


LONDON MATHEMATICAL SOCIETY STUDENT TEXTS

Managing editor: Dr C.M. Series, Mathematics Institute University of Warwick,
Coventry CV4 7AL, United Kingdom

The books in the series listed below are available from booksellers, or, in case of
difficulty, from Cambridge University Press.

1 Introduction to combinators and A-calculus, J.R. HINDLEY & J.P. SELDIN
2 Building models by games, WILFRID HODGES
3 Local fields, J.W.S. CASSELS
4 An introduction to twistor theory, S.A. HUGGETT & K.P. TOD
5 Introduction to general relativity, L.P. HUGHSTON & K.P. TOD
6 Lectures on stochastic analysis: diffusion theory, DANIEL W. STROOCK
7 The theory of evolution and dynamical systems, J. HOFBAUER &

K. SIGMUND
8 Summing and nuclear norms in Banach space theory, G.J.O. JAMESON
9 Automorphisms of surfaces after Nielsen and Thurston, A. CASSON &

S. BLEILER
10 Nonstandard analysis and its applications, N. CUTLAND (ed)
11 Spacetime and singularities, G. NABER
12 Undergraduate algebraic geometry, MILES REID
13 An introduction to Hankel operators, J.R. PARTINGTON
14 Combinatorial group theory: a topological approach, DANIEL E. COHEN
15 Presentations of groups, D.L. JOHNSON
16 An introduction to noncommutative Noetherian rings, K.R.GOODEARL &

R.B. WARFIELD, JR.
17 Aspects of quantum field theory in curved spacetime, S.A. FULLING
18 Braids and coverings: selected topics, Vagn Lundsgaard Hansen
19 Steps in commutative algebra, R.Y. SHARP
20 Communication Theory, C.M. GOLDIE & R.G.E. PINCH
21 Representations of finite groups of Lie type, FRANCOIS DIGNE &

JEAN MICHEL
22 Designs, codes and graphs and their links, P. CAMERON & J. VAN LINT
23 Complex algebraic surfaces, F. KIRWAN
24 Lectures on elliptic curves, J.W.S. CASSELS
25 Hyperbolic geometry, B. IVERSEN
26 Elementary theory of L-functions and Eisenstein series, H. HIDA
27 Hilbert space: compact operators and the trace theorem, J.R. RETHERFORD
28 Potential theory in the complex plane, T. RANSFORD
29 Undergraduate commutative algebra, M. Reid
32 Lectures on Lie groups and Lie algebras, R. CARTER, G. SEGAL &

I. MACDONALD
33 A primer of algebaic D-modules, S.C. COUTINHO
34 Complex algebraic surfaces (2nd ed), A. BEAUVILLE





London Mathematical Society Student Texts. 34

Complex Algebraic Surfaces
Second Edition

Arnaud Beauville
Univeraiti Paris-Sud

CAMBRIDGE
UNIVERSITY PRESS



Published by the Press Syndicate of the University of Cambridge
The Pitt Building, Trumpington Street, Cambridge CB2 1RP
40 West 20th Street, New York, NY 10011-4211, USA
10 Stamford Road, Oakleigh, Victoria 3166, Australia

Originally published in French as Surfaces Algebriques Complexes,
Asterique 54 and ©Societe Mathematique de France, Paris 1978

English translation ©Cambridge University Press 1983, 1996

Translated by R. Barlow,
With assistance from N.I. Shepherd-Barron and M. Reid

First published in English by Cambridge University Press 1983 as
Complex Algebraic Surfaces

Second edition first published 1996

Library of Congress cataloguing in publication data available
A catalogue record for this book is available from the British Library

ISBN 0 521 49510 5 hardback
ISBN 0 521 49842 2 paperback

Transferred to digital printing 2003



CONTENTS

Introduction vii

Notation ix

Chapter I The Picard group and the Riemann-Roch theorem I

Chapter II Birational maps 11

Chapter III Ruled surfaces 25

Chapter IV Rational surfaces 40

Chapter V Castelnuovo's theorem and applications 55

Chapter VI Surfaces with p9 = 0 and q > 1 68

Chapter VII Kodaira dimension 86

Chapter VIII Surfaces with a = 0 89

Chapter IX Surfaces with k = 1 and elliptic surfaces 107

Chapter X Surfaces of general type 113

Appendix A Characteristic p 119

Appendix B Complex surfaces 121

Appendix C Further reading 124

References 127

Index 131

v





INTRODUCTION

This book is a modified version of a course given at Orsay in 1976-77.
The aim of the course was to give a comparatively elementary proof of
the Enriques classification of complex algebraic surfaces, accessible to a
student familiar with the basic language of algebraic geometry (divisors,
differential forms, ...) as well as sheaf cohomology. I have, however,
preferred to assume along the way various hard theorems from algebraic
geometry, rather than resort to complicated and artificial proofs.

Here is an outline of the course. The first two chapters introduce the
basic tools for the study of surfaces: in Chapter I we define the intersec-
tion form on the Picard group, and establish its properties; assuming the
duality theorem we deduce the fundamental results (the Riemann-Roch
theorem, the genus formula). Chapter II is devoted to the structure
of birational maps; we show in particular that every surface is obtained
from a minimal surface by a finite number of blow-ups. The chapter ends
with Castelnuovo's contractibility criterion, which characterizes excep-
tional curves by their numerical properties.

The classification begins in Chapter III with ruled surfaces, that is,
surfaces birational to lP x C. We show that (except in the rational case)
their minimal models are Pl-bundles over a base curve C, and we study
their geometry. Chapter IV gives some examples of rational surfaces; we
take a stroll through the huge menagerie collected by the geometers of
the 19th century (the Veronese surface, del Pezzo surfaces, ... ).

The next two chapters are perhaps the keystone of the classification;
they give the characterization of ruled surfaces by their numerical prop-
erties - more precisely, by the vanishing of the `plurigenera' P. Sur-
faces with q = 0 are treated in Chapter V, where we prove Castelnuovo's
theorem: a surface with q = P2 = 0 is rational. We deduce two impor-
tant consequences: the structure of minimal rational surfaces and the
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viii Introduction

uniqueness of the minimal model of a non-ruled surface. In Chapter VI
we begin the study of surfaces with q > 0. We show without too much
trouble that a surface having p9 = 0 and q > 2 is ruled; which leaves
certain non-ruled surfaces with p9 = 0 and q = 1. According to an
idea of Enriques one can classify these surfaces very precisely, and show
that they have P12 > 0. Thus a surface is ruled if and only if P12 = 0
(Enriques' theorem).

Chapter VII, which is very short, introduces the Kodaira dimension w,
which is a convenient invariant for the classification of surfaces. Ruled
surfaces are characterised by w = -oo; the three ensuing chapters deal
with surfaces with n = 0, 1, and 2. Surfaces with w = 0 fall into four
classes: K3 surfaces, Enriques surfaces, Abelian surfaces, and bielliptic
surfaces. The bielliptic surfaces were already listed in Chapter VI, in the
context of surfaces with p9 = 0 and q = 1; here we study K3 surfaces
and Enriques surfaces, and give numerous examples.

In Chapter IX we show that surfaces with is = 1 have a (not necessarily
rational) pencil of elliptic curves; conversely we study those surfaces with
such a pencil.

Finally Chaper X concerns surfaces with is = 2, said to be of general
type; although these surfaces are the most general, there is not very
much that we can say about them. We have limited ourselves to giving
some examples and proving Castelnuovo's inequality x(Os) > 0.

In Appendix A we sketch (without proof) the classification of surfaces
in characteristic p, and in Appendix B that of complex compact surfaces.
Appendix C indicates some of the new results (or new approaches to old
results) which have been obtained since the first appearance of this book.

It is hard to claim any originality in a subject whose main theorems
were proved at the turn of the century. I have been largely inspired by
the existing literature, in particular by Shafarevich's seminar [Sh 2]; in
a historical note at the end of each chapter I have tried to describe the
origins of the principal results. The exercises indicate various possible
extensions to the course.



NOTATION

By `surface' we shall mean smooth projective surface over the field C of
complex numbers. Let S be a surface, and D, D' two divisors on S. We
write:

D = D' if D and D' are linearly equivalent

Os(D): the invertible sheaf corresponding to D

H'(S,Os(D)), or simply H" (D): the ith cohomology group of the sheaf
O5(D)

h'(D) = dime H'(D)
X(Os(D)) = h°(D) - hl(D) + h2(D), the Euler-Poincare characteristic

of the sheaf Os(D)

IDI = the set of effective divisors linearly equivalent to D
= the projective space corresponding to H°(D)

Ks or K = `the' canonical divisor = a divisor such that Os(K) Q2

Pic S = the group of divisors on S modulo linear equivalence
group of isomorphism classes of invertible sheaves

NS(S) = the Neron-Severi group of S (I.10)

AIb(S) = the Albanese variety of S (see Chapter V)

q(S) or q = h'(Os) = h°(Qs)
Pq(S) or pg = h2(09) = h"(Os(K))

P = h°(Os(nK)) (for n > 1)
bi(S) or b= = dimmH'(S,1R)

Xtop(S) = E.(-1)'bi(S)
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I
THE PICARD GROUP AND THE

RIEMANN-ROCH THEOREM

Unless otherwise stated, we consider surfaces with their Zariski topol-
ogy (the closed subsets are the algebraic subvarieties); `sheaf' will mean
`coherent algebraic sheaf'. This is a matter of convention: Serre's gen-
eral theorems ([GAGA]) give a bijection between algebraic and analytic
coherent sheaves which preserves exactness, cohomology, etc. All our ar-
guments with coherent algebraic sheaves will remain valid in the analytic
context.

Fact 1.1 The Picard group
Let S be a smooth variety. Recall that the Picard group of S, Pic S, is
the group of isomorphism classes of invertible sheaves (or of line bundles)
on S. To every effective divisor D on 5' there corresponds an invertible
sheaf Os(D) and a section s E H°(Os(D)), s $ 0, which is unique up
to scalar multiplication, such that div(s) = D. We define Os(D) for an
arbitrary D by linearity. The map D i-+ Os(D) identifies Pic S with the
group of linear equivalence classes of divisors on S.

Let X be another smooth variety and f : S -+ X a morphism. We
can define the inverse image with respect to f of an invertible sheaf,
to get a homomorphism f* : Pic X -+ Pic S. If f is surjective, then
we can also define the inverse image of a divisor, in such a way that
f * Ox (D) = Os (f * (D)) : just note that the inverse image of a non-zero
section of Ox(D) is non-zero.

If f is a morphism of surfaces which is generically finite of degree d,
then we define the direct image f*C of an irreducible curve C by setting

f*C = 0 if f(C) is a point,
f*C = rr if f(C) is a curve r, the morphism C I'

induced by f being finite of degree r.

1



2 I: The Picard Group

We define f.D for all divisors D on S by linearity. One can check
immediately that D - D' implies f. D =- f. D' . It follows from the
definition that

f. f * D = dD for all divisors D on S .

The particular importance of the Picard group in the case of surfaces
stems from the existence of an intersection form, which we now define.

Definition 1.2 Let C, C' be two distinct irreducible curves on a surface
S, x E C f1 C', o.,, the local ring of S at x. If f (resp. g) is an equation
of C (resp. C') in O, the intersection multiplicity of C and C' at x is
defined to be

mx(C fl c') = dime Ox/(f, g) .

By the Nullstellensatz the ring Ox/(f, g) is a finite-dimensional vector
space over C. The reader should confirm that this definition corresponds
to the intuitive notion of intersection number. For example, we see that
m.,(C fl C') = 1 if and only if f and g generate the maximal ideal ,;,
i.e. form a system of local coordinates in a neighbourhood of x : C and
C' are then said to be transverse at x.

Definition I.3 If C, C' are two distinct irreducible curves on S, the
intersection number (C.C) is defined by:

(ac')_ mx(C fl C') .

rECnC'

Recall that the ideal sheaf defining C (resp. C) is just the invertible
sheaf Os(-C) (resp. Os(-C')); define

Ocnc, = Os /(Os (-C) + Os (-C'))

The sheaf Ocne, is a skyscraper sheaf, concentrated at the finite set
c fl C.'; at each of these points we have (Ocnc' )x = O, /(f, 9) (with the
notation of I.1). It is now clear that

(C.C') = dim H°(S, Ocnc')

For any sheaf L on S, let X(L) = Et(-1)'h'(S, L) be the Euler-Poincare
characteristic of L.

Theorem 1.4 For L, L' in Pic S, define

(L.L') = X(Os) - x(L-1) - x(L'-1) + x(L-1 0 L'-1)
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Then (.) is a symmetric bilinear form on Pic S, such that if C and C'
are two distinct irreducible curves on S then

(Os(C).Os(C')) = (C.C') .

Proof We start by proving the last equality.

Lemma 1.5 Let s E H°(S, Os(C)) (resp. s' E H°(S, Os(C'))) be a
non-zero section vanishing on C (resp. C'). The sequence

0 Os(-C - C') (a=>> Os(-C) e Os(-C') .... Os -p Ocnc, 0

is exact.

Proof Let f,g E O., be local equations for C, C' at a point x E S; we
must show that the sequence

0--*0., + XQ O"->Ox/(f,g)->0

is exact, i.e. that if a, b E 0, are such that a f = bg, then there exists
k EO,. such that a = kg, b = kf.

This follows immediately, say from the fact that Ox is a factorial
ring and f, g are coprime (otherwise C and C' would have a common
component). The highbrow reader can use the (much weaker) fact that
O,, is Cohen-Macaulay.

Lemma 1.5 and the additivity of the Euler-Poincare characteristic
give (Os(C).Os(C')) = (C.C'). To prove the theorem it remains to
show that ( . ) is a bilinear form on Pic S (the symmetry is obvious).

Lemma 1.6 Let C be a non-singular irreducible curve on S. For all
L E Pic S, we have

deg(Llc)

Proof The exact sequences

0 - Os(-C) --.r Os Oc
0 -+ L-'(-C) -> L-1 --+ L'1 0 Oc

--> 0

0

give the following relations between Euler-Poincare characteristics:

x(Os) - x(Os(-C)) = x(Oc)
x(L-1) - x(L-1(-C)) = x(Lc )
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whence

(Os(C).L) _

I: The Picard Group

x(Oc) -
by the Riemann-Roch theorem on C

degLjc, which proves the lemma.

For L1, L2, L3 E Pic S, consider the expression

s(L1, L2, L3) = (L1 L2 ® L3) - (L1.L2) - (L1 L3)

It is clear by definition of the product that this is symmetric in L1,
and L3i moreover Lemma 1.6 shows s(L1, L2, L3) is zero when L1 =
Os(C), with C a non-singular curve. Similarly, s(Li, L2, L3) is zero if
L2 or L3 is of this form.

For the general case, we recall a theorem of Serre (cf. [FAC]):

Fact I.7 Let D be a divisor on S, and H a hyperplane section of S (for a
given embedding). There exists n >, 0 such that D + nH is a hyperplane
section (for another embedding). In particular we can write D - A - B,
where A and B are smooth curves on S, with A = D+nH and B - nH.

Now let L, L' be any two invertible sheaves. We can write L' _
Os(A - B), where A and B are two smooth curves on S. Noting that
s(L, L', Os(B)) = 0, we get

(L, L') = (L.Os(A)) - (L.Os(B)) .

Via Lemma 1.6, we deduce that (L.L') is linear in L. This completes the
proof of Theorem 1.4.

If D, D' are two divisors on S, we write D.D' for (Os(D).Os(D')).
The point of Theorem 1.4 is that we can calculate this product by replac-
ing D (or D') by a linearly equivalent divisor. Here are two applications
of this principle.

Proposition 1.8

(i) Let C be a smooth curve, f : S -+ C a surjective morphism, F a
fibre of f. Then F2 = 0.

(ii) Let S' be a surface, g : S --> S' a generically finite morphism of
degree d, D and D' divisors on S. Then g*D.g*D' = d(D.D').

Proof (i) F = f* [x], for some x E C. There exists a divisor A on
C, linearly equivalent to x, such that x V A, so that F = f *A. Since
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f *A is a linear combination of fibres of f all distinct from F, we have
F2=F.f*A=O.
(ii) As in 1.7, it is enough to prove the formula when D and D' are
hyperplane sections of S (in two different embeddings). There exists an
open set U in S' over which g is etale. We can move D and D' so that
they meet transversely and their intersection lies in U. It is then clear
that g*D and g*D' meet transversely and that g*Dfl g*D' = g-'(Df1D');
hence the result.

Examples 1.9

(a) S = IP'2
Pic IP2 = 7L: every curve of degree d is linearly equivalent to
d times a line. Let C, C' be curves of degrees d, d', and L,
L' distinct lines; since C - dL, C' - d'L', Theorem 1.4 gives
Bezout's theorem:

C.C' = dL.dL' = dd'(L.L') = dd' .

(b) S = P1 x IP1 = smooth quadric in IE - because of the Segre
embedding IP1 x IP1 P3, defined by

((X,T);(X',T')) H (XX',XT',TX',TT').

Let h, = {0} x IP' , h2 = lP1 x {O}, U = (1P1 x IID1) - h1- h2. The
open set U is isomorphic to the affine space A2, so every divisor
on U is the divisor of a rational function. Let D be a divisor on
P1 X IID1; then DIU = div(0) on U, so there exist integers n and
m such that

D = div(0) + mhl + nh2

and D =_ mh1 + nh2.
Thus Pic S is generated by the classes of h1 and h2. It is

clear that h1.h2 = 1. To find hi, by 1.4, we can replace h1
by the curve Coo = {oo} x P1 which is linearly equivalent to
h1i since h1 fl Coo = 0, we have hi = h,.Coo = 0. Similarly
h2 = 0. It follows that Os(hi) and Os(h2) generate PicS, and
the intersection product is given by h2 = h2 = 0, h1.h2 = 1.

Let r be a curve in IID1 x JP ; it is defined by a bihomogeneous
equation, i.e. homogeneous of weight m in the coordinates (X, T)
and of weight n in (X', T'); 17 is said to have bidegree (m, n), and
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r = mhl + nh2. If r' is a curve of bidegree (m', n'), Theorem 1.4
gives:

r.r' = (mhl + nh2).(m'hl + n'h2) = mn' + nm' .

1.10 Topological interpretation Here we use analytic sheaves on S,
and the ordinary topology. We write hOs for the sheaf of holomorphic
functions on S, considered as an analytic manifold.

Consider the exponential map e : hOs -> ho*
, given by e(f) _

exp(2ai f ). It is locally surjective (local existence of logarithms), and its
kernel clearly consists of locally constant integer-valued functions. In
other words there is an exact sequence

o - . hOS -e-> ho; -> 1
.

Let us study the derived long exact cohomology sequence. Since
HO (S' hOs) = C and H°(S, hOs) = C*, we can start with the H1:

O--rH'(S,7L)-H1(S,hOs)-H1(S,hO*)-H2(S,7G)-H2(S,hOs)

We know that H'(S, Os) is canonically identified with Pic S (strictly
speaking the analytic Pic, but from [GAGA] this is the same thing;
likewise H` (S, hOs) = H=(S, Os )). So the group PicS appears as an
extension:

0- T NS(S)->0

of two groups which are different in nature: T = H1(S, Os)/H1(S, Z)
is a divisible group (Hodge theory shows that H'(S,Z) is a lattice in
H'(S, Os), so T has a natural structure of complex torus); whereas
NS(S) C H2(S,Z) is a finitely generated group, called the Neron-Severi
group of S.

The map c : Pic S -} H2(S, Z) can be described topologically as fol-
lows. If C C S is an irreducible curve, the restriction H2(S, Z) -+
H2(C,7L) = Z gives a linear form on H2(S,Z), hence by Poincare
duality an element c(C) E H2(S, Z); we define c(D) for any divisor D
by linearity. Then c(D).c(D') = D.D' for divisors D, D' on S; in other
words, the intersection form comes from the bilinear form on NS(S)
induced by the cup product.

If f is a morphism from S to a smooth variety X, then f*c(S) _
c(f * D) for any divisor D on X. If X is a surface, the Gysin homomor-
phism f* : H2(S, 7L) -* H2(X, 7L) is defined, and f*c(D) = c(f* D) for
any D on S.
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Let us come back to our algebraic set-up. We recall without proof
Serre duality:

Theorem I.11 Let S be a surface, and L a line bundle on S. Let ws
be the line bundle of differential 2-forms on S. Then H2(S,ws) is a
1-dimensional vector space; for 0 < i < 2, the cup-product pairing

H' (S, L) 0 H2 ` (S,ws 0 L-1) - H2(S,ws) Z C

defines a duality. In particular, X(L) = x(ws ® L-')-

We can now prove the Riemann-Roch theorem.

Theorem 1.12 (Riemann-Roch) For all L E Pic S,

X(L) = X(Os) +
2

(L2 - L.ws) .

Proof Let us compute (L-1.L (9 ws 1). By definition of the intersection
product

(L-1.L O ws1) = X(Os) - X(L) - X(ws 0 L-1) + X(ws)

By Serre duality, X(ws) = X(Os) and X(ws (9 L-1) = X(L), and hence

(L-1.L ®ws 1) = 2(X(Os) - X(L))

Using the bilinearity of the intersection form gives at once the stated
formula.

Remarks I.13

(i) We will usually be writing these two theorems in terms of divisors;
set h'(D) = h'(S,Os(D)); furthermore, it is traditional to let
K denote any divisor such that Os(K) = ws, and to call K a
`canonical divisor'. Serre duality then gives h'(D) = h2-'(K -D)
for 0 < i < 2; and the Riemann-Roch theorem takes the form

h°(D) + h°(K - D) - h'(D) = x(Os) + 2(D2 - D.K) .

Usually we will not have any information about W(D), and we
will use Riemann-Roch as an inequality

H°(D) + H°(K - D) > x(Os) +
2

(D2 - D.K) .
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(ii) We have given the Riemann-Roch theorem in its classical form.
Nowadays one usually takes the Riemann-Roch theorem to mean
Hirzebruch's version, which is the conjunction of 1.12 and of the
important formula of M. Noether, which we will assume:

1.14 Noether's formula

X(Os)= 2(Ks+Xtop(S))

where Xtop(S) is the topological Euler-Poincarei characteristic of S:
Xtop(S) = E(- 1)'b=, with b; dimEH'(S,1R) .

Here is an important consequence of the Riemann-Roch formula.

1.15 The genus formula Let C be an irreducible curve on a surface:
S. The genus of C, defined by g(C) = hl(C,OC), is given by g(C) _
1 +

z
(C2 + C.K).

Proof The exact sequence

0-}Os(-C)->OS ->OC->0

gives X(OC) = 1-g(C) = X(Os)-X(Os(-C)); the formula then follows
from Riemann-Rock.

Remarks 1.16

(i) Note that the genus of C is not the same as that of its normal-
ization. More precisely, let f : N -> C denote the normalization
of C; we define a sheaf b on C by the exact sequence

0-+OC-'f*ON-*8--*0.

The cokernel b is concentrated at the singular points of C, so that,
Hl (C, 6) = 0, and H°(C, b) _ ®bx; b = 0 if and only if f is an

xEC
isomorphism, that is C is smooth.

The associated cohomology exact sequence gives

g(C) = g(N) + dim(bx)
xEC

Hence g(C) > g(N) if C is singular; in particular, the condition
g(C) = 0 implies that C is rational and smooth, that is C = P1.
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(ii) The genus formula can also be written 2g-2 = deg(K+C)le (see
1.6). If C' is smooth, we will now show that in fact
(Os(K + C))Ic = we (adjunction formula). For this, recall:

Fact 1.17 Let X and Y be two smooth varieties, and j : X c Y
an embedding; write I for the ideal of X in Y. The sheaf j*I =
I/I2 is then locally free of rank codim(X, Y) on X, and we have
an exact sequence

Going back to the case C C S, we have I = Os(-C), and this
sequence becomes

0 -+ Os(-C)1c QS11C -> WC - 0 .

Considering the exterior powers gives the claimed equality.

(If C is singular, we still have (Os(K + C))IC = wc, where w(; is
the dualizing sheaf of C. But we will not use duality theory for
singular curves.)

Historical Note 1.18
The material of this chapter is the foundation of the theory of sur-
faces; it was all known before 1900. Linear systems, well understood
on curves, were introduced in complete generality on sufaces by Max
Noether ([Ni]), and later studied very fully by Enriques ([El]). The
genus formula was proved by Noether in 1886 ([N2]), who used it to
deduce the Riemann-Roch theorem, although assuming implicitly that
h'(D) = h'(Os) = 0. The right form was given by Enriques in 1896
([El]), based on a result of Castelnuovo.

Noether's formula was proved in [Ni]: Noether projects the surface
birationally onto a singular surface in P1, and explicitly calculates the
3 invariants appearing in the formula; Xtop appears in the guise of the
`Zeuthen-Segre invariant'.

These geometers only considered effective curves; but the need to in-
troduce `virtual curves', that is, divisors, was quickly felt, especially
by Severi. The theory is then complete. However, Serre's introduc-
tion of coherent sheaves in 1955 ([FAC]) revolutionized the presentation,
turning most of the results into formalities. In 1956, Hirzebruch gen-
eralized the Riemann-Roch theorem to varieties of arbitrary dimension
([H]). His version contains Noether's formula; let us give a brief indica-
tion of his proof. A formal computation of characteristic classes gives
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Pi = K2 - 2Xtop(S), where pi is the first Pontryagin class of S. Cobor-
dism theory then shows that pl = 3r, where r is the signature of the
intersection form on H2(S,Z); indeed, the two sides of this equation are
cobordism invariants, and they agree on P2. Finally, Hodge theory gives
r = 2 + 4h2(Os) - b2 = 4X(Os) - Xtop(S). We deduce

K2 + Xtop(S) = 3r + 3Xtop(S) = 12X(Os)

Our presentation of the intersection form follows essentially [M1].



II
BIRATIONAL MAPS

Before beginning a classification, we have to decide when we are going
to consider two of the objects we are classifying to be equivalent. In
algebraic geometry, we can classify varieties up to isomorphism or, more
coarsely, up to birational equivalence. The problem does not arise for
curves, since a rational map from one smooth complete curve to another
is in fact a morphism. For surfaces, we shall see that the structure
of birational maps is very simple; they are composites of `elementary'
birational maps, the blow-ups. We should point out that the problem is
much more complex in higher dimensions.

11.1 Blow-ups
Let S be a surface and p E S. Then there exist a surface S and a
morphism e : S --+ S, which are unique up to isomorphism, such that

(i) the restriction of e to e-1(S - {p}) is an isomorphism onto
S - {p} P.

(ii) a-1(p) = E, say, is isorrsorphic to P1.

We shall say that e is the blow-up of S at p, and E is the exceptional
curve of the blow-up.

Let us run rapidly over the construction of e. Take a neighbourhood U
of p on which there exist local coordinates x, y at p (i.e. the curves a. = 0,
y = 0 intersect transversely at p). We can assume that p is the only point
of U in the intersection of these two curves. Define the subvariety U of
U x IID1 by the equation xY - yX = 0, where X, Y are homogeneous
coordinates on IP'. It is clear that the projection e : U U is an
isomorphism over the points of U where at most one of the coordinates
x, y vanishes, while c 1(p) _ {p} x IP1. We get S by passing U and
S - {p} along U - {p} U - e-1(p).

11
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It follows from this construction that the points of E can be naturally
identified with the tangent directions on S at p. Let e : S -+ S be the
blow-up of a point p, and consider an irreducible curve C on S that
passes through p with multiplicity m. The closure of e-1(C - {p}) in S
is an irreducible curve C on S, which we call the strict transform of C.

Lemma 11.2 e*C = C + mE .

Proof It is clear that e*C = C + kE for some k E H. Choose local
coordinates x, y in a neighbourhood U of p such that the curve y = 0
is not tangent to any branch of C at p. Then in the complete local ring
OS,p, the equation of C can be written as a formal power series

f = fm(x,y)+fm+l(x,y)+...

where the ft are homogeneous polynomials in x, y of degree k. The
integer m is by definition the multiplicity of C at p, and we have
fm(x, y) # 0. Now construct U C U x P1 as above; in a neighbour-
hood of the point (p, oo) of U, we can take the functions x and t = Y/X
as local coordinates. Then

E*f =f(x,tx)=xm[fm(1,t)+x.fm+l(1,t)+.]

and it follows at once that k = m.

Proposition 11.3 Let S be a surface, c : S --* S the blow-up of a point
p E S and E C S the exceptional curve.

(i) There is an isomorphism Pic S®7L -Z-+ Pic S defined by (D, it) i--r
e*D + nE.

(ii) Let D, D' be divisors on S. Then (e*D).(e*D') = D.D',
E.(e*D) = 0, E2 = -1.

(iii) NS(S) = NS(S)
(iv) Ks = e*KS + E.

Z [E].

Proof (ii) To establish the first two formulae, we can replace D and D'
by linearly, equivalent divisors (Theorem 1.4), and so suppose that p lies
on no component of D nor D'. The two formulae are now obvious.

Lastly, choose a curve C passing through p with multiplicity 1. Its
strict transform C meets E transversely at one point, which corresponds
in E to the tangent direction defined at p by C. Thus C.E = 1; since
C = e*C - E (Lemma 11.2) and e*C.E = 0, we get E2 = -1.

(i) Every irreducible curve on 5, other than E, is the strict transform
of its image in S; it follows that the map defined is surjective. Suppose
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that there is a divisor D on S such that e*D + nE = 0. Taking the
intersection product with E, we see that n = 0, and upon applying e*
we see that D = 0. This proves (i).

(iii) In view of the fact that e* and e* are defined on the Neron-Severi
groups, the same proof gives (iii).

(iv) Choose a meromorphic 2-form w on S such that w is holomorphic
in a neighbourhood of p and w(p) # 0. It is plain that away from
E the zeros and poles of c*w are those of w (via e). Thus div(e*w) =
e*div(w)+kE, and we must show that k = 1. This follows from the genus
formula (1.15) and from what we have proved already. Alternatively, the
reader can check that if w = dx A dy, where x, y are local coordinates at
p E S, then e*w = x dx A dt in local coordinates x, t at a point of E C S.

We can now start to prove the fundamental results in the birational
geometry of surfaces. We begin by recalling some facts.

11.4 Rational Maps
Let X, Y be varieties with X irreducible. A rational map X --+ Y is
a morphism from an open subset U of X to Y which cannot be extended
to any larger open subset. We say that ¢ is defined at x if x E U.

Suppose that X is a (smooth) surface. Then X - U = F is , a finite
set. (To see this, we can reduce at once to the case Y = IP" and then
to Y = V, i.e. to the case where 0 is a rational function. Then the
points where 0 is not defined are just those lying in the intersection of
the divisors of zeros and of poles of 0, and so form a finite set.) Here
are two applications of this result:

(a) Let C be an irreducible curve on S; then 0 is defined on C - F.
Thus we can speak of the image of C, denoted by '(C), by setting
4'(C) = 4'(C - F). Similarly we can write 4'(S) = 4'(S - F).

(b) Restriction induces an isomorphism between the divisor groups
of S and of S - F, which induces an isomorphism Pic S --r
Pic(S - F). Thus we can speak of the inverse image under ¢ of
a divisor D (or of a linear system P, or an invertible sheaf L) on
Y, which we denote by ¢*D (resp. 4'*P, ¢*L).

11.5 Linear Systems
For a divisor D on a surface S, we denote by IDI the set of all effective
divisors on S linearly equivalent to D. Every non-vanishing section
of Os(D) defines an element of IDI, namely its divisor of zeros, and
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conversely every element of IDI is the divisor of zeros of a non-vanishing
section of OS(D), defined up to scalar multiplication. Thus IDS can be
naturally identified with the projective space associated to the vector
space H°(OS(D)). A linear subspace P of IDI is called a linear system
on S; equivalently P can be defined by a vector subspace of H°(OS(D)).
We say P is complete if P = IDI. The dimension of P is by definition
its dimension as a projective space. A 1-dimensional linear system is a
pencil.

We say that a curve C is a fixed component of P if every divisor of P
contains C. The fixed part of P is the biggest divisor F that is contained
in every element of P. For any D E P, the linear system ID - Fl has no
fixed part.

A point p of S is said to be a base point or fixed point of P if every
divisor of P contains p. If the linear system P has no fixed part, then
it has only a finite number, say b, of fixed points; clearly b < D2, for
DEP.
II.6 Rational Maps and Linear Systems
Let S be a surface. Then there is a bijection between the following sets:

(i) {rational maps S --+ II"" such that O(S) is contained in no
hyperplane};

(ii) {linear systems on S without fixed part and of dimension n}.

This correspondence is constructed as follows: to the map 0 we asso-
ciate the linear system 0*1HI, where I H I is the system of hyperplanes in
IID" (see II.4). Conversely, let P be a linear system on S with no fixed
part and denote by P the projective space dual to P. Now define a
rational map 0 : S --+ P by sending x E S to the hyperplane in P
consisting of the divisors passing through x; 0 is defined at z; if and only
if x is not a base point of P.

Theorem 11.7 (elimination of indeterminacy) Let q5 : S --- X be a
rational map from a surface to a projective variety. Then there exists
a surface S', a morphism rl : S' -+ S which is the composite of a finite
number of blow-ups, and a morphism f : S' -+ X such that the diagram

is commutative.
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Proof Since X lies in some projective space, we may assume that X =
IPI. Moreover, we may suppose that ¢(S) lies in no hyperplane of I.
Then 0 corresponds to a linear system P C IDI of dimension m on S,
with no fixed component. If P has no base point, then 0 is a morphism
and there is nothing to prove.

Suppose then that P has a base point x, say, and consider the blow-
up e : Si -* S at x. Then the exceptional curve E occurs in the fixed
part of the linear system e*P C Ie*DI with some multiplicity k > 1;
in other words, the system P1 C Je*D - kEJ, obtained by subtracting
kE from each element of c*P, has no fixed component. Hence it defines
a rational map 01 : S1 --. P", which is identical to ¢ o e. If 01 is a
morphism, then we are done; if not, we repeat the process. Thus we get
by induction a sequence e" : S" -> S"_1 of blow-ups and a linear system
P" C J D" I on S with no fixed part, where D = c , Ds _ 1 - k E" .
II.3(ii) gives Dn = Dn_1 - kn < D,_1; since P has no fixed part,
Dn >, 0 for all n, and so this process must terminate. In other words,
we arrive eventually at a system P with no base points, which defines
a morphism f : S" --+ IP", as required.

Note that this proof gives an explicit construction of S' and f, and
shows that D2 is an upper bound on the number of blow-ups required.

Proposition 11.8 (universal property of blowing-up) Let f : X -> S
be a birational morphism of surfaces, and suppose that the rational map
f is undefined at a point p of S. Then f factorizes as

f :X S

where g is a birational morphism and a is the blow-up at p.

Lemma 11.9 Let S be an irreducible, but possibly singular, surface, S'
a smooth surface and f : S -> S' a birational morphism. Suppose that
the rational map f-1 is undefined at a point p E S'. Then f-1(p) is a
curve on S.

Proof We may suppose S to be affine (with f'1(p) # 0), so that there
is an embedding j : S '--, A". The rational map jo f-1 : S' ---, An
is defined by rational functions 91, ... , g", and one of them, say g1, is
undefined at x; i.e. 1 OS',p. Write g1 = u/v, with u, v E OS',v , u and
v coprime, and v(p) = 0. Consider the curve D on S defined by f * v = 0.
On S, we have f*u = x1 f*v, where x1 is the first coordinate function
onSCA". It follows that f*u= f *v = 0 on D, so that D = f-1(Z),



16 H. Birational Maps

where Z is the subset of S' defined by u = v = 0. Since u, v are coprime,
Z is finite; shrinking S' if necessary, we can assume that Z = {p}. Then
D = f-1(p) as sets.

Lemma II.10 Let 0 : S --+ S' be a rational map of surfaces such that
0-1 is undefined at a point p E S. Then there is a curve C on S such
that O(C) = {p}.

Proof The map ¢ corresponds to a morphism f : U -+ S' for some
open subset U C S. Let r c U x S' denote the graph of f, i.e. the set
{(u, f(u)) I u E U}, and let S1 denote the closure oft in S x S. S1 is
an irreducible surface, possibly with singularities. The projections q, q'
of S1 onto S, S' are birational morphisms and the diagram

is commutative.
Since 0-1 is undefined at p E S', q'-1 is undefined at p. Then by

Lemma 11.9 there is an irreducible curve C1 C Si with q'(("1) = {p}.
Since Si C S x S', q(C1) is a curve C in S with O(C) = {p}.

Proof of Proposition II Let g denote the birational map e -1 o f, and
set s = g-1. Suppose that g is undefined at a point q E X. By Lemma
II.10 there is a curve C C S such that s(C) = {q}; it follows that
e(C) = f (q), so that C = E and f (q) = p. Let OX,q be the local ring
of X at q, and q its maximal ideal. There is a local coordinate y on S
at p such that f * y E 9. Indeed, let (x, t) be a local coordinate system
at p; if g*t then it vanishes on g-1(p) with multiplicity 1, and so
defines a local equation for g-1(p) in OX,q. Thus g* x = u g*t for some
u E OX,q. Putting y = x - u(q)t, we see that g*y = (u - u(q)) g*t E y.

So let e be any point of E where the map s is defined. We have
s*g*y = e*y E e, and this holds for all e E E outside some finite set.
But it follows from the construction of the blow-up that e* y is a local
coordinate at every point of E except one, which is absurd.

Theorem 11.11 Let f : S -+ Sc be a birational morphism of surfaces.
Then there is a sequence of blow-ups ek : Sk -> Sk_1 (k = 1, ... , n) and
an isomorphism u : S -=+ Sn such that f = e1 o ... 0 en 0 u.
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Proof If f is an isomorphism there is nothing to prove; otherwise there
is a point p of So such that f-1 is undefined at p. By Proposition 11.8,
f factorizes as el o f1, where el is the blow-up of So at p and f1 : S , Si
is a birational morphism. If the result fails, then by induction we can
construct an infinite sequence of blow-ups ek : Sk -+ Sk_1 and birational
morphisms fk : S -+ Sk such that ek o fk = fk_1. Denote by n(fk) the
number of irreducible curves contracted to a point by fk. Since ek o fk =
fk_1i it is clear that any curve contracted by fk is also contracted by
fk_1i moreover, there is at least one irreducible curve C on Sk such that
fk(C) is the exceptional curve of ek. Hence C is contracted by fk_1 but
not by fk, and so n(fk) < n(fk_1); thus n(fk) < 0 for sufficiently large
k, which is absurd.

Corollary 11.12 Let 0 : S --+ S' be a birational map of surfaces. Then
there is a surface S and a commutative diagram

S
If \9

where the morphisms f, g are composites of blow-ups and isomorphisms.

Proof This follows at once from Theorems 11.7 and 11.11.

Remarks 11.13

(1) Let f : S --+ S' be a birational morphism of surfaces which is
a composite of n blow-ups (and an isomorphism). It follows
from II.1(iii) that NS(S) = NS(S') ®7L"; since the Neron-Severi
groups are finitely generated, we see that n is uniquely deter-
mined (i.e. independently of the factorization chosen). It also
follows that every birational morphism from S to itself is an iso-
morphism.

(2) The blow-up e S at a point p has also a universal property
`in the other direction'; every morphism f from S to a variety X
that contracts E to a point factors through S. The proof this time
is very easy; we reduce first to the case X affine, then X = A",
then X = A'. Then f defines a function on S - {p}. But every
function on S - {p} extends over S, and the result follows.
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11.14 Examples

(1) Let S C P" be a surface and p E S. The set of lines through p
can be identified with a projective space P". By associating
to every point q E S - {p} the line (q, p) we get a rational map
S ---* P", called the projection away from p. It is defined
outside p, and one checks easily that it extends to a morphism
S -> Pn-1, where S is the blow-up of S at p.

(2) Consider in particular a smooth quadric Q C V. Projection from
a point p E Q defines a morphism f : Q -* 2Z. The inverse image
of a point of P2, corresponding to a line .f passing through p,
consists of the other point of intersection of f with Q - except
if f lies in Q, in which case it is the whole of 2. Hence f is
a birational morphism which contracts the two generators of Q
passing through p (their strict transforms in Q are disjoint). Thus
we have a commutative diagram

(3)

Q

where f is (up to isomorphism) the blow-up of Pz at two distinct
points, and a is the blow-up of Q at p.
Let p, q, r be three non-collinear points of Pz and P the linear
system (of dimension 2) of conics passing through these points.
P defines a rational map 0 : P2 --a P = pz, called a quadratic
transformation. The system P has three base points p, q, r and
one can check that 0 extends to a morphism f : S -* P, where
S is the blow-up of P2 at p, q, r. Let x E P, corresponding to a
pencil of conics {AC1 + µC2 }, where C1, C2 E P; f -1(x) contains
the base points of this pencil on S, namely the points of C1 fl C2,
where C; is the strict transform of C. There are two possibilities:

(a) C1 fl Cz consists of four points, p, q, r and a fourth point s,
which is the only point of f -1(x).

(b) C1 and C2 have a common line .£; then C1 fl C2 = Q U {t},
where t E Pz. This can only happen if t is one of p, q, r
and $ passes through the other two, and so there are three
such pencils x, y, z E P. Hence 0 is birational and there is a
commutative diagram
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S

f
-------- -P = p2

0
where a is the blow-up of 1p2 at p, q, r, and f is, up to
isomorphism, the blow-up of P at x, y, z. The reader should
check that the map p2 --+ ]P2 given by

(X,Y,Z)'-' (X-1,1'-1,Z-1)

is of this type.

We can now compare the problem of the birational classification of
surfaces with that of classification up to isomorphism. For a surface S
let B(S) denote the set of isomorphism classes of surfaces birationally
equivalent to S. If S1, S2 E B(S), then S1 is said to dominate S2 if
there is a birational morphism Si - S2. In view of Remark II.13.(1)),
we can define an order on B(S).

Definition 11.15 A surface S is minimal if its class in B(S) is minimal,
so that every birational morphism S -+ S' is an isomorphism.

Proposition 11.16 Every surface dominates a minimal surface.

Proof Let S be a surface. If S is not minimal, there is a birational
morphism S --> Si that is not an isomorphism. If S1 is not minimal, then
there is a birational morphism S1 -> S2, and so on. Since rk NS(S) >
rk NS(Si) > rk NS(S2) > . . . (Remark 11.13.1) we eventually get a
minimal surface that is dominated by S.

The elements of B(S) are thus obtained by successive blow-ups of
minimal surfaces. We shall see later that apart from the ruled surfaces
(those birational to a product C x 21 for some curve C), every surface
has a unique minimal model. The classification problem for surfaces thus
falls into two parts; on one hand there are the ruled surfaces, which are
known birationally but whose minimal models we have yet to find, and
on the other we have the non-ruled surfaces, for which the `biregular'
classification is essentially the same as the birational classification. For
these it is therefore enough to classify minimal surfaces.

We shall say that a curve E C S is exceptional if it is the exceptional
curve of a blow-up e : S - S' (S' a smooth surface); hence an exceptional
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curve E is isomorphic to IP' and satisfies E2 = -1. By Theorem 11.11 a
surface is minimal if and only if it contains no exceptional curve.

We close this chapter with a harder theorem than the preceding ones,
which gives a numerical characterization of exceptional curves.

Theorem 11.17 (Castelnuovo's contractibility criterion) Let S be a sur-
face and E C S a curve isomorphic to P1 with E2 = -1. Then E is an
exceptional curve on S.

Proof The idea is to modify a hyperplane section of S so that the
morphism to Pn it defines remains an embedding outside E, while E is
contracted to a point. The most delicate point is then to check that the
image surface is smooth.

(a) Let H be a hyperplane section of S such that H'(S,Os(H)) = 0
(such an H exists, since by a general theorem of Serre [FAC], for any
hyperplane section H° we have H'(S,Os(nHo)) = 0 for all sufficiently
large n). Set k = H.E and H' = H + kE. Then Os(H)IE - OE(k),
Os(E)IE OE(-1) and Os(H')IE = OE, since invertible sheaves on
E are determined by their degree. Choose a section s of Os(E) whose
divisor of zeros is E. For 1 < i < k,. consider the exact sequences

0-*Os(H+(i-1)E)-+Os(H+iE)-->OE(k-i)->0 .

Since H'(E, OE(r)) = 0 for r 0, we get long exact sequences

0 -* H°(S, Os(H + i - 1)E) -* H°(S, Os(H + iE))
H°(E, OE(k - i)) Hl (S, Os (H + (i - 1)E))

-* H'(S,Os(H+iE)) -* 0,

for 1 i < k. We see by induction on i that H1(S,Os(H + iE)) = 0
for 1 i < k and that the restriction map ri is surjective.

Choose a basis s0, ... , s,, of H°(S, Os(H)) and, for 1 < i < k, ele-
ments ai,0, ... , ai,k_i of H°(S, Os(H+iE)) whose restrictions to E form
a basis of H°(E,OE(k - i)). Then

{SkSo,... )s
k sn, sk-1a1,0, ... )sk-1al,k-1, ... , sak_1,1i ak,o}

is a basis of H°(S,Os(H')). Let 0 : S --+ P''` denote the rational map
defined by the corresponding linear system. Since the map defined by
{So i ... , sn } is an embedding, the restriction of 0 to S - E is an embed-
ding. Since ak,o induces a non-zero constant function on E, we see that
0 is defined everywhere and contracts E to the point p = (0, ... , 0, 1).
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Let S' denote the (possibly singular) surface 4i(S); we thus have a mor-
phism c : S --p S' which is an isomorphism away from E and contracts
E to the point p E S'. By Theorem 11.11 it is enough to show that S' is
smooth at p.

(b) Let U C S be the open neighborhood of E defined by ak,o # 0.
Define sections x, y of Ou(-E) by x = ak_1,o/ak,o, y = ak-i,i/ak,o;
their restrictions to E form a basis of H°(E, OE(l)). Hence, shrinking
U if necessary, we can suppose that at no point of U do x, y both vanish.
Thus they define a morphism h2 : U - + P'. The functions sx, sy on U
define a morphism hl : U -> A2; then (hl, h2) : U -> A2 X IID' factors
through A2, the blow-up of A2 at the origin (considered as a subvariety
of A2 X IP'; see 11. 1). The morphism h : U -> A2 has the following
properties:

(i) h induces an isomorphism from E to the exceptional curve on A2;

(ii) for all q E E, h is etale in a neighbourhood of q.

(i) follows from the choice of x, y. To prove (ii), we must show that
the inverse image under h of a system of local coordinates at h(q) is a
system of local coordinates at q. Let u, v (resp. U, V) denote the natural
coordinates on A2 (resp. IP'); recall that A2 is defined in A2 x IP' by the
equation uV - vU = 0. We can suppose that x(q) = 0 and y(q) = 1, so
that h(q) has coordinates u = v = U = 0, V = 1; take v and U/V as
local coordinates at h(q). We have h*v = sy and h*(U/V) = x/y; the
first vanishes on E to order 1, while the second (restricted to E) is a
local coordinate on E at q. Thus we have a local coordinate system on
S at q, which proves (ii).

(c) Finally, we shall use the classical topology of analytic varieties and
show that with respect to this there is a neighbourhood U of E such
that h induces an isomorphism from U to a neighbourhood V of the
exceptional curve of A2. First note that this will prove the theorem. By
construction, the functions sx, sy on U come from functions on C(U); in
other words, there is a commutative diagram

U -p A2
el In

C(U) - A2

where 77 is the blow-up of A2 at the origin and h is a morphism (e(U)
is open by the properness of e). If h is an isomorphism from U to V,
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then h is an isomorphism form e(U) to e(V ); for e o h factors through
a morphism rl(V) --> e(U) (Remark 11.13 (2)), which is inverse to h.
Since q(V) is open in A2, e(U) is smooth; i.e. S' is smooth at p. So the
theorem will follow from the next result:

Lemma HAS Let f : X -i Y be a continuous map of Hausdorfspaces
and K C X a compact subset. Suppose that

(i) flK is a homeomorphism;
(ii) for all k E K, f is a local homeomorphism near k.

Then there is a neighbourhood U in X of K and an open subset V of Y
such that f induces a homeomorphism U Z V.

Sketch of Proof Shrinking X as necessary, we can assume that f is a
local homeomorphism at every point of X.

(a) Set S2 = {(x, y) E X X X I f (x) # f (y) or x = y}. The fact that
f is a local homeomorphism means that S2 is open in X x X, and by
hypothesis (i), K x K C Q.

(b) Let K be a compact subset of a space X and 0 a neighbourhood in
X x X of K x K. Then there is a neighbourhood U in X of K such that
U x U C 0. Indeed, for all k E K one constructs by compactness an
open set Uk x Vk with {k} x K C Uk x Vk C Q. Then a finite number
of these sets, say for k = k1,...,k,,, cover K x K, and the open set
U = (U Uk;) n (n Vj ,) does the job.

E 1

Now (a) and (b) together imply that flu is injective, and so is a
homeomorphism.

Historical Note 11.19
The birational point of view was introduced into the geometry of surfaces
in the articles already quoted of Noether, and then those of Enriques
([N1], [El]). Noether used a definition of exceptional curve ('ausgezeich-
net') slightly different from ours; his idea was modified by Enriques, who
introduced the classical terminology (from which we have deviated); ex-
ceptional curves are said to be `of the first kind', and `exceptional curves
of the second kind' are those contracted by a rational map (see Exer-
cise 11.3). These latter only exist on ruled surfaces; they play a very
different role from that of exceptional curves, which is why we have not
considered them here.

In 1901 Castelnuovo and Enriques ([C-E]) proved the contractibil-
ity criterion known as Castelnuovo's (their proof is more or less that
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given here) and at the same time proved that non-ruled surfaces have a
minimal model, obtained by contracting a finite number of exceptional
curves. Although blow-ups appear in their construction, they are not
given prominence; the structure theorem for birational maps seems only
to have been observed much later by Zariski ([Z1, p. 538], 1944). Zariski
then gave a complete clarification of the theory of birational maps and
minimal models (see e.g. [Z2]); we have followed his ideas, as they are
described in [Shl].

Exercises 11.20

(1) Let C be an irreducible curve on a surface S. Show that there
is a morphism S -+ S consisting of a finite number of blow-ups
such that the strict transform of C in S is smooth. (Show that
blowing up a singular point of C strictly decreases its arithmetic
genus.)

(2) Let C be an irreducible curve on S, p E C and C the strict
transform of C on the blow-up with centre p. The proximate
points of p on C (or infinitely near points of order 1) are by
definition the points of C lying over p; their multiplicity is by
definition their multiplicity on C. The infinitely near points of
order it are the proximate points of the infinitely near points of
order (n - 1).

(a) Show that the multiplicity in of C at p satisfies

m=C.E=Emx(CfE)>, Emx(C) ,

where the sum runs through the proximate points x E C fl E;
find an example with strict inequality.

(b) If C, C' are distinct irreducible curves, show that

mp(C fl c') = E rnx(C).m,, (C) ,

where x runs over the infinitely near points of p on C and C.
(c) Let N denote the normalization of C. Show that

g(C) = g(N) + I ini(mz - 1) ,

where rnx are the multiplicities of the points of C - including
the infinitely near points.
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(3) We say that an irreducible curve C on S is of the second kind if
there is a birational map S --+ S' to a smooth surface S' such
that q5(C) is a point, and is not defined on the whole of C.

(a) Show that C is a (possibly singular) rational curve, and that
with the notation of (2)(c) we have

C2m; -1+n,
where n 0 and n > 0 if C is smooth.

(b) Let C be a rational curve on S with C2 >, E ms - 1 (and
also C2 > 0 if C is smooth). Show that C is a curve of the
second kind.



III
RULED SURFACES

Definition III.1 A surface S is ruled if it is birationally equivalent to
C x IP1, where C is a smooth curve. If C = 1?1, S is said to be rational.

Examples 111.2

(a) C x P' is a ruled surface.
(b) More generally, let E be a rank 2 vector bundle over the curve C.

Consider the projective bundle PC(E) associated with E; it is a
surface fibred over C, such that the fibre over a point x E C is
the projective space associated to the vector space E. Since E
is locally trivial, lPc(E) is isomorphic (locally over C) to C x P1,
so it is a ruled surface.

(c) In Chapter IV we will see numerous examples of rational surfaces.

In order to determine the minimal models of ruled surfaces, we will
need an auxiliary notion:

Definition 111.3 Let C be a smooth curve. A geometrically ruled sur-
face over C is a surface S, together with a smooth morphism
p : S -* C whose fibres are isomorphic to IP'.

Examples 111.2(a) and (b) are geometrically ruled surfaces. It is not
obvious a priori that a geometrically ruled surface is ruled. This will
follow from the next theorem:

Theorem III.4 (Noether-Enriques) Let S be a surface, p a morphism
from S to a smooth curve C. Suppose there exists x E C such that p
is smooth over x and the fibre p-1(x) is isomorphic to 1P1. Then there
exists a Zariski open subset U of C containing x and an isomorphism
from p -'(U) to U x IP1 such that the diagram

25
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U

is commutative. In particular S is ruled.

We begin with an obvious remark, which will often be useful:

Useful Remark 111.5 Let D be an effective divisor, C an irreducible
curve such that C2 > 0. Then D.C >, 0.

Proof Write D = D' + nC, where D' does not contain C, and n > 0;
then D.C = D'.C + nC2 0.

Proof of Theorem III.4
Step 1: H2(S,OS) = 0.

Put F = p-1(x). We have F2 = 0 and F.K = -2 (I.8(i) and the
genus formula). Suppose H2(S, OS) 54 0; then I K I contains an effective
divisor D (by Serre duality, I.11). We have D.F = -2, but also D.F 3 0
by the useful remark, a contradiction.

Step 2: There exists a divisor H of S such that H.F = 1.
Let f be the class of F in H2(S,Z). Since H2(S,OS) = 0, the map

Pic(S) -+ H2(S, Z) is surjective (I.10). Thus it suffices to show that
there exists a class h E H2(S,7L) with h. f = 1. As a runs through
H2(S, 7L), the set of integers (a. f) is an ideal in Z, of the form dZ (d > 1).
The map a '-1 d(a. f) is a linear form on H2(S,7L); now Poincare duality
says that the cup product H2(S,7L) 0 H2(S,7L) -. H4(S,Z) Z Z is a
duality, in other words that the associated map

H2(S,Z) --r Hom(H2(S,7L),Z)

is surjective, with kernel equal to the torsion subgroup. Hence there
exists an element f' E H2(S, Z) such that

(a.f')= 1(a.f) for all aEH2(S,7L),

so that f = df' modulo torsion in H2(S,Z).
Notice that if k is the class of K in H2(S,Z), the integer a2 + a.k is

even for every divisor class a (hence in this case for all a E H2 (S, Z));
for the expression is linear in a (mod 2), and is even for irreducible a
by the genus formula. Since f2 = 0 and f.k = -2 we have f'2 = 0 and
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Step 3: Consider the exact sequence

0-*Os(H+(r-1)F)-->Os(H+rF)-OF(1)--*0 (r E Z).

It gives the long exact cohomology sequence

H°(S,Os(H+rF))-'* H°(F,OF(1))-H1(S,Os(H+(r-1)F))

b' * H1(S, Os(H -- rF)) -* 0 .

The sequence of quotient spaces H'(S, Os(H+rF)) must become sta-
tionary for r sufficiently large; so there exists r such that b, is bijective,
and a, is surjective. Let V be a vector subspace of H°(S, Os(H+rF)) of
dimension 2 such that ar(V) = H°(F,OF(1)); let P be the correspond-
ing pencil. It may have fixed components, but they must be contained
in fibres F...... Fx,, of p distinct from F (since P has no base points
on F). Similarly any base points of the mobile part of P are contained
in fibres Fx,k+l , ... , F 1 distinct from F. Denote by FF,}1, ... , F,,,, those
fibres of p which are reducible. Put U = C - {x,.. . , x,,,}. The pencil
P', i.e. P restricted to U, is base-point free. Every curve Ct in P' is the
union of a section of p and possibly a number of fibres; but in fact Ct
contains no fibres, otherwise it would meet the curve Ct, (t # t'), and P'
would have base points. Hence the divisors of P' are all sections (Ct)tEr1
of the fibration p. Since the pencil P' is without base points, it defines a
morphism g : p-1(U) -* IP", with fibre g-1(t) = Ct. Consider the mor-
phism h = (p,g) from p -'(U) to U x l(D". Since h-1((y,t)) = Fy fl Ct, h
is an isomorphism, which completes the proof of the theorem.

Remark 111.6 The following is a more highbrow proof of Step 3: Set
E = p*(Os(H)); let U be an open subset of C over which p is smooth. It
follows from general theorems on proper morphisms that EAU is locally
free of rank 2, and that the natural map p*E Os(H) is surjective
over p-1(U). We obtain a U-morphism p-1(U) -* IPU(E) which is an
isomorphism fibre by fibre, and the result follows. This stage is purely
formal; the important part of the proof is Step 2, which is usually proved
by quoting Tsen's theorem.

Proposition 111.7 Every geometrically ruled surface over C is C-iso-
morphic to lPc(E) for some rank 2 vector bundle over C. The bundles
1P' (E), 1P' (E') are C-isomorphic if and only if there exists a line bundle
L on C such that E' - E ®L.
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Proof The Noether-Enriques theorem shows that the fibration p : S ->
C is locally trivial (i.e. there is a cover (Uµ) of C and Uµ-isomorphisms
tµ : p-1(Uµ) Z U. x IP1). By well-known formalism (see for example
[H, Chapter I, 3.2]), the set of isomorphism classes of such bundles can
be identified with the cohomology set H'(C, G), where G is the sheaf of
(non-commutative) groups defined by

G(U) = Autu(U x IP1)
= {morphisms of U into the algebraic group PLG(2, C)}

(recall the principle of this identification: by composing the trivialisa-
tions tµ and t-1 restricted to p-1(Uµ fl u,\), we obtain a tech 1-cocycle
(µ, A) -, gµ,\ E G(U, fl U,,), and hence a class in H1(C,G)).

Write G = PGL(2, Oc). From the exact sequence

1 -> C* -> GL(2, C) -r PGL(2, C) 1

we obtain an exact sequence of sheaves

1 -+ O --> GL(2, Oc) --> PGL(2, Oc) - 1 ,

where GL(2, Oc) is the sheaf of 2 x 2 invertible matrices with coefficients
in Oc. We then get an exact sequence of cohomology sets

H1(C,Oc) -+H1(C,GL(2,Oc)) - H1(C,PGL(2,Oc)) - H2(C,Oa)

where H1(C, GL(2, Oc)) is the set of isomorphism classes of rank 2 vec-
tor bundles on C; it is easy to see that the group H1(C,Oc) = PicC
acts on this set by tensor product. The last assertion of the proposi-
tion follows from the exact sequence; so does the first if we know that
H2(C, O*) = 0. Now there are two good reasons (at least) for this:
the first is that since dimC = 1, we have H2(C,F) = 0 for all sheaves
on C (with the Zariski topology; cf. [FAC]); the second is that any-
way H2(T, OT) = 0 for every smooth variety T, because of the exact
sequence

1-SOT--*KK->Div(T)->0

which defines a 2-step resolution of OT by flasque sheaves.

Lemma 111.8 Let S be a minimal surface, C a smooth curve, p : S --> C
a morphism with generic fibre isomorphic to IP'. Then S is geometrically
ruled by p (i.e. C-isomorphic to a projective bundle lPc(E)).

Proof Let F be a fibre of p; then F2 = 0, F.K = -2. First assume that
F is irreducible. The argument (111.4, Step 2) shows that F cannot be
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multiple; the genus formula (and Remark I.16(1)) then shows that F is
isomorphic to IID1, and that p is smooth over F. Thus it suffices to show
that F cannot be reducible.

Lemma 111.9 Let p be a surjective morphism from a surface to a
smooth curve with connected fibres, F = niCi a reducible fibre of p.
Then Ci < 0 for all i.

Proof We have niC; = Ci.(F - E njC1) . Now C1F = 0 since we
i #i

can replace F by another fibre (cf. I.8(i)), (Ci.C,) > 0 for i # j, and
(Ci.C;) > 0 for at least one j because F is connected.

Conclusion of Proof of 111.8 Let F = E niCi be a reducible fibre; the
genus formula and Lemma 111.9 show that K.Ci > -1, with equality if
and only if Ci = -1, g(Ci) = 0; these two conditions imply that Ci is
an exceptional curve, which is impossible under our hypothesis. Thus
K.Ci > 0 for all i, and K.F > 0, which contradicts K.F = -2.

Theorem III.10 Let C be a smooth irrational curve. The minimal
models of C x IP1 are the geometrically ruled surfaces over C, that is the
projective bundles Fc(E).

Proof We will show that a geometrically ruled surface p : S -+ C
contains no exceptional curves. Such a curve E cannot be a fibre of
p since E2 = -1; so we must have p(E) = C, implying C is rational,
which contradicts the hypothesis.

Now let S be a minimal surface, ¢ a birational map from S to C x IP',
and q the projection from C x lID' to C. Consider the rational map q o ¢ :
S --+ C; by the theorem on elimination of indeterminacy (11.7), there
exists a commutative diagram

S--------- -'-
qoO

where the ei are blow-ups, and f is a morphism. We can assume that
n is the minimal number of blow-ups necessary for a diagram of this
type to exist. Suppose n > 0, and let E be the exceptional curve of
the blow-up en; since C is not rational, f (E) is necessarily reduced to
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a point, so f factorizes as f'oe1, (Remark II.13.(2)), contradicting the
minimality of n. It follows that n = 0, and qoo is a morphism with
generic fibre isomorphic to V. Lemma 111.8 completes the proof.

Notice that this proof cannot be applied to rational surfaces. We
postpone the search for minimal rational surfaces until Chapter V, and
try for now to summarize the classification of geometrically ruled sur-
faces over a given curve C. By Proposition III.7, this is the same as
classifying the rank 2 vector bundles on C, up to tensor product with
a line bundle. The theory of vector bundles on a curve is delicate, but
can be taken as well understood - cf. [R]. We will content ourselves with
some elementary remarks showing that there are `lots' of minimal ruled
surfaces.

Let C be a smooth curve, E a rank 2 vector bundle on C. We identify
E with its sheaf of local sections, which is locally free of rank 2. Write
deg(E) = deg(A2E), hi(E) = dimH`(C, E), X(E) = h°(E) - hl(E).

Observe that deg(E ® L) = deg(E) + 2 deg(L) for L in Pic C, which
allows us to alter deg(E) to any value of the same parity.

Lemma 111. 11

(i) There exists an exact sequence 0 -* L -* E -+ M -> 0 with L, M
in Pic C.

(ii) If h°(E) >, 1, we can take L = Oc(D), with D 3 0.
(iii) If h°(E) >, 2 and deg(E) > 0, we can assume D > 0.

Proof Note that we can assume h°(E) > 1 in proving (i): we can replace
E by E ® N, and for suitable N E Pic S this bundle admits sections.

Assume then that E admits a non-zero section s; we obtain from it
a non-zero morphism s from the dual E of E to Oc. Its image is an
ideal of Oc, that is a sheaf Oc(-D), where D is an effective divisor
of C. The kernel of the surjective morphism k -> Oc(-D) is thus an
invertible sheaf. Taking duals gives (i) and (ii).

It is clear from this construction that D is the divisor of zeros of a
section s. To prove (iii), it therefore suffices to show that there exists
a non-zero section of E which vanishes at some point. Let s, t be two
linearly independent sections; the section s A t of A2E must vanish at
some point p of C (since deg(E) > 0), which means that there exist p,
A (not both zero) such that ps(p) + At(p) = 0. So the section ps + At
vanishes at p, hence the result.
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Corollary 111.12 (Riemann-Roch for rank 2 vector bundles) We have

x(E) = deg(E) + 2 - 2g(C) .

Proof By III.11(i) and Riemann-Roch for invertible sheaves, we have:

X(E) = X(L) + X(M) = deg(L) + deg(M) + 2(1- g(C))
= deg(E) + 2 - 2g(C).

Remark 111.13 The geometrical interpretation of III.11(i) is that the
fibration p : lc(E) -> C admits a section (compare 111. 17 later on). This
can be shown directly: the fibration p, being locally trivial, admits a local
section, that is a rational map s : C --+ IFc(E) such that pos = Idc.
But every rational map from C to a complete variety is a morphism,
hence the result.

111.14 Extension of sheaves
Given the extension of M by L in III.11 (i), it is natural to ask if it
is trivial, in other words if E = L ® M. Equivalently, does the exact
sequence

O -L®M-1-+ E®M-1-->Oc->0

split?; but this is the case if and only if it has a section, that is if there
exists a section of H°(C, E 0 M-1) which maps onto 1 E H°(C, Oc).
Using the exact cohomology sequence

H°(C, E(D M-1) H°(C,Oc) a H1(C, L 0 M-1)

that would mean 0(1) = 0. The class 0(1) E H'(C, L 0 M-1) is called
the class of the extension L E -* M; its vanishing is necessary and
sufficient for the extension to be trivial.

More generally, it is easy to see that two extensions are isomorphic if
their classes are proportional. In particular if h1(L (D M-1) = 1, there
is - up to isomorphism - only one non-trivial extension of M by L.

Proposition 111. 15

(i) Every rank 2 vector bundle on lP is decomposable, i.e. the sum of
two invertible sheaves. In particular every geometrically ruled sur-
face over 11 y1 is isomorphic to one of the surfaces

Fn = 1pr (OPT ®Or (n)) for n > 0.
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(ii) Every rank 2 vector bundle on an elliptic curve is either decom-
posable, or isomorphic to E ® L, where L E Pic C and E is one
of the following bundles:
either the non-trivial extension of Oc by Oc;
or for any p E E, the non-trivial extension of Oc(p) by Oc.

(iii) For every curve C of genus g, there exist (open) varieties S and
families of rank 2 vector bundles parametrized by S : (E,),ES,
such that A2E, is constant, E, is indecomposable, and E, E,,
for s # s'; such families can be found with dim S > 2g - 3.

(The right dimension is in fact 3g - 3; we simply wish to show that
there are `more' indecomposable than decomposable bundles.)

Proof

(i) Let E be a rank 2 vector bundle on W"; by replacing E by E ® L,
we can assume that d = deg(E) = 0 or -1. By Riemann-Roch
we then have h°(E) > d+2 > 1, so there exists an exact sequence

0-+Opi (k)->E->Opi (d-k)->0

with k > 0 (III.11(ii)). The class of this extension lies in
H' (Pl, Ors (2k - d)) which is always zero, hence (i).

(ii) Let E be a rank 2 vector bundle on an elliptic curve C; we may
assume deg(E) = 1 or 2, so that h°(E) > 1 by Riemann-Roch.
Thus there exist invertible sheaves Lk and Md_k, of degrees k > 0
and d - k , and an exact sequence:

0-+Lk -+E->Md_k --+ 0.

Moreover if d = 2 we can assume k > 1 (111. 11 (iii)), and if k = 0,
L° = Oc.
The class of the extension lives in H'(C, Lk ® Ma k), which is
zero unless either

d = 1, k = 0: then E is the extension of a line bundle of degree
1 by Oc;

or

d = 2, k = 1 and L®Mi 1 = Oc: then E®L1 1 is the extension
of Oc by Oc.

This proves (ii). We note that the bundle Ep (resp. E°) which is
an extension of Oc(p) (resp. Oc) by Oc is indecomposable: this
follows at once from the fact that it contains Oc as a sub-bundle,
and h°(Ep) = h°(Eo) = 1. Moreover, we leave it as an exercise
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to see that Eq = Ep ® L, where L2 = Oc(q - p), so that up to
isomorphism there are only 2 geometrically ruled surfaces over C
corresponding to indecomposable bundles.

(iii) Pick an invertible sheaf L on C with degree g - 1 and h°(L) = 0.
For S we take an affine hyperplane of H1(C, L-') not passing
through the origin. With each s E S we associate the bundle
defined by the extension

(Es) 0->Oc->E,->L->0
of class s. Then (E,),ES forms a family of bundles over C pa-
rameterized by S. Since h°(E,) = 1, the extension E, is uniquely
determined by the bundle E,: it follows that E, $ E,,, for s # s,
and that E, is indecomposable.

Remark 111.16 We have studied geometrically ruled surfaces up to
C-isomorphism; it is also natural to consider the situation up to isomor-
phism. In Chapter IV we will look at rational surfaces; here we assume
C # P'. Then for every isomorphism v : IIDC(E) .Z lPc(E'), there is an
automorphism u of C and a commutative diagram

Pc(E) Pc(E')

C -> C .

In fact we take u = p'vs, where s is an arbitrary section of p. Since
C is not rational, v maps fibres of p to fibres of p'; it follows easily that
up = p'v.

Thus the surfaces Pc(E) and Pc(E') are isomorphic if and only if
there exists an automorphism u of C, and a line bundle L on C, such
that u* E' E 0 L.

We are now going to describe the Picard group of geometrically ruled
surfaces.

111.17 Projective bundles Let S = PC(E), p : S -* C its structural
morphism. The bundle p* E on S has a line bundle N as a sub-bundle in
a natural way: above a point s E S, corresponding to a line D C Ep(,),
we have N, = D. The bundle OS(1), often called the tautological bundle
of S, is defined by the exact sequence

0--->N-->p*E--u+ OS(1)--+0.
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Let T be a variety, f : T -> C a morphism. To each C-morphism
g : T -. Fc(E) we associate the line bundle L = g*Os(l) and the
surjective morphism g*u : f*E --> L. Conversely, given a line bundle L
on T and a surjective morphism v : f*E - L, we define a C-morphism
g : T -+ PP(E) by associating to a point tin T the line Ker(vt) C Ef(t).
These two constructions are inverse to each other.

In particular, giving a section s : C - S of p is equivalent to giving a
quotient line bundle of E.

Proposition 111.18 Let S = ]PC(E) be a geometrically ruled surface
over C, p : S --* C the structure map. Write h for the class of the sheaf
Os(l) in PicS (or in H2(S,7L)). Then

(i) Pic S = p* Pic C ®7Lh.
(ii) H2(S,7L) = 7Lh ® 7Lf, where f is the class of a fibre.
(iii) h2 = deg(E).
(iv) [K] = -2h + (deg(E) + 2g(C) - 2) f in H2(S, Z).

Proof First we prove (i). Let F be a fibre of p; since F.h = 1, every
element of Pic S can be written D + mh, where D.F = 0; so it is enough
to prove that D is the pull-back of a divisor on C. Put D = D + nF;
then Dn = D2, Dn.K = D.K - 2n, and h°(K - Dn) = 0 whenever n is
sufficiently large. The Riemann-Roch theorem then gives that h°(Dn)
n + const., so that the system ID,, I is non-empty for sufficiently large n.
Let E E IDn I; since E.F = 0, every component of E is a fibre of p, so E
is the inverse image by p of a divisor on C.

Part (ii) can be proved either directly from the topology (using exact
sequences of S2-bundles), or from part (i): since H2(S, Z) is a quotient of
Pic S (cf. Theorem III.4, Step 1) and two points of C have the same co-
homology class in H2 (C, 7L) = Z, H2 (S, 7L) is generated by the elements
f and h; these are linearly independent since f2 = 0, f.h = 1.

To prove (iii), we will make use of the following result: let E' be a
vector bundle on a surface S such that there exists an exact sequence

0--+L--+E' -+M---+O with L,MEPicS;

then

L.M = L-1 M-1
= X(Os) - X(L) - X(M) + X(L 0 M)

X(Os) - X(E') + X(A2E') .

(by I.4)
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In particular, the number (L.M) depends only on E'; we will denote it
by c2(E').

We now apply this to the bundle p*E on S. Since there is an exact
sequence 0-->L->E->M->0,we have c2(p*E)=(p*L.p*M)=0.
On the other hand, the exact sequence

0- N-+ p*E--+ Os(l) ,0

gives h.[N] = 0. From this exact sequence we obtain an isomorphism
N ® Os(1) = p* A2 E, whence [N] = -h + p* e, writing e for the class of
A2E in Pic C. It follows that h2 = h.p*e = deg(E).

From (ii) we have [K] = ah + bf in H2(S, Z), with a, b E 7G; also
a = K. f = -2. Lets : C -> S be a section of p such that [s(C)] = h + rf
in H2(S, Z) for some integer r. The genus formula for s(C) can be
written:

2g(C) - 2 = (h+rf)2+(h+rf)(-2h+bf) =-deg(E)+b

which gives (iv).

Numerical Invariants
We end this chapter with a calculation of the numerical invariants of a
ruled surface. To every surface S we can associate several integers; for
example, the algebro-geometric invariants:

q(S) = h1(S,O5)
p9(S) = h2(S, Os) = h°(S, Os(K)) (by Serre duality)
P,,(S) = h°(S, Os(nK)) for n i 1.

The P are called the plurigenera of S, p9 = P1 is the geometric genus,
and q is the irregularity of S. We have x(Os) = 1 - q(S) + p9 (S).

We can also consider the topological invariants:

b;(S) = dimaH'(S,R) , xtop(S) _ E(-1)'b;(S)
4

We have b° = b4 = 1 and b3 = b1 by Poincare duality, so that xtop(S) _
2 - 2b1(S) + b2(S).

When there is no ambiguity about S we simply write q, p9, P, b;.
These invariants are related by the following equation, which comes from
Hodge theory ([W]) and which we state without proof.

Fact 111.19 q(S) = h°(S,Sts) = Zb1(S).
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Recall that we are also assuming Noether's formula (1.14):

x(Os) = 12(Xt0P(S) + Ks)

Proposition 111.20 The integers q, p9, P are birational invariants.

First we show the birational invariance of q(S) = h°(S, QS).
Let : S' --+ S be a birational map; it corresponds to a morphism
f : S' - F S, where F is a finite set. For every 1-form
w E H°(S, fs), the form f *w defines a rational 1-form on S', with
poles lying in F; since the poles of a differential form are divisors, f *W
is in fact holomorphic on the whole of S'. This enables us to define an
injective map 0* : H°(S, cz) - H°(S',Q1,); since ¢ is birational, 0*
has an inverse, so q(S) = q(S').

The birational invariance of p9 and P is proved in the same way.

We remark that K2 and b2 are not birational invariants (cf. Proposi-
tion 11.3).

Proposition 111.21 Let S be a ruled surface over C; then

q(S)=g(C); p9(S)=0; for all n> 2.

If S is geometrically ruled, then

K' = 8(1 - g(C)) , b2(S) = 2

In Chapter VI we will see that the condition P = 0 for all n char-
acterizes the ruled surfaces. To prove 111.21, we will use the following
general fact:

Fact 111.22 Let X, Y be two varieties, p, q the projections of X x Y
on X, Y.

(i) If F (resp. G) is a vector bundle on X (resp. Y), the canonical
homomorphism H°(X, F) 0 H°(Y, G) --r H°(X x Y, p*F 0 q* G)
is an isomorphism.

(ii) I f X and Y are smooth, then 0 'y _- p*11x ® q*QY

We briefly recall the proof of (i): the projection formula (whose proof
is elementary) gives an isomorphism from p*(p*F (9 q* G) to F 0 p*q*G;
the same formula applied to the sheaf q*G on U x Y, for any open subset
U of Y, shows that p*q*G = Ox Oc H°(Y, G); (i) follows immediately.
Assertion (ii) comes immediately from the following fact: if x1,. .. , xp
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(resp., yl, ... , yq) is a system of local coordinates for X (resp. Y), then
X1, ... , xp, y1 i ... , yq is a system of local coordinates for X x Y.

Proof of 111.21 To calculate the birational invariants of S, we may
assume that S = C x V. Then by 111.22 we have:

H°(S, Sts) 25H°(C,wc) ®H°(IP", wri), hence q(S) = 9(C);
H°(S,w®") = H°(C,w®") 0 H°(IP1,An) = 0;

hence P"(S) = 0 (n > 1). If S is geometrically ruled, the calculations of
K2 and b2 follow easily from 111.18.

Historical Note 111.23
The Noether-Enriques theorem was proved by Noether ([N3]) for ratio-
nal surfaces, and by Enriques in the general case ([E2]).

Theorem 111.10 is due to Severi ([Sel]). The `arithmetic genus' pa =
pg - q and the geometric genus py were introduced by Clebsch and
Noether (cf. [Ni]), who demonstrated their birational nature (the ter-
minology comes from the fact that if one takes a representative of the
surface in Il', with a double curve and triple points, the `arithmetic' or
`numerical' genus is defined by an explicit formula as a function of the
degree of the surface, the degree and genus of the double curve, etc.). It
seems to have been suspected at first that pa, = py, but Cayley pointed
out that pa < py for irrational ruled surfaces (1871). The surfaces for
which this strict inequality held were thought to be exceptional and were
termed irregular: the number q = Pg - Pa (positive or zero by definition)
was called the irregularity.

Exercises 111.24
Let C be a curve, E a rank 2 vector bundle on C, S = IIDc(E).

(1) Let s E S, and F be the fibre of the projection passing through
s. Show that on the blow-up of S at s we can contract the strict
transform of F. The surface obtained is a geometrically ruled
surface S'; the rational map S --- S' is called an elementary
transformation with centre s.

(2) A point s of S corresponds to a surjective homomorphism
us : E C(s), where C(s) is the sheaf which is zero outside
s and has stalk C at s (compare 111. 17). Show that E' = Ker(u,)
is a rank 2 vector bundle on C, that S' = IIDc(E') (Exercise 1)
and that the elementary transformation S --+ S' corresponds to
the inclusion E' -+ E.
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(3) Assume C : IFl; let X be a minimal surface, ¢ : X --+ S a
birational map. Without using Theorem III.10, show that ¢ is
composed of an isomorphism and some elementary transforma-
tions (if n(¢) is the minimum number of blow-ups necessary to
make ¢ everywhere defined, show that there exists an elementary
transformation t : IFC(E) --- IP>c(E') such that n(to¢) < n(¢)).
This gives another proof of Theorem III.10.

(4) Let Autb(S) be the group of birational automorphisms of S. If
C # 1(D1, show that there is an exact sequence

1 --> PGL(2, K) --> Autb(S) --> Aut(C) --* 1

where K is the rational function field of C. Also, the choice of a
birational map from S to C x P1 gives rise to a natural splitting
of this sequence.

(5) Let 1Fn = IIDr, (O ® 0(n)), s E F. Show that the elementary
transformation of 1F with centre s is isomorphic to ]Fii_1 or to
1Fn+1, depending on the position of s. Distinguish the two cases.

(6) Show that the surface IF1 contains an exceptional line B. We also
call the following two operations elementary transformations:

(a) blowing up a point of 1F1 not lying on B, then contracting B;
(b) the automorphism (x, y) -* (y, x) of IFo = 1F1 x 1P1.

(7) Let S be a minimal rational surface, 4) : S --+ Fn a birational
map. Show that:
either 0 is composed of an isomorphism and elementary trans-
formations; in particular S -1F,n for m qE 1;
or n = 1, S - IF2, and 0 is the inverse of a blow-up.
(Cf. Hartshorne, Curves with high self-intersection on algebraic
surfaces, Publ. Math. IHES, 36 (1969), 111-125.)

(8) Show that up to homeomorphism there are only two different
types of geometrically ruled surfaces over C, corresponding to
the parity of deg(E) (recall that every exact sequence of bundles
on C splits, and that two line bundles of the same degree are
topologically isomorphic; if L, is a line bundle of degree i, show
that Lp ® L2i._p - (Lr)2).

(9) Let S be a surface of degree 4 in P3 containing two non-coplanar
double lines. Show that the normalization of S is a geometrically
ruled surface over an elliptic curve.

(10) Let S C P3 be a surface, not necessarily smooth, such that every
point of S lies on a line contained in S. Show that S is birationally
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isomorphic to a ruled surface. Conversely show that every ruled
surface is birational to a surface of the preceding type (and more
precisely, we can take this to be a cone in ]P).



IV
RATIONAL SURFACES

These are surfaces birational to IlD2. We shall begin by studying those
surfaces geometrically ruled over IF1, and then give some simple examples
of rational surfaces embedded in F.

The Surfaces IFn

Recall (III.15) that the only surfaces geometrically ruled over IF1 are the
surfaces IFn = IFri (Orl ®Orl (n)), n > 0. We denote by h (resp. f) the
class in Pic1Fn of the tautological bundle O,, (1) (resp. of a fibre).

Proposition IV.1

(i) Pic Fn = 7Lh ®7L f , with f 2 = 0, f. h = 1, h2 = n.
(ii) If n > 0, then there is a unique irreducible curve B on Fn with

negative self-intersection. If b is its class in Pic lFn, then b =
h - nf, b2 = -n.

(iii) Fn and lF,n are not isomorphic unless n = m. Fn is minimal
except if n = 1; IF, is isomorphic to IF2 with a point blown up.

Proof (i) follows from 111.18. To prove (ii), consider the section s
of the projection Fn -4 IF1 which corresponds to the quotient Or of
Or, ® Ors (n) (see 111. 17). Set B = s(C) and let b denote its class in
PicIFn; then b = h + rf for some r E Z. Since Ors, it follows
that h.b = 0, so that r = -n; then b2 = (h - n f )2 = -n.

Now let C be an irreducible curve on IF,, with C # B. Set [C] _
ah + ,0 f in Pic IFn . Since C. f > 0, we get a 0; since C.B > 0 and
h.b = 0, we get Q > 0. Then C2 = a2n + 2a/3 0, and (ii) follows.

Note that on IFo = IP1 X P1, C2 > 0 for all curves C; it follows that
the number n is uniquely defined by IF,,, and that IF,, is minimal for
n 0 1. Finally, let 0 E IF2, S be the blow-up of p2 at 0 and E be

40
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the exceptional divisor. Projecting away from 0 defines a morphism
p : S -+ ll (Example II. 14(l)) which expresses S as a surface geometri-
cally ruled over V. Since E2 = -1, S - IF1, and (iii) follows.

For a more classical description of the surfaces IF,,, see Exercises 1, 2.

IV.2 Examples of Rational Surfaces
Let S C IF" be a rational surface. By choosing a birational map IID2 _.., S
we get a rational map ¢ : IFZ --+ P, and so (11.6) a linear system on IFZ
with no fixed component. We shall consider the simplest linear systems
on IF2 (conics, cubics) and study the embedded rational surfaces that
correspond to them.

Let P be such a system and IF2 --+ P = I('' the corresponding
rational map. We shall be concerned with the following questions:

(1) Determining the dimension N of P; recall at this point the fol-
lowing fact:

Fact IV.3 dimH°(l r,Orr(k)) _ (rTk)
(2) The map 0 is in general not everywhere defined; to make it so, we

must blow up the base points of the system P. For simplicity, we
shall assume that it is enough to blow up once; in other words,
if e : S -> IF2 is the blow-up of r distinct base points p1,.. . , pr,
then f = ¢ o e : S -* P' is a morphism. It corresponds to a linear
system P on S; denoting by mi the minimum multiplicity of the
members of P at Pi, d their degree and setting L = e'2 (t a line
in I2), Ei = e-'(pi), we get P C I dL - E mi Ei 1.

(3) We shall be especially interested in the cases where f is an em-
bedding. From the definition of ¢, this means that

(a) the linear system P on S separates points: for all x, y E S
with x # y, there is a curve C in P passing through x and
not through y;

(b) P separates tangent vectors: for all x E S, the curves in P
through x do not all have the same tangent directions.

From the point of view of the system P on If'2, (a) can be
interpreted by translating `C passes through z' (for x E Ei) into
`C passes through pi with the tangent direction corresponding to
I. If z E Ei, then (b) can be interpreted as follows: let Px be
the system of curves in P tangent along x at pi. For every conic
Q tangent at pi along x, there is a curve in PP having contact
with Q of order exactly 2 at pi.
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(4) Suppose that f is an embedding; the surface S' = f (S) is then a
smooth rational surface in PN. We shall be concerned with the
geometry of S', and more precisely:

(a) its Picard group: with the same notation as in (2), it has
an orthogonal basis consisting of L = c*B and the Ei, with
L2 = 1, Ei = -1. A hyperplane section H of S' can be
written as dL - E mi E, , where d is the degree of a curve in
P;

(b) its degree; this equals H2 = d2 - > m?

(c) the lines on S'; these are the curves D with D.H = 1
(d) possibly the equations defining S' in P.

(5) Let H be a hyperplane in the linear system P, corresponding
to a point h E P. The linear system H defines a rational map
0 : S --+ H; one checks readily that this is the composite of
0 and the projection of P onto H away from h. In particular,
if s E S', then the rational surface obtained from the system of
curves in P through s is the projection of S' away from f (s).

We are thus led to consider the projections of S' into spaces of di-
mension < N. At this point recall the following lemma, whose proof is
immediate.

Lemma IV.4 Let S be a surface in IEDN and P E P' - S (resp. p E S).
Let f : S --* ]PN-1 (resp. S -> PN-1) be the projection away from p. For
f to be an embedding, it is necessary and sufficient that there should be
no line through p meeting S in at least 2 (resp. 3) points, counted with
multiplicity.

The set of bisecants (resp. tangents) to S is parametrized by the com-
plement of the diagonal in S x S (resp. the projective tangent bundle to
S). It follows that the union of the bisecants (resp. tangents) to S lies
in a subvariety of PN of dimension < 5 (resp. <, 4). Then Lemma IV.4
gives the following result:

Proposition IV.5 Every surface is isomorphic, via generic projection,
to a smooth surface in lP.

If S is a surface in Ip5, then projecting away from a generic point is an
embedding outside a finite set of points pi, P/1) .... pp; , and identifies
pi and pf .

Now return to the linear systems on IID2.
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Linear Systems of Conics

It is clear that the linear system of all conics on 1P2 defines an embedding
j : P2 - IV. The image of j is the Veronese surface V, of degree 4. It
contains no lines (for if d E Pic V were the class of a line, we would have
h.d = 2t.d = 1). On the other hand, it contains a 2-dimensional linear
system of conics, which are the images of the lines on 112. This property
has an amusing consequence.

Proposition IV.6 Let p be a generic point of 1(. Then projecting
away from p induces an isomorphism of V onto its image V' C P.

(In fact one can show that the Veronese surface is the only surface in II'
with this property: see [Se2].)

Proof For every line d in 1P2, let P(d) denote the plane containing the
conic j(d), and let X be the union of the P(d). Then dimX < 4;
for it is the projection to Ilk of the variety Z C P2 x III defined by
Z = {(d, x) I x E Pd}, and Z is a P2-bundle over 11D2. Let x, y E V with
x y; the line (x, y) lies in P(d), where d is the line (j-1(x), j-1(y)) in
fl12. Hence every bisecant of V lies in X, and the result follows.

The generic projection of the surface V' is of degree 4 in P3, and is
called a Steiner surface. One can show (Exercise 7) that it has 3 double
lines meeting in a point that is triple on the surface.

The projection of V from a point of V is the surface S C IF4 of degree
3 obtained from the linear system of conics on IF2 passing through a
point 0. It follows that this system defines an embedding j : 1F1 y V,
where IF1 denotes the blow-up of IF2 at 0 (IV.1(iii)). With the notation
of IV.1, j corresponds to the linear system Ih + f I on IF1.

We now look for the lines on S. We have f.(h + f) = 1, so that the
images of the fibres of the ruling F1 - P1 form a family of lines {Dt}teri
on S, with Dt fl Dt' = 0 for t # t'. Since b.(h + f) = 1, the image of B
(IV. 1(ii)) is a line which meets every line Dt. These are the only lines
on S; every irreducible curve C on F1 other than B is equivalent (in
Pic Fl) to ah + b f with a, b > 0 (IV.1(ii)). Thus C. (h + f) = 2a + b > 1
unless C = f.

The same argument shows that the conics in S are the images under
j of the total transforms of the lines in IF2; the lines that do not contain
0 give smooth conics, while those through 0 give the degenerate conics
j(B) U Dt.
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Proposition IV.7 The cubic ruled surface S C P4 is contained in
a 2-dimensional linear system of quadrics in I, of which it is the
intersection. For every pencil of quadrics { XQ1 + µQ2} containing S,
Q1 fl Q2 = S U P, where P is a plane and s fl P a conic. Conversely,
for every conic on S lying in a plane P, SUP is the intersection of two
quadrics.

Proof The quadrics of i cut out on S the strict transforms of the
quartics in 11 D2 that pass through 0 with multiplicity 2. The linear systems
1Or+(2) and 10F2(4) have the same dimension; since passing doubly
through a given point imposes three conditions on a system of plane
curves, there are at least three linearly independent quadrics containing
S. Let Q1i Q2 be two of them; they must be irreducible. Q1 fl Q2 is a
surface of degree 4 containing S, and so is of the form S U P, for some
plane P. If P is defined by the equations L = M = 0, then the equation
of QE is of the form LA;.+ MB; = 0 (i = 1, 2), where L, M, A1, B1 are
linear forms. The determinant A1B2 - A2B1 vanishes at every point of
S - P, and so S lies in the quadric Q3 : A1B2 - A2B1 = 0. One checks
easily that s = Q1 fl Q2 fl Q3i so that the linear system R of quadrics
containing S is generated by Q1, Q2, Q3 and so is 2-dimensional. The
intersection P fl s = P fl Q3 is a conic. Conversely, if C is a conic
in S and P the plane containing C, then there is a pencil of quadrics
containing S U P; indeed, a quadric in R contains P if and only if it
contains a point of P - C. It is then clear that the intersection of the
members of this pencil is S U P.

Corollary IV.8 The projection of S from a point p E P4 - S is a cubic
surface whose only singularities are a double line.

Proof Let Q1i Q2 be distinct quadrics containing S and p. We have
Q1 fl Q2 = S U P, where P is a plane through p. Every bisecant of S
through p cuts Q1 and Q2 in 3 points; thus it lies in Q1 and Q2, and so
also in P. Hence the projection away from p is an isomorphism outside
the conic c = S fl P, and its restriction to C is two-to-one onto a line,
which is thus double on p(s)-

The projection of S from a point s E S is a quadric in ll ; it is smooth
if and only ifs j(B).

Finally, we can display the surfaces we have obtained by means of
the following diagram, where vertical (resp. diagonal) arrows denote
projection from a generic point in space (resp. in the surface):
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Veronese surface

Steiner surface Cubic with double line Quadric

Linear Systems of Cubics

We shall consider r distinct points P1, , pr E p2 (r < 6). These points
will be said to be in general position if no 3 of them are collinear and
no six lie on a conic. C : P, . + IE12 will denote the blow-up of pl,... , p,.
Set d=9-r.

Proposition IV.9 Suppose that p1, ... , p, (r < 6) are in general po-
sition. Then the linear system of cubits through pi,. .. , p,. defines an
embedding j : P, - ]End. The surface Sd = j(P,) is a surface of degree d
in ]End, called a del Pezzo surface of degree d. In particular, S3 is a cubic
in P3 and S4 is the complete intersection of two quadrics in 1En4.

(See [X1] for the case when pl,. , p, are not in general position.)

Proof By IV.2(3), we must check that the system of cubits through
pl,... , p, separates points and tangent vectors on P,. Then in particu-
lar, the system is without base points on P and by induction on r, its
dimension is 9 - r. Moreover, it is enough to check this for r = 6, the
other cases following at once.

Let i < j < 6 and x E P6 be such that c(x) 0 {pi, pj }. The hypothesis
of general position implies that there is a unique conic QT. through x and
the points pk (k 0 i, j) (recall that if x E Ei, passing through x means
being tangent at pi in the direction corresponding to x). Similarly there
is a unique conic Qi through the points pj for j # i; (Qi fl Qj = 0 for
i # j (the hat denoting strict transform). Let Lit = (pi, pj) for i # j.

(a) We want to show that this linear system separates points on P6.
So let x, y E P6 with x # y. Choose i with pi $ e(x), e(y) and
x 0 Q. Then fl - = {x} for pk 0 {pi, pj, e(x)}. Hence
y E Q for at most one value of j. On the other, hand, y E Lij
for at most one j; thus there is a j such that the cubic Q U Lii
passes through x but not y. Hence the morphism j : P6 --+ IEn3 is
injective.

(b) Let x E P2 - {PI, ... , P6}. The cubits Qi U (pi, x) do not all have
the same tangent at x, so that j is an immersion at x. Now let
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X E El; the conics Q23 and Q24 intersect at x with multiplicity 2.
Then the cubics Q23 U L23 and Q24 U L24 have different tangents
at x, which completes the proof that j is an embedding.

Following IV.2(4), deg(j(P,)) = 9-r, so that j(P,) = Sd is a smooth
surface of degree d in Pd, with d = 9 - r. In particular, S3 is a cubic
surface in P3 and S4 is of degree 4 in Pd. We show that S4 is contained
in two distinct quadrics. Since h°(Pd,Or4(2)) = 15, we must show that
h°(Os,(2)) < 13. Let C E CHI be a smooth hyperplane section of S4; C
is an elliptic curve, since it projects isomorphically onto a smooth cubic
in p2. Consider the exact sequence

0 -+ Os4(H) - Os.(2H) -' Oc(2H) -' 0

the corresponding long exact cohomology sequence gives

h°(Os.(2)) < h°(Os4(1))+h°(Oc(2))

Since H.C = H2 = 4, we have h°(Oc(2)) = 8 by Riemann-Roch, and
so h°(Os,(2)) < 13.

Thus S4 lies in two distinct quadrics Ql and Q2, which must be ir-
reducible; Ql fl Q2 is then a surface of degree 4 containing S4, and so
equal to it.

Remarks IV.10

(1) Note that the linear system of cubics through pl, ... , p, is in fact
the complete `anticanonical system' I - K I on P,. One can show
that together with P1 x P1 embedded in Id, the del Pezzo surfaces
are the only ones embedded in P' by their complete anticanonical
system (Chapter V, Exercise 2).

(2) Cubics and complete intersections of two quadrics are the only
complete intersection surfaces embedded by their anticanonical
system. This follows from the next lemma (a form of the adjunc-
tion formula).

Lemma IV.11 Let S C 1pr+2 be a surface that is the complete intersec-
tion of hypersurfaces Hl, ... , H, of degrees d1,.. . , d,. respectively. Then
Os(Ks)-Os(F, di-r-3).

Proof Let I be the ideal defining S C P''+2. Since the equations of the
Hi generate I, there is a surjection Ors+2(-di) ® ® Opr+s(-d,) -+ I,
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and hence a surjection (by restricting to S)

u :Os(-di)®... ® Os(-d,) --+I/I2

Both sides are locally free of rank r, and so u is an isomorphism. Hence
K(1/12) = Os(- E di); since 52,++ = O(-r - 3), the result follows by
1.17.

We shall see later that every cubic surface in 1P and every intersection
of two quadrics in ]]' is a del Pezzo surface.

Proposition IV.12 Sd contains a finite number of lines. They are the
images under j of the following curves in P,:

(i) the exceptional curves Ei;
(ii) the strict transforms of the lines (pi, pJ) (i # j);

(iii) the strict transforms of the conics through 5 of the pi.

Their numbers are given in this table:

r= no. of Ei 0 1 2 3 4 5 6

No. of lines (pi,pj) 0 0 1 3 6 10 15

No. of conics through 5 of the pi 0 0 0 0 0 1 6

No. of lines in Sd 0 1 3 6 10 16 27

Proof Since H - -K, the lines on S are just its exceptional curves; in
particular, the j(Ei) are lines on S. Let E be a line on S other than
an Ei; E.H = 1 and E.Ei = 0 or 1. Hence E - mL - >miEi, with
mi = 0 or 1 and E.H = 3m - > mi = 1. The only solutions are m = 1
with 2 of the mi equal to 1, and m = 2 with 5 of the mi equal to 1; this
gives the curves in the statement. Checking the numbers of the curves
is immediate.

This proposition in fact gives much more than just the number of lines
on S; it gives their classes in Pic Sd, and so the configuration of the set
of lines (incidence, etc.). These configurations were studied intensively
by the classical geometers - cf. Exercises 12, 13, 14.

Theorem IV.13 Let S C PE be a smooth cubic surface. Then S is a
del Pezzo surface Ss (i.e. is isomorphic to PP'2 with 6 points blown up).

First we prove two lemmas.
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Lemma IV.14 S contains a line.

Proof Let P = JOr3(3)l be the projective space of cubics of P1, and
let G4 denote the Grassmannian of lines in P3 (since a line in P3 is
given by 6 Plucker coordinates, subject to a single quadratic relation,
G4 is naturally a smooth quadric in Il5, and is 4-dimensional). Let Z
denote the incidence subvariety Z = {(f, S) I f C S} C G4 x P, with its
projections p : Z --> G4 and q : Z -- P. In coordinates (X, Y, Z, T) for
I(, a cubic surface S C P3 contains the line (Z = T = 0) if and only
if the 4 coefficients of X3, X2Y, XY2, Y3 in its defining equation F
vanish; hence the fibres of p : Z - G4 have dimension dim P - 4, and
dim Z = dim P. If the lemma fails, the image q(Z) C P has codimension

1 in P, and the fibre q-' (S) is either empty or positive-dimensional
for any S E P; thus q is surjective provided that we can display a cubic
S containing a (non-empty) finite set of lines. But this is the case if S
is a del Pezzo surface S3.

Lemma IV.15 Let f C S be a line; then there are exactly 10 other lines
in S meeting f (and distinct from f). These fall into 5 disjoint pairs of
concurrent lines. In particular, S contains two disjoint lines.

Proof Consider the pencil of planes {Pa}AEPl through f. One has
S fl PA = f U Ca, with Ca a conic. Note that CA cannot be a dou-
ble line, and does not contain f: for if the plane L = 0 cuts S along
the line M = 0 and the line N = 0 counted twice, then the equation of
S can be written LQ + MN2 = 0 (with Q a quadratic form, L, M, N
linear forms). But then, by computing the derivatives, S is singular at
the two points where L = N = Q = 0. Thus each singular conic Ca is
a union of two concurrent lines, distinct from f but meeting it, and the
singular Ca give all lines of S meeting f.

Choose coordinates on P3 such that f is given by Z = T = 0. Then S
is given by an equation of the form

AX2+2BXY+CY2+2DX+2EY+F=0,

where A, ... , F are homogeneous polynomials in Z, T. Setting Z = AT
and dividing by T gives the equation of CA. Thus Ca is singular just
when the determinant

A B D
O(Z,T) = B C E

D E F
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vanishes. This is a homogeneous quintic in Z, T and we must show that
it has no repeated root. Suppose that Z = 0 is a root; let s be the
singular point of the conic Co. If s V £, then we can assume that Co is
defined by XY = 0; then every coefficient of A except B is divisible by
Z. s is a smooth point of S, and so F is not divisible by Z2. Hence A
is not divisible by Z2. If s E f, then we can assume that Co is defined
by X'- T2 = 0; the same argument shows that Z = 0 is a simple root
of A. Therefore {Ca } contains 5 distinct singular conics.

To prove the final statement in the lemma, note that if 3 distinct lines
in S meet at a point p, then they lie in the tangent plane to S at p, and
so are coplanar. Then let Co, Ci be singular conics in the pencil {Ca},
Co = do U do, C1 = dl U di; since do, dl and f are not coplanar, it is
clear that do fl dl = 0.

Proof of Theorem IV.13 Let t, t' be disjoint lines in S. We define
rational maps 0 :.f x t' --. S and V : S --+ t x t' as follows: if (p, p') is
a generic point of t x $', the line (p, p') meets Sin a third point p"; define
O(p,p')=p". ForsES - t - t',set p =tfl(s,e'),p'=P'fl(s,f)andput
1'(s) = (p, p'). It is clear that 0, are mutually inverse. Moreover, 0 is
a morphism; it can be defined on t (or .£') by replacing the plane (s, t)
by the tangent plane to S at s (checking immediately that this gives
a morphism). Thus' is a birational morphism, and so a composite of
blow-ups; the curves contracted by ib are just those lines that meet $
and e.

We proceed to calculate the number of these lines. We know (Lemma
IV.15) that the lines meeting t fall into 5 pairs {di, d'i } (1 < i < 5) such
that di, d'i and $ lie in a plane Pi. Pi meets t' in one point, which lies on
di or d'i (but not both, for else di, d'i and .f' would be coplanar). Thus
one line in each pair meets f' as well, and so 0 contracts 5 disjoint lines.
Hence S is isomorphic to llD' x P' with five points (pi, p;) blown up, with
pi # pi and pi' $ p for i # j; in view of 11.14(2), S is then isomorphic
to llD2 with six points blown up. Moreover the embedding of S in 113 is
the anticanonical embedding (Remark IV.10(2)), and so S is the image
of the blow-up of ](D2 at six points embedded by the system of cubics
through the six points; in other words, S is a del Pezzo surface S3.

Proposition IV.16 Let S be the complete intersection of two quadrics
in I. Then S is a del Pezzo surface S4.

Proof We show first that S contains only finitely many lines. Any line
E C S satisfies E.H = 1, so E.K = -1 and E2 = -1; hence distinct
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lines E, E' have different classes in NS(S) (since E.E' = 0 or 1). Fix
a line £ C S; if two distinct lines E, E' met £, then E.E' = 0 (or else
the plane containing E, E', .£ would lie in S). Since NS(S) is finitely
generated, there are only finitely many lines in S meeting a given one.
If S contained infinitely many lines, then we could construct an infinite
sequence of lines with Ei.Ej = 0 for i:0 j, in contradiction to the
finiteness of NS(S).

Suppose that p E S does not lie on any line of S and let f : S -- ll
be the projection away from p. Every trisecant to S lies in the quadrics
containing S, and so in S. In particular, there is no trisecant through
p. By IV.4, f is an isomorphism onto a cubic surface S3 C IP. The
exceptional divisor of the blow-up at p gives a line E C S3. Choosing two
disjoint lines t, f' that meet E, as above, we get a birational morphism
h : S3 -* IF'2 contracting six lines, including E. Thus h factors through a
morphism S -> Iln2 so that S is isomorphic to P2 with five points blown
up. Since S is embedded in l( by its complete anticanonical system, it
is a del Pezzo surface S4.

Historical Note IV.17
The examples in this chapter (and the exercises) are only a tiny sample
of the huge mass of results - now practically forgotten - on particular
surfaces proved by nineteenth century geometers (Clebsch, Cremona,
Darboux, Klein, Kronecker, Kummer, ...). The point of view taken
before 1880 was slightly different from ours, since they only consid-
ered (possibly singular) surfaces in ll'. The `geometry of hyperspace'
arose with the first generation of the Italian school (Bertini, C. Segre,
Veronese); they discovered that many known examples of surfaces are
projections of smooth surfaces embedded in a higher dimensional space,
and that this gives a natural explanation of many of their properties.

For example, Veronese ([V]) introduced the surface named after him,
studied its projections and so rediscovered Steiner's `Roman surface'
(found in 1844). C. Segre showed that a quartic in ll' with a double
conic is the projection of a quartic del Pezzo surface in P' (Exercise 15),
and thus easily derived its properties ([Sg2]). He also made a systematic
study of ruled surfaces ([Sgl]).

Del Pezzo classified surfaces of degree n in P" and at the same time
introduced the surfaces Sd ([DP]).

For an excellent exposition of this subject, see Le superficie razionali,
by Conforto (following Enriques), Zanichelli, Bologna, 1939.



IV: Rational Surfaces 51

Exercises IV.18
(1) With the notation of IV.1, show that the complete linear system IhI

on IF,, defines a morphism f : 1F -+ r+1 which is an embedding
outside B and contracts B to a point p. Show that f is the cone
with vertex p over a projectively normal rational curve of degree n
in P' (i.e. 11 embedded by the complete system 1O(n)D.
(Show that h1(h - f) = 0, for example by comparing it to hl(-f);
also use the exact sequence

0 - (fir,. - Or,.(C) - Oc(C) -- 0, C E IhI .)

(2) Show that lh+k f I (k > 1) defines an embedding j : IF,, P"+2k+1
Show that the fibres ft are mapped to a family of disjoint lines; the
curve j(B) (resp. j(C), for generic C E Phi) is a projectively normal
rational curve of degree k (resp. n + k) which meets each line j(ft)
once; is of degree d in I(+1, with d = n + 2k.
Conversely, let Hk and Hd_k be disjoint linear spaces in Pd+1, of
dimension k and d-k respectively, with 2k < d; let Rk (resp. Rd-k)
be a projectively normal rational curve of degree k (resp. d - k) in
Hk (resp. Hd_k), and let u : Rk - Rd_k be an isomorphism. Show
that U (r, u(r)) is a copy of IF,, (n = d - 2k), embedded by the

rERk
system (h + k f 1.

(3) Show that every irreducible surface (possibly singular) of degree
n - 2 in P' lies in a hyperplane.

(4) Let S C 1l be a surface (possibly singular) of degree n - 1, not
lying in a hyperplane. Show that S is one of the following:

(a) a cone over a projectively normal rational curve of degree n - 1
in Il -1;

(b) the Veronese surface;

(c) the surface IFr embedded by Ih + k f 1, where r = n - 1 - 2k,
k>' 1.

(If S is singular, it is a cone by (3).) If it is smooth, show that a
smooth hyperplane section H of S is rational, then that the linear
system OKs + 2HI is base-point free; deduce that either KS = 9
and we are in case (b), or KS = 8 and we are in case (c).

(4) Let P = IP2 and P the dual plane. The projective space Q of
conics in P is dual (by `apolarity') to the space Q of conics in P.
Let q E Q, and show that:

(a) If q is of rank 1 (i.e. q is the set of lines through a point p of
P), then the conics in P apolar to q are those through p.
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(b) If q is of rank 2 (i.e. q is the set of lines passing through one of
two points P1, P2 E P), then a conic C in P is apolar to q if and
only if the two points of c fl (P1, p2) are harmonic conjugates
with respect to P1, P2-

(5) The system of conics defines an embedding P y Q whose image
is the Veronese surface V C Q. Show that V is the set of conics
of rank 1 in P (use (5)(a)). Deduce that V is the intersection of 5
quadrics in Q. Show that the union of the bisecants of V is the set
X of singular conics in P. Deduce that X is a cubic hypersurface
in (Q whose singular locus is V.

(6) Let f : 1112 -> I(1s be the morphism corresponding to a 3-dimensio-
nal base-point free linear system of conics. Let R be the dual
pencil of conics in ](D2; suppose that R contains 3 distinct singular
conics, each of rank 2. These correspond to 3 pairs of points (pi, p;),
i = 1, 2, 3. Show that f is an embedding outside the 3 lines (pi, p;),
maps each of these lines two-to-one onto a double line in S = f (1112)
and takes the vertices of the triangle formed by these lines to a
single triple point of S, the point of intersection of the 3 double
lines of S. S is Steiner's `Roman surface'.

(7) Let S C IP be a quartic surface with 3 non-coplanar double lines
meeting in a triple point t of S. Show that S is a Steiner surface
(project away from t and then perform a quadratic transformation).

(8) Let S C ]P be a cubic surface containing a double line d. Show
that S is the projection of a cubic ruled surface R C P. Assume
that the conic C C R that maps onto d is smooth. Show that there
is a line f C S, disjoint from d, and a two-to-one map f : £ -> d
such that S = pUl(p, f (p)).

(9) Find the number of pencils of conics (resp. systems of twisted cu-
bics) on a del Pezzo surface Sd.

(10) Consider r points in P2 in general position (if r = 8, we require
also that they do not all lie on a nodal or cuspidal cubic with one
of them at the singular point). Let Pr denote the blow-up of p2
at these points and H the strict transform of a cubic containing
them.

(a) If r = 7, show that JHJ defines a two-to-one map P7 -* P2
branched along a smooth quartic, and that 12HI defines an
embedding P7 P.
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(b) If r = 8, show that 12H1 defines a two-to-one map from Ps
onto a quadric cone in l', and that 13H1 defines an embedding
Ps 4 l6.

(11) 'Double-six'. Show that on a cubic surface S C 113 there exists a
double-six, that is a set of 12 lines $1 i ... , t6, e l, . . . , f' such that
LiflL3=t lt;=0and2inL; ={pt}for i#j,ti fl2i=0. Show
that a cubic surface has 36 double-sixes.

(12) Show that the ten lines on a quintic del Pezzo surface S5 are ar-
ranged as follows: six sides of a skew hexagon; three transversals
joining opposite sides of the hexagon; one line joining the three
transversals.

(13) It follows from Exercise 11 or a direct computation that the pro-
jection of a cubic surface S3 away from a point p E S3 is the double
cover of P2 ramified along a smooth quartic C. Show that the lines
on S3 and the exceptional divisor of the blow-up at p map onto
bitangents to C; deduce that C has just 28 bitangents.
(Conversely, if we knew that C has exactly 28 bitangents, which
is a classical result, we could deduce directly that S3 contains 27
lines.)

(14) Show that the projection of a quartic del Pezzo surface S4 C 11'
away from a generic point of IP4-54 is a quartic containing a double
conic. Conversely, every such surface is the projection of some S4.
Deduce that a quartic in ll' with a double conic contains 16 lines.

In the next exercises we take distinct points {pi} in 1P'2 and a linear
system P of curves through the {pi}. As in IV.2, we want to study
the rational map defined by P, under any necessary hypotheses of
`general position'.

(15) P = {curves of degree n through p1, ... , that pass through
po with multiplicity n - 11. Show that the image is a surface IF,.
embedded by Ih + k f 1, where r + 2k = n. The number r depends
upon the position of the pi; if for example p1i ... , are collinear,
then r = n - 2.

(16) P = {quartics through p1, . , p7, with a double point at po}.
The image is a quintic surface S C I(; there is a plane H such
that S U H is the intersection of a quadric and a cubic. C contains
14 lines and a single pencil of conics.

(17) P = {quartics through p1, ... , ps, with a double point at po}.
The image is a quartic surface S C IP with a double line, the
image of a cubic in lP2 through the pi.
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(18) P = {quadtics through 9 points}. The image is a degree 7 sur-
face S C P; there is a plane H such that S U P is the complete
intersection of 3 quadrics.

(19) P = {quadrics through 10 points}. The image is a sextic surface
S C P4 (a `Bordiga surface'). S contains 10 disjoint lines and 10
disjoint plane cubics such that each line meets a single cubic (a
'double-ten').



V
CASTELNUOVO'S THEOREM AND ITS

APPLICATIONS

Theorem V.1 (Castelnuovo's Rationality Criterion) Let S be a surface
with q = P2 = 0. Then S is rational.

Remark V.2 The condition P2 = 0 implies p9 = 0. Later we will see
that the condition given in the statement cannot be replaced by the
weaker condition q = p9 = 0, which seems more natural (cf. Enriques
surfaces, Godeaux surfaces, ...).

Castelnuovo's theorem has an important corollary. In order to state
it we need two definitions:

Definition V.3 Let V be a variety of dimension n.
V is unirational if there exists a dominant (i.e. generically surjec-

tive) rational map lln" --- V.
V is rational if there exists a birational map Il - + V. In other

words, V is rational (resp. unirational) if the field of rational functions
of V is (resp. is contained in) a pure transcendental extension of C.

Recall that for curves we have:

Theorem V.4 (Liiroth) Every unirational curve is rational.

Proof If C is unirational, there is a surjective morphism f : P1 -+ C.
There is no non-zero holomorphic form on C (for its inverse image would
be a non-zero holomorphic form on P'); so C is of genus 0, hence rational.

Liiroth's theorem is in fact true over a field (not necessarily alge-
braically closed) of any characteristic. This is not the case for the anal-
ogous result for surfaces:

55
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Corollary V.5 (of Castelnuovo's theorem) Every unirational surface is
rational.

Proof Let S be a unirational surface. By the theorem on elimination of
indeterminacy (11.7), there exists a surjective morphism R --+ S where
R is a rational surface. Since q = P2 = 0 for R (111.21), we conclude as
before that q = P2 = 0 for S, whence the result.

The Liiroth problem for varieties of dimension > 2 remained open
for a long time, or rather was not satisfactorily settled: a number of
counterexamples were proposed (Fano, Roth, ...), but the proofs of ir-
rationality given are nowdays considered incomplete. Recently some ca-
stiron counterexamples have been given ([C-G] and [I-M]): hypersurfaces
of degree 3 (resp. 4) in P. Notice that this does not involve pathological
constructions, but the simplest possible varieties; morally, `almost all'
unirational varieties of dimension > 3 are irrational.

It is unknown whether there exist numerical conditions, analogous to
those of V.1, characterizing unirational varieties.

We will deduce the theorem from the following proposition:

Proposition V.6 Let S be a minimal surface with q = P2 = 0. Then
there exists a smooth rational curve C on S such that C2 > 0.

We remark that the proposition is not at all obvious for a rational
surface S.

V.7 We first show how the proposition implies Castelnuovo's theorem.
From the exact sequence

0 --+ OS - Os (C) --> Oc (C) --> 0

and the vanishing of H1(S,Os), we deduce h°(C) = 2 + C2 > 2. Let
D be a divisor in JCI other than C. The pencil generated by C and D
has no fixed components; after blowing up base points it determines a
morphism S -- 1V1 with one fibre isomorphic to C. By the Noether-
Enriques theorem (III.4) it follows that S is rational.

To prove the proposition, we will use the following lemma:

Lemma V.8 Let S be a minimal surface with K2 < 0. For all a > 0,
there exists an effective divisor D on S such that K.D < -a, IK+DI _
0.
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Proof It suffices to find an effective divisor E on S such that K.E < 0.
Indeed, there is then a component C of E such that K.C < 0. The genus
formula (1.15) gives C2 3 -1, and C2 = -1 only if C is an exceptional
curve, which is excluded. Thus C2 > 0; since the product (aC + nK).C
eventually becomes negative as n grows, it follows from the useful remark
(111.5) that JaC+ nK I = 0 for n sufficiently large. So there exists n such
that JaC + nK) : 0, baC + (n + 1)KI = 0; if D E JaC + nKI, we have
K.D< -a andIK+DI=0.

Let H be a hyperplane section of S. If K.H < 0, we can take E = H;
if K.H = 0, the system IK + nHI is non-empty for n sufficiently large,
and we can take E E (K + nHI. So we may assume K.H > 0. Set
r° = K.H/(-K2). Then

2

(H + roK)2 = H2 + ( K z > 0 , and (H + r°K).K = 0 ,

so that if r is rational, greater than r° and sufficiently close to r0, we
have

(H + rK)2 > 0 , (H + rK).K < 0 , (H + rK).H > 0 .

If r = p/q, (p, q > 0), put D,,, = mq(H + rK). Then D,,, is a divisor
satisfying D,2,, > 0, D,,,.K < 0. By the Riemann-Roch theorem we have
h°(D,,,) + h°(K - D,,,) -r oo as m -+ oo.

Since (K - D,,,).H is negative for m sufficiently large, we have ID,,, #
0 for large m; we take E E (D,,,1.

V.9 Proof of Proposition V.6

(a) It is enough to show that there exists an effective divisor D on S
such that K.D < 0, IK + DI = 0. For then some component C
of D satisfies K.C < 0, IK + Cl = 0; applying Riemann-Roch to
K + C, we obtain

0 = h°(K + C) >, 1 + 2 (C2 + C.K) = g(C)

so C is a smooth rational curve. By the genus formula C2 -1;
if C2 = -1, C is an exceptional curve, which is excluded. Thus
C2 > 0, and the proposition is proved.

We distinguish three cases.

(b) K2 < 0.
The proposition follows from (a) and V.8.
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(c) K2 = 0.
Since P2 = 0, we have h°(-K) >, 1 + K2 by Riemann-Roch, so
I - KI 0 0 if K2 > 0. Let H be a hyperplane section of S. There
exists n > 0 such that IH + nKI # 0, IH + (n + 1)KI = 0. Let
D E IH + nKI; we have IK + D) = 0, and K.D = K.H < 0 since
I - K1 # 0. We conclude via (a).

(d) K2 > 0.
In this case h°(-K) > 2. Suppose there exists a reducible divisor
D E I - KI, D = A + B; since D.K < 0 we have for example
A.K < 0, and I K+AI = I-BI = 0, so the proposition is proved by
(a). So we may assume from now on that every divisor D E I - K I
is irreducible.
Let H be an effective divisor; since I - K # 0, there exists n > 0
such that JH+nKI:A 0, IH+(n+1)KI=0.
It is necessary to distinguish two subcases.

(d1) Suppose we can find H, n as above, such that H + nK $ 0.
Then let E E IH + nKI, E = n;C2. We have K.E = -D.E
(D E I - KI) and by the useful remark (111.5), D.E > 0 since D
is irreducible. Thus K.C; 0 for some i. Put C = C;. Then
IK + C1 = 0, whence g(C) = 0 (cf. (a)), and C2 = -2 - K.C (by
the genus formula).
If K.C -2, we get C2 > 0, and the proposition is proved.
If K.C = -1, we get C2 = -1: C must be an exceptional curve,
which is excluded.
If K.C = 0, then C2 = -2; we calculate h°(-K - C). Since
h°(2K + C) < h°(K + C) = 0 ,

h°(-K-C) > 1+ 2[(K+C)2+ K.(K + C)]

1+ 2 (C2 + 3K.C + 2K2)

by Riemann-Roch, and hence

h°(-K-C)>K2>1.
Since C2 = -2, we have C 0 -K, so there exists a non-zero
effective divisor A such that A + C E I-K1. Thus I-KI contains
a reducible divisor, which contradicts our assumption.

(d2) It remains to consider the case where every effective divisor is a
multiple of K, that is Pic S = 7L [K]. From the exact sequence

H1(S, OS) --> Pic S -+ H2(S, Z) -> H2(S, OS)



V. Castelnuovo's Theorem 59

we deduce that H2(S, 7G) = Z [K]. Thus b2 = 1; by Poincare
duality the intersection form in H2(S,Z) is unimodular, so K2 =
1. But then Noether's formula, 1.14,

X(Os) = 12 (K2 + Xtop(S)) = 12
(K2 + 2 - 2b1 + b2)

gives b1 = -4, a contradiction: this proves the proposition, and
hence also Castelnuovo's theorem.

We remark that only the last part of the proof (d2) does not extend
directly to characteristic p.

Proposition V.6 enables us to find the structure of the minimal models
of rational surfaces:

Theorem V.10 Let S be a minimal rational surface. Then S is iso-
morphic to I2 or to one of the surfaces Fn (IV.1) for n # 1.

Proof Let H be a hyperplane section of S. Consider the set A of smooth
rational curves C with C2 >, 0; A is non-empty by Proposition V.6. Let
m = min{C2 I C E A}. From the subset A,,, of A consisting of curves
C with C2 = m we choose a curve C with C.H minimal for C in A,,,.

(a) We show that every divisor D E ICI is a smooth rational curve.
Put D = E n;C; . Note that by the useful remark, h° (K + D) =
h°(K + C) = 0 since (K + C).C = -2. Thus h°(K + C1) = 0
for all i, which proves that every curve C% is a smooth rational
curve (V.9(a)). Since K.C < 0, there exists i such that K.CE < 0,
which implies C= > 0, since S is minimal. Put D' _ Zt#, nj C
so that D = n;C; + D' and D'.C= >, 0. We have

C2 = D2 = n, C= + n;(C$.D') + D.D' .

Now D.D' = C.D' 0, so m = C2 >, nE C; > 0. Then by
minimality of in, C, = M. Also HE = n$H.C; + H.D', which
gives ni = 1, H. D' = 0 (minimality of H.C in A,,,), that is D' = 0
and D=C;.

(b) We show that dim (CI <, 2. Let p be some point on S, Op its local
ring, n its maximal ideal. Since dim(Op/ n2) = 3, the linear
system of curves of jCj passing through p with multiplicity 2

has codimension < 3 in JCI; thus it is non-empty if dim JCI 3,
contradicting (a).

(c) Let Co E ICI. Consider the exact sequence:

0 -+ Os --+ Og(C) -' Oco(m) -' 0 .
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Since H1(S,Os) = 0, we deduce that h°(C) = m + 2, and that
ICJ is without base points on Co; it follows that C has no base
points at all. On account of (b), there are now two possibilities:

m = 0: then JCI determines a morphism S -> f1 all of whose
fibres are smooth rational curves: S is a geometrically ruled
surface over lP', thus a surface F, with n # 1 since S is mini-
mal.
m = 1: ICI determines a morphism f : S P2; for every
p E P2 the fibre f -1(p) is the intersection of two distinct ra-
tional curves in JCI; so it is reduced to a point. It follows that
f is an isomorphism.

We have now determined the minimal models of rational surfaces and
ruled surfaces; to complete the study of minimal models, it remains to
prove the uniqueness of the minimal model of a non-ruled surface. We
are going to deduce this from Castelnuovo's theorem; first we need to
introduce a very useful technical tool, the Albanese variety.

Reminder V.11 Complex tori
A complex torus is a quotient manifold T = V/I', where V is a complex
vector space and r is a lattice in V (i.e. F ®z 118 - V). It is a compact
analytic manifold, equipped with the structure of an Abelian group. If T
admits an embedding into projective space, we say that it is an Abelian
variey.

For every point p of T, the tangent space at p is identified by transla-
tion to the tangent space at the origin, which is canonically isomorphic to
V. Thus the tangent (resp. cotangent) sheaf of T is canonically isomor-
phic to the free sheaf V ®C OT (resp. V®®c OT). In particular there is
an isomorphism 6 : V* =+ H°(T, SZT), given explicitly as follows: a form
x* E V* defines a function on V satisfying x* (v + y) = x* (v) + constant,
for all v E V, y E F. This ensures that the differential dx* defines a
form 6x* E H°(T, f ).

The map V -+ V/F is the universal cover of T; hence F = irl(T) _
H1(T, Z). The isomorphism h : F -+ H1(T, Z) is given explicity as
follows: to every y E F we associate the path t f-. ty (0 < t < 1).
Clearly fn y

bx* = fo d(x*, ty) _ (x*, y) for x* E V, y E r.

Finally we recall the following well known proposition:

Proposition V.12 Let T1 = Vl/Fi, T2 = V2/I'2 be two complex tori,
u : T1 -+ T2 a morphism. Then u is composed of a translation and a
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morphism a : T1 -+ T2 which is a group homomorphism; a is induced
by a linear map V1 -+ V2 such that a(r1) C r2. In particular a is
determined by u* : H°(T2i %) -> H°(T1, 0T1)

Proof The morphism u induces a morphism of universal covers u
V1 -+ V2, such that u(x + y) - u(x) E F2 for x E V1, y E T1. So the
expression u(x +,y) - u(x) is independent of x. This implies that the
partial derivatives of u are invariant under translations of F1 i so they
define functions on T1 which are holomorphic, hence constant. Thus u
is an affine map, of the form x F-+ a(x) + b, where a is a homomorphism
from V1 to V2, and b E V2. We must have a(F1) C 172, which implies
that a induces a homomorphism a : T1 --> T2. Clearly a* is identified,
via the identifications 6 : V,* .Z H°(T1, 4.), with the transpose of a,
and this completes the proof of the proposition.

Theorem V.13 Let X be a smooth projective variety. There exists
an Abelian variety A and a morphism a : X --> A with the following
universal property:

for any complex torus T and any morphism f : X --+ T, there
exists a unique morphism f : A -+ T such that f o a= f.

The Abelian variety A, determined up to isomorphism by this con-
dition, is called the Albanese variety of X, and written Alb(X). The
morphism a induces an isomorphism a* : H°(A,1z ) -+ H°(X, 0jr).

Proof We will assume the following result, which is proved by Hodge
theory (cf. [W]):

Let i : H1(X, 7L) -> H°(X,121)* be the map defined by (i(y), w) _
f,, w for y E H1(X, Z), w E H°(X,121). The image of i is a lattice in
HO (X, S21)*, and the quotient is an Abelian variety.

We write H = Im(i), 1 = H°(X,121), and put A = Q*/H. Next we
define a.

Fix a point p in X. Let cx be a path joining p to a point x in X, and
let a(cx) E 12* be the linear form w i--* L. w. If we replace cx by another
path c'x joining p to x, we change a(cx) by an element of H. So the class
of a(cx) in A depends only on x: we call it a(x).

We will show that a is analytic in a neighbourhood of a point q E X.
Choose a path c from p to q, and a neighbourhood U of q in X isomorphic
to a ball B in C"; we identify U with B. For x E U, put a(x) = a(cx),
where cx is the path composed of the path c and the segment (q, x). It is
clear that a : U -+ 12* is an analytic morphism; since alU = aoa, where
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a denotes the projection of * onto A = (1*/H, a is analytic in U. We
have a(p) = 0; notice that if we change p, a is altered by translation in
A.

We prove the last part of the theorem. Since 6 : ( H°(A, 52'') is an
isomorphism (V.11), it is enough to show that a* (bw) = w for all w E S2.
Locally on X, we can write a = aoa as above, whence

a*(bw) = a*x*(bw) = a*d((w,'))

The value of this form at a point x E

Q"U)

X is

d((w, a(x))) = d = w(x)

which proves that a*(bw) = w.
We now demonstrate the universal property of A. Let T = V/I' be a

complex torus, f : X T a morphism. We prove the uniqueness of f.

There is a commutative diagram

H°(X, fX) f' H°(T, QT)

H°(A, ck 1)

which determines 1*, because a* is an isomorphism. It follows that
f is determined up to translation (Proposition V.12); since we fixed
f (0) = f (p), f is unique.

To prove the existence of f, it suffices (given Proposition V.12) to

prove that the composite homomorphism u : V* 6. H°(T, SlT) L SZ
satisfies tu(H) C T. Let 7 E H1(X,7L), v* E V*; then

(tu(i(-y)),v*) = (t(7),u(v*)) = f f*(bv*) = J bv*
7 f.7

and ff*7 bv* = (h-1(f*7),v*) by (V.11), whence tu(i(7)) = h-'(f*7) E
IF and the theorem is proved.

Remarks V.14
(1) We have dimAlb(X) = dimH°(X,(k) . In particular, if

H° (X , S11 t) = 0 (for example if X = ]p1, or if X is a surface
with q = 0), every morphism from X to a complex torus is trivial
(i.e. the image is reduced to a point).
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(2) From the universal property it follows immediately that the Al-
banese variety is functorial in nature: if f : X --+ Y is a morphism
of smooth projective varieties, there exists a unique morphism
F : Alb(X) -- Alb(Y) such that the diagram

X-
aXi

Alb(X)

(3)

f

F

Y

+

aY

Alb(Y)

is commutative.
From the universal property we also deduce that the Abelian vari-
ety Alb(X) is generated by a(X) (because the Abelian subvariety
of Alb(X) generated by a(X) satisfies the universal property). In
particular a(X) is not reduced to a point if Alb(X) # (0). It also
follows that if the morphism f : X -> Y is surjective, then so is
the morphism F : Alb(X) --+ Alb(Y) obtained from f in (2).
If X is a curve, Alb(X) is equal to the Jacobian JX.
From the construction of A = Alb(X) it follows that the map
a. : Hl (X, Z) -+ Hl (A, 7L) is surjective, and that its kernel is
the torsion subgroup of Hl (X, Z). Geometrically, this implies
that the inverse image under a of a connected etale cover of A is
connected.

Proposition V.15 Let S be a surface, a : S -p Alb(S) the Albanese
map. Suppose that a(S) is a curve C. Then C is a smooth curve of
genus q, and the fibres of a are connected.

We sometimes call the map a : S -> C the Albanese fibration of S.
We need the following lemma:

Lemma V.16 Suppose that a factorizes as S T -+ Alb(S), with f
surjective. Then J : Alb(T) --> Alb(S) is an isomorphism.

Proof The functoriality of the Albanese variety (V.14(2)) provides a
morphism F : Alb(S) -> Alb(T). We have a commutative diagram

S f

la aT joFoa=jof=a
Alb(S)- F Alb(T) 0 Alb(S)
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whence j o F = Id by the universal property of a. Since F is surjective
(V.14(3)) j and F are isomorphisms inverse to each other.

Proof of Proposition V.15 Let N be the normalization of C. Since

S is normal, a factorizes as a : S L N , Alb(S). By the lemma,
j JN -> Alb(S) is an isomorphism. Since aN : N -+ JN is an
embedding, so is j, which proves that N = C. Thus C is a smooth
curve of genus q. To prove that a has connected fibres, we `recall' the
following result, which is essentially the same as Zariski's `connectedness
theorem' (cf. [EGA III, 4.3]):

Fact V.17 (Stein factorization)
Let f : X -- Y be a proper morphism (of varieties or schemes). Then f
factorizes as f : X 4 Y -4 Y, where g is a finite morphism and p is a
surjective morphism with connected fibres.

End of proof of V.15 Let us factorize a as a S -4 C -4 C as above;
noticing that, by replacing C by its normalization if necessary, we may
assume that C is smooth. It follows from Lemma V.16 that g induces
an isomorphism G : JC -Z JC such that Goat = ac o g; this implies
that g is an isomorphism, which completes the proof of the proposition.

Proposition V.15 will be used in an essential way in the following case:

Lemma V.18 Let S be a surface with pg = 0, q >, 1, a : S -+ Alb(S)
its Albanese map. Then a(S) is a curve.

Proof If a(S) is a surface, the morphism a : S --+ a(S) is generically
finite, hence etale over an open subset U E a(S). Let X E U; a(S) is
smooth at x, and we can take local coordinates U1.... , uq for Alb(S)
at x such that a(S) is defined locally by u3 = = Uq = 0. Since
A = Alb(S) is parallelizable, there exists a 2-form w E H°(A,1lA) such
that w and dul A due take the same value at x; but then a*w is a global
2-form on S, non-zero above x, a contradiction.

Theorem V.19 Let S, Sr be two non-ruled minimal surfaces. Then ev-
ery birational map from Sr to S is an isomorphism. In particular, every
non-ruled surface admits a unique minimal model (up to isomorphism);
the group of birational maps from a non-ruled minimal surface to itself
coincides with the group of automorphisms of the surface.
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Proof Let 0 be a birational transformation from S' to S. By the theorem
on resolution of indeterminacy, there exists a commutative diagram

where the e; are blow-ups, and f a morphism. Among all the diagrams
of this type, let us choose one with n minimal. If n = 0, the theorem is
proved; so suppose n # 0. Let E be the exceptional curve of the blow-up
e,,. The image f (E) is a curve C on S, otherwise f would factorize as
f' o c,a , contradicting the minimality of n.

We now calculate C.KS. Notice that if e : X --> X is the blow-up
of a point on the surface X, and f is an irreducible curve on X such
that e(f) is a curve r, we have KX.I' = (e*KX + E).(e*P - mE) , with
m = E.f (cf. 11.3) whence KX.I' = KX.I' + m > KX.I', with equality
only when f does not meet the exceptional divisor.

The birational morphism f being composed of blow-ups, we get
KS.C < KS.E = -1, with equality if and only if E does not meet
any of the curves contracted by f. But in that case the restriction of f
to E is an isomorphism, so that C is a rational curve with K.C = -1, i.e.
an exceptional curve, which is impossible. Thus K.C < -2, so C2 >, 0
(by the genus formula).

Note that these two inequalities imply that all the P vanish: if InKI
contained a divisor D (for n > 1), we would have D.C > 0 by the useful
remark, thus K.C > 0, a contradiction. We must now distinguish two
cases:

If q = 0, Castelnuovo's theorem says that S is rational, which is
excluded.
If q > 0, the Albanese map of S gives a surjective morphism p : S - B
with connected fibres, where B is a smooth curve of genus q (Lemma
V.18 and Proposition V.15).

Since C is rational, C is contained in a fibre of p, say F; since
C2 >, 0, Lemma 111.9 shows that F = rC for some integer r. This
tells us that C2 = 0, hence C.K = -2. Then by the genus formula
r = 1, g(F) = 0. At this point the Noether-Enriques theorem (111.14)
implies that S is ruled, a contradiction.
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Historical Note V.20
Castelnuovo proved Corollary V.5 first ([Cl]), then Theorem V.1 ([C2]).
His proof is based on `the termination of adjunction' (i.e. the relation
ID + nK I = 0 for all sufficiently large n, for all divisors D), like the one
given here, but more complicated. The proof given here is essentially
Kodaira's (cf. [S2]).

There is a proof valid in all characteristics due to Zariski ([Z2] and
[Z3]).

The uniqueness of the minimal model for non-ruled surfaces appeared
in 1901, in the equivalent form of `non-existence of exceptional curves of
the second kind' ([C-E]); it already depended on Castelnuovo's theorem.
A modern version was given by Zariski in [Z2].

The classification of minimal rational surfaces seems to have been
stated for the first time by Vaccaro ([Va]); our proof is due to Andreotti
([A]), with a slight improvement from Kodaira.

Exercises V.21

(1) Let S be a surface for which the anticanonical system I - KI is
ample (i.e. some multiple of it determines an embedding of S into
IPN). Show that either S = P1 x 1P1 or S is obtained from P2

by blowing up r distinct points (r < 8) in general position (cf.
Chapter IV, Exercise 11).
(Show that S is rational with the help of Castelnuovo's theorem;
then use V.10, noting that if S dominates a surface lF (n > 2),
-KS is not ample.)

(2) Let S be a surface in P, H a hyperplane section. Assume that
H - -K. Show that S is
either a del Pezzo surface Sd (3 < d < 9);
or the surface S,3, the image of lPD1 x P' embedded in lP by the
system j2h1 + 2h21 in the notation of 1.9(b) (this surface is often
counted as a del Pezzo surface).

(3) Let S be a non-ruled surface. Show that for every embedding
of S in P", the group of automorphisms of P' fixing S is finite
(using the theory of algebraic groups). Deduce that the group
of automorphisms of S is an extension of a discrete group by an
Abelian variety of dimension < q.

(4) Let G be the group of automorphisms of the surface IF,,, n > 1.
Show that there exists an exact sequence

1 - T G-+PGL(2,C) -- 1
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(5)

where T is the semi-direct product of C* with
where C* acts by multiplication.
Calculate Aut(IF°).
Show that a surface containing an infinite number of exceptional
curves is rational, and that there exist such surfaces. (Let P
be a pencil of cubic curves in IF2 such that each cubic of P is
irreducible, and let S be the surface obtained by blowing up IP>2
in the base points of P. Show that any divisor D on S with
D2 = -1, K.D = -1 is equivalent to an exceptional curve. Prove
that Pic S contains infinitely many such classes; for this consider
the class b = L - El - E2 - E3 in Pic S (with the notation of
IV.2(4)), and the automorphism D i--* D + (b.D)b of Pic S.)



VI
SURFACES WITH pg = 0 AND q , 1

The object of this chapter is to give a complete classification of the
surfaces mentioned in the title. In particular, we get various character-
izations of ruled surfaces.

Lemma VI.1
(a) Let S be a surface with pg = 0, q , 1. Then K2 < 0, and K2 < 0

unless q = 1 and b2 = 2.
(b) Let S be a minimal surface with K2 < 0; then pg = 0 and q, 1.

Proof Since 2q = bl (111.19), Noether's formula gives

12-12q=K2+2-4q+b2 , or K2= 10-8q-b2

To prove (a) we must check that b2 , 2 if q = 1. Consider the Albanese
map a : S --> B, where B = Alb(S) is an elliptic curve. Let f E H2(S,7L)
be the class of a generic fibre of a and h that of a hyperplane section.
Since f2 = 0 and h. f > 0, h and f are linearly independent in H2(S, Z),
and so b2, 2.

(b) Suppose pg # 0, and let D E I KI, D = > nEC;, n= > 0. Since
K.D < 0, K.C; must be negative for some i; since C;.C; , 0 for i $ j,
this implies C; < 0. Hence C; is exceptional, a contradiction. The same
argument gives Pn = 0 for all n; if q = 0, then S would be rational by
Castelnuovo's theorem, and so K2 = 8 or 9.

Proposition VI.2 Let S be minimal with K2 < 0. Then S is ruled.
Proof By Lemmas VI.1(b) and V.18, the Albanese map p : S -+ B has
connected fibres and B is a smooth curve. Assume that S is not ruled.
Step 1: Let C C S be an irreducible curve with K.C < 0 and JK+CI = 0.
Then p1c is etale, and is an isomorphism if q , 2 (i.e. C is a section of
p). Thus g(C) = q.

68
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Proof Apply Riemann-Roch to K + C:

0 = h°(K + C) >, x(Os) + 2 (C2 + C.K) = 1 - q + g(C) - 1 ,

and so g(C) < q.
Since S is minimal, C2 > 0, and so C cannot lie in a reducible fibre

of p, by Lemma 111.9. If C were a fibre of p, then C2 = 0, and so
C.K = -2 and g(C) = 0; but then S would be ruled, by the theorem
of Noether and Enriques (III.4). Hence p(C) = B. Let N denote the
normalization of C; p then defines a ramified cover N -+ B, of degree d,
say. By Riemann-Hurwitz, we get

g(N) = 1 + d(g(B) - 1) + 2 ,

where r is the number of branch points, counted with their index. Thus

q> g(C) >, g(N) >, 1+d(q-1).

Hence either d = 1, or q = 1 and C = N, and the assertion follows.

Step 2: There is an irreducible curve C on S with IK + Cl = 0 and
K.C < -1.
Proof By V.8, there is an effective divisor D such that IK + DI = 0 and
K.D < -1. Say D niCi, ni > 0; removing some of the Ci if
necessary, we may assume that K.Ci < 0 for all i. We shall show that
D is then in fact irreducible.

(a) Suppose that ni > 2 for some i, so that IK + 2Ci I = 0. Riemann-
Roch gives

0 = h°(2Ci+K) >, 1-q+2C2+Cj.K
= 1- q + 2(C; + C1.K) - Ci.K .

By Step 1, C; + Ci.K = 2(q - 1), and so 0 > 3(q - 1), a contra-
diction.

(b) Suppose that r > 2; then IK + Cl + C21 = 0, and by Step 1 again
we get

0 = h°(K + C1 + C2)

hl(K+CI+C2)+1-q+ 1(C1 +C1.K)

+
2

(CZ + C2.K) + C1.C2

= (q-1)+h1(K+C1+C2)+C1.C2 ,
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which is impossible unless C1.C2 = hl (K + Cl + C2) = 0. But if
C1 fl C2 = 0, there is an exact sequence

0-+Os(-Cl-C2)-+OS- OCIED OC2->0

and the corresponding cohomology sequence gives
H1(S, Os(-Cl - C2)) # 0. Hence also h1(K + C1 + C2) # 0,
which is a contradiction.

Thus D is irreducible, and Step 2 is proved.

Step 3: We get a contradiction.

Let C be an irreducible curve in S with C.K < -1 and IK + Cl = 0.
Suppose first that C is a section of p. Riemann-Roch gives

h°(C)>1-q +1(C2-C.K)=-C.K>2;

in other words, C moves in its linear equivalence class. Let F be a
generic fibre of p; then the point c fl F moves linearly on F, and so F
must be rational, which is a contradiction.

Suppose then that q = 1 and pIC is etale. The inclusion i : C c--+ S
defines a section e : C --+ S X B C; let S' denote the connected component
of S XB C that contains e(C) = C', say. The projection it : S' --+ S is
etale, and so QS', a*SZS and Ks, *Ks. Hence

Ks,.C' = degC,(e*Ks,) = degC(i*K) = K.C < -1

e

S' T S

)z I P
CC- B

(see 1.6). Hence as usual pg(S') = 0, and so by Riemann-Roch

h°(C') > X(Os,) - 1 + g(C') - Ks,.C' .

Since X(Os,) = 0 by Lemma VI.3 below, we get h°(C') >, 2, which leads
to a contradiction as before.

Lemma VI.3 Let it : S' -+ S be an etale map of surfaces, deg it = n.
2Then Ks, = nK, Xtop(S') = nXtop(S) and X(Os,) = nX(Os)
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Proof The last equation follows from the first two and Noether's formula.
The first is obvious, since KS, = a*K. The second is well known to topo-
logists, and can be proved in the following way. Choose a triangulation
of S; then xtop(S) = E(-1)' f;(S), where f=(S) is the number of faces of
dimension i. Since the faces are simply connected, their inverse images
in S' triangulate it. Clearly f=(S) = n f;(S), and we are done.

To complete the classification of surfaces with p9 = 0 and q > 1, we
must consider the case K2 = 0, q = 1, b2 = 2 (see Lemma VIA). We
shall need the following lemmas.

Lemma VI.4 Let S be a surface, B a smooth curve and p : S -+ B a
surjective morphism. Let E C B be the (finite) set of points over which
p is not smooth, and let 77 E B - E. Let Fb denote p1(b), b E B. Then

Xtop(S) = Xtop(B) xtop(Fn) + j(Xtop(Fs) - xtop(Fn))
sEE

Proof Recall that for any topological space X and any closed subset
F C X, there is a long exact sequence

H,(X-F, 7L)-*H'(X,Z) H(F,7L) H'+1(X-F,Z)-, ...

(where the subscript c means cohomology with compact support), and
hence xtop(X) = xtop(F) + xtop,c(X - F).

Set U = S - sE Fs; by the above formula,

Xtop(S) = xtop,c(U) + Xtop(Fs)
sEE

and also

xtop(B) = xtop,c(B - E) + x(E) = xtop,c(B - E) + Card E .

Now p : U -* B - E is a topological fibre bundle, and so

Xtop,c(U) = xtop,c(B - E) Xtop(FI)

The lemma follows from these three equations.

Lemma VI.5 Let C be a reduced (but possibly reducible) curve. Then
xtop(C) >, 2x(Oc); equality holds if and only if C is smooth.
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Proof Let n : N - C be the normalization of C. Consider the diagram

0 --- Cc -- n. CN - e --> 0

1 1 l
0 Oc n. ON - > 6 0.

where CX denotes the constant sheaf C on the variety X, and e, 6 are
defined so as to make the rows exact.

To say that 0 is injective is the same (diagram chasing) as saying that
a local section of ON that comes both from n.CN and Oc in fact
comes from Cc; this, however, is obvious.

Thus h°(b) >, h°(e), and it follows from the diagram that

Xtop(N) = Xtop(C) + h°(E)
X(ON) = X(Oc) + h°(b),

and so Xtop(C) = 2x(Oc) + h°(b) + (h°(b) - h°(e)), since Xtop(N) _
2X(ON). Hence Xtop(C) > 2X(Oc), and equality implies h°(b) = 0, so
thatb=O and C=N.

Proposition VI.6 Let S be a minimal surface with p9 = 0, q = 1 and
K2 = 0, p : S --+ B the Albanese map (B is an elliptic curve) and g
the genus of a generic fibre of p. Then if g >, 2, p is smooth, and if
g = 1, then the singular fibres of p are of the form Fb = nE, where E is
a smooth elliptic curve.

Proof We shall show first that the fact that b2 = 2 (proved in (VI.1(a))
implies that p has irreducible fibres. Suppose that some fibre contains
two irreducible components Fl and F2; let H be a hyperplane section
of S. It is enough to show that F1, F2, H are linearly independent in
H2(S, Z); suppose then that aH + ,QF1 + -yF2 = 0 in H2(S, Z). Let F
be a generic fibre. If a # 0, then H.F = 0, which is absurd, and so
a = 0. Thus F2 = r.F1 i r E Q; intersecting with H gives r > 0, and
now intersecting with F1 (using Lemma 111.9) gives r < 0, which is a
contradiction.

Thus p has irreducible fibres; they might, however, be multiple, i.e.
F, = nC for some irreducible curve C, n > 1. In this case

Xtop(Fs) = Xtop(C) > 2X(Oc) by Lemma VI.5,

2X(Oc) = -C2 - C.K = -nF,.K = -nF,7.K = -X(OF,,)

1Xtop(F,7)
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Since g > 1, i.e. Xtop(F,7) < 0, we get finally Xtop(F8) > Xtop(F,v), and
equality holds if and only if both Xtop(C) = 2X(Oc) (i.e. C is smooth)
and - Xtop(F,7) = Xtop(Fp) (i.e. either n = 1 or g = 1 = g(C)).

Hence for s E E (in the notation of Lemma VI.4), Xtop(Fs)-Xtop(F,?)
0, and equality holds only if F, = nE, E a smooth elliptic curve, g(F,7) =
1. Now apply the formula of VI.4; we get Xtop (S) = 2 - 2b1 + b2 = 0 and
Xtop(B) = 0, and so E$EE(Xtop(F,) - Xtop(F,?)) = 0. The proposition
follows, by what we already know.

Smooth fibrations S -* B are very special and can be completely
classified. If there are multiple fibres (g = 1), we can reduce to a smooth
fibration by the following result:

Lemma VI.7 Let p : S -* B be a morphism from a surface onto
a smooth curve whose fibres are either smooth or multiples of smooth
curves. Then there is a ramified Galois cover q : B' -* B with Galois
group G, say, a surface S' and a commutative diagram

Si °-* S

p1 I
lp,

B' 9* B

such that the action of G on B' lifts to S', q' induces an isomorphism
S'/G Z* S and p' is smooth.

Proof It is enough to eliminate each multiple fibre by taking succes-
sive branched covers, and so the lemma follows from the following local
version.

Lemma VI.7' Let 0 C C be the unit disc, U a (non-compact) smooth
analytic surface and p : U -* 0 a morphism that is smooth over 0-{0},
such that p*O = nC for some smooth curve C C U. Let q : 0 -* 0 be
the morphism defined by z i-+ z", U = U x& 0, U' the normalization of
U and p', q' the projections of U' onto 0, U. The group pn of nth roots
of unity acts on 0 (by z F-* (z), and so on U (via the second factor),
and so on U'; q' induces an isomorphism U'/µn 2* U. The fibration
p' : U' - A is smooth.
Proof Since the hypotheses and statements are local on U, we may
assume that there are local coordinates x, y on U such that p(x) y) = x",
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and C is defined by x = 0. Then

U = {(x, y, z)
I

(x, y) E U , z E A and x "= zn }
U Us, where Uc _ {(x, y, (x) I (x, y) E U}

Mu.

Each US is isomorphic to U, via q : U , U; U is the union of the n
varieties US, identified along the line x = 0. U' is then the disjoint
union of the US and /n acts on U' by interchanging the components.
Identifying Us with U expresses p' : US as (x, y) H Cx. All the
statements in the lemma are now clear.

Note that the construction described above does not tell us that the
cover q : B' --> B is ramified only over those points of B that correspond
to multiple fibres, nor that q' : S' -> S is etale. That in fact there is
such a q follows from the arguments below.

Proposition VI.8 Let p : S --* B be a smooth morphism from a
surface to a curve, and F a fibre of p. Assume either that g(B) = 1 and
g(F) > 1, or that g(F) = 1. Then there exists an etale cover B' such
that the fibration p' : S' = S x B B' -* B' is trivial, i.e. S' - B' x F.
Furthermore, we can take the cover B' , B to be Galois with group G,
say, so that S - (B' x F)/G.
Proof This depends upon a series of facts from the theory of moduli
spaces for curves; a good reference is [Gr].

Let T be a variety. A curve of genus g over T is a smooth morphism
f : X -> T whose fibres are curves of genus g. f is a topological fibre
bundle, and so the sheaf R' f. (7L/n7L) is locally constant for all n. There
is a symplectic form on it given by the cup product:

R' f. (7L/n7L) 0 Rl f. (7L/n7L) , (7L/n7L)T .

Having such a sheaf is equivalent to knowing its fibre at a point t E T
(i.e. H1(Xt,7L/n7L)) together with the action of the fundamental group
irl(T,t): this action preserves the symplectic form on H1(Xt,7L/n7L).

Let us endow the constant sheaf (7L/nZ)T with its standard sym-
plectic form. A Jn-rigidified curve of genus g over T is a curve of
genus g over T together with a symplectic isomorphism (7L/n7L)T Z
Rl f. (7L/n7L). A curve of genus g over T can be Jn-rigidified if irl (T, t)
acts trivially on H1(Xt, Z/nZ); this can certainly fail to hold, but since
Aut(H1(Xt, Z/nZ)) is finite, ir1 has a subgroup of finite index which acts
trivially, and so there is an etale cover ' -* T such that the pullback
of the given curve is Jn-rigidifiable over T'.
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Let n > 3. One then shows that Jn-rigidification eliminates automor-
phisms, and this implies that there is a universal Jn-rigidified curve of
genus g, denoted by Ug,n -* T. In other words, every Jn-rigidified
curve of genus g over a variety T is the pullback from Ug,n --i Tg,n via a
unique morphism T Tg,n. The spaces Rg,n are in fact quasi-projective
varieties ([M2]), but it is enough for our purposes that they exist as ana-
lytic spaces ([Gr]). We shall need also the following properties:

(1) For g 2, there is no non-constant analytic morphism h : C -r
Tg,n.

(2) For g = 1, there is no non-constant analytic morphism from a
connected compact variety X to T1 ,,.

(2) is elementary, since the j-invariant defines a holomorphic function
on X, which must be constant.

(1) is more subtle. One can use the hard fact that the universal cover
Tg (Teichmiiller space) of Tg,n is a bounded domain, and so cannot be the
target of any non-trivial morphism from C. One can also consider the
space Ag,n, which classifies Jn-rigidified principally polarized Abelian
varieties of dimension g; by construction, its universal cover is the Siegel
upper half-space Hg, which is a bounded domain. Finally one applies
the Torelli theorem, which shows that the map Tg,n --r Ag,n obtained by
sending a curve to its Jacobian is finite.

We shall show how the proposition follows from properties (1) and (2).
Let p : S - B be a smooth morphism, with fibres of genus g; then for
fixed n > 3, there is an etale cover B' -+ B such that the curve S' - B'
(with S' := S X B B') is Jn-rigidifiable. Choose some Jn-rigidification; we
get a morphism h : B' -+ Tg,n such that S' = Ug,n xTs , B'. If g(B) = 1,
then g(B') = 1; if g > 2, then h is trivial by (1), since the universal cover
of B' is C. If g = 1, then h is trivial by (2). The proposition follows.

Corollary VI.9 Let S be a minimal non-ruled surface with pg = 0,
q = 1 and K2 = 0. Then there are two curves B, F, of genus > 1, and
a finite group G of automorphisms of B acting on B x F compatibly with
its action on B (i.e. g(b, f) = (gb, ) for g E G, b E B, f E F) such that
S = (B x F)/G. The curve B/G is elliptic; if moreover g(F) > 2, then
B is elliptic and G is a group of translations of B.

This follows at once from VI.6-8.

Lemma VI.10 Let B, F be curves of genus > 1 and G a group of
automorphisms of B acting on B x F compatibly with its action on B.
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(i) If g(F) >, 2, then G acts on F and g(b, f) = (gb, g f) for g E G,
b E B, f EF.

(ii) If g(F) = 1, there is an etale cover b of B and a group H acting
on b and F such that B/H = B/G and (B x F)/H = (B x F)/G.

Proof

Step 1: For g E G and b E B, we have g(b, f) = (gb, 4g(b). f ), where 4g(b)
is an automorphism of F depending continuously on B. If g(F) > 2,
then Aut(F) is finite, and so c6g(b) is independent of b; this proves (i).

So suppose that F is elliptic; fix an origin 0 on F, so that it has a
natural group structure (i.e. it is an Abelian variety). Then 4g(b) is of
the form f i-+ ag(b). f + tg(b), where ag(b) is an automorphism of F as
an Abelian variety and tg(b) is a translation (see Proposition V.12). The
group Auto(F) of automorphisms of F that preserve the group structure
is finite (V.12 or VI.16 below), so that ag(b) = ag is independent of b,
and one can check easily that t9 : B -+ F is a morphism. For g, h E G,
we have agh agah, and so a : G --* Auto (F) is a group homomorphism.

Step 2: There is a morphism p : B -+ F and an integer n such that

p(gb) - ag.p(b) = ntg(b) for b E B,g E G . (*)

Proof Recall that there is a canonical isomorphism F --> Pic°(F): f H
[f] - [0] (in what follows we shall let f1 + f2 denote the sum of f1 and
f2 with respect to the group law on F, and [fl] + [f2] the corresponding
divisor of degree 2 on F). Then

[fl] + ... + [fr] = (r - 1)[01 + [Eff] for fl,...,fr E F .

Let u E Aut F, given by u(f) = a(f) + t, a E Auto(F) and t E F; if
D = (n - 1)[0] + f, then

u*D = (n - 1)[u-1(0)] + [u-1(f)]
= (n - 1)[-a-1t] + [a-1f - a-1t]

(n - 1)[0] + [a-'f - na-1t].

Let H be a hyperplane section of B x F; the bundle C =
GBxF(> g*H) is G-invariant. For b E B, set Cb = G 0 Ojb}xF

9EG
this is a line bundle on F of degree n > 0. That C is G-invariant means
that

Lb = (9*r) 0 O{b}xF = cg(b)*,Cgb
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Define p by ,Cb = Op((n - 1)[0] + [p(b)]). The last equation becomes

p(b) = ag 1 p(gb) - nay 1. tg (b)

and we are done.

Step 3: Suppose for the moment that n = 1; define u E Aut(B x F) by
u(b, f) = (b, f - p(b)). The relation (*) yields ugu-1(b, f) = (gb,ag.f);
in other words, u defines an isomorphism (B x F)/G 2* (B x F)/H,
where H = uGu-1 acts on B x F by means of its action on the two
factors. This proves (ii) in this case.

In general, consider the (possibly disconnected) etale cover ir : B -+ B
induced by the pullback

B - °* F

7rt I

I n
B-.

-° > F

One has b C B x F, and by (*), B is G-stable. On the other hand, the
group Fn of points of order n in F also acts on B, by e(b, f) = (b, f + e).
Set H = (G, Fn) C Aut(B); one has geg-1 = ag.e for g E G, c E F, and
so H is a semi-direct product of G by Fn : there is a split exact sequence
1-+Fn-*H '-'*G-*1.

Make H act on b x F by h(b, f) _ (hl, f ). Since f3/Fn = B,
we have B/H = BIG and (B x F)/H - (B x F)/G. Consider u E
Aut(B x F) defined by u(b, f) (b. f - p(b)); then

uhu-'(1j) = +Bh(b))

where Bh(b) = p(hb) + Now by (*), n.Bh(b) = 0; i.e.
Oh(b) E Fn. Thus Oh is independent of b, and the action of H on B x F,
after shifting by u, is of the required form.

If b is not connected, let Bo be some connected component and Ho the
subgroup of H preserving Bo; then clearly (Bo x F)/Ho = (B x F)/H,
and the lemma is proved.

Thus in every case we get S = (B x F)/G, where G C Ant B acts
on F. Note that if a normal subgroup H of G acts trivially on F, then
S - (B' x F)/G', where B' = B/H, G' = G/H. So henceforth we shall
assume that G C Aut F. It follows that G has only finitely many fixed
points. However, the quotient of a smooth variety by a finite group G
can only be smooth if the subvarieties fixed by an element g E G are
divisors for all g 1. (This follows from Zariski's theorem on the purity
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of the branch locus, which is easy to prove in this case: if f : X -+ Y
is a finite morphism of smooth varieties, then the branch locus of f is
defined by the vanishing of det(df), and so is a divisor.) Hence G acts
freely on B x F (i.e. for every g E G - {1} and s E B x F, gs # s).

It remains to check which surfaces of the form (B x F)/G have p9 = 0,
q > 1. For this we must compute the numerical invariants of a quotient
variety.

Lemma VI.11 Let X be a smooth variety and G a finite subgroup
of Aut X . Let a : X -+ Y = X/G denote the natural projection, and
assume that Y is smooth. Then the G-invariant k-fold p-forms a E
H°(X, (QX)®k) are the forms r*w, where w is a k-fold rational p-form
on Y such that a*w is regular on X.

Proof We shall consider only the 1-forms; the general case follows im-
mediately. For V = X or Y, let Ky denote the function field of V and
Mc4 the space of rational 1-forms on V, an n-dimensional Ky-vector
space (where dim V = n). We must show that 7r* : Mc4 -+ (MQX)G
is an isomorphism. Let {dyi,... , be a Ky-basis of Mm,; then
{ir*dyi,... , a KX-basis of MQ1 . A rational 1-form a =

Ai ir* d yi (Ai E Kx) on X is G-invariant if and only if each Ai is
so, i.e. if and only if Ai = a*Bi, for some Bi E Ky, for all i. Then
a = it*w, where w = >2 Bi dyi, and the lemma is proved.

Examples VI.12

(1) it is etale (i.e. G acts freely).
Then a form a is regular if and only if rr*a is so; therefore

ir* : H°(Y, (SZy)®k) -+ H°(X, (OP )01)G is an isomorphism.
(2) Curves.

Set S21 = w. We want to find the rational k-fold 1-forms a on
Y such that a*a E H°(X,wrk). Where it is etale, it is necessary
and sufficient that a be regular. Let P E Y be a branch point
of it. G acts transitively on a-1(P) = {Q1, ... , Q, }, so that the
stabilizers of the Qi are conjugate in G; their order ep, or e, is the
ramification index of Qi, i = 1, ... , s, and es = Card G = deg a.
There are local coordinates y on Y at P and xi on X at Qi such
that lr*y = x; near Qi. Near P, we can write a = Ay (dy)®k,
where A(P) # 0 and r E Z. At Qi we have

r*a = a*Axi t (exe'1 dxi)®k

= Ai x= Te+k(e-1) (dxi)®k, with Ai(Qi) 96 0
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Thus a*a is regular if and only if -re + k(e - 1) > 0, and so

(3)

r* H° (Ywr
(

P Lk (1 1 IJ -+ H°(X,w4k)G
PEY eP ))

is an isomorphism ([x] denotes the integral part of x; the sum
is in fact only over a finite set, since ep = 1 if P E Y is not a
branch point).

Note that for k = 1, H°(X,wX)G = H°(Y,wy), but the cor-
responding formula can fail as soon as k > 2.
p-forms.

It is in fact true in every dimension that

7r* : H°(Y, Sl,) , H°(X, S2x)G

is an isomorphism. For this, one uses the existence of a trace map
Tr : H°(X, SZX) --i H°(Y, SlY) such that a* Tr(w) = EgEG 9*w
(see for example [G]). There is no corresponding result for k-fold
forms, as we saw when X, Y were curves.

We shall not need this result.

Theorem VI.13 Let S be a minimal non-ruled surface with pg = 0,
q 3 1. Then S a, (B x F)/G, where B, F are smooth irrational curves,
G is a finite group acting faithfully on B and F, BIG is elliptic, FIG
is rational and one of the following conditions holds:

I: B is elliptic, and so G is a group of translations of B;
II: F is elliptic, and G acts freely on B x F.

Conversely, every surface with these properties is minimal with pg = 0,
q = 1, K2 = 0 and is non-ruled.

Proof Let S be a minimal non-ruled surface with pg = 0 and q > 1; then
K2 = 0 and q = 1 (VI.1(a) and VI.2). By VI.9 and VI.10 we know that
S - (B x F)/G, where G acts on B and F such that BIG is elliptic.
Moreover, either B is elliptic (Case I) or F is elliptic (Case II). In each
case G acts freely on B x F, so that the projection ir : B x F -+ S is
etale.

We want to know when (B x F)/G has pg = 0 and q = 1. Note that
it is minimal and non-ruled: if it contained a rational curve C, then
7r-1(C) would be a union of rational curves, each of which would have
to map surjectively to either B or F. This is clearly impossible.
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Set S = B x F. By 111.22 we have

so tha

and

so that

H°(S, 01) 25 H°(B,wB) ®H°(F, wF)

q(S) = g(B) + 9(F) ,

H°(S,SZZ ) = H°(B,wB) ® H°(F,WF) ,

ps(S) = g(B)g(F)

In particular, x(OS) = x(OB) x(OF) so that x(Og) = 0, since B or F
is elliptic. If B (resp. F) is elliptic, then S25 q*wF (resp. f1 25 p*wB),

where q (resp. p) denotes the projection S --+ F (resp. S -> B). Hence
KS = 0, and so by VI.3 x(Os) = 0 and KS = 0. Since it is etale,

H°(SM) H°(S,f )G
H°(B,wB)' ®H0(F,wp)G

H°(B/G,WB/G) ®H°(F/G,wF/G) ,

by examples VL12(1) and VI.12(2). Since BIG is elliptic, q(S) = 1 if
and only if FIG is rational; in this case, p9(S) = 0, since x(Os) = 0.
The theorem is proved.

Examples VI.14

(1) Constructing all the examples in Case I is straightforward. Take
an elliptic curve B; G must be of the form Z/aZ ®7L/7Lb with
a, b 1. Choose an irrational Galois cover F of P1 with this
group, and set S = (B x F)/G.

(2) Giving an example of Case II (which does not fall into Case I) is
harder, since the requirement that G act freely is fairly restric-
tive (for example, G cannot be cyclic). We give an example with
G = 7L/27L ®7L/27L acting on the elliptic curve F via the auto-
morphisms x -+ -x and x i-4 x + a (e being a point of order 2).
Choose an elliptic curve B'; we seek a ramified Galois cover B of
B' with group 7L/27L ®7L/27L such that two of the non-trivial ele-
ments of the group act on B without fixed points (we shall then
adjust things so that these elements correspond to the above au-
tomorphisms of F). For this we choose an etale (resp. ramified)
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double cover B1 (resp. B2) of B' and set B = B1 X B, B2. Let o'1 i

0`2 denote the involutions on B1, B2, and Ol, 72 the involutions
(o1 i 1), (1, 0'2) on B. Then G = 7L/2Z ff /2Z is the group of the
Galois cover B -> B'; vl and o1v2 have no fixed points, and so
G acts freely on B x F.

We next calculate the plurigenera P of the surfaces (B x F)/G so as
to distinguish them numerically from elliptic ruled surfaces.

Proposition VI.15 Let S = (B x F)/G be a surface satisfying the
conditions of Theorem VI.13.

(1)

(2)

(3)

P4 # 0 or P6 $ 0; in particular P12 # 0.
If B or F is not elliptic, then there is an infinite increasing se-
quence {nt} of integers such that the sequence {P ,} tends to
infinity.

If B and F are elliptic, then 4K = 0 or 6K - 0; in particular,
12K - 0.

Proof Note that (3) follows from (1), for if B and F are elliptic then
KBxF is trivial, so if D E I4Ksl (resp. 16Ksi), then 1r`D = 0, and so
D=0.

We divide into cases I and II as before.

Case I
One has H°(S, Sts)®k - H°(S, S2S)®k)G = [H°(B,4Bk)®H°(F,4Fk)]G.

Note that H°(B,4Bk) is G-invariant, since a non-zero regular 1-form on
B is translation-invariant. From example V1.12(2) we get

Pk(S) = dimH°(F,wFk)G = dim Ho (FIG, 4)

where Ck = wF/G(> PEFIG P [k(1 - eP )])
Since FIG - I1, Ck is determined by its degree

deg Gk = -2k + [k \\(1- 1
/ 1

.

eP

The Riemann-Hurwitz formula yields

e2g(F) - 2 = -2n + n (1 -
P I , (R-H)

P

cf. Example VI.12(2).
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Note that if there are r ramification points, then

deg,Ck>, -2k+1: (1- 1l -1\) =2(F)-2_r.
ep / / n

hence if g(F) > 2, Pk(S) = max{deg,Ck + 1, 0) -* oo ask -+ oo. So (2)
holds in this case.

Write the ramification indices in increasing order: el < e,..

Formula (R-H) gives E(1- e) >, 2. We must show that deg,Ck >, 0 for
some suitable k (dividing 12). We divide further into subcases:

(a) r >, 4. Since 2(1 -
i

) >, 1, deg.C2 > 0.

By (R-H), r > 3, and so we can assume that r = 3. Then
1/el + 1/e2 + 1/e3 1-

(b) el 3. Then 3(1- 2, and so deg,C3 > 0. So assume el = 2,
and 1/e2 + 1/e3 < 2

(c) e2 > 4. Then degC4 0-

(d) e2 = 3. Then e3 >, 6, and so degC6 >, 0. Thus (1) is proved in
case I.

Case II

Recall the following well-known facts, which follow easily from Proposi-
tion V.12:

Theorem VI.16 Let F be an elliptic curve, with a group structure.
Every automorphism of F is the composite of a translation and a group
automorphism. The non-trivial group automorphisms are the symmetry
x ra -x and also:

for the curve F; _ (C/(7L ®Zi), x fix;
for Fp = C/(7G (D 7Lp) (p3 = 1, p 1), x ±px and x F+ ±p2x.

So let S = (B x F)/G be a surface satisfying the conditions of H. We
have

H°(S, (Qs )®k) t- [H°(B,4Bk) 0 H°(F,w®k)]G.

Assume that F # F;, Fp (resp. F = F;, resp. F = Fp). By VI.16, if w
is a non-zero regular 1-form on F, then w®2 (resp. w®4, resp. w(&6) is
invariant under Aut F. So if k is even (resp. 41k, resp. 61k), then

Pk (S) = dimes°(B, 4Bk)G = h° (B/GoB/G (j: P [k
(1 1P ePJJ
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(VI.12(2)), since BIG is an elliptic curve. Clearly this expression is non-
zero, and tends to infinity as k oo if g(B) > 2 (since then there is at
least one branch point). So (1) and (2) hold in case II also.

Theorem VI.17 (Enriques) Let S be a surface with P4 = P6 = 0 (or
P12 = 0). Then S is ruled.

Proof If q = 0, then we are done by Castelnuovo's criterion for ration-
ality. If q > 1, the result follows from VI.13 and VI.15.

Corollary VI.18 The following conditions on a surface S are equiva-
lent:

(1) S is ruled;
(2) there is a non-exceptional curve C on S such that K.C < 0;
(3) for every divisor D on S, ID + nKI = 0 for n >> 0 ('adjunction

terminates');
(4) foralln;
(5) P12 = 0.

Proof (2) (3): Since C is not exceptional, the genus formula gives
C2 > 0. Since (D + nK).C < 0 for all n >> 0, (3) follows from 111.5.

(3) (4) (5) is clear; (5) . (1) follows from VI.17.
(1) . (2): By the structure theorem for minimal models of ruled

surfaces, there is a birational morphism f : S -> M, where M is a
geometrically ruled surface (resp. 1P2). There is a fibre F of M (resp. a
line L in P2) over which f is an isomorphism; then f*F.Ks = F.KM =
-2 (resp. f*L.Ks = L.KM = -3), and we are done.

To end this chapter we examine surfaces S of the form (B x F)/G for
elliptic curves B, F (so that 12K3 = 0, by VI.15).

Definition VI.19 A surface S is bielliptic if S - (E x F)/G, where E,
F are elliptic curves and G is a finite group of translations of E acting
on F such that FIG - P1.

The term `hyperelliptic surfaces' is the one which appears in the current
literature; but this creates confusion with the classical terminology, and
seems inadequate.

We can now draw up a complete list of bielliptic surfaces. Since G is
a subgroup of Aut F, it is a semi-direct product T x A, where T is a
group of translations and A C Aut F is a subgroup preserving the group
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structure. Because FIG = l1, A is non-zero and therefore isomorphic
to 7L/a7L, where a = 2,3,4 or 6 (VI.16).

Since G is also a group of translations of E, the product T x A must
be direct; in other words, every element of T is A-invariant. Now the
fixed points of A are as follows:

For x '-+ -x, the points of order 2.
For F1 = C/(7L ®Zi) and A = (x r-+ ix), the points 0, .

For F,, = C/(Z ® Zp) and A = (x -+ px), the points 0, ±( ).
For F,, and A = (x ' -+ -px), the point 0.

Moreover, since T x A is a group of translations of E, it can be gener-
ated by 2 elements; hence T x A F2 x (7L/2Z), where F2 is the group
of points of F of order 2. So we have the following results:

List VI.20 (Bagnera-de Franchis) Let E, F be elliptic curves and G a
group of translations of E acting on F. Then every bielliptic surface is
of one of the following types:

(1) (E x F)/G, G = 7L/27L acting on F by symmetry.
(2) (E x F)/G, G = 7L/2Z Z/2Z acting on F by x -+ -x, x'--f x+e

(e E F2).
(3) (E x F;)/G, G = 7L/4Z acting on F by x ' ix.
(4) (E x F;)/G, G = 7L/4Z Z/2Z, acting by x'-+ ix, x i-+ x+(1E)
(5) (E x F,)/G, G = 7L/3Z acting by x px.
(6) (E x F,)/G, G = Z/3Z Z/3Z acting by x F-+ px, x'-+ x+(1j.).
(7) (E x F,,)/G, G = Z/67L acting by x F-+ -px.

One has 2K - 0 in (1) and (2), 4K = 0 in (3) and (4), 3K - 0 in (5)
and (6), while 6K = 0 in (7).

Historical Note VI.21
The main result of this chapter, the characterization of ruled surfaces
by `the termination of adjunction' or by the existence of a curve C with
K.C < 0, appears in the 1901 paper [C-E]. Later on Enriques proved
the more precise form given in VI.17 ([E3], 1905). We have more or less
followed the plan of his proof.

Bielliptic surfaces (known classically as `irregular hyperelliptic sur-
faces of rank > 1') were classified in [B-DF].



VI: Surfaces with py = 0 and q > 1 85

Exercises VI.22
(1) Let S C P" be a surface whose smooth hyperplane sections are

elliptic curves. Show that S is either a del Pezzo surface Sd or S's
(see Exercise V.21(2)) or an elliptic ruled surface. Give examples
of the latter.
(Show that q(S) < 1; if q = 0, show that K = -H and then
apply Exercise V.21(2). If q = 1, apply Corollary VI.18 to prove
that S is ruled.)

(2) Let S C Il' be a surface of degree d lying in no hyperplane.

(a) Show that d >, 2n - 2 if S is not ruled, and that Ks = 0 if
equality holds.

(b) Show that d > n + q - 1 if S is ruled.

(Use the exact sequence 0 -+ Os -+ Os(H) -+ OH(H) , -+ 0

and apply Clifford's theorem: if D is a divisor on a curve and
0 < deg D < 2g - 2, then h°(D) < 1 deg D + 1.)

(3) Show that bielliptic surfaces are characterized by p9 = 0, P12 =
q = 1 (examine the proof of VI.15).

(4) Let S be a minimal non-ruled surface with Xtop(S) = 0. Assume
that S has a surjective morphism to a curve. Show that there are
smooth curves B, F, with g(B) = 1, and a group G acting on B
and F such that S - (B x F)/G.



VII
KODAIRA. DIMENSION

In the preceding chapter we saw the importance of the pluricanonical
linear systems InKI in the classification of surfaces. In this short chapter
we are going to systematize this point of view by dividing algebraic
surfaces into four classes, according to the `ampleness' of their canonical
divisor.

Definition VII.1 Let V be a smooth projective variety, K a canoni-
cal divisor of V, 4'nK the rational map from V to the projective space
associated with the system InKI. The Kodaira dimension of V, written
ic(V), is the maximum dimension of the images c1 K(V), for n > 1.

Recall that the image of a rational map is well defined (II.4); if InKI _
0 then q K(V) = 0, and we say dim(0) = -oo. For a curve it is easy to
give the Kodaira dimension explicitly:

Example VII.2 Let C be a smooth curve of genus g. Then

Ic(C)=-oo g=0
ic(C)=0 . g=1
ic(C)=1 G g>, 2.

We now interpret the definition for a surface.

Example VII.3 Let S be a surface. Then

rc(S) = -oo G Pn = 0 for all n > 1 q S is ruled (Enriques'
theorem).
ic(S) = 0 G Pn = 0 or 1, and there exists N such that PN = 1.
ic(S) = 1 q there exists N such that PN >, 2, and for all n,
Y'nK(S) is at most a curve.

86
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K(S) = 2 G for some N, ¢NK(S) is a surface.

In the coming chapters we are going to classify the surfaces with K =
0, 1, 2. For the moment we will content ourselves with a few examples.

Proposition VII.4 Let C, D be two smooth curves, S = C x D. Then

If C or D is rational, then S is ruled (i.e. Kc(S) _ -oo).
If C and D are elliptic, x(S) = 0.
If C is elliptic and g(D) 2, K(S) = 1.
If C and D are of genus 2, then Kc(S) = 2.

Proof If p and q are the two projections of S to C and D, we have

Sts = p*wCOq*wD and H°(S,Os(nK)) = H°(C,®n)®H°(D,wDn) ,

so that the rational map ¢nK : S --a IP factorizes as

(cbnKC,OnKD) , /, $SOnK:CXD -----pN' IN,

where s is the Segre embedding (defined by ((Xi), (Yj)) i--r (X;Y1)). The
proposition then follows easily from VII.2.

Proposition VII.5 Let Sd,..... d,, denote a surface in p,+2 which is the
complete intersection of r hypersurfaces of degrees dl,... , d,.. Then:

The surfaces S2, S3, S2,2 are rational (so have K = -oo).
The surfaces S4, S2,3, S2,2,2 have K - 0 and Kc = 0.
All other surfaces Sd,,...,d,, have is = 2.

Proof We have K = kH, where H is a hyperplane section of the surface
(with the given embedding) and k = (E d;) - r - 3 (Lemma IV.11). For
k < 0 we get the surfaces S2, S3, and S2,2, which are rational (cf. IV.13
and IV.16). The surfaces with k = 0 (so K - 0) are S4, 52,3, S2,2,2; for
all the other complete intersections the canonical divisor is a positive
multiple of the hyperplane section, so Kc = dim OK (S) = 2.

Finally, note that the surfaces for which nK - 0 for some n (for
example the Abelian surfaces, and the bielliptic surfaces (VI.19)) clearly
haven=0.

Historical Note VII.6
The importance of the plurigenera in the classification of surfaces is

made clear by the theorems of Castelnuovo and Enriques, characterizing
rational and ruled surfaces. The division of surfaces according to the
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four values of , appears in the article [E4] under a different formulation,
in terms of the plurigenus P12 (cf. Exercise VIII.22(3)):

rc= -oo q P12=0
P12 = 1

P1232, K2 = 0
P12> 2, K2>0.

This article also contains the more precise classification to be described
in the next chapters, which is now called Enriques' classification. The
invariant is was introduced much later; it appears for the first time - to
my knowledge - in Shafarevich's seminar [Sh2].

Exercises VII.7
(1) Let V be a smooth projective variety. Consider the algebra

® H°(V,Ov(nK)) and write d for its Krull dimension (i.e. the
n>0
transcendence degree over C of its field of fractions). Show that:

tc(V) = d - 1 if tc(V) > 0 .

(2) If V, W are two smooth projective varieties, show that
KC(V X W) _ K(V) + !c(W).

(3) Let f : V --> W be a surjective morphism of smooth projective
varieties. Then ic(W) <, a(V), with equality if f is etale.



VIII
SURFACES WITH i = 0

For the next three chapters we will be studying those surfaces with
te = 0, 1 and 2. Since these surfaces have a unique minimal model, we can
restrict ourselves to considering minimal surfaces. We will constantly use
the fact that K.D > 0 for every effective divisor D on a minimal surface
with rc > 0 (this is the easy part of Corollary VI.18: if C is a curve with
C.K < 0, we have C2 > 0, and hence InKI = 0 for all n > 1 by the
useful remark 111.5).

To say that i = 0 means that P = 0 or 1 for all n, and there exists
m>1with P,,,=1.

Lemma VIII.1 Let S be a minimal surface with is = 0. Then:

(a) K2 = 0;

(b) x(Os) > 0;
(c) let n and m be two positive integers such that Pn = P,n = 1; then

if d is the g.c.d. of n and m, Pd = 1.

Proof (a) For some m > 1, ImKI contains an effective divisor D; since
D.K > 0, K2 > 0. Suppose K2 > 0; the Riemann-Roch theorem gives

h°(nK) + h°((1 - n)K) > X(Os) + (2) K2

For n > 2, 1(1 - n)KI = 0, since otherwise E E 1(1- n)KI would give
E.K > 0, and hence K2 < 0; we thus have that h°(nK) = P tends to
infinity with n, contradicting , = 0.

(b) Using K2 = 0, Noether's formula becomes

12X(Os) = Xt0P(S) = 2 - 4q + b2 ,

89
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or

8X(Os)=-2-4pg+b2>-2-4pg>-6,
(since pg <, 1), hence X(Os) > 0.

(c) Let D E InKI and E E ImKI; write n = n'd, m = m'd with
(n', m') = 1. The two divisors m'D and n'E belong to the same 0-
dimensional linear system I' K I, and are therefore equal; from this one
sees that there is an effective divisior A such that

D=n'O, E=m'A.
Write e E Pic S for the class of 0-dK; since D E InKI and E E ImKI,

we have We = m'e = 0, and since (n', m') = 1, e = 0. Hence 0 E IdKI
and Pd = 1.

Theorem (and Definitions) VIII.2 Let S be a minimal surface with
is = 0. Then S belongs to one of the 4 following cases:

(1) Pg = 0, q = 0; then 2K - 0, and we say that S is an `Enriques
surface'.

(2) pg = 0, q = 1; then S is a bielliptic surface (VI.19).
(3) pg = 1, q = 0; then K = 0, and we say that S is a `K3 surface'.
(4) pg = 1, q = 2; then S is an Abelian surface.

Proof We have pg <, 1; suppose first that pg = 0.
If q = 0, P2 > 1 by Castelnuovo's criterion V.1; Riemann-Roch, with

K2 = 0, gives

h°(-2K) + h°(3K) > 1 .

Since pg = 0, VIII.1(c) gives P3 = 0, and hence h°(-2K) > 1; it follows
that 2K 0.

The minimal surfaces with pg = 0, q > 1 have been classified in Chap-
ter VI; from Proposition VI.15 one sees that the only surfaces among
them with k = 0 are the bielliptic surfaces.

Now suppose that pg = 1; it follows from VIII.1(b) that q = 0, 1 or 2.
If q = 0, Riemann-Roch gives h°(-K) + h°(2K) > 2, and hence

h°(-K) = 1 and K = 0.
Suppose that q = 1. By I.10 this implies that there is e E Pic S with

e $_ 0, but 2e = 0; in particular, e.D = 0 for every divisor D on S, and
h°(e) = h°(-e) = 0. Now Riemann-Roch becomes

h°(e) + h°(K - e) > 1 ,

and hence h°(K - e) > 1. Let D E (K - el and E E JKI; then 2D, 2E E
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12K I, giving 2D = 2E, since P2 = 1. But then D = E, which contradicts
c jt 0, and so there does not exist any surface with ps = P2 = q = 1.

It remains to prove (4). Firstly, we note the following important
proposition.

Proposition VIII.3 Let S be a surface, Ci irreducible curves on S,
and mi > 0 integers. Set F = E miCi, and suppose that for each i,
F.Ci <0. Let D riCi with ri E Z (or even ri E Q), and D#0.
Then

(a) D2 < 0;
(b) if F is connected and D2 = 0, one has D = rF for some r E Q,

and F.Ci = 0 for all i.

This means that the intersection matrix (Ci.Cj) is negative semi-definite,
and that its kernel has dimension at most 1 if F is connected.
Proof Set Gi miCi, and si = ri/mi so that F = Gi and D =

si Gi . Then

D2=>s;G;+2>2sisjG,Gj .

i i<j

Write G; = Gi.(F - Gj):

D2 = s; Gi.F - I:(s; + Si?- 2sisj )Gi.Gj
i<j

s;Gi.F-E(si-sj)2Gi.Gj
i i<j

(a) is now clear. If D2 = 0, we must have si = sj every time that
Ci fl Cj 0. Suppose F is connected; then any two components Ci and
Cj can always be joined by a chain of Ck; it follows that all the si are
equal (hence non-zero). Moreover, we must also have s, Gi.F = 0 for
each i, and hence Ci.F = 0.

We have in mind two applications of the proposition.

Corollary VIII.4 Let S be a surface, B a smooth curve, and p : S -* B
a surjective morphism with connected fibres. Suppose that p"b = Fb =
Ei miFi for some b E B; then if D = Ei riFi, with ri E Z, we have
D2 < 0, with equality if and only if D = rFb for some r E Q.

Proof This can be read off directly from the proposition (with Fi = Ci,
Fb=F).
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Corollary VIII.5 Let S be a surface, g : S --> S' a surjective morphism
to a (possibly singular) projective surface S', and let Ci be irreducible
curves of S such that g(Ci) = p E S. Then for any D = Fi riCi, with
riEZ, one has D2<0.

Proof It is enough to prove the corollary when UCi is connected, ap-
plying it subsequently to each component. Replacing g by its Stein
factorization (V.17), we can assume that g has connected fibres. We
then have g-1(p) = UC, where the Ci' are irreducible curves, including

i
the Ci. Let H be a hyperplane section of S' passing through p. Write

g*H=H+F, F=>miCi ,

with fl not containing any C. Then g*H.C; = 0 for each i, since we
can move H away from p; hence F.C,' = (g*H - H).C; <, 0 for all i, with
strict inequality for at least one i, since H meets the fibre g-1(p). The
proposition now implies the result.

VIII.6 Proof of Theorem VIII.2(4) Let S be a minimal surface with
is = 0, py = 1, q = 2; we denote by K the effective canonical divisor
K E IKJ.

(a) Structure of K
Suppose K # 0. Then K niCi where the Ci are irreducible
curves, and ni > 0; because K2 = 0, and K.Ci > 0 for each
i, we must have K.Ci = 0. Replacing K by > niCi, we get
niC; + ij#i niCi.C; = 0, and hence
either Ci2 <0,so Ci =-2 andCi=P1;
or CZ and Ci.C,, 0 for all j 96 i. Then Ci is a smooth elliptic
curve or a rational curve with a double point, and is a connected
component of UCi.

Write K = E Da, where Da are connected effective divisors
and Dc.Dp = 0 for a 96 Q (the Da will be called the connected
components of K). From what we have seen, Da = 0, and each
Da is
either a smooth elliptic curve, a rational curve with a double
point, or a multiple of one of these;
or a union of smooth rational curves.
We will now consider the Albanese morphism a : S -+ Alb(S)
and prove that it is an etale cover. In (,Q) - (e) below we consider
the 4 different possible cases.
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a(S) is a curve and K 96 0
Then (V.15) a(S) = B is a smooth curve of genus 2, and the
fibration p : S B has connected fibres. Now no curve of
genus 0 or 1 maps surjectively to B, so that every connected
component D of K is contained in a fibre Fb of p. Since D2 = 0,
this together with Corollary VIII.4 implies that D = 9 Fb, with
m and q positive integers. But then

rq D = rm Fb = p* (rm[b])

hence h°(nD), and with it also h°(nK), tends to infinity with n,
which contradicts is = 0.
a(S) is a curve and K = 0
We keep the notation of (Q). Consider an etale cover B' -+ B
of degree > 2, and set S' = S xB B'. Then S' is connected
(since the fibres of p are connected); moreover, KS, _ 7r*KS _ 0
and X(OS') = 0 (by Lemma VI.3), which implies q(S) = 2; but
q(S') > g(B'), and by the Hurwitz formula g(B') >, 3, which is a
contradiction.
a is surjective and K # 0
Let D be a connected component of K. Since D2 = 0, Corol-
lary VIII.5 shows that a does not contract D to a point, and so
D cannot be a union of rational curves. By (a), it follows that
D = nE, where E is a smooth elliptic curve, and E' = a(E) is
a smooth elliptic curve in Alb(S). After a suitable translation
if necessary, we can suppose that E' is a sub-Abelian variety in
Alb(S) (see V.12). Consider the quotient curve F = Alb(S)/E'
and the composite morphism f : S --+ F, and let S 9+ B -+ F
be its Stein factorization (V.17). The curve E being contained
in a fibre Fb of g, Corollary VIII.4 gives E =

9

Fb (for q a pos-
itive integer), and as before h°(mD) -+ oo with m; hence also
h°(mK) -+ oo with m, a contradiction.

There then only remains one possibility.
a is surjective and K = 0
Let (r71,'72) be a basis of H°(A, SIA); set wl = a*,ql and w2 =
a*172. Since '1i, 772 form a basis of 1' everywhere on A, a is etale
at x E S if and only if the 2-form wl A w2 does not vanish at x.
Now since a is generically etale, wl A w2 is not identically zero
(this is where we use characteristic zero: the proof in character-
istic p is much more delicate, see [B-M]); since K = 0 it is then
nowhere zero. Hence a is an etale cover; since every etale cover
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of an Abelian variety is again an Abelian variety, S is an Abelian
surface. This completes the proof of Theorem VIII.2.

Corollary VIII.7 A minimal surface with rc = 0 satisfies 4K - 0 or
6K-0.

Indeed, for K3 and Abelian surfaces K - 0, while Enriques surfaces
have 2K - 0 and the bielliptic surfaces 4K - 0 or 6K - 0 (see VI.20).

The further study of Abelian surfaces relates more to the general the-
ory of Abelian varieties than to surface theory, and we will say no more
about it, limiting ourselves to a reference to [M3]. Bielliptic surfaces
have been treated in VI.20; in the remainder of this chapter we will give
some examples of K3 and Enriques surfaces.

K3 surfaces

By definition these are the surfaces with K - 0, q = 0. Clearly, K
0 implies that they are minimal; Noether's formula gives Xtop = 24,
whence b2 = 22.

Example VIII.8 Complete intersections
In VII.5 we have seen that the only complete intersections with K - 0

are quartic surfaces S4 C 1P, S2,3 C P4 and S2,2,2 C P. These are K3s
by the following lemma:

Lemma VIII.9 Let V C Pn be a d-dimensional complete intersection;
then H'(V, Ov) = 0 for 0 < i < d.

Proof We prove that in fact, more generally, H'(V, Ov (k)) = 0 for
0 < i < d and any k E Z. By induction on the number of equations
defining V, it is enough to prove that if this statement holds for V, it
holds also for the section W of V by a hypersurface of degree r. This
then follows from the cohomology long exact sequence of

0-+Ov(k-r)-+Ov(k)-*Ow(k)-+0 .

Example VIII.10 Kummer surfaces
Let A be an Abelian surface; if we choose an origin, A acquires a group

structure. Let r be the involution of A given by a i-+ -a. The fixed
points of r are the points of order 2 of the group A, which is isomorphic
as a group to (R/Z)4; there are thus 16 points of order 2, p',...,P16.
Let e : A -+ A be the blow-up of these 16 points, and E; = E' 1(p; )
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the exceptional curves; the involution r extends to an involution u of
A; denote by X the quotient X = A/{1, or}, and let it : A --. X be the
projection.

Proposition VIII.11 X = A/{1,Q} is a K3 surface, the `Kummer
surface' of A.

Proof We show first that X is smooth; 7r is etale outside the Ei, so
that it is enough to check this at points a(q), where q E Ei. Writing
A in the form V/I' as in V.11, we get local coordinates (x, y) on A in
a neighbourhood of pi, such that r*x = -x, r*y = -y. Set x' = e*x,
y' = e* y; we can suppose that x' and t = y'/x' are local coordinates on
A near q. Now o,*x' = -x' and r*t = (-y')/(-x') = t, so that t and
u = x'2 form a system of local coordinates on X near ir(q): thus X is
smooth.

Now we compute the canonical divisor of X. A has a holomorphic
2-form w which is nowhere zero; if A = V/I', and x, y are coordinates
on V, then up to a scalar factor, w = dx A dy, whence r*w = w. The
2-form c*w is thus invariant under o; using Lemma VI. 11, it follows that
c*w = 7r*a, where a is a meromorphic 2-form on X. Clearly, the divisor
of a is concentrated on the Ei. Let q E Ei; in the above notation, in a
neighbourhood of q we have

c*w=dx'Ady'=dx'Ad(tx')=x'dx'Adt= 2duAdt .

Thus a is holomorphic and non-zero at q, proving that div(a) = 0,
whence KX - 0.

Finally, if X has a non-zero holomorphic 1-form, we could deduce that
A has a 1-form invariant under o'; since e* : H°(A, SZ 4) - + H°(A, SZA) is
an isomorphism (111.20), this would imply that A has a 1-form invariant
under r, which is absurd, since H°(A, C ) has {dx, dy} as a basis. Thus
q(X) = 0 and X is a K3 surface.

Remarks VIII.12
(1) One can also consider the singular quotient X' = A/r; this has

16 ordinary double points ri, the images of the pi. From a we
can construct a morphism e : X -> X' which is an isomorphism
outside the Ei, and contracts Ei to ri.

(2) Suppose that A is the Jacobian of a curve C of genus 2; C can
be embedded in A in such a way that r(C) = C: if r E C is a
Weierstrass point, then 2r = KC, and we can take the embedding
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(3)

x i-* [z] - [r]. It is not difficult to show (see Exercise 4) that the
system 12CI on A defines a morphism k : A ---* Il which factors
through the quotient by r, and defines an embedding X' c.-+ I3.
Since (2C)2 = 8, the image X' C III is a surface of degree 4
with 16 ordinary double points. It is this surface which is known
classically as the Kummer surface (see Exercises 4-9).
The Ei for 1 < i < 16 form an orthogonal system in Pic X =
NS(X); Pic X also contains the class of a hyperplane section, so
that Pic X has rank > 17 as Z-module. It can be shown that the
rank of Pic X is < 20 for any K3.

We are now going to study linear systems on a K3 surface and the
morphisms to projective space which they define.

Proposition VIII.13 Let S be a K3 surface, C C S a smooth curve
of genus g. Then

(i) C2 = 2g - 2 and h°(C) = g + 1.
(ii) If g 1 the system ICI is without base points, so defines a mor-

phism 0 : S -+ P9; the restriction of 0 to C is the canonical
morphism C --> P9-1 defined by Jwcl.

(iii) If g = 2, 0 : S -+ P2 is a morphism of degree 2, whose branch
locus is a sextic of IF'2.

(iv) Suppose g > 3; then

either

0 is a birational morphism, and a generic curve of ICI is
non-hyperelliptic;

or

0 is a 2-to-1 morphism to a rational surface (possibly sin-
gular) of degree g - 1 in Pg. A generic curve of ICI is then
hyperelliptic.

(v) If g > 3 (resp. g = 2), the morphism 0' defined by 12CI (resp.
13CI) is birational.

Proof

(i) The genus formula gives C2 = 2g - 2; using Riemann-Roch,
the second formula is equivalent to hl(C) = 0, and in turn to
h' (-C) = 0, since K = 0. This follows at once from the exact
sequence

0--rOs(-C)-*OS -,Oc--+0.
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(ii) Since K = 0 and Os(K+C)lc - we by I.16(ii), there is an exact
sequence

0-+OS ->Os(C)-'WC 0

showing that ICJ cuts out on C the complete linear system IwcI.
This has no base points on C, and hence ICI has no base points.
The final assertion in (ii) is clear.

(iii) If g = 2, we have C2 = 2, so 0 has degree 2. Let 0 C P2 denote
the branch curve of 4), deg 0 = n. Now C =where
f = qS(C) is a line in P2; C is then a double cover of t branched
in the n points of e n A. Since g(C) = 2, n = 6.

(iv) If C is non-hyperelliptic, the restriction to C of 0 is an embedding;
since q-1(¢(C)) = C, this implies that ¢ is birational.

If 0 is not birational, every smooth curve in SCI is then hyper-
elliptic; it follows that for a generic x E S, q-1(q5(x)) consists
of 2 points, and hence ¢ has degree 2. Since C2 = 2g - 2, the
image of 0 is a (possibly singular) surface E of degree g -1 in P9,
whose hyperplane sections are the rational curves 4)(C); it follows
at once that E is rational (see also Chapter IV, Exercise 4).

(v) The restriction to C of ¢' is the 2-canonical (resp. 3-canonical)
morphism, which is an embedding; as before this implies that ¢'
is birational.

The reader familiar with duality and the properties of linear systems
on singular curves will note that the proof works also if C is merely
assumed to be irreducible.

Example VIII.14 We restrict ourselves to the case when ¢ is birational
(see Exercise 10 for the hyperelliptic case).

If g = 3, 4)(S) C P3 is a quartic.
If g = 4, qS(S) is a surface in P4 of degree 6; h°(Os(2C)) = 14 by

VIII.13(i), and h°(1P4, O(2)) = 15, so that ¢(S) is contained in a quadric.
Since also h°(S, 0(3C)) = 29 and h°(Il , 0(3)) = 35, it follows that 4,(S)
is a complete intersection S2,3.

If g = 5, then 4)(S) is a surface in 15 of degree 8, contained in 3
linearly independent quadrics. It can be seen (Exercise 11) that in the
generic case, 4)(S) is a complete intersection of 3 quadrics.

We have not given precise statements on the properties of ¢; it can
be shown that 0 is an isomorphism outside certain divisors, which it
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contracts to singularities of ¢(S) of a very special type, called rational
double points.

We have thus discussed the structure of K3s of degree 2g - 2 in P g,
for g = 3,4,5; such surfaces exist for arbitrary g > 3, as we now prove.

Proposition VIII.15 For every g > 3, there exist K3 surfaces S =
S29_2 embedded in P.

Proof In view of VIII.13(i), it is enough to construct K3 surfaces S
containing a very ample divisor D with D2 = 2g - 2 (recall that a
divisor is very ample if the corresponding linear system IDI defines an
embedding of S into JDJv). Note first that if H is a hyperplane section
of S and IEI a linear system without base points, H + E is a very ample
divisor: if x, y are distinct points of S, there is a divisor Eo E AEI not
containing either x or y, and Ho E (HI containing x but not y. Thus
I H + El separates points, and the same argument shows that it separates
tangent directions.

We now distinguish 3 cases:
g = 3k, with k > 1. Let S C ii" be a quartic containing a line f, and

let JET be the pencil of elliptic curves IH - fl; then Dk = H + (k - 1)E
is very ample, and we have

Dk=4+6(k-1)=2g-2

g = 3k + 1, with k > 1. Let Q C I be a quadric with an ordinary
double point (that is Q is a cone over a non-singular quadric of P3); let
V C P4 be a cubic such that S = Q fl V is a smooth surface. Consider
one of the two pencils of planes on Q: it cuts out on V a pencil of elliptic
curves JEI. Then Dk = H + (k - 1)E is very ample on S, and we have

Dk=6+6(k-1)=2g-2.
g = 3k + 2, with k > 1. Let S C 1P be a smooth quartic containing

a line f and a twisted cubic t disjoint from t (for example, the equation
Y3(X + T) + Z3 (T - X) - XT(X2 +T2) = 0 defines a smooth quartic
containing the line X = T = 0, and also the twisted cubic given pares
metrically by X = U3, Y = U2V, Z = UV2, T = V3). Set E = H - f
and H' = 2H -t. Since H'2 = 2, IH'I defines a double cover ir : S -> P2
by VIII.13(iii); for u E P2, the points of a'1(u) are the intersection of
S with the residual intersection of 2 quadrics of P3 containing t, that is,
the intersection of S with a bisecant of t: the pairs of points identified
by a are thus the pairs (x, y) such that the line (x, y) is a bisecant. To
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show that is very ample, it is enough to show that there does not
exist any divisor E° E JEI containing such a pair (x, y). But if this hap-
pened, (x, y) would cut S again in two points oft, which would then also
be points of E0i we would then have x, y E E°, for which (x, y) would
be contained in E0, and hence also in S. However, direct computation
shows that this does not occur in the given example.

Thus Dk = H' + kE is very ample for k > 1, and we have

D2=2+6k=2g-2

which completes the proof of the proposition.

Remark VIII.16
We have seen that for g = 3,4,5, K3 surfaces of degree 2g - 2 in 11D9
form an irreducible family, that is, can be parametrized by an irreducible
variety Tg: for example, T3 is an open subset of the projective space
IO (4)I.

It is instructive to `count the moduli' of K3s in P9, in the follow-
ing entirely heuristic manner: the projective group PGL(g + 1) acts
on Tg; it can be seen that the stabilizer of a point is finite (see Exer-
cise V.21(3)). It is therefore natural to take the number of moduli to
be mg = dim T9 - dimPGL(g + 1). In the case g = 2, the surfaces
one gets are double covers of 1P2 branched in a sextic; since plane sex-
tics depend on 27 parameters, we get m2 = 19. For g = 3, we get
m3 = (433) - 1 - 15 = 19; similarly, one finds m4 = m5 = 19.

This heuristic calculation is justified by deformation theory. We limit
ourselves to a brief description, referring for example to [Sh2, Chap-
ter 9] for details and the proofs. Every compact analytic manifold X
has a `local moduli space' parametrizing small deformations of X. If
H2(X,TX) = 0, this space is smooth and of dimension h'(Tx).

In the case of a K3 surface, H2(X,TX) = H°(X,SlX)v by duality,
and h' (TX) = h' (Sl ) = b2 - 2pg = 20 by Hodge theory. The local
moduli space of X is hence 20-dimensional. The discrepancy between
this and the geometric calculation comes from the fact that a surface
obtained as a deformation of an algebraic K3 surface may no longer be
algebraic. The local moduli space of X thus consists of an open subset
U of C20 containing a countable infinity of 19-dimensional subvarieties
which correspond to algebraic K3s; the union of these is dense in U.
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Enriques surfaces

Recall first that if X is a variety and L E Pic X is an invertible sheaf of
order 2 (that is, there is an isomorphism a : L®2 -- OX), L corresponds
to an etale double cover it : X - X, characterized by the fact that
a*L OX. Viewing L as a line bundle, one can take

X = {uELIa(u®2)=1}

the cover 7r being defined by the projection of L to X. Sending a point
u of X C L to the point (u, u) in X x x L = rr* L defines a nowhere-
vanishing section of a* L, which is hence trivial.

Proposition VIII.17 Let S be an Enriques surface, and it : S -+ S the
etale double cover corresponding to the invertible sheaf OS(K) of order
two. Then S is a K3 surface.

Conversely, the quotient of a K3 surface by a fixed-point free involu-
tion is an Enriques surface.

Proof From the above, KS lr*Ks = 0; since x(O.) = 2x(Os) = 2 by
VI.3, we get q(S) = 0, so that S is a K3 surface.

Conversely, let a : S - S be an etale double cover, with S a K3
surface. Since lr*Ks = KS - 0, one sees that 2KS = u*7r*Ks = 0;
moreover, x(Os) = 1, which is enough to prove that S is an Enriques
surface, by Theorem VIII.2.

Enriques surfaces thus correspond bijectively to K3s together with a
fixed-point free involution. Here are some examples of such involutions.

Example VIII.18 Let X be the complete intersection in )lam of the 3
quadrics

Qi(X0, X1, X2) + Qi(X3, X4, X5) = 0

(for i = 1, 2, 3), where the Qi and Q; are quadratic forms in 3 variables.
We will suppose that X is a smooth surface, which holds for generic
choice of Qi, Q;; then by VIII.8, X is a K3. The involution o- of P5
defined by 0'(Xo, X1, X2, X3, X4, X5) = (X0, XI, X2, -X3, -X4, -X5)
takes X to itself; its fixed locus consists of the two planes Xo = X1 =
X2 = 0 and X3 = X4 = X5 = 0. We will suppose that the 3 conics
Q1, Q2 and Q3 (resp. Qi, Q2, Q3) in these planes have no points in
common; this is the generic case. Under these conditions a acts on X
without fixed points, and the quotient X/v is hence an Enriques surface.
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It can be shown that the generic Enriques surface can be obtained in
this way.

Example VIII.19 The Reye congruence
Let P be a linear system of quadrics of Il of (projective) dimension 3.
We impose the following two conditions on P, which are both satisfied
if P is general enough:

QEP
- O,(Hi) Q

(H2) if £ is a line of P3 which is the vertex of a quadric Q E P, then
no other quadric of P contains .f.

Containing a line f C P3 will in general impose 3 linear conditions on
a quadric Q C P3; f will therefore in general be contained in just one
quadric of P. Let S denote the variety of lines f C P3 contained in a
pencil of quadrics of P.

Proposition VIII.20 S is an Enriques surface.

Proof Let X denote the subvariety of P3 x P3 of pairs (x, y) such that
x and y are polar with respect to all the quadrics of P. If (x, y) E X,
x 0 y since otherwise x would belong to all Q in P. Hence the involution
* of X defined by (x, y) i-* (y, x) does not have any fixed point on X.
If (x, y) E X, the quadrics of P through x and y contain the line (x, y);
this line thus belongs to S. Conversely, let t be a line of S; the system
P induces on £ a pencil of (0-dimensional) quadrics, and there is exactly
one pair of points (x, y) polar with respect to all the quadrics of this
pencil. Hence the map (x, y) i-* (x, y) induces an isomorphism of X/u
with S. It is thus enough to prove that X is a K3 surface.

Let Qi (for 1 < i S 4) be 4 quadrics spanning P, and let qi be the
corresponding bilinear forms. X is defined in P3 x P3 by the 4 equations
qi(x, y) = 0. It is immediate by the Jacobian criterion that X is smooth
and 2-dimensional at a point (x, y) if and only if the line (x, y) is not
contained in the vertex of a quadric of P; this is exactly the possibility
which is excluded by condition H2. Thus X C P3 x P3 is a surface, and
is the complete intersection of 4 divisors of bidegree (1, 1). It can then
be shown as in the case of an ordinary complete intersection that X is a
K3; the argument of IV.11 shows that KX - 0, and that of VIII.9 that
q(X) = 0.

Enriques surfaces constructed in this way are not the most general
ones (see Exercise 13).
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We finally mention (without proof, although see Exercise 15) Enriques'
original example: let S C 11 be a surface of degree 6 having the 6 edges
of a tetrahedron as double lines, and no other singularities. Then the
normalization of S is an Enriques surface.

Historical Note VIII.21
Theorem VIII.2 is contained in the paper of Enriques ([E4], 1914) we
have already quoted. The fact that certain surfaces of degree 2g - 2
in P9 have K - 0, q = 0, and in consequence have canonical curves
of genus g as hyperplane sections, is observed from the very beginning
of birational geometry (see for example [E6, 111.6]): Enriques ([E5])
showed later that such surfaces exist for all g, and that they depend
on at least 19 'moduli'; a little later Severi showed that the number of
moduli is exactly 19 ([Se3]). The theory of moduli of K3 surfaces was
considerably clarified and deepened later, in particular with the `Torelli
theorem' ([Sh-P]).

Enriques introduced the sextic with the six edges of a tetrahedron
as double curves (1894, cf. [C2]), in order to give an example of an
irrational surface with pg = q = 0. In 1906 he returned to these surfaces
([E7]), and gave a very complete treatment of them: he proved that
every surface with P2 = 1, P3 = q = 0 is isomorphic to a surface of the
preceding type, and also that it contains a pencil of elliptic curves.

Exercises VIII.22

(1) Let S be a minimal surface with pg = 1, q = 2 such that S has a
surjective morphism to a curve of genus 3 1. Show that:
either S is an Abelian surface;
or P2>1.
(We know S = (B x F)/G by Chapter VI, Exercise 4, with B
an elliptic curve; deal with the 2 cases BIG elliptic and BIG
rational.)

(2) Let S be a minimal surface with P2 = 1, q = 2. Show that S is
an Abelian surface.
(By Theorem X.4, it follows that these conditions imply pg = 1,
K2 = Xtop = 0; reworking the proof in VIII.6, show that if S is
not an Abelian surface, it has a surjective morphism to a curve
of genus >, 1; now conclude by Exercise 1.)

(3) Let S be a minimal surface. Reworking the proof of Theorem
VIII.2, prove the following statements:
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p9 = 0, q = 0, P6 = 1 = S is an Enriques surface;
py = 0, q = 1, P12 = 1 S is a bielliptic surface (compare
Chapter VI, Exercise 3);
p9=1,q=0,P2=1 S is a K3 surface;
p9 = 1, q = 1 and P2 = 1 is impossible;
p9 = 1, q = 2, P2 = 1 = S is an Abelian surface (Exercise 2).
Conclude that , = 0 is equivalent to P12 = 1-

(4) Let C be a curve of genus 2, and JC its Jacobian. If r is a
Weierstrass point of C, set 0 = {[x]-[r] I x E C} C JC (compare
VIII.12(2)). Show that 1201 defines a 2-to-l morphism of JC
to a surface of l(, which on passing to the quotient gives an
isomorphism of JC/r with a quartic S C Ilk having 16 ordinary
double points. Show that rO is very ample for r > 3.
(R,ecall that the map 0 : JC --> Pic° JC of JC into the group
of divisor classes algebraically equivalent to 0 on JC, defined by
0(a) = Oa - 0, where Oa = a + 0, is a group isomorphism; in
particular, Oa + O_a - 20 for any a E JC.)
In Exercises 5-9 below, a Kummer surface is taken to mean the
quartic S C R111 just constructed.

(5) Show that there are 16 planes of l which touch S along a conic.
Each of these conics passes through 6 of the double points of S,
and each double point lies on 6 conics. The double cover of any
of the 16 conics branched in its 6 double points is isomorphic to
C.
(One may observe that if JC2 denotes the group of points of order
2 on JC, the function on JC2 which takes the value 0 on JC2 n O
and 1 on JC2 - 0 is a quadratic form on JC2.)

(6) Projecting a Kummer surface S C Il from one of its double
points, we obtain a (ramified) double cover of P2. Show that the
branch locus is the union of 6 lines, which are common tangents
of a conic Q; the double cover of Q branched in- the 6 points of
tangency is isomorphic to C. Deduce that every quartic surface
in 1P3 with 16 ordinary double points is a Kummer surface.

(7) Let P1 ,-- . ,P6 be 6 points of 1P such that the linear system P
of quadrics through p1i ... , p6 is 3-dimensional. Consider the
following varieties:

A = {Q E P I Q is singular} C P,
W = {xEl13 3Q EP such that xESing Q}CI(.
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Show that the rational map it : PPS --a P defined by the system P
is of degree 2, ramified along W; its branch locus in P is the dual
surface of 0 (i.e. the locus of hyperplanes in P tangent to A).
Prove that A is the Kummer surface associated to a Jacobian JC,
and that W (classically known as the Weddle surface associated
to PI) .... p6) is birational to A. There is a unique twisted cubic
t passing through pl,... , p6; show that the double cover of t
branched in the 6 p; is isomorphic to C.

(The 16 double points of A correspond to the 10 quadrics of rank
2 in P, and to the 6 quadrics having p1i ... , P6 as vertices. Note
that these 6 quadrics all belong to the (2-dimensional) system of
quadrics containing t.)

(8) Representing a line of P by its 6 Pliicker coordinates A, B, C,
L, M, N, the variety of lines in PPS is identified with the quadric
G C PPS having the equation AL + BM + CN = 0. Let Q be a
further quadric of PPS such that Q fl G is smooth; the set of lines
Q fl G C G is called a quadratic line complex. To each point
x E P3 there corresponds the cone Cx of lines of the complex
through x; let S = {x E P3 I rk Cx < 2}. Show that S is
a Kummer surface. Deduce that the variety of lines contained
in a non-singular complete intersection of 2 quadrics in PPS is
isomorphic to the Jacobian of a curve of genus 2.

(One may, following Klein, argue in the direction indicated; al-
ternatively, it is perhaps easier to prove the second statement
first.)

(9) Denote by e : A -> JC the blow-up of the 16 points of or-
der 2 of JC, and let E1,. .. , E16 be the exceptional curves; set
D = 4e*O - Ei=1 E1. Show that the linear system IDI defines
a morphism of A into PPS, which on passing to the quotient gives
an embedding of A/o, into 3; the image X is a complete inter-
section of 3 quadrics in PP'. Let P denote the (2-dimensional)
linear system of quadrics of PPS through X, and A C P the locus
of singular quadrics; then show that A is the union of 6 lines of
P - PZ tangent to a common conic, and that the double cover of
the conic branched in the 6 points of tangency is isomorphic to
C.

(Observe that 1401 contains certain divisors of the form E 16
where a; E JC2 satisfy >; ai = 0.)
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(10) Show that for any g > 2 there exists a K3 surface S and a curve
C C S such that the morphism defined by JCI is a 2-to-1 cover of
a rational surface in P g.
(For g = 2k + 1, consider the double cover 7r : S -- l1 x jD1

branched along a smooth curve of bidegree (4, 4), and take C E
Ihl + kh2I in the notation, of I.9(b). For g = 2k, the argument is
similar, considering a suitable double cover of IF1, the blow-up of
11X2 in one point.)

(11) Let S C 11X5 be a K3 surface of degree 8 which is not a complete
intersection of 3 quadrics. Show that there are 6 linear forms A;,
Bj on 1P (1 < i, j < 3) such that the linear system of quadrics
containing S is given by the quadratic forms

Al A2 A3

det B1 B2 B3 (A, p, v) E 1F2.
A p v

Show that there exist 3 quadratic forms P, Q, R on 11 such that
S has equations

A;B2-AjB1=0 (for 0<, i<j<, 3),
A1P+A2Q+A3R= B1P+B2Q+B3R= 0.

Deduce from this that S is a specialization of a complete intersec-
tion of 3 quadrics of P. Let C be a smooth hyperplane section
of S; show that C has a g3, that is, an invertible sheaf L with
deg L = 3, h°(L) = 2. Conversely, if a hyperplane section C of a
K3 surface S C P' of degree 8 has a g3, then S is not a complete
intersection of 3 quadrics.

(12) Let S be a K3 surface. Show that H1(S,Z) = H2(S,7L)to,.8 = 0.
Let X be an Enriques surface; show that H2(X, Z)to" is the group
of order 2 generated by [K] (and therefore H1(X, Z) = Z/2).

(13) Construct an irreducible variety T (resp. T') and a smooth mor-
phism X -> T (resp. X' -+ T') having fibres which are En-
riques surfaces of the type constructed in Example VIII.18 (resp.
VIII.19), and in such a way that every surface of the type consid-
ered is isomorphic to a finite (non-zero) number of fibres. Show
that dim T = 10, dim T' = 9.

(14) In the notation of Example VIII.19, consider the varieties

A= {Q E P I Q is singular } C P
W = {xEIF3 13QEPsuchthat xESingQ}C11X4.
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Show that 0 is a quarric with 10 ordinary double points (quartic
symmetroid), and that W is birationally equivalent to 0; the
projection of X C Il x IP to one of its factors IP defines a
morphism X -> W which is an isomorphism above a point p E W
if and only if there is only one quadric of P singular at p. In
particular, W is smooth if and only if 0 contains no line.

(15) Let S' be a surface of degree 6 having the 6 edges of a tetrahe-
dron as double curves, and non-singular outside these edges; let
it : S -+ S' be the normalization of S'. Show that S is an En-
riques surface.
(Show that for S' C IE' a surface of degree d with `ordinary
singularities', that is a double curve C and triple points on C, the
canonical divisors of the normalization are cut out by surfaces of
degree d-4 passing through C. Deduce from this that p9(S) = 0,
2KS = 0; if $1 and $2 are two opposite edges of the tetrahedron,
and 2; = a-1(LE), show that the 4 are elliptic curves and K =
Pl - £2. To prove that q(S) = 0, one can prove that b2 >' 3,
and then use Noether's formula; for example, if f, .L' and t" are
three edges of a face of the tetrahedron, show that and
are linearly independent in NS(S).)
Show that the surface S depends on 10 moduli.

(16) Let C be a smooth sextic curve in IID2, and S the double cover of
1p2 branched in C; let H C S be the inverse image of a line of
p2. Show that a curve of S not belonging to any linear system
JdHI is projected to a curve of IP2 of degree n which touches C
in 3n points. Deduce that for a sufficiently general choice of C,
Pic S = Z[H].



IX
SURFACES WITH is = 1 AND ELLIPTIC

SURFACES

Lemma IX.1 Let S be a non-ruled minimal surface.

(a) If K2 > 0, there exists an integer no such that cbnK maps S
birationally onto its image for all n > no.

(b) If K2 = 0 and P, > 2, write rK = Z + M, where Z is the fixed
part of the system JrKj and M is the mobile part. Then

K.Z = K.M = Z2 = Z.M = M2 = 0.

Proof

(a) Let H be a hyperplane section of S (for an arbitrary embedding).
Since K2 > 0, the Riemann-Roch theorem gives:

h°(nK-H)+h°(H+(1-n)K) oo as n->oo.

We have H.K > 0, as S is non-ruled, hence (H+(1-n)K).H <
0 for n sufficiently large; this implies that h°(H+(1-n)K) is zero
for large n. It follows that there exists no such that h°(nK-H)
1 for n >, no. Let E E InK - Hj; it is clear that the system
InKI = IH+El separates points of S-E, and separates tangents
to points of S - E. The restriction of c6nK to S - E is thus an
embedding, which proves (a).

(b) Since rK2 = K.Z + K.M = 0 and both K.Z and K.M are non-
negative, we see that K.Z = K.M = 0. Since M is mobile,
Z.M and M2 are also non-negative; from the equation rK.M =
Z.M + M2 = 0 we deduce that Z.M = M2 = 0, and finally that
Z2=(rK-M)2=0.

Proposition IX.2 Let S be a minimal surface with tc = 1.

(a) We have K2 = 0.

107
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(b) There is a smooth curve B and a surjective morphism p : S -> B
whose generic fibre is an elliptic curve.

Proof By Lemma IX.1(a) we have K2 < 0; so K2 = 0 since otherwise
S would be ruled (VI.2). Let r be an integer such that Pr > 2. Write
Z for the fixed part of the system (rKI, M for the mobile part, so that
rK = Z+M. Lemma IX.1(b) gives M2 = K.M = 0. It follows that IMI
defines a morphism f from S to pN whose image is a curve C. Consider
the Stein factorization (V.17) f : S L B -+ C C PN , where p has
connected fibres. Let F be a fibre of p; since M is a sum of fibres of p
and K.M = 0, we must have K.F = 0. It follows that g(F) = 1, so that
the smooth fibres of p are elliptic curves.

A surface satisfying (b) in the proposition is called an elliptic sur-
face; the proposition says that all surfaces with k = 1 are elliptic. The
converse is false, but we can say:

Proposition IX.3 Let S be a minimal elliptic surface, p : S -> B the
elliptic fibration; for b E B, put Fb = p*[b].

(a) We have KS = 0.
(b) S is either ruled over an elliptic curve, or a surface with is = 0,

or a surface with is = 1.
(c) If ic(S) = 1, there exists an integer d > 0 such that

dK=1: niFb, , ni EN, bi EB .
i

For r sufficiently large, the system IrdKI is without base points and

defines a morphism from S to Ilk' which factorizes as f : S P, B y 1P',
where j is an embedding of B in P.

Proof If S is ruled over a curve C, the elliptic curves Fb must be mapped
surjectively onto C, which implies that C is either rational or elliptic;
it follows that K2 >, 0 (111.21). Thus K2 > 0 for all minimal elliptic
surfaces (VI.2).

Suppose there exists n E Z such that the system InK I is non-empty;
let D E InKI. Since D.Fb = 0 for all b, the components of D are
contained in the fibres of p; since K2 % 0, Proposition VII.4 shows that:

D = > riFb, for some ri E Q, ri >, 0 .

i

It follows that K2 = D2 = 0 in this case.
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Now let X be a minimal elliptic surface with KX > 0. The preceding
argument shows that we must have InKx I = 0 for all n E Z, n # 0.
Then by Riemann-Roch h°(nK) + h°((1- n)Kx) - oo as n -> oo; this
gives a contradiction, proving (a).

Let S be a minimal elliptic surface. Since K.Fb = 0, the maps cnK
contract the fibres Fb; it follows that the image of ¢nK has dimension

1, and hence that is = 0, 1 or -oo. This proves (b).
Finally if i = 1, let us choose an integer n such that P 1, and let

D E InKI; then

D = >2 ri Fb, for some ri E Q, ri > 0

Write ri = 11 (with ni, m E N) and put d = mr; then

dK niFb, = p*A where A = > ni[bi] .

For r sufficiently large, the system JrAj on B is without base points
and defines an embedding j of B in IP ; it follows that the system
I rdK I = p* IrAI is without base points and defines the morphism f = j o p
of S to PN. This proves (c).

Examples IX.4 First we give some examples of elliptic surfaces with
#l.
(1) The ruled surface E x IP' is obviously elliptic; more generally, if

G is a group of translations of E acting on P', the ruled surface
(E x 1P')/G is elliptic (cf. Exercise 3).

(2) The bielliptic surfaces are obviously elliptic: in fact they admit
two distinct elliptic fibrations.

(3) An Abelian surface A is an elliptic surface if and only if there is
an exact sequence 0 E -> A -> F -> 0, where E and F are
elliptic curves.

(4) In the course of proving VIII.15 we saw some elliptic K3 sur-
faces: quartics containing a line, complete intersections (2,3) in
1P where the quadric is singular, etc. One can show that in the
variety T9 parametrizing K3 surfaces of degree (2g - 2) in P9,
the space of elliptic surfaces is a divisor (very reducible!).

(5) Enriques showed that every Enriques surface is elliptic (Exercise
7). For now we will simply check this for one example.
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Consider the surface X/Q, where X is the K3 surface defined in
IE by the equations

/Pi = Qi(XO,X1,X2)+Qi(X3,X4,X5) = 0 (1 <, i <, 3),

and a is the involution

(X0, X1, X2, X3, X4, X5) ~' (X0, X1, X2, -X3, -X4, -X5)

(see VIII.18). There are 9 points (A, E.t, v) E IE2 for which the
conics AQ1 +µQ2 + vQ3 and AQ'1 + µQ'2 + vQ3 are both singular;
the corresponding quadrics AP1 + pP2 + vP3 in ) are therefore
of rank 4, and so contain two pencils of 3-planes. Suppose for
example that P1 is one of the quadrics of rank 4; we choose a
pencil (Lt)tEr. of 3-planes contained in Pl. Since Lt n x =
Lt fl P2 fl P3, the pencil (Lt) cuts a pencil on X of curves (Ct)
which are complete intersections of two quadrics in IE; it follows
that the generic curve Ct is elliptic. The involution a preserves
the pencils Lt and Ct (i.e. we have o(Ct) = Ct,, with t' E P');
the projection of the pencil (Ct) onto the Enriques surface X/v
defines a pencil of elliptic curves on this surface.

It is very easy to construct surfaces with is = 1, and we end by giving
an example:

Example IX.5 Let B be a smooth curve, p, q the two projections
of B x P2 onto B and IID2, IDI a base-point free linear system on B.
A general divisor S E Ip*OB(D) 0 q*Oir(3)1 is smooth; the restriction
p : S - B is a fibration by plane cubits, hence elliptic curves. We have
Ks - p*(KB + D), and when deg(D) > 2 - 2g(B) we have tc(S) = 1.

Historical Note IX.6
M. Noether noticed very early on that the canonical system of a surface
can be without base points but composed of a pencil, which is then
necessarily elliptic ([Ni]). A detailed study of elliptic surfaces appears
in [E7]; we have not dealt here with the principal results - the existence
of the associated Jacobian fibration and the structure of the canonical
divisor - because their rigorous justification is quite delicate. The theory
was made watertight by Kodaira ([K]).

We remark that the study of elliptic surfaces can form the basis for the
classification of surfaces: this is the point of view adopted by Bombieri
and Mumford (in characteristic p, see [B-M]).
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Exercises IX.7

(1) Let p : S B be an elliptic fibration, P : Alb(S) -> JB the
corresponding morphism. Show that P is surjective, and
either P is an isomorphism;
or its kernel is an elliptic curve E such that all smooth fibres of
p are isogeneous to E.
In particular we have q(S) = g(B) or g(B) + 1. (Observe that
the image of Fb in Alb(S) is independent of b.)

(2) Let S be an elliptic surface, p : S -- B the corresponding fibra-
tion, F = j niCi a reducible fibre of p. Let M' be the subgroup
of Pic S generated by the Ci, so that M = M'/7L [F] carries a
quadratic form induced by the intersection form. Show that the
elements r E M with r2 = -2 form a root system in M, of type
An, D,,, or En, in which the Ci are the simple roots (cf. Bour-
baki,Groupes et Algebres de Lie, Chapter VI). Find the possible
configurations for F.

(3) Let S be a ruled surface over an elliptic curve E; suppose that S
is also an elliptic surface. Show that S = (E x IP')/G, where G
is a group of translations of E acting on P'.

(4) Let S be an Enriques surface, E an elliptic curve on S. Show
that
either h°(E) = 1; and then 12EI is a pencil of elliptic curves with-
out base points;
or JEJ is a base-point free pencil of elliptic curves; the corre-
sponding fibration has exactly two multiple fibres El and E2,
with E - 2E1 - 2E2, and El - E2 =_ K.
(Notice that IK + El # 0 by Riemann-Roch; if h°(E) = 1 then
for E' E (K + El we have E fl E' = 0, so that Riemann-Roch
gives h1(-E E') >, 1 and h°(2E) >, 2; use Exercise 12 from
Chapter VIII.)

(5) Let S be the Enriques surface associated to the Reye congruence
(Example VIII.19). Show that S is an elliptic surface.
(Show that the system of quadrics P contains 10 quadrics of
rank 2. Such a quadric is the union of two planes L1, L2; the
system P induces a net of conics on L1. Show that the variety of
lines contained in a conic of this net is an elliptic curve, which is
naturally embedded in S; use Exercise 4.)

(6) Let S be a K3 surface. Show that if a divisor D on S satisfies
D2 = 0 and D.C > 0 for all smooth rational curves C, then
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(7)

D = kE where E is an elliptic curve (and k > 1). Deduce that
a K3 surface is elliptic if and only if its Picard group contains a
non-zero element whose square is zero.
(If D - Z + M, where Z is the fixed part of IDS, show that
D.Z = Z.M = M2 = 0, whence Z2 0 which implies Z = 0. If
C is a smooth rational curve, write sc for the symmetry of Pic S
defined by sc(D) = D + (C.D)C; let W be the group generated
by all the sc. Show that for every divisor D with D2 = 0, there
exists w E W such that C.w(D) 0 for all smooth rational
curves C.)
Show that every Enriques surface S is elliptic.
(Using the properties of quadratic forms, show that there exists
a divisor D on S such that D2 = 01 Deduce from Exercise 6 that
the canonical double cover of S is an elliptic K3 surface; conclude
that S is elliptic.)



x
SURFACES OF GENERAL TYPE

Proposition X.1 Let S be a minimal surface; then the following 3
conditions are equivalent:

(i) tc(S) = 2;
(ii) Ks > 0 and S is irrational;

(iii) there exists an integer no such that cnK is a birational map of S
to its image for n >, no.

If these conditions hold, S is called a surface of general type.

Proof Obviously, (iii) #- (i). Let S be a surface with K2 = 0; then
for any n >, 1 the mobile part M of InKI satisfies M2 = 0 (by Lemma
IX.1(b)), which implies that 1; hence (i) (ii). Finally,
an irrational surface with K2 > 0 is non-ruled (111.21); Lemma IX.1(a)
now shows that (ii) = (iii).

Remark X.2 The statement in (iii) can be substantially improved: in
fact, InKI is base-point free for n > 4; as soon as n > 5, the morphism
OnK is an isomorphism outside certain rational curves, contracted onto
a very simple type of singularity (rational double points). We refer to
[Bo] for a detailed analysis.

Examples X.3 The only difficulty is choosing from the wealth of ex-
amples.

(1) All surface complete intersections, with the exceptions S2, S3,S4,
S2,2, S2,3, 52,2,2, are of general type (VII.5).

(2) Any product of curves of genus > 2 (or more generally, any sur-
face fibred over a curve of genus >, 2 with generic fibre of genus

2) is of general type (VII.4).
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(3) If f : S' -> S is a surjective morphism, and if S is a surface of
general type, then so is S'; this follows at once from the fact that
Ks, = A + f * Ks , with 0 >, 0.

(4) It is interesting to note that there exist surfaces of general type
with pg = q = 0; here is an example, the Godeaux surface. Let
S' C I(D3 be the quintic given by X' + Y' + Z5 + T5 = 0, and let o
be the automorphism of order 5 of S' defined by o ,(X, Y, Z, T) =
(X, (Y, (2Z, (3T), where ( is a primitive 5th root of unity. The
group G - 7Z/5 generated by o acts on S' without fixed points,
and the quotient S = S'/G is thus smooth. Since q(S') = 0 and
Ks, - H (by VIII.9 and IV.11), we have pg(S') = 4 and K25, = 5.
It follows that q(S) = 0 and X(Os1) = 5X(Os,) = 1 (using VI.3),

hence pg = 0; furthermore, K2 = s K22, = 1, so that S is a surface
of general type with pg = q = 0 and K2 = 1.

For more examples of this kind, see Exercises 3 and 4.
In view of the diversity of these examples, one does not hope to

describe completely all surfaces of general type. The natural questions
turning up are of a more general nature: for example, finding the pos-
sible numerical invariants for such a surface. This problem is still some
way from a complete solution. We finish this course with one important
inequality, due to Castelnuovo.

Theorem X.4 Let S be a non-ruled surface; then Xtop(S) >, 0 and
X(Os) > 0. Moreover, if S is of general type, then X(Os) > 0.

The inequalities for X(Os) are of course a consequence of that for
Xtop, together with Noether's formula. Although we do not require this,
it can be noted that the result follows from the classification for surfaces
with a = 0, and from Proposition X.10 below for elliptic surfaces, so
that X.4 is actually a theorem on surfaces of general type.

We will require the following two propositions:

Fact X.5 Let S be a surface; then
(i) b2 >, 2pg;
(ii) if w is a holomorphic 1-form on S, dw = 0.

The first statement comes from Hodge theory, which gives the more
precise formula b2 = 2pg + h' (S,1 ). The second is much more elemen-
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tary: Stokes' formula shows that

jdwA()=jd(wA)=0.

As dw is a (2, 0)-form, this implies dw = 0.

Lemma X.6 Let S be a surface with Xtop(S) < 0; then S has an etale
cover S' --+ S such that p9(S') 2q(S') - 4.

Proof The inequality Xtop(S) = 2 - 4q + b2 < 0 implies q(S) > 1; hence
there are connected etale covers S' -> S of any degree m (compare
V.14.(5)). Take m > 6; then Xtop(S') -6, so that in view of X.5(i) we
have

2-4q+2py <-6 , that is p9 <2q-4 .

Lemma X.7 Let V, W be two finite dimensional complex vector spaces,
and ¢ : A2V -+ W a homomorphism. Then if dim W < 2 dim V-4, there
exist two linearly independent vectors v, v' E V such that /(v A v') = 0.

Proof Let C denote the cone of A2V made up of vectors of the form vAv',
and let C be its image in the projective space IP (A2 V). Consider also
the Grassmannian G2(V) of 2-planes of V; sending a 2-plane P C V
to the line A2P C A2V gives a morphism f of G2(V) into IP(A2V)
whose image is just C. It is easy to check that f is an embedding (the
`Pliicker embedding'), and dim G2(V) = 2(dim V - 2). Hence dim C =
2 dim V - 3. The formula for the dimension of intersections gives

dim(C fl Ker ¢) > dim C - codim Ker 0 > 2 dim V - 3 - dim W ;

using the hypothesis shows that this is strictly positive, so that
C fl Ker 0 # {0}. This is the assertion of the lemma.

The lemma applies to a surface S by setting V = H°(S, Sts) and
W = H°(S, Sts), and taking 0 to be the cup product. We thus get:

Corollary X.8 Let S be a surface for which p9 < 2q-4; then there exist
two 1-forms wl and w2 which are linearly independent in H°(S, Sts), and
such that the 2-form wl Aw2 is zero.

The following result, due to Castelnuovo and de Franchis, is the main
point of the proof of X.4.
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Proposition X.9 Let S be a surface having two linearly independent
1-forms w1, w2 E H°(S, Sts) such that w1 A w2 = 0. Then there is a
smooth curve B of genus g > 2, a surjective morphism p : S --* B
with connected fibres, and two 1-forms a1, a2 E H°(B, T ) such that
W1 = P*al, W2 = P*a2.

Proof Let K(S) denote the rational function field of S. Since w1Aw2 = 0,
we can write w2 = gw1 for some g E K(S). Using X.5(ii) we have
dw1 = dw2 = 0, giving w1 A dg = 0, whence w1 = f dg, with f E K(S).
Now dw1 = 0 gives df A dg = 0, which is to say that f and g are
algebraically dependent: there is a polynomial P in 2 variables such
that P(f, g) = 0. Consider the projective curve C C IED2 given by the
affine equation P(x, y) = 0; the functions f, g define a rational map
0 : S - C. Using elimination of indeterminacy (11.7), there exists a
composite of blow-ups e : S -+ S such that h = o c is a morphism. Now
using Stein factorization (V.17), we get

h : S 4*B-"*C,

where B is a smooth curve, and q has connected fibres. Set a1 = u* (x dy)
and a2 = u*(xydy). These are meromorphic forms on B which by
construction satisfy q*ai = E*wi, for i = 1, 2. An easy local calculation
shows that div(e*w;) = q*divai + E (ni - 1)C1, where the sum takes

pEB
place over the non-reduced fibres q*p = >niCi ; in particular, the ai
are in fact holomorphic on B. They are linearly independent over C, so
that we deduce g(B) > 2. But then the exceptional curves of c in S are
also contracted by q; this implies that q o e-1 = p : S -* B is a morphism
having all the properties claimed.

Proposition X.10 Let S be a surface, and p : S -* B a surjective
morphism of S to a smooth curve; suppose that p has connected fibres,
and F,7 is the generic fibre. Then Xtop(S) > Xtop(B)Xtop(F,7)

Proof Recall that by Lemma VI.4 we have the formula

Xtop(S) = Xtop(B) Xtop(Fn) + J:(Xtop(F,) - Xtop(F,,))
SEE

where E is the set of points of B for which the fibre F8 is singular. It
is thus enough to show that Xtop(F3) > Xtop(F,?) for s E E. Note that
since Xtop increases on making a blow-up, we can suppose that the fibres
of p do not contain any exceptional curves.
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Suppose first that F, = nC, with n > 1 and C irreducible. Using the
inequality Xtop(C) > 2X(Oc) of Lemma VI.5, we get

Xtop(F,) = Xtop(C) > -C.K = -1F.K = 1 Xtop(Fq) .n n

If g(Fq) > 1, this gives the required inequality Xtop(F,) > Xtop(F,7). The
only other case is when F,, - 11)1; then C.K = -.1 and C2 = 0 imply
n = 1 and C - U"1, giving Xtop(F,) = Xtop(F,l)

Now suppose that F, is reducible, F, _ 5' niCC: then

Xtop(F',) = Xtop (E C1) > - (E Ci) 2 - (E Ca) .K

Corollary VIII.4 shows that (E Ci)2 < 0 and C; < 0 for each i; since
C, is not exceptional, Ci.K > 0, and hence

Xtop(F,) > -Eni(Ci.K) _ -F,.K = Xtop(F,)

giving the result.

Proof of Theorem X.4 Let S be a surface with Xtop(S) < 0; Lemma
X.6 shows that there is an etale cover S' -* S having Xtop(S') < 0,
pg(S') < 2q(S') - 4. Corollary X.8 and Proposition X.9 show that
S' has a surjective morphism with connected fibres p : S' -* B with
g(B) > 2. If S' is ruled, then so is S, which is excluded by hypothesis;
hence g(F,,) > 1. Proposition X.10 then gives Xtop(S') > 0, which is a
contradiction.

Remark X.11 In view of Noether's formula, Xtop(S) > 0 is equivalent
to the inequality KS2 12X(05). For a non-ruled surface, the very much
deeper inequality K2 9X(O5) was proved by Bogomolov and Miyaoka,
and independently by S.T. Yau.

Historical Note X.12
As we have noted, both the classical and the modern results on surfaces
of general type are substantially less complete than those for surfaces
with is < 1. Among the classical results are the inequalities of Noether
([Ni]), see also Exercise 1) and of Castelnuovo ([C3]); the structure of
the maps OnK was tackled by Enriques in [E8]. He proved notably (re-
stricting himself to surfaces with q = 0) that if pg > 1, 02K is generically
finite to a surface (see Exercise 6), and that 03K is a birational embed-
ding for all but a small number of exceptional surfaces - although his
proof of this last point is incomplete.
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Questions on the pluricanonical maps q5nK for n > 2 were definitely
settled by Kodaira and Bombieri (see [Bo]); the structure of ¢K is stud-
ied in [B1]. Among more recent results one should also mention Bogo-
molov's work on the cotangent bundle 521, and the related inequality
K2 < 9x(O) mentioned in X.11.

Exercises X.13
(1) Let S be a minimal surface of general type. Prove that K2 >

2py - 4.
(Split into cases according as to whether the image of OK is a
curve or a surface; in the second case, apply Clifford's theorem
on canonical curves - compare Chapter VI, Exercise 2.)

(2) Let S be a minimal surface of general type with py = q = 0 and
K2 = 1. Show that H1(S, 7G) has order < 5; if the order is 5, S
is a Godeaux surface.
(If Sab is the Abelian universal cover of S, which is Galois with
group H1 (S, Z), show by using Exercise 1 that the order of the
cover Sab -# S is < 5. If equality holds, show that OK is a
birational morphism from Sab to a quintic of IID3.)

(3) Let G = (Z/2)3. Find an action of G on Ilk and a surface S' C II',
the intersection of 4 quadrics invariant under G, in such a way
that G acts freely on S. Show that the quotient surface S = S'/G
satisfies p9 = q = 0, K2 = 2.

(4) Let C C Iln2 be the plane quintic X5 + Y5 + Z5 = 0; the group
G = (7L/5)2 acts on C by (a, b) (X, Y, Z) = (C°X, (bY, Z). Show
that for a suitable automorphism ¢ of G, the action of G on
C x C given by g.(x, y) _ (gx, 4(g)y) is fixed-point free. The
surface S = (C x C)/G then satisfies py = q = 0, K2 = 8. Find
more such examples.

(5) Let S be minimal surface of general type with K2 = 1. Show
that q = 0, pg < 2; find examples with py = 0, 1, 2. (Use Exercise
1.)

(6) Let S be a surface of general type with q = 0, p5 > 1; show that
the image of 42K is a surface.
(If 2K = Z + aF, where Z is the fixed part of 12KI, show that
IK + F1 induces the complete canonical system on F.)



APPENDIX A:
CHARACTERISTIC p

The classification of surfaces was extended to the case of an arbitrary
algebraically closed base field by Bombieri and Mumford (some results
having been obtained previously by Zariski). It follows from their work
that the classification of surfaces in characteristics # 2,3 is identical to
that over C; in characteristics 2 and 3 certain 'non-classical' surfaces
appear. We restrict ourselves to stating the results, referring to [B-M]
for the proofs.

(1) All the theorems on ruled and rational surfaces are true in all
characteristics (Noether-Enriques, Castelnuovo, structure of min-
imal models, ...). In particular the ruled surfaces are character-
ized by the condition P12 = 0, or by the termination of adjunc-
tion, or by the inequality C.K < 0 for some non-exceptional curve
C.

(2) The list of surfaces with k = 0 comprises:

(a) the surfaces with K =_ 0, q = 0 (q = h'(Os)), called K3
surfaces; these surfaces have the same properties as in char-
acteristic 0 (VIII.8 to VIII.16). Furthermore, Deligne has
shown that these surfaces are obtained from K3 surfaces in
characteristic 0 by reduction mod p;

(b) Abelian surfaces;

(c) surfaces with 2K =_ 0, p9 = q = 0, called (classical) Enriques
surfaces. In characteristic # 2, these are still quotients of
K3 surfaces by fixed-point free involutions, and have all the
properties of Enriques surfaces over C; in particular they are
elliptic. In characteristic 2 the canonical double cover is in-
separable, with group µ2 ([M3]); the surfaces are elliptic or
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quasi-elliptic (a surface S is quasi-elliptic if it has a morphism
to a smooth curve whose generic fibre is a cuspidal cubic);

(d) bielliptic surfaces, of the form (E x F)/G. In characteristic
54 2, 3, we obtain all of the types 1 to 7 listed in VI.20; in
characteristic 3, type 6 (G = (Z/3)3) does not exist; in char-
acteristic 2, type 4 (G = Z/4 x Z/2) does not exist, and for
type 2 we must write G = 7L/2 x p2i

(e) in characteristic 2, surfaces with K = 0, q = 1, which are
called non-classical Enriques surfaces. They fall into two
classes, the `singular' (where the Frobenius automorphism
of H'(ds) is bijective) and the `supersingular' (where it is
zero). The first are quotients of K3 surfaces by a fixed-point
free involution, the others have a canonical inseparable cover
with group a2. All these surfaces are elliptic or quasi-elliptic;

(f) in characteristic 2 or 3, `quasi-bielliptic' surfaces of the form
(E x C)/G where E is an elliptic curve, C a cuspidal cubic,
G a group of translations of E operating on C. One can set
up a list, analogous to VI.20, of all the possible cases. These
surfaces satisfy 4K = 0 or 6K = 0.

(3) The surfaces with is = 1 are elliptic or possibly (in characteristic
2 or 3) quasi-elliptic.

(4) Among the irrational surfaces, the surfaces with is = 2 are char-
acterized by K2 > 0. The structure of the pluricanonical maps
4'nx (n > 2) has been studied in [Ek]; most of the results of
Bombieri and Kodaira still hold. On the other hand, Casteln-
uovo's inequality does not always hold.



APPENDIX B:
COMPLEX SURFACES

Compact complex surfaces can be classified according to their Kodaira
dimension, more or less along the lines we have followed in this book.
I refer to the original papers of Kodaira or to the book [B-P-V] for a
thorough treatment. Here I would like to give a general idea and point
out a few new phenomena which occur. It is actually a good exercise for
the reader to go back through this book and find out for which arguments
the algebraicity is really needed.

One of the first problems we meet on our way is about numerical
invariants: Hodge theory does not hold in general, so we cannot expect
the equalities

q(X) = 1bi(X) = dimH°(X,SZX) = dimH1(X,Ox)

to hold for any compact complex surface X. Recall that we defined
q(X) as dim H1(X , Ox); let us put h := dim H°(X, Q' ). An important
role will also be played by the number b+ (resp. b-) of positive (resp.
negative) eigenvalues of the intersection form on H2 (X, IR).

Proposition B.1 Let X be a compact complex surface. Then
either bl(X) is even, b+ = 2p9 + 1, and q(X) = h(X) = Zbl(X);

or b1(X) is odd, b+ = 2p9, h(X) = q(X) - 1 and b1(X) = 2q(X) - 1.

Sketch of proof The key point is the signature formula (see the Historical
Note of Chapter I):

b+ -b- = 1(Kx - 2Xtop(X ))

Comparing with Noether's formula 1.14 gives

(4 - 4q + 4p9) - (b+ - b) = xtop(X) = 2 - 2b1 + b2
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hence, since b2 = b+ + b-,

(b+ - 2p9) + (2q - bl) = 1 (1)

We claim that both terms appearing in the left hand side are non-
negative. For the first one, this is because H°(X, Kx) ® H°(X, KX)
embeds into H2(X, C) (viewed as de Rham cohomology), and the re-
striction of the intersection form to the real part of the image is easily
seen to be positive. For the second, one uses the exact sequence

where Zc is the sheaf of closed holomorphic 1-forms. By X.5(ii), every
global holomorphic 1-form is closed, so we have an exact sequence

0 H°(X,Qx) -> H1(X,C) -> H1(X,Ox) ,

hence b1 < h + q. On the other hand one can see as for 2-forms that
H°(X, 01 )®H°(X, S01) embeds into H1(X, C); this gives 2h < b1, thus
h < q, and finally

2h<bl <h+q<2q, (2)

which implies in particular 2q - b1 > 0.
Thus equation (1) leaves two possibilities:
either b+ = 2p9 + 1 and b1 = 2q, which in view of (2) implies h = q;
or b+ = 2p9 and b1 = 2q - 1, which gives h = q - 1.

So we see that compact complex surfaces have a rather different be-
haviour according to the parity of b1.

Surfaces with b1 even

Numerically, these surfaces behave like algebraic surfaces; in fact it is
now known that they are Kahler surfaces, so that Hodge theory can be
applied. We find the same classification as in the algebraic case, essen-
tially with the same arguments. Note that some of these surfaces are
automatically algebraic because of the following result, due to Kodaira:

Proposition B.2 A compact complex surface which admits a line bun-
dle L with cl(L)2 > 0 is projective.

As a consequence, every surface with p9 = 0 and b1 even is algebraic:
Proposition 1 provides a cohomology class x with x2 > 0, and the ex-
ponential exact sequence tells us that x is the first Chern class of some
line bundle. Therefore complex minimal surfaces with b1 even fall into
the following classes:
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is = -oo: rational and ruled surfaces (algebraic).

is = 0: complex tori and K3 surfaces (not necessarily algebraic), En-
riques and bielliptic (algebraic).

K = 1: elliptic surfaces.

is = 2: surfaces of general type (algebraic).

Surfaces with bl odd

This is where we get really new surfaces. The case k = 2 cannot occur,
by Propositions B.2 and X.1. The case i = 1 gives non-algebraic elliptic
surfaces. So the two interesting cases are is = -oo and is = 0.

K = -oo: this is the famous class VII0 of Kodaira. It is not difficult to
show that surfaces in this class have b1 = q = 1. Surfaces of this type
with the extra condition b2 = 0 are now completely classified ('Bogo-
molov's theorem'): they are either Hopf surfaces (quotients of C2 - {0}
by a discrete group acting freely) or the so-called Inoue surfaces. Though
various examples are known, the case b2 > 0 is far less understood.

is = 0: two (related) new types appear. The primary Kodaira surfaces
can be obtained as follows. Let B be an elliptic curve, L a line bundle of
degree # 0 on B, L* the complement of the zero section in L. The group
C* acts on L*; let X = L*/qx, where q$ is an infinite cyclic subgroup of
C*. The (compact) surface X is a principal bundle over B with structure
group the elliptic curve (C*/qZ. It follows easily that Kx = 0, q(X) = 2,
b1(X) = 3.

Some primary Kodaira surfaces may admit a free action of a finite
group; the quotient is called a secondary Kodaira surface. These surfaces
have q=b1= 1,K0ObutnK=Owithn=2,3,4or6.



APPENDIX C:
FURTHER READING

With the exception of Appendix B, this book was written in 1978. Since
then new results have been obtained, and other books have appeared,
using somewhat different approaches to the classification. To describe
these, let me first introduce a piece of terminology, due to M. Reid,
which is now universally adopted: a divisor D on a variety X is said to
be nef if D.C > 0 for all curves C in X. Now the crucial point of the
classification lies in the following implications, for a minimal surface X:

tc(X) = -oo Kx not nef X is ruled .

This is our Corollary VI.18 (the other implications in the Corollary are
not difficult); we actually proved directly that a surface X with is = -oo
is ruled. The proof is easy for q > 2; we used Castelnuovo's theorem for
q = 0, and a rather lengthy analysis in the case q = 1, proving first that
the surface is the quotient of a product of two curves by a finite group,
and then, by computing the numerical invariants, that it is ruled.

One can slightly shorten this approach by proving directly that the
surface is elliptic, with rational base; then a computation of the canonical
bundle does the job. This is the point of view taken in [G-H], and also
(somewhat indirectly) in [B-M].

In [B-P-V], the authors use instead (a particular case of) Iitaka's con-
jecture: if X is a compact complex surface, p : X --> B a fibration and
F a smooth fibre of p, one has

ic(X) > r.(B) + c(F) .

Proving this statement requires some hard work; the reward is an im-
mediate proof of the fact that an algebraic surface with x = -oo and
q >, 1 is ruled (apply the above inequality to the Albanese fibration).

I would also like to mention an elegant proof of the implication
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{Kx not nef} = {X ruled} for a minimal surface X, inspired by Mori
theory. Here the key point is the rationality theorem: if X is an algebraic
surface such that Kx is not nef and H is an ample divisor on X, the
number

b= sup{t E R I H+ tK is nef)

is rational. It is not difficult to deduce from this statement (which can
be proved by elementary means) that a minimal surface with K not
nef is either l?2 or geometrically ruled (see e.g. [P]). Unfortunately this
nice method does not seem to give the first of the two implications we
discussed above.

The theory of the period map for K3 surfaces (alluded to in the His-
torical Note of Chapter VIII) is now fully understood, thanks to the
work of Looijenga, Todorov, Siu, .... It gives a nice description of the
various moduli spaces of K3 surfaces as quotients of bounded domains
by discrete groups. A short account can be found in [B2], and a detailed
treatment in [X2] or [B-P-V]; this last reference includes applications to
Enriques surfaces. An extensive treatment of Enriques surfaces can be
found in the monograph [C-D].

The work on surfaces of general type has been oriented in two main
directions: structure of the canonical ring and `geography' (this means
studying the possible values of the numerical invariants, particularly
x(O) and K2, for a surface of general type, and the influence of these
values on the geometry of the surface). Perhaps the most spectacular
progress is the elegant Reider's method which simplifies and improves the
results of Bombieri on pluricanonical maps. For an excellent overview
(though not completely up-to-date by now) I recommend the lectures
by F. Catanese and U. Persson at the Bowdoin AMS Summer Institute
in 1985 (Proc. of Symposia in Pure Math. 46, (1987)), as well as the
brief survey [P].

Though it is beyond the scope of this book, I cannot resist mentioning
the exciting events of these last 10 years about the topology of algebraic
surfaces. The story started around 1985, when S. Donaldson proved that
two algebraic surfaces (one elliptic, the other one rational), known to be
homeomorphic by general principles, were not diffeomorphic. More gen-
erally, he produced, using the moduli space of rank 2 vector bundles on
a surface (together with some hard analysis), a set of invariants of the
C°°-structure, the Donaldson polynomials. The computation of these
invariants became a whole industry, culminating in 1994 with the proof
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by Friedman and Qin of the `Van de Ven conjecture': the Kodaira di-
mension is a differentiable invariant [F-Q].

Shortly afterwards, E. Witten announced that a new set of invariants
he had just constructed with N. Seiberg could be used instead of the
Donaldson invariants [Wi]. No hard analysis is needed, and (unfortu-
nately for us!) very little algebraic geometry. So one gets a relatively
easy proof of the Van de Ven conjecture, and even of a stronger state-
ment: for each n > 1, the plurigenus Pn is a differentiable invariant (see
e.g. [F-M]).
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