁ_l), a
smooth projective algebraic k-variety of dimension k(n — k).

Exercise 5.1.10 Let S = Speck, so that F = k", and fix a point [H] € G(k, F).
Show that the tangent space of G (k, F) = G (k, n) at [H] is isomorphic to

Homg(H, F/H).
The relative statement is as follows. Let F be locally free. Then, the relative
tangent bundle 76, F)/s is isomorphic to Zome g p (S, Q) = S* ® Q.
We have the following description of the Chow ring of the Grassmannian

G (k, V). Note that the tautological short exact sequence

0—-8—=0cuvy®&V - Q-0



Let k = n − 1and F = 𝒪⊕n S . Then the above construction yields
the relative projective space G(n − 1, 𝒪⊕n
S ) = Pn−1 = Proj Sym𝒪⊕n ρ S The tautological surjection ρ∗F � 𝒬 is the familiar
𝒪⊕n Pn−1
S � 𝒪Pn−1 S
Indeed, we do know from the functorial description of projective space [111, II, Theorem 7.1] that an S-morphism U → Pn−1
S is equivalent to the data (ℒ; s0,s1, ... , sn−1)
where ℒ is a line bundle on U and si are sections generating ℒ


But this is the datum of a surjection 𝒪⊕n U � ℒ, up to equivalence, which is precisely a U-valued point of G(n − 1, 𝒪⊕n S )


Let S = Spec k,so that F = kn, and fix a point []∈ G(k, F). Show that the tangent space of G(k, F) = G(k, n) at [] is isomorphic to Homk(,F/)
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yields an identity
c($)e(@Q) =1,

where ¢ denotes the total Chern class. This is, in fact, the unique relation.

Theorem 5.1.11 ([59, §5.81) There is a ring isomorphism
A*G(k, V) = Z[c1, ..., c]/(c($)c(@) — 1),

where ¢; = ¢;i(S§).

5.2 Quot and Hilbert Schemes

5.2.1 The Quot Functor and Grothendieck’s Theorem

Let S be a noetherian scheme and let X — § be a finite type morphism (so X is
noetherian by Exercise 3.1.4). Fix a coherent sheaf F on X. Denote by Schg the
category of locally noetherian schemes over S. Given such a scheme U — S, define

QUOtX/S(F)(U — )
to be the set of equivalence classes of pairs

(&, p)

where

e & is a coherent sheaf on X xg U, flat over U and whose support is proper over
U,

* p: Fy — & is an Oy y-linear surjection, where Fyy denotes the pullback of F
along X xs U — X,

* two pairs (&, p) and (&', p’) are considered equivalent if ker p = ker p’.

Flatness was defined in Definition 3.2.23. Properness of Supp & — X xs U —
U is automatic when X — S is proper, e.g. projective.

Letk be a field. Fix a very ample line bundle L over a k-scheme X. For a coherent
sheaf E on X whose support is proper over Speck, the function

m > PL(E,m) = x(E ®ox L®")

becomes polynomial for m >> 0, where x (F) = Zizo(_l)i dimy H (X, F), for a
coherent sheaf F with proper support on a k-scheme X, is called the holomorphic



Given such a scheme U → S,define
QuotX/S(F)(U → S)
to be the set of equivalence classes of pairs (ℰ,p)
where
• ℰ is a coherent sheaf on X ×S U, flat over U and whose support is proper over U,
• p : FU � ℰ is an 𝒪X×SU-linear surjection, where FU denotes the pullback of F along X ×S U →X,
• two pairs (ℰ,p) and (ℰ�,p�) are considered equivalent if ker p = ker p�.
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Euler characteristic of F. This is proved in [214, Tag 089X] for P" and in [136,
Theorem B.7] in general. This observation defines the Hilbert polynomial of E (with
respect to L), which is denoted Py (E). If & is an S-flat family of coherent sheaves
on X — §, such that

Supp& — X — S
is proper, then the function
S = PLS(%S)v & = %|X51

is locally constant on S, where L denotes the restriction of L along X < X. For
the converse, one has that the constancy of the Hilbert polynomial along the fibres
implies S-flatness of the sheaf if S is reduced [111, Theorem I11.9.9]. Moreover, the
local constancy can be checked on the closed points s € S.

For a fixed relatively very ample line bundle L € Pic X, the functor Quoty,s(F)
decomposes as a coproduct

Quoty/s(F) = ]_[ Quot)};’/LS(F)
PeQlz]

where the component Quot)};’/]g(F ) sends an S-scheme U to the set of equivalence
classes of quotients p: Fyy — & such that for each u € U the Hilbert polynomial
of &, = &|x, (whose support is a closed subscheme of X, proper over Spec k(u)
by definition!), calculated with respect to L, (the pullback of L along X, <— X xg
U — X),isequalto P.

Theorem 5.2.1 (Grothendieck [97]) Let S be a noetherian scheme. If X — S isa
projective morphism, F € Coh X is a coherent sheaf, L is a relatively very ample
line bundle over X and P € Q[z] is a polynomial, then Quot)lz’/lg(F ) is representable
by a projective S-scheme

Quot)};’/g(F) - S.

Remark 5.2.2 The noetherian hypothesis in Theorem 5.2.1 could be removed by
Altman and Kleiman [3], at the expense of using a stronger notion of projectivity,
as well as a stronger assumption on F. The result is again a projective S-scheme
Quot)lz’/LS(F ) — S in this stronger sense. We mention the following consequence:
when X < P is a closed subscheme, L = @]P"; (D |x and F is a sheaf quotient of

L(m)®* for some (m, £), the functor Quot)’;’/g(F ) is representable by an S-scheme
that can be embedded in Pg’ for some N.


https://stacks.math.columbia.edu/tag/089X
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Exercise 5.2.3 Show that Quoty,s(F) defines a functor Sch(;p — Sets, and that
it generalises the Grassmann functor G4 (F) defined in (5.1). (Hint: To show that
G4 (F) is a Quot scheme, pick X = § — S to be the identity and P = d. You may
also need to have a look at [214, Tag OONX] to link flatness and local freeness.)

5.2.2 The Hilbert Scheme of a Quasiprojective Family

We are ready to define an important character of this text.
Definition 5.2.4 (Hilbert Scheme) Let X — S be a projective morphism of
noetherian schemes as in Theorem 5.2.1, and set F = Ox. Then the S-scheme

Hﬂbx/s = QuotX/S(@X) )

is called the Hilbert scheme of X — S, and is a disjoint union of projective
connected” components Hilb;;’/lg. When S = Speck, we omit it from the notation

and just write Hilb)lz’l‘, or simply Hilb)lz if L is understood.

Definition 5.2.5 (Quot Scheme of Points) Let X — S be a projective morphism
of noetherian schemes as in Theorem 5.2.1, and let n > 0 be an integer. The Quot
scheme of points of F € Coh X relative to X — § is the connected component

Quoty,s(F, n) = Quoty ¢ (F) C Quoty,s(F),

where the choice of L is irrelevant since the Hilbert polynomial is a constant P = n.
If F = Ox, we set

Hilb" (X/S) = Quoty /5(Ox. n) C Hilbx/s .

This connected component is the Hilbert scheme of n points relative to X — S.
When § = SpecKk, it is omitted from the notation.

Remark 5.2.6 For any locally free sheaf & of rank 1 over a k-variety X, there is an
isomorphism Quoty (<, n) = Hilb” X.

Remark 5.2.7 The scheme Quoty,s(F, n) exists also for quasiprojective X — §
because of the following observations:

1. The support of a flat family of coherent sheaves of relative dimension 0 over an
arbitrary locally noetherian scheme is proper over the base.

2 The fact that each component Hilb;}'/é is connected is a theorem of Hartshorne [110].


https://stacks.math.columbia.edu/tag/00NX

Let X → S be a projective morphism of noetherian schemes as in Theorem 5.2.1,and set F = 𝒪X. Then the S-scheme
HilbX/S = QuotX/S(𝒪X) → S
is called the Hilbert scheme of X → S, and is a disjoint union of projective connected2 components HilbP,L
X/S.When S = Spec k, we omit it from the notation and just write HilbP,L X ,or simply HilbP X if L is understood.


The Quot scheme ofpoints of F ∈ CohX relative to X → S is the connected component
QuotX/S(F, n) = Quotn,L X/S(F) ⊂ QuotX/S(F),
where the choice ofL is irrelevant since the Hilbert polynomial is a constant P = n. If F = 𝒪X,we set
Hilbn(X/S) = QuotX/S(𝒪X,n) ⊂ HilbX/S .
This connected component is the Hilbert scheme of n points relative to X → S.
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2. One can compactify X to a proper S-scheme X — S, and extend F to a coherent
sheaf F € Coh X (see [182, Lemma 5.19] for a proof of this fact), in such a
way that the functor Quoty /s(F) is an open subfunctor of QUOtX / s(F), hence
representable.

See Chap. 6 and Sect. 9.5 for further discussions on Hilb” X. We will also give
an alternative definition of Hilb" Ad, and, in fact, of Quot,a (O ®” 1), in Sect.6.2.

Exercise 5.2.8 Let X — S and T — S be morphisms of noetherian schemes,
with X — § projective, and let F € Coh X be a coherent sheaf, pulling back to
Fr € Coh X7 along X7 = X x5 T — X. Show that the diagram

Quoty /7 (F1) ——> Quoty (F)

| |

7 —— > S
18 cartesian.

Exercise 5.2.9 Let S be a noetherian scheme. Let f: X — Y be a flat morphism
of projective S-schemes. Show that sending a subscheme Z C U xg Y to the
subscheme (idy xf)_l(Z) C U xg X defines an S-morphism

f*I Hi]by/s —> Hilbx/s .

Exercise 5.2.10 Let S be a noetherian scheme. Let ¢(: X < Y be a closed
immersion of projective S-schemes. Show that composition with ¢ defines an S-
morphism

[ Hilbx/s — Hilby/s .

5.2.3 Hilbert Polynomials, Universal Families of Hilbert
Schemes

A theorem of Vakil [227] asserts, roughly speaking, that arbitrarily bad singularities
appear generically on some component of some Hilbert scheme (Fig. 5.2).
However, despite its potentially horrible singularities, the Hilbert scheme has
the great feature of representing a pretty explicit functor, so its functor of points
is explicit. In such a situation, the most important thing is to always keep in mind



A theorem ofVakil [227] asserts, roughly speaking, that arbitrarily bad singularities appear generically on some component of some Hilbert scheme (Fig. 5.2).
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impure dimension

singularities

non-reduced junk

Fig. 5.2 A nasty scheme. By Murphy’s Law [227], it could be a Hilbert scheme component H C
Hilby for some variety X. Picture modified from tex.stackexchange/159239

the universal family living over the representing scheme. In the case of the Hilbert
scheme, this is a diagram

Z M X xg Hilbyss
ﬂatl
Hilby/s

with the following property: for every S-scheme g: U — S along with a flat family
of closed subschemes

a: ZCXxsU— U,
there exists precisely one S-morphism ag: U — Hilby,s such that Z = a;Z as
U -families of subschemes of X.
Remark 5.2.11 If X is a smooth variety over S = SpecC, then Z is also flat over
X, see [142, Theorem 1.1].
Exercise 5.2.12 Show that Hilb! X = X. What is the universal family?

The rest of this section consists almost entirely of exercises, so for the sake of
concreteness we may set S = SpecC. Let Y be a projective variety. The Hilbert
polynomial of a subvariety t: Z < Y is, by definition, the Hilbert polynomial of its
structure sheaf ©z € Coh Y, with respect to a given very ample line bundle L on Y.


https://tex.stackexchange.com/a/159239

The Hilbert polynomial of a subvariety ι : Z�→ Y is, by definition, the Hilbert polynomial of its structure sheaf 𝒪Z ∈ CohY, with respect to a given very ample line bundle L on Y.
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It can be computed by taking the holomorphic Euler characteristic of the short exact
sequence

0— Jz/y(m) — Oy(m) — Oz(m) — 0

for m > 0, and using additivity of x on short exact sequences [214, Tag OBEI].
When dealing with the ambient variety ¥ = P”, we always fix the polarisation

L = Op(1).

Exercise 5.2.13 Let C C P” be a smooth curve of degree d and genus g. Compute
the Hilbert polynomial of C with respectto L = Opn (1).

Remark 5.2.14 1t is not true that for fixed n there always exists a smooth curve
C C P" of degree d and genus g.

Exercise 5.2.15 Compute the Hilbert polynomial of a conic in P3, and that of a
twisted cubic C C P3.

Exercise 5.2.16 Compute the Hilbert polynomial P, , of a degree d hypersurface
Y c P

Exercise 5.2.17 Let P; , be the polynomial computed in Exercise 5.2.16. Use the
universal property of the Hilbert scheme to prove that there is a bijective morphism

d
PN s Hilb[, N = (”Z )

Exercise 5.2.18 Interpret the Grassmannian
G(k,n) = ilinear subvarieties P¥ < IP’”}

as a Hilbert scheme, i.e. find the unique polynomial P such that G(k, n) = Hilbgn.

Exercise 5.2.19 Let C be a smooth curve embedded in a smooth 3-fold Y. Show
that there is an isomorphism of schemes Bl¢ Y = Quoty (J¢, 1).

5.3 Tangent Space to Hilb and Quot

Let X be a variety defined over an algebraically closed field k. Let p € Hilby (k) be
the point corresponding to a closed subscheme Z C X. Then, by definition,

T, Hilby = Hom,,(D,, Hilby),


https://stacks.math.columbia.edu/tag/0BEI

It can be computed by taking the holomorphic Euler characteristic of the short exact sequence
0 →ℐZ/Y(m) → 𝒪Y(m) → 𝒪Z(m) → 0
for m � 0, and using additivity of χ on short exact sequences
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where Hom, (D, Hilby) denotes the set of k-morphisms D, — Hilby sending the
closed point of Dy = Speck[¢]/1% to p. By representability of the Hilbert functor,
this Hom set agrees with the set of all D,-flat families

Z s Z e X x D>

A

0 —— Dy

such that the fibre of ¢ over the closed point of D, = Speck([]/1? equals Z. By
definition, these are the infinitesimal deformations of the closed subscheme Z C X.
It is shown in [113, Theorem 2.4] that these are classified by

Homy (.97, 07) = Homyz(.52/.9;. O7)
=HXZ, Homp,(I7) T2, 07))
=H(Z, #z/x),

where /#z,;x is the normal sheaf to Z in X (Definition 2.3.3). The local case,
from which the identity T, Hilbx = HO(Z , Nz,x) follows easily, is the following
exercise. If in need of help, have a look at [113, Proposition 2.3].

Exercise 5.3.1 Let B be a k-algebra of finite type, / C B anideal. Set X = Spec B
and Z = Spec B/I C X. Set B = B[t]/t?, and notice that B’/tB’ = B. Show that
Hompg (I, B/I) is in bijective correspondence with ideals I’ C B’ such that B’/I’ is
flat over k[¢]/¢? and whose image in B equals /.

Here is a more general situation, upgrading the outcome of Exercise 5.1.10 for
the Grassmannian.

Theorem 5.3.2 ([209, Proposition 4.4.4]) Let F be a coherent sheaf on a projec-
tive k-variety X. Let p = [K — F — Q] € Quoty(F) be a point. There is a
canonical isomorphism

Tp Quoty (F) = Homy (K, Q). 5.5)
IfExt}((K, Q) = 0, then Quoty (F) is smooth at p.

Exercise 5.3.3 Fix d,r > 1. Show that QuotAd(@@’ , 1) is smooth of dimension
d—1+r.

Exercise 5.3.4 Fix r > 1 and n > 0. Ellingsrud and Lehn proved that
QuotAz(@@’ ,n) is irreducible of dimension (r 4+ 1)n [62]. Show that this
Quot scheme is singular for instance when »r = n > 1. (Hint: you may use
Proposition 6.1.11, i.e. the nonsingularity in the » = 1 case.)



By definition, these are the infinitesimal deformations of the closed subscheme Z ⊂ X. It is shownin[113, Theorem 2.4] that these are classified by
HomX(ℐZ, 𝒪Z) = HomZ(ℐZ/ℐ2 Z, 𝒪Z) = H0(Z,ℋom𝒪Z (ℐZ/ℐ2 Z, 𝒪Z)) = H0(Z, 𝒩Z/X),


Theorem 5.3.2 ([209, Proposition 4.4.4]) Let F be a coherent sheafon a projective k-variety X.Let p =[K�→ F � Q]∈ QuotX(F) be a point. There is a canonical isomorphism
Tp QuotX(F) ∼= HomX(K,Q). IfExt1 X(K,Q) = 0,then QuotX(F) is smooth at p.
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Exercise 5.3.5 Let L C A3 be a line. Compute the dimension of Quot,s (S, 2).
Show that this Quot scheme is singular.

Exercise 5.3.6 Let p € A® be a point. Show that mf, C 0,3 defines a singular point
of Hilb* A3.

Remark 5.3.7 In fact, the singular locus of Hilb* A3 is isomorphic to A3,
parametrised precisely by the squares of the maximal ideals of points, see e.g. [50].

5.4 Examples of Hilbert Schemes

5.4.1 Plane Conics

Let zg, z1 and z; be homogeneous coordinates on P2, and ay, . .., as be homoge-
neous coordinates on P>, Consider the closed subscheme

CCP*xP
cut out by the bihomogeneous equation
2 2 2 -
aozj +onzy + oz + 32021 + 2022 + asziz2 = 0.

Let 7 be the projection C — P3. Overa pointa = (ag : --- : as) € P, the fibre is
the conic

-1 2 2 2 2
T~ (a) = iaozo + a1z] + axz5 + azzoz1 + aszozz +aszizo = 0} c P

There is a set-theoretic bijection between P> and Hilb;f;l. By the universal property
of projective space, we have the scheme-theoretic identity

P’ = Hilb2,",
and the map 7 : C — P? is the universal family of the Hilbert scheme of plane

conics.

Exercise 5.4.1 Prove the last sentence rigorously and generalise the plane conics
example to arbitrary hypersurfaces of P". (Hint: Start out with the conclusion of
Exercise 5.2.16 to write down the universal family).
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Remark 5.4.2 Let X be a projective k-scheme. The universal family of the Hilbert
scheme is always, set-theoretically, equal to

Z={(,[Z]) € X xxHilbx|x € Z} C X xy Hilby .

The hard task is to determine the scheme structure on Z. In the case of hypersurfaces
of degree d in P" (Exercise 5.4.1) this was easy precisely because Z is itself a
hypersurface.

5.4.2 Curves in 3-Space

In this subsection we describe a few Hilbert schemes of 1-dimensional subschemes
of P3. We start with a pathological example, that of twisted cubics and their
degenerations. By ‘pathological’ we just mean, here, that the Hilbert scheme has
multiple components (of different dimensions), in particular it is not equal to the
closure of the locus of smooth irreducible curves with the given Hilbert polynomial.

5.4.2.1 Twisted Cubics

A twisted cubic® is a smooth rational curve obtained as the image of the closed
immersion

P! < PS, (u,v) — (u3, uzv, uv2, v3),

up to linear changes of coordinates of the codomain. The number of moduli of a
twisted cubic is 12. Indeed, one has to specify four linearly independent degree 3
polynomials in two variables, up to C*-scaling and automorphisms of P'. One then
computes

4. h°(P, O (3)) — 1 —dimPGLy = 16 — 1 — 3 = 12.

The Hilbert polynomial of a twisted cubic is 3¢ + 1, cf. Exercise 5.2.13. There are
other 1-dimensional subschemes Z C P? with this Hilbert polynomial, e.g. a plane
cubic union a point. This has 15 moduli: the choice of a plane P> C P* contributes
3 = dimG(2, 3) moduli, a plane cubic C C P? contributes 9 parameters, and the
choice of a point p € P? accounts for the remaining 3 moduli.

3 We already encountered the twisted cubic in Example 3.1.13.



A twisted cubic3 is a smooth rational curve obtained as the image of the closed immersion
P1 �→ P3,(u, v) �→ (u3,u2v, uv2,v3),
up to linear changes of coordinates of the codomain. The number of moduli of a twisted cubic is 12. Indeed, one has to specify four linearly independent degree 3 polynomials in two variables, up to C×-scaling and automorphisms of P1.One then computes
4 · h0(P1, 𝒪P1 (3)) − 1 − dimPGL2 = 16 − 1 − 3 = 1


The Hilbert polynomial of a twisted cubic is 3t + 1,
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/ .

N\N\NN {LANNNN-

12 moduli 15 moduli

Fig. 5.3 Description of Hilb3§+l. The red arrow sticking out (cf. Remark 3.1.36 for this phe-
nomenon) of the plane in the middle drawing represents the embedded point at the origin of the
subscheme (5.6)

The Hilbert scheme
Hilb2 !

was completely described in [195]. The two irreducible components we just
described turn out to be the only ones. They are smooth, rational, of dimension
12 and 15 respectively, and they intersect along a smooth, rational 11-dimensional
subvariety V C Hilb];gJrl parametrising uninodal plane cubics with an embedded
point at the node. See Fig.5.3 for a full pictorial description of the degenerations
occurring in Hilb* !,

In [111, I, Example 9.8.4] a family of twisted cubics degenerating to a plane
uninodal cubic with an embedded point is described. The total space of the family,
in a local chart, is defined by the ideal

I = (az(x +1)— 12, ax(x+1) —yz,xz —ay, y2 — xz(x + 1)) c Cla, x, vy, z].
Letting a = 0 one obtains the special fibre given by

Ip = (2%, yz, x2,y* = x*(x + 1)) € Clx, y. ], (5.6)

and p = (0, 0, 0) is a non-reduced point in Co = Spec C[x, y, z]/1y. Note that C is

not scheme-theoretically contained in the plane z = 0, because the local ring Oc,,
contains the nonzero nilpotent z (cf. Remark 3.1.36).

Remark 5.4.3 The geometric genus py(X) = h%(X, wy) varies in flat families, as
shown by the example of the twisted cubic degenerating to a nodal plane cubic.

5.4.2.2 A Line and a Point
Consider P? and the Hilbert polynomial

px) =z+2.



Remark 5.4.3 The geometric genus pg(X) = h0(X,ωX) varies in flat families, as shown by the example of the twisted cubic degenerating to a nodal plane cubic.
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Fig. 5.4 The only
subschemes Z C P3 with
Hilbert polynomial z + 2

The only subschemes Z C P3 with Hilbert polynomial p are those of Fig. 5.4,i.e. Z
must consist of a line and a point, either isolated or embedded.
A naive dimension count yields the prediction

dimHilbi? =4 +3 =7,

where 4 = dimG(1, 3) is the dimension of the Grassmannian of lines in P3 and
3 = dimP3 accounts for the choice of the extra point. The prediction turns out
correct. There is an open subscheme U C Hilb];;|r2 along with a diagram

{(p.[€]) e PP x G(1,3)|p ¢ £} —— P* x G(1,3)

le
open
U < P Hilb!?

where the map to the Hilbert scheme takes (p, [€]) to £ U p. However, on the
boundary, when the point degenerates on the line, a finer analysis is required. Let

L= {(p, [e]) € P3 xG(l,3)‘pe€} C B3 x G(1,3)

be the universal line.

Exercise 5.4.4 Show that there is a bijective morphism

fi: Ble(P? x G(1,3)) > Hilb];“z.

Next, show that Hilb]lzjgr2 is smooth. Conclude that f7 is an isomorphism.

5.4.2.3 A Plane Conic (and No Point)
Consider again P? and the Hilbert polynomial

p(@) =2z+1.
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Fig. 5.5 The subschemes parametrised by Hilb?_é+1

This is the Hilbert polynomial of a plane conic (either smooth or singular, even
possibly a double line, cf. Fig. 5.5), this time with no additional roaming points. In
fact, one can verify that no other subscheme of P* has this Hilbert polynomial. Since
we are in P, a naive count yields the expectation

dimHilb% ™! =345 =38,

where 3 = dim G(2, 3) accounts for the choice of a plane H C P3 and 5 =
dim Hilb%frl accounts for the choice of a conic embedded in the chosen plane.
Again, the expectation turns out correct.

The map

T Hilbﬂig“ — P* =G(2,3)

sending a conic C C P3 to the plane H C P it lies on, is an algebraic morphism,
whose fibre over a point [H] € P** is the projective space P(Sym? V*), where V is
the 3-dimensional vector space generated by the ‘coordinates’ of H (or H = P(V),
in other words). Consider the tautological short exact sequence

0—)5%@}21—)(@—)0

over P>* = G(2, 3) = G(3, 4), where the fibre of & over [V] € G(3,4) is precisely
the 3-plane V corresponding to [V]. It follows that the source of the P3-bundle

7': P(Sym? &%) — P**

parametrises pairs (H, y), where H C Pl isa plane and y € PHO(H, 6y (2))).
One can prove that there is an isomorphism

Hilb]%é“ =~ P(Sym® §*)

over P3*. See [147, Section 3.4] for more details.
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5.4.2.4 A More General Example
Consider P? and the Hilbert polynomial
p(x) =dz+2—g,

where g = (d — 1)(d — 2)/2 is the genus of a nonsingular plane curve of degree d.
The Hilbert scheme

Hﬂb;’g“‘g
is in general very complicated. However, there is an irreducible component
Hy C Hilb%i27¢
defined as the closure of the locus

lC Up ‘C is a degree d plane curve, p € p? \ C}

that is easier to understand. We saw that H| = Hile;r2 if g = 0 (i.e. there are
no other ‘extraneous’ components for (d, g) = (1, 0)), but this might be false for
d > 1. In general, by a result of Chen—Nollet [43, Theorem 1.9], Hy is always
smooth and there is an isomorphism

fa: Bl (P? x Hilb;fr =8y 3y,

where X is the incidence correspondence consisting of pairs (p, [C]) such that p €
C.
It is also interesting to note the following result.

Proposition 5.4.5 ([43, Corollary 1.8]) The Hilbert scheme Hilo*' ™" is irre-
ducible, as longasd > 6and g —3 < h < g, where g = (d — 1)(d — 2)/2.

5.4.3 The Hilbert Scheme of a Jacobian

Let C be a smooth projective curve of genus g, defined over an algebraically closed
field k of characteristic different from 2. Let J = PicO(C ) be its Jacobian, an abelian
variety of dimension g, principally polarised by the Theta divisor ® C J. Itis well-
known that the embedded deformations of the Abel-Jacobi map

C—>J



It is wellknown that the embedded deformations of the Abel–Jacobi map
C�→ J
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are unobstructed if and only if C is non-hyperelliptic [144]. In fact, if C is
hyperelliptic, Griffiths [96] computed

dimg H(C, Meyy) =28 — 2,

as long as g > 3. Since the only local deformations of C < J are given by
translations, it easily follows that the Hilbert scheme component

Hilbc,; C Hilby

containing the Abel-Jacobi embedding as a point is isomorphic to J if and only if C
is not hyperelliptic. (When treating these Hilbert schemes, we fix @ as polarisation).

On the other hand, when C is hyperelliptic, the local deformations of C —
J are still parametrised by translations, but by obstructedness, the Hilbert scheme
component Hilbc,; is everywhere nonreduced. Its underlying reduced variety is of
course still equal to J. It is proved in [203] that, in the hyperelliptic case, there is a
scheme-theoretic isomorphism

Hilbc/y = J x SpecK[si, ..., Sg—21/(s1, ..., 5g-2)*.

Moreover, the Artinian scheme R, = SpecK[sy,...,s,-21/(s1,..., sg,z)2 is
precisely the scheme-theoretic fibre of the Torelli morphism

T: Mg — Ag

over the hyperelliptic point [J, ®] € A,, where A, is the moduli stack of
principally polarised abelian varieties of dimension g. Note, also, that R, is the
smallest Artinian scheme of embedding dimension (i.e. tangent space dimension at
the unique closed point) g — 2 = (2g — 2) — g, thus in this sense the nonreduced
structure on the Hilbert scheme is the mildest possible.

Remark 5.4.6 If g = 3, the above example exhibits an everywhere nonreduced
Hilbert scheme component Hilbc,; C Hilb, for a 3-fold J. In fact, the most famous
example of this phenomenon is probably due to Mumford [173]. See also [61, 102,
138] for more examples.

5.5 Lines on Hypersurfaces: The Fano scheme
Let Y C P" be a general hypersurface of degree d.

We should expect a finite number of lines on Y if and only if d = 2n — 3
We should expect no lineson Y if d > 2n — 3.

We should expect infinitely many lines on Y if d < 2n — 3.



are unobstructed if and only if C is non-hyperelliptic


On the other hand, when C is hyperelliptic, the local deformations of C�→
J are still parametrised by translations, but by obstructedness, the Hilbert scheme component HilbC/J is everywhere nonreduced.


Let Y ⊂ Pn be a general hypersurface of degree d.
We should expect a finite number of lines on Y if and only if d = 2n − 3 We should expect no lines on Y if d> 2n − 3.
We should expect infinitely many lines on Y if d< 2n − 3.
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For instance, a classical theorem in algebraic geometry states that there are
exactly 27 lines on any smooth cubic surface. See e.g. Van der Waerden’s book
[234] and Manin’s work [155].

To understand the condition

LCY

for a given line £ C P" and a hypersurface Y C P", we give the following concrete
example.

Example 5.5.1 Let £ C P? be the line cut out by L1 = Ly = 0, where L; =
Li(zo, 21, 22, 23) are linear forms on P3. To fix ideas, set L; = zg and L, = z9 +
72 + z3. Let Y C P? be defined by a homogeneous equation f = 0, for instance the
cubic polynomial

f =z} 432023 — Pz
Then we see that plugging L; = L, = 0 into f does not give zero, for
fle=040—25(—z20 — 22) = z3.

This means that £ is not contained in Y. On the other hand, the line cut out by L
and L/, = z3 lies entirely on Y.

Let Y C P" be the zero locus of a general homogeneous polynomial
f e H'@", O (d)).

As we anticipated in Example 5.5.1, a line £ C P" is contained in Y if and only if
fle = 0. This condition can be rephrased by saying that the image of f under the
restriction map

res;: HO(P", Gpn (d)) — HO(¢, Oy(d)) (5.7)

vanishes. We want to determine when we should expect Y to contain a finite number
of lines. We set, informally,

N;(Y) = expected number of lines in Y.
Let us consider the Grassmannian
G =G(1,n) = {Lines ¢ C P"},

a smooth complex projective variety of dimension 2n — 2. Recall the universal
structures living on G. First of all, the tautological exact sequence
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rank 2 rank n + 1 rankn — 1

0 S Og ®c HO(P", Op (1))* 4] 0

where the fibre of & over a point [¢] € G is the 2-dimensional vector space
HO(¢, G¢(1))*. Let, also,

£=i(p,[ﬁ])eIP’”xG‘peﬁ}CIP’”xG

be the universal line. Consider the two projections

and the coherent sheaf

&1 = 14q" Opn (d).

Exercise 5.5.2 Show that &; is locally free of rank d + 1. (Hint: use cohomology
and base change, e.g. [59, Theorem B.5]).

In fact, one has an isomorphism of locally free sheaves
&, = Sym? §*,

where 11 § < Og ®c HO(P", Gpr (1))* is the universal subbundle. Dualising ¢ and
applying Sym“, we obtain a surjection

0g ®c H(P", Opn (d)) — Sym? &*,
which is just a global version of (5.7). The association
G 3 [0l fle € H(, Op(d)) = Sym? H (¢, Oy (1))
defines a section 77 of &; — G. The zero locus of T = mq* f € HO(G, &y) is the

locus of lines contained in Y.
The following terminology is very common.



Exercise 5.5.2 Show that ℰd is locally free of rank d + 1. (Hint: use cohomology and base change, e.g. [59, Theorem B.5]).


τf = π∗q∗f ∈ H0(G, ℰd)
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Definition 5.5.3 (Fano Scheme of Lines) Let Y C P” be a hypersurface defined
by f = 0. The zero scheme

F1(Y)=Z(ty) > G=G(,n)

is called the Fano scheme of linesin Y.

Since f is generic, 7y € I'(G, &) is also generic. In this case, the fundamental
class of the Fano scheme of lines in Y is Poincaré dual to the Euler class

e(&y) € ATG.
Thus [F1(Y)] € AxGisaO-cycleif and only ifd + 1 =2n — 2, i.e.
d=2n-3.

A rigorous definition of N (Y) is then
Ni(Y) = /G e(€g) = /G car1(Sym’ §%).

Such degree is the actual number of lines on Y as soon as HO¢, 4, sy) = 0 for all
£ C Y. This condition means that the Fano scheme is reduced at all its points [£],
since H? (£, Mgyy) is its tangent space at the point [£].

Lemma 5.54 If S C P? is a smooth cubic surface and £ C S is a line, then
HO(e, Ay/s) = 0.

Proof It is enough to show that /" = g, viewed as a line bundle on £ = P!, has
negative degree. By the adjunction formula,

K¢ = Ksle ®0, V.

Using that Ky = 0¢(—2) and Ks = Kps|s Qp; /VS/P3 = Og(d — 4) for a surface of
degree d in P3, by taking degrees we obtain

—2=03—-4)+degJ,
so thatdeg /" = —1 < 0. O

Exercise 5.5.5 Let Y C P” be a general hypersurface of degree d < 2n — 3. Show
that F1(Y) C G(1, n) is smooth of dimension 2n — 3 — d.



A rigorous definition of N1(Y) is then N1(Y) =
� e(ℰd) = G � cd+1(Symd 𝒮∗). G
Such degree is the actual number of lines on Y as soon as H0(�, 𝒩�/Y) = 0 for all � ⊂ Y. This condition means that the Fano scheme is reduced at all its points [�], since H0(�, 𝒩�/Y) is its tangent space at the point [�].


Definition 5.5.3 (Fano Scheme of Lines) Let Y ⊂ Pn be a hypersurface defined by f = 0. The zero scheme
F1(Y) = Z(τf)�→ G = G(1,n)
is called the Fano scheme oflines in Y.


Exercise 5.5.5 Let Y ⊂ Pn be a general hypersurface of degree d ≤ 2n − 3. Show that F1(Y) ⊂ G(1,n) is smooth of dimension 2n − 3 − d.


Chapter 6 )
The Hilbert Scheme of Points Creck o

Abstract In this chapter, for simplicity, we work over C unless specified otherwise.
Let X be a complex quasiprojective variety. We will study the Hilbert scheme of
points

Hilb" X = [0x — 07 dimcHO(Z, 67) = n]

introduced in Definition 5.2.5. In Sect. 6.2 we focus on X = A?. The special cases
of d = 2, 3 will be analysed carefully.

6.1 Subschemes and 0-Cycles

6.1.1 The Hilbert—Chow Morphism

Let X be a complex quasiprojective variety. Besides Hilb" X, there is a “coarser”
way of parametrising points with multiplicity on X, one that does not distin-
guish between the possible scheme structures on a finite collection of points
{p1,..., pn} C X. This is the content of the next definition.

Definition 6.1.1 (Symmetric Product) Let X be a quasiprojective variety. The n-
th symmetric product of X is the quotient

Sym" X = X"/6,.

Remark 6.1.2 The quotient of a quasiprojective scheme by a finite group G always
exists as a scheme, by a basic result of geometric invariant theory. If X = Spec A is
affine, there is a categorical quotient X — Spec AY corresponding to the inclusion
A% < A (cf. Sect. 3.6.3). More generally, for a scheme X acted on by a finite group
G, [98, Exposé V, Proposition 1.8] shows that X /G exists as a scheme if and only
if every orbit is contained in an affine open subset of X, and this condition is clearly
satisfied for quasiprojective X.
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More generally, for a schemeX acted on by a finite group G,[98, Exposé V, Proposition 1.8] shows that X/G exists as a scheme if and only if every orbit is contained in an affine open subset ofX, and this condition is clearly satisfied for quasiprojective X.


Definition 6.1.1 (Symmetric Product) Let X be a quasiprojective variety. The nth symmetric product of X is the quotient
Symn X = Xn/Sn.
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Remark 6.1.3 The scheme Sym” X is also known as the Chow scheme of effective
O-cycles (of degree n) on X. In other words, Sym” X represents the functor of
families of effective 0-cycles. For higher dimensional cycles, however, the definition
(and representability) of the Chow functor is a much subtler problem, carefully
analysed in [207].

Each point £ € Sym” X corresponds to a finite combination of points with
multiplicity, i.e. it can be written as

E= mi pi,
i

with m; € Z.o and p; € X pairwise distinct points. Clearly, one always has
Sym' X = X = Hilb' X.

Exercise 6.1.4 Show that Sym? A2 = A? x C, where C is the quadric cone C =
SpecClx, y, z1/(xy — 2%).

Exercise 6.1.5 Show that for any smooth surface X the singular locus of Sym* X
is the image of the diagonal X <> X2 under the quotient map X% — Sym?” X.

Exercise 6.1.6 Let X be a smooth variety of dimension d. Show that the locus in
Hilb® X of nonreduced subschemes Z C X is isomorphic to the projective bundle
P(7x).

Note that the symmetric product Sym” X does not see the scheme structure of fat
points inside X. For instance, any of the double point schemes supported on a given
point p € X, parametrised by the P?~! of Exercise 6.1.6, has underlying cycle 2 - p.
The operation of ‘forgetting the scheme structure’ and only retaining the support can
be made functorial. This means that there exists a well-defined algebraic morphism

wx: Hilb" X — Sym”" X, (6.1)

taking a subscheme Z C X to its underlying effective O-cycle. In symbols,

wx[Ox — Oz] = Z length Oz , - p.
peSupp Z

The morphism 7y is called the Hilbert-to-Chow morphism. In fact, as shown in [99,
Section 6] (cf. also [207, Corollary 7.15]), for 