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Preface

Complex geometry is a highly attractive branch of modern mathematics that
has witnessed many years of active and successful research and that has re-
cently obtained new impetus from physicists' interest in questions related to
mirror symmetry. Due to its interactions with various other fields (differential,
algebraic, and arithmetic geometry, but also string theory and conformal field
theory), it has become an area with many facets. Also, there are a number of
challenging open problems which contribute to the subject's attraction. The
most famous among them is the Hodge conjecture, one of the seven one-million
dollar millennium problems of the Clay Mathematics Institute. So, it seems
likely that this area will fascinate new generations for many years to come.

Complex geometry, as presented in this book, studies the geometry of
(mostly compact) complex manifolds. A complex manifold is a differentiable
manifold endowed with the additional datum of a complex structure which is
much more rigid than the geometrical structures in differential geometry. Due
to this rigidity, one is often able to describe the geometry of complex manifolds
in very explicit terms. E.g. the important class of projective manifolds can, in
principle, be described as zero sets of polynomials.

Yet, a complete classification of all compact complex manifolds is too
much to be hoped for. Complex curves can be classified in some sense (in-
volving moduli spaces etc.), but already the classification of complex surfaces
is tremendously complicated and partly incomplete.

In this book we will concentrate on more restrictive types of complex
manifolds for which a rather complete theory is in store and which are also
relevant in the applications. A prominent example are Calabi-Yau manifolds,
which play a central role in questions related to mirror symmetry. Often,
interesting complex manifolds are distinguished by the presence of special
Riemannian metrics. This will be one of the central themes throughout this
text. The idea is to study cases where the Riemannian and complex geometry
on a differentiable manifold are not totally unrelated. This inevitably leads to
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Kahler manifolds, and a large part of the book is devoted to techniques suited
for the investigation of this prominent type of complex manifolds.

The book is based on a two semester course taught in 2001/2002 at the
university of Cologne. It assumes, besides the usual facts from the theory of
holomorphic functions in one variable, the basic notions of differentiable man-
ifolds and sheaf theory. For the convenience of the reader we have summarized
those in the appendices A and B. The aim of the course was to introduce cer-
tain fundamental concepts, techniques, and results in the theory of compact
complex manifolds, without being neither too basic nor too sketchy.

I tried to teach the subject in a way that would enable the students to
follow recent developments in complex geometry and in particular some of the
exciting aspects of the interplay between complex geometry and string theory.
Thus, I hope that the book will be useful for both communities, those readers
aiming at understanding and doing research in complex geometry and those
using mathematics and especially complex geometry in mathematical physics.

Some of the material was intended rather as an outlook to more specialized
topics, and I have added those as appendices to the corresponding chapters.
They are not necessary for the understanding of the subsequent sections.

I am aware of several shortcomings of this book. As I found it difficult to
teach the deeper aspects of complex analysis to third-year students, the book
cannot serve as an introduction to the fascinating program initiated by Siu,
Demailly, and others, that recently has lead to important results in complex
and algebraic geometry. So, for the analysis I have to refer to Demailly's excel-
lent forthcoming (?) text book [35]. I also had to leave out quite a number of
important tools, like higher direct image sheaves, spectral sequences, interme-
diate Jacobians, and others. The hope was to create a streamlined approach to
some central results and so I did not want to enter too many of the promising
side-roads. Finally, although relevant examples have been included in the text
as well as in the exercises, the book does not discuss in depth any difficult
type of geometry, e.g. Calabi-Yau or hyperkahler manifolds. But I believe
that with the book at hand, it should not be too difficult to understand more
advanced texts on special complex manifolds.

Besides Demailly's book [35], there are a number of text books on complex
geometry, Hodge theory, etc. The classic [59] and the more recent one by Voisin
[113] are excellent sources for more advanced reading. I hope that this book
may serve as a leisurely introduction to those.

In the following, we will give an idea of the content of the book. For more
information, the reader may consult the introductions at the beginning of each
chapter.

Chapter 1 provides the minimum of the local theory needed for the global
description of complex manifolds. It may be read along with the later chapters
or worked through before diving into the general theory of complex manifolds
beginning with Chapter 2.
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Section 1.1 shows a way from the theory of holomorphic functions of one
variable to the general theory of complex functions. Eventually, it would lead
to the local theory of complex spaces, but we restrict ourselves to those aspects
strictly necessary for the understanding of the rest of the book. The reader
interested in this attractive combination of complex analysis and commutative
algebra may consult [35] or any of the classics, e.g. [57, 64].

Section 1.2 is a lesson in linear algebra and as such rather elementary.
We start out with a real vector space endowed with a scalar product and
the additional datum of an almost complex structure. We shall investigate
what kind of structure is induced on the exterior algebra of the vector space.
I tried to present the material with some care in order to make the reader
feel comfortable when later, in the global context, the machinery is applied
to compact Kahler manifolds.

Section 1.3 proves holomorphic versions of the Poincare lemma and is
supposed to accustom the reader to the yoga of complex differential forms on
open sets of C™.

With Chapter 2 the story begins. Sections 2.1 and 2.2 deal with complex
manifolds and holomorphic vector bundles, both holomorphic analogues of
the corresponding notions in real differential geometry. But a few striking
differences between the real and the complex world will become apparent
right away. The many concrete examples of complex manifolds are meant to
motivate the discussion of the more advanced techniques in the subsequent
chapters.

Section 2.3 illuminates the intimate relation between complex codimension
one submanifolds (or, more generally, divisors) and holomorphic line bundles
with their global sections. This builds the bridge to classical algebraic geom-
etry, e.g. Veronese and Segre embedding are discussed. The section ends with
a short discussion of the curve case.

Section 2.4 is devoted to the complex projective space P™, a universal
object in complex (algebraic) geometry comparable to spheres in the real
world. We describe its tangent bundle by means of the Euler sequence and
certain tautological line bundles. A discussion of the Riemannian structure of
P" (e.g. the Fubini-Study metric) is postponed until Section 3.1.

Section 2.5 provides an example of the universal use of the projective space.
It explains a complex surgery, called blow-up, which modifies a given complex
manifold along a distinguished complex submanifold, replacing a point by a
projective space. Apart from its importance in the birational classification of
complex manifolds, blow-ups will turn out to be of use in the proof of the
Kodaira embedding theorem in Section 5.2.

Section 2.6 interprets complex manifolds as differentiable manifolds to-
gether with an additional linear datum (an almost complex structure) satis-
fying an integrability condition. Here, the linear algebra of Section 1.2 comes
in handy. The crucial Newlander-Nierenberg theorem, asserting the equiva-
lence of the two points of view, is formulated but not proved.
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Chapter 3 is devoted to (mostly compact) Kahler manifolds. The exis-
tence of a Kahler metric on a compact complex manifold has far reaching
consequences for its cohomology. Behind most of the results on Kahler mani-
folds one finds the so-called Kahler identities, a set of commutator relations
for the various differential and linear operators. They are the topic of Section
3.1.

In Section 3.2, Hodge theory for compact manifolds is used to pass from
arbitrary forms to harmonic forms and eventually to cohomology classes. This
immediately yields central results, like Serre duality and, in Section 3.3, Lef-
schetz decomposition.

Section 3.3 also explains how to determine those classes in the second coho-
mology H2 (X) of a compact Kahler manifold X that come from holomorphic
line bundles. This is the Lefschetz theorem on (1, l)-classes. A short introduc-
tion to the hoped for generalization to higher degree cohomology classes, i.e.
the Hodge conjecture, ends this section.

There are three appendices to Chapter 3. Appendix 3.A proves the for-
mality of compact Kahler manifolds, a result that interprets the crucial dd-
lemma of Section 3.2 homologically. Appendix 3.B is a first introduction to
some mathematical aspects of supersymmetry. The cohomological structures
encountered in the bulk of the chapter are formalized by the notion of a Hodge
structure. Appendix 3.C collects a few basic notions and explains how they
fit in our context.

Chapter 4 provides indispensable tools for the study of complex mani-
folds: connections, curvature, and Chern classes. In contrast to previous sec-
tions, we will not just study complex manifolds and their tangent bundles but
broaden our perspective by considering arbitrary holomorphic vector bundles.
However, we will not be in the position to undertake an indepth analysis of
all fundamental questions. E.g. the question whether there exist holomorphic
vector bundles besides the obvious ones on a given manifold (or holomorphic
structures on a given complex vector bundle) will not be addressed. This is
partially due to the limitations of the book, but also to the state of the art.
Only for curves and projective surfaces the situation is fairly well understood
(see [70]).

In the appendices to Chapter 4 we discuss the interplay of complex and
Riemannian geometry. Appendix 4.A tries to clarify the relation between the
Levi-Civita connection and the Chern connection on a Kahler manifold. The
concept of holonomy, well known in classical Riemannian geometry, allows
to view certain features in complex geometry from a slightly different angle.
Appendix 4.B outlines some basic results about Kahler-Einstein and Hermite-
Einstein metrics. Before, the hermitian structure on a holomorphic vector
bundle was used as an auxiliary in order to apply Hodge theory, etc. Now, we
ask whether canonical hermitian structures, satisfying certain compatibility
conditions, can be found.

In order to illustrate the power of cohomological methods, we present in
Chapter 5 three central results in complex algebraic geometry. Except for the
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Hirzebruch-Riemann-Roch theorem, complete proofs are given, in particular
for Kodaira's vanishing and embedding theorems. The latter one determines
which compact complex manifolds can be embedded into a projective space.
All three results are of fundamental importance in the global theory of complex
manifolds.

Chapter 6 is relevant to the reader interested in Calabi—Yau manifolds
and mirror symmetry. It is meant as a first encounter with deformation the-
ory, a notoriously difficult and technical subject. In Section 6.1 we leave aside
convergence questions and show how to study deformations by a power series
expansion leading to the Maurer-Cartan equation. This approach can suc-
cessfully be carried out for compact Kahler manifolds with trivial canonical
bundle (Calabi-Yau manifolds) due to the Tian-Todorov lemma. Section 6.2
surveys the more abstract parts of deformation theory, without going into
detail. The appendix to this chapter is very much in the spirit of appendix
3.A. Here, the content of Section 6.1 is put in the homological language of
Batalin-Vilkovisky algebras, a notion that has turned out to be useful in the
construction of Frobenius manifolds and in the formulation of mirror symme-
try.

In general, all results are proved except for assertions presented as 'the-
orems', indicating that they are beyond the scope of this book, and a few
rather sketchy points in the various appendices to the chapters. Certain argu-
ments, though, are relegated to the exercises, not because I wanted to leave
unpleasant bits to the reader, but because sometimes it is just more rewarding
performing a computation on ones own.

Acknowledgement: I learned much of the material from the two clas-
sics [8, 59] and from my teacher H. Kurke. Later, the interplay of algebraic
geometry and gauge theory as well as the various mathematical aspects of
mirror symmetry have formed my way of thinking about complex geometry.
The style of the presentation has been influenced by stimulating discussions
with D. Kaledin, R. Thomas, and many others over the last few years.

I want to thank G. Hein, M. Nieper-Wifikirchen, D. Ploog, and A. Schmidt,
who read preliminary versions of the text and came up with long lists of
comments, corrections, and suggestions. Due to their effort, the text has consi-
derably improved.

Paris, June 2004 Daniel Huybrechts
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Local Theory

This chapter consists of three sections. Section 1.1 collects the principal facts
from the theory of holomorphic functions of several variables. We assume that
the reader has mastered the theory of holomorphic functions of one variable,
but the main results shall be briefly recalled.

Section 1.2 is pure linear algebra. The reader may skip this part, or skim
through it, and come back to it whenever feeling uncomfortable about certain
points in the later chapters. I tried to present the material with great care.
In particular, the interplay between the Hodge and Lefschetz operators is
explained with all the details.

In Section 1.3 the techniques of the previous two sections are merged. The
reader will be introduced to the theory of complex differential forms on open
subsets of C™. This gives him the opportunity to do some explicit calculations
before these notions will be reconsidered in the global context. The central
result of this section is the 0-Poincare lemma.

1.1 Holomorphic Functions of Several Variables

Let us first recall some basic facts and definitions from the theory of holomor-
phic functions of one variable. For proofs and further discussion the reader
may consult any textbook on the subject, e.g. [98].

Let U C C be an open subset. A function / : U —> C is called holomorphic
if for any point zo & U there exists a ball B£(ZQ) C U of radius e > 0 around
ZQ such that / on B£{ZQ) can be written as a convergent power series, i.e.

f(z) = J2 an(z - zo)
n for all z £ BE(z0). (1.1)

n=0

There are equivalent definitions of holomorphicity. The most important
one uses the Cauchy-Riemann equations. Let us denote the real and imaginary
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part of z £ C by x respectively y. Thus, / can be regarded as a complex
function fix, y) of two real variables x and y. Furthermore, / can be written in
the form fix, y) = u(x, y) + iv(x, y), where u(x, y) and v(x, y) denote the real
and imaginary part of / , respectively. Then one shows that / is holomorphic
if and only if u and v are continuously differentiable and

du dv du dv

dx dy' dy dx
(1.2)

In other words, the derivative of / has to be complex linear. Let us intro-
duce the differential operators

d 1

dz' 2\dx % dy

8 1/3 d

= -§={z) = 1 and

(1.3)

The notation is motivated by the properties -§^{z) = -§={

•§g(z) = 0. Then, the Cauchy-Riemann equations (1.2) can be rewritten as
-gt = 0. This is easy if one uses f = u + iv.It might be instructive to do the
same calculation for / written as the vector (") and | j = | ( | ^ + (?V)f~)-

As the transition from the real partial differentials ^r, §- to the complex

partial differentials f j , fj is a crucial point, let us discuss this a little further.
Consider a differentiable map / : U C C = E2 —> C = M2. Its differential df(z)
at a point z £ U is an M-linear map between the tangent spaces df{z) : TZM? —>
7/(2)]R

2. Writing the complex coordinate on the left hand side as z = x + iy
and on the right hand side as w = r + is the two tangent spaces can be given
canonical bases (d/dx,d/dy) and (d/dr,d/ds), respectively. With respect to
these the differential df(z) is given by the real Jacobian

Mf) =

/du

dx

dv

\~dx~

du\

dy

dv

~d~y!

where / = u + iv as before, i.e. u = r o f and o = s o / .
After extending df(z) to a C-linear map df{z)c : TZM.2 ® C -> T /v-/

we may choose different bases (|^ = |(zb ~ *f")' fi = |(f^ "+" *f~)) anc^
correspondingly for the right hand side. With respect to those df(z) is given
by the matrix

df df\

~d~z ~&1

df df
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E.g. the vector J^ is sent to the vector -^ • J-̂  + -gj • J^r. For the chain rule
it would be more natural to change the order of J^ and -^ (and of J= and

§£)• In the following, we will use that for any function / one has §f = (§f )•

If / is holomorphic, then g| = -g| = 0 and thus df(z) in the new base is given
by the diagonal matrix

/ df \
— 0

v o d-l
\ oz /

Holomorphicity of / is also equivalent to the Cauchy integral formula. More
precisely, a function / : U —> C is holomorphic if and only if / is continuously
differentiable and for any B£{ZQ) C U the following formula holds true

/(*>) = Tpr / -^-dz. (1.4)

Actually, the formula holds true for any continuous function / : B£{ZQ) —> C
which is holomorphic in the interior. Let us remind that the Cauchy integral
formula is used to prove the existence of a power series expansion of any
function satisfying the Cauchy-Riemann equations. (If / is just continuous,
one only has f(z0) = (l/27ri)lim£^0 JdBc(z0) f(

z)/(z ~ zo)dz.)
The following list collects a few well-known facts, which will be important

for our purposes.

Maximum principle. Let U C C be open and connected. If / : U —> C
is holomorphic and non-constant, then | / | has no local maximum in U. If U
is bounded and / can be extended to a continuous function / : U —> C, then
|/ | takes its maximal values on the boundary dU.

Identity theorem. If / , g : U —> C are two holomorphic functions on a
connected open subset U C C such that f(z) = g(z) for all z in a non-empty
open subset V C U, then f = g. There are stronger versions of the identity
theorem, but in this form it immediately generalizes to higher dimensions.

Riemann extension theorem. Let / : Bs(zo) \ {ZQ} —> C be a bounded
holomorphic function. Then / can be extended to a holomorphic function
/ : B£(0) -> C.

Riemann mapping theorem. Let U C C be a simply connected proper
open subset. Then U is biholomorphic to the unit ball B\(0), i.e. there exists
a bijective holomorphic map / : U —> -Bi(O) such that its inverse f~x is also
holomorphic.
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Liouville. Every bounded holomorphic function / : C —> C is constant.
In particular, there is no biholomorphic map between C and a ball Be(0) with
£ < oo. This is a striking difference to the real situation and will cause a
different concept of locality for complex manifolds than the one we are used
to from real differential geometry.

Residue theorem. Let / : JB£(0) \ {0} - > C b e a holomorphic function.
Then / can be expanded in a Laurent series f(z) = Y^L-oo anZn a nd the
coefficient a_i is given by the residue formula a_i = (l/2iri) Jizi_e/2 f(z)dz.
The residue theorem is usually applied to more general situations where the
function / has several isolated singularities in a connected open subset and the
integral is taken over a closed contractible path surrounding the singularities.

The notion of a holomorphic function of one variable can be extended
in two different ways. Firstly, one can consider functions of several variables
C" —> C and, secondly, functions that take values in C™. As a basis for the
topology in higher dimensions we will usually take the polydiscs B£{w) =
{z | \zi -Wi\ <Si}, where e := (si,...,en).

Definition 1.1.1 Let U C C" be an open subset and let / : U —> C be a
continuously differentiate function. Then / is said to be holomorphic if the
Cauchy-Riemann equations (1.2) holds for all coordinates Zi = Xi + iyt, i.e.

du dv du dv
1 ()

(It should be clear that i appears with two different meanings here, as an
index and as ^/—T. This is a bit unfortunate, but it will always be clear which
one is meant.)

By definition, a continuously differentiable) function / is holomorphic if
the induced functions

Un{(zu...,zi_1,z,zi+1,...,zn) j z G C} ^ C

a r e h o l o m o r p h i c for a l l c h o i c e s of i a n d f ixed z \ , . . . , Zi-i, Zi+i,... ,zn e C ,
I n t r o d u c i n g

dzi
:~2\dxi~

ldyj dz%'- 2\dxl
+ldyi

(1.5) can be rewritten as

df

-L =0 for i = l , . . . ,n . (1.6)

Sometimes all these equations together are written as df = 0. Later in
Section 1.3, a precise meaning will be given to this equation.
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The comparison between real and complex Jacobian can be carried over
to several variables. This will be discussed shortly.

But before, let us discuss the Cauchy integral formula for functions of
several variables and a few central results.

Proposition 1.1.2 Let f : B£(w) —> C be a continuous function such that
f is holomorphic with respect to every single component Zi in any point of
BE(w). Then for any z g Be(w) the following formula holds true

IP / ( *V"t f m )
 z ^ i •••<%»• (1-7)

(£ z) (£ z)

Proof. Repeated application of the Cauchy integral formula in one variable
yields

Since the integrand is continuous on the boundary of Bs(w), the iterated
integral can be replaced by the multiple integral. This proves the assertion. D

The proposition can easily be applied to show that any continuous(l) func-
tion on an open subset U C Cn with the property that the function is holo-
morphic with respect to any single coordinate is holomorphic itself (Osgood's
Lemma, cf. [64]). Clearly the integrand in the above integral is holomorphic
as a function of £ = (£i,... , Cn)-

As in the one-dimensional case, the integral formula (1.7) can be used to
write down a power series expansion of any holomorphic function / : U —> C.
More precisely, for any w G U there exists a polydisc B£(w) C U C Cn such
that the restriction of / to Be(w) is given by a power series

h,...,in=0

with

h\...in

From the above list the maximum principle, the identity theorem, and
the Liouville theorem generalize easily to the higher dimensional situation.
A version of the Riemann extension theorem holds true, although the proof
needs some work. The Riemann mapping theorem definitely fails (see Exercise
1.1.16). There are also some new unexpected features in dimension > 1, e.g.
Hartogs' theorem (see Proposition 1.1.4).

Often the holomorphicity of a function of several variables is shown by
representing the function as an integral, using residue theorem or Cauchy
integral formula, of a function which is known to be holomorphic. For later
use we state this principle as a separate lemma.
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Lemma 1.1.3 Let U c C71 be an open subset and let V C C be an open

neighbourhood of the boundary of B£(0) C C. Assume that f : V x U —> C is

a holomorphic function. Then

g(z) :=g(zi,...,zn) •=

is a holomorphic function on U.

Proof. Let z S U. If |£| = e then there exists a polydisc Bs(^)(^) x Bg>^(z) C
FxC/on which / has a power series expansion.

Since dB£(0) is compact, we can find a finite number of points £1 , . . . , £t €
dBe(0) and positive real numbers <5(£i),..., <5(6c) such that

M (t?Be(0) n Bs(£i)/2(£ij) is a disjoint union

and
dB (0) = |J (

Hence, g(z) = f^=ef(£,zi,...,zn)d£ = J2i=1 f^=£^
Each summand is holomorphic, as the power series expansion of / converges
uniformly on Bg^y2(£i) a nd thus commutes with the integral. D

The next result is only valid in dimension at least two.

Proposition 1.1.4 (Hartogs' theorem) Suppose e — (ei,..., en) and e' =
(e ' j , . . . , e'n) are given such that for all i one has s\ < £». If n > 1 then any

holomorphic map f : B£(0) \ Bs>(0) —> C be can be uniquely extended to a

holomorphic map f : B£(0) —> C.

Proof. We may assume that e = ( 1 , . . . , 1). Moreover, there exists S > 0 such
that the open subset V := {z | 1 - <5 < \zx\ < 1, \zijtl\ < 1} U {z | 1 - 6 <
]221 < 1, \zi^2\ < 1} is contained in the complement of J5e'(0).

V

fw{zi) = J2an{w)Zi

• an(w) = 0, n < 0

In particular, / is holomorphic on V. Thus, for any w := (2:2,..., zn) with
Zi\ < 1 this yields a holomorphic function fw{z{) :— f(z\, Z2, • • •, zn) on the
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annulus 1 — 6 < \z\\ < 1. Let fw(z\) = Y2^=-oo an(w)z™ be the Laurent
series of this function. Then an(w) = (l/2Tri) J,t,=1_g,2(fw(t;)/£,n+1)d£ and
by Lemma 1.1.3 this function is holomorphic for w in the unit poly disc of
Cn-1_

On the other hand, the function z\ H-> fw(zi) is holomorphic on the unit
disc for fixed w such that 1 — 5 < \z^\ < 1- Thus, an{w) = 0 for n < 0 and
1 — S < |̂ 21 < 1- By the identity principle this yields an(w) = 0 for n < 0.
But then we can define the holomorphic extension / of / by the power series
X^̂ Lo an(w)zf. This series converges uniformly, as the an(w) are holomorphic
and thus attain their maximum at the boundary. So the convergence of the
Laurent series on the annulus yields the uniform convergence everywhere.
Clearly, the holomorphic function given by this series glues with / to give the
desired holomorphic function. HI

Of course, t he theorem definitely fails for holomorphic functions of one
variable. The informal reason for the theorem is that the singularities of /
are given by the vanishing of a holomorphic function. But the zero set of a
single holomorphic function would 'stick out' of the smaller disc. As usual the
result can easily be generalized to other situations, e.g. when the discs are not
centered at the origin.

Next we will prove the Weierstrass preparation theorem (WPT) which
is an important technical tool in the theory of functions of several complex
variables. Let / : BE(0) —•> C be a holomorphic function on the polydisc -B£(0).
For any w = (z2,..., zn) we denote by fw(z{) the function f(zi, Z2, • • •, zn).

We will show that all the zeros of / are caused by a factor of / which has the
form of a Weierstrass polynomial.

Definition 1.1.5 A Weierstrass polynomial is a polynomial in z\ of the form

z{ + a1(w)zf~1 +... + ad{w)

where the coefficients ai(w) are holomorphic functions on some small disc in
C""1 vanishing at the origin.

Before stating the result, let us recall that any holomorphic function f(z)

in one variable with a zero of order d at the origin can be written as zd • h(z)

with h(0) j^ 0. If we let this decomposition depend on extra parameters,
then the polynomial zd becomes an arbitrary polynomial of degree d whose
coefficients depend on the parameter. This is due to the fact that a zero of
order d of /o(-Zi) might deform to a collection of zeros of fw{z\) whose orders
sum up to d.
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ai{w)

Proposition 1.1.6 (Weierstrass preparation theorem) Let f : B£(0) —»
C be a holomorphic function on the polydisc B£(0). Assume /(0) = 0 and
fo(zi) ^ 0. Then there exists a Weierstrass polynomial g(zi,w) = gw(z{) and
a holomorphic function h on some smaller polydisc Bs/(0) C Be(0) such that
f = g • h and h(0) ^ 0. The Weierstrass polynomial g is unique.

Proof. Since /o ^ 0, we find £i > 0 such that /o in the closure of the disc
of radius £\ vanishes only in 0. Let d be its multiplicity. Next we choose
E2,...,en > 0 such tha t f{z\,...,zn) ^ 0 for \z\\ = £i and zi < £$, i =

Let ai(w),.. . , a,d(w) be the zeros of fw{z{) in the disc of radius £\, where
any zero occurs as often as determined by its multiplicity. In particular,
ai(0) = . •. = (Xd(O) = 0. At this point we do not know yet that the number
of zeros is constant, i.e. that d does not depend on w. The argument will be
given below.

The polynomialgw(z\) := Y[i=i(zi~ai(w)) has the same zeros as/„, (again
with multiplicities). Thus, for fixed w the function hw(z{) := fw(z\)j'gw{z\) is
holomorphic in z\. It remains to show that the functions gw{z{) and h(zi, w) =
hw{z\) are holomorphic in w.

In order to see this, one first notes that the coefficients of the polynomial
gw(z\) can be written as polynomials in the expressions J2i=i ai(w)k> k ~
1,.. . , d. Thus, g — w(zi) is holomorphic in w if these sums are holomorphic
in w. The latter can be seen by applying the residue theorem to the function

Let /«,(£) = Yl-j=m. aj(£~a)J be tn e power series expansion of fw in a zero

a. T h e n / ; ( O = E , ° l m J - « J ( e - a ) J - 1 . M o r e o v e r , Cfc = afc + fcafc-1(^-«) + ----
We leave it to the reader to verify that this immediately yields

= mak.
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Thus, we have

The left hand side is a holomorphic function in w (use Lemma 1.1.3) and thus
g(zi,w) := gw(z\) is holomorphic in z\,..., zn. Note that for k = 0 the left
hand side is just the number of zeros of fw counted with multiplicities. So this
integer (= d) depends holomorphically on w and therefore does not depend
on w at all.

The complement of the set {(z\,w) \ z\ = aj(w) for some i} contains a

neighbourhood of {(zi,w) \ \zi\ = £\, |zi>i| < £j}. Thus, the Cauchy integral

formula h(zi,w) = (l/2m) J,,,_E h(£,w)/(l; — zi)d£ and the holomorphicity

of f/g show that h is holomorphic everywhere (again by Lemma 1.1.3).
The uniqueness of the Weierstrass polynomial g is clear: Since h(0) ^ 0,

we can assume that h does not vanish anywhere and thus fw and gw have the
same zero sets. But the only Weierstrass polynomial with this property is the
polynomial constructed above. •

As a short hand, we will denote the zero set of a holomorphic function /
by Z(f), i.e. Z(f) := {z | f(z) = 0}.

Proposition 1.1.7 (Riemann extension theorem) Let f be a holomor-
phic function on an open subset U C C". If g : U \ Z(f) —> C is holomorphic

and locally bounded near Z(f), then g can uniquely be extended to a holomor-

phic function g : U —* C.

Proof. Before launching into the proof let us consider the following special
case: n = 2 and f(z) — z\. Then gZ2(z\) :— g(zi,Z2) is a bounded holomor-
phic function on a punctured disc in the complex plane. Thus, by the usual
Riemann extension theorem one finds an extension of gZ2 to a holomorphic
function on the whole disc. It then remains to show that all these functions
glue together.

For the general case we may assume that U = BE(0) and that Z(f) does
not contain the intersection of U with the line {(zi,0,. . . ,0) | z\ £ C}. Fur-
thermore, we can restrict to the case that the restriction /o of / to this line
vanishes only in the origin. Thus, /o(-zi) ^ 0 for \z\\ = £\/2 and modifying
£2,... ,£n > 0 if necessary we can also assume that f(z) ^ 0 if \z\\ = £\/2

and \zi\ < Si/2 for i = 2 , . . . ,n. In other words, for any w with \zi\ < e%/2,

i = 2 , . . . ,n the function fw has no zeros at the boundary of ££l/2(0)-

By assumption, the restriction gw of g to BEl/2(0) \ Z(fw) is bounded
and can thus be extended to a holomorphic function gw on JB£I/2(0)- By the
Cauchy integral formula this extension is given by

ZU =
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Since fw(£) ^ 0 for any £ 6 dBei/2{0), the integrand is holomorphic in
(z\,w). By Lemma 1.1.3 this shows that g{z\,w) := gw(z{) is holomorphic in
(zi,w). This yields the desired holomorphic extension of g. •

w

Xz(f)

c

The result also proves that a locally bounded holomorphic function on the
complement of a thin subset can be uniquely extended. Here, a thin subset is
a subset which locally is contained in the zero set of a non-trivial holomorphic
function.

Extending the notion of holomorphicity to functions / that take values
in Cn is purely formal. Similarly to the definition of a differentiable function
with values in R™ this is done as follows.

Definition 1.1.8 Let U C Cm be an open subset. A function / : U -> C"
is called holomorphic if all coordinate functions / i , . . . , / n are holomorphic
functions U —> C

In analogy to the one-dimensional case one says that a map / : U —> V
between two open subsets U, V C Cn is biholomorphic if and only if / is
bijective and holomorphic and its inverse f~l : V —> U is holomorphic as
well.

Definition 1.1.9 Let U C Cm be an open subset and let / : U -> C" be a
holomorphic map. The (complex) Jacobian of / at a point z € U is the matrix

A point z G U is called regular if J(/)(z) is surjective. If every point z G
f^1(w) is regular then w is called a regular value.

As in the one-dimensional case, it is useful to relate the complex Ja-
cobian J(f) to the real one. This goes as follows. The differentiable map
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/ : U C C m = M2m -> C n = R2™ induces for z e £/ the K-linear map d/(z) :
TzM.2m -> T / ( z )K

2 n . With respect to the bases ( £ ^ , . . . , £-, -§^,..., ^ - )

and (g^-, • • •, g^r-, gj- , • • •, gj—) the linear map df(z) is given by the real Ja-
cobian

/

Uf) =

The C-linear extension df(z)c '• Tz\

to the basis (^-,..., J - , ^ - , . . . , J -
given by

(duA \

i,3 KOViJi,:

2n ® C with respect
a a i s

and for / holomorphic by I

dfi\ \

df

In particular, for a holomorphic function / one has det J R ( / ) = det J(f) •

det J(f) = I det J ( / ) | 2 , which is non-negative.

In analogy to the implicit function theorem and the inverse function theo-
rem, for real functions (or rather using these two results), one has the following
standard facts.

Proposition 1.1.10 (Inverse function theorem) Let f : U —> V be a

holomorphic map between two open subsets U, V C C n . If z G U is regular

then there exist open subsets z € U' c U and f(z) £ V C V such that f

induces a biholomorphic map f : U' —> V.

Proposition 1.1.11 (Implicit function theorem) Let U c Cm be an open
subset and let f : U —> C n be a holomorphic map, where m > n. Suppose

ZQ € U is a point such that

Then there exist open subsets U\ C C m n,U2 C C™ and a holomorphic

map g : U\ —> f/2 such that U± x U2 C J7 awe! /(z) = /(^o) ' / an(^ on/y i/
5 ( z n + i , • • • ,zm) = (zi,...,zn).

Proof. Using the relation between complex and real Jacobian explained above,
one finds that z is regular if and only if det J K ( / ) ( Z ) 7̂  0, i.e. z is a regular
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point for the underlying real map. Thus, the real inverse function theorem
applies and one finds a continuously differentiable inverse f~1:V'^U'cU

of / . It suffices to show that f-1 satisfies the Cauchy-Riemann equation.
Clearly, d(f~l o f)/dzj = 0 and, since on the other hand / is holomorphic,

1 ° /) ^ y d/-1 dfk | df-1 dfk

8ZA ^-^ du>k dzj dusk dz;
J fc=i _ J

df-1 dfk
fc=i dwk

Thus, ( ^ - ) • J(7) = 0. Since det JR(/) + 0 on £/', this yields ^ = 0

on V for all fc, i.e. f~l is holomorphic.
One could also simply use the fact that / "Ms holomorphic if and only if

d(f~l) is complex linear, where TxC
n = TxM.2n is endowed with the natural

complex structure. Since d(/~1) = (df)*1, this follows from the assumption
that df is complex linear.

For the implicit function theorem we again use the real version of the
theorem. Thus, the asserted function g exists, and it remains to show that g
is holomorphic. Clearly, -§g-(ft(g(zn+1,..., zm), zn+i,..., zm)) = 0 for n+1 <
j < m. On the other hand, the holomorphicity of / yields

jp~ (fi(9(zn+l, • • • ,Zm),Zn+i, . . . ,Zm))

dfi ,( , ^ + Y ^ 5 / i d9k + dfi d~9k

Thus, (%&-) • (%&) = 0 for all j . This implies dgk/dzj = 0
\azi J l<i,j<n \azi J k=l,...,n

for 1 < k, j < n. Hence, the g\. are all holomorphic. IH

The proofs of the following facts are literally the same as in the real situ-

ation. They are left to the reader.

Corollary 1.1.12 Let U C <Cm be an open subset and let f ; U -> C n be a

holomorphic map. Assume that ZQ G U such that ik(J(f)(zo)) is maximal.

i) Ifm>n then there exists a biholomorphic map h : V —> U', where U' is

an open subset of U containing ZQ, such that f(h(z\,..., zm)) = ( z i , . . . , zn)

for all (zu ..., zm) G V.

ii) If m < n then there exists a biholomorphic map g : V —> V,

where V is an open subset of C" containing f(zo), such that g(f(z)) =

( z ! , . . . , z m , 0 , . . . , 0 ) . •
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\

V

Contrary to the real world, a holomorphic map is biholomorphic if and only
if it is bijective. So the regularity of the Jacobian follows from the bijectivity.
This is

Proposition 1.1.13 Let f : U —• V be a bijective holomorphic map between
two open subsets U, V C Cn. Then for all z £ U one has det J(f)(z) =£ 0. In
particular, f is biholomorphic.

Proof. The proof proceeds by induction. For n = 1 this is standard, but for
completeness sake we recall the argument. Suppose / ' has a zero. After a
suitable coordinate change, we can assume /(0) = /'(0) = 0. Then the power
series expansion of / has the form f(z) — zdh(z), where d > 2 and h(0) =£ 0.
In a small neighbourhood of 0 we can consider a d-th root y/h(z). Then
w := z \/h(z) is a local coordinate. With respect to this coordinate / has the
form f(w) = wd. Hence, / is not injective. Contradiction.

Now let n be arbitrary and assume that the assertion is proven for all
k < n. Let z £ U such that det J(/)(z) = 0. We will show that this im-
plies J(f)(z) = 0. Suppose vk(J(f)(z)) = k > 1. We may assume that

1S non-singular. By the inverse function theorem, Zi := fi(z)
l<i,j<k

for i = 1,. . . , k and 5, := z^ for i = k+1,..., n form a local coordinate system
around z 6 U. Clearly, / maps U' = {z | 5* = 0 for i = 1, . . . , k}nU bijectively
onto {w | Wi = 0 for i = 1, . . . , k} fl V. But the Jacobian of the restriction of
/ to U' is singular at z. This contradicts the induction hypothesis. Therefore,
k = 0. In other words, whenever the Jacobian J(f)(z) is singular it vanishes
completely.

Let det J(f)(z) = 0 and assume that z is a regular point of the holomorphic
function det J(f) : U —> C. A neighbourhood W of z in the fibre of the
function det J(f) over 0 £ C is biholomorphic to an open subset of C" - 1

(Proposition 1.1.11), and for n > 1 this has positive dimension. This yields
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a function f\w '• W —> <Cn with vanishing Jacobian everywhere, which is,
therefore, constant. This contradicts the injectivity of / .

The proof is not complete yet as we still have to show that there always
exists a regular point of det J(f) in the fibre over 0. We will come back to
this later (see Remark 1.1.20). •

It is convenient to work throughout with the stalk of the sheaf of holomor-
phic functions. This way we avoid shrinking open neighbourhoods explicitly
again and again. Let us introduce the necessary notations.

Definition 1.1.14 By C\> we denote the sheaf of holomorphic functions on
Cn. Thus, for any open subset U C C™ the space of sections Oc*(U) of this
sheaf over U is the set of all holomorphic functions / : U —> C. The stalk
Cc«,z of Oc« at a point z g Cn is the set of all germs (U, / ) , where U is an
arbitrary small open neighbourhood of z and / is a holomorphic function on
U. (Compare this with the general definition of the stalk of a sheaf given in
Appendix B.)

Clearly, two stalks at different points are isomorphic. Note that the partial
derivatives J^- define C-linear endomorphisms of Cc»,o- We can also still speak
about the zero set Z(f) of an element / € C?c\o, which here just means the
germ of it (see Definition 1.1.21 or trust your own intuition for the moment).
The ring Oc" ,o is local and its maximal ideal m consists of all functions that
vanish in 0. In other words, the set of units £>£„ 0 consists of all functions /
with /(0) ^ 0.

Using these notation the WPT can be rephrased by saying that after an
appropriate coordinate choice any function / G Oc»,o can be uniquely written
as / = g • h, where h G 0c \o is a u n i t a nd g € OCn-i0[zx] is a Weierstrass
polynomial. The WPT implies the following

Proposition 1.1.15 The local ring 0c \o *s a UFD.

Before giving the proof, let us recall the necessary definitions from com-
mutative algebra.

Definition 1.1.16 Let R be an integral domain, i.e. R has no zero divisors.
An element / £ R is irreducible if it cannot be written as the product of
two non-units in R. An integral domain is called unique factorization domain
(UFD) if every element can be written as a product of irreducible ones and if
the factors are unique up to reordering and multiplication with units.

For the proof we will need one basic fact from algebra: If R is a UFD, then
also the polynomial ring R[x] is a UFD (Gauss Lemma).

Proof. We prove the assumption by induction on n. For n = 0 the ring Cc,o =
C is a field and thus a UFD. Suppose that Cc-^o is a UFD. If / <E 0c \o we
can choose coordinates such that the WPT can be applied. Thus f = g • h,
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where g G Cc™-i,o[zi] is a Weierstrass polynomial and ft, is a unit in 0<c\o-
As an element of Cc-^ot^i ] the Weierstrass polynomial g can be uniquely
written as a product of irreducible elements g, G Oc- i . o^ i ] - All that is left
to show is that any irreducible factor gi is also irreducible as an element in

Oc-,o.
Let us first show that any Weierstrass polynomial can be written as a

product of irreducible Weierstrass polynomials (not every irreducible factor gi

need to be a Weierstrass polynomial). Assume that a Weierstrass polynomial
g G Cc"-i,o[zi] c a n be written as the product of non-units gi G Oc»-i,o[zi]-
Consider the decomposition of <?j according to the WPT g% = g% • hi with
Weierstrass polynomials gi £ Cc™-1^^]- Note that since g is a Weierstrass
polynomial, all the factors <?j are non-trivial on the Zi-line and thus satisfy the
hypothesis of the Weierstrass preparation theorem. Then g = Jl 9i' Yi hi and
by the uniqueness assertion of the WPT g = F] 9i and F{ hi — 1. A priori, the
gi need not be irreducible in 0Cn-i jO[zi] as the hi are just units in 0c™,o- But,
since the degree of g as a polynomial in z\ is finite, repeating the process leads
to a decomposition, where either the gi are irreducible Weierstrass polynomials
or elements in C\>-i,o- To the latter we can apply the induction hypothesis.

We conclude by showing that any irreducible Weierstrass polynomial g

is actually irreducible as an element of 0c™,o- Suppose g = / i • /2, where
/ i i / 2 G 0C™,o are non-units. We apply the WPT to both functions. Hence
fi = 9i- K for i = 1,2 and thus g = {g\- 32) • (^1 • h2). By the uniqueness part
of the WPT, this yields g = gi -52, which contradicts the irreducibility of g
as an element of Oc»-i ]0[zi]. •

It will be important later on to know that the ring of holomorphic functions
in the origin is noetherian. For this we will need the Weierstrass division
theorem.

Proposition 1.1.17 (Weierstrass division theorem) Let f G 0c™ ,0 and

let g G Oc-^ofci] be a Weierstrass polynomial of degree d. Then there exist

r G O£n~it0[zi] of degree < d and h G 0c™,0 such that f = g • h + r. The

functions h and r are uniquely determined.

gg
a3z^ a n d 9 = z<i the assertion is equivalent to the obvious equation / =

Before giving the proof let us consider the case n = 1. If f(z) =
a3 i

, ^j-d) + ZU aizJ> le- h := ZjLd ^ Elo j

Since h is allowed to be a power series, the claimed division by g is still possible
when g is not just zd, but an arbitrary polynomial in z.

Proof. The uniqueness is easy. Assume / = g • h\ + ri = g • hi + r-i- Then
T\ — r2 = g • (h,2 — h\). For w = (Z2, • • •, zn) we consider the function gw{zi) '•=

9{ziiz2, • • •, zn)- Since g is a Weierstrass polynomial, gw for w = ( 0 , . . . , 0) has
a zero of order d. Thus, for any small w the polynomial gw has d zeros (counted
with multiplicities) close to 0. Then the same must hold for (ri — T2)w- But
the latter is a polynomial of degree < d. Thus (r\ — T2)w = 0 for generic w

and hence r\ = r%.
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To prove the existence of h and r we first define h by

h(zi,...,zn) := —- / — -df,

where |zi| < E\. For £j, i = l,...,n, small enough we may assume that
gw(£) =£ 0 for any |£| = S\ and |ZJ| < £j for i = 2,..., n. Thus, h is holomorphic
by Lemma 1.1.3. All that remains to show is that r := / — gh is a polynomial
in 0cn-i,o[zi] of degree < d. This is shown by the following straightforward
computation.

Here, the oniyo) are the coefficients of g G Ofn-i o[zi] a n c l ^ n e A(^ i w ) a r e

determined by them. The integrand in the last integral is a polynomial in z\

of order < d whose coefficients are holomorphic functions in (£, w). D

Proposition 1.1.18 The local UFD 0o\o is noetherian.

Proof. We have to show that any ideal in Cc™,o is finitely generated. We use
again induction on n. The case n = 0 is trivial, as any field is noetherian.

Next, we assume that C?cn-ii0 is noetherian. Then, also the polynomial
ring 0c,»-i O[a:] is noetherian (cf. [2]). Let / C 0c™ be a non-trivial ideal and
choose 0 ^ / € / . Changing coordinates if necessary, we can assume that
the WPT can be applied, i.e. / = g • h with g € 0 ^ - 1 o[zi] a Weierstrass
polynomial and h £ 0 c , o a unit. Hence g G / . The ideal I n CJc-^oIzi] m

Cc"-1,o[;Zi] is generated by finitely many elements gi,... ,9k-

For any other f & I the Weierstrass division theorem yields / = g -h + r

for some r G 0c»-i iO[2i]. Since f,g-h G / , also r G / and therefore r G

/ n 0cr.-io[,zi]. Thus, / = g • h + X)i=i flj ' 5»- This shows that 7 is finitely

generated by the elements g,9i,- • • ,9k- D

Corollary 1.1.19 Let g G 0c«,o &e o,n irreducible function. If f G 0c™,o
vanishes on Z(g), then g divides f.
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Proof. By the WPT (Proposition 1.1.6) we may assume that g G Oc"-',o[zi]
is a Weierstrass polynomial of degree d. By the Weierstrass division theorem
(Proposition 1.1.17) one finds h G 0c™,o and r G C?c™-i,o[zi] of degree < d

such that f = g-h + r. By assumption rw vanishes on the zero set of gw. If the
zeros of gw for generic w had multiplicity one, then this would yield rw = 0, as
rw is of degree < d. All we have to show is that the set of w G C"" 1 such that
gw has zeros with multiplicity > 1 is contained in the zero set of a non-trivial
holomorphic function 7 G C^o-i.o- Once 7 is found, one concludes by using
the easy fact that the complement of the zero set of 7 is dense (cf. Exercise
1.1.8).

Since g is irreducible and •£. j s of degree d — 1, there exist elements

/ii, /12 G Oc»-i]0[zi] and 0 ^ 7 G 0 c « - i o such that hi-g + h.2- J j - = 7 (Gauss
lemma). If gw has a zero £ of multiplicity > 1, then 7(£) = /ii(£, w) • gw(£) +

/i2(e,w)-tf(C) = o. •

Remark 1.1.20 Let g G 0c™,0 be irreducible. The arguments above show that
the holomorphic function g : U —•> C admits regular points in the fibre over
0 G C. Indeed, if g = g • h is the decomposition according to the WPT, then

§ § onelocally ff-^O) = iT^O). Since §^{z) = §f-(z)h(z) for all z G s "
knows that in 5 - 1(0) the g-regular points coincide with the ^-regular points.
Thus, we may assume that g is an irreducible Weierstrass polynomial. Then,
as above, one proves that ^ j - cannot be trivial on Z(g). Thus, g-regular points
exist.

Let us now consider an arbitrary holomorphic function g : U —> C. A
priori, the fibre Z(g) = g~1{Q) might not contain any ^-regular point (e.g.
g = z2). Fix a point z G g~1(0). For simplicity assume z = 0. Write g =

II 3?i > wh e r e the gi G 0c™ are relatively prime and irreducible. Hence, Z(g) =

{J Z(g]li) = (J Z(gi). Note that two zero sets Z(gi) might intersect each other,
but according to the corollary they cannot be contained in each other for
i 7̂  j . Now we can apply what was explained before to each Z(gi). So, Z{g)

might not contain any g-regular point, but every component Z(gi) contains
5,-regular points.

Let us apply this to the situation considered in the proof of Proposition
1.1.13. There we wanted to show that the fibre of the holomorphic map g =

det J(f) : U —> C contains a positive dimensional W. If there exist ^-regular
points in the fibre g~l(Q), then W exists by the implicit function theorem
1.1.11. Using the above arguments we see that any component Z(gi), where
g = Y[ 9^ is the prime factor decomposition of g, contains such a set W. This
completes the proof of Proposition 1.1.13.

By now, the reader should be convinced that working with the local ring
0c™,0 has many advantages when one is interested only in local properties of
holomorphic functions. In some of the above arguments we treated elements
/ G 0c™,0 as honest functions and associated to them their zero sets Z(f).

In the following we will make this more rigorous. This leads us to the notion
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of germs of analytic varieties in a point of Cn. As usual, we will choose the
origin as the distinguished point.

Definition 1.1.21 The germ of a set in the origin 0 £ Cn is given by a subset
I c C " , Two subsets I , 7 c Cn define the same germ if there exists an open
neighbourhood 0 £ U C C" with UnX = U(lY.

Sometimes, one also writes (X, 0) for a germ of a set in the origin. Let
/ £ 0c™,o- Then we denote by Z(f) the germ of the zero set of / , i.e. if / is
represented by a holomorphic function / : U —> C, then Z(f) is represented
by the zero set of this holomorphic function. Clearly, the germ Z(f) does not
depend on the chosen representative of / . If / is a unit in 0c™,o> then Z(f) is
the empty set. Analogously, one defines Z(fi,..., fk) '•= Z{f{)C\.. .C\Z(fk) and
more generally Z{A) as D/eA Z(f) for a finite subset A C 0c™,o- Note that
intersection, union, and inclusion for germs of sets are well-defined notions.

Definition 1.1.22 A germ X c Cn in 0 is called analytic if there exist el-
ements fi,... ,fk € 0c™ ,o, such that X and Z(fi,..., fk) define the same
germ.

Here is a global version of this definition:

Definition 1.1.23 Let U C Cn be an open subset. An analytic subset of U
is a closed subset X C U such that for any x £ X there exists an open
neighbourhood x 6 V C U and holomorphic functions fi,• • •, fk '• V —> C
such that I n F = {z | / 1 (z ) = ... = /fc(z) = 0}.

Obviously, any analytic set X defines an analytic germ in any point z £
X. We will mostly stick to the purely local situation, as we cannot become
honestly global until we will have introduced the notion of a complex manifold.

Definition 1.1.24 Let X C C" be a germ in the origin. Then I(X) denotes
the set of all elements / e 0c \o with X C Z(f).

Lemma 1.1.25 For any germ X C C71 the set I(X) C Oc,o is an ideal.
If (A) C 0c™,o denotes the ideal generated by a subset A C 0c ,o , then
Z(A) = Z((A)j and Z(A) is analytic.

Proof. All assertions are easily verified. Except, perhaps, the last one. Here
one has to use the fact that 0c™,o is noetherian, i.e. any ideal is generated by
finitely many elements. D

Lemma 1.1.26 If Xi C X2, then I(X2) C I{XX). If h C h, then Z(I2) C
Z{I\). For any analytic germ X one has Z{I{X)) = X. For any ideal I C
0c™,o one has I d(Z(I)).
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Proof. The first two assertions are obvious. Clearly, X C Z(I(X)). On the
other hand, there exist elements fi, • • • , fk G 0 c o with X = Z(f\,..., fk).
Then, h,...Jk G I(X) and thus Z{I{X)) C X = Z(h,...Jk). Hence,
X = Z(I(X)). The last assertion is again trivial. D

Also note that Z(I • J) = Z(I) U Z(J) and Z(I + J) = Z(I) n Z(J), for
two ideals /, J C 0c,o-

Definition 1.1.27 An analytic germ is irreducible if the following condition
is satisfied: Let X = X\ U X2, where Xi and X2 are analytic germs. Then
X = Xi or X = X2.

This property translates easily into an algebraic property of the associated
ideal:

Lemma 1.1.28 An analytic germ X is irreducible if and only if I(X) C Oc™ ,0
is a prime ideal.

Proof. If X is irreducible and fvf2 G I{X), then X = (Xr\Z(f1))U(XnZ(f2))
is a union of analytic germs. Thus, X = XnZ(fi) for i = 1 or i = 2. Hence, at
least one of the functions f\ or /2 vanishes on X and, therefore, is contained
in the ideal /(X).

Conversely, let I(X) be a prime ideal and let X = X\ U X2 with Xj
analytic. If /; e /(Xi), i = 1,2, then /1 • /2 G I(X). Hence, /x € J(X) or
/2 G /(X). Thus, it suffices to show that if X ^ Xx and X ^ X2, then
there exist elements /1 G /(Xi) \ /(X) and f2 G /(X2) \ I{X). This follows
immediately from Lemma 1.1.26. •

Lemma 1.1.28 also shows that for / G 0c \o the zero set Z(f) is irreducible
if and only if there exists an irreducible g G 0c™,0 such that f = gk for some
k. Indeed, if / = gk with g irreducible, then Z(f) = Z(g) and if h G I(Z(g))
then g divides h by Lemma 1.1.19. This yields I(Z(g)) = (g) and thus Z(f)
is irreducible. Conversely, if / = J | <?™\ then Z(f) = \JZ(gi), which cannot
be irreducible except for the case / = gk with g irreducible.

Recall that the radical of an ideal / C 0 c ,0 is the ideal \/7 of all elements
/ G 0c ,0 such that fk G / for some k > 0. One easily proves that \/l C
I(Z(I)), but the other inclusion also holds true. This is the content of the
following deep theorem.

Proposition 1.1.29 (Nullstellensatz) If I C 0 c 0 is any ideal, then \fl =

The assertion is easily reduced to the case of prime ideals as follows. From
commutative algebra one knows that \fl is the intersection of all prime ideals
p containing I (cf. [2]). Thus, it suffices to show that I(Z(I)) C p for all prime
ideals / C p. If we know already that p = -̂ /p = I(Z(p)) for all prime ideals
p, this follows from Z(p) C Z(I).
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In order to prove the assertion for prime ideals we need an important result
on the structure of irreducible analytic germs which could be considered as a
far reaching generalization of the WPT (Proposition 1.1.6). As the formulation
of this theorem is already quite involved and its proof is rather lengthy, we will
not attempt to present it here. We will state the following theorem without
proof. It should however be noted that we actually present only two aspects
of the full result.

Theorem 1.1.30 Let X C Cra be an irreducible analytic germ defined by a

prime ideal p C C\>,o- Then one can find a coordinate system

{zi, • • •, zn-d, zn-,i+i, • • •, zn)

such that the projection ( z i , . . . , zn) i—> (z n _d+i , . . . , zn) induces a surjective

map (of germs!) IT : X —> Cd and such that the induced ring homomorphism

®cd o ~* 0o,o/f> is a finite integral ring extension.

Before applying this general result to the proof of the Nullstellensatz,
let us explain that for principal prime ideals p these two statements follow
directly from the WPT. Let p = (g) with g irreducible. Clearly, we may
assume that g is a Weierstrass polynomial. Let / £ O c ^ be arbitrary. By the
Weierstrass division theorem one has / = g • h + r with r € Oc»-i0[zi] has
degree < e := deg(^) and thus the induced element / in C\>,o/p is contained
in Yli=ozl ' Co-i.o/p- Hence, 0c™,o/p is a finite 0c™-i,o-module. The sur-
jectivity of Z(g) —-> Cn~1 follows from the fact that the polynomial gw has a
zero for any w close to 0.

Proof of the Nullstellensatz. We have seen already that it suffices to prove
the assertion for prime ideals. Now let us apply Theorem 1.1.30. Since p C
I(Z(p)) holds for trivial reasons (see Lemma 1.1.26), we only have to ensure
that any / G I(Z(p)) is contained in p. For an appropriate coordinate system
(zi, . . . , zn) the induced element / € 0c™,o/p satisfies an irreducible algebraic
equation fk + aifk~x + ... + a,k = 0 over Ccd,0; i-e- ai = «i(w) ^ Ccrf,0i
where w — (zn^d+i, • • •, zn). Since / vanishes along Z(p), the 0-th coefficient
ak does as well. As Z(p) —> Cd is surjective, this yields a,k — 0. Hence, the
above algebraic equation cannot be irreducible except for k = 1. Therefore,
/ = 0 and, thus, / € p. •

Theorem 1.1.30 also shows that the following definition of the dimension
of an analytic germ coincides with the geometric intuition.

Definition 1.1.31 Let X be an irreducible analytic germ defined by a prime
ideal p C 0c™,o- Then the dimension of X is defined by dim(X) = d, where
d is as in Theorem 1.1.30.

Using commutative algebra one verifies that this definition does not depend
on any choice. In fact, dim(X) = dim(0<o,o/p)- An arbitrary analytic germ
is of dimension d if all its irreducible components are of the same dimension
d.
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Remark 1.1.32 Let X C C" be an irreducible analytic germ of codimension
one, i.e. dim(X) = n — 1. Then the prime ideal p defining X is of height
one, i.e. the only other prime ideal contained in p is (0). A basic result in
commutative algebra tells us, that any prime ideal of height one in a UFD is
principal. Therefore, p = (/) for some irreducible / € Oc,o- In other words,
any irreducible analytic germ of codimension one is defined by one irreducible
holomorphic function. More generally, any analytic germ of codimension one
is the zero set of a single holomorphic function.

In the theory of functions of one variable a meromorphic function / on an
open subset U C C is a holomorphic function defined on the complement of a
discrete set of points S C U such that / has poles of finite order in all points
of S. Then one shows that locally around any point of 5 the function can be
written as the quotient of two holomorphic functions. The latter description
generalizes to the notion of a meromorphic function of several variables.

Definition 1.1.33 Let U C Cn be open. A meromorphic function f on U
is a function on the complement of a nowhere dense subset S C U with the
following property: There exist an open cover U = (Jt/, and holomorphic
functions &, ht : Ui —> C with hi\u.\S • f\u4\s = 9i\ui\s-

We denote by K(U) the set of all meromorphic functions on U. One easily
checks that K{U) is a field if U is connected. Let / be a meromorphic function
on U, i.e. / 6 K{X). Then for any z G U the meromorphic function / in a
neighbourhood of z is given by ^ with g, h e C\>,z- If we assume that g and
h are chosen to be relatively prime, then they are unique up to units. Hence,
the zero set and the pole set of a meromorphic function are well-defined.

Definition 1.1.34 Let / be a meromorphic function on an open subset U C
Cn. Then the zero set Z(f) C U of / and the pole set P{f) C U are the
analytic sets that in every point z &U are given by Z{g) respectively Z(h),
where / on an open neighbourhood of z is given by ^ with g,h £ Oc»,z
relatively prime.

Already for meromorphic functions of one variable this definition is not
satisfactory. We know that we have to count zeros and poles with their mul-
tiplicities in order to obtain sensitive information. The following local result
enables us to define the irreducible decomposition of the zero set Z(f) with
multiplicities. In particular, we will be able to define the divisor of a mero-
morphic function globally (Definition 2.3.8).

Proposition 1.1.35 Let f € £\;™,o be irreducible. Then for sufficiently small

e and z 6 Be(0) the induced element f £ £\>,z is irreducible.

If f>9 S 0c™,o o,re relatively prime, then they are relatively prime in Oc«,z
for z in a sufficiently small neighbourhood ofO.
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Proof. We may assume that / 6 Cc«-i,o[zi] is a Weierstrass polynomial.

Suppose that / as an element of d?c™,z is reducible. Then / = / i • /2 with

fi £ Oc^z non-units, i.e. h{z) = f2(z) = 0. Thus, | £ (z ) = §£(z) • /2(z) +

Thus, the set of points 2 S Be(0) where / as an element of Oc,z is

reducible is contained in the analytic set Z{f, gj-)- We have to show that this

set is a proper subset of Z(f). If not, then -^- would vanish on Z{f). Since /
is irreducible, we can apply Corollary 1.1.19. This yields a contradiction for
degree reasons.

The second assertion is proved as follows. We may assume that / and g

are Weierstrass polynomials in Oc«-i,o[zi]- Then, / and g are relatively prime
as elements in C?c",o if and only if they are relatively prime in C>C"-i,o[zi]-
By the Gauss lemma the polynomials / and g are relatively prime if and
only if there exist polynomials h\,h2 & Oc^-^,o[zi] such that 0 ^ 7 = ft] •
f + h,2 • g S C?c»-i,o- This immediately proves the assertion, where the open
neighbourhood of the origin is given by the open subset where 7, hi, h2, / , and
g are defined and 7 does not vanish. ID

The next proposition will be used later in the proof of Siegel's theorem 2.1.9
which says that the transcendence degree of the function field of a compact
complex manifold is at most the dimension of the manifold.

Proposition 1.1.36 (Schwarz lemma) Let e := (5,...,S) and let f be a

holomorphic function on an open neighbourhood of the closure of the polydisc

Be(0). Assume that f vanishes of order k at the origin, i.e. in the power series

expansion non-trivial monomials of degree < k do not occur.

U \f(z)\ for z G B£(0) can be bounded from above by C, then

for all z G Be(0).

Proof. Fix 0 ^ z £ Bs(0) and define a holomorphic function gz of one variable
as follows: For w < 5 one sets

gz(w) := w~kf I w •

Then |gz(iy)| < 5~kC for \w\ = 5. The maximum principle implies that
\gz(w)\ < S~kC for \w\ < S. Hence,

\z\'k\f{z)\ = \gz{\z\)\<5-kC.

This yields the assertion. •
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Exercises

1.1.1 Show that every holomorphic map / : C —> H := {z | Im(z) > 0} is

constant.

1.1.2 Show that real and imaginary part u respectively v of a holomorphic

function / = u + iv are harmonic, i.e. ]T\ fjf + 12i §~f = ^ an<^ similarly for v.

1.1.3 Deduce the maximum principle and the identity theorem for holomorphic
functions of several variables from the corresponding one-dimensional results.

1.1.4 Prove the chain rule ^|f2i = | £ • §f + | | | f and its analogue for d/dz.

Use this to show that the composition of two holomorphic functions is holomorphic.

1.1.5 Deduce the implicit function theorem for holomorphic functions /:[/—> C
from the Weierstrass preparation theorem.

1.1.6 Consider the function / : C2 —> C, {z\, z2) i—• z\ z2 + z\ z2 + Zi z\ + z§ + z\ z2

and find an explicit decomposition f = h • gw as claimed by the WPT.

1.1.7 State and prove the product formula for d/dz and d/dz. Show that the
product / • g of two holomorphic functions / and g is holomorphic and that 1 / / is
holomorphic on the complement of the zero set Z(f).

1.1.8 Let U C Cn be open and connected. Show that for any non-trivial holomor-
phic function / : U —» C the complement U \ Z(f) of the zero set of / is connected
and dense in U.

1.1.9 Let V C Cn be open and connected. Show that the set K(U) of meromor-
phic functions on U is a field. What is the relation between K(U) and the quotient
field of Ot>,z for z £ VI

1.1.10 Let V := Be(0) C Cn and consider the ring O(V) of holomorphic functions
on U. Show that O(U) is naturally contained in Oc-,0- What is the relation between
the localization of O(V) at the prime ideal of all functions vanishing at the origin
and 0c",o? Is this prime ideal maximal?

1.1.11 The notion of irreducibility for analytic germs generalizes in a straightfor-
ward way to the corresponding notion for analytic sets X C Cn. Give an example of
an irreducible analytic set that does not define irreducible analytic germs at every
point and of an analytic set whose induced germs are all irreducible, but the set is
not.

1.1.12 Let V C Cn be an open subset and let /:[/—> C be holomorphic. Show
that for n > 2 the zero set Z(f) cannot consist of a single point. Analogously, show
that for a holomorphic function / : Cn —> C, n > 2 and w g Im(/) there exists
z e f~1(w) such that \\z\\ > 0.

1.1.13 Show that the product of two analytic germs is in a natural way an
analytic germ.
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1.1.14 Let X C C" be an irreducible analytic set of dimension d. A point x € X

is called singular if X cannot be defined by n — d holomorphic functions locally
around x for which x is regular. Then the set of singular points Xsing C X is empty
or an analytic subset of dimension < d. Although the basic idea behind this result
is very simple, its complete proof is rather technical (see [58, Ch. 6]). Try to prove
the fact in easy cases, e.g. when X is defined by a single holomorphic function.

If x is a regular point, i.e. x G Xreg := X\X s in g , the n — d holomorphic functions
defining X near x can be completed to a local coordinate system.

1.1.15 Consider the holomorphic map / : C —> C2 , z >-* (z2 — l , z 3 — z). Is the
image an analytic set?

1.1.16 The aim of this exercise is to establish the theorem of Poincare stating
that the polydisc B(1|1)(0) C C2 and the unit disc D := {z € C2 | ||z|| < 1} are not
biholomorphic. (Thus the Riemann mapping theorem does not generalize to higher
dimensions. We refer to [93] for details.)
(a) Recall the description of the group of automorphisms of the unit disc in the
complex plane. Show that the group of unitary matrices of rank two is a subgroup
of the group of biholomorphic maps of D which leave the origin fixed.

(b) Show that for any z 6 -B(i,i) (0) there exists a biholomorphic map / : -B(i,i) (0) —>
B ( M )(0) w i t h / ( z ) = 0 .
(c)* Show that group of biholomorphic maps of B(11)(0) which leave invariant the
origin is abelian.
(d) Show that D and B(ii)(0) are not biholomorphic.

1.1.17 Let X C Cn be an analytic subset. Show that locally around any point
x 6 X the regular part Xreg has finite volume. (Hint: Use Theorem 1.1.30.) This
will be needed later when we integrate differential forms over singular subvarieties.

1.1.18 Let / : U —> V be holomorphic and let X C V be an analytic set. Show
that f~1(X) C V is analytic. What is the relation between the irreducibility of X

and f~\X)l

1.1.19 Let / C Oc2,o be the ideal generated by z\ — z\ + z\ and z\ — 2z\z\ + z\.

Describe \fl.

1.1.20 Let U C Cn be an open subset and / : U\Cn~2 —> C a holomorphic map.
Show that there exists a unique holomorphic extension / : U —• C of / .

Comment: We have presented the absolute minimum of the local theory that

is needed for the understanding of certain points in the later chapters. There are

many excellent text books on the subject, e.g. [35, 58, 64].
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1.2 Complex and Hermitian Structures

In this section, which is essentially a lesson in linear algebra, we shall study
additional structures on a given real vector space, e.g. scalar products and
(almost) complex structures. They induce linear operators on the exterior
algebra (Hodge, Lefschetz, etc.), and we will be interested in the interaction
between these operators.

In the following, V shall denote a finite-dimensional real vector space.

Definition 1.2.1 An endomorphism / : V —> V with I2 = —id is called an
almost complex structure on V.

Clearly, if / is an almost complex structure then / G G1(V). If V is the
real vector space underlying a complex vector space then v i—> i • v defines an
almost complex structure / on V. The converse holds true as well:

Lemma 1.2.2 / / / is an almost complex structure on a real vector space V,
then V admits in a natural way the structure of a complex vector space.

Proof. The C-module structure on V is defined by (a + ib) • v = a • v + b • I(v),
where a, b £ M. The M-linearity of I and the assumption I2 = —id yield
((a + ib){c + id)) • v = (a + ib)((c + id) • v) and in particular i(i • v) = —v. •

Thus, almost complex structures and complex structures are equivalent
notions for vector spaces. In particular, an almost complex structure can only
exist on an even dimensional real vector space.

Corollary 1.2.3 Any almost complex structure on V induces a natural orien-
tation on V.

Proof. Using the lemma, the assertion reduces to the statement that the real
vector space Cn admits a natural orientation. We may assume n = 1 and use
the orientation given by the basis (l,i). The orientation is well-defined, as it
does not change under C-linear automorphisms. •

For a real vector space V the complex vector space V ®K C is denoted by
Vc- Thus, the real vector space V is naturally contained in the complex vector
space Vc via the map v i—> v ® 1. Moreover, V C Vc is the part that is left
invariant under complex conjugation on Vc which is defined by (v ® A) := v®A
for v G V and A G C.

Suppose that V is endowed with an almost complex structure /. Then we
will also denote by / its C-linear extension to an endomorphism Vc —> Vc-
Clearly, the only eigenvalues of / on Vc are ±i.

Definition 1.2.4 Let / be an almost complex structure on a real vector space
V and let I : Vc —> Vc be its C-linear extension. Then the ±i eigenspaces are
denoted V1'0 and V0'1, respectively, i.e.

V 1 ' 0 = {v€Vc\ I(v) =i-v} and Vo>1 = {v G Vfc | I(v) = -i • v}.
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Lemma 1.2.5 Let V be a real vector space endowed with an almost complex

structure I. Then

Complex conjugation on Vc induces an M.-linear isomorphism V1>0 = V0 '1.

Proof. Since V1 '0 n V0 '1 = 0, the canonical map

is injective. The first assertion follows from the existence of the inverse map

v I s- i (v - il(v)) © i(w + il(v)) .

For the second assertion we write v G Vc as v = x + iy with x, y G V. Then
(v — il(v)) = (x — iy + il(x) + l(y)) = (v + il(v)). Hence, complex conjugation
interchanges the two factors. •

One should be aware of the existence of two almost complex structures on
Vc- One is given by / and the other one by i. They coincide on the subspace
V1 '0 but differ by a sign on V0 '1. Obviously, V1 '0 and V0 '1 are complex sub-
spaces of Vc with respect to both almost complex structures. In the sequel,
we will always regard Vc as the complex vector space with respect to i. The
C-linear extension of / is the additional structure that gives rise to the above
decomposition. If V1 '0 and V0 '1 are considered with the complex structure i,

then the compositions V C Vc —* V1'0 and V C Vc —> V0 '1 are complex linear
respectively complex antilinear. Here, V is endowed with the almost complex
structure / .

Lemma 1.2.6 Let V be a real vector space endowed with an almost complex

structure I. Then the dual space V* = Homrc(V,]R) has a natural almost

complex structure given by I(f)(v) = f(I(v)). The induced decomposition on

( V ) c = HomR(V,C) = (Vc)* is given by

(V*)1'0 = {/ G HomK(V,C) | f(I(v)) = if(v)} = (Vl'°y

(V*)0'1 = {/ G HomR(V,C) | f(I(v)) = -if(v)} = (V0-1)*.

Also note that (I/*)1 '0 = Homc((V,/),C). •

If V is a real vector space of dimension d, the natural decomposition of its
exterior algebra is of the form

fc=0
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Analogously, /\* Vc denotes the exterior algebra of the complex vector
space Vc, which decomposes as

Ac. (1-8)
fc=0

Moreover, f\* Vc = A V ®R C and /\* V is the real subspace of /\* Vc that is
left invariant under complex conjugation.

If V is endowed with an almost complex structure / , then its real dimension
d is even, say d = 2n, and Vc decomposes as above Vc = V1 '0 © V0'1 with
V1'0 and V0 '1 complex vector spaces of dimension n.

Definition 1.2.7 One defines

where the exterior products of V1>0 and V0 '1 are taken as exterior products
of complex vector spaces. An element a £ /\p'q V is of bidegree (p, q).

Proposition 1.2.8 For a real vector space V endowed with an almost complex

structure I one has:

i) f\p'q V is in a canonical way a subspace of f\p q Vc.

ii) Afc Vc = 0 f\p'qV.
p+q=k

iii) Complex conjugation on /\* Vc defines a (C-antilinear) isomorphism

AP'9 V S A9'P V, i.e. f\p'qV = f\q'p V.
iv) The exterior product is of bidegree (0,0), i.e. (a, (3) i—> a A /? maps

Ap '9 V x A r ' s V to the subspace f\P+r'"+s V.

Proof. Let vu ..., vn G A1 '0 v = vU° and w i , . . . , wn € A0 '1 ^ = V0 '1 b e

C-basis. Then vJl ® wj2 e /\p'q V with Ji = {h < ... < ip} and J2 = {j\ <
... < jq} form a basis of /\p'q V.

This shows i) and ii). Here, one could as well use the general fact that any
direct sum decomposition Vc = W\ © Wi induces a direct sum decomposition

k

A ®p+qk/\/\ _
Since complex conjugation is multiplicative, i.e. wi A WQ, = w\ A u>2i asser-

tion iii) follows from V1 '0 = V0 '1. The last assertion holds again true for any
decomposition Vc = W\ © W2. •

Any vector v £ Vc can be written as v = x + iy with x, y £ V. Assume that

Zi = \{xi - iyt) e V1-0 is a C-basis of V1 '0 with xt,yi G V. Since I(zt) = izu

one finds yi = / (XJ) and a;, = — /(j/i). Moreover, Xj,t/j G V form a real basis
of V and, therefore, a basis of the complex vector space Vc. A natural basis
of the complex vector space V0 '1 is then provided by ~Zi = \{xi + iyi).

Conversely, if v G V, then \{v-il{y)) £ V1'0. Therefore, if (x*, yi := / (XJ ) )

is a basis of the real vector space V, then Zi = \{xi — iyi) is a basis of the
complex vector space V1 '0. With these notations one has the following
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Lemma 1.2.9 For any m < dimcV1'0 one has

(-2i)m(zi A zi) A . . . A (zm A zm) = (zi A Vl) A . . . A (xm A ym).

For m = dimcV^1'0, this defines a positive oriented volume form for the
natural orientation of V (cf. Corollary 1.2.3).

Proof. This is a straightforward calculation using induction on TO. •

There is an analogous formula for the dual basis. Let (xl,yl) be the basis
of V* dual to {xi,yi). Then, zl = xl + iyl and zl = xl — iyl are the basis of
V1'0 and V0'1* dual to (ZJ) respectively (fj). The above formula yields

- \ 771

- J {z1 A z1) A . . . A (zm A zm) = ( i 1 A t / 1 ) A . . . A (xm A ym).

Note that I(xl) = —yl and I(yl) = x1. We tacitly use the natural isomorphism

f\k V* Q* (Afc V)* given by (a! A . . . A afc)(«i A . . . A vfe) = det (^(u,-))^..

Definition 1.2.10 With respect to the direct sum decompositions (1.8) and
ii) of Proposition 1.2.8 one defines the natural projections

nk :AVC - A ^ c and II™ :/\'VC A

Furthermore, I : A* ̂ c —*• A* ̂ c is the linear operator that acts on /\p'q V
by multiplication with ip~q, i.e.

The operator Hk does not depend on the almost complex structure /,
but the operators I and IIp'q certainly do. Note that I is the multiplicative
extension of the almost complex structure I on Vc, but I is not an almost
complex structure. Since / is defined on the real vector space V, also I is an
endomorphism of the real exterior algebra A*^-

We denote the corresponding operators on the dual space A* ̂ c a l s o by
IIk, np'q, respectively I. Note that I(a)(vi,... ,vk) = a(I(vi),... ,I(vk)) for

\ Fc* and Vi G

Let (V, ( , )) be a finite-dimensional euclidian vector space, i.e. V is a real
vector space and { , ) is a positive definite symmetric bilinear form.

Definition 1.2.11 An almost complex structure / on V is compatible with the
scalar product ( , } if (I(v),I(w)) = (v, w) for all v,w GV, i.e. I G O(V, ( , )).

Before considering the general situation, let us study the two-dimensional
case, where scalar products and almost complex structures are intimately re-
lated. It turns out that these two notions are almost equivalent. This definitely
fails in higher dimensions.
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Example 1.2.12 Let V be a real vector space of dimension two with a fixed
orientation. If ( , ) is a scalar product, then there exists a natural almost
complex structure / on V associated to it which is denned as follows: For any
0 7̂  v € V the vector I(v) € V is uniquely determined by the following three
conditions: (v,I(v)) = 0, ||/(v)|| = \\v\\, and {v,I(v)} is positively oriented.
Equivalently, I is the rotation by TT/2. Thus, I2 = —id, i.e. / is an almost
complex structure. One also sees that / € SO(V) and, thus, I is compatible
with ( , ).

Two scalar products { , ) and ( , )' are called conformal equivalent if there
exists a (positive) scalar A with ( , }' = A • ( , }. Clearly, two conformally
equivalent scalar products define the same almost complex structure. Con-
versely, for any given almost complex structure / there always exists a scalar
product ( , ) to which / is associated.

In this way one obtains a bijection between the set of conformal equivalence
classes of scalar products on the two-dimensional oriented vector space V and
the set of almost complex structures that induce the given orientation:

{( . >}/~conf ^ ^ {/ G G1(V)+ | I2 = - i d } .

Let us now come back to an euclidian vector space (V, ( , )) of arbitrary
dimension endowed with a compatible almost complex structure / .

Definition 1.2.13 The fundamental form associated to (V, ( , ) , / ) is the
form

Lemma 1.2.14 Let (V, ( , )) be an euclidian vector space endowed with a

compatible almost complex structure. Then, its fundamental form u> is real

and of type (1,1), i.e. UJ € ^ 1 1

Proof. Since

for all v, w G V, the form to is alternating, i.e. w G / \ V*.

Since

one finds I(w) = w, i.e. u € /\ ' V£. D

Note that two of the three structures {( , ), / , w} determine the remaining
one.

Following a standard procedure, the scalar product and the fundamental
form are encoded by a natural hermitian form.
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L e m m a 1.2.15 Let (V,( , )) be an euclidian vector space endowed with a

compatible complex structure. The form ( , ) : = ( , } — i • u> is a positive

hermitian form on ( V , / ) .

Proof. The form ( , ) is clearly M-linear and (v, v) = (v, v) > 0 for 0 ̂  v E V.
Moreover, (v, w) — (w, v) and

(I(v), w) = (I(v), w) - i - u{I{v), w)

= {I(I(v)),I(w))+i-(v,w)

= i • (i • (v, I(w)} + {v, w)) =i- (v, w).

D

One also considers the extension of the scalar product ( , ) to a positive
definite hermitian form ( , )c on Vfc. This is defined by

(v <g> A, w ® fi)c := (A/I) • (v, w)

for v, w e V and A,/i£C.

Lemma 1.2.16 // (V, ( , )) is an euclidian vector space with a compatible
almost complex structure I. Then VQ = V1'0 © V0'1 is an orthogonal decom-
position with respect to the hermitian product ( , )c-

Proof. Let v — il(v) € V1'0 and w + il(w) 6 V0'1 with v, w £ V. Then an easy
calculation shows (v — il(v),w + il(w))c = 0. •

Let us now study the relation between ( , ) and ( , )c-

Lemma 1.2.17 Let (V, ( , )) be an euclidian vector space with a compatible al-
most complex structure I. Under the canonical isomorphism (V,I) = (V1'0^)
one has \{ , ) = ( , )c|vi.°

Proof. The natural isomorphism was given by v \—* \{v — il(v)). Now use the
definitions of ( , ) to conclude

= (v, v') + i(v, I(v')) - i(I(v),v')

= 2{v, v1) 4- 2i(v, I(v')) = 2(v, v')

a
Often, it is useful to do calculations in coordinates. Let us see how the

above products can be expressed explicitly once suitable basis have been cho-
sen.

Let zi,..., zn be a C-basis of V1'0. Write zt = \{xi — il(xi)) with Xi G V.
Then xi, y\ :— I{x\),..., xn, yn := I(xn) is a M-basis of V and x\,..., xn is a
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C-basis of (V, I). The hermitian form ( , )c on V1'0 with respect to the basis
Zi is given by an hermitian matrix, say \(hij). Concretely,

j ^ n 7 ^bz\ _ 1 ^ h ah

; = i

Using the lemma, we obtain (xi,Xj) = hij. Since ( , ) is hermitian on (V,/),
this yields (xi,yj) = -ihij and (yuyj) = h^.

By definition of ( , ), one has ui = -Im( , ) and ( , ) = Re( , ). Hence,

ij), and (xi,yj) = Im(hij). Thus,

Using z1 A zJ = (xl + iyl) A (xj - iyj) = I ' A I ' - i(x% A yj + xj A yl) + y% A
this yields

If xi, j / i , . . . , xn, yn is an orthonormal basis of V with respect to ( , ), i.e.

) = ELi xi®xi + EILi y'®y\ then
n

I

Note that there always exists an orthonormal basis as above. Indeed, pick
xi =£ 0 arbitrary of norm one and define y\ = I(xi), which is automatically
orthogonal to xi. Then continue with the orthogonal complement

Definition 1.2.18 Let (V, { , )) be an euclidian vector space and let / be a
compatible almost complex structure. Furthermore, let u> be the associated
fundamental form. Then the Lefschetz operator L : f\* V^ —> /\* V£ is given

Remark 1.2.19 The following properties are easy to verify:
i) L is the C-linear extension of the real operator /\* V* -^
ii) The Lefschetz operator is of bidegree (1,1), i.e.

Furthermore the Lefschetz operator induces bijections

Lk : /\k V* -=-*• /\2n~k V*
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for all k < n, where dirriR V = 2n. An elementary proof can be given by choo-
sing a basis, but it is slightly cumbersome. A more elegant but less elemen-
tary argument, using sl(2)-representation theory, will be given in Proposition
1.2.30.

The Lefschetz operator comes along with its dual A. In order to define and
to describe A we need to recall the Hodge *-operator on a real vector space.

Let (V, ( , )) be an oriented euclidian vector space of dimension d, then

( , ) defines scalar products on all the exterior powers /\ V. Explicitly, if

e i , . . . , e<i G V is an orthonormal basis of V, then ej G f\ V with I = {ii <

. . . < ik] is an orthonormal basis of f\ V. Let vol £ f\ V be the orientation

of V of norm 1 given by vol = e\ A . . . A e^.

Then the Hodge ^-operator is defined by

a A */3 = (a, j3) • vol

for a, (3 G /\*V- This determines *, for the exterior product defines a non-

degenerate pairing /\ V x /\ ~ V —> /\ V = vol • K. One easily sees that

* = Afc V -> f\d~k V.
The most important properties of the Hodge *-operator are collected in

the following proposition. Their proofs are all elementary.

Proposition 1.2.20 Let (V, ( , )) be an oriented euclidian vector space of

dimension d. Let e i , . . . , ej be an orthonormal basis of V and let vol £ f\ V

be the orientation of norm one given by e± A ... A e^. The Hodge ^-operator

associated to (V, ( , ),vol) satisfies the following conditions:

i) If {ii,... ,ifc, ji,... ,jd-k} = {1, •• -d} one has

*(eh A...Aeik)=£-ehA...A ejd_k,

where e = sgn(ii,. • • ,ik,ji • • -jd-k)- In particular, *1 = vol.

ii) The ^-operator is self-adjoint up to sign: For a G f\ V one has

iii) The *-operator is involutive up to sign:

iv) The Hodge ^--operator is an isometry on (/\ V, ( , )). •

In our situation we will usually have d = 2n and * and ( , ) will be
considered on the dual space f\* V*.

Let us now come back to the situation considered before. Associated to
(V,( , ) , / ) we had introduced the Lefschetz operator L : /\k V* -> /\ fc+2 V*.
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Definition 1.2.21 The dual Lefschetz operator A is the operator A : /\* V* —>
/\* V* that is adjoint to L with respect to ( , ), i.e. Aa is uniquely determined
by the condition

(Aa, j3) = (a, L/3) for all /? € / \ V*.

The C-linear extension /\* V£ —> /\* V̂? of the dual Lefschetz operator will
also be denoted by A.

Remark 1.2.22 Recall that / induces a natural orientation on V (Corollary
1.2.3). Thus, the Hodge ^-operator is well-defined. Using an orthonormal basis
xi,j/i = I(x\),... ,xn,yn = I(xn) as above, a straightforward calculation
yields

n\ • ujn = vol,

where ui is the associated fundamental form. See Exercise 1.2.9 for a far reach-
ing generalization of this.

Lemma 1.2.23 The dual Lefschetz operator A is of degree —2, i.e. A{/\ V*) C
/\ ~ V*. Moreover, one has A = *~1 o L o *.

Proof. The first assertion follows from the fact that L is of degree two and
that f\* V* = 0 f\k V* is orthogonal.

By definition of the Hodge ^-operator one has (a, L(3) -vol = (L(3, a) -vol =
L/3 A *a = oj A j3 A *a = j3 A (UJ A *a) = (/3, *"1 (L(*a))) • vol. D

Recall that ( , )c had been defined as the hermitian extension to V<£ of the
scalar product ( , ) on V*. It can further be extended to a positive definite
hermitian form on f\*V^. Equivalently, one could consider the extension of
( , ) on /\* V* to an hermitian form on f\* V£. In any case, there is a natural
positive hermitian product on /\* V£ which will also be called ( , }c-

The Hodge ^-operator associated to (V, ( , ), vol) is extended C-linearly to

* : A ^c ~~* A n~ ^c • On /\* VQ these two operators are now related by

a A *J3 = (a , (3)c • vol.

Clearly, the Lefschetz operator L and its dual A on f\* V<£ are also formally
adjoint to each other with respect to ( , )c- Moreover, A = *~1 o L o * on

Lemma 1.2.24 Let { , )c, A, and * be as above. Then

i) The decomposition f\ V£ = 0 f\Pq V* is orthogonal with respect to

( , ) c
ii) The Hodge ^-operator maps /\p'q V* to f\n q'n PV*, where n =

dimc(V,I).
iii) The dual Lefschetz operator A is of bidegree (—1,-1), i.e. A(f\p'q V*) C
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Proof. The first assertion follows directly from Lemma 1.2.16. The third as-
sertion follows from the first and the fact that A is the formal adjoint of L

with respect to ( , )c- For the second assertion use a A */3 = (a,/3)c • vol
and that 71 A 72 = 0 for 7, G / y ^ y* with Pi + P2 + qi + q2 = 2n but
(P i+P2 ,9 i+92) ^ («,«)• •

Definition 1.2.25 Let i? : /\* V —> /\* V be the counting operator defined
by -H] A * ^ = (A; — n) • id, where diniR V = In. Equivalently,

2n

fc=0

With H, L, A, II, etc., we dispose of a large number of linear operators
on /\* V* and one might wonder whether they commute. In fact, they do not,
but their commutators can be computed. This is done in the next proposition.
We use the notation [A,B] = Ao B - B o A.

Proposition 1.2.26 Let (V, ( , )) be an euclidian vector space endowed with a

compatible almost complex structure I. Consider the following linear operators

on /\* V*: The associated Lefschetz operator L, its dual A, and the counting

operator H. They satisfy:

i) [H,L] = 2L, ii) [H,A] = - 2 /1 , and iii) [L,A] = H.

Proof. Let a G /\k V*. Then [H, L] (a) = (k + 2 - n) (to A a) - LU A ((k - n)a) =

2UJ A a. Analogously, [H, A]{a) = (k-2- n){Aa) - A((k - n)a) = -2Aa.

The third assertion is the most difficult one. We will prove it by induction
on the dimension of V. Assume we have a decomposition V = W\ © W2 which
is compatible with the scalar product and the almost complex structure, i.e.
(V, (,),I) = (WU(, h , / ! ) © (W2, ( , )2,12). Then A* V* = A* W{ ® A* W?
and in particular A2 V* = /\2 W? © A2 W2 © wi ® W2- S i n c e V = W1®W2

is orthogonal, the fundamental form OJ on V decomposes as uj\ © u>2, where
u>i is the fundamental form on Wi (no component in W£ ® W£). Hence the
Lefschetz operator L on A* ^* is the direct sum of the Lefschetz operators
L\ and L2 acting on A* Wi* anQi A* ^2*1 respectively, i.e. L = L\ + L2 with
L\ and L2 acting as L\ ® 1 respectively 1 ® L2 on A* W£ <8> A* W£-

Let a, ft £ /\* V* and suppose that both are split, i.e. a = ct\ <g) 0:2,
/3 = /3X ®/%, with a i . f t G A* W?- Then {a,(3} = (a^fa) • <a2)/J2>. Therefore,

= (a1,L1/31){a2,/32)
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Hence, A = A±+ A2, where Ai is the dual Lefschetz operator on /\* W*. This
yields

\L,A](a1®a2) = (Li + L2)(A1(a1) <g> a2 + ax ® A2{a2))
—(yli + A2)(Li(«i) <g> a2 + «i <8> £2(0:2))

= [Li,yli](a:i)® 0:2 + 0:1 ®[L2,A2}(a2).

By induction hypothesis [!/,,/!,] = Hi and, therefore,

a i <g> #2(0:2)

a2) + (k2 - n2)(ai ® a2)
= (fci + /c2 - ni - 712)(0:1 <8> &2),

for «, e / \ ' Wf and rij = dimc(Wj,/j).
It remains to prove the case dimcfV, /) = 1. With respect to a basis x\,yi

of V one has
/\*v* = /\°v* © A 1 ^ ' © A2^*

= M © (x1^ e j/1^) e wR

Moreover, L : A°^* ^ A2 V* a n d ̂  : A2 V* ^ A° ̂ * a r e S i ven by 1 H^ w and
W H I , respectively. Hence, [L,yl]Loy» = — AL\^ov, = —1, [L,yl]|^iy» = 0,
and [L,A]\tfV. = 1. D

Corollary 1.2.27 Lei (V, ( , ),/) be an euclidian vector space with a com-
patible almost complex structure. The action of L, A, and H defines a natural
sl(2)-representation on /\* V*.

Proof. Recall, that s((2) is the three-dimensional (over C or over R) Lie algebra
of all 2 x 2-matrices of trace zero. A basis is given b y X = ( § J ) , 7 = (1 0) >
and B = (0 -?i)- A quick calculation shows that they satisfy [B, X] = 2X,
[B,Y] = -2Y, and [X,Y] = B. Thus mapping X ^ L, Y ^ A, and B ^
H defines a Lie algebra homomorphism sl(2) -> End(A*^*). The sl(2,C)-
representation is obtained by tensorizing with C. •

Assertion iii) of Proposition 1.2.26 can be generalized to

Corollary 1.2.28 [L\A\{a) =i(k-n + i- l ) ^ " 1 ^ ) for all a e /\k V*.

Proof. This is easily seen by induction on i as follows:

[L\A](a) = LiAa-ALia

= L{U~xAa - AU^a) ^

- n + (i - 1) - VjU-1^) + {2i-2 + k- ^L^^a)
1{a).

D
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Definition 1.2.29 Let (V, ( , ) , / ) and the induced operators L, A, and H

be as before. An element a € f\ V* is called primitive if Aa. = 0. The linear

subspace of all primitive elements a € f\ V* is denoted by Pk C f\ V*.

Accordingly, an element a € f\ V£ is called primitive if Aa = 0. Clearly,
the subspace of those is just the complexification of Pk.

Proposition 1.2.30 Let (V, { , ) , / ) be an euclidian vector space of dimen-

sion 2n with a compatible almost complex structure and let L and A be the

associated Lefschetz operators.

i) There exists a direct sum decomposition of the form:

V i(Pfc-2i). (1.9)

This is the Lefschetz decomposition. Moreover, (1.9) is orthogonal with respect
to < , ) .

ii) Ifk>n, then Pk = 0.
iii) The map Ln~k : Pk -> /\2n~k V* is injective for k<n.

iv) The map Ln~k : /\ V* —> f\ n~ V* is bijective for k < n.

v)Ifk< n, then Pk = {a £ /\k V* \ Ln~k+la = 0}.

The following two diagrams might to help memorize the above facts:

L L L

Afc-2y* A fc ir* A H 2 i / , A fc+4 •

/\n~1V* /\nV* /\n+lv* /\n+2V*

Proof, i) The easiest way to prove i) is to apply some small amount of repre-
sentation theory. Since /\* V£ is a finite-dimensional sl(2)-representation, it is
a direct sum of irreducible ones. Any finite-dimensional sl(2)-representation
admits a primitive vector v, i.e. Av = 0. Indeed, for any vector v the se-
quence Alv for i = 0 ,1 , . . . has to terminate by dimension reasons. (Use
EA-v = (deg(u) - 2i - n)ylV) Using Corollary 1.2.28 one finds that for
any primitive v the subspace v, Lv, L2v,... defines a subrepresentation. Thus,
the irreducible st(2)-representations are of this form. Altogether this proves
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the existence of the direct sum decomposition (1.9). The orthogonality with
respect to ( , ) follows from Corollary 1.2.28.

ii) If a G Pk, k > n, and 0 < % minimal with Lra = 0, then by Corollary
1.2.28 one has 0 = [L\A](a) = i(k - n + i - VjL^a. This yields i = 0, i.e.
a = 0.

iii) Let O ^ a g Pk, k < n and 0 < i minimal with Lla = 0. Then again by
Corollary 1.2.28 one finds 0 = [Ll,yl](a) = i(k — n+i — \)Ll~la and, therefore,
k-n + i-1 = 0. In particular, Ln~k(a) ^ 0. Moreover, Ln~k+1a = 0, which
will be used in the proof of v).

Assertion iv) follows from i), ii), and iii).

v) We have seen already that Pk C Ker(Ln~k+l). Conversely, let a G

l\kV* with Ln~k+1a = 0. Then Ln~k+2Aa = Ln~k+2Aa - ALn~k+2a =

(n-k + 2)Ln-k+1a = 0. But by iv) the map L"-fc+2 is injective on A ^ 2 V*.
Hence, Aa = 0. O

Let us consider a few special cases. Obviously, /\ V* = P° — K and

A1 V* = P1. In degree two and four one has A2 V* =iaR® P2 and A4 V* =

Roughly, the Lefschetz operators and its dual A induce a reflection of
A* V* in the middle exterior product A™ ^* • But there is another operator
with this property, namely the Hodge ^-operator. The interplay between these
two is described in the following mysterious but extremely useful proposition.

Proposition 1.2.31 For all a G Pk one has

Proof. The proof will be given by induction. Suppose that dinic(V) = 1.
Choose an orthonormal basis V = xiR © yiM. such that I{x\) = y\. Thus,
u> = x1 A y1. Moreover, A* V* = A° v* © A1 v* ® A2 v* a n d t h e primitive
part of A* V* is A ^* © A V*. Thus, in order to prove the assertion in the
one-dimensional case one has to compare *1 = ui, *ui = 1, *xx = y1, and
* j / 1 = —x1 with the corresponding expressions on the right hand side. Using
I(x1) = — y1 this is easily verified.

Next, let V be of arbitrary dimension and let (V, (, ), / ) = (Wi, ( , )i,h)®

(W2, ( , )2, h) be a direct sum decomposition. As has been used already in the
proof of Proposition 1.2.26, one has L = L i ® l + 1®L2 and A = yli<g)l + l®yl2
on A* V* = A* W? ® A* W%. Moreover, for Si G f\kiW*,i = 1,2, the Hodge
^-operator of 61 ® 62 is given by *(5i ® ^2) = (-l)fclfc2(*i^i) ® (*2<̂ 2)-

Assuming the assertion for W\ and Wi one could in principle deduce the
assertion for V. However, as the Lefschetz decomposition of A* ^* is n ° t the
product of the Lefschetz decompositions of A* W* and A* W2*, the calculation
is slightly cumbersome. It is actually more convenient to assume in addition
that W2 is complex one-dimensional. Of course, the induction argument is
still valid. So, we let W2 = X\R © yiR as in the one-dimensional case.
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Any a e f\ V* can thus be written as

a = pk + $'k_x ® x1 + {$l_x ® y1 + /3fc_2 <8> w,

where /?* e A * ^ * , /3fc_i>#b-i e t\~X Wx\ and /3fc_2 e A*"2^!*- Hence,
Aa = AxPk + W ^ ) ® x1 + (/li/?^!) ® y1 + (yli/3fe_2) ® w + /3 f c-2 . Thus,
a is primitive if and only if /3'k_1,/3'^_1,Pk-2 G A* ^ 1 * a r e primitive and
yli/?fc + /3fc_2 = 0. The latter condition holds true if and only if the Lefschetz
decomposition of /?& is of the form (3k = 7fc + £i7fc-2 and f3k-2 = {k — n —

l)7fc-2-
Next one computes I^a . Since W^ is one-dimensional, one has V — L\ ®

1 + jL{~ (g) L2 and, therefore,

L{+17fc-2 + jXii 'Sfe) ® w + j{L{-yk

fe_1) ® x1 + (Li/3^!) ® y1 + (fc - n -

In order to compute *L Ja, one uses this equation and the induction hypothe-
sis:

= (n - fc - j)(Lrfc"j)Ii(7fc)) ® ^ " (J

On the other hand,

(n-k- j^L^-^l^k

7fc-2) + (n - fc - j ) ( i r f c " i

Comparing both expressions yields the result. •

Observe that the above proposition shows once again that Ln~ is bijective
on /\kV* for k < n (cf. iv), Proposition 1.2.30).
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Example 1.2.32Yiexe are a few instructive special cases. Let j = k = 0 and
a = 1, then we obtain *1 = ^jLnl = ^-. Thus, vol = ^- as was claimed
before (Remark 1.2.22).

For k = 0, a = 1, and j = 1, the proposition yields *tu = ,rJily0jn''1 •

If a is a primitive (1, l)-form, i.e. a e P2n/\1>:1 V*, then *a = ( n l 1
2 ) ! ^"

a.

Remark 1.2.33 Since L, /I, and i? are of pure type (1,1), ( - 1 , - 1 ) and (0,0),
respectively, the Lefschetz decomposition is compatible with the bidegree de-
composition. Thus, P£ = @p+q=k Pp'q, where P™ = P£ n AP'9 V*. Since yl
and L are real, one also has PP>« = Pq'p.

Example 1.2.34 In particular, A° ̂ c = P°'° = ^c = C , A1 Vc = ph°
and

Definition 1.2.35 Let (V, ( , ) , /) be as before and let u> be the associated
fundamental form. The Hodge-Riemann pairing is the bilinear form

Q:^kV*x /\kV* ^M, (a,j8)i ^(-lJ^aA^A^,

where A ™ *̂ is identified with M via the volume form vol.

By definition Q = 0 on A ^* f° r k > n. We will also denote by Q the
C-linear extension of the Hodge-Riemann pairing to A* ^c •

Corollary 1.2.36 (Hodge—Riemann bilinear relation) Let(V,{ , ),/) be
an euclidian vector space endowed with a compatible almost complex structure.
Then the associated Hodge-Riemann pairing Q satisfies:

Q(/\ V*,/\ V*)=0

for (p,q) ̂  (q',p') and

iP~"Q(a, a) = (n~(p + q))\ • (a, a)c > 0

forO^ae Pp'q with p + q<n.

Proof. Only the second assertion needs a proof. By definition

Q(a,a) • vol = (—1) 2 , U)
i-k
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where k = p + q and /3 6 f\k V* such that */? = Ln~ka. Hence, *2/? = (-l)fc/3
and, on the other hand,

* 2 /3 =

by Proposition 1.2.31. Thus, /? = ( - l ) f c + M ^ h l i (n - k)\ • V'la and, therefore,

Q(a,a) = ( - l ) f c + M ^ + M ^ i i ( n - k)\ • i '"* • ( a , a ) c .

This yields ip~qQ{a, a) = (n - fc)! • (a, a ) c > 0 for 0 ^ a e P M . D

Example 1.2.37 Suppose n > 2 and consider the decomposition (/\ ' F * ) R =
wR®PR ' , where ( )R denotes the intersection with f\ V*. Then, the decom-
position is Q-orthogonal, because (aAw)A uin~2 = a A w™^1 = 0 for a G P 2 .
Moreover, Q is a positive definite symmetric bilinear form on wR and a nega-
tive definite symmetric bilinear from on PR ' . This is what will lead to the
Hodge index theorem in Section 3.3.

Exercises

1.2.1 Let (V, ( , )) be a four-dimensional euclidian vector space. Show that the
set of all compatible almost complex structures consist of two copies of S2.

1.2.2 Show that the two decompositions f\k V* = 0 o < i UPk~2i and UPk~2i =

® + =k_2i LlPp'q are orthogonal with respect to the Hodge-Riemann pairing.

1.2.3 Prove the following identities: *IIp<q = nn~q'n'v* and [L,I] = [A,I] = 0.

1.2.4 Is the product of two primitive forms again primitive?

1.2.5 Let (V, ( , }) be an euclidian vector space and let /, J, and K be compatible
almost complex structures where K = I o J = — J o 7. Show that V becomes in a
natural way a vector space over the quaternions. The associated fundamental forms
are denoted by UJJ, wj, and U>K- Show that uij + IU>K with respect to / is a form of
type (2, 0). How many natural almost complex structures do you see in this context?

1.2.6 Let UJ 6 /\ V* be non-degenerate, i.e. the induced homomorphism CJ : V —>
V* is bijective. Study the relation between the two isomorphisms Ln~k : /\ V* —>
/\2n~k V* and f\k V* Si /\2n~k V Si l\2n~k V*, where the latter is given by /\2n~k Cb.
Here, 2n = dimK(V).

1.2.7 Let V be a vector space endowed with a scalar product and a compatible

almost complex structure. What is the signature of the pairing (a, j3) i—> aA/3^UJ
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1.2.8 Let a 6 Pk and s > r. Prove the following formula A"Lra = r(r — 1) . . . (r —

s + l ) (n - k - r + l)...(n-k-r + s)Lr~sa.

1.2 .9 (Wirtinger inequality) Let (V, ( , }) be an euclidian vector space endowed
with a compatible almost complex structure / and the associated fundamental form
LO. Let W C V be an oriented subspace of dimension 2m. The induced scalar product
on W together with the chosen orientation define a natural volume form volw 6
f\2mW*. Show that

and that equality holds if and only if W C V is a complex subspace, i.e. I(W) =
W, and the orientation is the one induced by the almost complex structure. (The
inequality is meant with respect to the isomorphism / \ m W* = K, voW H-> 1. Hint:
Use that there exists an oriented orthonormal base ei,...,e2m such that oo\w =
J21Li ^e2i A e'2i~1 a n d t n e Cauchy-Schwarz inequality.)

1.2.10 Choose an orthonormal basis xi,yi = I(x\),... ,xn,yn = J ( i n) of an
euclidian vector space V endowed with a compatible almost complex structure / .
Show that the dual Lefschetz operator applied to a two-form a is explicitly given
by Act = ^a{xi,yi).

Comments: The preceding section was essentially a chapter in linear algebra.

I believe that the original source for this is [114]. Most of it, though not always

with complete proofs, can be found in [35, 59, 116]. In [116] the point of view of

sl(2)-representations is emphasized.
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1.3 Differential Forms

A real manifold M is studied by means of its tangent bundle TM, the collec-
tion of all tangent spaces TXM for x € M, and its fe-form bundle /\k(TM)*. In
this section we will apply the linear algebra developed previously to the form
bundles of an open subset M = U c Cn. The bidegree decomposition induces
a decomposition of the exterior differential d which is well suited for the study
of holomorphic functions on U. We conclude by a local characterization of so
called Kahler metrics which will be of central interest in the global setting.

Let U C Cn be an open subset. Thus, U can in particular be considered
as a 2n-dimensional real manifold. For x 6 U we have its real tangent space
TXU at the point x which is of real dimension In. A canonical basis of TXU is
given by the tangent vectors

0 d d d

dxi''''' dxn 'dyi''"' dyn'

where z\ = X\ + iyi,..., zn = xn + iyn are the standard coordinates on C™.
Moreover, the vectors ^ - , . . . , -^— are global trivializing sections of TU.

Each tangent space TXU admits a natural almost complex structure defined
by

T . rp TT rp JJ J) _d_ _d_ d
l . l x u *-±xv, Qx. I *• 9 y . , 9 y . i 9 x i ,

which is compatible with the global trivialization. We shall regard / as a
vector bundle endomorphism of the real vector bundle TU over U.

The dual basis of {TXU)* is denoted by dx\,..., dxn, dyi,..., dyn. Recall
that the induced almost complex structure on TXU in terms of this dual basis
is described by I{dxi) — —dyi, I{dyi) = dxi (cf. page 28).

The general theory developed in the previous section applies to this almost
complex structure and yields the following

Proposition 1.3.1 The complexified tangent bundle TQU := TU ® C decom-
poses as a direct sum of complex vector bundles

TQU — T ' U (B T ' U,

such that the complex linear extension of I satisfies

I\TI,OJJ = i • id and / | y o , i [ / = —i • id.

The vector bundles TX'°U and T°'lU are trivialized by the sections Jj- :=

The complexified cotangent bundle TQU := T*[/<g)C admits an analogous
decomposition T£U = {T*U)lfi 0 (T*^)0-1 and (T*^)1'0 and (T*!/)0-1 are
trivialized by the dual basis dzt := dxi+idyi and dzi := dxi—idyi, i = 1,.. . , n,
respectively.
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Note that these decompositions are compatible with restriction to smaller
open subsets U' C U. As we have seen and used already in Section 1.1, one
has

Propos i t ion 1.3.2 Let f : U —> V be a holomorphic map between open

subsets U C C m and V C C n . The C-linear extension of the differential

df : TXU —> Tf(x)V respects the above decomposition, i.e. df(T^°U) C T.lsV

anddf{T°'lU)GT°^x)V. U

In a similar fashion, we can use the results of the previous section in order
to decompose the bundles of fc-forms.

Definition 1.3.3 Let U C C be an open subset. Over U one defines the
complex vector bundles

f\P'qU := /\P((T*U)^) ® f\\(T*U)°<1)).

By Ac(U) and Ap<q{U) we denote the spaces of sections of /\£ U := f\k T£U

and /\p'q U, respectively.

Proposition 1.2.8 immediately yields

Corollary 1.3.4 There are natural decompositions /\c U = ©p+q=fc f\P'q U
k

The restriction map A^(U) —> AQ(U') for an open subset U' C U respects

this decomposition. As before, the projection operators / \ c U —> /\p '9 U and

A£{U) -> Ap'q(U) will be denoted by np'q.

Definition 1.3.5 Let d : A^(U) —> AQ+1(U) be the complex linear extension
of the usual exterior differential. Then

d:Ap'q(U) ^Ap+1'q{U) and d : Ap'q{U) ^Ap>q+1(U)

are denned as d := np+1<q o d and 8 := /P-9+1 O d.

For any local function / one has

E
(J t \ •> O f \ > (J i \ "\ (J f

sinr - J_ \ rjq i - —- > rj r- • _L \ rf y - ( 1 1 0 I
(JT • J ft! I • J ft "7 • J ft?-

. ax% . ayt . cz, . azt

Thus, / is holomorphic if and only if df = 0. Moreover, using (1.10) the
operators d and d can be expressed explicitly as follows:

d(fdzilA.. .AdzipAdSj1 .. .Ad2jq) = V^ -—dz^Adz^A.. .AdzipAdzj1 .. .
k

fe=i

- —
k
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and

n fit
B(fdzi1A.. .AdzipAd2j1 .. .Adzjq) = \^ -—dziAdz^A.. .AdzipAd2j1 .. .AdEjq.

— ' OZp
1=1 *•

Lemma 1.3.6 For the differential operators 8 and B one has:

i) d = 8 + B.

ii) d2 = B2 = 0 and 3d = -3d.

iii) They satisfy the Leibniz rule, i.e.

d{a Af3) = d(a) A /3 + (-l)p+qa A d{(3)

B(a A S3) = 3(a) Af3 + (-l)p+qa A 3{(3)

for a G Ap'q{U) and S3 G Ar's{U).

Proof, i) follows from the local description of d and B given above and ii) is
deduced from d2 = 0.

To see iii) we recall that the exterior differential satisfies

d{a Af3) = d(a) A /? + {-l)p+qa A d(/3).

Taking the (p + r+l,q + s)-parts on both sides one obtains the Leibniz rule
for d. Similarly, taking (p + r, q + s + l)-parts proves the assertion for B. •

Since B and 8 share the usual properties of the exterior differential d

and reflect the holomorphicity of functions, it seems natural to build up a
holomorphic analogue of the de Rham complex. As we work here exclusively
in the local context, only the local aspects will be discussed. Of course, locally
the de Rham complex is exact (see Appendix A) due to the standard Poincare
lemma. We will show that this still holds true for B (and d).

Proposition 1.3.7 (9-Poincare lemma in one variable) Consider an
open neighbourhood of the closure of a bounded one-dimensional disc Be C
BecU C C. Fora = fdz e A°'l{U) the function

:= / ^W

2m JBew-

g(z) := / ^W' dw A dw

2m Jw zz

on Be satisfies a = Bg.

Proof. Note first, that for w = x+iy one has dwAdw = (dx+idy)A(dx—idy) =
—2idx A dy. The existence of g as well as the assertion a = Bg will be shown
by splitting g into two parts. This splitting will depend on a chosen point
ZQ e BE or rather on a neighbourhood of such a point.

Let ZQ £ B := Be and let tp : B —* M. be a differentiable function with
compact supp(-0) C B and such that tp\v = 1 for some open neighbourhood
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of z0 e V C B. If / i := V • / and /2 := (1 - ^) • / , then / = / i + /2- In order
to see that the above integral is well-defined we consider first the following
integrals

9i(z) :=— f ^^-dw Adw, i = 1, 2.
2iri JBw- z

Since f2\v = 0, the second one is obviously well denned for z £ V. The
first integral can be rewritten as

[
B w — z

—: / —-—-dw Adw, since supp(/i) C B is compact
TTl Jc W — Z

du A du, for u := w — z

2m

1

' Ic u

= - [ fi(z + reilfi) e~ivdip A dr, for u = reitp.
ft Jc

The last integral is clearly well-defined. Since the integral defining g splits
into the two integrals just considered, we see that the function g in the asser-
tion is well-defined on V and thus everywhere on B.

In order to compute dg, we use the same splitting of g = 51+52 as before.
Let us first consider Bg2- Since (w — z)~x is holomorphic as a function of z
for w in the complement of V, one finds

dz 2TTI JB dz

for all z e V.
Using the above expression for g\ we get

e~ivd<pAdr
JC \ dw dz dw dz

•K Jc dw

dw A dwi

w2iri JB dw w — z
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Thus, for z £ V one has

dg . dgi dg2 dg\

dz2' = ~d¥ + ~d¥ = ~d~2

1 f dfi dw Adw (*)

dw" ' w-z J1" '

Here, (*) is a consequence of Stokes' theorem:

1 f df\ dw A dw 1 f dfi dw A dw

2ni JB dw w — z 2ni s^o JB\BS(Z) ^W W — Z

— 1 ,. f , (/i(w) , \ since (w - z) Ms
= lim / d ——t-dw 'w ~ z ^^) ' holomorphic on B \ B$ (z)

lim / —-—-dw, since supp(fi) C B

2ns-

a

The following proposition and its corollary are known as the Grothendieck-
Poincare lemma. The first proof of it is due to Grothendieck and was presented
by Serre in the Seminaire Cartan in 1958.

Proposition 1.3.8 (0-Poincare lemma in several variables) Let U be an
open neighbourhood of the closure of a bounded polydisc BEcBecUcCn.
If a £ Ap'q(U) is d-closed and q > 0, then there exists a form (3 € Ap'q~1 (B£)
with a = 5j3 on BE.

Proof. We first reduce the assertion to the case that p = 0. To this end, we
write the form a £ Ap'q(U) as

a = \^ fijdzj Azj= y^ dzj A a/,

where |/| = p, \J\ = q, and a/ = 'Ejfijdzj G A°'q{U). Then da =

S i / j "dj^dzi A dzj A dzj = 0 if and only if daj = 0 for all /. Moreover,
a - d(Y,K,L 9KidzK A dzL) if and only if aj = d(J2L gihdzL) for all / .

Next, let a £ A°'q(U) be (5-closed and write a = ^fidzj. Choose k
minimal such that no dZi occurs in this sum for i > k. Thus, we can write
a = a\ A dEk + ct2, with «2 free of dli for i > k. By assumption, 0 = da =
(dai)Adzk + da2- If we set dt := (d/dzi)dzi, then this implies dtai = dia2 = 0
for i > k. Therefore, the functions / / are holomorphic in z^+i,... ,zn.
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By the one-dimensional Poincare lemma 1.3.7 the function

If fI(z1,...,zk-i,w,zk+i,...,)
dw A dw

w-zk

satisfies ^J- = fi on B£k C C. Moreover, the function gj is holomorphic in
Zk+i,..., zn and differentiable in the other variables.

Set 7 := {~l)q_Ylk(ii 9idzi\{k}- Then d^(z) = 0 for i > k and Bkj(z) =
—ct\. Hence, a + d'y is still enclosed, but it does not involve any dz~i for i > k
anymore. Then one concludes by induction. •

In the following, B shall denote a polydisc B£ which can be unbounded,
i.e. £j = oo is allowed.

Corollary 1.3.9 (<9-Poincare lemma on the open disc) If a e Ap>q(B)
is B-closed and q > 0, then there exists (3 G Ap'q~1(B) with a = 8(3.

Proof. Choose strictly monoton increasing sequences £j(m) with £j(m) —> £*
for m —> oo. Let Bm be the polydisc {z | \zi\ < £i(m)}. Thus, Bi C B2 C

...c\jBm = B.
Let us first show that for any m there exists a form /3m G ̂ 4P'9^1(B) with

5/?m = a on B m . Due to Proposition 1.3.8 we find j3'm G Ap'q~l(Bm+i) with
5/3^ = a on Bm+\. Choose a function tp on i?e with supp(V') C -Bm+i and
^ | s m = 1. Then define (3m := 4> • f3'm, which is a form on Bm+\ that extends
smoothly to a form on 5 . Clearly, Sf3m = df3'm = a on _Bm.

Next, we claim that for q > 1 we can choose a sequence ((3m) as
above with the additional property that f3m = (3m+i on Bm-\. Assume we
have constructed /3i,... ,/3TO_i already. Choose any ^m+i 6 Ap'q^1(B) with
<5/3m+i = a on Bm+i. Hence, 5(/3m - /3m + i) = 0 on Bm. By induction hypo-
thesis we may assume that there exists 7 G ̂ 4P'9~2(-Bm) with /3m — f3m+i = d~f.

Choose a function ^ o n f i such that supp(-i/)) C Bm and V)|sm_i = 1 and let
/? m + 1 := / 3 m + 1 + a ( ^ - 7 ) . _ T h e n /3m + i |B m_1 = ^m+i l s^^ + 5( 7 ) | B m _ 1 =
/3m|Bm_1 and 5/3TO+i = dj3m+i = a on B m + i . Clearly, the sequence (/3m)
obtained in this way converges to a form /3 G Ap'q~1{B) with d/3 = a on B.

For 5 = 1 we proceed as follows. This time one constructs a sequence
(An) of functions on B with <9/3m = a on i?m and |/3m+i — /3m | < 2~m on
Bm_\. This would yield a locally uniformly convergent sequence the limit of
which would provide the desired function on B. Assume /3i , . . . , (3m have been
constructed. Choose /3m+i G AP'°(B) with <9/3m+i = a on Bm+\. Then the
function /3m - /3TO+i on B m is holomorphic and can therefore be expanded
in a power series. On the smaller disc B m _i C Bm it can be approximated
by a polynomial P such that \/3m - / 3 m + 1 — P\ < 2~m. The polynomial P

defines a holomorphic function on B and we set (3m+i : = /5m+1 + -P- Then
(9/3m+i = 5/3m+i = a on B m + i and |/3TO+1 - /3m\ < 2~m on B m _i . D
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So far, only the consequences of the existence of a natural (almost) complex
structure on each TXU have been discussed. Following the presentation in
Section 1.2 we shall conclude by combining this with certain metric aspects
of the manifold U.

Let U C C n be an open subset and consider a Riemannian metric g on
U. For what follows we may always assume that U is a polydisc. The metric
g is compatible with the natural (almost) complex structure on U if for any
x G U the induced scalar product gx on TXU is compatible with the induced
almost complex structure / , i.e. gx(v,w) = gx(I(v),I(w)) for all v,w € TXU.

Recall, that by Definition 1.2.13 one has in this situation a natural (1, l)-form
w € AU1(U) n A2{U) denned by

which is called the fundamental form of g. Moreover, h := g — iuj defines a
positive hermitian form on the complex vector spaces (Txll,gx) for any x S U

(cf. Lemma 1.2.15).

Example 1.3.10 Let g be the constant standard metric such that

d 3d d

/7T1 //T* //1/i frit

is an orthonormal basis for any TXU. Clearly, complex structure and g are
compatible. The form UJ in this is case is (see page 30)

n

u) = - > dzi A dz{.

An arbitrary metric g on U, if compatible with the almost complex struc-

ture, is uniquely determined by the matrix hij(z) := h(J^-, -§^-)- The funda-

mental form can then be written as

n

UJ = — > hijdzi A dzj.

Even if g is not the standard metric, one might try to change the complex
coordinates z\,...,zn such that it becomes the standard metric with respect
to the new coordinates. Of course, this cannot always be achieved, but a
reasonable class of metrics is the following one.

Definition 1.3.11 The metric g osculates in the origin to order two to the
standard metric if (h^) = id + O(|z|2).

Explicitly, the condition means -gf-(0) = TJFKO) = 0 f° r aU hj> ^- I n other
words, the power series expansion of (hij) differs from the constant matrix id
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by terms of order at least two, thus terms of the form aijkzk + i'ijkzk do not
occur.

Osculating metrics will provide the local models of Kahler metrics which
will be extensively studied in the later chapters. Here is the crucial fact:

Proposition 1.3.12 Let g be a compatible metric on U and let w be the as-

sociated fundamental form. Then, dto = 0 if and only if for any point x £ U

there exist a neighbourhood U' of 0 £ Cn and a local biholomorphic map

f : U' = f(U') C U with /(0) = x and such that f*g osculates in the origin

to order two to the standard metric.

Proof. First note that for any local biholomorphic map / the pull-back f*u> is
the associated fundamental form to f*g. In particular, w is closed on f{U') if
and only if f*cu is closed. Thus, in order to show that du; = 0 one can assume
that the metric g osculates to order two to the standard metric and then one
verifies that dw vanishes in the origin. But the latter follows immediately from

For the other direction let us assume that dio = 0. We fix a point x £ U.

After translating we may assume that x = 0. By a linear coordinate change
we may furthermore assume that (hij)(O) = id. Thus

k k

Thus, aijk = -gĵ CO) and a'^k = -g^-(O). The assumption du(0) — 0 implies

o-ijk = ikji and a'ijf. = a!iky Furthermore, since u> is real, hij = hji and thus
aijk ~ ®jik- New holomorphic coordinates in a neighbourhood of the origin

can now be denned by

i,k=l

Then, dwj - dzj + \ Yn,k=i aijk{dzi)zk + \ YTi,k=\ aijkZi(dzk) = dzj +
S£fc=i aijkzkdzi and similarly dvjj = dzj + ]T^fc=i a'jik2kdzi. Therefore, up
to terms of order at least two, one finds

A dzj 4- ( 2_s &ijkZkdzi) A dzj + dzj A ( ^ J a!jikZkdzi)

a'jikzk)dzj A dzx
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Example 1.3.13 Any compatible metric on U C C satisfies the above condi-
tion. Clearly, the three-form dui vanishes for dimension reasons.

Exercises

1.3.1 Let f : U —* V be a holomorphic map. Show that the natural pull-back
/* : Ak(V) -• Ak(U) induces maps A"'q(V) -> AV'"{U).

1.3.2 Show that da — da. In particular, this implies that a real (p,p)-form a €
AF'P(U) ("1 A2p(U) is d-closed (exact) if and only if a is 5-closed (exact). Formulate
the (9-versions of the three Poincare lemmas.

1.3.3 Let B C Cn be a polydisc and let a G Ap'q{B) be a d-closed form with
p, q > 1. Show that there exists a form 7 £ .4P~1'9~1(.B) such that 887 = a. (This
is a local version of the 35-lemma for compact Kahler manifolds Corollary 3.2.10.)

1.3.4 Show that for a polydisc B C Cn the sequence

is exact. (For more general open subsets or complex manifolds the sequence is no
longer exact. This gives rise to the so called Bott-Chern cohomology which shall be
introduced in Exercise 2.6.7.)

1.3.5 Show that w = £ddlog(\z\2 + 1) e .4M(C) is the fundamental form of
a compatible metric g that osculates to order two in any point. (This is the local
shape of the Fubini-Study Kahler form on P1, cf. Section 3.1.)

1.3.6 Analogously to Exercise 1.3.5, study the form w = j^8dlog(l — |z|2) on
fii C C. (This is the local example of a negatively curved Kahler structure. See
Section 3.1.)

1.3.7 Let ui = ^ ^dzi A dzi be the standard fundamental form on Cn. Show
that one can write UJ = i—ddtp for some positive function tp and determine ip. The
function ip is called the Kahler potential.

1.3.8 Let u> G .A1'1 (B) be the fundamental form associated to a compatible metric
on a polydisc B C C" which osculates in every point z E B to order two. Show that
OJ = ^ddip for some real function ip £ A°(B).

1.3.9 Let g b e a compatible metric onC/c Cn that osculates to order two in any
point z € U. For which real function / has the conformally equivalent metric e^ • g
the same property?



Complex Manifolds

Complex manifolds are topological spaces that are locally modeled on open
poly discs B c C " with holomorphic transition functions. They are close rel-
atives of differentiable manifolds, but yet very different in many aspects. All
similarities and differences between differentiable and holomorphic functions
find their global counterpart in the theory of complex manifolds. In some (im-
precise) sense, complex manifolds are more rigid than differentiable manifolds.
Just to name two examples, a compact complex manifold does not admit any
non-constant holomorphic function and cannot holomorphically be embedded
into Cn. On the other hand, complex manifolds can often be described in very
explicit terms, e.g. by polynomials.

This chapter intends to clarify the relation between differentiable and com-
plex manifolds. Two equivalent definitions of complex manifolds are given and
compared in Sections 2.1 and 2.6. Section 2.1 also introduces a number of inter-
esting (usually compact) examples of complex manifolds and presents Siegel's
theorem 2.1.9, which bounds the size of the field of meromorphic functions on
a compact complex manifold.

As one is used to from differential geometry, any complex manifold pos-
sesses a tangent bundle, by means of which the geometry of the manifold can
effectively be studied. In the complex setting, the tangent bundle is holomor-
phic, and the general concept of holomorphic vector bundles is discussed and
compared to its real counterpart. Section 2.2 also presents a number of basic
constructions for holomorphic vector bundles.

The particular case of holomorphic line bundles is treated in Section 2.3.
Many important examples and constructions can be studied in terms of holo-
morphic line bundles. The idea behind this is to try to describe the geometry
of a complex manifold by polynomials. This approach leads to a picture that
relates divisors, e.g. hypersurfaces, of a given complex manifold X, and holo-
morphic line bundles on X.

The projective space is a particular example of a compact complex mani-
fold. Section 2.4 is devoted to it. The projective space has the advantage to be
tangible by linear algebra methods, but also contains many intriguing complex



52 2 Complex Manifolds

submanifolds. In fact, complex algebraic geometry just studies those complex
manifolds that can be embedded into some projective space. Maybe the role of
the projective space in complex geometry can be compared to the role played
by spheres in differential geometry.

The short Section 2.5 introduces a kind of complex surgery, called blow-
up, that changes a complex manifold along a given submanifold. This is a
fundamental construction and a useful tool, as we will see in later sections.

We conclude by Section 2.6, which discusses almost complex structures and
the Newlander-Niernberg integrability criterion 2.6.19 (the only result that is
quoted in this chapter). The reader will also be introduced to a cohomology
theory adapted to complex manifolds, the Dolbeault cohomology.

2.1 Complex Manifolds: Definition and Examples

This section introduces the holomorphic analogue of differential manifolds,
complex manifolds, and provides a list of fundamental examples of complex
manifolds. Holomorphic functions on compact complex manifolds are auto-
matically constant (Proposition 2.1.5), but non-constant meromorphic func-
tions often exist. Siegel's theorem 2.1.9 shows however that the field of all
meromorphic functions, the function field, is not too big.

We assume that the reader is familiar with the notion of a differentiable
manifold. Appendix A collects some of the most basic results.

Definition 2.1.1 A holomorphic atlas on a differentiable manifold is an at-
las {(Ui,ifii)} of the form <pi : Ui ~ <fi{Ui) C C", such that the transition
functions ipij := ipi o ipj1 : tpj(Ui D Uj) —> <pi(Ui 0 Uj) are holomorphic.
The pair ([/,,</?,) is called a holomorphic chart. Two holomorphic atlases
{(Ui, <fi)}, {(Uj, ip'j)} are called equivalent if all maps ipiOtp'f1 : <p'j(UiDUj) —>
ifi(UiC\ Uj) are holomorphic.

Definition 2.1.2 A complex manifold X of dimension n is a (real) differen-
tiable manifold of dimension In endowed with an equivalence class of holo-
morphic atlases.

Note that this definition is very similar to the one of a differentiable man-
ifold itself (see Definition A.0.1). A differentiable manifold is a topological
manifold endowed with an equivalence class of differentiable atlases. In fact,
we could define a complex manifold as a topological manifold with a holomor-
phic atlas. In order to distinguish clearly between the complex manifold X

and the underlying real manifold, we sometimes write M for the latter. Thus,
X is M endowed with a holomorphic atlas.

A complex manifold is called connected, compact, simply connected, etc.,
if the underlying differentiable (or, topological) manifold has this property. A
complex manifold of dimension one (two, three, ...) is called a complex curve

(a complex surface, a complex threefold,..., respectively). Clearly, any open
subset of a complex manifold is in a natural way a complex manifold itself.
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Definition 2.1.3 A holomorphic function on a complex manifold X is a func-
tion / : X —> C, such that / o (p^1 : ipi(Ui) —> C is holomorphic for any chart
(C/j, ipi) of a holomorphic atlas in the equivalence class defining X.

Definition 2.1.4 Let X be a complex manifold. By Ox we denote the s/iea/
of holomorphic functions on X, i.e. for any open subsets U C X one has

OX(U) = r{U,Ox) = {/ : U - • C | / is holomorphic}.

It is obvious from the definition that via a holomorphic chart (£/, <p) with
a; G f/ and cp(x) = 0 G C n the stalk Ox,x is isomorphic to £>C",o- Let Q(OX,X)

denote the quotient field of Ox,x- If U C X is an open connected subset, then
holomorphic functions 0 ^ h, g : U —> C define elements g,h £ Ox,x and
f e ^(Ox,*) for all x e 17.

The fundamental difference between complex and differentiable manifolds
becomes manifest already in the following proposition, which is in fact an easy
consequence of the maximum principle.

Proposition 2.1.5 Let X be a compact connected complex manifold. Then

F(X,Ox) = C, i.e. any global holomorphic function on X is constant.

Proof. Since X is compact, any holomorphic function / : X —> C, which is in
particular continuous, attains its maximum at some point x G X. If (Ui,<pi)

is a holomorphic chart with x G Ui, then / o ipj1 is locally constant due to
the maximum principle on <fii(Ui) C C" (see page 5). Since X is connected,
this shows that / must be constant. Thus, C = F(X, Ox). •

Using Hartogs' theorem 1.1.4, the compactness assumption on X can be
weakened. We only note the following special case.

Corollary 2.1.6 Let X be a complex manifold of dimension at least two and

let x e X. Then r(X,Ox) = F(X \ {x},Ox). If X is in addition compact

and connected, then F(X \ {x}, Ox) = C. •

Also note that one of the main technical tools in real analysis, the partition
of unity, is of limited use in complex geometry.

Definition 2.1.7 Let X and Y be two complex manifolds. A continuous map
/ : X —> Y is a holomorphic map (or, a morphism) if for any holomorphic
charts (U,ip) and (U',tp') of X and Y, respectively, the map ip' o / o (p~1 :

f{f~1{U') n U) —> tp'(U') is holomorphic. Two complex manifolds X and
Y are called isomorphic (or, biholomorphic) if there exists a holomorphic
homeomorphism / : X —> Y.

Note that the inverse f~x of a holomorphic homeomorphism is holomor-
phic by Proposition 1.1.13.
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Definition 2.1.8 A meromorphic function on a complex manifold X is a map

/ : X [J Q(OX,X)
xex

which associates to any x £ X an element fx £ Q{Ox,x) such that for any
XQ £ X there exists an open neighbourhood XQ £ U C X and two holomorphic
functions g, h : U —> C with fx = \ for all x £ U. The s/iea/ o/ meromor-

phic functions is denoted by /Cx. Furthermore, its space of global sections is
denoted K(X) := r(X,JCx).

It is straightforward to see that Kx{U) is a field if U is connected. If X is
connected, then if (X) is called the function field of X.

Clearly, there is a natural inclusion Cx C JCx- But how many global
sections has /Cx? This actually depends very much on X and its geometry as
we will see later (e.g. page 88). For the moment we only give an upper bound
for K(X) expressed in terms of its transcendence degree.

Proposition 2.1.9 (Siegel) Let X be a compact connected complex manifold

of dimension n. Then

tvdegcK(X) < n .

Proof. Recall that trdegc/C < n for a field extension C C K if and only
if for any (n + 1) elements / i , . . . , / n + i G K there exists a non-trivial
polynomial F G C[x i . . . zn+i] such that F(fi,..., fn+i) = 0. The set
Pm C C[x i , . . . , xn+i] of all polynomials of degree < m is a linear subspace.
It is easy to see that dim(Pm) = ( m + ^ + 1 ) .

Let f\,..., fn+i £ K(X). For any point x eX there exist an open neigh-
bourhood x G Ux C X and holomorphic functions gi,x,hitX : Ux —> C with
f\ux = f^- Moreover, we may assume that g ^ and hitX are relatively prime
in Ox,y for all y £ Ux (use Proposition 1.1.35).

Using holomorphic charts around each point x one finds open neighour-
hoods x £WX CVX CVX CUX such that Vx = {z \ \zt\ < 1} and such that
under this isomorphism Wx is identified with the disc {z \ \\z\\ < 1/2}.

Since X is compact, there exist finitely many points xx, • • •, XN G X such
that

x=\JwXk.
fc=i

To shorten notation we will write Uk,Vk,Wk,gi,k,hi^k instead of UXk, VXk,

"VXk, 9t,Xk, rii,Xfr•

Since j ^ - = j ^ - on Ut n Ue and since gi^ and hij are relatively prime

everywhere on Uk f~l Ut, one can write / i ,^ = Aj^ • yi,fc ,̂ where (pttkt = ^ ^ :

n+l
Uk n Ui —» C* is a holomorphic function. Thus, < ^ := FJ yi,w is a holo-

i=l

morphic and bounded function on 14 (~l Vf. Let C := max{|yjfc£(a;)| | k,£ =

1,... ,N, x £ Vk H V^}. From (/5fĉ  • <ptk = 1 one deduces C > 1.
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Let F G C[xi , . . . xn-j_i] be a polynomial of degree TO. Then

9l,k <?n+l,fc\ _ Gk

with Gfc : Uk —> C holomorphic. Furthermore, G& = < ^ • G^.
Let TO' > 0. We claim that there exists a polynomial F G C[x i , . . . , xn+i]

such that Gfc vanishes of order m' in £& for all k. Indeed, Gk vanishes of order

TO,' in xk if for all differential operators D = QZ°I 8z»n with a = J^ â  < TO'

one has DGk(xk) = 0.

These differential operators D span a space of dimension (m
m7i^")- Thus,

the condition that Gk vanishes of order ml in xk poses at most (m
m7_j )

linear conditions on the coefficients of F. For all points x\,... ,XN together

this accounts for at most N • ( " ^ i ^ " ) linear conditions. Thus, if

rn + n + 1\ (ml - 1 + r a
TO y \ TO' — 1

then a polynomial F with the above property of degree < m can be found.
We will indeed use that a polynomial F of degree m can be found as soon as
this inequality is satisfied.

By the Schwarz lemma 1.1.36 this yields

-C

for x € Wk and C := max{|G f c(x) | \k=l,...,N, x£ Vk}.

Now it is enough to show that C" = 0 for an appropriate choice of m' (and
TO).

Let x G X and 1 < k < N such that C = \Gk(x)\. Then there exists
1 < £ < N with x G Wf. Hence

C = |Gfc(x)| = \Gt{x)\ • |^m
&(x)| < ^ • Cm.

For ^ r < 1 this yields a contradiction except for C = 0. Let us show that we

can always achieve | ^ < 1. We set C = 2A with A > 0, then ^ = 2Am"m ' .

It is not hard to see that Am < TO' and (m+^+n) > iV • ("^ i j" ) can be

satisfied at the same time. In fact, (m+^l
+n) and ("^1^™) are polynomials of

degree n + 1 in TO and of degree n in TO' , respectively. •

Definition 2.1.10 The algebraic dimension of a compact connected complex
manifold X is a(X) := trdegcisr(X).
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Thus, the function field K(X) contains a purely transcendental extension
of C of degree a{X) < dim(X). Any other meromorphic function on X will be
algebraic over this extension. In fact, due to a theorem of Remmert [97] one
knows that the function field is a finite extension of this purely transcendental
extension. In the examples we will see that the algebraic dimension can take
arbitrary values between zero and the dimension of the manifold.

The rest of this section is devoted to the construction of various examples
of complex manifolds. Each of them has specific properties which we will come
back to in the later chapters. Many of the results presented in this course will
be applied to the examples of the following list. If not done explicitly, the
reader is strongly encouraged to do so on its own.

At first glance, there seem to be many different methods for construct-
ing non-trivial complex manifolds and, indeed, the classification of complex
surfaces is already tremendously complicated and a detailed list of complex
threefolds seems out of reach for the time being. On the other hand, it is not
always easy to find complex (sub-)manifolds of a specific type. In fact, it often
seems that there is a serious lack of techniques to uncover the richness and
the beauty of the complex landscape.

Afflne space. In fact, this is just the algebraic name for the most basic
complex manifold provided by the n-dimensional complex space C n . Of course,
any complex vector space is also a complex manifold. The open subsets of C™
serve as the local models for arbitrary complex manifolds.

Note that there is an essential difference between differentiable and com-
plex manifolds. A differentiable manifold can always be covered by open sub-
sets diffeomorphic to M.n. In contrast, a general complex manifold cannot be
covered by open subsets biholomorphic to C n . This phenomenon is due to the
fact that C is not biholomorphic to a bounded open disc (Liouville's theorem,
see page 4).

Projective space. The complex projective space P n := Pg is the most im-
portant compact complex manifold. By definition, P n is the set of lines in
C n + 1 or, equivalently,

pn = (Cn+1 y {0})/C*,

where C* acts by multiplication on C n + 1 . The points of P™ are written as
(zo : zi : ... : zn). Here, the notation intends to indicate that for A G C* the
two points (Azo : Azi : . . . : \zn) and (ZQ : z\ : ... : zn) define the same point
in P n . Only the origin (0 : 0 : . . . : 0) does not define a point in P™.

The standard open covering of P n is given by the n + 1 open subsets

Uz := {(z0 : ... : zn) | Zi + 0} C P n .
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If P n is endowed with the quotient topology via

•K : Cn+1 \ {0} *- (C™+1 \ {0})/C* = Pn ,

then the C/j's are indeed open.
Consider the bijective maps

For the transition maps ipij := ^ o ̂  ' : ifj(Ui n Uj) —* ipi(Ui fl Uj) one has

W\ Wi_i Wi+i Wj_l 1 Wj U

, . . . , , , . . . , , , , . . . ,
Wi Wi Wi Wi Wi Wi Wi

Note that <fj(Ui D Uj) = C™ \ Z(u)i). These maps are obviously bijective and
holomorphic.

There is a more elegant way to describe the transition functions. Namely,
we may identify <pi(Ui) with the affine subspace {(zo,..., zn) | z, = 1} C Cn + 1 .
T h e n ipj(Ui n Uj) = { ( z 0 , . . . , z n ) \ Z j = l , Z i = £ 0 } a n d <Pij(z0, . . . z n ) = z ' 1 •

( z o , . . . , z n ) .

If V is a complex vector space, then P(V) denotes the projective space
associated to V, i.e. P(V) := (V\{0})/C*. Of course, after choosing a basis of
V the complex manifold P(V) becomes isomorphic to P n with n = dimc^ — 1.

Warning: Sometimes, P(V) is used to denote the space of all hyperplanes in
V. In our notation this space would be P(V*).

Complex tori. Let X be the quotient Cn /Z2 n , where Z2n c M2n = Cn is
the natural inclusion. Then X can be endowed with the quotient topology
of 7T : C" -> Cn /Z2 n = X. If U C C" is a small open subset such that
(U + (ai + ibi,... ,an + ibn)) DU = 0 for all 0 ^ (a1; bx,... ,an,bn) £ Z2n,

then U —> TT(C/) is bijective. Covering X by those provides a holomorphic
atlas of X. The transition functions are just translations by vectors in Z2™.
Explicitly, if z € C", then the polydisc U = Be(z) with e = (1/2, . . . , 1/2) has
the above property.

More generally, if V is a complex vector space and F C V is a free abelian,
discrete subgroup of order 2n, i.e. J1 is freely generated by an M-basis of V,

then X — V/F is a complex manifold. From a differential geometric point of
view these manifolds are basic, but not very exciting; they are diffeomorphic to
(S1)2". However, from the complex view point the situation is very different.
If you pick two lattices A, T2 C Cn randomly, then Cn/Fi and <Cn/F2 will not
be isomorphic as complex manifolds. Of course, if / : C" == Cn is a C-linear
bijective map with / ( A ) = F2, then C n /A ^ Cn/F2.

Let us consider the one-dimensional case a bit more in detail. A lattice
F C C is of the form F = z\L + Z2Z. By a coordinate change we can achieve
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that F = Z + rZ with r G H. More precisely, multiplication with ± l / z i
defines a bijection / : C —> C such that /(-T) is of the required form. There is
a natural action

Sl(2,K)

and C/(Z + rZ) ^ C/(Z + A(r)Z) for A G Sl(2, Z). Indeed, Z + T Z = (CT +
d)Z+ (ar + b)Z for A G Sl(2, Z) and multiplication with l/(cr + d) defines a C-
linear isomorphism / : C -> C with / (Z + rZ) - Z + A(T)Z. In fact, n , r2 G H
define isomorphic tori if and only if T\ = Afa) for some A G Sl(2, Z), but this
is slightly more difficult to prove (see page 136). A one-dimensional complex
torus C/F is also called an elliptic curve, which refers to the fact that there
is an obvious group structure on C/F.

Also note in passing that for n > 2 and a very general lattice F C C"
the function field K(Cn/F) is trivial, i.e. K(Cn/F) = C (cf. Exercise 3.3.6).
However, for special lattices F C C n and for all lattices F C C one knows
that trdegciiT(Cn/.r) = n. This will be discussed in subsequent sections (see
Exercise 5.3.5).

Afflne hypersurfaces. Let / : C n —> C be a holomorphic function such that
0 G C is a regular value. Let

X := /-^O) = Z(f) c C".

By the implicit function theorem 1.1.11 there exists an open cover X = (J Ui,
open subsets Vt C C™"1 and holomorphic maps gt :Vi —> C" inducing bijective
maps gi : V* —> Ui. The transition maps tpij = g^1 o g^ : gj1^^ —> g^iUj)

are holomorphic (use Corollary 1.1.12). Thus, X is a complex manifold of
dimension n — 1. Of course, the same arguments also apply when / is only
given on an open subset U C Cn .

Projective hypersurfaces. Let / be a homogeneous polynomial in n + 1
variables ZQ, ... ,zn. Assume that 0 G C is a regular value for the induced
holomorphic map / : C n + 1 \ {0} —» C. By the previous example we know that
/~1(0) = Z(f) is a complex manifold. The subset

X := V(f) := / ^ ( O V C * C P n

is the set of all points (z0 : ... : zn) G P n with f(z0, ...,zn) = 0 . Note that
the value f(zo,...,zn) in general depends on the chosen representative of
(ZQ : ... : zn), but the zero set V(f) is well-defined as / is homogeneous. We
claim that X is a complex manifold of dimension n — 1. In fact, X is covered
by the open subset X n Ui, where the Ui are the standard charts of P". Using
the standard isomorphisms Ui = Cn , the set XPit/, is identified with the fibre
over 0 G C of the map fi : (w\ .. .wn) i—> f(w\,..., Wj_i, l,Wi,... ,wn). Check
that 0 is a regular value of this map. Thus, by the implicit function theorem
one can find charts for X such that the transition maps are holomorphic.
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Complete intersections. The two last examples can be generalized in a
straightforward way as follows. Instead of looking at one holomorphic function
(resp. homogeneous polynomial of degree d) one can consider k holomorphic
functions (resp. homogeneous polynomials of degree d\,..., dk). If 0 is a regu-
lar value of ( / x , . . . , fk) : C" ^ Cfc (resp. (/i , . . . , / * ) : C"+ 1 \ {0} -> Cfc),
then

X := Z(h) n .. . n Z{fk) C C" resp. X = V(h) n • • • n V(fk) C Pn

is a complex manifold of dimension n — k.

Complex Lie groups. Let G be a group and a complex manifold at the
same time. Then G is called a complex Lie group if G x G —» G, (x,y) t-»
x • y"1 is a holomorphic map. Examples of complex Lie groups are provided
by Gl(n,C), Sl(n,C), Sp(n,C). They are certainly not abelian for n > 1. A
compact example is provided by a complex torus X = C n / r , where the group
operations are induced by the natural ones on C n . Clearly, X is an abelian
complex Lie group. Also C™ is an abelian Lie group, but non-compact. One
can prove that any connected compact complex Lie group is abelian (Exercise
2.6.9) and in fact a torus (cf. Section 3.3).

Note that certain classical groups like U(rc) or O(ra) are often not com-
plex, but just ordinary real Lie groups. E.g. U(l) = S1 which if of odd real
dimension.

Quotients. Before giving more examples we will discuss a general technique,
that allows one to obtain new and interesting examples by taking quotients of
the action of a complex Lie group on a complex manifold. The complex torus,
that has been discussed before, is a particular example of this.

Let X be a topological space and let G be a group that acts on X, i.e.
there exists an action G x X —> X such that for any g 6 G the induced map
g : X —> X is continuous.

The quotient space (or orbit space) X/G can be endowed with a topology
such that the projection map n : X —> X/G is continuous by saying that
V C X/G is open if and only if 7r~1(y) C X is open. In general, however, the
topology of the quotient X/G might be bad, e.g. non-Hausdorff, although X

is a nice manifold. (Already the natural action of C* on C provides such an
example.) Additional conditions need to be imposed on the action in order to
ensure that X/G is a reasonable space.

Definition 2.1.11 The action is free if for all 1 ^ g £ G and all x € X one
has g • x ^ x.

The action is proper if the map G x X —> X x X, (g,x) >-> (g • x,x) is
proper.

If X is a complex manifold and G a complex Lie group acting on X, then
we will tacitly assume that the map G x X —> X is holomorphic. In particular,
for any g e G the induced map g : X —> X is biholomorphic.
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Examples 2.1.12 i) If G is discrete and the action on X is free and proper,

then the action satisfies the following two conditions. (The action is also called

properly discontinuous in this case. See [17, 111,4] or [110] for detailed proofs.)

- Any point x G X admits a neighbourhood x G Ux C X such that g(Ux) n

Ux = 0 for any 1 ^ g G G.

- If x,y G X such that x ^ G-y, then there exist neighbourhoods x G f/x C X

and y £Uy C X with f7x D #(£/,,) = 0 for any g € G.

The first condition ensures that the quotient X/G admits holomorphic

charts and the second that the quotient is Hausdorff. Indeed, one finds an

open covering X = [J Ui by charts (£7$, ipt) such that g(Ui)OUi = 0 for any 1 ^

g G G. Hence, Ui —» TT(C/J) is bijective and 7r(t/j) is open. Thus, holomorphic

charts for the quotient X/G are denned by ir(Ui) *—> Ui^*ipi(Ui) c C " .

ii) The natural C*-action on C n \ {0} is free and proper.

Generalizing the arguments of the first example to the case of proper free

actions yields the following proposition. A proof for differentiate manifolds

can be found in [40, Thm. 1.11.4].

Proposition 2.1.13 Let G x X —> X be the proper and free action of a

complex Lie group G on a complex manifold X. Then the quotient X/G is a

complex manifold in a natural way and the quotient map n : X —> X/G is

holomorphic. •

Examples 2.1.14 i) A discrete lattice F C C n certainly acts freely and dis-

cretely by translations. Thus, the fact that the torus X = Cn/F is a complex

manifold could also be seen as a consequence of the above proposition.

ii) The projective space P n is the quotient of the natural C*-action on

C n + 1 \ {0}, which is proper and free.

Remark 2.1.15 Ii a, quotient as above exists then one often uses the following

universality property of the quotient map w : X —> X/G: Any G-invariant

holomorphic map f : X —+ Y factorizes via the quotient map n and a holo-

morphic map / : X/G —> Y.

If G does not act freely on a complex manifold X, then the quotient X/G

may or may not be a manifold. E.g. let X = C/F be a one-dimensional

complex torus and let G = Z/2Z act by z i—> —z. This action has four fix

points. If F — T\L + T^I these are the points 0, Ti/2,T2/2, and {j\ + ?2)/2.

However, the quotient X/G is a complex manifold (see Exercise 2.1.8).

Ball quotients. Consider the unit disc Dn — {z | ||.z|| < 1} C C", which

can also be viewed as an open subset of the standard open subset UQ C P".

Often, one introduces on C n + 1 the (non-positive) hermitian product ( , )

given by the diagonal matrix diag(l, — 1 , . . . , —1). Then Dn is the open subset

of P n of points z with (z, z) > 0, which is clearly invariant under the action

ofSU« , » = SU(l,n).
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A ball quotient is a quotient of D by any discrete group F C SU(1, n) acting
freely on D. Usually one also assumes the quotient D/F to be compact.

As an explicit example one might look at the one-dimensional case Dl = M
and the genus g surface group Fg generated by 1g generators a\, &i,..., ag, bg

with the only relation nia*> h] ~ 1- This group can be mapped into PG1(2,R)
in many ways. Here, the action of PG1(2, M.) on H is similarly to the action of
S1(2,Z) discussed earlier.

Finite quotients of product of curves. Let C be a curve and let E = C/F
be an elliptic curve. Let G be a finite group that acts on C. If in addition
G is subgroup of E, and therefore acts by translations on E, then there is
a natural free G-action on the product C x E. Therefore, the quotient X =
(C x E)/G is a complex surface and there exists a surjective holomorphic map
/ : X —> C/G. If G acts freely in z g C, then the fibre f~1(z) is isomorphic
to the elliptic curve E. In general, f~x(z) is isomorphic to the quotient of E
by the stabilizer Stab(z) := {g \ g • z = z}.

Hopf manifolds. Let Z act on Cn \ {0} by (z\,..., zn) *—> (Xkzi,..., \kzn)
for k G Z. For 0 < A < 1 the action is free and discrete. The quotient
complex manifold X = (Cn \ {0})/Z is diffeomorphic to S1 x S2""1. For
n = l this manifold is isomorphic to a complex torus C/F. The lattice F can
be determined explicitly (cf. Exercise 2.1.5). There are generalizations of this
construction notably for surfaces by letting act different scalars Ai and A2.
See [8] and Exercise 2.1.6.

Iwasawa manifold. Let G be the complex Lie group that consists of all

matrices of the form I 0 1 z3 ) £ G1(3,C). Clearly, G is biholomorphic (as a

complex manifold not as a complex Lie group) to C3. The group G (and every
subgroup of it) acts on G by multiplication in Gl(3, C).

Consider the subgroup F := GnGl(3,Z + iZ). Then (wi, W2, W3) € F acts
on G by (z\,Z2,zs) 1—• (z\ + w\, Z2 + w\23 + u>2, 23 + W3). Obviously, this action
is properly discontinuous. Thus, the quotient X := G/F is a complex manifold
of dimension three. It is easy to see that the first and third coordinates define a
holomorphic map / : X —> C/(Z 4- iL) xC/(Z + iL). The fibres are isomorphic
to C/(Z + iZ).

Grassmannian manifolds. Let V be a complex vector space of dimension
n + 1. As a generalization of the projective space P(V), which is naturally
identified with the set of all lines in V, one defines the Grassmannian
for k < n + 1 as the set of all A;-dimensional subspaces of V, i.e.

Gvk(V) := {W c V I dim(W) = k}.

In particular, Gn(V) = F{V) and Grn(F) = P(V).
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In order to show that Gik(V) is a complex manifold, we may assume
that V = C n + 1 . Any W e Grfc(F) is generated by the rows of a (k,n+ 1)-
matrix A of rank k. Let us denote the set of these matrices by Mk,n+i, which
is an open subset of the set of all (fc, n + l)-matrices. The latter space is
a complex manifold canonically isomorphic to c f c ' (n+1). Thus, we obtain a
natural surjection n : Mk,n+i —> Grfc(Cn+1), which is the quotient by the
natural action of Gl(fe, C) on Mk,n+i-

Let us fix an ordering {B\,..., Bm} of all (k, fc)-minors of matrices A £
Mk,n+i- Define an open covering Grfc(Cn+1) = \J^L1 U% where Ui is the open
subset {n(A) I det(Bj) ^ 0}. Note that if n(A) = n(A'), then det(Bi) ^ 0
if and only if det(5l

/) ^ 0, i.e. the open subsets Ui are well-defined. After
permuting the columns of A & 7T~1(Ui) we may assume that A is of the
form (Bi,Ci), where Cj is a (k,n + 1 — k)-mathx. Then the map ipi : Ui —>

Cfc-(n+i-fc); n(Aj ^ B~ld is well-defined. We leave it to the reader to verify
that {(Ui,ipi)} defines a holomorphic atlas of Grfc(Cn+1), such that any C-
linear isomorphism of C™+1 induces a biholomorphic map of Grfc(Cn+1).

The argument also gives the dimension of the Grassmannian manifolds:
dimcGrfc(V) = k-(n + l-k).

Flag manifolds. The previous example can further be generalized to so called
flag manifolds. Let again V be a complex vector space of dimension n + 1 and
fix 0 < ki < k2 < . . . < ke < n + 1. Then Flag(V, fc1;..., kt) is the manifold
of all flags WlcW2C ...cWeCV with dim(Wi) = kt. E.g. Flag(V, k) =

Gik{V). Furthermore, Flag(V, l ,n) is the incidence variety {(£, H) \ £ C H} C
P(V) x ¥(V*) of all pairs (£, H) consisting of a line £ c V contained in
a hyperplane H C V. The fibre of the projections Flag(V,l,ra) —> P(V),
(£,H) ^ £ and Flag(V,l,n) -> F(V*), (£,H) H-» i? over £ respectively H are
canonically isomorphic to P(V/£) and P(Jcf), respectively.

In some of the above examples the complex manifold was given as a sub-
manifold of another one. We conclude this section with the precise definition of
complex submanifolds and, more generally, analytic subvarieties of a complex
manifold.

Definition 2.1.16 Let X be a complex manifold of complex dimension n and
let Y C X be a differentiable submanifold of real dimension 2k. Then Y is a
complex submanifold if there exists a holomorphic atlas {(f/,,<^j)} of X such
that ipi-.UiOY^ <pi(Ui) n Cfc.

Here, Ck is embedded into C n via ( z i ; . . . , zk) h-> (zx,..., zk, 0 , . . . , 0). The
codimension of Y in X is by definition dim(X) - dim(X) = n-k.

Definition 2.1.17 A complex manifold X is projective if X is isomorphic to
a closed complex submanifold of some projective space VN.
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Projective hypersurfaces and, more generally, projective complete intersec-
tions which have been discussed earlier provide examples of projective mani-
folds. Some complex tori, but not all (see Exercise 3.3.6), are projective.

Any Oy-she&f T on a complex submanifold Y G X can be considered as
an O^-sheaf on X supported on Y. More precisely, one identifies J- with its
direct image i*!F under the inclusion i : Y C X. The restriction of holomorphic
functions yields a natural surjection Ox —> Oy. This gives rise to the structure

sheaf sequence of Y C X:

0 ^ ly *• Ox *- Oy *- 0,

where Xy is the ideal sheaf of all holomorphic functions vanishing on Y.

It frequently happens that submanifolds become singular. Most of what
can be said about complex submanifolds holds true also for singular subvari-
eties as defined below, they are just not manifolds themselves. The following
is the global version of the notion of an analytic subset given in Section 1.1.

Definition 2.1.18 Let X be a complex manifold. An analytic subvariety of
X is a closed subset Y C X such that for any point x € X there exists an open
neighbourhood x € U C X such that Y D U is the zero set of finitely many
holomorphic functions / i , . . . , /fc £ O(U). A point x £ Y is a smooth or regular

point of Y if the functions fi, • • •, fk can be chosen such that (p(x) € <fi(U) is
a regular point of the holomorphic map / := (/i otp~l,..., /fco^"1) : f(V) ~~*
Ck, i.e. its Jacobian has rank k. Here, (U, ip) is a local chart around x. A point
x G Y is singular if it is not regular.

Using Corollary 1.1.12 we see that an analytic subvariety in a neighbour-
hood of a regular point is nothing but a complex submanifold. Analogously
to Exercise 1.1.14 one shows that the set of regular points Yleg = Y \ Y"Sing is
a non-empty complex submanifold of X (cf. Exercise 2.6.4). An analytic sub-
variety Y is irreducible if it cannot be written as the union Y = Y\ U Y<i of two
proper analytic subvarieties Yi C Y. The dimension of an irreducible analytic
subvariety Y C X is by definition dim(F) = dim(yreg). A hypersurface is an
analytic subvariety of codimension one.

As for submanifolds, one has for any subvariety Y C X a short exact
sequence

0 *- ly *- Ox *- Oy ^ 0.

For singular Y C X one defines Oy by this sequence. This amounts to giving
Y the induced reduced structure.

Example 2.1.19 Let V be a vector space and W\ £ Wi 9 • • • 9 ^ ^ 1̂  be a
flag of subspaces. The associated Schubert variety is denned as

:= {W € Grk(V)

E.g. if I = A; = 1, then i?(VF.) = ¥(W) C P(V). But this is rather excep-
tional as in most cases fi{Wt) will not be a submanifold of the Grassmannian
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Gvk{V), it will be singular over those W G Grfc(V) for which dimtWnWj) > i

for at least on i.

Exercises

2.1.1 Show that Pn is a compact complex manifold. Describe a diffeomorphism
of P1 with the two-dimensional sphere S2. Conclude that P1 is simply connected.

2.1.2 Show that C" does not have any compact submanifolds of positive dimen-
sion. (This is in contrast to the real situation, where any manifold, compact or not,
can be realized as a submanifold of some JSLN.)

2.1.3 Determine the algebraic dimension of the following manifolds: P1, Pn ,
and C/(Z + iZ). For the latter, you might need to recall some basic facts on the
Weierstrass p-function (e.g. [98]). How big is the function field of C?

2.1.4 Show that any holomorphic map from P1 into a complex torus is constant.
What about maps from Pn into a complex torus?

2.1.5 Consider the Hopf curve X = (C \ {0})/Z, where k € Z acts b y z w Xkz,

for A £ M>o. Show that X is isomorphic to an elliptic curve C/F and determine F

explicitly.

2.1.6 Generalize the construction of the Hopf manifolds by considering the action
of Z given by (z\,..., zn) i—> (AjZi,..., \^zn), where 0 < Ai < 1. Show that the
quotient (Cn \ {0})/Z is again diffeomorphic to S1 x S2""1 .

2.1.7 Show that any Hopf surface contains elliptic curves.

2.1.8 Describe the quotient of the torus C/Z + TZ by the involution z i—> — z

locally and globally. Using the Weierstrass function p again, one can show that the
quotient is isomorphic to P1. What happens in higher dimensions?

2.1.9 Let E\, E2 be two elliptic curves and let G = Z/2Z act by translation on
Ei and by the involution z 1—> — z on E^- Study the quotient (.Ei + E2)/G.

2.1.10 Describe connected complex manifolds X and Y together with a holo-
morphic map X —> Y such that every complex torus of dimension one is isomorphic
to one of the fibres.

2.1.11 Show that

(W C V) ^ (f\W C f\V)

defines a (holomorphic) embedding Grfc(V) ^ P(/\fe V). (This is called the Pliicker

embedding Grk{V). In particular, the Grassmannians are all projective.)
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2.1.12 Let p be a fifth root of unity. The group G = (p) = Z/5Z acts on P3 by

I \ I 2 3 x
(20 : z\ : Z2 : 23) 1—• (zo : pz\ : p zi : p Z3).

Describe all fix points of this action. Show that the surface Y defined by 5Z?_0
 zi = 0

is G-invariant and that the induced action is fix point free. (The quotient X = Y/G

is called Godeaux surface and historically was the first compact complex surface
with H\X, O) = 0, i = 1, 2, that is not rational.)

2.1.13 Let G = (p) as before and let G be the following subgroup of G°:

( 4

I i=0

We let act G on P4 by (zo : z\ : 22 : 23 : 24) >-*• (£ozo : £izi : £222 : £323 : £424).
Describe the subgroup H that acts trivially. Show that the hypersurface

with t e C, is invariant under G. Study the action of G/H on X, in particular the
points with non-trivial stabilizer. (The quotient X/(G/H) is not a manifold, but its
singularities are rather mild.)

Comments: - We are mainly interested in complex manifolds. However, some-
times one cannot avoid to talk also about singular analytic varieties. A thorough
treatment of those is provided by the theory of complex spaces which parallels the
theory of schemes in the algebraic setting. Avoiding the general theory makes certain
definitions and arguments less natural. E.g. we only introduced reduced subvarieties
Y G X but sometimes it is important to distinguish between the zero set defined by
f(z) — z and by f(z) = z2. For the formal definition of a complex space see Section
6.2.

- There are many more interesting examples of compact complex manifolds in the
literature. In [8] most of the available techniques to construct compact surfaces are
described in detail. We have not touched upon certain general construction methods
provided by toric geometry (cf. [48]). They are very combinatorial in spirit and often
allow very explicit calculations, e.g. of Hodge numbers.

- Quotients by more general group actions are much harder to study. Even the
concept of a quotient is modified in order to produce geometrically relevant objects.
In the realm of algebraic geometry this is studied by means of Geometric Invariant
Theory (see [77, 92]).

- For the general theory of complex tori we recommend [13, 28, 76].
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2.2 Holomorphic Vector Bundles

In order to understand the geometry of a complex manifold X one has to
study in particular:

• Holomorphic maps from other complex manifolds into X. In particular,
complex submanifolds of X.

• Holomorphic maps from X to other (easier) complex manifolds.
• Holomorphic vector bundles on X.

All three things are closely related. E.g. hypersurfaces in X and holomor-
phic line bundles on X always come together (see the discussion in Section
2.3). In this section we introduce holomorphic vector bundles and explain how
to perform simple operations with them. A few basic examples, like tangent
and cotangent bundles, are discussed in more detail.

Definition 2.2.1 Let X be a complex manifold. A holomorphic vector bundle
of rank r on X is a complex manifold E together with a holomorphic map

T7-.E ^X

and the structure of an r-dimensional complex vector space on any fibre
E(x) := n~1(x) satisfying the following condition: There exists an open cov-
ering X = [JUi and biholomorphic maps tpi : ?r~1([/i) = C/j x C commuting
with the projections to [/, such that the induced map TT~1(X) = Cr is C-linear.

A holomorphic line bundle is a holomorphic vector bundle of rank one.

Note that in the above definition the induced transition functions

are C-linear for all x £ UitlUj.

Let TTE : E —> X and irp : F —> X be two holomorphic vector bundles. A
vector bundle homomorphism from E to F is a holomorphic map tp : E —•> F

with TTE = npoip such that the induced map f(x) : E(x) —> F(x) is linear with
rk(y>(x)) independent of x G X. Two vector bundles E and F are isomorphic

if there exists a bijective vector bundle homomorphism ip : E —> F.

Remarks 2.2.2 i) Any complex manifold is in particular a differentiable mani-
fold and any holomorphic vector bundle is in particular a differentiable vector
bundle (see Appendix A). A holomorphic vector bundle should not be con-
fused with a complex vector bundle. The latter is just a differentiable vector
bundle whose fibers are complex vector spaces and the transition maps are
complex linear. An important and often highly non-trivial question is in how
many ways a complex vector bundle can be seen as a holomorphic vector
bundle. Sometimes, a complex vector bundle does not admit any holomorphic
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structure, but it might also happen that there are many of them. Both phe-
nomena can be observed already in the case of line bundles. See Section 3.3
and in particular Exercises 3.3.7 and 3.3.8.

ii) Analogously to differentiable real or complex vector bundles, a holo-
morphic rank r vector bundle TT : E —> X is determined by the holomorphic
cocycle {(Ui,^ : UtDUj -> Gl(r,C))}.

As in the differentiable situation one has the following

Meta-theorem 2.2.3 Any canonical construction in linear algebra gives rise

to a geometric version for holomorphic vector bundles.

In the spirit of this meta-theorem we collect in the following a list of some
of the main constructions. The reader is advised to work out the cocycle
description for them.

Examples 2.2.4 Let E and F be holomorphic vector bundles over a complex
manifold X.

i) The direct sum E © F is the holomorphic vector bundle over X whose
fibre (E © F)(x) for any x € X is canonically isomorphic to E(x) 0 F{x) (as
complex vector spaces).

ii) The tensor product E <8> F is the holomorphic vector bundle over X
whose fibre (E<8)F)(x) for any i g X i s canonically isomorphic to E(x)®F(x)

(again as complex vector spaces).

iii) The i-th exterior power f\l E and the i-th symmetric power SlE are the
holomorphic vector bundles over X whose fibres for any x £ X are canonically
isomorphic to / \ l E(x) and Sl(E(x)), respectively.

iv) The dual bundle (E*) is the holomorphic vector bundle over X whose
fibre (E*)(x) over x £ X is naturally isomorphic to the dual vector space
E(x)*. Note that (E*)* is canonically isomorphic to E.

v) The determinant line bundle of a holomorphic vector bundle E —-> X of
rank r is the holomorphic line bundle det(E) := f\r E.

vi) The map s : X —> E that maps any a; £ X to 0 £ E(x) is a holomorphic
section of TTE '• E —> X, the zero section. On the complement E \ s(X) one
has a natural C*-action. The quotient

F(E):=(E\s(X))/C*

is a complex manifold that admits a holomorphic projection IT : F(E) —> X

such that n~1(x) is isomorphic to ¥(E(x)). One calls F(E) the projective

bundle associated to E or, simply, the projectivization of E.

vii) Let if : E —> F be a vector bundle homomorphism. There exist holo-
morphic vector bundles Ker(^) and Cokei((p) over X, such that the fibers
over x £ X are canonically isomorphic to Ker(<^(:r) : E(x) —> F(x)) and
Coker(ip(x) : E{x) —» F(x)), respectively.
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viii) For a short exact sequence of holomorphic vector bundles

0 ^E ^F ^G ^0

one requires that f : E —* F is a vector bundle homomorphism with Ker(/) =
0 and Coker(/) = G. In this case there exists a canonical isomorphism

Recall that in the category of differentiable vector bundles every short exact
sequence splits (see Appendix A). This is no longer true in the holomorphic
setting, e.g. the Euler sequence in Section 2.4 does not split.

ix) Let E and F be two holomorphic vector bundles given by cocycles {faj}
and {ip'tj} with respect to the same open covering. If for all x £ Ui n Uj the

matrix ip'^ix) has the form ip'ij(x) = ^%3^x' J>*,X-S), then E is a holomorphic
subbundle of F, i.e. there exists a canonical injection E C F.

Conversely, if E is a holomorphic subbundle of F then cocycles of this form
can be found. Moreover, in this situation the cokernel G = F/E is described
by the cocycle {<f>ij}.

Definition 2.2.5 Let / : Y —> X be a holomorphic map between complex
manifolds and let E be a holomorphic vector bundle on X given by a cocycle

Then the pull-back f*E of E is the holomorphic vector bundle over Y that
is given by the cocycle {{f~1{Ui),tpij of)}. For any y € Y there is a canonical
isomorphism (f*E)(y) =* E(f(y)).

If Y is a complex submanifold of X and i : Y —* X is the inclusion, then
E\Y '•= i*E is the restriction of E to y.

It turns out that over P™ there exists essentially only one holomorphic line
bundle, dubbed the tautological line bundle 0(1). Its dual can be described
as follows:

Proposition 2.2.6 The set 0 ( - l ) C Pn x C"+1 that consists of all pairs
(£, z) £ Pn x Cn + 1 with z £ £ forms in a natural way a holomorphic line
bundle over Pn .

Proof. The projection TT : 0(—1) —> Pn is given by projecting to the first factor.
n

Let Pn — \J Ui be the standard open covering (see page 56). A canonical
i=0

trivialization of 0 ( - l ) over Ui is given by fa : 7r~1(t7i) = £/» x C, (£,z) —>
(£,Zi). The transition maps faj(£) : C —> C are given by w i—> | i • w, where
•£ = (zo : ... : -Zn)- The maps i/'i provide at the same time holomorphic charts
for 0 ( - l ) . •

Note that the fibre 0 ( - l ) ->• P™ over £ £ Pn is naturally isomorphic to L
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Definition 2.2.7 The line bundle 0(1) is the dual O(-l)* of 0 ( - l ) . For
k > 0 let O(k) be the line bundle 0(l)®fc = 0(1) <g> . . . ® 0(1) (fc-times).
Analogously, for A; < 0 one defines O(k) := 0(—/c)*. If E is any vector bundle
on P n one writes £(fc) instead of E <g> O(k).

Remark 2.2.8 The fibre of TT : 0(1) -> P" over £ G P" is canonically isomorphic
to ^*. The global linear coordinates zo,...,zn on C" + 1 define natural sections
of 0(1).

We leave it to the reader to write down a coordinate free version of the
above definitions, i.e. work with P(V) instead of P n . In particular, V* is a
subspace of the space of all global sections of 0(1). However, for the proof of
Proposition 2.2.6 it seems preferable to introduce a basis.

If we let 0(0) be the trivial line bundle X x C - > I , then we have found
a set of line bundles on P n which forms a group isomorphic to the abelian
group Z. This is no coincidence, as is shown by the next proposition. In fact,
for P n one can show that any (holomorphic) line bundle is of the form O(k)

(cf. Exercise 3.2.11).

Proposition 2.2.9 The tensor product and the dual endow the set of all iso-

morphism classes of holomorphic line bundles on a complex manifold X with

the structure of an abelian group. This group is the Picard group Pic(X) of

X.

Proof. By definition the product of two line bundles L\, Li on X is the tensor
product L\ <S) L<2 and the inverse of L is the dual L*. The only thing that
needs a proof is that L ® L* is isomorphic to the trivial line bundle. This is
best seen by using the cocycle description of L and the induced one for L*. •

Corollary 2.2.10 There is a natural isomorphism Pic(X) = Hl(X,O*x).

Proof. The description of line bundles in terms of their cocycles provides us
with an isomorphism Pic(X) = Hl{X, O*x). By general arguments, there
always exists a natural homomorphism HP(X, J-) —» HP(X, J-) which is bijec-
tive for any reasonable topological space, e.g. for manifolds. In fact, for p = 1
it is always bijective (cf. Proposition B.0.43). •

Recall that a holomorphic vector bundle E on a complex manifold X can
be pulled-back under a holomorphic map / : Y —> X to a holomorphic vector
bundle f*E on Y. For line bundles this operation yields a group homomor-
phism due to the following corollary, the verification of which is left to the
reader.

Corollary 2.2.11 Let f :Y —> X be a holomorphic map. Then the pull-back

under f defines a group homomorphism

Pic(F).
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In the description of the Picard group given in the previous corollary this map

is induced by the sheaf homomorphism f*Ox —> Oy- d

Even the cohomological description of the Picard group of a complex mani-
fold X as J?1(X, O*x) doesn't reveal immediately how many (if at all) non-
trivial line bundles exist on X. The most efficient way to study the Picard
group is via the exponential sequence.

Definition 2.2.12 The exponential sequence on a complex manifold X is the
short exact sequence

0 *- Z *• Ox »- O*x ^ 0.

Here, Z is the locally constant sheaf and Z •—• Ox is the natural inclusion.
The map Ox —>• Ox is given by the exponential / >—> exp(2?ri • / ) .

That the sequence is exact in Z and Ox is obvious. The surjectivity of
Ox —> Ox is due to the existence of the logarithm, i.e. the locally defined
inverse of exp : C —* C*.

As to any short exact sequence of sheaves, one can associate to the expo-
nential sequence its long exact cohomology sequence

H1 (X, Z) *• H1 (X, Ox) *• H1 (X, O\) *- H2 (X, Z)

Note that for X compact, the map H1(X,'E) —> Hx(X,Ox) is injective.
Thus, Pic(X) can in principle be computed by the cohomology groups

Hl(X,X) and Hl(X,Ox), i = 1,2, and the induced maps between them.
Very roughly, Pic(X) has two parts. A discrete part, measured by its image
in H2(X, Z), and a continuous part coming from the (possibly trivial) vector
space H1(X, Ox)- In order to study the discrete part one introduces the first
Chern class.

Definition 2.2.13 The first Chern class Ci(L) of a holomorphic line bundle
L € Pic(X) on X is the image of L under the boundary map

ci : Pic(X) = Hl (X, O*x) >• H2 {X, Z).

The first Chern class will be used throughout this book and we will give
alternative descriptions of it in the later chapters.

Higher rank vector bundles, even on Pn , are not easily constructed. Of
course, each of the constructions in Example 2.2.4 yields new bundles of arbi-
trary rank, but these are not genuinely new ones. However, there is one natural
holomorphic vector bundle on any complex manifold which often is not tri-
vial: the holomorphic tangent bundle. The holomorphic tangent bundle and
its relatives are of uttermost importance in the study of complex manifolds.



2.2 Holomorphic Vector Bundles 71

Let X = IJC/j be an open covering by charts ipi : Ui = <fi(Ui) C Cn. By
definition the Jacobian of the transition maps ifij :•= <pi o ipj1 :

ipi(Ui n f/j) is the matrix J(ipij)((pj(z)) •= |

Definition 2.2.14 The holomorphic tangent bundle of a complex manifold X
of dimension n is the holomorphic vector bundle Tx on X of rank n which is
given by the transition functions tpij(z) = J(ipij)((fj(z)).

The holomorphic cotangent bundle fix is the dual of Tx- The bundle of
holomorphic p-forms is flx := f\p fix for 0 < p < n and Kx '•= det(flx) =
flx is called the canonical bundle of X.

The definition is independent of the open covering and the coordinate maps
(fit. For different choices the resulting vector bundles are canonical isomorphic.
Thus, Tx, fix, a nd Kx are basic invariants of the complex manifold X.

Lemma 2.2.15 Let Y C X be a complex submanifold. Then there is a ca-
nonical injection Ty C Tx\y•

Proof. We apply ix) of Example 2.2.4 to our situation as follows. Let {(Ui, ifi)}
be a holomorphic atlas such that <fi(Y n Ui) = {z \ zm+\ = ... = zn =
0}D(pi(Ui). Then the transition functions y>y map Cm to Cm. Therefore, the
restriction ij;'^ of the cocycle J(y>ij)oipj, which defines Tx, to the submanifold
Y has the form required by ix) of Example 2.2.4. Here, ̂ y = J(ipij\y)oipj\Y. •

Definition 2.2.16 Let Y C X be a complex submanifold. The normal bundle
of Y in X is the holomorphic vector bundle Ny/x o n Y is the cokernel of the
natural injection Ty C Tx\y• Thus, there exists a short exact sequence of
holomorphic vector bundles, the normal bundle sequence:

0 *• Ty ^ Tx\y *• NY/X *~ 0.

Proposition 2.2.17 (Adjunction formula) Let Y be a submanifold of a
complex manifold X. Then the canonical bundle Ky of Y is naturally iso-
morphic to the line bundle KX\Y <8> det(A/y/x)-

Proof. Let {ipU} be a cocycle defining Tx\y as in the proof of Lemma 2.2.15.
Then ip'ij n a s the form ( Q *̂ )• Here, {i^ij} is the cocycle that defines Ty.

Moreover, by definition Afy/X is determined by the cocycle {(fiij} (cf. ix)
of Example 2.2.4). On the other hand, KX\Y is given by {det(i/'^)~1} =
{det(V'ij)"1 • det(^y)"1} and, therefore, Ky = KX\Y ® det(7VV/x).

One could equally well just evoke viii) of Example 2.2.4. •

The vector bundles flx can be used to define numerical invariants of X
which are very similar to Betti numbers of compact differentiable manifolds.
In order to do so, we shall first explain how to define the cohomology of a
holomorphic vector bundle in general.



72 2 Complex Manifolds

Definition 2.2.18 Let 7r : E —> X be a holomorphic vector bundle. Its s/iea/
o/ sections, also called £?, is given by

U I *• {s : [/ —> 7T~1(C/) holomorphic | TT o s = id[/}.

It is straightforward to verify that the so defined presheaf is in fact a sheaf.
Also note that the sheaf of sections of a holomorphic vector bundle is in a
natural way a sheaf of Ox-modules.

In particular, Ox is the sheaf of sections of the trivial line bundle J x C - >
X. The use of the same symbol E for a holomorphic vector bundle and its
sheaf of sections might look confusing, but these two objects are essentially
equivalent:

Proposition 2.2.19 Associating to a holomorphic vector bundle its sheaf of

sections defines a canonical bijection between the set of holomorphic vector

bundles of rank r and the set of locally free Ox-''nodules of rank r.

Proof. First recall that a locally free Ox -module of rank r is a sheaf J- of
Ox-modules on X which is locally isomorphic to Ox

r. Clearly, the sheaf of
sections of a holomorphic vector bundle n : E —» X of rank r is locally free of
rank r, for E is locally isomorphic to X x C .

Conversely, if we have chosen trivializations ipi : J-\ui — O®r, then the
transition maps ip^ := ( ^ o Vj^ltAnt/,- : O^nU. = O^nU. are given by
multiplication with a matrix of holomorphic functions on Ui n Uj. Therefore,
{(Ui,ipij)} can be used as a cocycle defining a holomorphic vector bundle.
One easily checks that the two constructions are inverse to each other. •

Example 2.2.20 Consider the holomorphic tangent bundle Tjr. The associated
sheaf is sometimes denoted Qx- Furthermore, €>x admits an alternative de-
scription as the sheaf Der(Ox) of derivations. More precisely, Der(Ox) is the
sheaf that associates to an open subset U C X the set of all C-linear maps
D : OX(U) -> OX(U) satisfying the Leibniz rule D(f-g) = f-D(g) + D(f)-g.

As we will see later in Section 2.6, local sections of 7~x are of the form ^2 a,i ̂ - ,
where the a^z) are holomorphic, and these can indeed be viewed as deriva-
tions of the above type.

There is, however, subtlety in the above bijection

{holomorphic vector bundles} -< >- {locally free Ox—modules} .

Warning: Homomorphisms between holomorphic vector bundles are, by def-
inition (see page 66), of constant rank, whereas on the right hand side one
usually allows arbitrary Ox-module homomorphisms. More precisely, a Ox-
module homomorphism is induced by a vector bundle homomorphism if and
only if the induced maps between the fibres are of constant rank. Furthermore,
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the Ox-module associated to the cokernel of a vector bundle homomorphism
is naturally isomorphic to the sheaf cokernel of the induced C^-module ho-
momorphism.

Definition 2.2.21 If E is a holomorphic vector bundle on a complex manifold
X, then Hg(X,E) denotes the q-th cohomology of its sheaf of sections.

In particular, H°(X,E) is the space F(X,E) of global holomorphic sec-
tions of the vector bundle projection IT : E —> X.

Remark 2.2.22 If / : Y —> X is a holomorphic map and E is a holo-
morphic vector bundle on X, then there exists a natural homomorphism
H°(X,E) -> H°(Y,f*E) given by s h-> (y H-> s(/(x))), where we use the
natural isomorphism (f*E)(y) ^ E(f(y)).

Definition 2.2.23 The Hodge numbers of a compact complex manifold X are
the numbers / ^ ( X ) := dimHq(X, Qp

x).

In Section 3.2 we will see that the Hodge numbers are indeed finite. They
will later be related to the cohomology of X considered as a differentiable
manifold and in particular to the Betti numbers of X.

The canonical bundle can be used to define another numerical invariant of
compact complex manifolds, the Kodaira dimension. In order to define it, we
have to note that for two holomorphic vector bundles E and F on a manifold
X, there exists a natural map

H°{X, E) ® H°(X, F) *- H°(X, E <g> F).

This yields the following

Lemma 2.2.24 For every line bundle L on a complex manifold X the space

K{A,L) .= ^-y ti (A,L^ j

m>0

has a natural ring structure. By definition L®° = Ox • D

Definition 2.2.25 The canonical ring of a complex manifold X is the ring

R{X) := R(X,KX) = 0 ff°(X,i^|m).
m>0

If X is connected, then R(X) is an integral domain. Thus, one can form
the quotient field Q(R(X)) of R(X).

Definition 2.2.26 The Kodaira dimension of a connected complex manifold
X is denned as
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Analogously, one may define the Kodaira dimension kod(X, L) with re-
spect to any line bundle L £ Pic(X), but the case of the canonical line bundle
is the most natural one. Note that in general R(X, L) is not finitely gener-
ated. However, the canonical ring R(X) = R{X, Kx) is expected to be finitely
generated (abundance conjecture), at least if X is projective.

In order to relate the Kodaira dimension to the algebraic dimension (see
Definition 2.1.10) we have to explain how to produce meromorphic functions
from sections of line bundles. Let s\, S2 £ H°(X, L) be two non-zero sections
of a holomorphic line bundle L on a connected complex manifold X. Then
we associate to this pair a meromorphic function s\/s2 £ K(X) as follows.
Let X = (J Ui be an open covering, such that L can be trivialized over the
open sets Ui, i.e. there exist isomorphisms ipi '• L\Ui — O\ji. Hence, V'iCsilf;)
and ipi(s2\Ui) are holomorphic functions on Ui. The meromorphic function
s\/s2 on Ui is by definition t^i(si\ui)/4'i{s2\ui)- One easily verifies that the
definition does not depend on {(f/j,'0j)}. In particular, any pair of non-zero
sections s\, S2 £ H°(X, K^-n) yields a meromorphic function on X. For a more
general version of this method to construct meromorphic functions see page
84.

Definition 2.2.27 Let R = © m > 0 Rm be a graded integral domain. Then
Qo(R) is the subfield of the quotient field Q{R) that consists of elements of
the form f/g with 0 ̂  g, f £ Rm for some m.

Proposition 2.2.28 If X is a connected complex manifold, then there exists
a natural inclusion Qo(R(X)) C K(X). Moreover, for R{X) y£- C one has

kod(X) = tvdegcQ(R(X)) - 1 = trdegcQ0(R(X)) < trdegcK(X) = a(X).

Proof. We only need to show that trdegcQ(i?(X)) - 1 = trdegcQ0(-R(^))-
Clearly, if fo,..., fk £ Q(R(X)) are algebraically independent elements of
degree du ... ,dk, then /o

e°/' fh\ . . . , f^/ft G Qo(R(X)) are algebraically
independent for e, = Ylj^udj. Hence, trdegc<5(X) — 1 < trdegc<50(-R(^))-
On the other hand, if g\,... ,gk £ Qo(R(X)) are algebraically independent
and g has positive degree, then also g,gi,... ,gk £ Q(R(X)) are algebraically
independent. Thus, trdegcQ0(#W) + 1 < trdegcQ(.R(X)). D

It should be clear from the proof that the assertion holds true also for the
Kodaira dimension with respect to any line bundle L.

Exercises

2.2.1 Let E and F be vector bundles determined by the cocycles {(Ui,ipij :

Ui n Uj -> Gl(r, C)} respectively {{Ui, ^ : Ui n U, -> Gl(r', C))}. Verify the cocycle
description for the constructions in Example 2.2.4. The most important ones are:
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i) The direct sum E © F corresponds to ipij © ̂  : Ui n Uj —> Gl(r + r', C).
ii) The tensor product E ® F corresponds to tpij <g> T/4; : t/i f*1 Uj —* Gl(r • r', C).
iv) The dual bundle E* corresponds to (tplj)'1-

v) The determinant bundle det(E) corresponds to det(tpij).

2.2.2 Show that any short exact sequence of holomorphic vector bundles 0 —>

L —• E —• F —> 0, where L is a line bundle, induces short exact sequences of the

form

0 ^ L ® A ' " 1 ^ »" A'-B *" A'F *• 0.

2.2.3 Show that for any holomorpic vector bundle E of rank r there exists a
non-degenerate pairing

/\kE x /\r~kE >- det(E).

Deduce from this the existence of a natural isomorphism of holomorphic vector
bundles f\k E ^ f\r~k E* ® det(£).

2.2.4 Show that any homomorphism / : E —> F of holomorphic vector bundles E
and F induces natural homomorphisms /®idG : E®G —>• F®G for any holomorphic
vector bundle G. If / is injective, then so is / ® idG.

2.2.5 Let L be a holomorphic line bundle on a compact complex manifold X.

Show that L is trivial if and only if L and its dual L* admit non-trivial global
sections. (Hint: Use the non-trivial sections to construct a non trivial section of

2.2.6 Let L € Pic(X) and Y C X a submanifold of codimension at least two.
Show that the restriction H°(X,L) -*• H°(X \ Y,L) is bijective. This generalizes
Corollary 2.1.6. (Use Exercise 1.1.20.)

2.2.7 Let L\ and Li be two holomorphic line bundles on a complex manifold X.

Suppose that Y C X is a submanifold of codimension at least two such that L\ and
L2 are isomorphic on X \ Y. Prove that L\ = L?.

2.2.8 Show that any non-trivial homogeneous polynomial 0 / s € C[zo,..., zn}k

of degree k can be considered as a non-trivial section of C(fc) on P™. (In fact, all
sections are of this form, cf. Proposition 2.4.1.)

2.2.9 Show that O( - l ) \ s(Pn) is naturally identified with C"+1 \ {0}, where
s : Pn —s- O( — 1) is the zero-section (see Example 2.2.4). Use this to construct a
submersion S2n+1 -+ P™ with fibre S1. (For n = 1 this yields the Hopf fibration

S3 - S2.)

2.2.10 Let {(f/i,</?i)} be an atlas of the complex manifold X. Use the cocycle

description of the holomorphic tangent bundle 73c to show that for x 6 Ui C X the

fibre Tx(x) can be identified with TVi^(fi(Ui) = T ' ,sipi(Ui). In particular, the

vectors d/dzt can be viewed as a basis of Tx(x). (This will be discussed in more

detail in Section 2.6.)
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2.2.11 Let Y C X be a submanifold of dimension fc of a complex manifold X
of dimension n. Assume that {(fi,¥?i)} is a compatible atlas in the sense of Defi-
nition 2.1.16. Show that for x € Y D [/» the tangent vectors d/dzk+i, • • •, d/dzn G
T1'? ,</?i(I7i) form in a natural way a basis of AfY/x(x)- (Use the cocycle description
of the normal bundle.)

2.2.12 Let y C X be a submanifold locally in f C X defined by holomorphic
functions fi,... fn-k (i.e. 0 is a regular value of ( / i , . . . , fn-k) • U —> Cn~k and Y is
the pre-image of it.). Show that / i , . . . , /n-it naturally induce a basis of My/x{xY

for any x 6 U C\Y. (Use the map d/dzi i—> dfj/dzi, for i = fc + 1, . . . , n.)
Go on and prove the existence of a natural isomorphism Afy/x — %Y/ZY.

2.2.13 Show that the holomorphic tangent bundle of a complex torus X = C"/T
is trivial, i.e. isomorphic to the trivial vector bundle Omn. Compute kod(X).

2.2.14 Show that any submanifold of a complex torus has non-negative Kodaira
dimension.

2.2.15 A parallelizable complex manifold is a manifold whose holomorphic tan-
gent bundle is trivial. Thus, complex tori are parallelizable. Show that the Iwasawa
manifold (cf. page 61) is parallelizable. Compute the Kodaira dimension of a com-
pact parallelizable manifold.

2.2.16 What can you say at this point about the algebraic dimension of a
projective manifold? Later we will see that projective manifolds are Moishezon, i.e.
a(X) = dim(X). See Exercise 5.2.11.

Comments: - In this section we have relied on the reader's ability to manipu-
late (real or complex) differentiable vector bundles or, at least, the tangent bundle
of a differentiable manifold. A more detailed understanding of the relation between
differentiable and holomorphic bundles will be gained by working through the sub-
sequent chapters. We will however not really touch upon the question how many
different holomorphic structure a differentiable complex vector bundle may have.
This question would lead us to moduli spaces of holomorphic vector bundles and is
beyond the scope of this book. We have to refer to [78].

- The examples introduced here, O{ — 1) and tangent and cotangent bundle, are
the most interesting holomorphic vector bundles. For more details on line bundles
on Pn see Section 2.4. A different view on Tx and fix will be presented in Section
2.6.

- The Kodaira dimension is a very coarse invariant, but it allows to put any

compact manifold of dimension n in one of n + 1 different classes. Each of them

has a special feature and is studied by different means. For a thorough discussion of

the Kodaira dimension in the algebraic context we recommend Ueno's book [111]. In

particular, an alternative definition of the Kodaira dimension in terms of the growth

of the pluri-genera Pm(X) = dimH°(X,K^) can be found there. The problem

whether R(X) is finitely generated is central in the classification theory of algebraic

varieties (see e.g. [29]).
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2.3 Divisors and Line Bundles

It turns out that hypersurfaces are always given as the zero locus of a global
holomorphic section of a holomorphic line bundle. This will allow us to study
the codimension one geometry of a compact complex manifold by means of
holomorphic line bundles, their space of global sections and, eventually, their
cohomology.

We start out by recalling the following

Definition 2.3.1 An analytic hypersurface of X is an analytic subvariety
Y C X of codimension one, i.e. dim(Y) = dim(X) — 1.

A hypersurface Y C X is locally given as the zero set of a non-trivial
holomorphic function. Indeed, locally Y d X induces germs of codimension
one and any such germ is the zero set of a single holomorphic function (cf.
Remark 1.1.32).

Every hypersurface Y is the union (J Y, of its irreducible components. Usu-
ally, we shall assume that Y has only finitely many irreducible components,
e.g. this holds true if X is compact. In general, the union | JY is only lo-
cally finite. Also note that an irreducible hypersurface Y C X might define
reducible germs (cf. Exercise 1.1.11).

Definition 2.3.2 A divisor D on X is a formal linear combination

with Yi C X irreducible hypersurfaces and a* £ Z. The divisor group Div(X)
is the set of all divisors endowed with the natural group structure.

In the above definition we want to assume that the sum is locally finite,
i.e. for any i e X there exists an open neighbourhood U such that there exist
only finitely many coefficients a, ^ 0 with Yi (~l U ^ 0. If X is compact, this
reduces to finite sums.

Remark 2.3.3 Every hypersurface defines a divisor ^2[Yi\ G Div(X), where Yi
are the irreducible components of Y. Conversely, to any divisor X]ai[^i] with
aj ^ 0 for all i one can associate the hypersurface (J Y, but this construction
is clearly not very natural, as the coefficients a, do not enter the definition.

Definition 2.3.4 A divisor D = ^ai[Yj] is called effective if a* > 0 for all i.
In this case, one writes D > 0.

The divisor associated to a hypersurface is an example of an effective
divisor.

Let Y C X be a hypersurface and let x £ Y. Suppose that Y defines
an irreducible germ in x. Hence, this germ is the zero set of an irreducible
g e Ox,x.
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Definition 2.3.5 Let / be a meromorphic function in a neighbourhood of
x G Y. Then the order ordyiX(/) of / in x with respect to Y is given by the
equality / = ff

ord(f> • h with h G OXx.

Remarks 2.3.6 i) The definition of ordy>x(/) does not depend on the denning
equation g, as long as we choose g irreducible (see Corollary 1.1.19). In fact,
two irreducible functions g,g' G Ox,x with Z(g) = Z(g') only differ by a unit
in Ox,x.

ii) More globally, one defines the order ordy (/) of a meromorphic function
/ G K{X) along an irreducible hypersurface Y C X as ordy(/) = ordyiX(/)
for x G Y such that Y is irreducible in x. Such a point x G Y always exist,
e.g. if we may choose a regular point x G Yreg (cf. Exercise 1.1.14). Moreover,
the definition does not depend on x. Here we use Proposition 1.1.35 and the
fact that Y ^ is connected if Y is irreducible.

iii) Note that the order satisfies the equation

ordy (/i/2) = ordy(/i) + ordy(/2).

Definition 2.3.7 A meromorphic function / G K(X) has zeros (poles) of
order d > 0 along an irreducible hypersurface Y C X if

ordy(/) = d (respectively, ordy(/) = —d).

This information for all hypersurfaces is encoded by the divisor (/) asso-
ciated to any meromorphic function / G K(X):

Definition 2.3.8 Let / G K(X). Then the divisor associated to f is

(/) := X>dy( / ) [Y] G Div(X),

where the sum is taken over all irreducible hypersurfaces Y C X. A divisor
D G Div(X) of this form is called principal.

The divisor (/) can be written as the difference of two effective divisors
(/) = Z(f) - P(f), where

Z(f) = J2 °KW)P1 a n d E
ordy(/)>0 ordy(/)<0

is the zero divisor respectively the pole divisor of / .

Next, we shall generalize this construction, such that we cannot only as-
sociate divisors to globally meromorphic functions, but also to locally given
ones. In order to do this we consider nowhere vanishing holomorphic func-
tions as invertible meromorphic functions. This way we obtain an inclusion of
sheaves Ox C K*x.
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Proposition 2.3.9 There exists a natural isomorphism

Proof. The isomorphism is induced by associating to a meromorphic function
its divisor. This is made precise as follows: An element / G H°(X,K.X/OX)

is given by non-trivial meromorphic functions / , G K.*x(Ui) on open subsets
Ui C X covering X such that /j • / ~ is a holomorphic function without zeros.
Thus, for any irreducible hypersurface Y C X with Y D Ui n Uj ^= 0 one
has ordy(/j) = ordy(/j) . Hence, ordy( / ) is well-defined for any irreducible
hypersurface Y C X. Then one associated to / G H°(X,K.X/OX) the divisor

Using the additivity of the order, one sees that the induced map

H°(X,JC*X/O*X) >-Div(X)

is a group homomorphism.
In order to show that it is bijective, we define the inverse map as follows.

If D = ^2 a,i[Yi] £ Div(X) is given, then there exists an open cover X = \J Ui

such that YiflUj is denned by some gij £ O(Uj) which is unique up to elements
in O*(Uj). Let fj := Yiidtj *= ^-x(^i)- (The product can assumed to be
finite.) Since g^ and g^ on Uj D Uk define the same irreducible hypersurface,
they only differ by an element in O*(Uj n Uk)- Thus, the functions fj glue
to an element / G H°(X, K.*x/O*x). Clearly, the two maps are inverse to each
other. D

In algebraic geometry (see e.g. [66]) elements in H°(X, ICX/OX) are called
Cartier divisors in contrast to the elements in Div(X), which are Weil divisor.

The above equality holds in the algebraic setting under a weak smoothness
assumption on X.

Corollary 2.3.10 There exists a natural group homomorphism

Div(X) ^Pic(X), D\ *O(D),

where the definition of O{D) will be given in the proof.

Proof. If D = Y2ai[Yi\ G Div(X) corresponds to / G H°(X, )CX/O*x), which
in turn is given by functions /$ G K*x{Ui) for an open covering X = \JUi,

then we define O(D) G Pic(X) as the line bundle with transition function
foj : = ft • f-1 G H°{Ui n Uj,O*x). By the very definition {(Ui, V^-)} satisfies
the cocycle condition, i.e. {([/,,-0^)} G Hl({Ui},O*x) and thus we obtain an
element in ^(X, O*x) = Pic(X).

If D,D' G H°(X,ICX/OX) are given by {ft} and {//}, respectively, then
D + D' corresponds to {/i • / / } • (Note that we may always pass to a refinement
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of a given open covering, so that we can assume that {/*} and {/j} are defined
with respect to the same open covering.)

By definition O(D + D') is described by {(/, • f!) • (/, • / j ) " 1 } = { & r $,-}.
Hence, O(D + D') = O(D) ® O(D'). Clearly, O(0) ^ O and thus O(-D) =

•

Remark 2.3.11 Suppose Y C X is a smooth hypersurface of a compact com-
plex manifold X of dimension n. In particular, Y is a real codimension two sub-
manifold of a compact manifold and thus defines an element [Y] £ H2(X,M),

its fundamental class. Indeed, by Poincare duality (cf. Proposition A.0.6) the
linear map a \—> JY a on H2n~2(X,K) defines an element in H2(X,M).

On the other hand, we have introduced the first Chern class c\(O(Y)) &

H2(X,R) of the line bundle O(Y) (see Definition 2.2.13). A priori, it is not
clear that ci(O(Y)) = \Y] and we have to refer to Section 4.4 for a proof of
this.

The homomorphism Div(X) —> Pic(X) is compatible with pull-back. How-
ever, the pull-back of a divisor D under a morphism / : X —* Y is not always
well-defined, one has to assume that the image of / is not contained in the
support of D. Thus, one usually considers only dominant morphisms, i.e.
morphisms with dense image. There are two ways to define the pull-back of a
divisor:

i) Let / : X —> Y be a holomorphic map and let Z cY be an irreducible
hypersurface such that no component of f{X) is contained in Z. Then the pre-
image f~l{Z) of Z is again a hypersurface, although in general not irreducible.
Indeed, if Z is locally the zero set of a holomorphic function g then f~1(Z)

is the zero set of g o / .

Let Yi C X, i = 1 , . . . , fc, be the irreducible components of / ^ 1 ( Z ) . The
pull-back of Z considered as a divisor is the linear combination f*Z = Ylni\Xi]

where the coefficients are determined as follows. Consider a smooth point t/j G
Yi and its image z = f{yi). Then locally near z the hypersurface Z is defined
by a holomorphic function g, the pull-back of which can be decomposed into
its irreducible factors 5 0 / = [ ] g™3, where <?j is a local equation of Yj near
yi. This determines the coefficient rii in f*Z = X^ni[^l- (Note that one has
to pay attention to the fact that an irreducible hypersurface may very well be
reducible at singular points.)

More generally, one defines the pull-back of a divisor D = ^2 a,i [Zj\ €

Div(F) such that no component of f(X) is contained in any of the hypersur-
faces Zi as f*D = £ . aJ*(Zi).

ii) We can also use Proposition 2.3.9 to give an alternative definition of
the pull-back of a divisor under a dominant holomorphic map. If / : X —> Y

is a dominant holomorphic map and the divisor D £ Div(y) corresponds
to the Cartier divisor {(Ui,fi £ K,*x(Ui))} then f*D is the divisor given by
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The two definitions are indeed equivalent, as follows easily from an inspec-
tion of the proof of Proposition 2.3.9.

The pull-back as defined above yields a group homomorphism between the
divisor groups of Y and X. More precisely, one has

Proposition 2.3.12 Let f : X —*• Y be a holomorphic map of connected
complex manifolds and suppose that f is dominant, i.e. f(X) is dense in Y.
Then the pull-back defines a group homomorphism

f* :Div(Y) ^Div(X).

D

This description ii) of the pull-back shows that it is compatible with the
group homomorphism Div(X) —> Pic(X) and the pull-back of line bundles
(cf. Corollary 2.2.11).

Corollary 2.3.13 Let f : X —•> Y be a holomorphic map. If D £ Div(Y) is a
divisor such that f*D is defined then O(f*D) ^ f*O{D). •

Thus, if X is connected and / is dominant one obtains a commutative
diagram of abelian groups

Div(Y) >- Pic(Y)

Lemma 2.3.14 A divisor D £ Div(X) is principal if and only if O(D) = O.

Proof. If D is the principal divisor (/), then we may take as the corresponding
section of K*x/Ox the image of / £ K(X) under the natural map K(X)* =
H°(X,JC*X) -> H°(X,K*X/OX). But then the associated cocycle {tpij} is the
trivial one, i.e. ^ij = 1. This shows that O(D) = O.

Conversely, let O(D) be trivial. Then, we may find an open covering X =
{jUi such that D corresponds to {/$ £ ICx(Ui)} and such that there exist
holomorphic units gi £ Ox(Ui) with fa • f~x = tpij = gi • gj1. Hence, fi •

g^1 = fj • gj1 on [/, n Uj, i.e. there exists a global meromorphic function
/ £ K(X) with f\ui = fi • g~l for all i. Since gi are nowhere vanishing, one
finds (/) = D. •

Remark 2.3.15 In fact, the above discussion is an application of the general
machinery of long exact cohomology sequences to the case of the short exact
sequence

0
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In particular, the map Div(X) —> Pic(X) is nothing but the boundary
map H°(X,IC*X/O*X) -» tf1^,^), the kernel of which coincides with the
image of K{X)* = H°(X, K*x) -> H°{X, Kx/Ox). The latter is by definition
the set of principal divisors.

Definition 2.3.16 Two divisors D,D' G Div(X) are called linearly equiva-

lent, D ~ D' , if D — D' is a principal divisor.

Thus, the lemma shows that the group homomorphism Div(X) —> Pic(X)
factorizes over an injection

In general, the inclusion is strict. But we will see that as soon as a line bundle
admits a global section, it is contained in the image. In order to see this we
shall construct a canonical map

H°(X,L)\{0} ^Div(X), si *-Z(s).

(Here, we assume that X is connected. Otherwise we have to take out all
sections s G H°(X, L) vanishing on some connected component of X.)

The map is constructed as follows: Fix trivializations tpi '• L\Ui = O\ji.

Thus, L G Pic(X) = Hl(X, O*x) is given by the cocycle {{Uu ̂  := V W / 1 ) } -
If s G H°(X, L) \{0} we set fa := ^i(s|c/,;) € O(Ui). Then, by the identity the-
orem, fi € Kx\Ui). Moreover, fo • ff1 = il>i(s\UinUj) • {^j{s\UinUj))-

1 = Vy €
H°(Ui n Uj,Ox). This way we obtain a (Cartier) divisor / := {(£/;,/»)} €
H°{X,ICX/OX). The corresponding element in Div(X) is denoted Z(s).

It is not hard to check that for sections 0 ^ si £ H°(X,Li) and 0 ^
S2 £ H0(X,Li2) the divisor associated to s\ ig) S2 G H°(X,L\ (g> L2) satisfies

Remarks 2.3.17 i) There is a slightly different description of Z(s) for 0 ̂  s G
H°{X,L) \ {0}. In fact, Z(s) = X)ordy(5)[y], where ordy(s) is denned as
ordy(V>i(s)). The latter does not depend on the trivialization. In particular,
this description shows that the divisor Z(s) associated to a section 0 / s £
H°(X,L) is effective. Also note that for A G C* one has Z(s) = Z(Xs). In
fact, this holds true for any global holomorphic function A without zeros.

ii) The reader should be aware of the fact that we use Z(s) or Z(f) in two
different contexts. In the context of the present discussion Z(s) is an element
of Div(X) and, therefore, it encodes more than just the vanishing locus of s,
all the multiplicities are taken into account. Before, e.g. page 18, we denoted
by Z(f) just the zero set of a holomorphic function, i.e. in this case Z(f) and
Z(f2) would be the same thing. I hope that this will not lead to any confusion.

The next result explains the relation between O(Z(s)) and L for a section
0 / s 6 H°(X, L). For simplicity we continue to assume that X is connected.
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Proposition 2.3.18 i) Let 0 / s G H°(X,L). Then the line bundle O(Z{s))
is isomorphic to L.

ii) For any effective divisor D G T)iv(X) there exists a section 0 / s £
H°(X,O(D)) with Z(s) = D.

Proof. Let L G Pic(X) on the open subsets f/j of an open covering X = {jUi
be trivialized by ipi : £|t/- — Cf/ • The divisor Z{s) associated to 0 / s 6
H°(X,L) is given by / := {/• := ^ (S |L/ , )} G H° (X, K*x / O*x). By definition,
the line bundle associated to Z(s) is the line bundle that corresponds to the
cocycle {(£/*, /» • /J'1)}- The first assertion follows from this, as fi • f~l =

ipiisluinUj) • ('4>j(s\uinuj))~'1 = ^ioi)'1.
Let D G Pic(X) be given by {(£/*,/* £ /C^(t/j))}. Since £> is effective,

the meromorphic functions /» £ K*x{Ui) are in fact holomorphic, i.e. fi €
O{Ui). On the other hand, the line bundle O(D) is associated to the cocycle
{(U^ipij = ft • f'1)} e Hl{X,O*x). The holomorphic functions fi G O{Ui)
define a global section s 6 H°(X, O(D)), as ^ • /,• = /*. Moreover, Z(s)|i/?. =
Z(s|[/;) = Z(fi) = DnUi. Hence, Z(s) = D.

Note that the section s is not unique or canonical, e.g. we could change
the fi by some A e C*. •

Corollary 2.3.19 Non-trivial sections si € H°(X,Li) and s2 G H°(X,L2)
define linearly equivalent divisors Z(s\) ~ Z(s2) if and only if L\ = L2.

Proof. This is a consequence of O(Z(si)) = Li and Lemma 2.3.14. •

Corollary 2.3.20 The image of the natural map Div(X) —* Pic(X) is genera-
ted by those line bundles L G Pic(X) with H°(X,L) ^ 0.

Proof. Proposition 2.3.18 shows that any L G Pic(X) with H°(X,L) ^ 0 is
contained in the image.

Conversely, any divisor D = J2ai[Yi\ G Div(X) can be written as
D = E4[Yi] - £ " J Pil with a± > 0. Hence, O(D) ^ O(£o+[r4]) ®
°(T,aJiYj})* a n d t h e l ine bundles O(J2af[Yi]) and O(E a7K]) a r e b o t h

associated to effective divisors and, therefore, admit non-trivial global sec-
tions. •

Remark 2.3.21 Later we will see that for projective manifolds, i.e. complex
manifolds that can be realized as closed submanifolds of P" (Definition 2.1.17),
the map Div(X) —> Pic(X) is surjective (see Section 5.3). But note that even
for very easy manifolds, e.g. a generic complex torus of dimension two, this is
no longer the case.

Let Y C X be an irreducible hypersurface. Then, the (non-unique) section
0 / s e H°(X, O(Y)) with Z(s) = Y gives rise to a sheaf (not vector bundle)
homomorphism Ox -> O{D) and dually to O(-D) -> OX-
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Lemma 2.3.22 The induced map O(—D) —> Ox is injective and the image
is the ideal sheaf I ofYcX of holomorphic functions vanishing on Y.

Proof. This is a local statement. Thus, we may assume that O(—Y) is trivial
and that the map O{—Y) —> Ox is given by multiplication with the equation
defining Y. Clearly, this map is injective.

If x £ X is either a smooth point of Y or not contained in Y at all, then
the image is, locally near x, the ideal generated by the defining equation of
Y, i.e. the ideal sheaf of Y (use Corollary 1.1.19). Since the ideal sheaf I of
Y and the subsheaf O{—Y) C Ox are both invertible and coincide on the
complement of the codimension at least two subset YSing C X, they are equal.
(Use Exercise 2.2.7.) •

More generally, for any effective divisor D = £^aj[Yi] we obtain a short
exact sequence

0 O(-D) *• Ox OD 0,

where OD is the quotient of Ox by all holomorphic functions vanishing of
order at least <2j along Yj. In the language of complex spaces, OD is the
structure sheaf of the (possibly non-reduced) subspace associated to D.

Definition 2.3.23 Let L be a holomorphic line bundle on X. A meromorphic
section of L is a collection of meromorphic functions fi £ K-x{Ui) °n open
subsets Ui of an open covering X — \JUi such that fi = ipij • fj, where ^ is
the cocycle defined by trivializations tpi : L\ui = Ou^-

Remarks 2.3.24 i) Any holomorphic section s £ H°(X,L) is a meromorphic
section, but usually, e.g. if X is projective, L admits many more meromorphic
sections than holomorphic ones. In fact, later (Section 5.3) we shall see that on
a projective manifold any line bundle has a non-trivial meromorphic section,
but for a general complex manifold this is not true.

ii) It is easy to see that there exists a canonical divisor (s) associated to
any meromorphic section s of a line bundle L. As before, O((s)) = L.

iii) If 0 ^ s e H°(X, L) and s' £ H°(X, L'), then there exists a meromor-
phic section s'/s of L* ® L': which locally is given by ^>i(s'\ui)/'4'i(s\ui)- As
a special case of this construction, we can associate meromorphic functions
s'/s £ K(X) to sections 0 ^ s, s' £ H°(X, L) (see the discussion on page 74).

iv) It is not difficult to show that the image of the natural map Div(X) —>
V\c(X) is nothing but the set of all line bundles that admit at least one non-
trivial meromorphic section. See Exercise 2.3.4.

v) The interplay between (holomorphic or meromorphic) sections of line
bundles and the function field K(X) is illustrated by Proposition 2.2.28.

A holomorphic function s £ H°(X, Ox) on a complex manifold X defines
a holomorphic map X —> C. More generally, a collection of holomorphic func-
tions SI , . . . ,SJV defines a holomorphic map X —> CN. However, often, e.g.
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when X is compact, there exist only very few (or none at all) non-constant
holomorphic functions. Replacing holomorphic functions by holomorphic sec-
tions s & H°(X,L) of a holomorphic line bundle L gives us more flexibil-
ity, as one frequently, e.g. for projective manifolds, disposes of holomorphic
line bundles with many sections. The prize one has to pay is that sections
s 0 , . . . , SJV G H°(X, L) of a holomorphic line bundle L only define a holomor-
phic map to some projective space P ^ and, moreover, that this map might
not be everywhere well-defined on X.

Definition 2.3.25 Let L be a holomorphic line bundle on a complex manifold
X. A point x e X is a base point of L if s(x) = 0 for all s e H°(X, L). The
base locus Bs(L) is the set of all base points of L.

Clearly, if SQ, ..., SN £ H°(X, L) is a basis of global sections then Bs(L) =
Z(SQ) n . . . n Z(SN) is an analytic subvariety. Note that in general H°(X, L)

could be infinite-dimensional. Later we will see that for compact X these
spaces are actually finite-dimensional (cf. Theorem 4.1.13). Thus, the fact that
H°(X,Ox) = C when X is compact is generalized to dimH°(X,L) < oo.

Proposition 2.3.26 Let L be a holomorphic line bundle on a complex man-

ifold X and suppose that so,..., SJV € H°(X, L) is a basis. Then

<pL:X\ Bs(L) ^ pW , x i ^ (so(x) : . . . : sN(x))

defines a holomorphic map such that ip*LOfN{\) = £|x\Bs(L)-

Proof. Since Bs(L) = Z($o) n . . . n Z(SN) C X is a closed subset, the subset
X \ Bs(L) is an open submanifold of X. Thus, the notion of a holomorphic
map makes sense.

Let us now explain the definition of ipi. If a; € X\Bs(L) and ip '• L\u — Ou

is a trivialization of L over an open neighbourhood U of x G X, then <PL{X) =
(so{x) : ... : sN(x)) denotes the point (ip(so(x)) : ... : i>(sN(x))) e PN. The
definition is independent of the trivialization ifi, for any other trivialization
is of the form A • ip for some A e O*(U) and (X(x) • tp{so(x)) : . . . : A(x) •
•0(SJV(X))) = (tj)(so(x)) : . . . : ^(sjv(x))). The local description of tpi, shows
that it is well-defined and holomorphic on X \ Bs(L).

Now consider the section zg of C(l) on P"^ and let Do be the associated
divisor, i.e. the hyperplane {(0 : z\ : ... : ZJV)} C P n . Then f*D0 is the
divisor Z(s0). Thus, by Corollary 2.3.13 and Proposition 2.3.18 one has L =
O(Z(s0)) = O{f*D0) = f*O(D0) ^ f*O(l) on the open subset X\Bs{L). D

Remarks 2.3.27 i) The map (fi, does depend on the choice of the base, but
for two different choices the induced maps differ by a linear transformation
of FN. If we do not want to choose any base at all then we still can define a
holomorphic map

ipL : X \ Bs(L) P(H°(X, L)*)

by associating to x £ X \ Bs(i) the linear map H°(X, L) —> C, s H-> s(x) G
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L(x) = C As this linear map depends on the isomorphism L(x) = C, we
only obtain this way a point in P(H°(X, L)*). Clearly, the two description of
<pi are compatible, i.e. after fixing a basis of H°(X,L) the two morphisms
coincides under the induced isomorphism ¥(H°(X,L)*) = P ^ .

ii) It is easy to generalize the above construction as follows. Instead of
taking a basis SQ, • • •, SJV one could just take any collection of sections, nei-
ther necessarily linearly independent nor generating H°(X,L). This yields a
holomorphic map on the complement of the base locus Bs(L, SQ, ..., SN) :=

Z(so) n . . . n Z{SN) to P( (® CSJ)*) . The map cp^ as in the proposition is said
to be associated to the complete linear system H°(X,L), whereas a subspace
of H°(X, L) is simply called a linear system of L. Sometimes, one denotes the
complete linear system F(H°(X,L)) also by \L\. One says that L is globally

generated by the sections So, •. ., SJV if Bs(L, SQ, ..., sjv) = 0.

Definition 2.3.28 A line bundle L on a complex manifold is called ample if
for some k > 0 and some linear system in H°(X, Lk) the associated map <p is
an embedding.

By definition, a compact complex manifold is projective if and only if it
admits an ample line bundle.

As examples of the above construction we shall discuss the Veronese map
and the Segre map.

Veronese map . Let X = PN and let L be the line bundle O(d). We have
seen (Exercise 2.2.8) that homogeneous polynomials of degree d can be viewed
as sections of L. Indeed, in Proposition 2.4.1 we will show that all sections
of O(d) are of this type. Let JV := dimH°(¥n,O(d)) - 1 and choose the
monomials of degree d as a basis of H°(Pn, O(d)). The induced map <fio(d) is
the Veronese embedding.

More explicitly, <fo(d) is given by

where (IQ, ..., in) runs through all multi-indices with Y^j=o h = d- Obviously,
Bs(O(d)) — 0 and, therefore, ipL is everywhere defined. The reader may verify
that the Veronese map is indeed an embedding (cf. Exercise 2.3.5).

Let us consider the case X = P1 and d = 2. Then the Veronese map
defines an isomorphism of P1 with the hypersurface Z(x$X2 — x\) of P2 via
(z0 : zi) H-> 0 2 : zozi : z\).

Segre map . Here we let X = P"1 x P"2 . The two projections are denoted
by pi : X ->• P n i and p2 : X -> P™2. Let L £ Pic(X) be the line bundle
pl(O(l))®p*2{O(l)). Pulling-back (Remark 2.2.22) and taking tensor product
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(see page 73) defines a bilinear map

jn\0(l))<g>#°(P™2,0(l))

H°(X,pt(O(l))) ® tf °(X,^(0(1))) H°(X, L).

If 2oi • • •, Zm a n d z'o,..., z'n2 denote the linear coordinates on P™1 respectively
P™2, then we obtain this way sections Ziz'^ of L. One may verify that these
sections are linearly independent (cf. Exercise 2.3.6) and that they indeed
form a basis (cf. Proposition 2.4.1). The Segre map is the induced map

((ZQ : ... : zm), ( 4 : . . . : z'n2)) I >- {zoz'o : zoz[ : . . . : zniz'n2)

In the case ni = ni = 1 this yields the map

pi x pi „ P 3 ;

which in fact defines an isomorphism of P1 x P1 with the quadric

x1x2).

In both examples the use of the Zj's might be confusing. They denote
sections of 0(1), i.e. linear coordinates on P n , on the one hand, but they
are also used to write a point in P n as (ZQ : . . . : zn) on the other. This is
completely analogous to the use of the standard coordinates, say Xi of Mn, in
linear algebra.

To conclude this section we discuss the case of line bundles and divi-
sors on curves. For the rest of this section we assume that X is a compact
connected curve. Thus, any point x € X is an irreducible hypersurface and
thus defines a divisor [x] € Div(X). In fact, any divisor D G Div(X) is of the
form D = 52rij[xi] with Xi €E X.

To simplify we write D = Y2 n%xi a n d O{x) for the line bundle associated
to the divisor \x\.

Definition 2.3.29 The degree of a divisor D — ̂ n^Xi] on a curve X is the
integer

Clearly, the degree defines a surjective group homomorphism

deg : Div(X) »- Z.
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Proposition 2.3.30 If D is a principal divisor on a compact curve then

deg(D) = 0.

In order to prove the proposition we will need a lemma. Before stating it
let us recall that any meromorphic function / G K(X) defines a holomorphic
map / : X \ P(f) —> C By abuse of notation we denote by P(f) not only the
pole divisor, but also the support of it. Thus, X\P(f) is just the open subset
where / is holomorphic.

Lemma 2.3.31 Let f G K{X) be a meromorphic function on a curve X.

Then the induced map f : X \ P(f) —> C extends naturally to a holomorphic

map X -> P1 .

Proof. Let X — (J Ui be an open covering such that f\ui is given as gt/hi with
<?i, hi G O{Ui). We may assume that gi and hi have no common zero. Indeed,
if g, h : U —> C are two holomorphic functions on an open subset ( 7 c C with
g(zo) = h(zo) = 0 for some ZQ 6 U, then g/h = (g • (z — zo)~1)/(h • (z — ZQ)~1)

and g • (z — ZQ)~X and h • (z — ZQ)"1 are still holomorphic.

Thus, Ui —> P1 , x t-> (gi(x) : hi(x)) is well-defined. Moreover, on Ui\P(f)

it coincides with x H-> (f(x) : 1). Either by a direct argument or by invoking the
identity principle we see that the different maps Ui —> P1 glue to a holomorphic
map X -> P1 which extends f :X\ P(f) -> C, where the embedding C C P1

is given by z >—> (z : 1). D

Proof of the Proposition. By definition, a principal divisor D is of the form
D = (/) = Z(f) — P ( / ) for some meromorphic function / £ K(X). By the
lemma this yields a holomorphic map / : X —> P1 . By definition Z( / ) = /*0
and P ( / ) = /*oo.

Over the regular values, which form a connected set, the map / is a topo-
logical cover. Thus, any fibre contains the same number d of points.

In a neighbourhood of a critical x G P1 the map is of the form Uzt
 i :

U B\ (0) —> B\ (0) with ^Tdi = d. This allows to compare the degree of the
pull-back divisors of different (critical) points. In particular, deg(Z(f)) = d =

deg(P(/)). Hence, deg(D) = deg(Z(/)) - deg(P(/)) = 0 . D

Corollary 2.3.32 / / D\ and D2 are two linearly equivalent divisors then

deg(Di) = deg(I?2), i.e. the degree factorizes over the image of Div(X) —>
Pic(X). D

Once we know that Div(X) —> Pic(X) is surjective (see i) of Examples
5.3.6 and Corollary 5.3.7), the corollary shows that there is a commutative
diagram

Div(X) ^ Pic(X)
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For 0(1) G Pic(P1), which is in the image of Div(Px) -> Pic(Px), one has

degO(l) = l.

Definition 2.3.33 The Abel-Jacobi map of a compact connected curve X is

the map

X ^Pic(X), xi *~O(x-x0),

which depends on a chosen point XQ G X.

Proposition 2.3.34 For a compact connected curve X the following condi-

tions are equivalent:

i) The Abel-Jacobi map is not injective.

ii) The curve X is isomorphic to P1 .
iii) There exist points x\ ^ x2 G X such that O(xi) = O(x2).

Proof. If O(xi) = O(x2), then the line bundle L := O(xi) admits two holomor-
phic sections s\,s2 G H°(X,L) with Z(si) = a;,. Thus, the induced holomor-
phic map <p : X —> P1 , z H-> (s\(x) : s2{x)) is everywhere defined. Furthermore,
if is injective in a neighbourhood of rr, and therefore injective everywhere. This
shows that (p is an isomorphism. Hence, we have proven that iii) implies ii).

The converse follows from the observation that any point in P1 is the
zero locus of a linear homogeneous polynomial. Since linear homogeneous
polynomials are all regarded as global sections of 0(1), this shows that for
two arbitrary points Xi,x2 G P1 one always has O{x{) = O(x2)-

The equivalence of i) and iii) is obvious. •

Exercises

2.3.1 Show that the natural map Div(X) —> Pic(X) is not injective if and only
if a{X) > 0.

2.3.2 Let Y C X be a smooth hypersurface defined by a section s G H°(X,L)
for some holomorphic line bundle L € Pic(X). Show that the normal bundle A/y/x
is isomorphic to L\Y • (You may use Exercise 2.2.12 or the cocycle description of the
normal bundle. A complete proof of this assertion will be given in the next section,
but give it a try yourself before looking at the proof there.)

2.3.3 Determine the normal bundle of a complete intersection X C P^ defined
by irreducible homogeneous polynomials fi,.. • ,fk of degree d i , . . . , dk- (Together
with Proposition 2.4.3 of the next section this yields a description of the canonical
bundles of any complete intersection in Pn .)

2.3.4 Show that the image of Div(X) —» Pic(X) consists of those line bundles
admitting non-trivial meromorphic sections
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2.3.5 Prove that the Veronese map Pn -» FN is an embedding.

2.3.6 Let L\ and Li be holomorphic line bundles on complex manifolds X\ and
Xi, respectively. To two sections Si £ H°(Xi,Li), i = 1,2, one associates a section
s i • S2 € H°(X\ x X2,pl(Li) ®p*2{Li))- Show tha t if s\,...,Si and s\,... , 4 are

linearly independent sections of L\ and L2, respectively, then s\s2 form linearly
independent sections of p\{L\) 0^2(^2). Here, pi and p2 are the two projections.

2.3.7 Let i e P " and consider the linear system

{seH°(Fn,O(l)) |S(a:) = 0}.

Show that it defines a holomorphic map <p : Fn \ {x} —• P n - 1 . Describe this map
geometrically.

2.3.8 (Bezout's theorem) Let C C P2 be a smooth curve defined by a homo-
geneous polynomial / of degree d. Show that the line bundle 0(1) restricted to C

is of degree d. Let D C P2 be a second smooth curve different from C defined by a
homogeneous polynomial g of degree e. Show that

d-e= J2 dimOV2tP/(f,g).
peCnD

2.3.9 Show that the image of fo(3) : P1 —> P3 is not a complete intersection.

2.3.10 Let C = <fio(2) (P1) C P2 and consider the restriction of the linear system
in Exercise 2.3.7 to C. Study the induced map C \ {x} —* P1. (There are two cases
to be considered: x £ C and x £ C.)

2.3.11 Show that on a compact curve X p P1 there always exist divisors D with
deg(D) = 0, but which are not principal. (Thus, the converse of Proposition 2.3.30
is false in general.)

Comments: - The relation between line bundles and hypersurfaces as pre-
sented is well understood. It should be clear, and we leave this to the reader, that
complete intersections can be treated quite analogously. This yields a relation be-
tween complete intersections of codimension d and holomorphic vector bundles of
the form L\ ©.. . ®Ld with Li 6 Pic(X). The situation is more complicated for arbi-
trary submanifolds. One could hope that those can be studied in terms of non-split
vector bundles, but, unfortunately, this is not always possible.

- Some parts of the above discussion would be more natural if formulated in the
language of complex spaces, e.g. we could speak of non-reduced analytic hypersur-
faces associated to a divisor a[Y] with o > 1.

- For more elementary and sometimes not so elementary examples illustrating
Veronese and Segre maps, we recommend [65].

- Of course, the discussion of curves is very sketchy. We will come back to certain
aspects, but for a more complete discussion we have to refer to one of the many
available textbooks on the subject.
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2.4 The Projective Space

The aim of this section is to present certain explicit calculations for the pro-
jective space P n . We shall describe sections of the holomorphic line bundles
O(k) on P™ and show that the canonical bundle Kp™ of the projective space
P n is isomorphic to the line bundle O{—n— 1). It will turn out that everything
can be expressed in polynomials, which turns complex geometry for P™ into
complex algebraic geometry.

In order to determine all holomorphic sections of O(k), let us first recall
that O{—1) is the holomorphic line bundle which is naturally embedded into
the trivial vector bundle O®n+1 such that the fibre of 0 ( - l ) over £ G P™ is
£ C C n + 1 (cf. Proposition 2.2.6).

We will also use the following observation. If E is a holomorphic subbundle
of F, then the inclusion E C F naturally defines an inclusion of all tensor
products E®k C F®fe. In particular, for k > 0 the line bundle O(-k) is a
subbundle of P n x (Cn+1)®fc.

Any homogeneous polynomial s G C[zo,..., zn]k of degree k defines a linear
map (Cn+1)®fc -> C. This gives rise to a holomorphic map P n x (Cn+1)®fc -» C
which is linear on any fibre of the projection to P n . The restriction to O(—k)

thus provides a holomorphic section of O(k). This way we associate to any
homogeneous polynomial s of degree k a global holomorphic section of O(k),

which will also be called s (cf. Exercise 2.2.8).

Proposition 2.4.1 For k > 0 the space H°(Pn,O(k)) is canonically isomor-

phic to the space C[zo, • • •, zn]k of all homogeneous polynomials of degree k.

Proof. Note that the section associated to a non-trivial polynomial 0 / s £
C[ZQ, ..., zn)k is not trivial. Indeed, the composition O ( - l ) c P " x C n + 1 ->
C ra+1 is surjective and, therefore, any polynomial s that induces the trivial
section of O(k) defines a trivial map <Cn+1 —> C, i.e. s = 0. Since the map
C[zo, • . . , zn]k —> H°(Pn, O{k)) is clearly linear, it suffices to show surjectivity.

Let 0 / t € H°(Pn,O(k)). Choose a non-trivial 0 ^ s0 £ H°(¥n,O(k))
induced by a homogeneous polynomial of degree k and consider the meromor-
phic function F := t/s0 € K(¥n) (cf. Remark 2.3.24). Composing with the
projection C n + 1 \ {0} -> P n yields a meromorphic map F G K{Cn+1 \ {0}).
Moreover, G := s0 • F is a holomorphic function C n + 1 \ {0} —> C, which,
due to Hartogs' theorem 1.1.4, can be extended to a holomorphic function
G : C n + 1 —> C By definition of F and G, this function is homogeneous of
degree k, i.e. G(X • z) = \k • G(z) for A € C and z G C n + 1 .

Using the power series expansion of G in z = 0 this proves that G is a
homogeneous polynomial s of degree k. Clearly, the section of O{k) induced
by G equals t G H°{Fn, O{k)). •

It should be obvious from the proof that the isomorphism described above
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is compatible with the multiplicative structure, i.e. we obtain a ring isomor-
phism

fc>o

Applying Exercise 2.2.5 the proposition also yields

Corollary 2.4.2 Fork < 0 the line bundle O(k) admits no global holomorphic

sections, i.e. H°(Fn,O(k)) = 0 . •

The higher cohomology groups of O(k) will be computed in Example 5.2.5 by
applying the Kodaira vanishing theorem.

Let us next construct an isomorphism Kpn. = O(—n — l). This can be done
by a direct cocycle calculation or by using the Euler sequence. We shall discuss
both. Using the adjunction formula, the isomorphism Kpn = O(—n — 1) will
enable us to compute the Kodaira dimension of hypersurfaces and complete
intersections.

First, let us recall the standard open covering of P n (see page 56). Let Ui

be the open set

Ui := {(z0 : • • • : zn) | Zi± 0} C P".

Then P" = |J"= 0 Ui and the maps

C", : zn

are biholomorphic. For i > j the transition map

fij =^i°^fX • {(wi,...,wn) | Wi ̂  0} I

is the composition of

0}

<Pij(iVi,. . .,Wn) = (w~lWi,. . . , W~XWi-i,W~l, W^Wi+i, . . .,W~lWn)

and the permutation (j + 1, i), the signature of which is (—I)1"-7'"1.

Proposition 2.4.3 The canonical bundle Kpn is isomorphic to O(—n — 1).

Proof. By definition Kpn = det(Tr*n), where the holomorphic tangent bundle
7p« is uniquely determined by its cocycle {J(<Pij) ° fj • Ui n Uj —> Gl(n,C)}.
Thus, it suffices to show that the line bundle associated to the cocycle
{det(J((fij)) o y>j} is isomorphic to O(n + 1). Using the above remark, we
have

k,e

where
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is easily identified as
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k,e

v'1 0 . .

0 wr1 . .

0 . . .

0 . . .

-4

0 - -

0

0

. 0 \

. 0

. 0

. 0

. 0

Hence, det „-(»+!) and, therefore,

)) O(pj = (_l)Ww-(«+i) Olp. = ( - l ) - i ( 2 i / z . ) - ("+D.

On the other hand, O(- l ) is the line bundle {(£,z) | z G £} C Pn x C"+1, to
which is associated the cocycle {zi/zj} (cf. Proposition 2.2.6). Thus, O(n +1)
corresponds to the cocycle {{zj/zi)n+1}. The two cocyles {{zj/zi)n+l} and
{(—l)*~:'(zj/z:,)~("+1)} define isomorphic line bundles, for they only differ by
the boundary of the cocycle {m = (-1)* : Ut -> C* c O*}. D

Recall that any short exact sequence 0—>.E—>i ? ^(3^0of holomor-
phic vector bundles (or locally free sheaves), induces a canonical isomorphism
det(F) = det(£')<g>det(Gr) (cf. viii) of Example 2.2.4). Thus, the above propo-
sition is also a consequence of the following one.

Proposition 2.4.4 (Euler sequence) On I
exact sequence of holomorphic vector bundles

there exists a natural short

0- •O-

Proof. The inclusion O C ©"=0 C(l) is obtained from the natural inclusion
O(-l) C $ " = 0 O (cf. Proposition 2.2.6) by twisting with 0(1) (cf. Exercise
2.2.4). It suffices to show that the kernel of the dual map ©™=0 0 ( - l ) -* O is
canonically isomorphic to J2pn. (Here we use that a sequence of holomorphic
vector bundles 0-^E->F->G^0is exact if and only if 0 -> G* -> F* ->
E* -> 0 is exact.)

The proof of the identification of Qpn. with the kernel is a little tedious.
Using the standard trivialization of © n

= 0 C(—1)|[/; we will identify Q^AUi m
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a natural way with the kernel of the surjection $ J _ o O ( - l ) —» 0 over Ui.

The proof concludes by showing that these inclusions glue.
First note that for any local holomorphic function / : £ / — > C, where

U C X is an open subset of an arbitrary manifold X the differential df = df

is a section of Ox\u (cf. Exercise 2.2.10 or Section 2.6). Moreover, if <p : Ui =
<f>(Ui) C Cn is a local coordinate system, then i?x|(7 = ^k=i(dfk) • Ou- In

our situation J?p™|t/,: = ®™^fe=0 d f fM • 0(7;.

Since 0(—l)|f/i is canonically trivialized by (£,z) i—> Zj, one has a natural
diagonal trivialization ^ ( A z°: • • •, zn) = {£,z®,..., z™) of ©fc=0 0 (—l)!^ . In
this trivialization the surjection ip : ©0(—1) —> 0 is the map

n

ipi(£,wo,...,wn) - ^ ^

fc=0

Hence, the map

L o OVi, d ( a ) i ek -

where e^ is the fc-th unit vector in ©]J= 0O, identifies Qpn\ui with the kernel
Of Ifi.

Let us now check that </>j(d (f^J) = (i'i'4>J1)(4lj(d (f4")))- H e r e w e u s e

Thus,

Zk Zj ( Zi \ Zj ( Zk

Zj ) Zi Zi \ Zj

Since ipiipj1 is given by multiplication with j - , this concludes the proof. •

Remark 2.4-5 The dual of the Euler sequence twisted by 0 (1 ) takes the form

Let us think of P n more invariantly as P(V) with V a complex vector space
of dimension n + 1. In particular, V* is naturally identified with the space of
homogeneous linear forms on V and, therefore, V* = H°(¥(V),O(1)). The
exact sequence (2.1) can in this context be written as

0 %v)(l) V* ® O 0(1) *• 0,

where the surjection V* <g> 0 —> 0 (1 ) is the evaluation map.
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The advantage of writing the Euler sequence coordinate free is that it
lends itself to important generalizations in the relative context, but we only
mention this in passing:

If E is a holomorphic vector bundles over X, any fibre TT~1(X) of the
projection ix : ¥{E) —> X is a complex projective space W(E(x)) which comes
with the Euler sequence

0 ^ %£(*))(!) ^ E(x)* ® O *- 0(1) ^ 0.

It turns out that these sequences can be glued to the relative Euler sequence

o — * • nv ® ow(i) — * - n*E* — - ov(i) — » • o,

where 0^(1) is the (dual of the) relative tautological bundle (see Exercise
2.4.9) and Tv = J7* is the relative tangent bundle defined as the kernel of

Corollary 2.4.6 One has kod(Pn) = -oo.

Proof. Since the line bundles O(d) have global sections for d > 0, none of the
powers K®™ = O(—m(n + 1)) for m > 0 admits non-trivial global sections
(Corollary 2.4.2). Thus, the canonical ring R(Fn) is isomorphic to C. •

This yields in particular an example of a complex compact manifold with
kod(X) < a(X). Other examples are provided by projective complex tori.

In order to compute the canonical bundle of hypersurfaces in Pn , or more
generally of complete intersections, we will need one more result. The following
works for any complex manifold Y and not just the projective space.

Proposition 2.4.7 Let X be a smooth hypersurface of a complex manifold Y

defined by a section s 6 H°(Y,L) of some holomorphic line bundle L on Y.

Then MX/Y = L\x and thus Kx = {KY ®L)\X-

Proof. First observe the following fact: Let <̂  = [<pl,..., fn) be a holomorphic
map U —> Cn of some connected open neighbourhood U C C n of the origin,
such that </?"(.*!,..., zn_!,0) = 0 for all ( z j , . . . , z n _i ,0) G U. Then ipn{z) =

zn • h{z\,..., zn), where h(z\,..., zn) is a power series in z\,..., zn. Hence,

d<Pn
f n \ - /
{ Z l Z 1 V ) \ for k =

Let us apply this to our situation. We may fix local coordinates <pi : f/j =
<Pi{Ui) C C " , such t h a t tpi(UinX) = {(z1,...,zn) e (pi(Ui) \ zn = 0 } . T h u s ,

the transition maps ipij : <fij(Ui n Uj) = y>i(Ui f~l Uj) have the above property.
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This yields

J(<PM

By Proposition 2.2.17, the normal bundle MX/Y corresponds to the cocycle

On the other hand, due to Proposition 2.3.18, one has L = O(X) and,
therefore, L corresponds to the cocycle {f1}, where s, and Sj are local equa-
tions of X on E/j respectively Uj. Thus, Sj = </?". Hence, for x € X with
ipj (x) = (21,... zn_i, 0) one has

*(X) - fltx) - ( ^ " ^ " M
( X ) - ( X ) - (Xj

i-{z1,...,zn-1,0)=[-p-O<pj){x).

Therefore, both line bundles O(X)\x and MX/Y a r e given by the same cocycle.
The last assertion follows from the adjunction formula 2.2.17. •

Remark 2.4.8 Note that the isomorphism My/x — ®{X)\x can locally be

described as the map induced by Ty -» O(X)\x, -gi •—> -gf-\x-

Corollary 2.4.9 / /X c P " is a smooth hypersurface of degree d, i.e. defined
by a section s £ H°(Pn, O(d)), then Kx ^O(d-n-l)\x. •

Exercises

2.4.1 Show that the canonical bundle Kx of a complete intersection X =
Z(/i) n . . . O Z(/fe) C Pn is isomorphic to O(£,deg(/i) - n - l ) ) | x . What can you
deduce from this for the Kodaira dimension of XI

2.4.2 Are there holomorphic vector fields on ¥", i.e. global sections of Tjpn, which
vanish only in a finite number of points? If yes, in how many?

2.4.3 Compute the Kodaira dimension of the following smooth hypersurfaces:

i) ^(ELo^)cP2, h) 2(E?=04)cP2,iii) £(ELo4)cP3, and

2.4.4 Show that H°(¥n, Q^) = 0 for q > 0.
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2.4.5 The surface En = P(0Pi © 0Pi(n)) is called the n-th Hirzebruch surface.

Show that En is isomorphic to the hypersurface Z(x$y\ — 2:12/2) C P1 x P2, where
(XQ : xi) and (yo : 2/1 : 2/2) are the homogeneous coordinates of P1 respectively P2.

2.4.6 Describe the tangent, cotangent, and canonical bundle of Pn x Pm .

2.4.7 Determine all complete intersections X = Hi f"l . . . D -ffn+m-2 CP"xP™
with 7?i G \p\O(di) ®p2O(ei)\, di,ei > 0 with trivial canonical bundle.

2.4.8 Let Y C X be a smooth hypersurface in a complex manifold X of dimension
n and let a be a meromorphic section of Kx with at most simple poles along Y.

Locally one can write a = h • ^p~ A dz2 A . . . A dzn with z\ defining Y. One sets
Resy(a) = (h • dz2 A . . . A dzn)\y.

a) Show that Resy(a) is well defined and that it yields an element in H°(Y,KY).

b) Consider a as an element in H [X,Kx ® O(Y)) and compare the definition of
the residue with the adjunction formula: Ky = (Kx ® O(Y))\y.

c) Consider a smooth hypersurface Y C P™ defined by a homogeneous polynomial

/ G H°(¥n, O(n + 1)). Prove that a := J](-l) iZi/~1dzo A . . . A dzt A . . . A dzn is

a meromorphic section of Kpn with simple poles along Y. Furthermore, show that

Resy(a) G H°(Y,KY) defines a holomorpic volume form on Y, i.e. a trivializing

section of Ky.

2.4.9 Let S b e a holomorphic vector bundle on a complex manifold X. Construct
the relative tautological holomorphic line bundle On(—1) on ¥(E). Here, n : P(E) —*

X denotes the projection and the fibre O^( —1)(£) for a line £ C JE'(^) representing
a point £ G TT~1(X) should be, by construction, identified with £.

2.4.10 This exercise generalizes the Euler sequence to Grassmannians. Show that
on Grfc(F) there exists a natural short exact sequence (the tautological sequence)
of holomorphic vector bundles

0 ^S *~O®V ^Q ^ 0

such that over a point w G Grfe(F) corresponding to W C V the inclusion S(w) C
(O 0 V)(w) = V is just W C V. Moreover, prove that Hom(5, Q) is isomorphic to
the holomorphic tangent bundle of Gvk(V)- Observe that this generalize what has
been said about the Euler sequence on Pn which corresponds to the case k = 1

2.4.11 Let X be a complex manifold and let Ox®V -» E be a surjection of vector
bundles where V is a vector space and E is a vector bundle of rank k. Show that there
exists a natural morphism ip : X -> Grfc (V) with tp* (O (g> V —• Q) = Ox ® V —• E.

Proposition 2.3.26 is the special case fc = 1. Compare the Euler sequence with the
tautological sequence introduced in the previous exercise via the Plucker embedding.
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2.5 Blow-ups

So far, we have seen quite a few examples of compact complex manifolds, but
no classification scheme has been proposed. In fact, classifying all compact
complex manifolds is almost impossible, except maybe for the case of curves,
as it is very easy to produce many new complex manifolds from any given one.
One way to do so is by blowing up a given manifold X along a submanifold
Y G X, which might very well be just a point. The particular feature of this
construction is tha t it leaves the complement of Y unchanged.

Thus, classifying compact complex manifolds usually just means classifying
those tha t are minimal, i.e. those which are not obtained as a blow-up of
another manifold. (That a suitable minimal model of a given manifold can be
defined is not clear at all and, for the time being, a 'clean' theory exists only
up to dimension two.) These minimal ones can then be studied by certain
numerical invariants, like the Kodaira dimension. In fact, the extent to which
a classification can be achieved depends very much on the Kodaira dimension.
A more or less complete list is only hoped for for compact manifolds of Kodaira
dimension < 0.

Besides classification theory, blow-ups are a useful tool in many other
situations. We shall see how they can be used to resolve linear systems that
are not base point free and in Section 5.3 they will be essential in proving the
Kodaira embedding theorem.

Let; X be a complex manifold and let Y C X be a closed submanifold.
We shall construct the blow-up of X along Y which is a complex manifold
X = B l y ( X ) together with a proper holomorphic map a : X —> X. This map
has two characteristic properties which will be immediate consequences of the
construction, see Proposition 2.5.3.

We shall first discuss the construction in two special cases. The general
situation will then be reduced to this.

Example 2.5.1 B l o w - u p of a po in t . Recall tha t the line bundle O(—1) on
P n is given as the incidence variety

• <Cn+1

Thus, the fibre of the projection n : £>( - l ) -> P n over a line £ € P " is just
the line £ itself. Let us consider the other projection a : O(—1) —> C " + 1 . For
z / 0 the pre-image a~1{z) consists of the unique line lz passing through
z e C n + 1 . For z = 0 however the pre-image is cr~l(0) = P n , as any line in
C " + 1 contains the origin 0 € C r a + 1 . In fact, cr~1(0) is nothing but the zero
section of C ( - l ) -> P™.
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The blow-up a : Blo(Cn + 1) -> C n + 1 of C n + 1 along the zero-dimensional
submanifold {0} is by definition the holomorphic line bundle C(—1) together
with the natural projection a : O(—l) —> C n + 1 .

Clearly, the construction is independent of any coordinates, i.e. we could
have worked with the abstract projective space P(V). But using the coordi-
nates explicitly, the incidence variety O(—1) C P" x C" + 1 can also be de-
scribed as the subset of P n x C ra+1 satisfying the equations Zi • Xj = Zj • Xi,

i,j = 0 , . . . , n, where (ZQ, ..., zn) and (xo : . . . : xn) are the coordinates of
C n + 1 and P n , respectively. Also note that the normal bundle of 0 G C n + 1 ,
which is just a vector space, is naturally isomorphic to C n + 1 .

Example 2.5.2 Blow-up along a linear subspace. Let Cm c C™ be the
linear subspace satisfying zm+\ — ... — zn = 0 and denote by (xm+i : . . . : xn)

the homogeneous coordinates of P""™"1. We define

B1C-(C") :={{x,z) \zi-Xj =zrxi, i, j = m + 1 , . . . ,n} C P"-™"1 x C " .

In other words, BlC">(Cn) is the incidence variety {{£,z) | z G (Cm,£)},

where £ G P"-™-1 is a line in the complement Cn~m of C m C C n and (Cm , £)
is the span of C m and the line £.

Using the projection TT : BlCm(Cn) -> fn~m~l one realizes B1C-(C") as
a Cm+1-bundle over p™-™"1. The fibre over £ G p«-™-i is just ir'1^) =

(Cm,£). Thus, B l c - (C n ) is a complex manifold.
Moreover, the projection a : Blc™(Cn) —> C" is an isomorphism over C n \

C m and cr - 1(Cm) is canonically isomorphic to P(A/c"»/C")i where the normal
bundle Ncm/Cn ls canonically isomorphic to the trivial bundle C m x C n ~ m

over C m .

Let us now construct the blow-up of an arbitrary complex manifold X of
dimension n along an arbitrary submanifold Y C X of dimension m. In order
to do so, we choose an atlas X = [JUi, fi : Ui = <pi(Ui) C C" such that

Let a : BlCm(Cn) -> Cn be the blow-up of Cn along C m as constructed in
the example above and denote by CTJ : Zi —> <fi(Ui) its restriction to the open
subset ifi(Ui) C Cn , i.e. Zi = a~1{ipi{Ui)) and Oi = a\zi- We shall prove that
all the blow-ups on the various charts ipi(Ui) naturally glue.

Consider arbitrary open subsets U, V C C™ and a biholomorphic map

cj) : U ^ V with the property that <f>(UnCm) = y n C m . Write (f> = ( ^ , . . . , (j>n).

Then for k > m one has (j>k = X)™=m+i zj4>k,i ( s e e ^ e P ro°f °f Proposition

2.4.7). Let us define the biholomorphic map 4> • cr~1(U) = cr~1(V) as

It is straightforward to check that <j){x, z) is indeed contained in the incidence
variety. In order to obtain the global blow-up a : Blcm(C") - » I w e have to
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ensure that these gluings are compatible. This is clear over X\Y. Over Y the
matrices we obtain for every 4>ij\c™ are by definition the cocycle of the normal
bundle -Sfy/X- Thus, they do satisfy the cocycle condition. At the same time
this proves that o-~1(Y) ^ P(A/"y/x)-

The discussion is summarized by the following

Proposition 2.5.3 Let Y be a complex submanifold of X. Then there exists
a complex manifold X = Bly(X), the blow-up of X along Y, together with
a holomorphic map a : X —> X such that a : X \ cr~1(Y) = X \Y and
a : o - 1 ^ ) -» Y is isomorphic to P(AfY/x) ^Y- a

Definition 2.5.4 The hypersurface a^iY) = P(AfY/x) C Bly(X) is called
the exceptional divisor of the blow-up a : Bly(X) —> X.

Note that blowing-up along a smooth divisor Y C X does not change X, i.e.
in this case X = X.

Let us now come back to the case that Y is just a point x in an n-
dimensional manifold X. Then the blow-up a : X := B\X(X) —> X replaces
x £ X by P™"1. The exceptional divisor cr~1(x) is denoted E.

Proposition 2.5.5 The canonical bundle K^ of the blow-up X is isomorphic

Proof. The morphism a : X —> X induces a sheaf homomorphism T^ —>
o~*Tx (either use Exercise 2.2.10 or the discussion in Section 2.6). Taking the
determinant and dualizing yields an injection a*Kx C K^ of sheaves (not of
vector bundles!). In fact, over X \ E it is an isomorphism. It then suffices to
show that the cokernel is 0(n_i)£.

This is a local calculation and we can therefore assume that X = Cn. Then
we can conclude by the following cocycle calculation. Choose an open covering
X = |J Vi, where V$ := {(x, z) | Xi ^ 0}, i — 1, . . . , n, and coordinates

Thus, C" C Cn + 1 is the affine subspace defined by Ui — 1. The transition
functions are given by

<Pij{u1,...,Un+i) = (U'1 - M i , . . . , ^ " 1 -Un,Ui -Un+i).

Hence, det J(*fiij) = i>ij • u^, where {tpij} is the correspoding cocycle on P""1,
i.e. ijjij — u~n (see the proof of Proposition 2.4.3). Hence, Kx is given by the

cocycle «7 ( f 1 ) • (^n ^ac^' a s ^n *ne Pro°f °f Proposition 2.4.3

there is an extra boundary (—l)l~^ which we have suppressed here.)
On the other hand, the divisor E C X is denned as the vanishing locus of

all functions zi,... ,zn. Using z^-xi = zg-x^ this can be described on the open
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subset Vi by the single equation Zi = 0. Thus, the cocycle associated to E that
describes the line bundle O(E) is {Vy,^ 1 } . (Recall that, if a divisor D on
the open sets DnV; is given by fi, then O(D) is the line bundle determined
by the cocycle {Vi, £•}. See Corollary 2.3.10.) •

Corollary 2.5.6 For the exceptional divisor E = P""1 c X —> X one has

Proof. Indeed, Propositions 2.4.3 and 2.4.7 yield O(-n) ^ Kfn-i ^ (K^ ®
O(E))\E- Hence, O{nE)\B = O(-n). Since Pic(P"-1) is torsion free (cf. Ex-
ercise 3.2.11), this proves the assertion.

Without using this information on the Picard group, one has to argue
as follows. The assertion is clearly local. So we may assume X = Cn. The
line bundle O(E) in this case can in fact be identified with the line bundle
U xl1- Indeed, the latter admits the section t(£,z) = ((£, z):z) which
vanishes along E with multiplicity one. In other words, O(E) is isomorphic
to the pull-back n*O(—1) under the second projection TT : X —• P™"1. This
yields the assertion O(E)\E = O(-l). D

We will conclude by giving a more differential geometric description of the
blow-up of a point. This is done by using a standard gluing operation known
as the connected sum, of two differentiable manifolds.

Let M and M' be differentiable manifolds both of dimension m. By D C
Km we shall denote the open ball of radius one. Choose open subsets U C M
and U' C M' and diffeomorphisms r\: D = U and rf : D = U'. Furthermore
we consider the diffeomorphim

-or

of the annulus D \ (\D) = {x e Em | 1/2 < ||x|| < 1}.

Definition 2.5.7 The connected sum

M#M' :={M\V (15)) U€ (M' \ rf ( |

is obtained by gluing M \ rj(^D) and M' \ rf(^D) over the open subsets
U\r) {\D) and U'\rf Q-D) via the map £ (or, more explicitly, via rf'o^orj"1).

It is not difficult to see that the diffeomorphism type of the connected sum
does not depend neither on the chosen open subsets U and U' nor on r\ and

rf.
The construction can easily be refined by taking possible orientations of M

and M' into account. If M and M' are orientable and orientations have been
chosen for both, then we require that r\ be orientation preserving and that rf
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be orientation reversing. Here, use the standard orientation of Mm. Since £ is
orientation reversing, we obtain a natural orientation on the connected sum
M#M' which coincides with the given ones on the open subsets M \ r](^D)
and M'\rj'{±D).

If M is oriented (the orientation is commonly suppressed in the notation),
we shall denote by M the same differentiable manifold M, but with the re-
versed orientation. We will in particular be interested in P™, the complex
projective space with the orientation opposite to the one naturally induced
by the complex structure. E.g. if n = 2 then H2(Pn, Z) = Z and its generator
t satisfies £2 = — 1.

Proposition 2.5.8 Let x £ X be a point in a complex manifold X. Then
the blow-up B1X(X) is diffeomorphic as an oriented differentiable manifold to
X#P n .

Proof. The assertion is local, so we may assume that X is the unit disc D =
{z € C" | IÎ H < 1} and x = 0. By definition D = B1O(D) = {(x,z) 6
D x P " - 1 | xt • Zj = Xj • Zi}.

In order to specify the connected sum we choose r\ = id and r\' : D —> Pn,
x I—> (1 : x), which is orientation reversing. Thus, Pn \ rf (\D) = {{XQ :
x) | |xo| < 2 • ||a;||}. In order to prove the assertion it suffices to find a orien-
tation preserving diffeomorphism

which restricts to £ : rj'(D) \ tf{\D) ^ {(x,z) G D \ 1/2 < ||z|| < 1} ^
( IS)\ ( )

This map can explicitly be given as (XQ : x) x\\ 2 • x, [x]). The

verification that it indeed defines a diffeomorphism is straightforward. •

Remark 2.5.9 The connected sum with P2 is often used in differential and sym-
plectic topology of fourfolds. E.g. Taubes [104] has shown that any compact
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differentiable manifold M of dimension four admits an anti-selfdual metric af-

ter taking the connected sum with P2 sufficiently often. In the complex realm

its says that after blowing-up a complex surfaces sufficiently often it can be

endowed with an anti-selfdual metric.

Exercises

2.5.1 Let X —> X be the blow-up of a surface X in a point x € X. Show that

the pull-back of sections defines an isomorphism H°(X, Kx) — H°{X,K-^). More

generally, one has H°(X,/C|m) = H°(X,# f m ) -

2.5.2 Show that O(E) of the exceptional divisor E = P(-/Vy/x) of a blow-up
Bly(X) —> X of a compact manifold X admits (up to scaling) only one section.
(You might reduce to the case of the blow-up of a point.)

2.5.3 Consider the Z/2Z-action z >—* —z on C2 which has one fixed point and
whose quotient C2 /± is not smooth. Show that the action lifts to a Z/2Z-action on
the blow-up Blo(C2) and prove that the quotient Blo(C2)/± is a manifold.

2.5.4 Let C C C2 be the reducible curve defined by z\ • zi — 0. Show that the
closure of C \ {0} C C \ {0} = B1O(C2) \ E in B1O(C2) is a smooth curve.

2.5.5 Let X be a K3 surface, i.e. X is a compact complex surface with Kx — Ox

and h}(X, Ox) = 0. Show that X is not the blow-up of any other smooth surface.

C o m m e n t s : - Blow-ups cannot only be useful in the study of complex mani-
folds, i.e. smooth geometric structures. In fact, Hironaka has shown that any singular
complex variety can be made smooth by inductively blowing-up smooth subvarieties
a finite number of times. This works in the analytic as well as in the algebraic set-
ting. However, resolving singularities in characteristic p is still an open problem, but
a weaker version, so called alterations, have been shown to exist by recent work of
de Jong [30].

- As indicated in Exercise 2.5.4, blow-ups can be useful when one wants to

desingularize curves embedded in surfaces (or more generally analytic subvarieties).

We refer to [66] for the proof that this is always possible.
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2.6 Differential Calculus on Complex Manifolds

In this section we will present a slightly different, although eventually equiva-
lent approach to the notion of a complex manifold. We will see that a complex
structure is determined by an almost complex structure on any tangent space,
a purely linear algebra notion, satisfying a certain integrability condition. We
thus combine the linear algebra of Section 1.1, the study of local differential
forms in Section 1.3, and the notion of a complex manifold used so far. In
passing, Dolbeault cohomology of complex manifolds and holomorphic vector
bundles is introduced.

Definition 2.6.1 An almost complex manifold is a differentiable manifold X
together with a vector bundle endomorphism

/ : TX >• TX, with I2 = -id.

Here, TX is the real tangent bundle of the underlying real manifold.

The endomorphism is also called the almost complex structure on the un-
derlying differentiable manifold. If an almost complex structure exists, then
the real dimension of X is even.

Proposition 2.6.2 Any complex manifold X admits a natural almost complex
structure.

Proof. Cover X by holomorphic charts <p : Ui = (pi(Ui) C C™ and use the al-
most complex structure defined in Section 1.3. By Proposition 1.3.2 it neither
depends on the chart nor on the atlas in the equivalence class specified by the
complex structure. Thus, we can define a natural almost complex structure
on X depending just on its complex structure. •

In order to distinguish explicitly between the (almost) complex manifold
and the underlying real manifold one sometimes writes X = (M, I), where M
is just a real manifold and / is the additional structure.

Remark 2.6.3 Not every real manifold of even dimension admits an almost
complex structure. The easiest example is provided by the four-dimensional
sphere. See the comments at this end of this section.

Let X be an almost complex manifold. Then TcX denotes the complexi-
fication of TX, i.e. TQX = TX (8> C. We emphasize that even for a complex
manifold X the bundle TcX is a priori just a complex vector bundle without
a holomorphic structure.

Proposition 2.6.4 i) Let X be an almost complex manifold. Then there exists
a direct sum decomposition
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of complex vector bundles on X, such that the C-linear extension of I acts as
multiplication by i on T l l0X respectively by —i on TOtlX.

ii) If X is a complex manifold, then Tl'°X is naturally isomorphic (as a
complex vector bundle) to the holomorphic tangent bundle Tx-

Proof, i) One defines T l l0X and T°'lX as the kernel of / — i • id respectively
I + i -id. That these maps are vector bundle homomorphisms and that the
direct sum decomposition holds, follows from the direct sum decomposition
on all the fibres (cf. Lemma 1.2.5)

ii) As we have computed in Proposition 1.3.2, the Jacobian

aj.±x UkS±x U — J-f^v (B lf^v

of a biholomorphic map / : U = V, where U, V C C" are open subsets, has

Let X = [j Ui be a covering by holomorphic charts ipi : Ui = <p{Ui) = Vi C
Cn. Then (y>r1)*(T1'°X|t/i) = TlfiVi and the latter is canonically trivial-
ized. With respect to these canonical trivializations the induced isomorphisms
TVi(x)Vi ~ Tl%)Vi a r e g i v e n b y J(^°iPj1)0lPj(x)- T h u s ' b o t h bundles TlfiX
and Tx are associated to the same cocycle {J(<pij) o (fj}. Hence, they are iso-
morphic. D

Definition 2.6.5 The bundles Tl'°X and T°'lX are called the holomorphic
respectively the antiholomorphic tangent bundle of the (almost) complex man-
ifold X.

Remark 2.6.6 To any complex vector bundle E —> X one can associate its
complex conjugate E —» X. As real vector spaces the fibres E(x) and E{x)
are naturally isomorphic, but multiplication with i differs by a sign. If E is
described by the cocyle {ipij} then E is given by {4>ij~\- Note that the complex
conjugate E of a holomorphic vector bundle E is a priori not holomorphic in
general. Observe that T0:1X is canonically isomorphic to the complex conju-
gate T^X of Tl'°X.

As in the local situation dealt with in Section 1.3, we are more interested
in the dual bundles.

Definition 2.6.7 For an almost complex manifold X one defines the complex
vector bundles

/\k
cX := /\\TCX)* and f\™X := /^(T^X)* ®c /^(T^Xy.

Their sheaves of sections are denoted by Ax c a nd -4x9> respectively. Elements
in Ap'q(X), i.e. global sections of Ax

q, are called forms of type (or bidegree)
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As in Section 1.3, we denote the projections A*(X) —> Ak(X) and A*

Ap'q(X) by nk and IIp<q, respectively.

Corollary 2.6.8 There exists a natural direct sum decomposition

KX = 0 K"X ^Ax,c = 0 Ap
x
q.

Moreover, f\P'q X = /\q'p X and Ap
x
q = Aq

x
p.

Proof. As Corollary 1.3.4, these assertions are immediate consequences of
Proposition 1.2.8. •

Definition 2.6.9 Let X be an almost complex manifold. If d : Ak
xc —> Ak

x^

is the C-linear extension of the exterior differential, then one defines

d := np+1'q od:Ap
x
q *- A**1'", 8 := np>q+1 o d : Ap

x
q Ap

x
q+l.

As in the proof of Lemma 1.3.6 the Leibniz rule for the exterior differential
d implies the Leibniz rule for d and 3, e.g. d(aA/3) = d{a)A(i+{-l)p+qaAd{j3)

for a G Ap'q(X).

Proposition 2.6.10 Let f : X —> Y be a holomorphic map between complex

manifolds. Then the pull-back of differential forms respects the above decompo-

sitions, i.e. it induces natural C-linear maps f* : Ap'q(Y) —» Ap'q(X). These

maps are compatible with d and d.

Proof. As for any differentiable map / : X —> Y there exists the natural
pull-back map /* : Ak{Y) -> Ak(X) which satisfies /* o dY = dx o f*.

If / is holomorphic, then the pull-back /* is compatible with the above
decompositions (cf. Exercise 1.3.1). In particular, f*(Ap'q(Y)) C Ap'q(X) and

np+\,q of* = j * o 77P+1,?. Thus, for a G Ap'q(Y) one has

dx(fa) = np+1'q(dx(r(a))) = np+1'q(r(dY(a)))
= f*(np+1>q(dY(a))) = f*(dy(a)).

Analogously, one shows dx o /* = /* o By. D

By Proposition 2.6.4 we know that the complex vector bundles Qx and

/\p' X of a complex manifold X can be identified. In particular, any holo-

morphic section of Qp
x defines a section of /\p' X.

Proposition 2.6.11 The space H°(X, Qx) of holomorphic p-forms on a com-

plex manifold X is the subspace {a G AP'°(X) \ da = 0}.
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Proof. This is a purely local statement. We use that locally the p-forms dz^ A
. . . A dzi provide a basis of the complex vector bundle f\p' X as well as a
holomorphic(!) basis of the holomorphic vector bundle (2P

X. This stems from
the identification of T1 '0 = X with Tx given in the proof of Proposition 2.6.4.

A local section of the form fdzix A . . . A dzip € Ap'° (U) is a holomorphic
section of 1?̂ - if and only if / is holomorphic, i.e. -^ = 0 for i = 1 , . . . , n. But
the latter is equivalent to

d(fdzh A . . . A dzip) = V -Jrdzi A dzh A . . . A dzip = 0.

•

Corollary 2.6.12 Let f : X —> Y be a holomorphic map between complex

manifolds. Then there exist the following natural maps: i) A sheaf homomor-

phism Tx —> f*Ty, ii) A sheaf homomorphism f*fly —> J?x, and iii) yl linear

map H°{Y, Q^) -^ H°{X, f2x).

Proof. Assertion ii) implies the other two. Indeed, dualizing ii) yields i). Tak-
ing exterior powers of ii), passing to global sections, and composing with
H°(Y, {%) -> H°(X, f(%) yields iii).

In order to prove ii), we use the exact sequence Qy ~> -Ay —> -^y • Since

f*ody = dxof* the pull-back f-H-A1/ - ^ Ay1), maps to Ax° -^ A1/.

This yields a natural map f~lQy —> Qx and thus the desired map f*Qy —>

Qx. •

Definition 2.6.13 A holomorphic map / : X —> Y is smooth at a point
x £ X if the induced map Tx(x) —> (/*7y)(x) = Ty(y) is surjective.

As an immediate consequence of Corollary 1.1.12 one finds:

Corollary 2.6.14 Let f : X —> Y be a holomorphic map and y GY. Assume

that f is smooth in all points of the fibre f"1(y). Then the fibre f~l{y) is a

smooth complex submanifold of X. •

We next wish to discuss what an almost complex structure needs in order
to be induced by a complex one.

Proposition 2.6.15 Let X be an almost complex manifold. Then the follow-

ing two conditions are equivalent:

i) da = d(a) + 8{a) for all a G A*{X).

ii) On A1'°{X) one has 770-2 od = 0.

Both conditions hold true if X is a complex manifold.
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Proof. The last assertion is easily proved by reducing to the local situation
(cf. Section 1.3).

The implication i) => ii) is trivial, since d = d+B clearly implies II0t2od = 0
on Alfi(X).

Conversely, d = d + d holds on Ap'q(X) if and only if da G Ap+1>q(X) ©

Ap'q+1(X) for all a G Ap'q(X). Locally, a G Ap'q(X) can be written as a sum

of terms of the form fw^ A . . . A Wip A w'^ A . . . A w'j with Wi G A1'°(X) and

w'j G ^4.0ll(X). Using Leibniz rule the exterior differential of such a form is

computed in terms of df, dwik, and dw'^. Clearly, df G A1'O(X)(BA°'1(X) and

by assumption dwt G A2'°{X)®Al'1{X), and dv/j = dMjT G A1'1(X)®A°'2{X).

For the latter we use that complex conjugating ii) yields 772'0 od = 0 on A0'1.

Thus, da G ^ P + 1 ' « ( X ) © ̂ - « + 1 ( X ) . •

Definition 2.6.16 An almost complex structure / on X is called integrable

if the condition i) or, equivalently, ii) in Proposition 2.6.15 is satisfied.

Here is another characterization of integrable almost complex structures.

Proposition 2.6.17 An almost complex structure I is integrable if and only

if the Lie bracket of vector fields preserves T^ , i.e. [Tx' ,TX' } C Tx' .

Proof. Let a be a (1,0)-form and let v, w be sections of T0 '1 . Then, using the
standard formula for the exterior differential (cf. Appendix A) and the fact
that a vanishes on To>1, one finds

(da)(v, w) = v(a(w)) — w(a{v)) — a([v, w]) = —cx([v, w]).

Thus, da has no component of type (0,2) for all a if and only if [v,w] is of
type (0,1) for all v, w of type (0,1). •

Corollary 2.6.18 If I is an integrable almost complex structure, then d2 =

d2 = 0 and dd = —Bd. Conversely, if d2 = 0, then I is integrable.

Proof. The first assertion follows directly from d = d + d (Proposition 2.6.15),
d2 = 0, and the bidegree decomposition.

Conversely, if B2 = 0 we show that [Tx'
l,Tx

A] C T^'1. For v,w local
sections of Tx we use again the formula (da)(v, w) — v(a(w)) — w(a(v)) —

a([v,w\), but this time for a (0, l)-form a. Hence, (da)(v,w) = (da)(v,w). If
applied to a = Bf we obtain

0 = (B2f)(v, w) = v((Bf)(w)) - w((Bf)(v)) - (Bf)([v,«,])

= v((df)(w)) - w((df)(v)) - (Bf)([v,w]), since v,w G TQ/

= (d2f)(v,w) + (df)([v,w]) - (9f)([v,w])

= 0 + {df)([v,w}), since d= d + B on A0.



2.6 Differential Calculus on Complex Manifolds 109

Since at any given point (1,0)-forms of the type df generate / \ ' , this yields
[v,w}eTo

x'\ D

The importance of the concept of integrable almost complex structure
stems from the following important result, the proof of which is highly non-
trivial. For analytic manifolds an easy argument is given in [114].

Theorem 2.6.19 (Newlander—Nierenberg) Any integrable almost com-

plex structure is induced by a complex structure. •

Thus, complex manifolds and differentiable manifolds endowed with an in-
tegrable almost complex structure are describing the same geometrical object
(see Exercise 2.6.1). Each definition has its advantages and it depends on the
situation which one suits better.

Before stating a similar result for vector bundles, we introduce the Dol-
beault cohomology of a complex manifold. This is the analogue of the coho-
mology group Hq(X, (2X): used to defines the Hodge numbers of a compact
complex manifold, in the context of almost complex structures.

Definition 2.6.20 Let X be endowed with an integrable almost complex
structure. Then the (p, q)-Dolbeault cohomology is the vector space

We have seen that H°(X, Op
x) = ker(<9 : AP'°(X) -> Ap'l{X)). Using the

3-Poincare lemma 1.3.9 and the fact that the sheaves A™ are acyclic we
obtain the following generalization:

Corollary 2.6.21 The Dolbeault cohomology of X computes the cohomology

of the sheaf Q\, i.e. H™(X) = Hq(X,f2p
x). D

The formalism can be generalized to the Dolbeault cohomology of vector
bundles as follows.

Let E be a complex vector bundle over a complex manifold X.

Definition 2.6.22 By Ap'q(E) we denote the sheaf

U i *- Ap'"(U, E) := r(U, APl9X ® E) .

Locally a section a of Ap'q(E) can be written as a = ^2 a^ <g> s» with
cx.i G Ax

q and Si £ E. Then one could try to define da as ^ d ( a , ) <g) Sj.
This definition is clearly problematic, as a — a^g <g> g~~lSi for any function
g : U —> C*, but if the function g is non constant then d(ciig) <S> g~1Si =

d{at) ® Si +

Lemma 2.6.23 IfE is a holomorphic vector bundle then there exists a natural

C-linear operator BE '• Ap'q(E) —> Ap'q+1(E) with d\ = 0 and which satisfies

the Leibniz rule <9E(/ • a) = B(f) A a + ^
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Proof. Fix a local holomorphic trivialization s — (s\,..., sr) of E and write a
section a G Ap'q(E) as a = ̂  a» <g> Sj with a e ^4^?- Then set

i Si.

With respect to a different holomorphic trivialization s' = (s[,... ,s'r) we
obtain an operator B'E. But BE = B'E. Indeed, if (iptj) is the transition matrix,
i.e. Si = Y,j ^ijSp then <9#a = J2t d(ai) ® s» and

= B'E ^2 i ® p
V i,i

4 = BEa,

as (i/'ij) is a matrix with holomorphic entries. •

By definition, the operator BE on Ap'q(E) is given by xk(E) copies of the
usual B operator once a holomorphic trivialization of E is chosen.

Definition 2.6.24 The Dolbeault cohomology of a holomorphic vector bundle
Eis

,.(x p) , , Ker (BE :
(X,E),BE)= ^ ^

As above one has

Corollary 2.6.25 H™(X,E) ^ Hq(X,E®Qp
x).

Proof. The complex of sheaves AP'°(E) -> ^ P - 1 ^ ) -^ ^p-2(£) -^ ... is a
resolution of E (gi /2 -̂ and the sheaves >tp'9(£) are acyclic. D

We conclude this section by the vector bundle analogue of Theorem 2.6.19.
It is in some sense a linearized version of the Newlander-Nierenberg theorem,
but its proof is a more or less direct consequence of the Frobenius integrability
principle. As this would lead as astray, we omit the proof.

Theorem 2.6.26 Let E be a complex vector bundle on a complex manifold
X. A holomorphic structure on E is uniquely determined by a C-linear ope-
rator BE '• A°(E) —> A°'1(E) satisfying the Leibniz rule and the integrability
condition BE = 0. •
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Exercises

2.6.1 Show that any almost complex structure is induced by at most one complex
structure.

2.6.2 Show that any oriented Riemannian surface admits a natural almost com-
plex structure (cf. Example 1.2.12). Use the result of Newlander and Nierenberg
to show that any almost complex structure on a Riemann surface is induced by a
complex structure.

2.6.3 Compare the almost complex structure on S2 as given in the previous
exercise with the natural complex structure on P1.

2.6.4 Let / : X —> Y be a surjective holomorphic map between connected
complex manifolds. Let (X, /)reg be the open set of /-smooth points, i.e. the set of
points where / looks locally like the projection of a product. Show that (X,/) r e g

is dense in X and that its complement can be described as the zero set of a global
section of a holomorphic vector bundle on X.

2.6.5 Use the Poincare lemma to show that any hypersurface D C C" is the
defined by a global holomorphic function / : Cn —• C. (Cousin problem)

2.6.6 Show that the exterior product induces a multiplication on the full Dol-
beault cohomology Q Hp'q(X) and that this yields a Z2-graded Z/2Z-commutative
algebra ® Hp'q(X) for any complex manifold X.

2.6.7 Let X be a complex manifold. Verify that the following definition of the
Bott-Chern cohomology

{a e Ap'q(X) I da = 0}

makes sense. Deduce from Exercise 1.3.4 that H^'Q(B) = 0 for a polydisc B C Cn

and p,q > 1. Show that there are natural maps

and

(Bott-Chern cohomology groups are very useful when one is interested in com-
pact complex manifolds which are not necessarily Kahler. In fact, for compact Kahler
manifolds Dolbeault and Bott-Chern cohomology groups coincide via the above
map. See Exercise 3.2.14.)

2.6.8 Let M be the real manifold described as a hypersurface XQ + x\+xi,+x\ = 0
in P3. We denote the naturally induced complex structure by I. Show that (M, /)
and (M, —I) define isomorphic complex manifolds.

2.6.9 Let G be a real Lie group. Consider the map Ad : G -> Gl(TeG) with
Ad(g) : TeG -> TeG defined as the differential of G -> G, hi-* ghg'1.

i) Show that a connected Lie group is commutative if and only if Ad = id. (This
requires some basic knowledge on the exponential map, etc. See [40, page 38].)

ii) Show that for a complex Lie group the map Ad is holomorphic. (The tangent
space TeG becomes complex in a natural way in this situation.) Deduce that Ad = id
for any connected compact complex Lie group.

iii) Conclude that any connected compact complex Lie group is abelian.
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2.6.10 Let M be a real four-dimensional manifold and let a € .4.C(M) be a
closed form such that a A a — 0 and a A a everywhere non-zero. Show that there
exists a unique complex structure I on M such that a is a holomorphic two-form
on (M, / ) . (This observation is due to Andreotti. Hint: Define T0 '1 as the kernel of

a : TCM -> A c M.)

2.6.11 For this exercise you need to be acquainted with the basics of hy-

percohomology. Consider the holomorphic de Rham complex Ox —• fix —>

fix —* • • •• (Note that on fix one has d = d.) Show that this complex is quasi-

isomorphic to C. Conclude that Hk(X,C) = Mk(X, (fi*x,d)). Similarly, show that

Hk(X, C) = Wh(X, (Ox,t • d)) for any t e C*. Prove that in the limit t = 0 one has
k

Comments: - It is important to be aware of which part of the geometry of
a complex manifold X is linear (e.g. the bidegree decomposition Tic = T1'0 ffi T0'1)

and which is not (the differential operators d, 8 and the integrability condition).

- For the Newlander-Nierenberg theorem we have to refer to the original source
[95].

- Andreotti's observation (Exercise 2.6.10) is crucial in the theory of K3 surfaces.
It seems that it was common knowledge in the fifties, but I could not find the original
source. See however Weil's report [115]

- Theorem 2.6.26 allows to study all holomorphic structures on a given complex
vector bundle E by means of the set of 5_E-operators on E. Be aware that one still
has to divide out by the gauge group, i.e. diffeomorphisms of E which are linear on
the fibres and which cover the identity on X.

- Consider S6 as embedded into the imaginary part Im(O) = M7 of the octo-
nions O. Then the tangent bundle TS6 can be identified with {(u, v) \ u _L v, u 6
Se, v 6 Im(O)} and / : {u, v) \—> (u, (l/2)(it • v — v • v) (multiplication in O) does
define an almost complex structure on SG. It can be shown that I is not integrable,
but the calculation is cumbersome. It is an open problem whether S6 admits an
integrable complex structure. In contrast, an easy argument, using characteristic
classes, shows that S4 does not even admit an almost complex structure. In fact,
the intersection form of a simply connected compact fourfold that admits an almost
complex structure has an odd number of positive eigenvalues, see [38].



Kahler Manifolds

Kahler manifolds form an important class of complex manifolds. Many interes-
ting manifolds, e.g. projective ones, are Kahler, and the notion is flexible
enough for many applications. Kahler manifolds are differentiable manifolds
endowed with a complex structure and a Riemannian metric satisfying a cer-
tain compatibility condition. Thus, Kahler manifolds play a central role at
the cross-road of complex and Riemannian geometry. We will eventually be
interested in compact Kahler manifolds, but the local study of special Kahler
metrics is an highly attractive area of research too.

Section 3.1 is devoted to the definition of Kahler metrics, to the con-
struction of a few concrete examples, and to the so-called Kahler identities,
commutator relations for linear and linear differential operators. A slightly dif-
ferent and more algebraic point of view, close to applications in mathematical
physics, will be developed in the Appendix 3.B to this chapter.

The Kahler identities together with Hodge theory for d and B (for the
analysis behind it we have to refer to the literature) are used in Section 3.2
to transfer the linear algebra for the exterior algebra of an hermitian vector
space (see Section 1.2) to the cohomology of any compact Kahler manifold.
This will lead us to the abstract notion of a Hodge structure explained in
Appendix 3.C.

Section 3.3 presents the Hard Lefschetz theorem, also obtained by passing
from A* to H*, and its application to the signature of the intersection pairing
on the middle cohomology of an even dimensional Kahler manifold. For a
compact Kahler manifold the set of Chern classes of all holomorphic line
bundles can be described in terms of the Hodge structure on H2. This result is
called the Lefschetz theorem on (1, l)-classes. The Hodge conjecture proposes
a generalization of it. The short paragraph presenting the Hodge conjecture
might serve as a first encounter with this important open problem.

The Appendix 3.A discusses formality for compact Kahler manifolds, an al-
gebraic property of the de Rham complex, that has far reaching consequences
for the homotopy theory.
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3.1 Kahler Identities

This section proves the fundamental Kahler identities expressing commutator
relations between various linear and linear differential operators on any Kahler
manifold. Many complex manifolds, but by far not all, possess a Kahler metric,
which by definition coincides locally with the standard hermitian structure
on C" up to terms of order at least two. This section also contains a detailed
discussion of the most important examples of compact Kahler manifolds.

Let X be a complex manifold. We denote the induced almost complex
structure by /. A local version of the following definition has already been
discussed in Section 1.3.

Definition 3.1.1 A Riemannian metric g on X is an hermitian structure on
X if for any point x G X the scalar product gx on TXX is compatible with the
almost complex structure Ix. The induced real (1, l)-form 10 := g(I( ), ( )) is
called the fundamental form.

Locally the fundamental form to is of the form

where for any x £ X the matrix (hij(x)) is a positive definite hermitian
matrix.

The complex manifold X endowed with an hermitian structure g is called
an hermitian manifold. Note that the hermitian structure g is uniquely de-
termined by the almost complex structure / and the fundamental form w.
Indeed, g( , ) = w ( , / ( ) ) .

One could as well define hermitian structures on almost complex manifolds.
All assertions below concerning the linear structure would still be valid in
this more general context. But, as soon as we use the splitting of the exterior
differential d = d + d, we need an integrable almost complex structure (cf.
Theorem 2.6.19).

In analogy to the theory developed in Section 1.2, one defines the fol-
lowing vector bundle homomorphisms on any hermitian manifold of complex
dimension n:

i) The Lefschetz operator

L : /\kX *- /\k+2X, a I

is an operator of degree two.
ii) The Hodge *-operator

*•• Kkx—*• f\2n~kx
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is induced by the metric g and the natural orientation of the complex
manifold X. Here, 2n is the real dimension of X.

iii) The dual Lefschetz operator

A:=*^oLo*: f\kX *• /\k~2X

is an operator of degree —2 and depends on the Kahler form LO and the
metric g (and, therefore, on the complex structure / ) .

All three operators can be extended C-linearly to the complexified bundles
/\CX. By abuse of notation, those will again be called L, *, and A, respec-
tively. Due to the results of Section 1.2 one has the following

Corollary 3.1.2 Let (X,g) be an hermitian manifold. Then there exists a

direct sum decomposition of vector bundles

where Pk~2iX := Ker(/1 : f\k~2i X -> /\k~2i'2 X) is the bundle of primitive
forms. •

The decomposition is compatible with the bidegree decomposition / \ c X =

®P+q=k AP>9^> i-e- following Remark 1.2.33 one has

PkX=

p+q=k

where PV^X := P^qX n f\pq X. Also recall the definition of the operators
H and I:

2ri n

H = Y^(k -n)-nk and I = ^ ip~q • II™,
fc=o p,q=o

where IIk and IIp'q are the natural projections A*{X) —» Ak(X) and
A*(X) —+ Ap'q(X), respectively. Although the definition of the operator I
uses the bidegree decomposition, it is in fact a real operator (cf. Definition
1.2.10).

We now pass from linear operators to differential operators. On an arbi-
trary oriented m-dimensional Riemannian manifold (M, g) the adjoint opera-

tor d* is defined as

d* = (_i)™(fc+i)+i * o d o * : Ak(M) ^ Ak~l (M)

and the Laplace operator is given by

A = d*d + dd*.

If the dimension of M is even, e.g. if M admits a complex structure, then
d* = — * od o *. Analogously, one defines d* and d* as follows.
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Definition 3.1.3 If (X,g) is an hermitian manifold, then

d* := — * o 8 o * and 8* = — * o d o *.

Due to Lemma 1.2.24, we know that the Hodge ^-operator maps Ap'q(X)
to An-q'n~p{X). Thus,

Ap'q(X) ^-^ Ap~x

An-q'n-p+1(X)

and, similarly, 8*(A™(X)) C Ap'q~x{X).
The following lemma is an immediate consequence of the decomposition

d = d + 5 which holds because the almost complex structure on a complex
manifold is integrable (Proposition 2.6.15).

Lemma 3.1.4 // (X, g) is an hermitian manifold then d* = d* + 8* and
d*2 = 8*2 = 0. •

Definition 3.1.5 If (X,g) is an hermitian manifold, then the Laplacians as-
sociated to d and <9, respectively, are defined as

Ad:=d*d + dd* and A8 := 8*5 + 88*.

Clearly, AQ and Ag respect the bidegree, i.e.

Ad,A8:AP'q(X) *A

All these linear and differential operators behave especially well if a further
compatibility condition on the Riemannian metric and the complex structure
is imposed. This is the famous Kahler condition formulated for the first time
by Kahler in [73].

Definition 3.1.6 A Kahler structure (or Kahler metric) is an hermitian
structure g for which the fundamental form to is closed, i.e. du> = 0. In this
case, the fundamental to form is called the Kahler form.

The complex manifold endowed with the Kahler structure is called a
Kahler manifold. However, sometimes a complex manifold X is called Kahler
if there exists a Kahler structure without actually fixing one. More accurately,
one should speak of a complex manifold of Kahler type in this case.

Hermitian structures exist on any complex manifold (cf. Exercise 3.1.1),
but, as we will see shortly, Kahler structures do not always exist.

The local version of a Kahler metric has been studied in detail in Section
1.3. There we have seen that the condition dio — 0 is equivalent to the fact that
the hermitian structure g osculates in any point to order two to the standard
hermitian structure (see Proposition 1.3.12 for the precise statement).

As the metric can be recovered from its fundamental form and the almost
complex structure, one has:
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Lemma 3.1.7 Let tu be a dosed real (1, l)-form on a complex manifold X. If

OJ is positive definite, i.e. u> is locally of the form to = | ^hijdzi A dSj such

that (hij(x)) is a positive definite hermitian matrix for any x £ X, then there

exists a Kahler metric on X such that u is the associated fundamental form.U

Thus, the set of closed positive real (1, l)-forms to G A1'1(X) is the set of
all Kahler forms.

Corollary 3.1.8 The set of all Kahler forms on a compact complex manifold

X is an open convex cone in the linear space {u> G A1'1(X)nA2(X) \ dto = 0}.

Proof. The positivity of an hermitian matrix (/iy(ar)) is an open property and,
since X is compact, the set of forms u> G A1'1(X) n A2(X) that are locally
of the form w = | Yl hijdzi A dzj with (hij) positive definite at every point is
open. The differential equation dui = 0 ensures that the metric associated to
such an u> is Kahler. (See the comment at the end of the section if you worry
about the topology considered here.)

In order to see that Kahler forms form a convex cone, one has to show
that for A G M>o and Kahler forms u>\, 0J2 also A • u>i and u>\ + u>2 are Kahler
forms. Both assertion follow from the corresponding statements for positive
definite hermitian matrices. •

Also multiplication with a positive function A : X —> M yields a positive
form A-w, which however, except in complex dimension one, is not closed and
hence not Kahler.

Positivity of forms will be treated more generally and in more detail in
Section 4.3.

Examples 3.1.9 i) The Fubini-Study metric is a canonical Kahler metric on
n

the projective space P". Let P n = [j Ui be the standard open covering and
i=0

tfi : Ui = C", (z0 : ...: zn) ^ (f1 , . . . , f-,..., <f-\. Then one defines

which under tpi corresponds to

Let us first show that
form wFS G ^ ^ ( P " ) . Indeed

,-, i-e. that the u>i glue to a global
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Thus, it suffices to show that <9<91og(|̂ -|2) = 0 on
coordinate function on Ui, this follows from

. Since ^ is the j-th

=«(£)=«.
Next, we observe that tups is a real (l,l)-form. Indeed, dd = dd == —dd

yields u>i = aJj. Moreover, wps is closed, as dwi = ~d2d\og( ) = 0.
It remains to show that tops is positive definite, i.e. that wps really is the

Kahler form associated to a metric. This can be verified on each Ui separately.
A straightforward computation yields

53 dwi A (53 A (53

with /iy = (1 + 53 lwi|2)^i ~ WiWj. The matrix (/ly) is positive definite, since
for u ^ 0 the Cauchy-Schwarz inequality for the standard hermitian product
( , ) on Cn yields

w*(/iij)U = (u, u) + (w, w)(u, u) — vfwufu

= (u, u) + (w, w)(u, u) — (u, w)(w, u)

= (u, u) + (w, w) (u, u) — (w, u) (w, u)

= (u,u) + (w,w)(u,u) - \(w,u)\2 > 0.

As the Fubini-Study metric, which will come up again and again, is a very
prominent example of a Kahler metric, we will dwell on it a bit a longer.

Let us consider the natural projection n : Cn+1 \ {0} —> P". Then

Indeed, over TT~1(Ui) = {(zo,..., zn) 0} one has

but dd\og(\zi\2) = 0, as has been shown above. (Compare this with Exercise
1.3.8.)

Notice, that if we write more abstractly a projective space as P(V), then
the Fubini-Study metric does depend on the choice of a basis of V or, more
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precisely, on a chosen hermitian structure on V. See Exercise 3.1.6 for the
precise statement.

We conclude this example by proving the equation

Jf1 = 1,

which will serve as a normalization in the definition of Chern classes (see
page 197). Moreover, since P1 =* S2 and thus H2(P\Z) = H2(S2,Z) * Z, it
shows that [tops] S i?2(P1,Z) is a generator.

The integral is explicitly computed as follows:

I 1 , , _

c2^(i + H2)2dwAdw

1 •

7T

= 2/
Jo

ii) Any complex torus Cn/F can easily be endowed with a Kahler structure
by taking a scalar product on the real vector space C™ which is compatible
with the natural almost complex structure. This defines a constant metric on
Cre, which is, in particular, i~"-invariant and thus descends to an hermitian
structure on Cn/T.

iii) Any complex curve admits a Kahler structure. In fact, any hermitian
metric is Kahler, as a two-form on a complex curve is always closed. For the
existence of hermitian structures see Exercise 3.1.1.

iv) On the unit disc Dn C Cn one considers the form

u,= l-ddlog(l-\\zf).

Firstly, u> is indeed a Kahler form, as might be checked by a calculation similar

to i). One finds, w = 2(i-|jzi|S)3 S ((1 ~ llzll2)% + ^ z j ) dz% A dzj. In particu-

lar, for n = 1 this says u> — (i/2)(l — \z\2)~2dz A dz.

Secondly, u> is invariant under the action of SU(l,n) (see page 60). Thus,
LJ descends to a Kahler form on any ball quotient Dn/F.

Proposition 3.1.10 Let g be a Kahler metric on a complex manifold X. Then
the restriction g\y to any complex submanifold Y C X is again Kahler.

Proof. Clearly, g\y is again a Riemannian metric on Y. Since TXY C TXX
is invariant under the almost complex structure / for any x G Y and the
restriction of it to TXY is the almost complex structure Iy on Y, the metric
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g\y is compatible with the almost complex structure on Y. Thus, g\y defines
an hermitian structure on Y. By definition, the associated Kahler form wy
is given by uy = g\y(Iy( ) , ( ) ) = g{I{ ),( ))\Y = w|y. Therefore, dYu;Y =

dy(o;|y) = {dxw)\Y = 0 . •

Corollary 3.1.11 Any projective manifold is Kahler.

Proof. By definition a projective manifold can be realized as a submanifold of
Pn. Restricting the Fubini-Study metric yields a Kahler metric. •

Note that the Kahler structure of a projective manifold X obtained by
a projective embedding X C ¥N depends on this embedding. Often, other
Kahler structures exist that are not obtained as the restriction of the Fubini-
Study metric under any projective embedding whatsoever.

We now come to a key result in the local theory of Kahler manifolds. In
addition to the commutator relations for L and A (Proposition 1.2.26), the
following Proposition calculates the mixed commutators of linear operators,
e.g. L and A, and differential operators, e.g. d, 8, and A, explicitly. The Kahler
condition dcj = 0 is crucial for this.

Proposition 3.1.12 (Kahler identities) Let X be a complex manifold en-
dowed with a Kahler metric g. Then the following identities hold true:

i) [8, L] = [d, L] = 0 and [B\A] = [d*,_A] = 0 .
ii) [B*,L] = id, [d*,L] = -id and [A,8} = -id*, [A,8] = id*.

hi) Ad = AQ = 7}A and A commutes with *, d, d, d*, d*, L, and A.

The theorem will be proved in terms of yet another operator dc.

Definition 3.1.13 One defines

dc:=l~lodol and dc* := - * odc o *.

Since I is a real operator, also dc is a real operator which is extended
C-linearly. Equivalently, one could define

Indeed, if a e Ap'q(X) then

I(<9 - d)(a) = ip+1-qd(a) - iv-q-xd{a) = ip+1-qd(a) = i

Also note that ddc = 2idd.
Assertion ii) implies [A,d] = i(d* — d*) = —i * (d — 8)* = —dc*. In

fact, using the bidegree decomposition one easily sees that [A, d] = —dc* is
equivalent to the assertions of ii) that concern A.
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Proof. Let us first prove i). By definition

[d, L](a) = B(u>Aa)-ioA d(a) = <9(w) A a = 0,

for B(ui) is the (1, 2)-part of du>, which is trivial by assumption. Analogously,
one proves [d, L](a) = d{uj) A a = 0.

The second assertion in i) follows from the first one: For a G Ak(X) one
finds

[9*,A](a) = - * d * *~lL * (a) - *~lL * (- * d*){a)

= - * 5L * (a) - {-if *~l Ld * (a) = -(*<9L * - * Ld*)(a)

= -*[d,L]* (a) = 0.

Here, we use twice that *2 = (—1)̂  on Ai(X).

The last assertion can be proved analogously. It can also be verified by
just complex conjugating: [<9*,yl] = [<9*,/l] = [<9*,yl] = 0, where one uses that
* and A are C-linear extensions of real operators.

ii) Using the Lefschetz decomposition, it is enough to prove the assertion
for forms of the type iJa with a a primitive A;-form. Then da G Ak+1(X) can
again be written according to the Lefschetz decomposition (Corollary 3.1.2)
as

da = OLQ + Lai + L oti + •. •

with aj G Pk+1~2j{X). Since L commutes with d and Ln~k+1a = 0, this
yields

0 = Ln-k+1a0 + Ln~k+2ai + Ln~k+3a2 + ....

As the Lefschetz decomposition is a direct sum decomposition, this implies
Ln-k+j+1aj = 0, for j = 0 , 1 , . . . . On the other hand, Ll is injective on Al{X)

for t < n — i. Hence, since aj G Ak+1~2i(X), one finds aj = 0 for j > 2.
Thus, da = ao + Lai with Aa^ = Aa\ = 0.

Let us first compute [A, d](Lja) for a G Pk{X). Using [d, L] = 0, Aat = 0,
and Corollary 1.2.28 one computes

AdLja = AU da = AL^a0 + ALj+1ai
laQ - (j + l)(fe - 1 - n

and

dADa = -j(k -n + j - l)U~lda

Therefore,

[A,d](Lja) = -jLj~lao -(k-n + j - l)Ljax.
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On the other hand, Proposition 1.2.31 applied several times yields

(n — k — j)\

^ l i ( n _ k - j + 1) • (Vai)

- (k-n + j - l)Ljai.

This yields [A,d] = —dc*. The equalities involving L are deduced from this
(cf. Exercise 3.1.9).

iii) We first show that dd* 4- d*d = 0. Indeed, assertion ii) yields i(dd* +
d*d) = d[A, d] + [A, d}d = dAd - dAd = 0. Next,

Ad = d*d + dd*

= i[A,d]d + id\A,d}

= i(Add - dAd + dAd - ddA)

= i(Add - (8[A, d] + 8dA) + ([d, A]B + Add) - ddA)

= i(Add - idd* - ddA -id*d + Add - ddA)

= AB.

In order to compare A with Ag, write

A = (d + B)(d* + 3*) + (d* + d*)(d + 3)

= Ad + AB + (dd* + d*d) + (dd* + B*d)

= Ad + As + 0 + 0

= 2Ad.

As an example that A commutes with all the other operators, we shall
show [A, A] = 0. The other commutativity relations are left to the reader.
Using ddc = 2idd = -dcd, one computes AA = Add* + Ad*d = dAd* -
idc*d* + d*Ad = dd*A + id*dc* + d*dA - id*dc* = AA. •

Remark 3.1.14 A different proof of ii) can be given by using Proposition 1.3.12
(cf. [35, 59]). There, one first proves the identity for X = C" with the standard
metric and then uses the fact that any relation for Cn that involves only
differential operators of order < 1 also holds true for an arbitrary Kahler
manifold. This approach stresses more the local nature of the Kahler identities.
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Exercises

3.1.1 Show that any complex manifold admits an hermitian structure.

3.1.2 Let X be a connected complex manifold of dimension n > 1 and let g be
a Kahler metric. Show that g is the only Kahler metric in its conformal class, i.e. if
g' = e! • g is Kahler then / is constant (cf. Exercise 1.3.9).

3.1.3 Let (X, g) be a compact hermitian manifold of dimension n. Show that
d-harmonicity equals <9-harmonicity and <9-harmonicity for forms of degree 0 and
2ra.

3.1.4 Prove J^, wgs = 1.

3.1.5 Let C" C C"+1 be the standard inclusion (zo,..., zn-\) >—» (zo, • • •, Zn-i, 0)
and consider the induced inclusion P™"1 c Pn . Show that restricting the Fubini-
Study Kahler form ^Fs(Pn) on P™ yields the Fubini-Study Kahler form on P n - 1 .

3.1.6 Let A € Gl(n+1, C) and denote the induced isomorphism by FA : P" = Pn .

Show that FX(UFS) = <^FS if and only if A G U(n + 1).

3.1.7 Show that L, d, and d* acting on A*(X) of a Kahler manifold X determine
the complex structure of X.

3.1.8 Show that on a compact Kahler manifold X of dimension n the integral
Jx uin is n! • vol(X) (cf. Exercise 1.2.9). Conclude from this that there exists an
injective ring homomorphism k[x]/xn+1 —* H*(X,W). In particular, b2(X) > 1.
Deduce from this that S is the only sphere that admits a Kahler structure.

3.1.9 Conclude the first part of assertion ii) of Proposition 3.1.12 from the second.

3.1.10 Let X and Y be two Kahler manifolds. Show that the product X x Y

admits a natural Kahler structure, too.

3.1.11 Fill in the details of Remark 3.1.14.

3.1.12 Let X be a complex manifold endowed with a Kahler form and let a be
a closed (1, l)-form which is primitive (at every point in the sense of Section 1.2).
Show that a is harmonic, i.e. A(a) = 0.

3.1.13 Let M be a differentiable manifold of dimension 2n. A closed two-form ui

on M is a symplectic structure (or form) if UJ is everywhere non-degenerate, i.e uin is
a volume form. Show that any Kahler manifold (X, g) possesses a natural symplectic
structure. Observe that symplectic structures in general do not form a convex cone.
Compare this to Corollary 3.1.8.

C o m m e n t s : - For some historical comments on Kahler manifolds we recom-
mend the article by Bourguignon [18]. To some of the topics mentioned there we
shall come back later.
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- Not any Kahler metric is geometrically equally interesting. Usually, Kahler
metrics with certain additional curvature properties are studied. Very often it hap-
pens that those are just known to exist, but cannot be explicitly constructed, at
least on compact manifolds. See Appendix 4.B.

- We have been a little sloppy in Corollary 3.1.8. A priori, the openness of the
set of Kahler forms depends on the topology that has been put on the infinite-
dimensional space of (1, l)-forms. But in fact, it holds true with respect to any
reasonable topology and we will not elaborate on this.
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3.2 Hodge Theory on Kahler Manifolds

The main result of the previous section, the Kahler identities, is a purely
local statement. In this section we will focus on compact hermitian and Kahler
manifolds. The compactness allows us to apply Hodge theory, i.e. the theory of
elliptic operators on compact manifolds. We assume that the reader is familiar
with Hodge theory for compact Riemannian manifolds or, is at least willing
to accept the Hodge decomposition in the Riemannian context (cf. Appendix
A).

If X is a complex manifold with an hermitian structure g, we denote
the hermitian extension of the Riemannian metric g by gc (cf. page 30). It
naturally induces hermitian products on all form bundles (cf. page 33).

Definition 3.2.1 Let (X,g) be a compact hermitian manifold. Then one de-
fines an hermitian product on AQ(X) by

(a,0):= / gc(a,0)*l.
Jx

Proposition 3.2.2 Lei (X, g) be a compact hermitian manifold. Then the
following decompositions are orthogonal with respect to ( , ):

i) The degree decomposition AQ(X) = ©fc-4c(X).
ii) The bidegree decomposition AQ(X) = ®p+g=fc

iii) The Lefschetz decomposition A^(X) = ® i > 0 .

Proof. The first assertion follows from the definition of gc- For ii) let a G
Ap'q{X) and /? G Ap>'q'(X). Then by Lemma 1.2.24 one has gc(a,0) = 0
unless (p,q) = (p',qr).

Assertion iii) follows again from the analogous statement for any cotangent
space (see i) of Proposition 1.2.30). •

Thus, each Ap'q(X) is an infinite-dimensional vector space endowed with
a scalar product ( , ) and the induced norm \\a\\2 = (a, a). The completion
of it with respect to ( , ) yields the space of L2-forms of bidegree (p, q), but
we have to refer to [35, 116] for the analytical aspects.

In analogy to Lemma A.0.9 one has

Lemma 3.2.3 Let X be a compact hermitian manifold. Then with respect to
the hermitian product ( , ) the operators d* and d* are the formal adjoints of
d and 3, respectively.

Proof. The proof is literally the same as for d and d*. We recall it for d*. Let
a G Ap-l'q{X) and j3 G Ap'q(X). By definition

(da, P)= gc(da, 0) * 1 = / daA*/3 (see page 33)
Jx Jx

= [ <9(aA*/?)-(-l)p+?-1 I aAd{*0).
Jx Jx
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The first integral of the last line vanishes due to Stokes' theorem, as aA*/3
is a form of bidegree (p — 1, q) + (n — p, n — q) = (n — 1, n) and, therefore,
«9(aA*/3) = d{af\*(3).

The second integral is computed using *2 = (-l)fc on Ak(X) as follows:

/ a A 0(*0) = s /
x Jx

[ gc(a, -d*0) * 1
x

= -e-(a,d*(3)

with e = (-l)2"-(P+9)+i. Then check that £ • ( - 1 ) P + 9 - J = 1. D

Recall, that H.k(X,g) denotes the space of (d-)harmonic /c-forms (Defini-
tion A.0.11). Analogously, one defines Hp'q(X, g) as the space of (d-)harmonic
(p, g)-forms. When the metric is fixed, one often drops g in the notation. For
an arbitrary hermitian manifold the bidegree decomposition of Proposition
3.2.2 does not carry over to harmonic forms. In this case it is more natural to
consider harmonic forms with respect to 5 or/and d.

Definition 3.2.4 Let (X, g) be an hermitian complex manifold. A form a £
Ak(X) is called d-harmonic if Ag{a) = 0. Moreover,

Hk
8(X,g) := {a G Ak

c{X) | A8(a) = 0} and

nl'\X,g) := {a G A™(X) | A8(a) = 0}

Analogously, one defines d-harmonic forms and the spaces Tig(X,g) and

Lemma 3.2.5 Let (X,g) be a compact hermitian manifold (X,g). A form
a is d-harmonic (resp. d-harmonic) if and only if da = d*a = 0 (resp.
da = d*a = 0).

Proof. The assertion follows from

Thus, A8(a) = 0 implies the vanishing of both terms on the right hand
side, i.e. d(a) = d*{a) = 0. The converse is clear.

A similar argument proves the assertion for Ag. •

Proposition 3.2.6 Let (X,g) be an hermitian manifold, not necessarily com-
pact. Then

i) Hk
B(X,g) = ®p+q=kn

p
B'\X,g) andHk

d(X,g) = 0 p + g = f c ^ 9 ( X , 5 ) .
ii) If(X,g) is Kahler then both decompositions coincide with Hk(X, g)c =

k k k

v+q

^kK
p'q(X,g). In particular, Hk(X,g)c = Hk

B{X,g) = Hk
d(X,
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Proof. Let a = Yl aP'q be the bidegree decomposition of a given form a.
Clearly, if A8(a

p^) = 0 for all (p,q) then also AB(a) = 0. On the other
hand, A8(a) = 0 implies 0 = TlA8(a

p'q) with A8(a
p'q) £ Ap'q(X). But

the bidegree decomposition is direct. Thus, A8(a
p'q) = 0, i.e. the ap'q are

harmonic. The proof for the space of (9-harmonic forms is similar.
The second assertion follows from the first and the fact that on a Kahler

manifold AQ = A8 = \A (see Proposition 3.1.12). •

There are a number of useful facts about the spaces of harmonic forms,
which can be easily deduced from standard results about harmonic forms on
(compact) Riemannian manifolds and the linear algebra on hermitian (Kahler)
manifolds. We collect some of them in the following

Remarks 3.2.7 i) Let (X,g) be an hermitian manifold, not necessarily com-
pact. Then the Hodge ^-operator induces C-linear isomorphism

* : Hp-q{X,g) ^ nn-q'n-p(X,g).

Indeed, * induces isomorphisms 'Hk(X,g)c — 7~{-2n~k(X,g)c for any Rie-
mannian manifold (cf. Lemma A.0.14) and * : AP'"{X) -• An-q'n~p{X) on
any hermitian manifold. Similarly, the Hodge *-operator induces isomorphisms

If X is Kahler, this yields automorphisms of JiV*(X, g). Also note that
complex conjugation interchanges Ti.p^'q(X,g) and Tig(X,g).

ii) Let (X, g) be a compact connected hermitian manifold. Then the pairing

HP
B'q(X, g) x m-p<n-q{X, g) C, (a, (3) I fx a A f3

is non-degenerate. Indeed, if 0 ^ a e HP
5'

q(X,g) then *a G Hg~p'n^q(X,g)
and

a A*a = \\a\\2 > 0.

This yields Serre duality on the level of harmonic forms:
/ •

See Section 4.1 for a more general result.
iii) If (X, g) is a (possibly non-compact) Kahler manifold of dimension n,

then for any k < n and any 0 < p < k the Lefschetz operator defines an
isomorphism

Ln-fc . np,k-v(x,g) ^ nn+p-k'n~p{X,g).

Here one uses [L, A] = 0 (see iii) of Proposition 3.1.12), which shows that
L maps harmonic forms to harmonic forms. Since Ln~k by Proposition 1.2.30
is bijective on Ak(X), the induced map Hp'k-p(X,g) -> Hn+p-k'n-p(X,g) is
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injective. The surjectivity is deduced from the fact that the dual Lefschetz
operator A also commutes with A and, therefore, maps harmonic forms to
harmonic forms. Note that here we cannot expect anything for arbitrary her-
mitian manifolds, as the product of an harmonic form with the Kahler form
will hardly be closed (let alone harmonic) if the fundamental form is not
closed.

Of course, one would very much like to have similar results for the co-
homology groups. For this we need the following fundamental result which
is analogous to the Hodge decomposition on compact oriented Riemannian
manifolds. Unfortunately, its proof cannot be reduced to the known one, but
it uses essentially the same techniques (cf. [116]).

Theorem 3.2.8 (Hodge decomposition) Let (X,g) be a compact hermi-
tian manifold. Then there exist two natural orthogonal decompositions

Ap'q(X) = dAp-1'q(X)®np
d'

q(X,g) e d*Ap+1'q(X)

and

Ap'q(X) = dAp'q~1(X)®HP
d'

q(X,g)®d*Ap'q+1(X).

The spaces 7ip'q{X, g) are finite-dimensional. If(X, g) is assumed to be Kahler

thennp
d'

q(X,g)='HP
d'

q(X,g). •

The orthogonality of the decomposition is easy to verify and the last as-
sertion follows from iii) in Proposition 3.1.12. The crucial fact is the existence
of the direct sum decomposition.

Corollary 3.2.9 Let (X,g) be a compact hermitian manifold. Then the canoni-

cal projection 1-ip^q{X,g) —» Hp>q(X) is an isomorphism.

Proof. Since any a £ 7i^'q(X,g) is (9-closed, mapping a to its Dolbeault co-
homology class [a] e Hp<q(X) defines a map ft|'9(X)5) -> Hp'q(X).

Moreover, Ker(d : AP>"(X) -> Ap-q+1(X))_ = BiA™-1 (X)) ® H%"(X,g),

as_<9<9*/? = 0 if and only if B*/3 = 0. Indeed, dd*/3 = 0 implies 0 = (BB*/3,0) =

|]<9*/?||2. Thus, TiP
8'

q(X,g) -> Hp>q{X) is an isomorphism. D

The strength of the Kahler condition is that the space of harmonic (p, q)-

forms appears in two different orthogonal decompositions. The following corol-
lary is a prominent example for the use of this fact. Although it looks like a
rather innocent technical statement, it is crucial for many important results.

Corollary 3.2.10 (93-lemma) Let X be a compact Kahler manifold. Then

for a d-closed form a of type (p, q) the following conditions are equivalent:

i) The form a is d-exact, i.e. a = dp for some (3 G A\^q {X).

ii) The form a is d-exact, i.e. a = d/3 for some (3 G Ap~1'q(X).

iii) The form a is d-exact, i.e. a = B/3 for some (3 £ Ap'q~1(X).

iv) The form a is dd-exact, i.e. a = dd(3 for some j3 € Ap~1'q~1(X).
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Proof. We add another equivalent condition: v) The form a is orthogonal
to Hp'q(X,g) for an arbitrary Kahler metric g on X. Since X is Kahler, we
don't have to specify with respect to which differential operator (d, 0, or 3)
harmonicity is considered.

Using Hodge decomposition we see that v) is implied by any of the other
conditions. Moreover, iv) implies i) - iii). Thus, it suffices to show that v)
implies iv).

If a G Ap'q(X) is d-closed (and thus (9-closed) and orthogonal to the space
of harmonic forms, then Hodge decomposition with respect to 0 yields a = Oj.
Now one applies Hodge decomposition with respect to 3 to the form 7. This
yields 7_= 3(3 +_8*(3' + (3" for some harmonic (5". Thus, a = 00(3 +_O3*(3'.

Using 00* = -0*0 (cf. the proof of iii) in Proposition 3.1.12) and da = 0
one concludes 33*0(3' = 0. Since {33*00',0(3') = \\0*0(3'\\2, we find 00*(3' =
-0*0(3' = 0. Therefore, a = dd/3. D

Remark 3.2.11 A local version of the <9<9-lemma, i.e. for X a polydisc, was
discussed in Exercise 1.3.3. There, no Kahler condition was needed. It is surpri-
sing to see that the Kahler condition allows to carry the local statement over to
the global situation. Observe that the result holds true also for (p,q) = (1,0)
or (0,1) (cf. Exercise 3.2.8).

Corollary 3.2.12 Let (X,g) be a compact Kahler manifold. Then there exists
a decomposition

Hk{X,C)= 0 Hp'q(X).
p+q=k

This decomposition does not depend on the chosen Kahler structure.
Moreover, with respect to complex conjugation on H*(X,C) — H*(X,W)®

C one has HP'i(X) = Hq'p(X) and Seme duality (see page 127) yields

Proof. The decomposition is induced by

Hk(X,C)=Hk(X,g)c= 0 Hp'q(X,g)=
p+q=k p+q=k

which a priori might depend on the Kahler metric g. Let g' be a second Kahler
metric. The two groups Hp'q(X,g) and W'q{X,g') are naturally identified by
Hp'q(X,g) £* Hp'q(X) S Hp'q(X,g'). Let a e Hp'q(X,g) and denote the cor-
responding element in Tip'q(X,g') by a'. We have to show that the associated
de Rham cohomology classes [a], [a1] G Hk(X,C) coincide.

Since a and a' induce the same element in Hp'q(X), they differ by some
d'y, i.e. a' = a+3^/. But then dO^f = d(a' — a) — 0. Moreover, 3j is orthogonal
to Tik{X,g)c- By Hodge decomposition with respect to the ordinary exterior
differential d this yields 0-y £ d ^ " 1 ^ ) ) . Thus, [a] = [a'} G Hk{X,C).

For the second assertion use Remarks 3.2.7 i) and iii). •
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Remark 3.2.13 For the above corollary the Kahler assumption is absolutely
crucial, although in dimension two, i.e. for compact complex surfaces, the
assertion always holds true (cf. [8]).

Definition 3.2.14 Let X be a compact Kahler manifold. The Kahler class
associated to a Kahler structure on X is the cohomology class [u>] G i/1 '1(X)
of its Kahler form. The Kahler cone

Kx cH1'1(X)nH2{X,R)

is the set of all Kahler classes associated to any Kahler structure on X.

Hodge theory on a compact Kahler manifold X allows one to view Kx as
an open convex cone in H1'1^) D H2(X,R) (cf. Exercise 3.2.12).

As noted above, the bidegree decomposition Hk(XJC) = ®Hp'q(X) and,
of course, complex conjugation Hp>q(X) = Hq'p(X) does not depend on the
chosen Kahler structure on X. In the next section we shall discuss the remain-
ing operators *, L, and A on the level of cohomology. It will turn out that
they only depend on the Kahler class [ui].

Exercises

3.2.1 Let (X, g) be a Kahler manifold. Show that the Kahler form us is harmonic.

3.2.2 Workout the details of the proof of the second assertion of Corollary 3.2.12.
In particular, show that for a compact hermitian manifold (X, g) of dimension n

there exists a natural isomorphism Hp'q(X) = JJn~P-n-i(^X)* (use ii) of Remark
3.2.7 ). This is a special case of Serre duality, which holds true more generally for
Dolbeault cohomolgy of holomorphic vector bundles (cf. Proposition 4.1.15).

3.2.3 Let X be a compact Kahler manifold X of dimension n. Let Hp'q(X) =

Hn~p'n~q(X)* be given by Serre duality. Observe that the direct sum decomposition
of these isomorphisms yields Poincare duality

Hk(X,C)= 0 Hp'q{X)^ 0 Hn-p-n-q(X)* =H2n~k{X,C)*-
-p+q—k p+q = k

3.2.4 Recall Exercise 2.6.11 and show that on a compact Kahler manifold "the
limit limt^o commutes with hypercohomology", i.e.

\imUk(X,{n*x,t-d))=E.k{X,\im{{rx,t-d)).

3.2.5 Show that for a complex torus of dimension one the decomposition in
Corollary 3.2.12 does depend on the complex structure. It suffices to consider H1.

3.2.6 Show that the odd Betti numbers &2»+i of a compact Kahler manifold are
even.
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3.2.7 Are Hopf surfaces (cf. Section 2.1) Kahler manifolds?

3.2.8 Show that holomorphic forms, i.e. elements of H°(X, f2p), on a compact
Kahler manifold X are harmonic with respect to any Kahler metric.

3.2.9 Can you deduce Theorem 3.2.8 for compact Kahler manifolds from the
Hodge decomposition for compact oriented Riemannian manifolds and the dd-

lemma?

3.2.10 Let (X, g) be a compact hermitian manifold. Show that any (rf-)harmonic
(p, </)-form is also 5-harmonic.

3.2.11 Show that Hp'q(¥n) = 0 except for p = q < n. In the latter case, the space
is one-dimensional. Use this and the exponential sequence to show that Pic(Pn) = Z.

3.2.12 Let X be a compact Kahler manifold and consider H1'1(X) as a subspace
of H2(X, C). Show that the Kahler K-x cone is an open convex cone in H1'1(X,R) :=

H1A(X) n H2(X,R) and that tCx not contain any line {a + t/3 | t 6 K} for any
a,f3eHl'\X,R) with/3/0.

Furthermore, show that ta + (3 is a Kahler class for t > 0 for any Kahler class
a and any /3.

3.2.13 Prove the ddc-lemma: If a 6 Ak(X) is a dc-exact and d-closed form
on a compact Kahler manifold X then there exists a form (3 € Ak~2(X) such that
a = ddcf3. (A proof will be given in Lemma 3.A.22.)

3.2.14 Let X be compact and Kahler. Show that the two natural homomor-
phisms H™(X) -> Hp'q(X) and @p+q=kHBc(X) ~* Hk(X,C) introduced in Ex-
ercise 2.6.7 are bijective.

Use this to show again that the bidegree decomposition in Corollary 3.2.12 is

independent of the Kahler structure.
(Thus the main difference between Dolbeault and Bott-Chern cohomology is

that a natural homomorphism from Bott-Chern cohomology to de Rham cohomol-
ogy always exists, whereas Dolbeault cohomology groups only occur as the graded
modules of the filtration induced by the so called Hodge-Frohlicher spectral sequence

Ep,i = HP<*(X) =:> Hp+q{X,C).)

3.2.15 Let (X.g) be a compact hermitian manifold and let [a] 6 Hp'q(X). Show
that the harmonic representative of [a] is the unique 9-closed form with minimal
norm ||a||. (This is the analogue of Lemma A.0.18.)

3.2.16 Let X be a compact Kahler manifold. Show that for two cohomologous
Kahler forms w and to', i.e. [LJ] = [LJ1] £ H2(X, R), there exists a real function / such
that LJ = J + iddf.

Comments: - For the analysis behind Hodge theory see [35] or [116].

- Be careful with the 99-lemma. It is frequently stated incorrectly.
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3.3 Lefschetz Theorems

We continue to transfer results valid on the level of forms to cohomology.
The main ingredients are again Hodge decomposition (Theorem 3.2.8) and
the Kahler identities (Proposition 3.1.12). We will see that the cohomology
of a compact Kahler manifold enjoys many interesting properties. Roughly,
everything we have observed for the exterior algebra of an hermitian vector
space in Section 1.2 continues to hold true for the cohomology of a compact
Kahler manifold.

At the end we state and briefly discuss the Hodge conjecture, one of the
most famous open problems in mathematics.

Let us first explain the relation between the Picard group of a compact
Kahler manifold X and the cohomology group Hl^(X). Recall that the ex-
ponential sequence is a natural short exact sequence of the form (see Section
2.2)

0 >- Z »- O *- O* »- 0.

It in particular yields a canonical boundary map Pic(X) = H1(X,O*) —>
H2(X, Z) which can be composed with H2(X, 1) -* H2(X, C) induced by the
inclusion Z C C. Moreover, if (X, g) is a compact Kahler manifold, the target
space decomposes H2{X,<C) = H2'°{X) © ff1-1^) © H°'2(X) (see Corollary
3.2.12).

Let a G H2(X,C). Then we can associate to a a class in H°'2(X, C) =
H2(X, Ox) in two, a priori different ways: Firstly, using the map H2(X, C) —>
H2(X, Ox) induced by the inclusion C C Ox and, secondly, by the projection
H2(X,C) -> H°'2(X) given by the bidegree decomposition 3.2.12. For the
latter one we assume X be compact and Kahler. These two maps coincide, as
is shown by the following lemma. See also Exercise 3.3.1.

Lemma 3.3.1 Let X be a compact Kahler manifold. The two natural maps
Hk(X,C) -> Hk(X,Ox), induced by C C Ox, and Hk(X,C) -> H°>k(X),
given by the bidegree decomposition, coincide.

Proof. We use the following commutative diagram that relates the standard
acyclic resolutions of C and Ox •

•A°c(X) - ^ U _4(X) ^-^ A\(X)

\
Ox

Here, the first vertical map is the natural inclusion C c O and the other
ones are given by projecting a q-form to its (0, g)-part. The commutativity of
the diagram is obvious. Using it one can describe Hk(X,C) —> Hk(X,O) in-
duced by the inclusion C C Ox in terms of explicit representatives as follows:
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For a class [a] € Hk(X, C) we choose its harmonic representative a 6 7ik(X, g)
(with respect to some Kahler metric g). Its image is represented by the (0, k)-
part of it, which is again harmonic. Of course, this describes nothing but the
projection given by the bidegree decomposition. •

Warning: For p ^ 0 the diagram

Ak
c{X) d-

jjp,k-p

does not commute anymore.

The long exact cohomology sequence of the exponential sequence shows
that the composition Pic(X) -> H2(X,Z) -> H2(X,C) -• H2(X,OX) =
H°'2(X) is trivial. Hence, the image of Pic(X) —> H2(X,C) is contained in
the image of H2{X,1) —» H2(X,C) and, if X is compact and Kahler, also
in the kernel of the projection H2{X,C) = H2'°(X) ® tf1-1^) ® H°'2(X) ->
H°'2(X). Since H2(X, K) C H2(X,C) is invariant under complex conjugation
and contains the image of H2(X, Z) —> H2(X, C), one finds that the image of
Pic(X) -> H2(X,C) is contained in

Hl'l(X,Z) := Im ( H2(X,Z) ^ H2{X,C) ) n Hhl{X).

As it turns out, iJ1'1(X, Z) describes the image completely. This is due to

Proposition 3.3.2 (Lefschetz theorem on (1, l)-classes) LetX be a com-
pact Kahler manifold. Then Pic(X) —> H1'1(X, Z) is surjective.

Proof. Let a = p(a) G Im(#2(X, Z) - A H2{X,C)). Then, with respect to the
bidegree decomposition of H2(X,C), one can write a as a = a2'° + a1'1+Q!0'2.
Since a is real, one has a2'0 = a0'2. Thus, a G Hl>l(X,Z) if and only if
a0'2 = 0.

We have seen that the projection a t—> a0'2 is induced by the inclusion map
C c O . Thus, a = p(a) e H2(X,C) is in the image of Pic(X) -> #2(X,C) if
and only if a is in the kernel of the map H2(X, Z) -^ F2(X, C) -• F2(X, O).
Since the exponential sequence induces a long exact sequence of the form

^ Pic(X) »- #2(X, Z) ^ i72(X, O) ^ ,

this proves the assertion. D

Remark 3.3.3 Often, the image of Pic(X) -> #2(X,IR) C H2(X,C) is
called the Neron-Severi group NS(X) of the manifold X. It spans a finite-
dimensional real vector space NS(X)R C H2(X,R) n F 1 - 1 ^ ) , where the
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inclusion is strict in general. The Lefschetz theorem above thus says that the
natural inclusion NS(X) C Hl'l{X, Z) is an equality.

If X is projective, yet another description of the Neron-Severi group can be
given. Then, NS(X) is the quotient of Pic(X) by the subgroup of numerically
trivial line bundles. A line bundle L is called numerically trivial if L is of
degree zero on any curve C C X. If X is not projective it may very well
happen that there are no curves in X, but yet NS(X) ^ 0.

Definition 3.3.4 Let X be a compact complex manifold. Then the rank of
the image Pic(X) —> H2(X,R) is called the Picard number p(X).

Thus, if X is in addition Kahler the Picard number satisfies p(X) =
rk{H1'1(X,Z))=rk(NS(X)).

Modulo torsion in H2(X, Z), the image of ci : Pic(X) -> H2{X, Z) can be
expressed, at least if X is compact Kahler, in purely Hodge theoretic terms
(see Section 3.C). Let us now turn to the continuous part of the Picard group,
i.e. the kernel of Pic(X) —> H2(X, Z). We shall see that a structure theorem
for it can be proved, but we again have to assume that X is compact Kahler.
Let us first give a name to the continuous part.

Definition 3.3.5 Let X be a complex manifold. Its Jacobian Pic°(X) is the
kernel of the map Pic(X) -> H2(X, Z).

Using the exponential sequence the Jacobian can always be described as
the quotient Hl{X, O)/H1(X, Z), but only for compact Kahler manifolds one
should expect this to be anything nice. Note that for compact manifolds the
natural map H1(X, Z) —> HX(X, O) is really injective. (See the argument in
Section 2.2.)

Corollary 3.3.6 If X is a compact Kahler manifold, then Pic°(X) is in a
natural way a complex torus of dimension b\(X).

Proof. We use the bidegree decomposition (Corollary 3.2.12): H1(X, C) =
Hl>°(X) © H^iX), the fact that Hl>Q{X) = H°'\X), and Hl(X,C) =
^ ( X . K ) » R C = {Hl{X,1) <g>z K) ®R C. This shows that EX(X,X) ->
HX{X,C) -> H0'1^) is injective with discrete image that generates #0>1(X)
as a real vector space. In other words, H1(X, Z) C H0<1{X) is a lattice. Thus,
it suffices to show that this inclusion Hl(X, Z) C H°'l(X) coincides with the
one given by the exponential sequence. But this is immediate from Lemma
3.3.1. •

Clearly, the pre-image Pic"(X) C Pic(X) of any element a e H2{X,1)
in the image of ci can be identified with Pic (X), although not canonically.
Thus, for a compact Kahler manifold X such that H2(X,Z) is torsion-free
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the Picard group Pic(X) is fibred by tori of complex dimension b\(X) over
the discrete set Hl>l(X,1):

Pic(X)

PicQ(X)

There is another complex torus naturally associated with any compact
Kahler manifold, the Albanese torus. Suppose X is compact and Kahler.
Consider the dual of its space of global holomorphic one-forms H1'°(X) =
H°(X,ttx) and the natural map HX{X,1) -> H°(X,f2x)* given by [7] H->
(a H J a), where a homology class [7] is represented by a closed path 7
in X. Since X is Kahler, the image forms a lattice. One way to see this, is
to view H°(X,nx)*, via Serre duality, as Hn~1'n{X) = ^ ( X , ^ 1 ) and
Hi{X,1) c H°{X,flx)* as the image oi H2n~l {X ,Z) C H2n~l{X,R) under
the natural projection ff^-^X.C) -> Hn~l<n(X).

Definition 3.3.7 The Albanese torus of a compact Kahler manifold X is the
complex torus

For a fixed base point xo G X one defines the Albanese map

alb:X -Alb(X),

The integral f* a depends on the chosen path connecting xo and x, but
for two different choices the difference is an integral over a closed path 7.
Hence, alb(x) G Alb(X) is well-defined. Changing the point xo amounts to a
translation in Alb(X).

By construction, one has the following

Proposition 3.3.8 The Albanese map alb : X —> Alb(X) is holomorphic and
the pull-back of forms induces a bijection

/\QA\b(X) s H°(A\b(X):nMh{x)) - H°(X, QX).

The Albanese map is functorial for holomorphic maps, i.e. any holomor-
phic map f : X —> X' induces a commutative diagram

X *X'

albx alb
x'

Alb(X) ^ Alb(X')

Here, one has to choose the base point of X' as f(xo). The map on the bottom

is induced by the canonical linear map H°(X', QX') —> H°(X, fix)-
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Proof. Writing the integral f* a as f*1 ct + f* &, the holomorphicity becomes
a local question for x near a reference point x\. The assertion, therefore, is
equivalent to the holomorphicity of Jo a as a function of x G B, where a is
a holomorphic one-form on a polydisc B C C , which can be deduced from a
power series expansion.

The second assertion can similarly be proved by a local argument. The

functoriality is a consequence of the formula f* f*a = Sf{x ) a ^or a n y Pa*h

7 connecting xo with x in X. •

Examples 3.3.9 i) If X is of dimension one, i.e. X is a curve, then Alb(X) =
Pic°(X). Indeed, Serre duality shows H°(X,QX)* = Hl(X,Ox). Moreover,
the embeddings #i(X,Z) C H°(X,nx)* and Hl(X,Z) C ff^X,^) are
compatible with the natural isomorphism Hi(X,Z) = i / ^X, Z).

Furthermore, the Albanese map alb : X —> Alb(X) coincides with the
Abel-Jacobi map X —> Pic(X), x i—> O{x — XQ) defined in Section 2.3.

ii) Let X be a complex torus given as V/F with F a lattice inside the com-
plex vector space V. Hence, there exist natural isomorphisms TQX = V and
H°(X,nx) = V*. Moreover, Fi(X,Z) ^ F and the embedding #i(X,Z) ->
H°(X,f2x)* is the given inclusion J1 c V. With XQ = 0 the Albanese map
X -> Alb(X) = V / r is the identity.

Without representing a complex torus X as a quotient Vy.T, the Albanese
map enables us to write X, canonically up to the choice of a base point XQ, as
X = H°(X, (2x)*/Hi(X, Z). Moreover, from the functoriality of the Albanese
map one deduces that any holomorphic map / : X —* X' between complex
tori X and X' is described by the dual of the pull-back map H°(X, fix)* -^

H0(X',QX')* divided out by /* : Hi{X,Z) -> EX{X\'L). The base point of
X' needs to be of the form f(x).

Let us now discuss the higher cohomology groups of a compact Kahler
manifold.

Corollary 3.3.10 Let (X,g) be a compact Kahler manifold. Then the Lef-

schetz operator L and its dual A define natural operators on cohomology

L : Hp'i{X) ^ Hp+l'q+1{X) and A : Hp'q{X) ^ i^-1'9"1^).

Moreover, L and A only depend on the Kahler class [u] £ Kx C H2(X, K).

Proof. This is a consequence of hi), Remark 3.2.7 and the bidgree decom-
position 3.2.12. The last assertion follows from the observation that L on
cohomology is given by the exterior product with the Kahler class [u>]. •
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Definition 3.3.11 Let (X, g) be a compact Kahler manifold. Then the primi-

tive cohomology is denned as

Hk(X,R)p:=Ker(A:Hk{X,]

and
Hp'q{X)p := Ker ( A : Hp'q{X)

Tk-2i

Remark 3.3.12 It is important to note that the primitive cohomology does not
really depend on the chosen Kahler structure, but only on the Kahler class
[u] £ iJ1 '1(X, M). Thus, one usually has an infinite-dimensional set of Kahler
forms all inducing the same primitive cohomology (see Corollary 3.1.8). But
once a Kahler structure realizing the given Kahler class is chosen, any class
in Hk(X,E)p (or, Hp'q(X)p) can be realized by an harmonic form that is
primitive at every point (although possibly zero at some points).

Proposition 3.3.13 (Hard Lefschetz theorem) Let (X,g) be a compact

Kahler manifold of dimension n. Then for k < n

Ln~k :Hk{XM) = H2n-k{XM) (3.1)

and for any k
rTk/v ¥j>\ /T\ Tirrk—2ilv- n\ fn 0\

ti (A,K) = ̂ -y L tl (A,K.Jp. (,-J-̂ j
i>0

Moreover, both assertions respect the bidegree decomposition. In particular,

Proof. The first assertion is iii) of Remark 3.2.7. For the second assertion one
either uses the fact that L and A define an sl(2)-representation on 7i*{X,g)

and then concludes as in the proof of Proposition 1.2.30 or one applies Corol-
lary 3.1.2. Since L and A respect harmonicity, Corollary 3.1.2 then proves the
second assertion. The compatibility with the bidegree decomposition follows
from the fact that the Kahler class is of type (1,1). See also Remark 1.2.33. •

Another way to phrase Proposition 3.3.13 is to say that any Kahler class
on X yields a natural st(2)-representation on H*(X,W). Thus, we have con-
structed, starting with the finite-dimensional sl(2)-representation on the ex-
terior algebra of an hermitian vector space, via an infinite-dimensional rep-
resentation on A*(X), another finite-dimensional sl(2)-representation on the
cohomology of a compact Kahler manifold.

Corollary 3.3.14 The Hodge ^-operator on a compact Kahler manifold (X, g)

acts naturally on cohomology H*(X,C) inducing isomorphisms * : Hp'q{X) =

Hn~~q'n~~p(X). The action only depends on the Kahler class [ui\.
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Proof. The first assertion follows again from Remark 3.2.7, i). By using Weil's
formula 1.2.31 the Hodge ^-operator can be described in terms of the Lefschetz
operator L and the Lefschetz decomposition. In particular, everything depends
only on the Kahler class (and the complex structure of X). •

The Hodge numbers hp'q(X) of a compact Kahler manifold X of dimension
n are visualized by the Hodge diamond:

hifl ^0,1

h2'0 h1'1 h°>2

in'° ~T\ h?'n t Hodge
Serre

hn,

conjugation

Serre duality (Corollary 3.2.12) shows that the Hodge diamond is invariant
under rotation by IT. Complex conjugation Hp'q(X) = Hq>p(X) provides an-
other symmetry: Thus, the Hodge diamond is also invariant under reflection in
the vertical line passing through h°'° and hn'n. The Hodge *-operator induces
a reflection in the horizontal line passing through hn'° and h°'n.

Proposition 3.3.15 (Hodge—Riemann bilinear relation) Let (X,g) be a

compact Kahler manifold of dimension n with Kahler class [u>] and let 0 ^
a e HP'i{X)p. Then

^(- l )^'";*' - 1 ' / a A a A «-(*+'> > 0.
Jx

Proof. Since any a € Hp'q(X)p can be represented by an harmonic form
a G W'q{X,g) which is primitive at any point x G X (see Remark 3.3.12),
the assertion follows from Corollary 1.2.36. (However, since the primitive har-
monic form a might be trivial at certain points, we possibly get strict inequal-
ity only on a non-empty open subset of X.) •

Before studying the intersection pairing on the middle cohomology of a
general compact Kahler manifold, let us consider the surface case (cf. Exercise
1.2.7).
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Corollary 3.3.16 (Hodge index theorem) Let X be a compact Kahler
surface, then the intersection pairing

H2(X,W) x f f 2 ( I , l ) ^M, (a,/3)i ^JxaA/3

has index {2h2>°(X) + l , / i u ( * ) - !)• Restricted to H1'1^) it is of index

Proof. By the bidegree decomposition one has the orthogonal splitting

H2(X,R) = ((H2fi(X) © H°'2(X)) n H2(X,R)) © #U (X,M).

For degree reasons, any class in H2t°(X) © H°'2(X) is primitive. Thus, the
intersection pairing is positive definite on the first summand. Indeed, if a =
a2'° + a0'2 eH2(X,R), then

f a2=2 f a2'°Aa°'2 =
Jx Jx

[
x

According to the Lefschetz decomposition (3.2), the second summand
^^(XjK) decomposes further into [w]M © i71'1(X,M)p. This splitting is or-
thogonal, since for a primitive class a the integral fxco /\a vanishes (see also
i), Proposition 1.2.30). Clearly, f u2 > 0 and by Hodge-Riemann Jxa

2 < 0
for a € H1'1(X,W)P. Thus, the intersection pairing is positive definite on
(H2'°(X) © H°'2(X)) n H2(X,R) © [w]E and negative definite on the orthog-
onal complement i71'1(X,E)p. This proves the claim. •

Remark 3.3.17 The corollary can be used to exclude that certain compact dif-
ferentiable manifolds of dimension four admit a Kahler structure (cf. Exercise
3.3.3). Moreover, since one can show that any compact complex surface with
b\(X) even admits a Kahler structure (this is a highly non-trivial statement
that originally uses classification theory and a detailed investigation of K3
surfaces [101]), there are topological restriction on a simply connected com-
pact four-dimensional manifold to carry even a complex structure. See as well
the comments at the end of this section and of Section 2.6.

Let X be a compact Kahler manifold of dimension n. In particular, X
is an even dimensional compact oriented differentiable manifold of real di-
mension 2n. Therefore, by Poincare duality, the intersection product defines
a non-degenerate pairing on the middle cohomology i?n(X,R). Up to sign it
coincides with the Hodge-Riemann pairing, but it has the advantage of being
purely topological, i.e. independent of the complex structure and the Kahler
class [w].

If n is odd then the intersection pairing on the middle cohomology
Hn(X, M.) is a non-degenerate skew-symmetric pairing. If n is even, e.g.
n = 2m, then the intersection pairing H2m(X,R) x H2m(X,R) -> M is a
non-degenerate symmetric bilinear form. Its signature sgn(X) can be com-
puted by the following result, which generalizes the previous corollary.
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Corollary 3.3.18 // a compact Kahler manifold X is of even complex di-
mension 2m, then the intersection pairing on the middle cohomology is of
signature

2m

sgn(X) = ]T (-l)W(X),
p,q=0

where hp'q(X) :— dimHp'q(X) are the Hodge numbers.

Proof. We use that the Lefschetz decomposition (3.2) is orthogonal with re-
spect to the intersection pairing. This follows from the corresponding state-
ment for the Hodge-Riemann pairing on the exterior algebra of every tangent
space (see Exercise 1.2.2) and the above observation that the Hodge-Riemann
pairing on the middle cohomology is the intersection pairing possibly up to
sign. Let us now fix a Kahler structure on X and consider the induced or-
thogonal decomposition:

H2m(X,R) = 0 Hp'q{X)
\p+q—2m

= Hm'm{X,R)(B 0 (Hp'"(X)®Hq'p{X))R

p+q=2m
p>q

p j q j
p>q

If 0 ̂  a G Hm-i'm-i(X,R)p, then Jx V(a) A U(a) = Jx a A a A J2^.
Thus, by Hodge-Riemann (—l)m~-? Jx IP {a) Alr'(a) > 0, i.e. the intersection
pairing on UHm-^m~:>{X,R)p is definite of sign (-l)m~j.

Analogously, for a € Hp-j'q-j(X)p one has Jx Lj(a + a) A Lj(a + a) =
2 Jx a A a A w2-7 and thus, again by Hodge-Riemann, we find that the in-
tersection pairing on V (Hp-j'q-j(X)p © Hq-j'p~j(X)p)R is definite of sign
iP-9(_l)(p+?-2j)(P+9-2j-l)/2 = iP-q(_l)m-j for p + q = 2m_

The rest of the proof consists of the following somewhat tricky calculation:

dim Hm-^m--j {X)p

p+9=2m j>0
p>q

ip-qJ2(-l)m~j dimHp-j'q~j(X)p

p+q=2m j>0
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p+q=2m

p+q=2m

p+q—2m

(since /iP-^-J = /^ -J .P-J = hp+j'q+j for p + q = 2m)

p+q=0(2) p,q

(since (-l)php^ + (-l)qhq'p = 0 for p + q = 1(2)).

Here, (*) uses hp-q(X) = J2j>o
d^mHP~J'q'J(x)p w n i c h y i e l d s

= J2 dimHp-k'q-k(X)p + 2 ^2{-l)j Y^ dimHp-j-k'q-j-k(X)v

k>0 j>0 fc>0

= ^ ( - l ^ dimHp-j'q-j(X)p.

D

It is interesting to note that the signature of the intersection pairing, which
is purely topological, can be computed using the Hodge numbers associated
to a complex structure on the manifold. In fact, each single Hodge number
might really depend on the complex structure, but the above alternating sum
does not.

Moreover, in the proof we had to choose a Kahler structure on the complex
manifold in order to decompose the cohomology into its primitive parts. In
Section 5.1 we will state the Hirzebruch signature formula which expresses
sgn(X) in terms of characteristic classes.

The Lefschetz theorem on (1, l)-classes (Proposition 3.3.2) yields a sur-
jective homomorphism Pic(X) —> H1'1(X,Z) = NS(X). To any hypersurface
D C X one associates via this homomorphism the image of O{D). It is not
hard to see, and we will actually prove this in Section 5.3, that Hx'l{X, Z)
is generated by classes induced by hypersurfaces provided the manifold X is
projective. This basic fact is generalized by the Hodge conjecture. In order to
state it, we will need the following

Definition 3.3.19 The fundamental class [Z] G HPlP{X) of a complex sub-
manifold Z c X o f codimension p in X is defined by the condition
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for all a G H2n~2P{X).

f aA[Z}= [ a\z
Jx Jz

It can be shown that [Z] is integral, i.e. contained in the image of H2p(X, Z) —•>
H2P(X,C) (cf. Appendix B). Thus, [Z] is an element in H™(X,Z), which
is by definition the intersection of HP'P(X) and the image of H2P(X, 1) ->
H2p(X,C). Moreover, using Exercise 1.1.17 one sees that [Z] G HP'P(X,Z) is
also defined for singular analytic subvarieties Z C X.

Definition 3.3.20 A class in HC'C{X,Q) := HC'C(X) n H*(X,Q) is called
analytic if it is contained in the Q-vector space generated by all fundamental
classes [Z] G HC>C(X,Z).

The following conjecture is one of the most prominent open question in
mathematics. It has been included in the Clay Millennium prize problems [27].

Hodge Conjecture. Let X be a projective complex manifold. Then any
class in HC'C(X, Q) is analytic.

Remarks 3.3.21 i) It is known that the Hodge conjecture is false when for-
mulated over Z, i.e. not every class in HC'C(X, Z) is contained in the group
generated by fundamental classes. Also note that for the more general class
of compact Kahler manifolds the assertion is known to fail. In fact, this can
be seen already for c = 1, but this is no exception.

ii) The Lefschetz theorem on (1, l)-classes provides evidence for the Hodge
conjecture. First of all, one verifies that the image of O(D) under Pic(X) —>
H2(X,W) is in fact [D]. This will be proved in Proposition 4.4.13. Then, we
will see that the Kodaira vanishing theorem (cf. Proposition 5.2.2) implies
that on a projective manifold any line bundle is associated to a divisor. Thus,
any class in H1'1(X, Z) can be written as linear combination of fundamental
classes of hypersurfaces. In fact, those can even be chosen to be smooth (see
comments to Section 5.3).

iii) If one wants to avoid singular subvarieties and integration over those
one might just consider cycles associated to smooth subvarieties only. Or,
slightly more general, one could define a fundamental class for any generically
finite holomorphic map / : Z —> X of a compact complex manifold Z to X. By
definition [Z, f] is then determined by JX[Z, f] A a = Jz f*(a). Then Hodge
conjecture would assert that any class in HC'C(X, <Q>) can be written as a linear
combination of fundamental classes [Z, f]. In fact both versions of the Hodge
conjecture are equivalent. This follows from the resolution of singularities (cf.
the comments to Section 2.5), which was also one of the main open problems
of Grothendieck's list [62] in 1969 and which was solved shortly afterwards by
Hironaka [67].
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Exercises

3.3.1 Go back to the proof of Lemma 3.3.1 and convince yourself that we have
not actually used that X is Kahler. This comes in when considering the bidegree
decomposition of H2.

3.3.2 Let X be a Hopf surface. Show that the Jacobian, i.e. H^X, OX)/H1(X, Z),
is not a compact torus in a natural way. In fact, H (X, Z) = Z and H (X, Ox) = C

3.3.3 Show that the oriented differentiable manifold given by the connected sum
P2)JP2 does not underly any Kahler surface. In fact, it cannot even be a complex
surface, but in order to see this one would have to use the fact that any complex
surface with even b\ is in fact Kahler. (The four-sphere can be treated analogously.
See also the comments to Section 2.6.)

3.3.4 Let X be a Kahler surface with kod(X) = -co. Show that its signature is

3.3.5 Let X be a compact Kahler manifold of dimension n and let Y C X be
a smooth hypersurface such that [Y] € H2(X, R) is a Kahler class. Show that the
canonical restriction map Hk(X, K) —> Hk(Y, K) is injective for k < n — 1. (This is
one half of the so-called weak Lefschetz theorem (cf. Proposition 5.2.6). It can be
proven by using Poincare duality on X and the Hard Lefschetz theorem 3.3.13).

3.3.6 Construct a complex torus X = C2/F such that NS(X) = 0. Conclude that
such a torus cannot be projective and, moreover, that K(X) = C. Observe that in
any case Pic(X) ^ 0.

3.3.7 Show that any complex line bundle on Pn can be endowed with a unique
holomorphic structure. Find an example of a compact (Kahler, projective) manifold
and a complex line bundle that does not admit a holomorphic complex structure.

3.3.8 Show that on a complex torus Cn/F the trivial complex line bundle admits
many (how many?) holomorphic non-trivial structures.

3.3.9 Let X be a compact Kahler manifold. Show that the fundamental class
[Y] € HP'P(X) of any compact complex submanifold Y C X of codimension p is
non-trivial. Is this true for Hopf manifolds?

3.3.10 Let X be a complex torus Cn/T. Show that Pic°(Pic°(X)) is naturally
isomorphic to X.

3.3.11 Show that Alb(X) and Pic°(X) of a compact Kahler manifold X are dual
to each other, i.e. Pic°(Alb(X)) =* Pic°(X).

Comments: - Fujiki's article [52] discusses the Lefschetz decomposition from
the view point of holonomy and also in other situations.

- We alluded to the fact that any compact complex surface X with t>i(X) even
is in fact of Kahler type. The first proof was given by using classification theory and
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reducing to K3 surfaces. For K3 surfaces it was eventually proved by Todorov and
Siu. A more direct proof was recently found by Lamari [82].

- Kahler manifolds are special instances of symplectic manifolds. To any sym-
plectic manifold one can find a compatible almost complex structure. So, one might
wonder whether every symplectic manifold is in fact Kahler. Even in dimension four,
this does not hold. The first example of a symplectic fourfold which is not a Kahler
surface was constructed by Thurston. The reader interested in real fourfolds might
ask whether complex surfaces play a role in their classification. In fact, for some time
one had tried to prove that irreducible fourfolds are always complex. This turned
out to be false due to counterexamples of Gompf and Mrowka. Recently, one has
realized that symplectic fourfolds can, to a large extent, be investigated by similar
methods as complex surfaces. This direction has been initiated by pioneering work
of Gromov and Donaldson.

- Of course, one has tried to prove the Hodge conjecture in special cases. But
even for abelian varieties, i.e. projective complex tori, the question is still open. See
[56] for a survey.

- Picard and Albanese torus are instances of a whole series of complex tori
associated to any compact Kahler manifolds, so called intermediate Jacobians. In
analogy to Pic°(X) = H°'1(X)/H1{X,Z) and Alb(X) = Hn-l'n{X)/H2n-\X,Z)

one deOnes the fc-the intermediate Jacobian as Hk~1'k(X)/H2k-1(X,Z). They are
a useful tool in the investigation of cycles of codimension k.
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Appendix to Chapter 3

3.A Formality of Compact Kahler Manifolds

In this section we shall first define the notion of a differentiable graded alge-
bra, which captures the algebraic aspects of the de Rham complex of a dif-
ferentiable manifold, and then move on to discuss how the 95-lemma 3.2.10
implies that the differential graded algebra associated with a compact Kahler
manifold is particularly simple, is "formal".

Definition 3.A.I A differential graded algebra (or, dga for short) over a field
k is a graded fc-algebra A = (Bj>0 A

1 together with a fc-linear map d : A —> A
such that

i) The fc-algebra structure of A is given by an inclusion k C A0.
ii) The multiplication is graded commutative, i.e. for a £ A1 and /3 £ A?

one has a • /3 = (-1)^/3 • a € Ai+j.
iii) The Leibniz rule holds: d(a • (5) = d(a) • /3 + ( - l ^ a • d((3) for a e A\
iv) The map d is a differential, i.e. d2 = 0.

Any graded /c-algebra becomes a dga by taking d = 0. If the context is
clear, the field k will usually not be mentioned explicitly. What has just been
defined is actually a commutative differential graded algebra, but as we will
not encounter any non-commutative ones, we can drop the adjective.

Any dga (A = © A1, d) gives rise to a complex of k-vector spaces

Definition 3.A.2 The i-th cohomology of a dga (A = @Al,d) is

" v ' >'~ -im(d : A*-1 ^ A*) '

Lemma 3.A.3 If (A = (&Al,d) is a dga, then its cohomology (H*(A,d) =
A,d),dtf* = 0) has the structure of a dga.

Proof. Indeed, due to the Leibniz rule the product on A induces a natural
product on H*{A,d). •

Definition 3. A.4 Let (.4, djC) and (S, dg) be two dga's. A dga-homomorphism
between A and B is a fc-linear map / : A —* B such that i) f{Al) C Bl, ii)
/ ( a • 13) = /(a) • /(/?), and iii) dB o / = / o dA.

Lemma 3.A.5 Any dga-homomorphism f : (A,dj\) —> (J5,dis) induces a dga-
homomorphism f* : H*(A,dj\) —> H*(B,dB).
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Proof. This is straightforward to check. •

Definition 3.A.6 A dga-homomorphism / : (A,CI_A) —•> (B,ds) is a quasi-

isomorphism if /* is an isomorphism.

Example 3.A.7Let M be a differentiable manifold. Then (A*(M),d), where
d is the exterior differential on forms, is a dga. Its cohomology equals the de
Rham cohomology of M, i.e. H*(M,R) = H*{A*(M), d).

Definition 3.A.8 A dga (A,d) is called connected if the inclusion k C .4°
induces an isomorphism k = H°(A, d). It is called simply connected if in
addition H1(A,d) = 0 .

Remark 3.A.9 Clearly, a differentiable manifold M is connected if and only if
its de Rham algebra (A*(M), d) is connected. If M is simply connected, then
also (A*(M),d) is simply connected, but the converse does not hold. Any
differentiable manifold with finite fundamental group is a counterexample.

As the above example already shows, a general dga can be very compli-
cated. Thus, one tries to simplify a given dga (A, d) as far as possible. It
turns out that the concept of a "minimal dga" is the right one in this context.
Moreover, at least every simply connected dga admits minimal model, which
still encodes most of the properties of the original dga.

Definition 3. A.10 A dga (M = ® M.1, d) is called minimal if the following
conditions are satisfied:

i) M° = k.
ii) M.+ := (Bi>o-M* is free; i-e- there exist homogeneous elements

xi ,X2,. . . of positive degree d\,d2,. •., such that M.+ = S+(xi ,22, . . . ) (the
positive part of the (super) symmetric algebra of the vector space generated
by x\,X2, • •., cf. Section 3.B).

iii) The Xj's in ii) can be chosen such that d\ < d<i < ... and dxi €

Remark 3.A.11 More explicitly, condition ii) says that any a £ A4+ is a lin-
ear combination of terms of the form xl± • x2

2 • . . . and that all relations are
generated by the commutativity relations Xi • Xj = {—l)didjXj • Xi.

Lemma 3.A.12 A minimal dga (Ai = Q)M.l,d) is simply connected if and

only if M1 = 0.

Proof. Clearly, M1 = 0 implies that M. is simply connected. Thus, we have
to show that conversely H1(A4,d) = 0 implies Ad1 = 0. So, let us assume
H1(M,d) = 0.

Since M. is minimal, we may choose non-trivial elements xi ,X2, . . . sat-
isfying ii) and iii). In particular, d\ < c^ < • • • a n d dx\ = 0. IfA'f1 ^ 0
then d\ = 1. Hence, xx G Ker(d : M1 —> M2). On the other hand,
M° = k and, therefore, dM° = 0. Thus, x\ would induce a non-trivial element
[xi] G Hl(M,d). Contradiction. •
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Remark 3.A.13 Let (Ai,d) be a minimal dga. Then d is decomposable, i.e.
d(M) C M+ • A4+. Indeed, if xi,X2,... are chosen as in ii) and iii), then
dxj £ M.i+1 is a linear combination of monomials x̂ 1 • . . . • x%?Z\ • Since d\ <
... < dj-i < dj + 1, we must have i\ + ... -f ij-\ > 2.

Moreover, if (A4, d) is a simply connected dga satisfying i), ii) and such that
d(A4) C M+ • Ai +, then .A/f is minimal. In fact, i) and ii) suffice to deduce
M1 = 0 as in the proof of the previous lemma. If we order the elements
xi, X2, • • • in ii) such that d\ < d^ < ..., then dxi can be written in terms of
xi , . . . Xj with di < d2 < ... < dj < di + 1. Since dxi G Ai+ • A4 +, we may
assume that dj < di. Eventually, using M1 = 0, we obtain di < ... < dj < di.
Hence, j < i.

Let us study a few minimal dga's in detail.

Examples 3.A. 14 i) For a given n > 0 let M — 0 M l such that

k i = 0 ,2n+l
0 else

We let d be the trivial differential. Moreover, apart from the fc-linear structure,
the multiplication is the trivial one. (In fact, there is no other choice in this
case.) Clearly, M. is minimal with M+ = S+(x), where x is of degree 2n + 1,
and the cohomology of M is concentrated in degree 0 and 2n + 1.

ii) Let M. := S*{x,y) with x and y homogeneous elements of degree 2n
and An — 1, respectively. We set dx = 0 and dy = x2. This determines the
structure of M completely. Then (M,d) is a minimal dga with cohomology
concentrated in degree 0 and 2ro.

iii) Let M. := S*(x, y) with x and y homogeneous elements of degree 2
and 2n+ 1 (n > 0), respectively. The differential d is determined by the two
conditions dx = 0 and dy = xn+1. Clearly, M is minimal with ^(Adjd) = k
for i = 0,2,.. . , In and Hl(M, d) = 0 for i odd or i > 2n.

Definition 3.A.15 The minimal model of a dga (A, dj{) is a minimal dga
together with a dga-quasi-isomorphism / : (A4, dj^) —> (A, dj\).

If (A4, djv[) is a minimal model of (A, dX) and (A, d^) —> (B, dg) is a dga-
quasi-isomorphism, then via the composition M. —> A —> B the dga {M, dj^i)
is also a minimal model of (B, djs).

The existence of a minimal model is a result due to Sullivan:

Proposition 3.A.16 Every simply connected dga (A, dj±) admits a minimal
model, which is unique up to isomorphism.

Proof. We indicate the main ideas. The reader will easily fill in the missing
arguments.

Firstly, there are two techniques that allow one to create and annihilate
cohomology of a dga.
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i) Let (M, d,M) be a dga and i G N. Then M. [x] admits naturally the
structure of a dga, such that M C M[i ] is a dga homomorphism, deg(x) = i,

and

dM) j <i

In particular, dx = 0. Note that x2 = 0 if i is odd.
ii) Let M. be a dga and c £ A4*+1 a closed element. Then At [a;] admits

naturally the structure of a dga containing A4, such that deg(x) = i, dx = c,

and

In fact, in order to make this work we need the additional assumption that the
dga is simply connected. Indeed, introducing x of degree i we might a priori
also create new cohomology of degree i + 1 given by products x • y, with y of
degree one. An element x • y is closed if and only if d(x) • y = 0 and d(y) = 0.
If, however, the dga is simply connected, a closed element y of degree one is
of the form y = d(z). Hence, ±[x • y] = [d(x)z — d(xzj\ = [cz] is contained in
the cohomology of M. and, in particular, is not newly created by adjoining x.

Next, one constructs inductively minimal dga (A4i, di) and dga homomor-
phisms fi : Mi —* A such that /* : H^{Mi,di) —•> H\A,dX) is bijective
for j < i — 1 and injective for j = i. If (Mi,di) is already constructed
one uses i) to create additional cohomology classes and ii) to ensure that
Hi+l{Mi+i,dl+i) -> Hi+1(A,dA) is injective. •

Examples 3.A.17i) and ii) of Examples 3.A.14 provide us with the minimal
models of the de Rham complexes of the spheres. Indeed, for the odd dimen-
sional sphere S2n+1 let M be as in i). Then M -> -4*(S2n+1), x H-> vol is a
dga-quasi-isomorphism. For the even dimensional sphere S2n we choose M. as
in ii) and define M. —> A*(S2n) by x i—> vol and y i—> 0.

Definition 3. A. 18 Two dga (.4, dX) and (B, dg) are equivalent if there exists
a sequence of dga-quasi-isomorphisms

(Ci,dCl) . . . (Cn,dcJ

/ \ / \ / \
(A,dA) (C2,dC2) . . . (B,dB).

This is analogous to what happens if one passes from the category of
complexes to the derived category. There, quasi-isomorphic complexes yield
isomorphic objects in the derived category.

Remark 3.A. 19 Using Proposition 3.A.16 one finds that a simply connected
dga (A, dA) is equivalent to a dga (B, dg) if and only if there exists a dga-quasi-
isomorphism {M.,dw) —* {B,dr$), where (Ai,d_M) is the minimal model of
(A, d_A.). Indeed, one can lift recursively (A4, djvi) —* (C2i,dc2i) to (M, d x ) —>
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Definition 3.A.20 A dga [A, d^) is called formal if (A, dj) is equivalent to
a dga (B, ds) with rfg = 0.

Clearly, (A, djC) is formal if and only if [A, djCj is equivalent to its coho-
mology dga (H*(A, dA),d = 0).

Definition 3.A.21 A differentiable manifold M is formal if its de Rham al-
gebra (A*(M),d) is a formal dga.

A general differentiable manifold is not formal, but some interesting classes
of manifolds are. In order to show that any compact Kahler manifold is formal
(Proposition 3.A.28), we will first prove yet another version of the <9<9-lemma
3.2.10.

Let X be a complex manifold. Recall that dc : Ak(X) -> Ak+1(X) is the
real differential operator dc = I~1dl = —i(d — d) (Definition 3.1.13). We have
seen that ddc = — dcd = 2idd and one easily checks id0)2 = 0.

The following is Exercise 3.2.13, so you might prefer your own proof.

Lemma 3.A.22 (ddc-lemma) Let X be a compact Kahler manifold and let

a G Ak{X) be a dc-exact and d-closed form. Then there exists a form (3 G
Ak~2(X) with a = ddcf3. (We do not assume a be pure.)

Proof. Write a = dcj and consider the Hodge decomposition 7 =
d*S. Since X is Kahler, the harmonic part ^ (7 ) of 7 is also d- and <9-closed.
Hence, d c

7 = dcd(3 + dcd*S.

It suffices to show that dcd*S = 0. In order to see this, we use 0 = da —

ddcd*6 and dcd* = —d*dc (as in the proof of the c*<9-lemma). Hence, 0 =
(dd*dcS, dc8) = \\d*dc8\\2 and thus dcd*5 = ~d*dc5 = 0. •

Remark 3. A.23 The <idc-lemma above immediately yields a dcd-lemma: If a G
Ak{X) is a <ic-closed and d-exact form on a compact Kahler manifold X,

then a = dcdj3 for some f3 G Ak~2(X). Indeed, a is dc-closed and d-exact if
and only if I (a) is d-closed and dc-exact. Thus, using the lemma one writes
I(a) = ddcp and hence a = (I^dl^d)^)) = (-l)k-1(dcd)(I{P)) = dcdp

with ji = ( - l ) *

Next consider the sub-dga (A*(X)C, d) C (A*(X), d) of all <ic-closed forms.
Since ddc = -dcd, one has d(Ak(X)c) C Ak+1(X)c.

Corollary 3.A.24 Let X be a compact Kahler manifold. Then the inclusion

i : (A*(X)c,d) C (A*(X),d) is a dga-quasi-isomorphism.

Proof. Let a G Ak(X)c be d-exact. Then by Lemma 3.A.22 one has a = ddc/3

for some j3 G Ak~2(X). Since dcj3 is clearly enclosed, this shows that i* is
injective.
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Any cohomology class in Hk (X, R) can be represented by a harmonic (with
respect to a fixed Kahler metric) form a G Ak(X). By Proposition 3.2.6 any
harmonic form is also d- and 9-harmonic. Thus, a is enclosed and, therefore,
a is in the image of i. This proves the surjectivity of i*. •

Definition 3.A.25 Let X be a complex manifold. Then

: Ak(X) -> Ak+1{X))

: Ak-l{X) -> Ak{X)) '

Using ddc = —dcd, one sees that d induces a natural differential d :

Corollary 3. A.26 If X is a compact Kahler manifold, then the natural pro-
jection p : (A*(X)c,d) —> (Hjc(X),d) is a dga-quasi-isomorphism.

Proof. Let a G Ak(X) be d-closed and dc-exact. Then Lemma 3.A.22 asserts
that a = ddcf3 for some (3. In particular, a is in the image of d : Ak~1(X)c —>
Ak{X)c. Hence, p* is injective.

Let an element in the cohomology of (H%C(X), d) be represented by the en-
closed form a. Then da is d-exact and dc-closed. Thus, da = ddc(3 by Lemma
3.A.22. Hence, a — dcf3 is dc- and d-closed and represents the same class as a
in Hk

c(X). This shows that p* is surjective. •

Corollary 3.A.27 Let X be a compact Kahler manifold. Then the exterior
differential d is trivial on H

Proof. Indeed, if a is enclosed, then da is d-exact and dc-closed and thus of
the form da = dcdf3 for some /?. Hence, 0 = [da] G #£+ 1(X). •

Proposition 3.A.28 Any compact Kahler manifold is formal.

Proof. If X is compact Kahler then i : (A*(X)c,d) C (A*(X),d) and
p : (A*(X)c,d) -» (H%c(X),d) = (H^(X),0) are dga-quasi-isomorphisms.
Hence, via the diagram

(A*(X),d)

the de Rham complex (A*(X),d) is equivalent to a dga with trivial differen-
tial. •
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Remark 3. A.29 In particular, we have proven that for a compact Kahler mani-
fold H*(X: R) = H2c(X). This does not hold for arbitrary complex manifolds.

Remark 3. A.30 Merkulov has recently shown in [90] a weak version (forgetting
the multiplicative structure) of formality for any symplectic manifold whose
cohomology satisfies the Hard Lefschetz theorem. In this sense, it seems that
in the case of a Kahler manifold it is not the complex structure or the metric
but the Kahler form that matters.

There are certainly manifolds that are formal without being Kahler, but
sometimes the formality property of Kahler manifolds can indeed be used to
exclude a given compact complex manifold from being Kahler. In order to use
the formality property for this purpose, we shall make a detour by introducing
Massey triple-products.

Let M be a differentiable manifold and let a G HP(M,R), (3 G Hq(M,R),
and 7 G Hr(M,R) be cohomology classes satisfying 0 = aj3 G Hp+q(M,R)
and 0 = /?7 G Hq+r(M, R). Thus, if a, /3,7 represent a, (3, and 7, respectively,
then a A f3~ = df and ft A 7 = dg for certain forms / G Ap+q~1(M) and

Definition 3.A.31 The Massey triple-product

(a,/3,7) G Hp+q+r-1(M,R)/{Hp+q-1 • Hr + Hp •

is the cohomology class of / A 7 — (—l)pd A g.

We have to verify that {a, (3,7) is well-defined.
Firstly, / A 7 - (-l)pa A g is closed, for d(f A 7 - (-l)pd A g) = d(f) A

7 - a A d(g) = (a A /3) A 7 - a A (ft A 7) = 0.
Secondly, if we represent a by a' = a + dr] for some rj G AP~1(M), then

<5'A/9 = a A ^ + d(r/ A ft) and a 'A9 = a A j + (̂77) A g. Thus, with this new
choice for a representative of a we obtain for the Massey triple-product:

(/ + 7] A /?) A 7 - (-l)p(a A 5 + d(//) A 5)

= (/ A 7 - (-l)Pd A5) + ( r / A ^ A 7 - ( - l ) p % ) A g)

= (/ A 7 - ("l)p« A g) - (-l)Pd(T? A ff).

This shows that the corresponding cohomology classes in Hp+q+r~1(M, R)
coincide for both choices a and a'. Of course, the same argument applies to
the other two classes /? and 7.

Thirdly, if we replace / by / + /o with <i/o = 0, then the Massey triple-
product becomes

/A7- ( - l ) p <5A f f + / 0 A7,

i.e. modulo the class [/0A7] G Hp+q~1 (M,R)- Hr(M,R) it remains unchanged.
A similar argument applies to any other choice of g. Thus, the Massey triple-
product is well-defined.
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Remark 3. A.32 If one in addition fixes a Riemannian metric on M, the defini-
tion of the Massey triple-product can be refined. Then, instead of choosing /
and g arbitrary, we let

/:=Gd*(aA/3) and g := Gd*(/3 A 7),

where G is the Green operator, i.e. G is the inverse of the Laplace operator A
on Im(-D) © Im(d*) and G = 0 on the space of harmonic forms H(M: g). Since
G commutes with d, one has dGd*(aA/3) = Gdd*(aA(3) = GA(aA/3) = ul\fi
and, similarly, dGd*{Ji A 7) = /? A 7. Thus, we obtain a class

(a A /3) A 7 - (-l)pa A Gd*'0 A 7)]

which depends on the chosen metric and maps to the Massey triple-product
under the natural projection onto ip>+<?+r-i/(#P+g-i . jjr + Hp • #« + r - 1 ) .

In fact, a slight modification of this definition allows one to define a triple-
product even for cohomology classes a, (3,7 which do not satisfy the assump-
tion a(3 = 0 = /3j. As the above triple product involving G might not be
closed, one replaces it by its harmonic part

\h (Gd*(a A J3) A 7 - (-l)pd A Gd*{p A 7))] .

Clearly, if the product of two arbitrary harmonic forms is again harmonic,
then this triple-product is trivial. The usual product in H*(M,M) together
with the new triple-product depending on a Riemannian metric are part of an
even larger structure. It turns out that the de Rham complex of a compact
Riemannian manifold is endowed with the structure of an A ̂  -algebra (cf.
[43]).

Before stating the next proposition, let us point out that the definition
of the original Massey triple-product (a, (3,7) makes perfect sense for any
dga (A,dA). Thus, if (A,dA) is a dga and a £ HP(A,dA), (3 e H«(A,dA),
and 7 £ Hr(A,dA) such that a(3 = 0 = /?7, then there is a natural class
(a,f3,7) £HP+i+r-1{A,dA)l{HP+i-1 • Hr + Hp

Proposition 3.A.33// (A,dA) is a formal dga, then all Massey triple-
products are trivial.

Proof. The assertion follows easily from the observation that for any dga homo-
morphism F : (C, dc) —> (B, dis) the Massey product is compatible with F*, i.e.
F*(a,/?,7> = (F*a,F*/3,F*'y). For a formal dga (A,dA) this shows that we
can compute its Massey products in its cohomology dga (H*(A, dA),d = 0).
But for a dga with trivial differential the Massey products clearly vanish. •
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Example 3. A.34 It is easy to find examples of manifolds which are not formal.
The following is a real version of the complex Iwasawa manifold of dimension
three discussed in Section 2.1. Consider the Heisenberg group G of all real
invertible matrices of the form

and let F C G be the discrete subgroup G n Gl(3, Z). Then (a, 6, c) € F acts
on G by (x,y,z) t—• (x + a, y + az + b, z + c). We will write elements of G and F

as vectors (x, y, z). Then M = GjF is a compact three-dimensional manifold.
The differentials a := dx, f3 := dz, and 5 = xdz — dy are /^-invariant one-

forms on G and, therefore, descend to one-forms on M. Observe, that [dx], [dy]

generate H1(M, M). One way to see this is to compute that (F/[F,F])R is
generated by these classes. In fact, (0,1,0) = [(1,0,0), (0,0,1)].

The following relations are easy to verify: da = dp = 0, dd = a A /?, and
a A /? A S = dx A dy A dz. Hence, we can compute the Massey triple-product
(a, /?, (3) = 5 A (3 — a A 0. The latter is a non-trivial cohomology class in
H2(M,R), as fMaA6/\f3^0.

In order to show that (a, /?, (3) is non-trivial in the quotient H2(M, M)/H1 •

H1 one has to make sure that (a,/3,@) is not contained in H1 • H1. Since
H^-^MjW) is generated by [a] and [/?], any class 7 in i? 1 • H1 satisfies 7 A [a] =
7 A [/3] = 0, but [5 A /3] A [a] ^ 0. Thus, there are non-trivial Massey triple-
products on M and, hence, M is not formal.

The argument generalizes easily to the complex Iwasawa manifold X =

G/F, where G c Gl(3, C) is the complex Heisenberg and F = G n Gl(3, Z +
iZ). Thus, one obtains a compact complex manifold X of dimension three
with b\ (X) — 4, which does not admit any Kahler structure. Note that the
necessary condition bi(X) = 0(2) for a complex manifold to be Kahler, is
satisfied in this example. Thus, only the finer information about the non-
formality shows that X is non-Kahler.

Non-formality of X does not only show that the complex manifold X is not
Kahler, but that there is no complex structure on the underlying differentiable
manifold that is Kahler.

Remark 3. A.35 To conclude, it might be worth pointing out the importance
of the concepts touched upon in this section for the algebraic topology of com-
pact Kahler manifolds. If M is a compact manifold, its cohomology H*(M,M.)

in general reflects only a small part of its topology. Surprisingly, the de Rham
complex A*{M) encodes much more of it, in fact the real homotopy of M is
determined by it. This approach to homotopy theory using differential forms
has been developed by Sullivan [103]. The formality of compact Kahler mani-
folds can thus be used to conclude that the real homotopy type of a compact
Kahler manifold is determined by its cohomology.
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Exercises

3.A.I Work out the details of the examples 3.A. 14. E.g. compute the dimensions
of all graded parts A4l.

3.A.2 Show that iii) of Examples 3.A.14 can be used as a minimal model of P™.

3.A.3 Show that all spheres are formal.

3.A.4 Show hat the generalized Massey triple-product in Remark 3.A.32 is trivial
as soon as the product of any harmonic forms is again harmonic. (The converse does
not hold.)

3.A.5 Prove that for the complex Iwasawa manifold of dimension three X one
has b%(X) = 4, &2(̂ 0 = 8, and 63(X) = 10. Thus, X satifies all numerical conditions
that can be deduced from the results in Sections 3.2 and 3.3 for compact Kahler
manifolds.

Comment: There are quite a few excellent references for this. We recommend
[1, 43, 60].
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3.B SUSY for Kahler Manifolds

This section shows that, using super Lie algebras, some of the commutator
calculations encountered before can be put in a language that is more alge-
braic in spirit and, hopefully, more conceptual. This approach has also the
advantage to present the results in a form that is more suitable for applica-
tions to mathematical physics, more precisely to quantum mechanics. I hope
that presenting material from the previous sections once more in this language
will be helpful for the reader interested in non-linear sigma models with tar-
get a Kahler manifold and string theory. The reader must not be deceived,
however. This section is just a first step on the long road from mathematics
to conformal field theory, e.g. we do not discuss the superconformal algebra
at all.

The two basic objects needed for a reasonable field theory in physics are a
Hilbert space and a Hamiltonian. In a geometric context, the first proposal for
the Hilbert space would be the space of L2-functions on the given Riemannian
manifold with the Laplacian as the Hamiltonian. The symmetries of the theory
are then encoded by linear operators on the Hilbert space that commute
with the Hamiltonian, i.e. the Laplacian. Already from a purely mathematical
standpoint it does not seem very natural to consider only functions and one
soon passes on to the space of all differential forms. The space of differential
forms can still be completed to a Hilbert space by introducing L2-forms, but
the new space shows one additional feature: Every element can be decomposed
into its even and its odd part, where even and odd is meant with respect to the
usual degree of a differential form. In physicists language, differential forms
of even degree, e.g. functions, are bosonic and odd forms, e.g. one-forms, are
fermionic.

Depending on the geometry of the specific Riemannian manifold, one in-
troduces a natural super Lie algebra of symmetry operators, e.g. certain dif-
ferential operators for differential forms which commute with the Laplacian.
Usually, this Lie algebra is given in terms of generators and commutator re-
lations. One could require the operators to generate the Lie algebra as a Lie
algebra, but often the stronger condition that they span the underlying vector
space is imposed. (Otherwise the Lie algebra might become too big.) Roughly,
the size of the Lie algebra in physicists jargon is measured by the amount of
super symmetry.

The aim of this section is to introduce some basic concepts and, by going
through a list of examples, to gain some feeling for the physicists point of view
on Kahler and Riemannian geometry.

Let us begin with the following basic definition.

Definition 3.B.I A Z/2Z-vector space (or super vector space) is a vector
space V endowed with a direct sum decomposition V = VQ © V\. Elements in
VQ are called even and those in V\ are called odd.
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If an element a EV is homogeneous, i.e. a G Vo or a G V\, then a denotes
its degree. Thus, for a homogeneous element one has a G Vs. Many standard
constructions in algebra can be carried over to the the super world by intro-
ducing an extra sign (—l)a'b whenever the order of two homogeneous elements
a and b is changed.

Example 3. B. 2 The elementary constructions in linear algebra work as well
for super vector spaces. Let us illustrate this in a few cases. We recommend
the first sections of [34] where different ways are proposed to deal with all pos-
sible sign questions. The most elegant way hides all signs in a commutativity
isomorphism in an appropriate tensor category.

i) Let V = VQ © Vi and W = Wo © W\ be two super vector spaces. Then
V® W is a super vector space by posing (V(g> W)Q — VQ® WO © V\ ® W\ and
(V ® W)i = V0®W1®Vi® Wo.

ii) The second symmetric power S2(V) of an ordinary vector space V is
the quotient of V ® V by the relation x®y = y®x. If V = Vo © Vi is a super
vector space then, one defines S2(V) in the super world, as the quotient of
the super vector space V <g> V by the relation x (g> y = (—l)x'^y <8> x for any
two homogeneous elements x G Vj and y G Vy. The quotient is again a super
vector space. Of course, one can similarly define the symmetric algebra S*(V)
of a super vector space V.

A purely odd super vector space V = V\ can also be regarded as an
ordinary vector space by just forgetting the grading. Let us denote it by
A(V). Then, slightly surprising at first sight, S2(V) = / \2 A(V).

iii) If V = Vo © V\ is a super vector space then also the algebra of C-linear
endomorphisms End(V) is a super vector space in a natural way. Indeed,
End(V) = Endo(V)©Endi(V) where F G Endo(V) if and only if F(Vi) = Vi,

i = 0,1, and F is odd if and only if F(Vi) = F{Vi+l).

The endomorphism algebra End(V) of a super vector space provides the
most basic example of a super Lie algebra:

Definition 3.B.3 A super Lie algebra is a super vector space 0 = 0o ffi 01
with a C-linear even homomorphism [ , ] : g <g> g —> g, i.e. [fli,0j] C Qi+j,

such that for homogeneous elements a,b,c one has:

[a,&] = - ( - l f S M and [a, [b,c\] - [[a, b],c] + ( - l ) a > , [a,c}\.

The first sign should be clear from the meta-rule for passing from ordinary
to super constructions. For the second one, the usual Jacobi identity needs
first to be written in the suitable form.

If V is a super vector space, then End(K) is super Lie algebra with [A, B] =

A o B — (—1)A'BB o A for homogeneous endomorphisms A, B G End(V). One
has to check that the Jacobi identity holds true, but we leave this straightfor-
ward argument to the reader.
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Let us see how these algebraic notions work for the space of differential
forms on a manifold M. The space of complex differential forms A^(M) be-
comes a super vector space by writing it as

even odd

Usually, the vector spaces of interest in quantum physics will be infinite-
dimensional and endowed with a scalar product. The scalar product naturally
appears when M is compact and endowed with a Riemannian metric. Often
one requires the space to be complete (in order to have an honest Hilbert
space). In general, any non-complete space can be completed and for algebraic
aspects of the theory this procedure is harmless. So, we will ignore this point
here and work with the spaces of differentiable functions and forms and not
with their L2-completions.

The next step is to define the Hamiltonian and the symmetry operators of
the theory in question. In the following list we exhibit a number of relevant
situations where the geometry of M gives rise to interesting super Lie algebra
contained in the endomorphism algebra End(.4J(M)).

Riemannian geometry. If (M, g) is just a compact oriented Riemannian
manifold, then in addition to the usual exterior differential operator d one has
d* and the Laplacian A. Clearly, d, d* are odd operators and A is an even
one. As mentioned before, the Laplacian A plays the role of the Hamiltonian.

Instead of these operators, one might also work with the odd operators
<5i := d + d* and Q2 := i(d — d*). These are the usual symmetry operators
considered in physics (see Witten's fundamental article [117]). They satisfy

i) [Qi,Qi] = [Q2,Q2](= 2A) and ii) [QuQi] = 0.

Conversely, from Q\ and Q2 one easily recovers d and d* by d = (l/2)(Qi —
1Q2) and d* = (l/2)(Qi + iQ2)- Then the conditions i) and ii) together are
equivalent to

iii) d2 = d*2 = 0 and iv) Q? = Qj,

considered in [46].
It easy to see that both operators d and d* (or, equivalently, Q\ and Q2)

commute with the Laplacian A, i.e. [d, A] = [<i*,zi] = 0. Since A = [d, d*},
this can be seen as an immediate consequence of the Jacobi identity for the
super Lie algebra End(_4£(M)).

Let Q be the super Lie subalgebra of End(A^(M)) generated by d, d*,A.
Then g is of dimension three with a one-dimensional even part go spanned by
A.

In physics jargon, this algebra is sometimes called the N = (1,1) super sym-
metry algebra. See [46] for comments on the (sometimes confusing) naming.
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Complex geometry. Suppose that the differentiable manifold M is in
addition endowed with a complex structure I. This leads to the decomposition
of the exterior differential d = d + 8. Physicists sometimes prefer the notation
G = d and G = 8. Thus, d = G + G and the following commutator relations
hold true

[G, d] = 0 and [G, G] = 0.

The integrability of the complex structure / is needed at this point.
So far, we have not imposed any compatibility condition on the complex

and the Riemannian structure. But in any case, the Riemannian structure can
be used to define the supplementary operators 8* and 8*. One might then try
to generate a super Lie algebra by the operators A,d,8,d*,8*, but this, in
general, gives something messy. They are not 'closed', i.e. the set of generators
is not preserved by taking brackets or, in other words, these operators do not,
in general, span the vector space of the super Lie algebra they generate, i.e.
for the smallest super Lie subalgebra of End(V) containing them all. Even
worse, the super Lie algebra might be of infinite dimension. First of all, other
Laplacians Ag = [8,d*] and A§ = [8,8] come up. But, more seriously, in
general [d,d*\ ^ 0.

Kahler geometry. The Kahler condition has two effects. Firstly, due
to the Kahler identitities the super Lie algebra spanned by A,d,8,d* ,8* is
closed. Its even part is one-dimensional and the odd part is of dimension four.
The Lie algebra generators form in fact a basis of the underlying vector space.

Secondly, we can enrich the situation by taking the Lefschetz operators L
and A into account. Since the commutator of these two involves the counting
operator H (which should, despite the fact that H is the standard notation
for the Hamiltonian, not be confused with it), we necessarily add H to our
super Lie algebra.

Thus, besides H there are two sets of generators {8, 8, L} and {d*,8*,A}.
Two operators of one of these two sets always commute and the commuta-
tor between two operators from different sets are expressed by the Kahler
identities 3.1.12.

Let us illustrate the advantage of considering these operators as elements
in the super Lie algebra End(^4J(M)). Indeed, the fact that the Laplacian
commutes with the other operators follows from the Jacobi identity. Let us
check this for the dual Lefschetz operator A. One computes

[A, A] = [A, dd* + d*d\ = [A, [d, d*}]

= [[A,d],d*} + [d,[A,d*}}

= [-dc*,d*}+0 = 0.

The enriched super Lie algebra g generated by 8,8*,8,8* ,L,A,H has a
four-dimensional even part go, spanned by A, L, A, and H, and a (unchanged)
four-dimensional odd part gi. This is the N = (2, 2) supersymmetry algebra.
(Warning: There are conformal versions of these super Lie algebras which
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are always infinite-dimensional and which incorporate copies of the Virasoro
algebra.)

Hermitian geometry. Before treating Kahler manifolds, we could have
looked at the hermitian case. Let us do this now. Thus, we impose that / be
compatible with the Riemannian metric, but not that the fundamental form
is closed. The problems encountered in the complex case are still up, they
are indeed only cured by imposing the Kahler condition. But L and A might
be already introduced at this level. The commutator relations between these
linear differential operators are still valid, but together with the differential
operators d,B, etc., they make the super Lie algebra even bigger. (E.g. there
is a non-trivial commutator relation even between the linear operator L and
the differential operator d in the non-Kahler case.)

Beyond. For so called hyperkahler manifolds one obtains N = (4,4) su-
persymmetry algebras. Roughly, a hyperkahler metric is a Kahler metric which
is Kahler with respect to a whole two-dimensional sphere worth of complex
structures. For the linear version of this see Exercise 1.2.5. All the induced
Lefschetz and differential operators are used to form this bigger algebra. See
[44] for a discussion of the hyperkahler case from a physical point of view.

It seems that no other physically relevant finite-dimensional supersymme-
try algebra is expected to appear naturally in geometry. This should maybe
be seen as an analogue of the fact that Berger's list of irreducible holonomy
groups is finite (see Theorem 4.A. 16).

In [23] a uniform abstract algebraic construction of the supersymme-
try algebras appearing in Riemannian, Kahler, and hyperkahler geometry is
proposed. There they are naturally associated to the Lie algebras so(l,C),
5o(3,C) = sl(2,C), and so(5,C). The sl(2) is, not surprisingly, the sl(2)
spanned by L, A, and H.

The advantage of working with these structures in this algebraic fashion is
that the computations can be carried over to less geometric situations where
only the Hilbert space and the operators are given. This is the view point
of [46], which aims at non-commutative generalizations of classical geometric
structures.
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3.C Hodge Structures

Some of the structures described in Sections 3.2 and 3.3 are special instances of
a more general notion, so called Hodge structures. This section introduces the
reader to some basic aspects of this abstract notion, which is perfectly suited
to study compact Kahler and projective manifolds (even over other base fields)
and their deformations. Although we will not pursue this approach very far,
the section should help to digest what has been explained before.

Definition 3.C.I A rational Hodge structure of weight k consists of a rational
vector space H and a direct sum decomposition

Hp'q (3.3)
p+q^k

satisfying HP'i = Hq'p.

Any rational Hodge structure of weight k gives rise to a real representation
of C*, i.e. a group homomorphism /? :€*—> G1(.HR). Indeed, one defines
p(z)(a) = (zpzq) • a for a G Hp'q. In order to check that this representation
is real, take a £ HR := H ®Q R and consider its decomposition a = ^2 ap'q

according to (3.3). Then W^ = aq<p and p{z)[a) - Y,(zpzq) • ap'q is still
real, as (zPzq) • aP'q = zpzqaq'p. Note that the induced representation of E*
is given by p(t)(a) = tk • a.

Proposition 3.C.2 There is a natural bijection between rational Hodge struc-

tures of weight k on a rational vector space H and algebraic representations

p : C* -> Gl(tfn) with R* acting by p{t)(a) =tk -a.

Proof. We only have to give an inverse construction that associates to an
algebraic representation p : C* —> G1(//R) a Hodge structure.

Let us denote the C-linear extension of p by pc '• C* —> Gl(Hc) and let

Hp'q := {v € Hc | pc(z)(v) = (zpzq) • v for all z € C*}.

Since C* is abelian, the representation pc splits into a direct sum of one-
dimensional representations A; : C* •—> C*. In order to show that He =
0 i J P l 9 , one has to argue that every one-dimensional representation Xi that
might occur is of the form Xi(z) = zpzq with p + q = k. At this point the
assumption that p is algebraic comes in.

By writing z £ C* as z = x + iy, one can identify C* with the subgroup

( X U \

). A representation p : C* —>
-yxj

I is a matrix whose entries
—y x )

are polynomials in x, y, and the inverse of the determinant (x2 + y2)~1. Hence,
Aj(z) must be a polynomial in z, z, and (zz) and, henceforth, of the form zpzq

for some p, q with p + q = k. •
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Examples S.C.Si) By Q(/c) one denotes the unique one-dimensional weight
—Ik Hodge structure given by z i—> z~kz~k.

ii) Let V be a rational vector space such that VR is endowed with an almost
complex structure. Then, /\ V has a natural weight k Hodge structure given
by the bidegree decomposition / \ c V = (§)Vp'q (see Section 1.2).

iii) The cohomology Hk(X,Q) of any compact Kahler manifold X comes
with a natural Hodge structure of weight k. But let us first consider the
case of an hermitian manifold (X, g). Then then the Hodge structure (over
K) of example ii) exists on the space of fc-forms f\x X at any point x €
X and one might wonder whether one can pass to cohomology. But, as the
exterior differential is not well-behaved with respect to the operator I, this
is not obvious and in general not possible. Note that, on the other hand, the
Dolbeault cohomology Hp'q(X) is naturally endowed with the representation
z t-* zpzq.

If {X,g) is compact and Kahler then Hodge decomposition implies that
there exists a natural bidegree decomposition of the space of harmonic forms
Tik(X, g)c and thus on Hk(X, C). Thus, Hk(X, Q) has a natural Hodge struc-
ture of weight k which is independent of the Kahler structure, but does depend
on the complex structure defining the complex manifold X. To have a concrete
example in mind, check that H2n(Pn,Q) = Q(-rc).

iv) Suppose that X is a compact Kahler manifold such that the chosen
Kahler class [w] is rational. Then the primitive cohomology is defined over Q
and we obtain a rational Hodge struture on Hk(X,<Q>)p.

Definition 3.C.4 Let if be a rational Hodge structure of weight k. The in-
duced Hodge filtration ... Fl+1Hc C FlHc C .. . C He is given by

Clearly, FPHC n Fk-pHc = Hp'k~p. Thus, from the Hodge filtration one
recovers the Hodge stucture itself. The reason why one nevertheless often
works with the Hodge filtration instead of the Hodge structure itself is that
the Hodge filtration behaves better in families. More precisely, if {Xt} is a
smooth family of compact Kahler manifolds over the base S = {t}, then
the Hk(Xt,C) form a (locally constant) holomorphic vector bundle on S and
similarly the vector spaces FlHk(Xt,C). This is no longer true for the single
components Hp>q(Xt).

Let H and H' be two Hodge structures of weight k and k', respectively.
The tensor product H ®Q H' has a natural Hodge structure of weight k + k',
which can be described in the following two equivalent ways:

Firstly, if p and p' are the representations defining the Hodge structures on
H respectively H', then p <g) p' defines a representation of C* on (H ®Q H')TR.
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Secondly and equivalently, one sets {H ®Q H')C = He &>c Hc =
H')r's with

(H ® H'Y'S =
P+p'=r

The tensor product H ® Q(fc) is called the /cth Taie twisf of iJ and is
abbreviated by H{k).

If X and X' are two compact Kahler manifolds, then Hk(X x X', Q) is a
sum of weight fc Hodge structures H£(X, Q) ® He'(X', Q) for ^ + £' = /c. E.g.
Ffc(X x P^Q) = Hk(X,Q) © i? fc-2(X,Q)(-l).

Definition 3.C.5 Let H be a Hodge structure of weight k. A polarization of
H is a bilinear form

( , ) : f f x i f >-Q

satisfying the two conditions:
i) (p(z)a, p(z)(/3)) = (zz)k(a,0) andii) ( ,p(i) ) is symmetric and positive

definite.

Here are a few easy consequences. We leave the verification to the reader.

Lemma 3.C.6 Let ( , ) be a polarization of a weight k Hodge structure H.
Then

i) The pairing ( , ) is symmetric if k is even and alternating otherwise.
ii) With respect to the C-linear extension of the pairing the direct sum

decomposition He = ®p>q{Hp'q ® Hq'p) is orthogonal.
iii) On the real part of Hp'q © Hq'p the pairing ip~q( , ) is positive

definite. •

Example 3. C. 7 Let ( , ) be a polarization of a weight one Hodge structure
H. Then ( , ) is alternating and can be considered as an element in H1'0 ®
H0'1 C /\ HQ. Since the polarization is rational, this two-form is in fact
contained in the Q-vector space /\ H*.

Remark 3. C.8 If one defines a strict homomorphism ip : H —> H' between two
Hodge structures of weight fc as a Q-linear map with (p(Hp'q) C H'p'q (or,
equivalently, with ip(p(z)(a)) = p'(z)(ip(a))), then a polarization is in fact a
strict homomorphism of Hodge structures ( , ) : V (g> V —> Q(—k) satisfying
the positivity condition ii).

Example 3. C. 9 The motivating example is, of course, the Hodge-Riemann
pairing (a, (3) = (-l)fc(fc-1)/2 Jx a A j3 A u)n~k on the primitive cohomology
Hk(X)p of a compact Kahler manifold X of dimension n. Of course, only if LJ
is a rational Kahler class this pairing is rational. But for the positivity condi-
tion ii) the rationality of u> is of no importance. We leave this straightforward
calculation to the reader.
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Starting with a free Z-free module H instead of a Q-vector space, one
can as well introduce the notion of an integral Hodge structure. Two integral
Hodge structures H and H' are isomorphic if and only if there exists a Z-
module isomorphism <p : H = H' such that its C-linear extension satisfies

) = H'p'q.

Proposition 3.CIO There is a natural bijection between the set of isomor-
phism classes of integral Hodge structures of weight one and the set of iso-
morphism classes of complex tori.

Proof. Let H be an integral Hodge structure of weight one. Then H C He can
be projected injectively into H1'0. This yields a lattice H C H1'0 and Hl'°/H
is a complex torus. Clearly, if H and W are isomorphic weight one integral
Hodge structures then H1'0/H and H' ' /H' are isomorphic complex tori.

Conversely, if C / f is a complex torus then Cn can be regarded as / R
endowed with an almost complex structure. This yields a decomposition
(-HR)C = (-HR)1'0 © (-HR)0'1, i-e. an integral Hodge structure of weight one.
(This has been explained in detail in Section 1.2.) The two constructions
are inverse to each other, due to the existence of a C-linear isomorphism
C™ = TR = (Jk)1'0. To conclude, one has to verify that any isomorphism be-
tween two complex tori Cn/F and Cn/F' is induced by a C-linear isomorphism
ip : Cn S C" with ip(r) = r'. For this see page 136. D

Proposition 3.C.11 Let H be an integral Hodge structure of weight one
equipped with a polarization (for the induced rational Hodge structure). Then
the induced complex torus is abelian, i.e. it is projective.

The proposition can e.g. be proved by applying the Kodaira embedding
theorem that will be explained in Section 5.3 and the interpretation of ( , ) as
a rational Kahler form. See Corollary 5.3.5. By multiplication with an integer
we may assume that the polarization is in fact integral

Comments : - Since Hodge structures are so important, there are many excel-
lent introductions to the subject. E.g. [53]. Note that various conventions for the
action of C* are used in the literature, e.g. one could define Hp'9 as the subspace
on which C* acts as z~pz~q. This leads to different conventions for the definition of
a polarization.

- For variations of Hodge structures and period domains we recommend the
original sources [21] and the recent book [22],

- If an algebraic manifold is not compact, then the cohomology carries what is
called a mixed Hodge structure. See [41, 113].

- For the theory of abelian varieties see [28, 76].



Vector Bundles

This chapter provides indispensable tools in the study of complex manifolds:
connections, curvature, and Chern classes. In contrast to previous sections, we
will not focus on the holomorphic tangent bundle of a complex manifold but
allow arbitrary holomorphic vector bundles. However, we will not be in the
position to undertake an indepth analysis of certain fundamental questions.
E.g. the question whether there exist non-trivial bundles on a given complex
manifold (or holomorphic structures on a given complex bundle) will not be
addressed. This is partially due to the limitations of the book, but also to
the state of art. The situation is fairly well understood only for curves and
projective surfaces.

In Sections 5.1 to 5.3 the reader can find a number of central results in
complex algebraic geometry. Except for the Hirzebruch-Riemann-Roch the-
orem, complete proofs, in particular of Kodaira's vanishing and embedding
theorems, are provided. These three results are of fundamental importance in
the global theory of complex manifolds. Roughly, in conjunction they allow to
determine the size of linear systems on a manifold X and, if X is projective,
how it can be embedded into a projective space.

In the appendices we discuss the interplay between the complex geome-
try of holomorphic vector bundles and related structures: Appendix 4. A tries
to clarify the relation between Riemannian and Kahler geometry. In partic-
ular, we will show that for Kahler manifolds the Levi-Civita connection co-
incides with the Chern connection. The concept of holonomy, well-known in
classical Riemannian geometry, allows to view certain features in complex
geometry from a different angle. Appendix 4.B outlines fundamental results
about Kahler-Einstein and Hermite-Einstein metrics. Before, the hermitian
structure on a holomorphic vector bundle was used as an additional datum
in order to apply Hodge theory, etc. One might wonder, whether natural her-
mitian structures, satisfying certain compatibility conditions, can be found.
This leads to the concept of Hermite-Einstein metrics, which exist on certain
privileged holomorphic bundles. If the holomorphic bundle happens to be the
tangent bundle, this is related to Kahler-Einstein metrics.
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4.1 Hermitian Vector Bundles and Serre Duality

In Chapter 3 we studied complex manifolds together with a compatible Rie-
mannian metric, so called hermitian manifolds or, more restrictive, Kahler
manifolds. The Riemannian metric gives rise to an hermitian metric on the
(holomorphic) tangent bundle. More generally, one could and should be in-
terested in hermitian metrics on arbitrary holomorphic and complex vector
bundles. This twisted version will be discussed now. Many of the arguments
will be familiar to the reader. Repeating Hodge theory on compact hermi-
tian manifolds, this time for vector bundles, might help to get used to this
important technique.

Let B b e a complex vector bundle over a real manifold M.

Definition 4.1.1 An hermitian structure h on E —> M is an hermitian scalar
product hx on each fibre E(x) which depends differentiably on x. The pair
(E, h) is called an hermitian vector bundle.

The latter condition can be made more precise in terms of local triviali-
zations. Let ifr : E\u = U x C r be a trivialization over some open subset U.

Then, for any x &U the form hx(ilj~
1( )iiJx1{ )) defines an hermitian scalar

product on C r . In other words, hx is given by a positive-definite hermitian
matrix (hij(x)) (which depends on tjj) a n d we require the map (hij) : U —>
Gl(r, C) to be differentiate.

Examples J)..1.2\) Let L be a (holomorphic) line bundle and let s\,...,Sk be
global (holomorphic) sections generating L everywhere, i.e. at every point at
least one of them is non-trivial. Then one defines an hermitian structure on
Lby

2

where t is a point in the fibre L{x) and ip is a local trivialization of L around
the point x. The definition does not depend on the chosen trivialization, as
two of them only differ by a scalar factor. Observe that h is not holomorphic,
i.e. even if a trivialization of L over an open subset is chosen holomorphic, the
induced map h : U —» C* is usually not holomorphic. By abuse of language,
one sometimes says that h is given by ( ^ jsij2)"1.

The standard example is L = 0(1) over the projective space P n and the
standard globally generating sections zo, • • • ,zn € H°(¥n, O(l)).

ii) If (X, g) is an hermitian manifold then the tangent, the cotangent, and
all form bundles /\p'q X have natural hermitian structures.

iii) If E and JP are endowed with hermitian structures, then the associated
bundles E® F, E<E> F, Hom(E,F), etc., inherit natural hermitian structures.

iv) If [E, h) is an hermitian vector bundle and F C E is a subbundle,
then the restriction of h to F endows F with an hermitian structure. One
can define the orthogonal complement, F1- C E of F with respect to h. It
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is easy to see, that the pointwise condition indeed yields a complex vector
bundle. Moreover, the bundle E can be decomposed as E = F © F1- and F1-
is canonically (as a complex vector bundle) isomorphic to the quotient E/F.
In particular, h also induces an hermitian structure on the quotient E/F.

v) If (E, h) is an hermitian vector bundle over an hermitian manifold
(X,g), then the twisted form bundles /\p'q X <g> E have natural hermitian
structures.

Example 4-1-3 Let us consider the projective space Pn and the Euler sequence
twisted by 0 ( - l ) :

>- 7pn( — 1) 8- 0 •

The constant standard hermitian structure on O®n+i induces canonical
hermitian structures h\ on 0(—1) and /12 on 7pn(—1) (see the previous ex-
ample) .

The hermitian structure h\ on 0(—1) is nothing but the dual of the
canonical hermitian structure on 0(1) determined by the choice of the basis
zo,...,zn€ H°(Fn, 0 ( - l ) ) as in i) of Examples 4.1.2. This is straightforward
to verify and we leave the general version of this assertion as Exercise 4.1.1.

We next wish to identify /12 as the tensor product of the Fubini-Study
metric on Tpn and h\ (up to the constant factor 2TT).

The verification is done on the open subset UQ = {(zo : . . . : zn) | zo ^ 0}
with coordinates Wi = j ^ , i = 1,... ,n. Hence, with respect to the bases -J^
the Fubini-Study metric on Tp™ \v. is given (up to the factor 2TT) by the matrix

u n 1 V * 1 |2\—2H := (1 + / ]Wi\ )

(see i), Examples 3.1.9). The induced hermitian structure on the dual i?p«|t/0
with respect to the dual basis dw\,..., dwn corresponds thus to the matrix

On the other hand, the inclusion i?pr> c 0(—l)®n+1 given by the Euler
sequence is on UQ explicitly given by dwi i—> e, — w, • eo (see the proof of
Proposition 2.4.4). Since h\ on O(—l)\u0 is the scalar function (1 + ]£ l^il2);
one finds that the hermitian structure on i?pr. | yQ induced by this inclusion is

(1 + V H 2 ) • ((et - wt • eo,ej - Wj • e0)) = ff"1.
^-^ \ / ij

Note that choosing another basis of i7°(Pn, 0(1)), which in general results
in a different hermitian structure on 0(1), amounts to choosing a different,
though still constant, hermitian structure on the trivial bundle £)©"+1 on the
middle term of the Euler sequence. So, more invariantly, one could work with
the Euler sequence on P(V), where the middle term is V®O, and an hermitian
structure on V.
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An hermitian structure h on a vector bundle E defines a C-antilinear
isomorphism (of real bundles) E = E*. Here, E* is the dual complex bundle
of E. Generalizing Exercise 3.1.1 we observe the following

Proposition 4.1.4 Every complex vector bundle admits an hermitian metric.

Proof. Choose an open covering X = [JUi trivializing a given vector bundle
E. Then one might glue the constant hermitian structures on the trivial vector
bundles C/j x C7" over Ui by means of a partition of unity.

Here, we use that any positive linear combination of positive definite her-
mitian products on Cn is again positive definite and hermitian. •

Let / : M —> N be a differentiable map and let £ be a vector bundle on
N endowed with an hermitian structure h. Then the pull-back vector bundle
f*E gets a natural hermitian structure f*h by (f*h)x = /i/(x)

 o n if*E)(x) =

Example 4-1-5 Let X be a complex manifold and let so,...,Sk be globally

generating holomorphic sections of a holomorphic line bundle L (see Re-

mark 2.3.27, ii)). By Proposition 2.3.26 there exists an induced morphism

(f : X -> P fc, x ^ (so(x) : ...: sk(x)) w i th ip*O(l) = L and <p*{zi) = st. T h e
natural hermitian structures /i on 0 ( 1 ) and h! on L induced by zo,... ,zk and

so,. . . ,Sfc, respectively, (see Example 4.1.2, i)) are compatible under <p, i.e.

<p*h = h'.

Let (X, g) be an hermitian manifold and let (E, h) be an hermitian vector
bundle on X. Then the induced hermitian structures on /\p'9 X ® E will be
denoted ( , ).

Definition 4.1.6 Let E be a complex vector bundle over an hermitian man-
ifold (X, g) of complex dimension n. An hermitian structure h on E is inter-
preted as a C-antilinear isomorphism h : E = E*. Then

*E •• AP'"X ® E *• A " " " ' " " ^ ® E*

is defined by *E{<P <8> s) = *(v?) <8> ft(s) = *(f) ® ^(s) = *(v) <8> /i(s). (Recall
that * is C-linear on /\P'9 ^-)

Clearly, *E is a C-antilinear isomorphism that depends on g and h. Note
that with this definition we have

for a, (3 sections of /\p'g X ® E, where "A" is the exterior product in the form
part and the evaluation map E®E* —> C in the bundle part. It is not difficult
to verify that, as for the usual Hodge ^-operator, one has *E* O*E = (—l)p+q

on AP'9 X®E.
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The aim of this section is to generalize Poincare duality for compact mani-
folds (or rather Serre duality (cf. Remark 3.2.7, ii) and Exercise 3.2.2) to a
duality for the cohomology groups of holomorphic vector bundles. In order
to do this we need to discuss Hodge theory in analogy to the discussion in
Section 3.2 for hermitian vector bundles. Let us begin with the definition of
the adjoint operator of BE-

Definition 4.1.7 Let (E,h) be a holomorpic vector bundle together with an
hermitian structure h on an hermitian manifold (X,g). The operator BE :
Ap>q(E) -> Ap'q~l{E) is denned as

B*E := -*E. o 3 B . o *E.

Remark 4-1-8 For E = Ox with a constant hermitian structure one recovers

the adjoint operator B* = - * o 9 o * . Indeed, — *(d(*<p)) — —*(<9(*^)) =

—*{d * ip) = — * (d * ip).

Definition 4.1.9 Let £ be a holomorphic vector bundle endowed with an
hermitian structure h on an hermitian manifold (X, g), then the Laplace opera-
tor on Ap-q(E) is denned by

AE:=dEdE + 8EdE.

Definition 4.1.10 Let (E, h) be an hermitian holomorphic vector bundle over
an hermitian manifold (X,g). A section a of /\p'q X ® E is called harmonic
if AE(a) = 0. The space of all harmonic forms is denoted Hp'q(X, E), where
we omit g and h in the notation.

Observe that *E induces a C-antilinear isomorphism

*E: np'q(x, E) ^ nn-p'n-q(x, E*).

Definition 4.1.11 Let (E,h) be an hermitian vector bundle on a com-
pact hermitian manifold (X,g). Then a natural hermitian scalar product on
Ap'q(X,E) is denned by

(a, 13):= / (a,/?)*l,
Jx

where ( , ) is the hermitian product on /\p'q X (g> E depending on h and g (cf.
Example 4.1.2).

Lemma 4.1.12 Let (E,h) be an hermitian holomorphic vector bundle on a
compact hermitian manifold (X,g). Then, with respect to ( , ), the operator
dE on Ap'q{X,E) is adjoint to dE and AE is self-adjoint.

Proof. By definition, the second assertion follows from the first one which in
turn is proved by the following purely formal calculation:
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For a G Ap'q(X, E) and /? G Ap'q+l {X, E) one has

I
Jx

= — I a A *E*E*9E**P
Jx

r

Jx

= I dE(a)A*Bp={a,p).
Jx

Here we use the Leibniz rule d(a /\*E[3) = <9s(a) A *#/? + {—l)p+qa A dE»*EP

and Stokes' theorem / x <9(a A *Ep) = Jx d(a A *EP) = 0 . D

Using the lemma the reader may check that a form a G Ap'q(X, E) over
a compact manifold X is harmonic if and only if a is BE- and ^-closed (cf.
Lemma 3.2.5).

Theorem 4.1.13 (Hodge decomposition) Let E be a holomorphic vector

bundle together with an hermitian structure h on a compact hermitian mani-

fold (X,g). Then

Ap'q(X,E) = dEAp'g-1(X,E)®Hp-q{X,E)®dEAp>q+\X,E) (4.1)

andHp'q(X,E) is finite-dimensional. O

The case of the trivial vector bundle E = Ox with a constant hermitian
structure corresponds to Hodge decomposition of compact hermitian mani-
folds (cf. Theorem 3.2.8). As in this case, we obtain

Corollary 4.1.14 The natural projection Hp'q(X,E) -> Hp'q(X,E) is bijec-

tive. In particular, Hp'q(X,E) = Hq(X,E Cg> i?^) is finite-dimensional.

Proof. Indeed, as any harmonic section of /\p'q X <E> E is de-closed, the pro-
jection is well-defined. Moreover, the space of Sg-closed forms in Ap'q(X, E)

is 8EAp'q-1{X,E)(BHp'q(XJE), as {dE8Ea,a) = \\3Ea\\2 ± 0 for B*Ea ± 0.
Thus, the projection is surjective and its kernel is the space of forms, which

are 5^-exact and harmonic. But since the decomposition (4.1) in theorem
4.1.13 is direct, this space is trivial. •

Let E be a holomorphic vector bundle over a compact manifold X of
dimension n and consider the natural pairing

Hp'q(X, E) x Hn'P'n-q{X, E*) ^ C, (a, /?) i ^ JxaAp,

where as before aA/3 is the exterior product in the form part and the evaluation
map in the bundle part. The pairing is well-defined, i.e. does not depend on
the 9-closed representatives a G Ap'q(E) and /? G An-p'n~q{E).
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Proposition 4.1.15 (Serre duality) Let X be a compact complex manifold.

For any holomorphic vector bundle E on X the natural pairing

is non-degenerate.

Proof. Fix hermitian structures h and g on E and X, respectively. Then
consider the pairing Hp'q(X,E) x nn-p'n~q{X,E*) -> C. In order to show
that this pairing is non-degenerate, we have to show that for any 0 / a £
Hp'q(X, E) there exists an element (3 G Hn-p'n~q(X, E*) with J ^ a A / 3 / 0 .
Now choose (3 := *#«, then JaA/3 = faA *E& = J(a,a) * 1 = ||a||2 ^ 0. D

Serre duality (together with the Hirzebruch-Riemann-Roch theorem 5.1.1
and Kodaira vanishing theorem 5.2.2) is one of the most useful tools to control
the cohomology of holomorphic vector bundles.

Let us mention a few special cases and reformulations.

Corollary 4.1.16 For any holomorphic vector bundle E over a compact com-

plex manifold X there exist natural C-linear isomorphisms (Serre duality):

Hp'q(X,E) ^ Hn-p'n-q(X,E*)*

Hq(x, QP®E)^ Hn-q{x, nn-p ® E*y

Hq(X, E) =* Hn~q{X, Kx ® E*)*

D

For the trivial bundle this yields Hp'q(X) ^ Hn-p>n-q(X)* (cf. Exercise
3.2.2). Moreover, if X is Kahler these isomorphisms are compatible with the
bidegree decomposition Hk(X, C) = 0 i J P i 9 ( X ) and Poincare duality (cf.
Exercise 3.2.3).

Remark 4.1.17 The isomorphism *E : Hp'q(X,E) ^ Hn-p'n~q{X,E*) induces
an isomorphism Hp<q(X,E) ^ Hn-p'n-q(X,E*). But this isomorphism is
only C-antilinear and depends on the chosen hermitian structures g and h.

Thus, Serre duality Hp'q(X, E) ^ Hn-p'n~q(X, E*)* is better behaved in both
respects.

Exercises

4.1.1 Let L be a holomorphic line bundle which is globally generated by sections
si, . . . , Sk € H°(X, L). Then L admits a canonical hermitian structure h denned in
Example 4.1.2. The dual bundle L* obtains a natural hermitian structure h! via the
inclusion L* C O®h. Describe h! and and show that h! = h*.
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4.1.2 Let L be a holomorphic line bundle of degree d > 2g(C) — 2 on a compact
curve C. Show that HX{C,L) = 0. Here, for our purpose we define the genus g(C)

of C by the formula deg(Kx) = 2g(C) - 2.

In other words, H1(C,Kc ® L) = 0 for any holomorphic line bundle L with
deg(L) > 0. In this form, it will later be generalized to the Kodaira vanishing
theorem for arbitrary compact Kahler manifolds.

4.1.3 Show, e.g. by writing down an explicit basis, that

' 0 k> -n-1

4.1.4 Let E be an hermitian holomorphic vector bundle on a compact Kahler
manifold X. Show that any section s 6 H°(X, f2p ® E) is harmonic.

4.1.5 Compare this section with the discussion in Sections 3.2 and 3.3. In parti-
cular, check whether the Lefschetz operator L is defined on Hp'q(X, E) and whether
it defines isomorphisms Hp'k~p{X, E) -* Hn+p-k'n-p{X,E) (cf. Remark 3.2.7, iii)).

Comments: Serre duality does in fact hold, in an appropriately modified

form, for arbitrary coherent sheaves. Moreover, it is a special case of the so called

Grothendieck-Verdier duality which is a duality statement for the direct image of

coherent sheaves under proper morphisms. An algebraic proof, i.e. without using

any metrics, can be given in case the manifold is projective
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4.2 Connections

Let M be a real manifold and let IT : E —> M be a complex vector bundle on
M. As before, we denote by Al(E) the sheaf of i-forms with values in E. In
particular, A°(E) is just the sheaf of sections of E. Sections of E cannot be
differentiated canonically, i.e. the exterior differential is in general not defined
(see the discussion in Section 2.6). A substitute for the exterior differential is
provided by a connection on E, which is not canonical, but always available.

This section introduces the reader to the fundamental notion of a connec-
tion and studies various compatibility conditions with additional data, like
holomorphic or hermitian structures. At the end of this section, a short dis-
cussion of a purely holomorphic and more rigid analogue is introduced.

We will focus on complex vector bundles, but for almost everything a real
version exists. We leave it to the reader to work out the precise formulation
in each case.

Definition 4.2.1 A connection on a vector bundle E is a C-linear sheaf ho-
momorphism V : A°(E) —> A1(E) which satisfies the Leibniz rule

s) = d(/) ® s + / • V(s) (4.2)

for any local function f on M and any local section s of E.

Definition 4.2.2 A section s o f a vector bundle E is called parallel (or flat

or constant) with respect to a connection V on E if V(s) = 0.

Proposition 4.2.3 // V and V are two connections on a vector bundle E,
then V — V is A°M -linear and can, therefore, be considered as an element in
A1(M, End(E)). If V is a connection on E and a £ A1(M, End(E')), then
V + a is again a connection on E.

Proof. We have to show that (V - V')(/ • s) = f • (V - V')(s), which is an
immediate consequence of the Leibniz rule (4.2).

An element a & A1(M, End(E)) acts on A°(E) by multiplication in the
form part and evaluation End(£1) x E —> E on the bundle component. In order
to prove the second assertion, one checks (V 4- a)(f • s) = V(/ • s) + a(f • s) =
d(f) ® s + / • V(s) + fa(s) = d{f) ® s + f • (V + a)(s). Thus, V + a satisfies
the Leibniz rule and is, therefore, a connection. •

As a consequence of this proposition and Exercise 4.2.1 one obtains

Corollary 4.2.4 The set of all connections on a vector bundle E is in a
natural way an affine space over the (infinite-dimensional) complex vector
spaceA1{M,End(E)). •
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Remark 4-2.5 Often, local calculations are performed by using the following
statement: Any connection V on a vector bundle E can locally be written as
d + A, where A is a matrix valued one-form.

Indeed, if E is the trivial vector bundle E = M x Cr, then Ak(E) =
©i = 1 A\[ and one defines the trivial connection d : A°(E) —> Al(E) on
E by applying the usual exterior differential to each component. Any other
connection V is then of the form V = d + A, where A £ A1 (M, End(£")). For
the trivial vector bundle, the latter is just a matrix valued one-form.

Let E be an arbitrary vector bundle on M endowed with a connection V.
With respect to a trivialization I(J '• E\u = U x Cr we may write V = d + A
or, more precisely, V = -0"1 ° (d + A) o ip. If the trivialization is changed by
<f> : U —> Gl(r, C), i.e. one considers ip'x = <j)(x)oij)x, then V = ip'~xo(d+A')oip'

w i t h A' = <j>-xd(<l>) + 4>~lA4>.

For a given point XQ G M one can always choose the local trivialization
such that A{XQ) = 0. Indeed, a given trivialization can be changed by a local
<f) :U —> Gl(r, C), whose Taylor expansion is of the form

<j>{x) = Id — \^XiAi(0) + higher order terms.

Here, x\,... ,xn are local coordinates with xo as the origin and the connection
matrix A is written as A =

Given connections induce new connections on associated vector bundles.
Here is a list of the most important examples of this principle:

Examples 4-2.6 i) Let E\ and Ei be vector bundles on M endowed with con-
nections Vi and V2, respectively. If s1; s2 are local section of E\ and E2,
respectively, we set

V(s!©s2) = Vi(si)eV2(s2)-

This defines a natural connection on the direct sum E\ © E-x-
ii) In order to define a connection on the tensor product E\ ® £2 °ne

defines
V(si <g> s2) = Vi(si) ® s2 + si ® V2(s2).

iii) A natural connection on Hom(£'i,£1
2) can be defined by:

Here, / is a local homomorphism E\ —> Ei- Then f(s\) is a local section of E2
and V2 can be applied. In the second term the homomorphism / is applied
to the one-form Vi(si) with values in E\ according to f{a ®t) = a® f{t),
for a e ^ a n d t e A°{E).

iv) If we endow the trivial bundle with the natural connection given by
the exterior differential, then the last construction yields as a special case a
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connection V* on the dual E* of any bundle E equipped with a connection
V. Explicitly, one has

Clearly, changing any of the given connections by a one-form as in
Proposition 4.2.3 induces new connections on the associated bundles. E.g.
if V' = V + a, then V* = V* - a*. The other cases are left to the reader (cf.
Exercise 4.2.2).

v) Let / : M —•> N be a differentiable map and let V be a connection on
a vector bundle E over N. Let V over an open subset [/* C N be of the form
d+Ai (after trivializing E\u-). Then the pull-back connection /*V on the pull-
back vector bundle f*E over M is locally defined by /*V|/-i(j/i) = d + f*At.
It is straightforward to see that the locally given connections glue to a global
one on f*E.

Next we shall describe how conversely a connection V on the direct sum
E = Ei © E2 induces connections Vi and V2 on E\ and E2, respectively.
Denote by p\ and P2 the two projections E\ ffi E2 —> Ei. Clearly, any section
Si of Ei can also be regarded as a section of E and thus V can be applied.
Then we set Vi(sj) := pi(y(si)). The verification of the Leibniz rule for Vi is
straightforward. Thus we obtain

Lemma 4.2.7 The connection V on E — E\®E2 induces natural connections
Vi, V2 on E\ and E2, respectively. •

The difference between the direct sum Vi © V2 of the two induced connec-
tions and the connection V on E we started with is measured by the second
fundamental form. Let E\ be a subbundle of a vector bundle E and assume
that a connection on the latter is given.

Definition 4.2.8 The second fundamental form of E\ C E with respect to
the connection V on E is the section b G A1(M, Hom(Ei, E/Ei)) denned for
any local section s of E\ by

If we choose a splitting of E -» E/Ei, i.e. we write E = E\ © E2 with
_E2 = E/Ei via the projection, then b(s) — V(s) — Vi(s). Using the Leibniz
rule (4.2) for V and Vi one proves b(f • s) = f • b(s). Thus, 6 really defines an
element in A1(X,Hom(i?i,i?2))- Often we will consider situations where E is
the trivial vector bundle together with the trivial connection

If E is endowed with an additional datum, e.g. an hermitian or a holo-
morphic structure, then one can formulate compatibility conditions for con-
nections on E. Let us first discuss the hermitian case.
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Definition 4.2.9 Let (E, h) be an hermitian vector bundle. A connection V
on E is an hermitian connection with respect to h if for arbitrary local sections
s\, s2 one has

d(h(Sl,s2)) = h(V(Sl),s2) + h{Sl, V(s2)). (4.3)

Here, the exterior differential is applied to the function h(si,s2) and by
definition h(a ® s, s') := ah(s, s') for a (complex) one-form a and sections
s and s'. Analogously, h(s,a ® s') = ah(s,s'). If the bundle E is real and
the hermitian product is a real hermitian product, then one speaks of metric
connections. See also Exercise 4.2.8 for an alternative description of (4.3).

Let V be an hermitian connection and let a £ A1(M, End(.E)). By Propo-
sition 4.2.3 one knows that V = V + a is again a connection. Then, V is
hermitian if and only if h(a(si),s2) + h(si,a(s2)) = 0 for all section si,s2.
Thus, V' is hermitian if and only if a can locally be written as a — a <g> A
with a G A\j and where A at each point is contained in the Lie algebra
u(E(x), h(x)), which, after diagonalization of h, is the Lie algebra of all skew-
hermitian matrices.

Definition 4.2.10 Let (E,h) be an hermitian vector bundle. By End(.E,/i)
we denote the subsheaf of sections a of End(E) satisfying

h(a(si), s2) + h(si,a(s2)) = 0

for all local sections si,s2-

Note that End(.E, h) has the structure of a real vector bundle. For line
bundles, i.e. ik(E) = 1, the vector bundle End(.E) is the trivial complex
vector bundle C x M and End(£', h) is the imaginary part i • R x M of it.
Then using Corollary 4.2.4 and Exercise 4.2.1 we find

Corollary 4.2.11 The set of all hermitian connections on an hermitian vec-
tor bundle (E, h) is an affine space over the (infinite-dimensional) real vector

). •

So far, the underlying manifold M was just a real manifold and the vector
bundle E was a differentiable complex (or real) vector bundle. In what follows,
we consider a holomorphic vector bundle E over a complex manifold X. Recall
from Section 2.6 that in this case there exists the 9-operator 8 : A°(E) —>
A°'HE).

Using the decomposition A1(E) = ^4li0(£^) © A°'l{E) we can decompose
any connection V on E in its two components V1>0 and V0'1, i.e. V = V1'0 ©
V0-1 with

V1-0 : A°(E) >• Alfi(E) and V0-1 : A°(E) »- A°*(E).

Note that V0'1 satisfies V 0 ' ^ / • s) = d(f) <g> s + f • V0 '1^), i.e. it behaves
similarly to 8. (Of course, the decomposition V = V1>0 © V0'1 makes sense
also when E is not holomorphic.)
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Definition 4.2.12 A connection V on a holomorphic vector bundle E is com-

patible with the holomorphic structure if V0 '1 = 8.

Similarly to Corollaries 4.2.4 and 4.2.11 one proves

Corollary 4.2.13 The space of connections V on a holomorphic vector bun-

dle E compatible with the holomorphic structure forms an affine space over

the (infinite-dimensional) complex vector space A1'°(X,End(E)). •

The existence of at least one such connection (which is needed for the
corollary) can be proved directly or it can be seen as a consequence of the
following existence result.

Proposition 4.2.14 Let (E,h) be a holomorphic vector bundle together with

an hermitian structure. Then there exists a unique hermitian connection V
that is compatible with the holomorphic structure. This connection is called

the Chern connection on (E,h).

Proof. Let us first show the uniqueness. This is is a purely local problem.
Thus, we may assume that E is the trivial holomorphic vector bundle, i.e.
E = X x C r . According to Remark 4.2.5 the connection V is of the form
V = d + A, where A — (a;j) is a matrix valued one-form on X. The hermitian
structure on E is given by a function H on X that associates to any x £ X a
positive-definite hermitian matrix H(x) = (hij(x)).

Let ej be the constant i-th unit vector considered as a section of E. Then
the assumption that V be compatible with the hermitian structure yields

or, equivalently,

Since V is compatible with 8, the matrix A is of type (1,0). A comparison
of types of both sides yields dH = H • A and, after complex conjugation

A = R-1d(H).

Thus, A is uniquely determined by H.

Equivalently, by using Corollaries 4.2.11 and 4.2.13 one could argue that
A1 (X, End(E, h))nAlfi(X, End(E)) = 0. Indeed, any endomorphism a in this
intersection satisfies h(a(si), S2) + h(si, 0(^2)) = 0, where the first summand
is a (1,0)-form and the second is of type (0,1). Thus, both have to be trivial
and hence a = 0.

In any case, describing the connection form A explicitly in terms of the
hermitian structure H turns out to be helpful for the existence result as well.
On argues as follows: Going the argument backwards, we find that locally one
can find connections which are compatible with both structures. Due to the
uniqueness, the locally denned connections glue. CD
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Example 4-2.15 Let £ b e a holomorphic line bundle. Then an hermitian struc-
ture H on E is given by a positive real function and the Chern connection E
is locally given as V = d + d log H.

The proposition can be applied to the geometric situation. Let (X, g) be
an hermitian manifold and let E be the holomorphic (co)tangent bundle.
Then the Proposition asserts the existence of a natural hermitian connection
V = V1'0 + 5 on the (co)tangent bundle Tx (respectively fix)- Let us study
this in two easy cases.

Examples 4-2-16 \) If we endow the complex torus Cn/r with a constant her-
mitian structure, then the Chern connection on the trivial tangent bundle is
the exterior differential.

ii) The second example is slightly more interesting. We study the Fubini-
Study metric on P™ introduced in Examples 3.1.9, i). Recall that on the stan-
dard open subset [/; C P" with coordinates w\,.. .,wn it is given by

H = J_
i , j = l , . . . , n

Then the distinguished connection we are looking for is locally on f/j given by
V = d + H~1{dH).

Let us now study the second fundamental form for connections compatible
with a given hermitian and/or holomorphic structure.

• Let
0 *• Ex *• E *• E2 *- 0

be a short exact sequence of holomorphic vector bundles. In general, a se-
quence like this need not split. However, the sequence of the underlying dif-
ferentiable complex bundles can always be split and hence E = E\ © E2 as
complex bundles. (See Appendix A.)

If V0'1 = BE, then also Vj'1 = BE1 for the induced connection Vi on E±,
because E\ is a holomorphic subbundle of E. Thus, the second fundamental
form 61 is of type (1,0), i.e. b\ € Al'°{X, Hom(£i, £2))- The analogous state-
ment holds true for V2 on E2 and the second fundamental form b2 if and only
if the chosen split is holomorphic.

• Let (E, h) be an hermitian vector bundle and assume that E = E\® E2

is an orthogonal decomposition, i.e. Ei,E2 are both endowed with hermitian
structures hi and h2, respectively, such that h = h\ ® h2.

Let V be a hermitian connection on (E, h). Then the induced connections
Vi, V2 are again hermitian (cf. Exercise 4.2.5) and for the fundamental forms
b\ and b2 one has
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for any local sections Sj and ti of E\ respectively E2. This follows easily from

dh(si ®s2,t1 ®t2)

+ 62(s2)) © (V2(s2) + fci(si)), ti © t2)

+h(Sl © s2, (Vi(ti) + b2(t2)) © (V2(t2) + &i(*i)))

Usually, one combines both situations. A short exact sequence of holo-
morphic vector bundles can be splitted as above by choosing the orthogonal
complement E1- = E2 of E\ C E with respect to a chosen hermitian structure
on E.

We conclude this section with a brief discussion of the notion of a holomor-
phic connection, which should not be confused with the notion of a connection
compatible with the holomorphic structure. In fact, the notion of a holomor-
phic connection is much more restrictive, but has the advantage to generalize
to the purely algebraic setting.

Definition 4.2.17 Let E be a holomorphic vector bundle on a complex mani-
fold X. A holomorphic connection on E is a C-linear map (of sheaves) D :
E -> QX®E with

for any local holomorphic function / on X and any local holomorphic section
s oiE.

Here, E denotes both, the vector bundle and the sheaf of holomorphic
sections of this bundle. Clearly, if / is a holomorphic function, then d(f) is
a holomorphic section of /\ ' X, i.e. a section of fix (use Bd(f) = —dd(f)).
(See Proposition 2.6.11.)

Most of what has been said about ordinary connections holds true for
holomorphic connections with suitable modifications. E.g. if D and D' are
holomorphic connections on E, then D — D' is a holomorphic section of Qx <8>
End(.E). Locally, any holomorphic connection D is of the form d + A where
A is a holomorphic section of fix <8> End(£").

Writing a holomorphic connection D locally as d + A shows that D also
induces a C-linear map D : A°(E) —> Alr°(E) which satisfies D(f • s) =
9(/)®s + /-Z)(s). Thus, D looks like the (l,0)-part of an ordinary connection
and, indeed, V := D + 8 defines an ordinary connection on E.

However, the (l,0)-part of an arbitrary connection need not be a holo-
morphic connection in general. It might send holomorphic sections of E to
those of A1'°(E) that are not holomorphic, i.e. not contained in Qx ® E. In
fact, holomorphic connections exist only on very special bundles (see Remark
4.2.20 and Exercise 4.4.12).

We want to introduce a natural cohomology class whose vanishing decides
whether a holomorphic connection on a given holomorphic bundle can be
found. Let E be a holomorphic vector bundle and let X = \J Ui be an open
covering such that there exist holomorphic trivializations ipi : i?|;/; = Ui x Cr.
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Definition 4.2.18 The Atiyah class

A(E) G Hl(X, Qx ® End(E))

of the holomorphic vector bundle E is given by the Cech cocycle

A{E) = {U^^;1 o (^dAj) o^}.

Due to the cocycle condition ipijtpjkipki = 1, the collection {Uij,^1 o

(V'ij1dtpij) ° 4>j} really defines a cocycle. The definition of A(E) is indeed

independent of the cocycle {ipij}. We leave the straightforward proof to the

reader (see Exercise 4.2.9).

Proposition 4.2.19 A holomorphic vector bundle E admits a holomorphic

connection if and only if its Atiyah class A(E) G H1(X,f2x <8> End(.E)) is

trivial.

Proof. First note that dipij = dipij, as the ipij a r e holomorphic.
Local holomorphic connections on Ui x C r are of the form d + Ai. Those

can be glued to a connection on the bundle E if and only if

V-r1 o (d + A^ o ̂  = v j 1 o (d + Aj) o iPj

on Uij or, equivalently,

V--1 o d o Vi - V,"1 o d o ̂  = V-71 A,-^ - ^T^iV-i- (4-4)

The left hand side of (4.4) can be written as

ipj1 o (tp^1 odotpiO tpT1) o ipj - ipj1 odo-ipj

= ip'1 o {iP~l o d o Vy - 9) o i,j = iPj1 o ty^

The right hand side of (4.4) is the boundary of {Bt G r{Ut, Q ® End(E))}
with Bi = ip~1Ai'ipi. Thus, A{E) = 0 if and only if there exist local connections
on E that can be glued to a global one. •

Remarks 4-2.20 i) Later we will see that A{E) is related to the curvature of
E. Roughly, a holomorphic connection on a vector bundle E over a compact
manifold exists, i.e. A(E) = 0, if and only if the bundle is flat. Moreover, we
will see that A{E) encodes all characteristic classes of E.

ii) Note that for vector bundles of rank one, i.e. line bundles, one has
A(L) = {d\og(ipij)}. This gives yet another way of defining a first Chern
class of a holomorphic line bundle as A(E) G Hl(X,f2x) = Hx{X,Qx ®

End(.E)). A comparison of the various possible definitions of the first Chern
class encountered so far will be provided in Section 4.4.
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Exercises

4.2.1 i) Show that any (hermitian) vector bundle admits a(n hermitian) connec-

tion.
ii) Show that a connection V is given by its action on the space of global sections

A°(X,E).

4.2.2 Let Vi be connections on vector bundles Ei, i = 1,2. Change both con-
nections by one-forms a,i £ Al(X, End(i?i)) and compute the new connections on
the associated bundles Ei © E2, E\ (g> E2, and Hom(Ei,E2).

4.2.3 Prove that connections on bundles Ei, i = 1, 2 which are compatible with
given hermitian or holomorphic structures induce compatible connections on the
associated bundles E\ © £2, E\ ® E2, and Hom(£i, E2).

4.2.4 Study connections on an hermitian holomorphic vector bundle (E, h) that
admits local holomorphic trivialization which are at the same time orthogonal with
respect to the hermitian structure.

4.2.5 Let (E, h) be an hermitian vector bundle. If E = E\ © £2, then Ei and E2

inherit natural hermitian structures hi and h,2. Are the induced connections Vi on
Ei again hermitian with respect to these hermitian structures? What can you say
about the second fundamental form?

4.2.6 Let V be a connection on E. Describe the induced connections on f\2 E

and det(E).

4.2.7 Show that the pull-back of an hermitian connection is hermitian with
respect to the pull-back hermitian structure. Analogously, the pull-back of a con-
nection compatible with the holomorphic structure on a holomorphic vector bundle
under a holomorphic map is again compatible with the holomorphic structure on
the pull-back bundle.

4.2.8 Show that a connection V on an hermitian bundle (E,h) is hermitian if
and only if V(/i) = 0, where by V we also denote the naturally induced connection
on the bundle (E <g> E)*.

4.2.9 Show that the definition of the Atiyah class does not depend on the chosen
trivialization. Proposition 4.3.10 will provide an alternative proof of this fact.

C o m m e n t s : - To a large extent, it is a matter of taste whether one prefers to
work with connections globally or in terms of their local realizations as d + A with
the connections matrix A. However, both approaches are useful. Often, an assertion
is first established locally or even fibrewise and afterwards, and sometimes more
elegantly, put in a global language.

- For this and the next section we recommend Kobayashi's excellent textbook
[78].

- The Atiyah class was introduced by Atiyah in [3]. There is a way to define

the Atiyah class via the jet-sequence or, equivalently, using the first infinitesimal

neighbourhood of the diagonal. See [31].
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4.3 Curvature

In the previous paragraph we introduced the notion of a connection generali-
zing the exterior differential to sections of vector bundles. Indeed, by definition
a connection satisfies the Leibniz rule. However, in general a connection V
need not satisfy V2 = 0, i.e. V is not a differential. The obstruction for a
connection to define a differential is measured by its curvature. This concept
will be explained now.

The reader familiar with the basic concepts in Riemannian geometry will
find the discussion similar to the treatment of the curvature of a Riemannian
manifold. As before, we shall also study what happens in the presence of
additional structures, e.g. hermitian and holomorphic ones.

Let E be a vector bundle on a manifold M endowed with a connection
V : A°{E) -> Al{E). Then a natural extension

V:Ak(E) ^Ak+1(E)

is defined as follows: If a is a local k-iorm on M and s is a local section of E
then

V(a ® s) = d(a) <g> s + (-l)fca A V(s).

Observe that for k = 0 this is just the Leibniz formula (4.2) which also ensures
that the extension is well-defined, i.e. V(a ® (/ • s)) = V(/a <S> s) for any local
function / . Moreover, a generalized Leibniz rule also holds for this extension,
i.e. for any section t of Ae(E) and any A;-form /? one has

V(/3 A t) = d((3) A t + (-l)kf3 A V(t).

Indeed, if t = a ® s then

At) = V((/3 A a ) ® s ) = ( i ( i ? A a ) 8 s l (-l) fc+f (/3 A a) ® V(s)

A t + (-l)fc((/3 A d(a)) ® s + (-l)'(/3 A a) ® V(s))

Definition 4.3.1 The curvature Fy of a connection V on a vector bundle E
is the composition

F v := V o V : A°(E) ^ ^ ( F ) ^ .42(£).

Usually, the curvature Fy will be considered as a global section of
,42(End(£)), i.e. Fv G ^2(M,End(£1)). This is justified by the following
result.

Lemma 4.3.2 The curvature homomorphism Fy : A°(E) —> .42(.E) is .4°-
/mear.
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Proof. For a local section s of E and a local function f on M one computes

= V(V(/ • s)) = V (df ® s + / • V(s))

= d2(f) 8>a-d/AV(s) + d/AV(3)+/ • V(V(s))

0 0

= / - F v ( s )

D

Examples 4-3-3 i) Let us compute the curvature of a connection on the trivial
bundle M x Cr. If V is the trivial connection, i.e. V = d, then Fv = 0.

Any other connection is of the form V = d + A, where A is a matrix of
one-forms. For a section s one obtains Fy(s) — (d + A)(d + A)(s) = (d +
A)(d{s) + A-s) = d2(s) + d(A-s) + A-d(s) + A{A(s)) = d(A)(s) + (AA A)(s),
i.e.

Fv = d(A) +A/\A.

ii) For a line bundle this calculation yields Fv — d(A). In this case, the
curvature is an ordinary two-form.

For a € A1(M, End(F)) the two-form a A a e A2(M, End(F)) is given by
exterior product in the form part and composition in End(F). Using this, the
example is easily generalized to

Lemma 4.3.4 Let V be a connection on a vector bundle E and let a £
A1(M,End(E)). Then Fv+a = F v + V(a) + a A a. •

Any connection V on a vector bundle E induces a natural connection on
End(F/) which will also be called V. In particular, this connection can be
applied to the curvature Fv S A2(M, End(F)) of the original connection on
E. Here is the next remarkable property of the curvature:

Lemma 4.3.5 (Bianchi identity) If F\j £ A2(M, End(F)) is the curvature
of a connection V on a vector bundle E, then

0 = V(FV) G ^3(M,End(F)).

Proof. This follows from V{Fv)(s) = V(Fv(s)) - Fv(V(s)) = V(V2(s)) -
V2(V(s)) = 0. Here we use Exercise 4.3.1. O

Example 4-3.6 For the connection V = d+A on the trivial bundle the Bianchi
identity becomes dFy = Fy A A — A A Fv.

The curvature of induced connections on associated bundles can usually
be expressed in terms of the curvature of the given connections. For the most
frequent associated bundles they are given by the following proposition.
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Proposition 4.3.7 Let E\, E^ be vector bundles endowed with connections

Vi and V2 , respectively.

i) The curvature of the induced connection on the direct sum E\ © £2 is

given by

F = FWl®FV2.

ii) On the tensor product E\ (g> E% the curvature is given by

FVl ®1 + 1 ® F V 2 .

iii) For the induced connection V* on the dual bundle E* one has

i V = -F%.

iv) The curvature of the pull-back connection /*V of a connection V under

a differentiable map f : M —> N is

Ff,v = f*Fv.

Proof. Let us prove ii). This is the following straightforward calculation

= V(V(S! ® S2)) = V ( V l ( s i ) &S2 + SX® V2(S2))

= V j ( s i ) (g) s2 - V i ( s i ) ® V 2 ( s 2 ) + V i ( s i ) (8> V 2 ( s 2 ) + si ® V | ( s 2 )

= F V l (s i ) ® s2 + S!

The sign appears, because V is applied to the one-form Vi(si) £g>s2. We leave
i) and iii) to the reader (cf. Exercise 4.3.2).

iv) follows from the local situation, where V is given as d + A. Then
Ff.v = Fd+f,A = d(f*A) + f*(A) A f*(A) = f*(d(A) + A A A) = f*Fv. D

Next we will study the curvature of the special connections introduced in
Section 4.2.

Proposition 4.3.8 i) The curvature of an hermitian connection V on an

hermitian vector bundle (E,h) satisfies h(F^(s\), s2) + /i(si,Fv(s2)) = 0, i.e.

Fv eA2(M,End{E,h)).

ii) The curvature F\/ of a connection V on a holomorphic vector bundle

E over a complex manifold X with V0 '1 = d has no (0,2)-part, i.e.

Fv G (A2'°(BAhl)(X,End{E)).

iii) Let E be a holomorphic bundle endowed with an hermitian structure

h. The curvature of the Chern connection V is of type (1,1), real, and skew-

hermitian, i.e. Fy £ «4K' (X,*End(E,h)). (Recall that End(E, h) is only a real

vector bundle.)
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Proof, i) A local argument goes as follows: Choose a trivialization such that
(F, h) is isomorphic to the trivial bundle M x C endowed with the constant
standard hermitian product. Then, V = d-\-A with At = —A. For its curvature
Fy = d(A) + A A A one obtains

F$j = d{At) + (A A Af = d{At) -A* A A*

= d(-A) - (-A) A {-A) = - F v .

For a global argument one first observes that the assumption that V is
hermitian yields for form-valued sections Sj € Aki (F) the equation

Recall that h(ai <g> t\, a2 ® t2) = [a\ A a2)h{t\, t2) f°r local forms a.\, a2 and
sections t\,t2.

Hence, for s\, s2 €E -4° (F) one has

h(s1,Fv(s2))

and on the other hand

dh(V(Sl),s2)) +dh(Sl, V(s2)) = d(dA(*i,«2)) = 0.

This yields the assertion.
ii) Here, one first observes that the extension V : Ak(E) —> Ak+1(E) splits

into a (1,0)-part and a (0, l)-part, the latter of which is 8. Then one computes
V2 = ( V ^ ^ + V ^ o d + doV1-0, as B2 = 0. Hence, Fv(s) e (^2-°©^1'1)(E)
for all s e .4°(£).

Locally one could argue as follows: Since V = d + A with A of type (1,0),
the curvature d(A) + AAA = B(A) + (dA + A A A) is a sum of a (1, l)-form
and a (2,0)-form.

iii) Combine i) and ii). By comparing the bidegree of Fy and Fy in local
coordinates we find that Fy is of type (1,1).

More globally, due to ii) one knows that /i(Fv(si), s2) and h(sx,Fx?(s2))
are of bidegree (2,0) + (1,1) respectively (1,1) + (0, 2). Recall the convention
h(si,a2 ® s2) = a2h{si,s2). Using i), i.e. /i(Fv(si), s2) + fr(si,Fv(s2)) = 0>
and comparing the bidegree shows that /i(Fv(si), s2) has trivial (2,0)-part
for all sections si, s2. Hence, Fy is of type (1,1). •

Examples 4-3-9 i) Suppose E is the trivial vector bundle M x C7 with the con-
stant standard hermitian structure. If V = d + A is an hermitian connection,
then i) says d(A + A1) + (A A A + (A A A) ) = 0 . For r = 1 this means that
the real part of A is constant.

ii) If (L, h) is an hermitian holomorphic line bundle, then the curvature Fy
of its Chern connection is a section of A^ (X, End(L, h)), which can be iden-
tified with the imaginary (l,l)-forms on X. Indeed, End(L,/i) is the purely
imaginary line bundle i - K x ! (cf. page 176).
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iii) If the hermitian structure on the holomorphic vector bundle E is locally
given by the matrix H, then the Chern connection is of the form d+H~ld(H).
Hence, the curvature is

F = 5(H-1d{H)).

Indeed, a priori F = d{R-ld{H)) + d(H-xd{H) + {H~1d{H)) A {H~ld(H)),
but the sum of the last two terms must vanish, as both are of type (2,0).

If E is a line bundle, then the hermitian matrix is just a positive real
function h. In this case one writes F = dd\og(h). Once again, we see that F
can be considered as a purely imaginary two-form

iv) Let (X,g) be an hermitian manifold. Then the tangent bundle is na-
turally endowed with an hermitian structure. The curvature of the Chern
connection on Tx is called the curvature of the hermitian manifold (X,g).
In Section 4.A we shall see that the curvature of a Kahler manifold (X, g) is
nothing but the usual curvature of the underlying Riemannian manifold.

For the Chern connection on a holomorphic hermitian bundle the Bianchi
identity yields

i.e. Fy as an element of A1'1(X, End(E)) is <9-closed. Thus, in this case the
curvature yields a natural Dolbeault cohomology class [Fy] 6 B.x{X^flx ®
End(F)) for any holomorphic vector bundle E. A priori, this cohomology
class might depend on the chosen hermitian structure or, equivalently, on
the connection. That this is not the case is an immediate consequence of the
following description of it as the Atiyah class of E.

Proposition 4.3.10 For the curvature Fy of the Chern connection on an
hermitian holomorphic vector bundle (E, h) one has

[Fv] = A(E) G H\X, Qx ® End(E)).

Proof. The comparison of Dolbeault and Cech cohomology can be done by
chasing through the following commutative diagram of sheaves:

End(F) ^ C°({Ui}, Qx ® End(£)) *• ^({U,}, Qx ® End(E))

Here, X = (J Ui is an open covering of X trivializing E via 4>z '• E\u- = Ui x Cr.
With respect to ipi the hermitian structure h on Ui is given by an hermitian
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matrix Hi. Then the curvature Fv of the Chern connection on the holomorphic
bundle E on [/* is given by Fv\Ut = ip-l{d(H^ldHi))i)%. Thus,

6O(FV) = {Uhi,-
1 o '

as the maps ipi are holomorphic trivializations.
Hence, it suffices to show that

because the cocycle {C/j ,^1 o (ipT'.1 dipij) o ̂ } represents by definition the
Atiyah class of E. Using the definition of 5\ one shows that the term on the
right hand side equals

{Uihi,J
l o

Since

- ^ o (H^dHi) o Vy) o

it suffices to prove

H^dHj - ^ o (HrldHi) o ^ = Vy1^--

The latter is a consequence of the compatibility tpljHi4>ij = Hj or, equiva-

lently, •ipljHi^ij = Hj and the chain rule

where we have used drfij =0 . D

Remark 4-3.11 Here is a more direct argument to see that [Fv] does not de-
pend on the connection V. Indeed, any other connection is of the form V + a
and F\/+a = i7v + V(a) + aAa. If both connections V and V+a are Chern con-
nections with respect to certain hermitian structures, then Fy and -Fv+o are
(l,l)-forms and a £ yt1-0(End(E)). Thus, a A a G_^2'°(End(£')) and, there-
fore, V(a)+aAa = (V(a) + aAa)1'1 = V(a)M =8(a), i.e. F v + a = Fv+d(a)
and hence

[Fv+a] = [FV].

We have used here that the induced connection on the endomorphism bundle
is again compatible with the holomorphic structure.
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Example 4-3.12 Let us consider the standard homogeneous linear coordinates
zo,..., zn on P™ as sections of 0(1). According to Example 4.1.2 one associates
with them a natural hermitian metric h(t) = \4>(t)\2/(J2 IV'C î)!2) o n 0(1)-

We claim that the curvature F of the Chern connection on the holomorphic
line bundle 0(1) endowed with this hermitian metric is

where wps is the Fubini-Study Kahler form (see Example 3.1.9, i)).
This can be verified locally. On a standard open subset Ut C Pn

wps = ^ l o g ( l + E K I 2 ) -

where ps y ( p , ))
Pn one has

The hermitian structure of 0(1)1^ with respect to the natural trivializa-
tion is given by the scalar function h = (1 + J2\VJi\2)~1 • By Example iii) in
4.3.9 we have F = dd\og{h) = 0c91og(l + £ |w;|2).

Remark 4-3-13 In the general situation, i.e. of a holomorphic line bundle L on a
complex manifold X, the hermitian structure /i{S;} induced by globally genera-
ting sections so,..., sn is the pull-back of the hermitian structure on 0(1) of
the previous example under the induced morphism ip : X —> P". Thus, for the
curvature Fy of the Chern connection V on L one has: (i/2?r)Fv = <P*OJFS,

where tops is the Fubini-Study form on Pn.
Suppose now that L is not only holomorphic, but also endowed with an

hermitian structure h. What is the relation between h and fr{Si}? In general,
they are not related at all, but if the sections SQ, ..., sn are chosen such that
they form an orthonormal base of H°(X,L) then one might hope to approx-
imate h by h{s.y. (Here, H°(X,L) is equipped with the hermitian product
defined in 4.1.11.) This circle of questions is intensively studied at the mo-
ment and there are many open questions.

Definition 4.3.14 A real (1, l)-form a is called (semi-)positive if for all holo-
morphic tangent vectors 0 / i ; 6 Tl'°X one has

—ia(v,v) > 0 (resp. >).

At a point x G X any semi-positive (1, l)-form is a positive linear combina-
tion of forms of the type i/3A/3, where /3 is a (1,0)-form. The standard example
of a positive form is provided by a Kahler form LU = | ^ hijdzi A d2j. In this
case (hij) is a positive hermitian matrix and thus vt(hij)v > 0 for all non-
zero holomorphic tangent vectors. Together with Example 4.3.12 this shows
that iF^j of the Chern connection V on 0(1) (with the standard hermitian
structure) is positive.

Clearly, the pull-back of a semi-positive form is again semi-positive. For
the curvature of a globally generated line bundle L this implies

Fv(v,v) >0.
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We next wish to generalize this observation to the higher rank case. Let
(E, h) be an hermitian vector bundle over a complex manifold X and let V
be an hermitian connection that satisfies Fv G A1'1(X, End(F)).

Definition 4.3.15 The curvature Fv is (Griffiths-) positive if for any 0 ^ s €
E one has

h(Fv(s),s)(v,v) >0

for all non-trivial holomorphic tangent vectors v. Semi-positivity (negativity,
semi-negativity) is defined analogously.

Remark 4-3.16 Let L be an hermitian holomorphic line bundle and let V be
the Chern connection. Its curvature Fv is an imaginary (1, l)-form. Then the
curvature Fv is positive in the sense of Definition 4.3.15 if and only if the
real (l,l)-form iFv is positive in the sense of Definition 4.3.14. The extra
factor i is likely to cause confusion at certain points, but these two concepts
of positivity (and others) are met frequently in the literature.

Before proving the semi-positivity of the curvature of any globally gener-
ated vector bundle, we need to relate the curvature and the second fundamen-
tal forms of a split vector bundle E = E\ © E2. Let V be a connection on E.
We denote the induced connections by V* and the second fundamental forms
by bt,i= 1,2. Thus,

' i b2v " ' h v2

which immediately shows

Lemma 4.3.17 The curvature of the induced connection Vi on E\ is given
by Fvj = pv1 o Fy — b2 o b\. •

Now let E\ be a holomorphic subbundle of the trivial holomorphic vector
bundle E — O®r endowed with the trivial constant hermitian structure. The
curvature of the Chern connection V on E is trivial, as V is just the exterior
differential. Hence, Fv : = —62 ° b\. This leads to

Proposition 4.3.18 The curvature F\/1 of the Chern connection Vi of a
subbundle E\ C E = O®v (with the induced hermitian structure) is semi-
negative.

Proof. By the previous lemma we have F^1 = —62 ° b\. Thus, if h2 is the
induced hermitian structure on the quotient E/E\ then

Here we use properties of the second fundamental form proved in Section 4.2.
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More precisely, one has

hifaiP ® t),s) = /ii(-/3 ® b2{t),s) = -

for any one-form j3.

Now, it suffices to show that h(a,a) > 0 for any a £ A1'°(E). Fix an
orthonormal basis s^ of E and write a = ^ a^s*. Then /i(a, a) = J^ CHJ A a^.
But ctj A &i is semi-positive due to

(oti A aj)(v, u) = ai(v) • cti(v) = ai(v) • cti(v) > 0.

(Note that we did use that b\ is of type (1,0).) D

A holomorphic vector bundle E is globally generated if there exist global
holomorphic sections si,...,sr £ H°(X,E) such that for any x € X the
values si(x),..., sr(x) generate the fibre E(x). In other words, the sections
si,...,sr induce a surjection O®r -^> E. The standard constant hermitian
structure on O®r induces via this surjection an hermitian structure on E and
dualizing this surjection yields an inclusion of vector bundles E* C O®r.

Using Exercise 4.3.3 the proposition yields

Corollary 4.3.19 The curvature of a globally generated vector bundle is semi-

positive. •

Here, the curvature is the curvature of the Chern connection with respect
to a hermitian structure on E defined by the choice of the globally generating
holomorphic sections.

Example 4-3-20 The Euler sequence on P" twisted by 0(—1) is of the form

^ 7 ^ ( - l ) ^ 0 .

Hence, 7p«(—1) admits an hermitian structure such that the curvature of the
Chern connection is semi-positive. Twisting by 0(1) yields a connection on
Tjpn. with positive curvature. In fact, this is the curvature of the Fubini-Study
metric on Pn . See Example 4.1.5.

Remark 4-3.21 As for line bundles, one could have first studied the universal
case. Recall that on the Grassmannian Gvr(V) there exists a universal short
exact sequence

0 *- S *- O®V *• Q >- 0.

By definition, the fibre of S over a point of Gr(V) that corresponds to W C V

is naturally isomorphic to W. Fixing an hermitian structure on V induces
hermitian structures on S and Q (and therefore on the tangent bundle T of
Gr r(V), which is Hom(5,Q)).
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If E is any holomorphic vector bundle of rank r on a complex manifold

X generated by global sections spanning V C H°(X,E), then there exists

a morphism (p : X —> Gir(V) with p*Q = E (see Exercise 2.4.11). Again,

choosing an hermitian product on V induces an hermitian structure on E

which coincides with the pull-back of the hermitian structure on Q under <p.

This shows that the curvature of E and Q can be compared, namely >P*FQ =

FE-

Thus, showing the positivity of FQ proves the semi-positivity for any glob-

ally generated vector bundle E. Moreover, if <p : X —> Gr r(V) is an embedding,

then the curvature FE is positive.

Exercises

4.3.1 Show that V2 : Ak(E) —• Ak+2{E) is given by taking the exterior prod-
uct with the form part of the curvature _Fv £ A2(M, End(i5)) and applying its
endomorphism part to E.

4.3.2 Prove i) and iii) of Proposition 4.3.7. Compute the connection and the
curvature of the determinant bundle.

4.3.3 Let (Ei,hi) and (E2,h^) be two hermitian holomorphic vector bundles
endowed with hermitian connections Vi, V2 such that the curvature of both is (semi-
)positive. Prove the following assertions.

i) The curvature of the induced connection V* on the dual vector bundle E\ is
(semi-)negative.

ii) The curvature on E\ <g) Ei is (semi-)positive and it is positive if at least one
of the two connections has positive curvature.

iii) The curvature on Ei © Ei is (semi-)positive.

4.3.4 Find an example of two connections Vi and V2 on a vector bundle E, such

that i*Vi is positive and Fv2 is negative.

4.3.5 Let L be a holomorphic line bundle on a complex manifold. Suppose L

admits an hermitian structure whose Chern connection has positive curvature. Show
that X is Kahler. If X is in addition compact prove fx A(L)n > 0.

4.3.6 Show that the canonical bundle of Pn comes along with a natural hermitian
structure such that the curvature of the Chern connection is negative.

4.3.7 Show that the curvature of a complex torus Cn/F endowed with a constant
hermitian structure is trivial. Is this true for any hermitian structure on Cn/-T?

4.3.8 Show that the curvature of a the natural metric on the ball quotient intro-
duced in Example 3.1.9, iv) is negative. The one-dimensional case is a rather easy
calculation.
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4.3.9 Let X be a compact Kahler manifold with b\(X) = 0. Show that there
exists a unique flat connection V on the trivial holomorphic line bundle O with
V0'1 = 8. Moreover, up to isomorphism O is the only line bundle with trivial Chern
class ci eH2(X,Z).

4.3.10 Let V be a connection on a (complex) line bundle L on a manifold M.

Show that L locally admits trivializing parallel sections if and only if F\r = 0.
This is the easiest case of the general fact that a connection on a vector bundle

is flat if and only if parallel frames can be found locally. (Frobenius integrability.)

Comments: - Various notions for the positivity of vector bundles can be found
in the literature. Usually they all coincide for line bundles, but the exact relations
between them is not clear for higher rank vector bundles. Positivity is usually ex-
ploited to control higher cohomology groups. This will be illustrated in Section 5.2.
We shall also see that, at least for line bundles on projective manifolds, an algebraic
description of bundles admitting an hermitian structure whose Chern connection has
positive curvature can be given. For a more in depth presentation of the material
we refer to [35, 100] and the forthcoming book [83].

- The problem alluded to in Remark 4.3.13 is subtle. See [37, 107].
- The curvature of Kahler manifold will be dealt with in subsequent sections,

in particular its comparison with the well-known Riemannian curvature shall be
explained in detail.

- In [75, Prop. 1.2.2] one finds a cohomological version of the Bianchi identity in

terms of the Atiyah class.
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4.4 Chern Classes

Connection and curvature are not only objects that are naturally associated
with any vector bundle, they also provide an effective tool to define coho-
mological and numerical invariants, called characteristic classes and numbers.
These invariants are in fact topological, but the topological aspects will not
be treated here. The goal of this sections is first to discuss the multilinear al-
gebra needed for the definition of Chern forms and classes and then to present
the precise definition of Chern classes and Chern and Todd characters. We
conclude the section by comparing the various definitions of the first Chern
class encountered throughout the text.

Let V be a connection on a complex vector bundle E and let Fy denote its
curvature. Recall that Fy e A2(M,End(i?)). We would like to apply certain
multilinear operations to the linear part of i*v, i.e. to the components in
End(E), in order to obtain forms of higher degree. Let us start out with a
discussion of the linear algebra behind this approach.

Let V be a complex vector space. A fc-multilinear symmetric map

P: V x ... x V ^ C

corresponds to an element in Sk(V)*. To each such P one associates its po-
larized form P : V —• C, which is a homogeneous polynomial of degree k
given by P(B) := P(B,..., B). Conversely, any homogeneous polynomial is
uniquely obtained in this way. In our situation, we will consider V = g[(r, C),
the space of complex (r, r)-matrices.

Definition 4.4.1 A symmetric map

P : 0t(r, C) x . . . x 0l(r, C) =>- C

is called invariant if for all C £ Gl(r, C) and all B\,..., Bk € 3^(r, C) one has

-1,..., CBkC~l) = P(BU.. .,Bk). (4.5)

This condition can also be expressed in terms of the associated homogeneous
polynomial as P{CBC~l) = P{B) for all C e Gl(r,C) and all B s gl(r,C).

Lemma 4.4.2 The k-multilinear symmetric map P is invariant if and only
if for all B,Bi,...,Bk G gi(r,C) one has

Proof. Use the invertible matrix C = etB and differentiate the invariance
equation (4.5) at t — 0. The converse is left as an exercise (cf. Exercise 4.4.8). •
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Proposition 4.4.3 Let P be an invariant k-multilinear symmetric form on

gl(r, C). Then for any vector bundle E of rank r and any partition m =

ii + ... + ik there exists a naturally induced k-linear map:

P : (/\hM ® End(£)) x . . . x (f\ikM <g> End{E)\ >- Ac M

defined by P{ot\ <g> h , . . . ,ak ® ifc) = (a\ A . . . A ak)P(h,... , t k ) .

Proof. Once a trivialization E(x) = C r is fixed, the above definition makes
sense. Since P is invariant, it is independent of the chosen trivialization. •

Clearly, the fc-linear map defined in this way induces also a ^-multilinear
map on the level of global sections

P : Ah (M, End(£)) x . . . x Aik (M, End(£)) ^ Ag{M).

Note that P applied to form-valued endomorphisms is only graded sym-
metric, but restricted to even forms it is still a fc-multilinear symmetric map.
In particular, P restricted to A2(M,End(E)) x ... x _42(M,End(£)) can be
recovered from its polarized form P(a ® t) = P(a (g> £,. . . ,a®t). In the fol-
lowing, this polarized form shall be applied to the curvature form Fy of a
connection V o n £ . We will need the following

Lemma 4.4.4 For any forms jj £ Alj (M, End(E)) one has

k

where V also denotes the induced connection on End(£ l).

Proof. This can be seen by a local calculation. We write V = d + A, where
A is the local connection matrix of V. The induced connection on End(.E) is
of the form V = d + A with A acting as 7 >—> [A,7]. Using the usual Leibniz
formula for the exterior differential one finds

fc

d P ( 7 l , . . . )7fc) =

, • • •, ( V -

By Lemma 4.4.2 the invariance of P proves the assertion. •

Corollary 4.4.5 Let Fy be the curvature of an arbitrary connection V on a

vector bundle E of rank r. Then for any invariant k-multilinear symmetric

polynomial P on gl(r,C) the induced Ik-form P(Fv) G A^k(M) is closed.
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Proof. This is an immediate consequence of the Bianchi identity (Lemma
4.3.5), which says V(-Fv) = 0, and the previous lemma. •

Thus, to any invariant ^-multilinear symmetric map P on $l(r, C) and any
vector bundle E of rank r one can associate a cohomology class [P(JFV)] &

H2k(M,C). In fact, due to the following lemma, this class is independent of
the chosen connection.

Lemma 4.4.6 / / V and V are two connections on the same bundle E, then

[P(FV)\ = \P{FV.)].

Proof. The space of all connections is an affine space over »41(Af)End(.E/)),
i.e. if V is given, then any other connection is of the form V = V + A for
some A £ -41(End(.E)) (see Corollary 4.2.4). Thus, it suffices to show that the
induced map

A\M, End(JB)) *- H2k(M, C)

is constant. We use that FV+A = -Fv + A A A + V(A).
The assertion can be proven by an infinitesimal calculation, i.e. in the

following calculation we only consider terms of order at most one in t:

P(Fv+tA) = P(FV)

Now the assertion follows from Lemma 4.4.4 and the Bianchi identity:

, . . . , F V , V(A)) = dP(Fv, ...,FV,A)- P ( V ( F V ) , F V , . . . , F V , A) - ...

•

Remark 4-4-7^ w e denote by (Sfcgt(r,C))G1(r) the invariant fc-multilinear
polynomials, then the above construction induces a canonical homomorphism

(Sfc
Sl(r,C))G1W *• H2k(M,C)

for any vector bundle E of rank r. In fact, we actually obtain an algebra
homomorphism

which is called the Chern-Weil homomorphism.

So far, everything was explained for arbitrary invariant polynomials, but
some polynomials are more interesting than others, at least regarding their
applications to geometry. In the following we discuss the most frequent ones.
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Examples 4-4-8 i) Chern classes. Let {Pk} be the homogeneous polynomials
with deg(i\) = k defined by

det(Id + B) = 1 + A(B) + .. . + PT(B).

Clearly, these Pk are invariant. The Chern forms of a vector bundle of rank
r endowed with a connection are

The k-th Chern class of the vector bundle E is the induced cohomology
class

Note that co(E) = 1 and ck(E) = 0 for k > rk(£). The total Chern class
is c(E) := co(E) +a(E) + ... + cr(E) e #2*(M,C).

ii) Chern characters. In order to define the Chern character of E one
uses the invariant homogeneous polynomials Pk of degree k defined by

tr(eB) = P0(B) + PX{B) + . . . .

Then the k-th Chern character chfc(E) e H2k(M,C) of E is defined as the
cohomology class of

chfc(£, V) := Pk (j^F

Note that cho{E) = ik(E). The total Chern character is ch(E) := cho(E) +
... + chr(E) + chr+1(E) + ....

iii) Todd classes. The homogeneous polynomials used to define the Todd
classes are given by

det(Id - e-tB)

(The additional variable t is purely formal and is supposed to indicate that the
left hand side can be developed as a power series in t with coefficients Pk which
are of degree k. This could also have been done for the other characteristic
classes introduced earlier.)

Then tdk(E, V) := Pk((i/2w)Fw) and

tdfc(E) := [tdfc(£,V)] G H2k(M,C)-

The total Todd class is td(E) := tdo(E) + tdi(E) + .. ..
Note that the Todd classes are intimately related to the Bernoulli numbers

Bk. In fact, by definition

l - e ~ * " 2 " 4 - v x ; (2ifc)!
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Let us study some of the natural operations for vector bundles and see
how the characteristic classes behave in these situations.

• Let E = E\®E2 be endowed with the direct sum V of connections Vi and
V2 on E\ and E2, respectively. The curvature Fy is again the direct sum Fy1 ©
FV2 (Proposition 4.3.7) and since det ((IdBl + ̂ FVl) © (IdE2 + j^FV2)) =
det (Idsj + 2 -̂FVi) • det (Ids2 + -^F\/2), we obtain the Whitney product for-
mula:

c(£,V) = c(JB1,V1)-c(JE2,V2).

Of course, this relation then also holds true for the total Chern class. In
particular, one has ci(E\ © E2) = ci(i?i) + c\(E2) and C2(E) = C2(Ei) +
C2{Ei) + C\(E\) • Ci(E2). A similar calculation shows

ch(£i © E2) = ch(£'i) + ch(£2).

• Consider two vector bundles E\ and E2 endowed with connections Vi
and V2, respectively. Let V be the induced connection Vi <S> 1 + 1 <S> V2 on
E = Ei <g> E2. Then F v = FVl ® 1 +1 ® Fy2 (see Proposition 4.3.7) and hence
tr(e(i/27r)Fv) = tr(e(i/27r)FVl & e(i/^)Fv2) = tr(e(i/2^)FVl) . tr(e(i/2^)Fv2).

Therefore,
ch(E! ® E2) = ch(Ei) • ch(E2).

If E2 = L is a line bundle one finds ci(E\ <gi L) = ci(£"i) + rk(£'i) • ci(L)
and c2(JB1 ® L) = 03(^1) + (rk(Ei) - 1) • ci(Ei) • Cl(L) + (rk(f ^Jc^L). See
Exercise 4.4.5 for the first few terms of the Chern character and Exercise 4.4.6
for the general formula for the Chern classes of E\ ® L.

• The curvature i*V» of the naturally associated connection V* on the
dual bundle E* is Fv, = -F$ (see Proposition 4.3.7). Thus, c(£*,V*) =
det(Id + i f v . ) = det (Id - ^F^) = det(Id - ^Fv). Hence,

• Let / : M —> N be a differentiable map and let £ be a vector bundle on
N endowed with a connection V. By Proposition 4.3.7 we know that .F/»v =
f*F\j. This readily yields

• The first Chern class of the line bundle 0(1) on P1 satisfies the normali-
zation

Indeed, in Example 4.3.12 we have shown that the Chern connection on
O(l) on Pn with respect to the natural hermitian structure has curvature
F = (2ir/i)ojps and by Example 3.1.9, i) we know Jpl wps = 1-
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Remarks 4-4-9 i) In fact, all the characteristic classes introduced above are
real. This can be seen as follows. Pick an hermitian metric on the vector bundle
E and consider an hermitian connection V, which always exists. Then locally
and with respect to an hermitian trivialization of E the curvature satisfies
the equation F v = F% = -Fv. Hence, (i/2Tr)Fv = (i/2ir)F$7 and, therefore,
c(E, V) = det(Id + (i/2n)Fv) = det(Id + (i/2n)F$) = det(Id + (i/2ir)Fv) =
c(£, V), i.e. c(E, V) is a real form. Thus,

c{E)&H*(M,R).

The same argument works for ch(E) and td(E').
ii) If E is a holomorphic vector bundle over a complex manifold X, then

we may use an hermitian connection V that is in addition compatible with the
holomorphic structure of E (cf. Proposition 4.2.14). In this case the curvature
F v is a (1, l)-form, i.e. F v G Al'l{X, End(E)). But then also the Chern forms
Ck{E, V) are of type (&, k) for all k.

If X is compact and Kahler, we have the decomposition H2h(X,C) =

®P+q=2k Hp'q{X) (Corollary 3.2.12) and the Chern classes of any holomorphic
bundle are contained in the (k, A;)-component, i.e.

cfc(E) eH2k(X,R)nHk'k(X).

iii) We are going to explain an ad hoc version of the splitting principle.

The geometric splitting principle works on the level of cohomology and tries
to construct for a given vector bundle E a ring extension H* (M, M.) C A* and
elements 7, G A2, i = 1 , . . . ,xk(E), such that c(E) = f]( l + 7$). Moreover,
A* is constructed geometrically as the cohomology ring of a manifold iV such
that the inclusion H*(M,R) C A* = H*(N,R) is induced by a submersion
7r : N —> M (e.g. iV can be taken as the full flag manifold associated to E).

The map n is constructed such that TT*E is a direct sum 0 Li of line bundles
Li with 7, = ci (Lj).

We propose to study a similar construction on the level of forms. This
approach is less geometrical but sufficient for many purposes.

Consider <Cr with the standard hermitian structure and let B G gl(r, C)
be a self-adjoint (or, hermitian matrix), i.e. Bl = B. Then, there exists
an orthonormal basis with respect to which B takes diagonal form with
eigenvalues Ai , . . . ,A r . Clearly, every expression of the form P(B), with P

an invariant symmetric map, can be expressed in terms of Ai , . . . ,A r . E.g.
tr(B) = Ai + . . . + Ar.

Let us now consider the curvature matrix F\? of an hermitian connection
V on an hermitian vector bundle (E, h) of rank r on a manifold M. At a fixed
point x G M we may trivialize (E, h) such that it becomes isomorphic to C r

with the standard hermitian structure. Then i • Fxj in x corresponds to an
hermitian matrix B, but with coefficients not in C but in R :— C[/\x M].

Diagonalizing B — i • Fy(x) can still be achieved, but in general only
over a certain ring extension R C R'. (One has to adjoint certain eigenvalues,



4.4 Chern Classes 199

to assure that a vector of length one can be completed to an orthonormal
basis, etc.) Let us suppose this has been done, i.e. in the new basis one has
B = diag(7i,..., 7r) with 7* € R'. Then for any invariant symmetric map P
one finds P(iF\?) = P(diag(7i,... ,7r)), where P is extended i?'-linearly from
C to Cr <g>c R'• The result P{iFv) is of course contained in C[/\2X M] and can
thus be projected to f\x* M.

In general, this procedure will not work globally, but it often suffices
to have at one's disposal the splitting principle in this form. The elements
71, . . . ,7 r (up to the scalar factor (1/2TT), which we suppress) are called the
formal Chern roots of V on E.

The primary use of this construction is to verify various formal identities.
As an example, let us show how the rather elementary identity cli2(.E) =
(l/2)cj(£1) — C2(E) can be proved. This can be done pointwise and so we may
assume that the ring extension R = C[/\x M] C R and the formal Chern
roots of E have been found. Hence,

ch2(£, V)(x) = ^ t r (iFv(x)) = ^ t r (diag(7l
2,..., 7?)) = — ] T 7?

and

Another example for this type of argument can be found in Section 5.1. See
also Exercises 4.4.5 and 4.4.9.

iv) There is also an axiomatic approach to Chern classes which shows
that the Whitney product formula, the compatibility under pull-back, and
the normalization Jci(O(l)) = 1 determine the Chern classes uniquely.

Definition 4.4.10 The Chern classes of a complex manifold X are

ck(X):=ck(Tx)eH2k(X,R),

where Tx is the holomorphic tangent bundle. Similarly, one defines chfc(X)
and tdfc(X) by means of Tx-

Note that we actually only need an almost complex structure in order
to define the Chern classes of the manifold. Also note that it might very
well happen that two different complex structures on the same differentiable
manifold yield different Chern classes, but in general counter-examples are
not easy to construct. A nice series of examples of complex structures on the
product of a K3 surface with S2 with different Chern classes can be found in
the recent paper [84].
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Example 4-4-H Let us compute the characteristic classes of a hypersurface
Y C X. The normal bundle sequence in this case takes the form

0 - TY - TX\Y OY(Y) - 0.

Since any short exact sequence of holomorphic vector bundles splits as a
sequence of complex vector bundles, the Whitney product formula yields
i*c(X) = c(Y) • i*c{O(Y)). Therefore,

c(Y) = i* (c(X) • (1 - Cl(O(Y)) + cx{O{Y))2 ± . . . ) ) •

In particular, ci(y) = i*(c\{X) — c\{O{Y)) which reflects the adjunction
formula 2.2.17.

For a quartic hypersurface Y C P3 this yields ci(Y) = 0 and c2(Y) =
i*c2(P

3). Hence, / y c2(F) = /p3 c2(P3)(4ci(0(l))) = 24. Here we use c2(P
3) =

6cf(0(l)) which follows from the Euler sequence and the Whitney formula
(cf. Exercise 4.4.4).

So far, we have encountered various different ways to define the first Chern
class of a complex or holomorphic line bundle. We will now try to summarize
and compare these.

For a holomorphic line bundle L on a complex manifold X we have used
the following three definitions:

i) Via the curvature as cx(L) = [d(L, V)] e H2{X,R) C H2(X,C), where
V is a connection on L.

ii) Via the Atiyah class A(L) € HX{X, Qx)- See Remarks 4.2.20 ii).
iii) Via the exponential sequence and the induced boundary operator 6 :

Hl(X,O*x) -• H2{X,Z). See Definition 2.2.13.

By Proposition 4.3.10 the first two definitions are compatible in the sense
that A(L) = [Fy] if V is the Chern connection on L endowed with an hermi-
tian structure. In case that X is a compact Kahler manifold we can naturally
embed Hl{X, Qx) = Hl'l{X) C H2(X,C) and thus obtain

The comparison of i) and iii) will be done more generally for complex line
bundles L on a differentiate manifold M.

A complex line bundle L on a differentiable manifold M is described by
its cocycle {Uij,ijjij} & HX(M,CQ) (see Appendix B). The invertible complex
valued differentiable functions ipij € C^iUij) are given as ipij = ^Pi ° ^J1)
where ipi : L\u, = Ui x C are trivializations.
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In the present context we work with the smooth exponential sequence

which induces a boundary isomorphism 5 : H1(M,C^) = H2(M,Z), for Cc is
a soft sheaf (Appendix B). In other words, complex line bundles on a manifold
M are parametrized by the (discrete) group H2(M, Z). Since H2(M, Z) maps
naturally to H2(M,R) C H2(M,C), one may compare 5(L) and ci(L). In
Proposition 4.4.12 we will see that they only differ by a sign.

Clearly, the exponential sequence on a complex manifold X and the ex-
ponential sequence on the underlying real manifold M are compatible. Thus,
we show at the same time that i) and iii) above are compatible. We therefore
obtain the following commutative diagram

H\X,O*X

H2(X,Z)

H2(X,C)

Proposition 4.4.12 Let L be a complex line bundle over a differentiable
manifold M. Then the image of S(L) £ H2(M,7*) under the natural map
H2(M,Z) —> H2(M,C) equals —ci(L). Here, 5 is the boundary map of the
exponential sequence.

The annoying sign is due to various conventions, e.g. in the definition of
the boundary operator. Often, it is dropped altogether, as it is universal and
of no importance.

Proof. In order to prove this, we have to consider the two resolutions of the
constant sheaf C on M given by the de Rham complex and the Cech complex,
respectively. They are compared as follows:

C-

A0

A1

A2

•C°({Ui},C) •C2({Ui},C)

,A2)



202 4 Vector Bundles

Let M = [j Ui be an open covering trivializing L and such that Uij =

Ui n Uj are simply connected. Choose trivialization ipi : L\yi = Ui x C. Then,
ipij = ijji o ipj1 are sections of C^{Uij). Furthermore, by choosing a branch
of the logarithm for any Utj we find y>y € Cc(Uij) with e2vitp^ = V^- The
boundary 5{L) = 5{ipij} is given by {Uijk,<Pjk — fik + <fiij} which takes values
in the locally constant sheaf Z.

Now choose an arbitrary connection V on L. Locally with respect to the
trivialization ipi it can be written as V = d+Ai, where the connection matrices
At are one-forms on Ui. The compatibility condition ensures ip^1 d(ipij) +

ip'j1 Aiipij = Aj (see Remark 4.2.5), i.e.

since in the rank one case one has i/^1 Aiipij = -Aj.
The curvature Fy of the line bundle L in terms of the connection forms Ai

is given as F\/ = d(Ai). With these information we can now easily go through
the above diagram:

} = d{Uu ^Ar]

This proves the claim. CD

There is yet another way to associate a cohomology class to a line bundle in
case the line bundle is given in terms of a divisor. Let X be a compact complex
manifold and let D C X be an irreducible hypersurface. Its fundamental class
[D] e H2(X,R) is in fact contained in the image of H2{X,Z) -> H2(X,R)

(cf. Remark 2.3.11).

Proposition 4.4.13 Under the above assumptions one has ci(O(D)) = [D].

Proof. Let L = O(D) and let V be the Chern connection on L with respect to
a chosen hermitian structure h. In order to prove that \^Fv} = ci(L) equals
[D] one needs to show that for any closed real form a one has

^ f FvAa= f a.
27r Jx JD

Let us fix an open covering X = [JUi and holomorphic trivializations
4>i '• L\UJ — Ui x C. On Ui the hermitian structure h shall be given by the
function hi : Ut - • M>0, i.e. h(s(x)) = h(s{x),s{x)) = K{x) • |V<i(s(z))|2 for
any local section s.
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If s is holomorphic on Ui vanishing along D one has (Examples 4.3.9, iii)):

dd\og(h os) = ddlog(hi) = Fv|t/,; on Ut \ D.

Here we have used that d<91og(-0i o s) = dd\og(tpi o s) = 0, since tpi is holo-
morphic.

Let now s G H°(X,L) be the global holomorphic section defining D and
denote by De the tubular neighbourhood D£ := {x € X \ \h(s(x))\ < e}. Then

— / F v A a = lim — / F v A a

= l im— / ddlogih o s) A a

e^O 27T y x x C e

i /"
= lim — / did — d) log(h o s ) A «

£^o 4?r JX\DS

— lim — / (d — 8) log(/i o s) A a by Stokes and using da = 0.
e^o 4TT y9£)e

On the open subset Ui we may write

o s)

= (d-8) iog(v>i os) + ( a - a ) iog(^ o s) + (d - 8)

If f
— / Im(51og(^i o s)) A a = — / a.

77 JdDenUi JDnUt

= dlog(^ o s) - dlog^i o s) + (d - d) log(hi)

The second summand does not contribute to the integral for e —> 0 as hi is
bounded from below by some 5 > 0. Thus, it suffices to show

lim —
e-»o 2TT

This is a purely local statement. In order to prove it, we may assume
that De is given by z\ = 0 in a polydisc B. Moreover, |/i(zj)| = hi • zi\

if h on Ui is given by hi. Hence, 8D£ = {z \ \z\\ = e/hi}. Furthermore,
dlog(ipi o s) = dlog(zi) = z^[xdz\ and a = f(dz2 A . . . A dzn) A (dz2 A . . . A
dzn) + dz\ A a' + dz\ A a'. Notice that 31og(-0j o s) A (dz\ A a') = 0 and that
d\og{ijji o s) A (dzi A a') = (dz\ A dz\) A ( ( l /z i )a ' ) does not contribute to the
integral over dD£.

Thus,

f
a = / ( 0 , Z2, • • •, zn)(dz2 A . . . A dzn) A ( d z 2 A . . . A dzn)

zi=0 J

and

f / f - 1 N /

/ Oiog(t/)iOs)Aa = — / fz1 dz\A(dz2A.. .Adzn)A(dz2A.. .Adzn).
JdD£ J\h(zi)\=e
The minus sign appears as we initially integrated over the exterior domain.



204 4 Vector Bundles

Eventually, one applies the Cauchy integral formula (1.4):

f
lim / d log(i/>j o s) A a
£-> 0 JdDe

f-(dz2 A . . . Adzn Adz2 A...Adzn)) —

= (-27ri) • / /(0,22, • • •, 2n)(d22 A . . . A dzn A dz2 A ... A dzn)
Jzi=0

= — 2m j a

and hence

1 /• / f \ f
lim — / Im (d\og(ipi o s) A a) = — Im I / i • a) = — I a.
£-*o 2TT JdDe \JZl=o J Jz1=o

D

Remark 4-4-14 Since taking the first Chern class ci and taking the fundamen-
tal class are both linear operations, the assertion of Proposition 4.4.13 holds
true for arbitrary divisors, i.e. ci(O(J2niDi)) = ~Yl,ni[Di}-

The reader may have noticed that in the proof above we have, for simpli-
city, assumed that D is smooth. The argument might easily be adjusted to
the general case.

Exercises

4.4.1 Let C be a connected compact curve. Then there is a natural isomorphism
H2{C,I) = Z. Show that with respect to this isomorphism (or, rather, its R-linear
extension) one has ci(L) = deg(L) for any line bundle L on C.

4.4.2 Show that for a base-point free line bundle L on a compact complex mani-
fold X the integral fx c\(L)" is non-negative.

4.4.3 Show that td(Ei © E2) = td(Ei) • td(E2).

4AA Compute the Chern classes of (the tangent bundle of) P" and P" x Pm .
Try to interpret Jprl cn(P") and Jpr lxpm cn(Pn x Pm).

4.4.5 Prove the following explicit formulae for the first three terms of ch(.E) and

td(E) in terms of a(E):

= ME)

Cl(E)c2(E)

12 + 24
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4.4.6 Let E be a vector bundle and L a line bundle. Show

a(E®L) = Y^ I

This generalizes the computation for the first two Chern classes of E ® L on page
197.

4.4.7 Show that on ¥n one has ci(0(l)) = [CJFS] 6 U2(P",R). Consider first the
case of P1 and then the restriction of 0(1) and the Fubini-Study metric to P1 under
a linear embedding P ' c P " .

4.4.8 Prove that a polynomial P of degree k on the space o f r x r matrices is
invariant if and only if ^P{Ai,..., Ai-i, [A, Ai], Ai+i,... ,Ak) = 0 for all matrices
Ai,..., Ak, A (cf. Lemma 4.4.2).

4.4.9 Show that ci(End(.E)) = 0 on the form level and compute C2(End(£)) in
terms of a(E), i = 1,2. Compute (4c2 — cf)(L © L) for a line bundle L. Show that
c2k+1{E) = 0, HE^E*.

4.4.10 Let L be a holomorphic line bundle on a compact Kahler manifold
X. Show that for any closed real (1, l)-form a with [a] = ci(L) there exists an
hermitian structure on L such that the curvature of the Chern connection V on L

satisfies (i/2?r)_Fv = a. (Hint: Fix an hermitian structure on ho on L. Then any
other is of the form e* -ho. Compute the change of the curvature. We will give the
complete argument in Remark 4.B.5.

4.4.11 Let X be a compact Kahler manifold. Show that via the natural inclusion
Hk(X, Qk

x) C H2k(X,C) one has

Here, A(E)®k is obtained as the image of A(E) ®...® A{E) under the natural map
H\X, Qx ® End(£)) x . . . x Hl{X, Qx ® End(£)) -> Hk{X, Qx ® End(E)) which
is induced by composition in End(i?) and exterior product in Qx-

4.4.12 Let X be a compact Kahler manifold and let E be a holomorphic vector
bundle admitting a holomorphic connection D : E —> Qx ®E. Show that ck{E) = 0
for all k > 0.

Commen t s : Chern classes were first defined by Chern in [26]. A more topo-

logical approach to characteristic classes, also in the real situation, can be found in

[91]. Since Chern classes are so universal, adapted versions appear in many different

areas, e.g. algebraic geometry, Arakelov theory, etc.
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Appendix to Chapter 4

4.A Levi-Civita Connection and Holonomy on Complex
Manifolds

In this section we will compare our notion of a connection with the notion used
in Riemannian geometry. In particular, we will clarify the relation between the
Chern connection on the holomorphic tangent bundle of an hermitian manifold
and the Levi-Civita connection on the underlying Riemannian manifold. Very
roughly, we will see that these connections coincide if and only if the hermitian
manifold is Kahler.

We will end this appendix with a discussion of the holonomy group of a
Riemannian manifold and the interpretation of a Kahler structure in terms of
the holonomy group of its underlying Riemannian structure.

Let us first review some basic concepts from Riemannian geometry. For
this purpose we consider a Riemannian manifold (M,g). A connection on M
by definition is a connection on the real tangent bundle TM, i.e. an M-linear
map D : A°(TM) —> A1{TM) satisfying the Leibniz rule 4.2. For any two
vector fields u and v we denote by Duv the one-form Dv with values in TM
applied to the vector field u. Note that Duv is M-linear in v and ^4°-linear in
u. With this notation, the Leibniz rule reads Du(f -v) = f-Du(v) + (df)(u)-v.

A connection is metric if dg(u,v) = g(Du,v) + g(u,Dv). In other words,
D is metric if and only if g is parallel, i.e. D(g) = 0, where D is the induced
connection on T*M <g> T*M (cf. Exercise 4.2.8).

Before defining the torsion of a connection recall that the Lie bracket is an
M-linear skew-symmetric map [ , ] : A°(TM) x A°(TM) -> A°(TM) which
locally for u = ]T\ ai -g^- and v = j ^ k -§^r is defined by

v^ T~^ ( 9bj da,j
\U ,V = > > CL; — Oj
L ' -1 /. ^ /_ J \ l Qrp . l Qrp .

j j \ * l

bj(u) — daj(v))
/ j \—3\*~) 3\">) a

3 J

In particular, one has [/ • u, v] = f • [u, v] — df(v) • u.

Definition 4.A.I The torsion of a connection D is given by

TD(u,v) := Duv - Dvu- [u,v]

for any two vector fields u and v.

The first thing one observes is that To is skew-symmetric, i.e. To '•
/\ TM —> TM. Moreover, To is .40-linear and can therefore be considered
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as an element of A2(TM). Indeed, Tr>(f • u,v) = f • Duv — (/ • Dvu + df(v) •

u) — (/ • [u, v] — df(v) • u) = f • TD(U, V). A connection V is called torsion free

if TD = 0.

Let us try to describe the torsion in local coordinates. So we may assume
that our connection is of the form D — d + A. Here, A is a one-form with
values in End(TM). In the following we will write A(u) G .4°(End(TM))
for the endomorphism that is obtained by applying the one-form part of A

to the vector field u. If u is constant, then A(u) — Du. On the other hand,
A • u G A1 (TM) is obtained by applying the endomorphism part of A to u.

Confusion may arise whenever we use the canonical isomorphism A1 (TM) =
_4°(End(TM)).

Lemma 4.A.2 If D = d + A then TD(U, V) — A(u) • v - A(v) • u.

Proof. If u = Y^i ii -§^r and v = ]T)» bi ^ - then

y^dbi(u)- h A(u) • v) -

OXi J

—A(u) • v — A(v) • u

D

Classically, one expresses the connection matrix A in terms of the Christof-

fel symbols F^ as

Kdxi) ' dxj ^ ljdxk'

Then

TD(JL}JL)=y2 (rk - rk.) —.
^ * -1 ' k

In particular, D is torsion free if and only if Fjj — F^ for all i,j,k. The
following result is one of the fundamental statements in Riemannian geometry
and can be found in most textbooks on the subject, see e.g. [79].

Theorem 4.A.3 Let (M,g) be a Riemannian manifold. Then there exists a

unique torsion free metric connection on M; the Levi-Civita connection. •

Why the notion of a torsion free connection is geometrically important
is not evident from the definition. But in any case torsion free connections
turn out to behave nicely in many ways. E.g. the exterior differential can be
expressed in terms of torsion free connections.

Proposition 4.A.4 If D is a torsion free connection on M then the induced

connection on the space of forms satisfies

k

(da)(vi,... Vk+i) — / (—iy(DVia)(vi,..., Vi,..., ffc+i)
i=0

for any k-form a and vector fields v\1... vk+i.
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Proof. We leave the complete proof to the reader (cf. Exercise 4.A.1). One has
to use the following definition of the exterior differential (see Appendix A):

fc+i
da(yi,..., vk+i) =^2(-l)1+1Vi(a(vi,...,£>,,..

•
A form a £ Ak(M) is parallel if D(a) — 0. Thus, Proposition 4.A.4 implies

Corollary 4.A.5 Let D be a torsion free connection on M. Any D-parallel
form is closed. D

Let us now turn to hermitian manifolds. By definition, an hermitian struc-
ture on a complex manifold X is just a Riemannian metric g on the underlying
real manifold compatible with the complex structure I defining X (see Defini-
tion 3.1.1). Recall that the complexified tangent bundle TQX decomposes as
TCX = TlfiX © T0 '1^ and that the bundle T 1 ' 0^ is the complex bundle un-
derlying the holomorphic tangent bundle Tx (Proposition 2.6.4). Moreover,
the hermitian extension gc of g to TcX restricted to T l l0X is \{g — VJS),
where the complex vector bundles TX'°X and (TX,I) are identified via the
isomorphism

and LU is the fundamental form g(I( ), ( )) (cf. Section 1.2).
We will compare hermitian connections V on (T1>0X, gc) with the Levi-

Civita connection D on TX via the isomorphism £. One first observes the
following easy

Lemma 4. A.6 Under the natural isomorphism, £ any hermitian connection V
on TX'°X induces a metric connection D on the Riemannian manifold (X,g).

Proof. By assumption dgc(u, v) = <?c(Vu, v) + gc(u, Vv). Taking real parts of
both sides yields dg(u,v) = g(Du,v) + g(u,Dv), i.e. the induced connection
D is metric. •

In general, an hermitian connection V on (Tl'°X, gc) will not necessarily
induce the Levi-Civita connection on the Riemannian manifold (X, g). In fact,
this could hardly be true, as the Levi-Civita connection is unique, but there are
many hermitian connections (T1'0^,gc)- But even for the Chern connection
on the holomorphic tangent bundle (Tx,gc), which is unique, the induced
connection is not the Levi-Civita connection in general.
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In order to state the relevant result comparing these two notions, we
need to introduce the torsion Ty £ A2(X) of an hermitian connection V.
By definition, Ty of V is the torsion of the induced connection D on TX,
i.e. for u,v € TX one has Tv(u,v) = ^~l{Vui{v) - Vvt(u)) - [u,v] =
Duv — Dvu — [u,v] — TD(U,V). AS before we call the hermitian connection
torsion free if its torsion is trivial.

Proposition 4. A.7 Let V fee a torsion free hermitian connection on the her-
mitian bundle (Tll0X,gc).

i) Then V is the Chern connection on the holomorphic bundle T\ endowed
with the hermitian structure gc-

ii) The induced connection D on the underlying Riemannian manifold is
the Levi-Civita connection.

iii) The hermitian manifold (X,g) is Kahler.

Proof. If we write the connection V with respect to a local holomorphic base
Jj7 as V = d + A then we have to show that the assumption Ty = 0 implies
A € ^1'0(End(T1'0X)). By definition the latter condition is equivalent to the
vanishing of A(u + il{u)) for any u € TX or, equivalently, to A(u + il{u)) •
£(v) = 0 for all v. Using the analogue of Lemma 4.A.2 for the torsion of the
connection V, one computes

= A{u + il(u)) • £(w) - A(v) • (£(u) + il(£(u))), since £ = -i

= (A(u) • H(v) - A{v) • £(«)) + i (A(I(u)) • £(v) - A{v)

as ^ and / are C-linear. This proves i).
ii) is a consequence of what has been said before. In order to show iii), i.e.

that the fundamental form UJ is closed, one may use Corollary 4.A.5. Thus,
it suffices to show that u> is parallel. This is the following straightforward
calculation:

(Dco)(u,v) — d(uj(u,v)) — LJ(DU,V) — ui(u,Dv)

= dg(Iu, v) - g(DI(u),v) - g(I(u),D(v)) = 0,

as the connection is metric. •

Note that in the proof we have tacitly assumed that D commutes with
the complex structure /, which is obvious as the hermitian connection V on
the complex vector bundle (Tl'°X,gc) is in particular C-linear and Tl)0X =
(TX, I) is an isomorphism of complex vector bundles. However, if we try to
associate to a connection on the underlying real manifold a connection on
the holomorphic tangent bundle, then the compatibility with the complex
structure is the crucial point. If D is a connection on the tangent bundle TX.
Then DI = ID if and only if / is a parallel section of End(TX) with respect
to the induced connection on the endomorphism bundle.
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Proposition 4.A.8 Let D be the Levi-Civita connection on the Riemannian
manifold (X, g) and assume that the complex structure I is parallel.

i) Under the isomorphism £ : TX = T l l0X the connection D induces the
Chern connection V on the holomorphic tangent bundle Tl'°X.

ii) The manifold is Kdhler and, moreover, the Kahler form u> is parallel.

Proof. Since / is parallel, we do obtain a connection V on the complex vec-
tor bundle T1>0X. This connection is hermitian if and only if dgc(u,v) =
gc(Vu,v) + gc(u, Vv). Since the Levi-Civita connection is metric, the real
parts of both sides are equal. The imaginary parts are (up to a factor)
du>(u,v) = dg(I(u),v) respectively g(I(Du),v) + g(I(u), Dv). Using DI = ID
and again that V is metric, one sees that they also coincide.

The Levi-Civita connection is by definition torsion free and using Propo-
sition 4.A.7 this proves i) and the first assertion of ii). That D{u>) = 0 follows
from D(I) = 0 and D(g) = 0 as in the proof of Proposition 4.A.7. •

As a partial converse of Proposition 4. A.7, one proves.

Proposition 4. A.9 Let (X, g) be a Kdhler manifold. Then under the isomor-
phism £ : TX = Tl>0X the Chern connection V on the holomorphic tangent
bundle l~x = Tlj0X corresponds to the Levi-Civita connection D.

Proof. We have to show that under the assumption that (X, g) is Kahler the
Chern connection is torsion free. This is done in local coordinates. Locally we
write u> = \ ^hijdzi A dzj and A = {hji)~l{dhji) for the connection form.
The fundamental form is closed if and only if -gf- = -g^-- The latter canThe fundamental form i closed if nd only if gf g^ l
then be used to prove the required symmetry of the torsion form. We leave
the details to the reader (cf. Exercise 4.A.2) D

From this slightly lengthy discussion the reader should only keep in mind
that the following four conditions are equivalent:

i) The complex structure is parallel with respect to the Levi-Civita con-
nection.

ii) (X,g) is Kahler.
iii) Levi-Civita connection D and Chern connection V are identified by £.
iv) The Chern connection is torsion free.

For this reason we will in the following not distinguish anymore between
the Levi-Civita connection D and the Chern connection V provided the mani-
fold is Kahler.

Let us now turn to the curvature tensor of a Riemannian manifold (M, g).
Classically it is denned as

R(u,v) := DUDV - DVDU - D[lltVu
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where D is the Levi-Civita connection. How does this definition compare with
the one given in Section 4.3? Not surprisingly they coincide. This is shown by
the following direct calculation. We assume for simplicity that Ds = a <g> t:

R(u,v)(s) = DuDvs - DvDus - D[UtVjs

= Du(a(v)t) - Dv(a(u)t) - a([u,v])t

= u(a(v))t + a(v)Dut - v(a(u))t - a(u)Dvt - a([u,v})t

= (da)(u, v)-t + a(v)Dut - a(u)Dvt = ((da) -t + a- D(t)) (u, v)

= D(a ® t)(u, v) = F(u, v)(s),

where we have used a special case of the formula that describes the exterior
differential in terms of the Lie bracket (cf. Exercise 4.A.1).

In Riemannian geometry one also considers the Ricci tensor

r(u, v) := tv(w t—> R(w, u)v) = tr( w I »- R(w, v, u) )

(see [79]). Combined with the complex structure one has

Definition 4. A. 10 The Ricci curvature Rlc(X, g) of a Kahler manifold (X, g)

is the real two-form
Ric(u, v) := r(I(u),v).

The Kahler metric is called Ricci-flat if Ric(X, g) = 0.

The Ricci curvature can be computed by means of the curvature Fy of
the Levi-Civita (or, equivalently, the Chern) connection and the Kahler form
u>. This goes as follows.

The contraction of the curvature F v G ̂ ^ ( E n d ^ 1 ' 0 ^ ) ) with the Kahler
form u> yields an element A^F £ A°(X,End(T1'°X)) or, equivalently, an en-
domorphism T1}0X —> T1>0X. Its composition with the isomorphism TX'OX —>
/\ ' X induced by the Kahler form will be denoted

One easily verifies that Q(AUF) G A1'1(X).

Proposition 4.A.11 Let (X,g) be a Kahler manifold and V the Levi-Civita

or, equivalently, the Chern connection. Then the following two identities hold

true:

ii) Ric(X, g) = i • trc(-Fv), where the trace is taken in the endomorphism

part of the curvature.
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Proof. We shall use the following well-known identities from Riemannian ge-
ometry (see [12, page 42]):

g(R(u,v)x,y) = g(R(x,y)u,v) (4.6)

R(u, v)w + R(v, w)u + R(w, u)v = 0 (4.7)

g(R(u, v)w, x) + g(w, R(u, v)x) = 0 (4.8)

The third one is clearly due to the fact that the Levi-Civita connection is
metric. Equation (4.7), which is the algebraic Bianchi identity, and equation
(4.6) are more mysterious.

The proof consists of computing all three expressions explicitly in terms
of an orthonormal basis of the form x\,..., xn, y± = I(xi),..., yn = I(xn):

Ric(u, v) = tr (w i—> R(w, v)I(u))

= Y, g(R(xi,v)I{u), Xi) + g(R(yu v)I(u), Vi)

( 4 }
, R{xu v)Xi) + g(I(u), R(yu v)Vi)

= y^ g{u, R(XJ, v)yj) - g{u, Rjig, V)XJ)

(4.7)
=

where we use twice the compatibility of g and I and the fact that R(u, v) is
skew-symmetric.

Furthermore, using the notation and convention of Section 1.2 one calcu-
lates:

trc(i7v)(u ; v) — trc {w *-> Fy(u,v)w) with w & T1'0

= trc (w !—> R(u, v)w) with w &T

= \](R(u,v)xi,Xi) since X\,...,xn is an orthonormal basis

of the hermitian vector space (T, ( , ))

= 2_]g(R(u, v)xi,Xi) — i • u>(R(u, v)xi,Xi)

as ( , )=g-i-u>

= ] P g(R(u, v)xi, xt)+i- g(R(u, v)xu y,)

Y 9iRiX X)u, v) + i- g (R(xi, yt)u, v)

Both computations together show ii).
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In order to see i), let us write u = ^ f A i / ' . Then a straightforward
computation shows A^a = ^a(xj,2/j) and

= 2g (/ (J2 R(xt, yi)I(uj) , v) = -2^2g(R(Xi, yi)u, v).

D

In the following, we will sketch the relation between the holonomy of a
Riemannian manifold and its complex geometry.

To any Riemannian metric g on a manifold M of dimension m there is
associated, in a unique way, the Levi-Civita connection D. By means of D
one can define the parallel transport of tangent vectors along a path in M.
This goes as follows.

Let 7 : [0,1] —> M be a path connecting two points x := 7(0) and y :=
7(1). The pull-back connection 7*D on j*(TM) is necessarily flat over the
one-dimensional base [0,1] and 7*(TM) can therefore be trivialized by flat
sections. In this way, one obtains an isomorphism, the parallel transport along
the path 7:

P1 :TXM *TXM .

In other words, for any v G TXM there exists a unique vector field v(t) with
v(t) G Tl(t)M, v(0) = v, and such that v(t) is a flat section of 7*(TM). Then

The first observation concerns the compatibility of P1 with the scalar
products on TXM and TyM given by the chosen Riemannian metric g.

Lemma 4.A.12 P1 is an isometry. O

In particular, if 7 is a closed path, i.e. 7(0) = 7(1) = x, then P1 £
0(TxM,gx)^0(m).

Definition 4. A.13 For any point x £ M oia, Riemannian manifold (M, g) the
holonomy group flo\x(M,g) C O(TXM) is the group of all parallel transports
P7 along closed paths 7 : [0,1] —*• M with 7(0) = 7(1) = x.

If two points x,y £ M can be connected at all, e.g. if M is connected,
then the holonomy groups Holx(M, g) and Holv(M, g) are conjugate and thus
isomorphic. More precisely, if 7 : [0,1] —> M is a path connecting x with y
then Holy (M, g) = P1 o Hol^M, <?) o P" 1 .

Hence, if M is connected then one can define the group Hol(M, g) as a
subgroup of O(ra) up to conjugation.
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There is a further technical issue if M is not simply connected. Then
there is a difference between Hol(M, g) and the restricted holonomy group
Hol°(M, g) C Hol(M, g) of all parallel transports P7 along contractible paths
7 (i.e. 1 = [7] £ 7Ti(M)). For simplicity, we will assume throughout that M is
simply connected.

One fundamental problem in Riemannian geometry is the classification of
holonomy groups. What groups Hol(M, g) C 0(m) can arise?

Firstly, the holonomy of a product (M,g) = (Mi,gi) x (M2,<72) is the
product Hol(M,g) - Hol(Mi,#i) x Hol(M2,#2) C O(mi) X O(m2) C O(mi +
m2).

Thus, in order to be able to classify all possible holonomy groups we shall
assume that (M, g) is irreducible, i.e. cannot be written (locally) as a product.

This is indeed reflected by an algebraic property of the holonomy group:

Proposition 4.A.14 If (M,g) is irreducible Riemannian manifold, then the
inclusion Hol(Af, g) C O(m) defines an irreducible representation on Mm. •

This proposition is completed by the following theorem ensuring the exis-
tence of a decomposition into irreducible factors.

Theorem 4.A.15 (de Rham) If (M,g) is a simply connected complete (e.g.
compact) Riemannian manifold then there exists a decomposition (M, g) =
(Mi,gi) x ... x (Mfe, gk) with irreducible factors (Mi,gi). •

Secondly, many groups can occur as holonomy groups of symmetric spaces,
a special type of homogeneous spaces. For the precise definition and their
classification see [12]. If symmetric spaces are excluded then, surprisingly, a
finite list of remaining holonomy groups can be given.

Theorem 4.A.16 (Berger) Let (M,g) be a simply connected, irreducible
Riemannian manifold of dimension m and let us assume that (M,g) is ir-
reducible and not locally symmetric. Then the holonomy group Hol(Af, g) is
isomorphic to one of the following list:

i) SO(TO).

ii) U(n) with m = 2n.
iii) SU(ra) with m = 2n, n > 3
iv) Sp(n) with m = 4n.
v) Sp(n)Sp(l) with m = An, n > 2.
vi) G2, with m = 7.
vii) Spin(7), with m = 8. •

We don't go into any detail here, in particular we don't define G2 or explain
the representation of Spin(7). Very roughly, SO(777,) is the case of a general
Riemannian metric and vi) and vii) are very special. In fact compact examples
for vi) have been found only recently.

The irreducible holonomy groups that are relevant in complex geometry
are ii), iii), iv) and, a little less, v).
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In the following we shall discuss the case Hol(M, g) = U(n) and its sub-
group Hol(M, g) = SU(n). We will see that this leads to Kahler respectively
Ricci-flat Kahler manifolds. The case Hol(M, g) = Sp(n), not discussed here,
is related to so-called hyperkahler or, equivalently, holomorphic symplectic
manifolds.

How is the holonomy Hol(ikf, g) of a Riemannian manifold related to the
geometry of M at all?

This is explained by the holonomy principle :
Choose a point x G M and identify Hol(M,g) = Eolx(M,g) C O(TXM).

This representation of Hol(M, g) induces representations on all tensors asso-
ciated with the vector space TXM, e.g. on End(TxM). Suppose ax is a tensor
invariant under Hol(M, g). We will in particular be interested in the case of
an almost complex structure ax = Ix £ End(TxM).

One way to obtain such an invariant tensor ax is by starting out with a
parallel tensor field a on M. (Recall that the Levi-Civita connection induces
connections on all tensor bundles, e.g. on End(TM), so that we can speak
about parallel tensor fields.) Clearly, any parallel tensor field a yields a ten-
sor ax which is invariant under the holonomy group. As an example take a
Kahler manifold (M,g,I). Then / is a parallel section of End(TM) and the
induced Ix £ End(TxM) is thus invariant under the holonomy group. Hence,
Hol(M, g) C O(2n) n Gl(n, C) = U(n).

We are more interested in the other direction which works equally well:

Holonomy principle. If ax is an Hol(M, ̂ -invariant tensor on TXM then
ax can be extended to a parallel tensor field a over M.

Let us consider the case of an almost complex structure Ix £ End(T;E.M)
invariant under Hol(M, g). Then there exists a parallel section / of End(TM).
Since id £ End(TM) is parallel and 1% = —id, we have I2 — —id everywhere,
i.e. / is an almost complex structure on M.

Moreover, since g and / are both parallel, also the Kahler form g(I{ ), )
is parallel and, in particular, closed. There is an additional argument that
shows that I is in fact integrable. (One uses the fact that the Nijenhuis tensor,
which we have not denned but which determines whether an almost complex
structure is integrable, is a component of V(/) in case the connection is torsion
free. But in our case, / is parallel. See [61].) Thus, we obtain an honest Kahler
manifold (M,g,I).

This yields the following proposition. The uniqueness statement is left to
the reader.

Proposition 4.A.17 J/Hol(M, g) C U(n) with m = 2n, then there exists a
complex structure I on M with respect to which g is Kahler. If Hol(M, g) =
U(n), then I is unique.

In the next proposition we relate SU(n)-holonomy to Ricci-flat Kahler
metrics, which will be explained in the next section in more detail. So the
reader might prefer to skip the following proposition at first reading.
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Proposition 4.A.18 //Hol(M, g) C SU(rc) with m = 2n, then there exists
a complex structure I on M with respect to which g is a Ricci-flat Kahler
metric. IfHo\(M,g) = SU(ra) with n > 3 then I is unique.

Proof. The existence of the Kahler metric and its uniqueness are proved as
in the previous proposition. The assumption that the holonomy group is con-
tained in SU(ra) says that any chosen trivialization of f\x M = de^T^M*) is
left invariant by parallel transport. Hence, there exists a parallel section Q of
detc(A AO = det(J?x) = Kx (where X = (M,/)). A parallel section of Kx

is holomorphic and, if not trivial, without zeros, as the zero section itself is
parallel. Thus, Kx is trivialized by a holomorphic volume form fl.

Moreover, as J? and uin are both parallel, they differ by a constant. Using
Corollary 4.B.23 this shows that the Kahler metric g is Ricci-flat. •

Exercises

4.A.I Complete the proof of Proposition 4.A.4, i.e. prove that for a torsion free
connection on a differentiable manifold M one has for any fc-form a

k

(da)(vi,..., vk+1) = ^ ( - l ) l ( j D ^ a ) ( i ; o , ...,Vi,..., vk+i).

4.A.2 Complete the proof of Proposition 4.A.9.

4.A.3 Let (X, g) be a compact Kahler manifold. Show that i • Ric(X, g) is the
curvature of the Chern connection on Kx with respect to the induced hermitian
metric.

Comments: - For a thorough discussion of most of this section we refer to
[12]. A short introduction to holonomy with special emphasize on the relations to
algebraic geometry can be found in [9].

- We have not explained the relation between the curvature and the holonomy
group. Roughly, the curvature tensor determines the Lie algebra of Hoi. See [12] for
more details.

- A detailed account of the more recent results on the holonomy of (compact)
manifolds can be found in [61] or [72]. Joyce was also the first one to construct
compact G2 manifolds.
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4.B Hermite—Einstein and Kahler—Einstein Metrics

Interesting metrics on compact manifolds are not easy to construct. This
appendix discusses two types of metrics which are of importance in Kahler
geometry.

If (X, g) is an hermitian manifold, w := g(I( ), ( )) is its fundamental
form. By definition (X, g) is Kahler if and only if to is closed, i.e. dio = 0.
The hermitian structure on X can be viewed as an hermitian structure on
its holomorphic tangent bundle. So we might look more generally for inter-
esting metrics on an arbitrary holomorphic vector bundle E on X. We will
discuss special hermitian metrics on E, so called Hermite-Einstein metrics,
by comparing the curvature Fy of the Chern connection V on E with the
fundamental form u>. In the special case that E is the holomorphic tangent
bundle Tx and the hermitian structure h is induced by g this will lead to the
concept of Kahler-Einstein metrics on complex manifolds.

In some of our examples, e.g. the Fubini-Study metric on P n , we have
already encountered this special type of Kahler metrics. However, on other
interesting manifolds, like K3 surfaces, concrete examples of Kahler metrics
have not been discussed. Of course, if a manifold is projective one can always
consider the restriction of the Fubini-Study metric, but this usually does not
lead to geometrically interesting structures (at least not directly).

For the time being, we let E be an arbitrary holomorphic vector bun-
dle with an arbitrary hermitian metric h. Recall that the curvature Fy of
the Chern connection on (E,h) is of type (1,1), i.e. Fv e A1'1(X,End(E)).

The fundamental form u> induces an element of the same type w • id^; €

A1'1 {X, End(E)). These two are related to each other by the Hermite-Einstein
condition:

Definition 4.B.I An hermitian structure h on a holomorphic vector bundle
E is called Hermite-Einstein if

i • A^Fy = A • ids

for some constant scalar A G K. Here, Au is the contraction by w.

In this case, we will also say that the connection V is Hermite-Einstein
or even that the holomorphic bundle E is Hermite-Einstein. Note that the
Hermite-Einstein condition strongly depends on the hermitian structure on
the manifold X. It may happen that a vector bundle E admits an Hermite-
Einstein structure with respect to one hermitian structure j o n l , but not
with respect to another g'.

Example 4-B.2 The easiest example of an Hermite-Einstein bundle is provided
by flat bundles. In this case the curvature Fy is trivial and the Hermite-
Einstein condition is, therefore, automatically satisfied with A = 0.
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Let us discuss a few equivalent formulations of the Hermite-Einstein con-
dition. Firstly, one can always write the curvature of the Chern connection V
on any bundle E as

where Fv is the trace free part of the curvature. Let us now assume that g
is a Kahler metric, i.e. that u> is closed (and thus, automatically, harmonic).
Then the connection is Hermite-Einstein if and only if tr(-Fv) is an harmonic
(1, l)-form and Fy is (locally) a matrix of primitive (1, l)-forms. Indeed, if V
is Hermite-Einstein, then i • tr(-FV) = (rk(-E) • A) • u> + a with a a primitive
(1, l)-form. Since the trace is closed (Bianchi identity), the form a is closed
and hence harmonic (see Exercise 3.1.12). The other assertion and the converse
are proved analogously.

Secondly, the Hermite-Einstein condition for the curvature of a Chern
connection is equivalent to writing

where Fv is locally a matrix of w-primitive (1, l)-forms. Here, n = di
The factor (1/n) is explained by the commutator relation [L,A] = H, which
yields AL(1) = n (cf. Proposition 1.2.26).

Using standard results from Section 1.2 one easily finds that h is Hermite-
Einstein if and only if

i-fvAw""1 = (\/n)-LUn-idE.

In particular,
r k ( E ) ' A u ; " . (4.9)

n
If X is compact and Kahler, (4.9) can be used to show that A depends

only on the first Chern class of E and its rank. Indeed, integrating (4.9) yields

A- / H n

Jx

Hence, A = (2TT) • n • (fx[u]n) n{E), where the slope n{E) of E is defined
as follows:

Definition 4.B.3 The slope of a vector bundle E with respect to the Kahler
form u> is defined by

ME) :=
rk(£)

In general, Hermite-Einstein metrics are not easy to describe, but they
exist quite frequently and those holomorphic bundles that admit Hermite-
Einstein metrics can be described algebraically (see Theorem 4.B.9).
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Lemma 4.B.4 Any holomorphic line bundle L on a compact Kdhler manifold
X admits an Hermite-Einstein structure.

Proof. The curvature i • Fy of the Chern connection on the holomorphic line
bundle L endowed with an hermitian structure h is a real (1, l)-form. Hence,
i • AUF\7 is a real function ip, which can be written as A — d*df for some
function / and some constant A. Since d*df = (l/2)d*df, we can assume that
the function / is real.

Then define a new hermitian structure h! on L by h! = e? -h. The curvature
of the induced connection V is F y = Fy + ddf (see hi), Examples 4.3.9).
Using the Kahler identity [A,d] = —id* on *4°(X) one computes A^ddf =
-id*df. Hence, i • A^-Fv) = {<p + d*df) = A. •

Remark 4-B.5 Clearly, the first Chern class c\(L) € H2(X,M.) can uniquely
be represented by an harmonic form. The lemma shows that one actually
finds an hermitian structure on L such that the first Chern form Ci(L, V) of
the associated Chern connection V is this harmonic representative. The same
argument can be used to solve Exercise 4.4.10.

From here one can go on and construct many more vector bundles ad-
mitting Hermite-Einstein structures. E.g. the tensor product E\ ® E2 of two
Hermite-Einstein bundles is again Hermite-Einstein, as well as the dual bun-
dle E*. However, the direct sum E\®E2 admits an Hermite-Einstein structure
if and only if li(E{) = /x(i?2) (cf. Exercise 4.B.2). Indeed, it is not hard to
see that the direct sum of the two Hermite-Einstein connections is Hermite-
Einstein under this condition. The other implication is slightly more compli-
cated.

Vector bundles admitting Hermite-Einstein metrics satisfy surprising topo-
logical restrictions.

Proposition 4.B.6 Let E be a holomorphic vector bundle of rank r on a
compact hermitian manifold (X, g). If E admits an Hermite-Einstein struc-
ture then

[ (2rc2(E) - (r - l)c\(E)) A u""2 > 0.
Jx

Proof. The bundle G := End(F) with the naturally induced connection VG
is Hermite-Einstein (cf. Exercise 4.B.2) and has vanishing first Chern form
ci(G, VG) (cf. Exercise 4.4.9). In particular, AUJFyo = 0.

For such a bundle G we will show that cli2(G, VG)W"~2 < 0 (pointwise!).
Since ch2(End(£), V) = -(2rc2{E, V) - (r - l)c?(£, V)) (cf. Exercise 4.4.9),
this then proves the assertion.
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The rest of the proof is pure linear algebra applied to the tangent space
at an arbitrary point. By definition

1 ( ( i
ch2(G,VG) = r t r —

Z \ y -67T

where the expression on the right hand side is meant with respect to a local
orthonormal basis.

But by the Hodge-Riemann bilinear relation 1.2.36 any matrix of primitive
(1, l)-forms A = (ay) satisfies tr(^4J4

t) A u)n~2 = ^(aySy) A u)n~2 < 0. •

Remarks 4-B.7i) In this context the inequality is due to Liibke [87]. It is
often called the Bogomolov-Liibke inequality, as its algebraic version was
first observed by Bogomolov [14].

ii) Also note that the above Chern class combination is the only natur-
al one (up to scaling) among those that involve only the first two Chern
classes, as it is the only one that remains unchanged when passing from E to
a line bundle twist E®L, which also carries a Hermite-Einstein structure (cf.
Exercise 4.B.2).

iii) In the proof we have actually shown the pointwise inequality. Thus, in
this sense the assertion holds true also for non-compact manifolds X. More-
over, from the proof one immediately deduces that equality (global or point-
wise) implies that the endomorphism bundle has vanishing curvature.

iv) Furthermore, we only used the weak Hermite-Einstein condition where
the scalar A is replaced by a function. Due to the Exercise 4.B.3 this does not
really generalize the statement as formulated above.

When does a holomorphic bundle that satisfies the above inequality really
admit a Hermite-Einstein metric? This is a difficult question, but a complete
answer is known due to the spectacular results of Donaldson, Uhlenbeck, and
Yau. It turns out that the question whether E admits an Hermite-Einstein
metric can be answered by studying the algebraic geometry of E. In particular,
one has to introduce the concept of stability.

Definition 4.B.8 A holomorphic vector bundle Eonacompact Kahler mani-
fold X is stable if and only if

<

for any proper non-trivial O^-subsheaf F C E.

A few comments are needed here. First of all, the notion depends on the
chosen Kahler structure of X or, more precisely, on the Kahler class [u].
Secondly, the slope was defined only for vector bundles F and not for arbitrary
Ox-sheaves F C E, but it is not difficult to find the correct definition in this
more general context. E.g. one could first define the determinant of F and then
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define the first Chern class of F as the first Chern class of its determinant.
Another possibility would be to use the Atiyah class to define Chern classes
of coherent sheaves in general (cf. Remark 5.1.5).

Unfortunately, already from dimension three on one really needs to check
arbitrary subsheaves of E and not just locally free subsheaves (let alone sub-
vector bundles, i.e. locally free subsheaves with locally free quotient). There is
however one condition that is slightly stronger than stability and which uses
only vector bundles. A holomorphic bundle E is stable if for any 0 < s < xk(E)
and any line bundle L C f\s E one has n{L) < s • n(E).

Also note that other stability concepts for holomorphic vector bundles
exist. The one we use is usually called slope-stability or Mumford-Takemoto
stability .

One can also define polystability for holomorphic vector bundles (not to be
confused with semi-stability, which we shall not define). A holomorphic vector
bundle E is polystable if E = 0 Ei with Ei stable vector bundles all of the
same slope /-i(E) = fi(Ei). The following beautiful result shows that algebraic
geometry of a vector bundle determines whether an Hermite-Einstein metric
exists. The proof is a pure existence result and it allows to deduce the existence
of Hermite-Einstein metrics without ever actually constructing any Hermite-
Einstein metric explicitly.

Theorem 4.B.9 (Donaldson, Uhlenbeck, Yau) A holomorphic vector
bundle E on a compact Kahler manifold X admits an Hermite-Einstein met-
ric if and only if E is polystable. •

Remark 4-B.10 One direction of the theorem is not very hard, any holomor-
phic bundle endowed with an Hermite-Einstein metric is polystable. Donald-
son in [36] proved the converse for algebraic surfaces. This was a generaliza-
tion of an old result of Narasimhan and Seshadri [94] for vector bundles on
curves. On curves, Hermite-Einstein metrics are intimately related to unitary
representation of the fundamental group of the curve. Uhlenbeck and Yau
[112] generalized Donaldson's result to arbitrary compact Kahler manifolds
and Buchdahl managed to adjust the proof to the case of compact hermi-
tian manifolds. This kind of result is nowadays known as Kobayashi-Hitchin
correspondence (cf.

Next, we shall study the case that E is the holomorphic tangent bundle
Tx • This leads to a much more restrictive notion. Any hermitian structure g
on the complex manifold X induces an hermitian structure on the holomor-
phic tangent bundle Tx • So, it would not be very natural to look for another
unrelated hermitian structure on Tx- Recall that the Hermite-Einstein con-
dition intertwines the hermitian structure on X with the hermitian structure
on the vector bundle in question.

Definition 4.B.11 An hermitian manifold (X,g) is called Kahler-Einstein if
(X, g) is Kahler and the naturally induced hermitian structure on the holo-
morphic tangent bundle is Hermite-Einstein. In this case the metric g is called
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Kahler-Einstein. If a Kahler-Einstein metric g on X exists, the complex man-
ifold X is also called a Kahler-Einstein manifold.

Explicitly, this means that the curvature of the Levi-Civita connection
satisfies

i • A^Fy = A • idT x (4.10)

for some constant scalar factor A.
One may try to avoid the condition that the manifold is Kahler, but as we

explained in Section 4.A the Chern connection on the holomorphic tangent
bundle coincides with the Levi-Civita connection if and only if the manifold
(X, g) is Kahler. If not, the Hermite-Einstein condition would not seem very
natural for the Riemannian metric g.

Note that the holomorphic tangent bundle on an hermitian (or Kahler)
manifold (X, g) might very well admit a Hermite-Einstein metric without X

being Kahler-Einstein.
Usually the Kahler-Einstein condition is introduced via the Ricci curva-

ture (cf. Definition 4.A.10). Let us begin with the Riemannian version.

Definition 4.B.12 A Riemannian metric j o n a differentiate manifold M is
Einstein if its Ricci tensor r(M, g) satisfies

r ( M , g ) = X - g

for some constant scalar factor A.

If g is a Kahler metric on the complex manifold X = (M,/), then the
Ricci curvature Ric(X, g) is denned by Ric(-u,t>) = r(I(u),v) (see Definition
4.A.10). This is in complete analogy to the definition of the Kahler form ui

as u)(u,v) = g(I(u),v). Thus, a metric g on a complex manifold X = (M,g)

is an Einstein metric on M if and only if Ric(X, g) = A • u> for some constant
scalar A.

Recall that Proposition 4.A.11 shows i • u>(Au,F\/) = Ric(X, g). This leads
to:

Corollary 4.B.13 Let g be a Kahler metric on the complex manifold X =

(M, / ) . Then g is an Einstein metric on M if and only if g is a Kahler-

Einstein metric on X.

Proof. Indeed, if g is a Kahler-Einstein metric, then for the curvature F of
the Levi-Civita connection one has i • A^F = A • id and hence Ric(X, g) =

i • ^ ( A ^ F ) = A • w . T h u s , r { M , g) = X - g .

For the converse, go the argument backwards. •
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Applying the argument explained before for Hermite-Einstein metrics (see
page 218) and using ci(X) = (i/2w)[tr(F)], one finds that the scalar factor A
in the Kahler-Einstein condition (4.10) can be computed as

_ i-Jti{F
A — ;;

/
;; — T: .

/ U)n JiUn

In other words, ci(X) G H2(X,M) and [w] £ H2(X,R) satisfy the linear
equation (ci(X) — (A/27r)[o;])[a;]n^1 = 0. In fact, one can prove more. Namely,
if g is a Kahler-Einstein metric on X, then for its associated Kahler form u>
one has

ciW = ^ • H

with A the scalar factor occurring in the Kahler-Einstein condition (4.10).
Indeed, c^X) = a(Tx) = {(i/2n)tr(Fv)} and by Proposition 4.A. 11 and the
Kahler-Einstein condition one has (i/2?r)tr(Fv) = (l/2?r)Ric = (A/2TT)W.

Also note that in the decomposition F\? = (A/n) • to • id + F' the primitive
part F' is traceless.

Corollary 4.B.14 // {X,g) is a Kahler-Einstein manifold, then one of the
three conditions holds true:

i)Cl(X)=0,
ii) Ci(X) is a Kahler class,
iii) —ci(X) is a Kahler class. •

In other words, the first Chern class of the canonical bundle Kx of a
compact Kahler-Einstein manifold is either trivial, negative, or positive.

If c\(X) = 0, e.g. if the canonical bundle Kx is trivial, and g is a Kahler-
Einstein metric then Ric(X, g) = 0. Indeed, in this case the scalar factor A is
necessarily trivial and hence Ric(X, g) = A • w = 0, i.e. the Kahler metric g is
Ricci-flat.

Remark 4-B.15 Let us emphasize that there are two types of symmetries sat-
isfied by the curvature of the Levi-Civita connection of a Kahler manifold,
both stated in Proposition 4.A.11.

The first one allows to show that the primitive part of the curvature
is traceless and hence c\(X,g) = (i/2ir)ti(F) = (X/2TT)UJ if g is a Kahler-
Einstein metric. (Recall that c\(X,g) = (l/2?r)Ric(X,g) holds for any Kahler
metric g.)

The second relation, which is ii) in Proposition 4.A.11, was used to prove
the equivalence of the Einstein condition for the Kahler metric g and the
Hermite-Einstein condition for the induced hermitian structure on Tx (Corol-
lary 4.B.13).

Examples 4-B.I6 In the following we will give one example of a Kahler-
Einstein manifold in each of the three classes in Corollary 4.B.14.
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i) Projective space. It turns out that the Fubini-Study metric, the only
Kahler metric on Pn that has been introduced, is indeed Kahler-Einstein.
By Exercise 4.4.7 we know that ci(O(l)) = [uFS] e H2(Pn,R). Thus, if the
Fubini-Study metric gps is indeed Kahler-Einstein then the scalar factor can
be computed by ci (Pn) = (rc + 1) • ci (0(1)) = A • [wFS], i.e. A = n + 1.

In order to see that gps is Kahler-Einstein, recall that the induced her-
mitian structure on det(7i»n) = 0(n + 1) is /i®"+1, where h is the standard
hermitian structure on 0(1) determined by the choice of the basis zo,..., zn €
H°(Pn, 0(1)) (see Example 4.1.5). For the latter we have computed in Exam-
ple 4.3.12 that the Chern connection V satisfies Ci(0(l),V) = wps- Hence,

C1(P",5FS) = (i/27r)tr(JVPa) = (»/27r)(n + l)wFS.
Clearly, any other Fubini-Study metric obtained by applying a linear co-

ordinate change is Kahler-Einstein as well.
ii) Complex tori. The holomorphic tangent bundle of a complex torus

X = Cn/F is trivial. The Chern connection for any constant Kahler structure
on X is flat. Thus, the Kahler-Einstein condition is satisfied with the choice
of the scalar A = 0.

Complex tori are trivial examples of Ricci-flat manifolds. Any other ex-
ample is much harder to come by.

iii) Ball quotients. The standard Kahler structure LO = (i/2)dd(l- \\z\\2)
on the unit disc Dn C Cn is Kahler-Einstein with A < 0. For simplicity we
consider only the one-dimensional case. Then u> = (i/2)(l — \z\2)~2dzAdz and,
hence, the hermitian metric is h = (1 + |z|2)~2. The curvature of its Chern
connection is thus given by F = —d(h~1dh) = ( ^ T l p ^ A dz. Therefore,
i • F = —4 • u).

This way, one obtains negative Kahler-Einstein structures on all ball quo-
tients.

As the holomorphic tangent bundle of a Kahler-Einstein manifold is
in particular Hermite-Einstein, any Kahler-Einstein manifold satisfies the
Bogomolov-Liibke inequality 4.B.6. In fact, a stronger inequality can be
proved by using the additional symmetries of the curvature of a Kahler mani-
fold. As for the Bogomolov-Liibke inequality, there are algebraic and analytic
proofs of this inequality. The first proof, using the Kahler-Einstein condition
was given by Chen and Oguie [24]. An algebraic version of it was proved by
Miyaoka. The inequality is usually called the Miyaoka-Yau inequality.

Proposition 4.B.17 Let X be a Kahler-Einstein manifold of dimension n
and let u> be a Kahler-Einstein form. Then

f
Jx

(4.11)

Remark 4-B.I8 It might be instructive to consider the Miyaoka-Yau inequality
in the case of a compact surface. Here it says 3c2(X) > cf(X). Since c2 (X) > 0
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for a Kahler-Einstein surface, this inequality is stronger than the Bogomolov-
Liibke inequality. It is noteworthy that for the projective plane and a complex
torus the inequality becomes an equality.

In fact, one can prove that equality in (4.11) for a Kahler-Enstein mani-
fold X implies that the universal cover of X is isomorphic to Pn , Cn, or a
ball. For a proof of this result see e.g. Tian's lecture notes [106].

In many examples it can easily be checked whether the canonical bundle
is negative, trivial, or positive and whether the Miyaoka-Yau inequality is
satisfied. In fact, often this can be done without even constructing any Kahler
metric on X just by using an embedding of X in a projective space and
pulling-back the Fubini-Study metric on O(l). But even when this necessary
condition holds, we still don't know whether X admits a Kahler-Einstein
structure and if how many.

The key result that is behind many others in this area is the following
fundamental theorem of Calabi and Yau. Perhaps, it is worth emphasizing
that this result works for arbitrary compact Kahler manifolds without any
condition on the canonical bundle. It will also lead to the fundamental result
that any form representing ci(X) is the Ricci curvature of a unique Kahler
metric with given Kahler class (cf. Proposition 4.B.21).

Theorem 4.B.19 (Calabi-Yau) Let (X,g0) be a compact Kahler manifold
of dimension n and let u>o be its Kahler form. For any real differentiable
function f on X with

/ /
Jx Jx

there exists a unique Kahler metric g with associated Kahler form to such that

[to] = [u0] and u>n = e? • U>Q .

Proof. The proof of the existence is beyond the scope of these notes (see [61]),
but for the uniqueness an easy argument, due to Calabi, goes as follows:

Suppose wi and o>2 are two Kahler forms with w" = LO^. If they are co-
homologous, there exists a real function / on M with 0J2 = wi + iddf (see
Exercise 3.2.16). Hence, 0 = wj - wf = 7 A (w2 - w^ = 7 A (iddf) with
7 = ^2 " 1 + 0J2 "2 A wj + .. . + w2 A w""2 + w""1.

The form 7 is a positive linear combination of positive forms co^ A w"~1-fc

and, hence, itself positive. The equation 0 = 7 A ddf together with the maxi-
mum principle imply that / is constant and hence u>\ — u>2.

For the convenience of the reader we spell out how the maximum principle
is applied here. Since M is compact, there exists a point x £ M where /
attains its maximum. For simplicity we will assume that the Hessian of / in
x is negative definite. (If not one has to perturb by a quadratic function as in
the proof of the maximum principle for harmonic functions.)
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Now, let us choose local coordinates (zi = x\ + iy±,... ,zn — xn + iyn)

around x G M such that LO\ and 102 are simultaneously diagonalized in x G
M. We may assume UJ\{X) = (i/2)^dzi A dzi = ^dxi A yi and LO2(x) =

(i/2) Y^j Kdzi A dzj = J2 Xidxi A cfj/i. Since u>2 is positive, Â  > 0. Thus, 0 =

7 A ddf i n i S M yields an equation of the form 0 = ]P /z* ( g^£ (X) + g-£ (x) J,

where the coefficients î* are positive linear combinations of terms of the form

A,j . . . Xik. But this contradicts the fact that the Hessian of / is negative

definite. •

The theorem can be rephrased as follows: If X is a compact Kahler mani-
fold with a given volume form vol which is compatible with the natural orien-
tation, then there exists a unique Kahler metric g on X with un = vol and
prescribed [w] e H2(X,R).

Yet another way to say this uses the Kahler cone Kx C Hl'x(X, M.) of all
Kahler classes (see Definition 3.2.14) and the set K,x of all Kahler forms u

with u)n = A • vol for some A 6 K>o- Then the natural map that projects a
closed form to its cohomology class induces the following diagram:

Lemma 4.B.20 Let ui and UJ' be two Kahler forms on a compact Kahler

manifold. If uin = e ' • ui'n for some real function f, then Ric(X, u>) =

Ric(X,uj')+iddf.

Proof. The two Kahler forms correspond to Kahler metrics g and g': respec-

tively, which are locally given by matrices (gij) and (g'ij) • The induced volume

forms are thus given by the functions det(gij) respectively det(g^). Hence,

det(gij) = ef •det(g'ij).

On the other hand, the two metrics induce hermitian structures h respec-
tively h' on Tx and thus on det(Tx). The curvature forms of the latter are
ddlog(det(h)) and ddlog(det(h')), respectively. Since det(h) and det(Zi') differ
again by the scalar factor e*, this yields Ric(X, u>) = Ric(X, us') + idd\og(e^),

as the Ricci curvature is the curvature of the induced connection on det(Tx)
(see Proposition 4.A.11). CD

This lemma together with the Calabi-Yau theorem 4.B.19 yields:

Proposition 4.B.21 Let X be a compact Kahler manifold and let a G Kx be

a Kahler class. Assume (3 is a closed real (1, l)-form with [0\ = c\(X). Then

there exists a unique Kahler structure g on X such that

i) Ric(X,g) = (2TT) • j3 and

ii) [w] = a for the Kahler form w of the Kahler metric g.
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Proof. Let LOQ be an arbitrary Kahler form on X. Then RAc(X,uo) represents
(2TT) • c\(X) and hence is cohomologous to (2TT) • /3. Thus, since X is Kahler,
one finds a real function / with (2?r) • (3 = Ric(X, too) + iddf.

By the Calabi-Yau theorem 4.B.19 there exists a unique Kahler metric
with associated Kahler form UJ such that \u] = a and w" = e?+c • UIQ, where
the constant c is chosen such that Jx an = ec Jx e? • U>Q.

Using Lemma 4.B.20, we find that the Ricci curvature of g is given by

Ric(X, UJ) = Ric(X, w0) + iddf = (2?r) • /?.

Using again the lemma and the uniqueness part of the Calabi-Yau theo-
rem, we find that LO is unique. •

Corollary 4.B.22 If X is a compact Kahler manifold with ci(X) = 0 then

there exists a unique Ricci-flat Kahler structure g on X with given Kahler

class [u>]. The volume form up to a scalar does not depend on the chosen

Ricci-flat metric or the Kahler class [a;].

Proof. Choosing /3 = 0 in Proposition 4.B.21 yields a unique Kahler structure
in each Kahler class with vanishing Ricci curvature. The uniqueness of the
volume is easily deduced from Lemma 4.B.20. •

Thus, any compact Kahler manifold X with ci(X) = 0 is Ricci-flat.
Clearly, any compact Kahler manifold with trivial canonical bundle Kx — Ox

has c\(X) = 0. For this type of manifold, the Ricci-flatness of a Kahler form
can be determined by the following criterion

Corollary 4.B.23 Let X be a compact Kahler manifold of dimension n with

trivial canonical bundle Kx- Fix a holomorphic volume form, i.e. a trivializing

section fi £ H°(X,Kx)- Then, a Kahler form to is Ricci-flat if and only if

for some constant AgC*.

Proof. Suppose u)n = A • (Q A Q). Since u is parallel, i.e. V(w) = 0 for the
Levi-Civita connection V (see Proposition 4.A.8), also V(o>n) = 0 and hence
V(J?A7?) = 0 .

On the other hand, the Levi-Civita connection on a Kahler manifold is
compatible with the complex structure. Since &Q = 0, this shows that V(J?) =
a ® Q with a G .4 l i 0(X). Therefore, using the bidegree decomposition the
equality 0 = V(J? A TT) = V(J?) A 77 + Q A V(77) = (a + a)(J? A 77) implies
a = 0. Thus, i? is a parallel section of Kx and, in particular, the curvature
of the Levi-Civita connection on Kx, which is the Ricci curvature, vanishes.
Thus, io is Ricci-flat.

Conversely, if a Ricci-flat Kahler form LU is given there exists a unique
Kahler form u' in the same cohomology class with u/" — A • (i? A J?) for some
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AgC*. By what has been said before, this yields that also u>' is Ricci-flat and
the uniqueness of the Ricci-flat representative of a Kahler class proves UJ — u>'.

Clearly, the constant A is actually real and positive. •

The other two cases for which Kahler-Einstein metrics could a priori exist
are much harder. If ci(JQ is negative, i.e. —ci(X) can be represented by a
Kahler form, the question is completely settled by the following theorem, due
to Aubin and Yau.

Theorem 4.B.24 (Aubin, Yau) Let X be a compact Kahler manifold such
that c\(X) is negative. Then X admits a unique Kahler-Einstein metric up
to scalar factors.

Proof. The uniqueness is again rather elementary. See [5, 12] for more com-
ments. •

Thus, Theorem 4.B.24 and Corollary 4.B.22 can be seen as the non-linear
analogue of the Donaldson-Uhlenbeck-Yau description of Hermite-Einstein
metrics, but clearly the situation here is more subtle. E.g. for ci(X) positive
the situation is, for the time being, not fully understood. One knows that
in this case a Kahler-Einstein metric need not exist. E.g. the Fubini-Study
metric on P2 is Kahler-Einstein, but the blow-up of P2 in two points for which
K\ is still ample does not admit any Kahler-Einstein metric. In order to
ensure the existence of a Kahler-Einstein metric, a certain stability condition
on X has to be added . There has been done a lot of work on this problem
recently. See the survey articles [19] or [105].

Exercises

4.B.I Verify that the only stable vector bundles on P1 are line bundles. Find a
semi-stable vector bundle of rank two on an elliptic curve. (A semi-stable bundle
satisfies only the weaker stability condition n(F) < fJ.(E) for all sub-bundles F C E.)

4.B.2 Let Ei, E2 be holomorphic vector bundles endowed with Hermite-Einstein
metrics hi and /12, respectively. Show that the naturally induced metrics on £a ® £2,
Hom(i?i,i?2), and E^ are all Hermite-Einstein. If fi(Ei) = ^(£2), then also hi ©/12
is Hermite-Einstein on Ei © Ei.

4.B.3 Let (E,h) be an hermitian holomorphic vector bundle on a compact
Kahler manifold such that i • AuF\j = A • \&E for the Chern connection V and a
function A. Show that by changing h to ê  • h for some real function / , one finds an
hermitian metric on E the Chern connection of which satisfies the Hermite-Einstein
condition with constant factor A.
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4.B.4 Let E be a holomorphic vector bundle on a compact Kahler manifold X
with a chosen Kahler structure to. Without using Theorem 4.B.9, show that if E
admits an Hermite-Einstein metric with respect to to then E admits an Hermite-
Einstein metric with respect to any other Kahler form u/ with [to] = A[u/] for any
A 6 K>o-

(This corresponds to the easy observation that stability only depends on the
Kahler class (and not on the particular Kahler form) and that scaling by a constant
does not affect the stability condition.)

4.B.5 Give an algebraic argument for the stability of the tangent bundle of Pn .

Comments: - The Hermite-Einstein condition for holomorphic vector bundles
is discussed in detail in [78].

- For the algebraic theory of stable vector bundles and their moduli see [70] and
the references therein.



Applications of Cohomology

This chapter illustrates how cohomological methods can be applied to study
the geometry of compact complex manifolds. The first section states and dis-
cusses the Hirzebruch-Riemann-Roch formula. This formula allows to com-
pute the dimension of the space of global sections of a given vector bundle in
terms of its Chern classes. In fact, the higher cohomology groups enter this
formula as correction terms. If the vanishing of the higher cohomology groups
can be ensured, e.g. by Kodaira's vanishing result which shall be explained in
Section 5.2, then the formula gives the precise answer. Section 5.3 proves a
cohomological criterion for the projectivity of a compact complex manifold. It
turns out that the projectivity of a Kahler manifold is encoded by the position
of its Kahler cone within the natural weight-two Hodge structure.

5.1 Hirzebruch—Riemann—Roch Theorem

One of the most useful formulae in global complex and algebraic geometry is
the Hirzebruch-Riemann-Roch formula. It is needed for any sort of practical
computation. In this section we state the theorem without saying anything
about its proof. A few applications and special cases are discussed in detail.
The reader is advised to work through the examples and exercises in order to
get some feeling for the power of this technique.

Historically, the Hirzebruch-Riemann-Roch formula generalizes the Rie-
mann-Roch formula

X(C, E) = deg(E) + ik(E) • (1 - g(C)) (5.1)

for a holomorphic vector bundle E on a compact curve C and an analogous
formula for line bundles on surfaces. It yields an expression for the Euler-
Poincare characteristic

dim(X)

X(X,E):= ]T (-lyh'^E)
i=0
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of a holomorphic vector bundle E on a, compact complex manifold X in terms
of the Chern classes of E and X. Combined with the various vanishing results
(5.2.2 and 5.2.7) it can often effectively be used to determine the dimension
of the space of global sections H°(X, E). This in turn is important when one
wants to study the geometry of X. E.g. h°(X, L) of an ample line bundle L de-
termines the dimension of the projective spaces in which X can be embedded
via the associated morphism tpi,.

Almost every algebraic geometer uses the Hirzebruch-Riemann-Roch for-
mula in one form or the other in daily life. A proof of this important result,
however, shall not be given here, it would lead us astray from our main objec-
tives. For algebraic proofs in the case of curves and surfaces one might consult
[66]. The general situation is much more complicated. In fact, there are various
far reaching generalizations of the Hirzebruch-Riemann-Roch formula, most
notably the Grothendieck-Riemann-Roch formula and the Atiyah-Singer in-
dex theorem, and it might be more reasonable to prove one of these instead of
just the particular case. But both theorems are far beyond any basic course
in complex geometry.

Nevertheless, we encourage the reader to apply the Hirzebruch-Riemann-
Roch formula. He will soon get used to it by observing how amazingly well
and effectively this formula works in so many different situations.

Theorem 5.1.1 (Hirzebruch—Riemann—Roch) Let E be a holomorphic
vector bundle on a compact complex manifold X. Then its Euler-Poincare
characteristic is given by

X(X,E)= f ch(E)td(X). (5.2)
Jx

a

A few comments are in order. Firstly, the class ch(E)td(X) has in general
non-trivial components in various degrees. What is meant by the integral on
the right hand side, of course, is the evaluation of the top degree component
[ch(E)td(X)]2n = Y,chi(E)tdn-i(X), where n = dimc(X).

Secondly, for any short exact sequence 0 —> E\ —+ E —> E2 —> 0 of holomor-
phic vector bundles one has x{X,E) = xi^-^i) + x(XiE2) (see Corollary
B.0.37). On the right hand side of the Hirzebruch-Riemann-Roch formula
(5.2), this corresponds to the additivity of the Chern character (see page
197).

Thirdly, the probably most striking feature of the above formula is that
the holomorphic Euler-Poincare characteristic x(^> E) turns out to be inde-
pendent of the holomorphic structure of E. Indeed, the Chern character on
the right hand side depends only on the complex vector bundle underlying
E. So, it frequently happens that for two holomorphic line bundles L\ and
Li with ci(Li) = ci(L2) one has h°(X,Li) ^ h°(X,L2), but one always has
x(X,Li) = xC-X', ^2)1 for the right hand side of the Hirzebruch-Riemann-
Roch formula for a line bundle L only depends on X and ci(L).
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It takes some time before one gets really comfortable with the beautiful
formulae provided by the Hirzebruch-Riemann-Roch theorem. Let us look at
a few special cases:

Examples 5.1.2 i) Line bundles on a curve. Let C be a connected compact
curve and let L & Pic(C). Then the Hirzebruch-Riemann-Roch formula (5.2)
reads

For the comparison of the degree and the first Chern class see Exercise 4.4.1.

The special case L = Oc yields x(C, Oc) = 2 and, therefore,
deg(Kc) = 2(^1(C, Oc) — 1). Hence, for the genus g(C) of the curve as intro-
duced in Exercise 4.1.2 one finds g(C) = (1/2) deg(Kc) + 1 = hl(C,Oc) =

h°(C,Kc), where we used Serre duality for the last equality. This yields the
Riemann-Roch formula in the form of (5.1).

ii) Line bundles on a surface. Let us first consider the case of a tri-
vial line bundle. Then the Hirzebruch-Riemann-Roch formula specializes to
Noether's formula:

X(X, Ox) = h°(Ox) - hl(Ox) + h2(Ox)

cl(X)+c2(X)

ix 12Jx

If L is any line bundle on a compact complex surface X. Then

X{X, L) = h°(X, L) - h1 {X, L) + h2 (X, L)

x

Sometimes, this is also written as

iii) Line bundles on a torus. If X = Cn/F is a complex torus, then all
characteristic classes of X itself are trivial. Thus,

Jccn/p nl

for an arbitrary line bundle L on X. Note that for an elliptic curve C/F the
formula coincides with the Riemann-Roch formula, as g(C/P) = 1 and hence
deg(Kc/r) = 0.

Let us consider a particular relevant application of the Hirzebruch-Rie-
mann-Roch formula, for which no extra vector bundle is chosen.
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The formula

defines the arithmetic genus of a compact complex manifold X of dimension
n. If X is a connected curve C, then the arithmetic genus is 1 — (h°(X, Ox) —
hl(C, Oc)) = g{C), the (geometric) genus.

We have also already considered the alternating sum *}2x(X,f2x) =
^2{—^)qhp'q(X) which computes the signature of the intersection form on
the middle cohomology of an even dimensional complex manifold (Corollary
3.3.18). Both expressions, \(X,Ox) and ^ x ( ^ ^ ) i a r e special values of
the Hirzebruch X

Definition 5.1.3 Let X be a compact complex manifold of dimension n. The
Hirzebruch Xy-9enus ls the polynomial

p=0 P,9=0

We are interested in the following special values of the Hirzebruch \y-
genus:

i) y = 0: Then Xy=o — x(^i ^ x ) is essentially, up to sign and the extra
term ±1, the arithmetic genus of X.

ii) y = 1: Suppose X is a Kahler manifold of even complex dimension.
Then xy=i = sgn(X) is the signature Use Corollary 3.3.18 and h™ = hq>p.

hi) y = — 1: Suppose is X compact and Kahler. Then

E f> = e(X)
p,q=O k=0

is the Euler number of X.
Using the yoga of Chern roots explained in Section 4.4, the Hirzebruch-

Riemann-Roch formula (5.2) allows us to calculate the Xy-genus as follows:

Corollary 5.1.4 Let 7* denote the formal Chern roots ofTx- Then

Proof. This follows immediately from the definition of the Todd classes, The-
orem 5.1.1 and the equality

\p=0 / i=l

the proof of which is left to the reader. •
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Let us apply this to the three special values of \y discussed above.
i) For y = 0 this just gives back the ordinary Hirzebruch-Riemann-Roch

formula X(X, Ox) = Jx td(X).
ii) For y = 1 it yields the so called Hirzebruch signature theorem for

compact Kahler manifolds of even complex dimension n = 2m:

( 0 nx) = f ch ( 0 nx) td(X)
J X

= x ( 0 x) f
[
Jx

where L(X) is the L-genus which in terms of the Chern roots is just

Note that this result, with a different proof though, holds for any compact
complex manifold of even dimension.

iii) For y = — 1 and X a compact Kahler manifold of dimension n we
obtain the following result (the Gauss-Bonnet formula), which also holds
more generally for any compact complex manifold:

• / , •

e(X) = / cn(X).
Jx

Indeed, the corollary yields e(x) = fxTl^ilii ^u^ clearly, Jxcn(X) =

/xlir=i7i-
Other Chern numbers, i.e. integrals of the form Jx c^ (X)... c^ (X) with

Y^ij = dim(X), of the compact complex manifold X are equally interesting.

As mentioned before, the Hirzebruch-Riemann-Roch formula (5.2) can
be considered a special case of the Grothendieck-Riemann-Roch formula or,
likewise, of the Atiyah-Singer index theorem. For sake of completeness, we
state these two results without even explaining the meaning of some of the
ingredients. I hope that the reader nevertheless gets a vague idea how they
might be related to the Hirzebruch-Riemann-Roch formula.

Grothendieck—Riemann—Roch formula. Let / : X —> Y be a smooth
projective morphism of smooth projective varieties. Then for any coherent
sheaf J- (e.g. a vector bundle) on X one has

ch QT(-l) ii27..F) td(Y) = /* (ch(^)td(X))

in the rational Chow group CH(F)Q or, likewise, in H*(
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To deduce the Hirzebruch-Riemann-Roch formula from this statement,
one considers the projection to a point / : X —-> {pt}. Then /* is nothing else
than the integral Jx and the higher direct image sheaves Rl f*J- become the
cohomology groups Hl(X,J-). Since td{pt} = 1 and the Chern character of
a vector bundle on {pt}, i.e. a vector space, is just the dimension, this yields
(5.2).

Atiyah-Singer Index Theorem. Let D : F(E) ->• F(F) be an elliptic
differential operator between vector bundles E and F on a compact oriented
differentiate manifold M. Then the analytic index index(Z?) := dim Ker(£>) —
dim Coker(D) and the topological index j(D) satisfy

mdex(D) = -y(D).

The topological index is usually expressed in characteristic classes of E
and F. In order to see that the Atiyah-Singer formula as well implies (5.2) or
the Hirzebruch signature theorem, one has to consider the appropriate elliptic
differential operator. E.g. for (5.2) one takes the Laplacian AgE.

Remark 5.1.5 It frequently happens that one wants to compute x(^^) °f
a coherent sheaf J-, which is not locally free, e.g. J- = Xz the ideal sheaf
of a submanifold Z C X. If X is projective, then there exists a locally free
resolution 0 —> En —>...—> E\ —> J- —> 0. Applying the above formula to the
sheaves Ei and using the additivity of the Euler-Poincare characteristic and
the Chern character, one immediately obtains a Hirzebruch-Riemann-Roch
formula for J-.

In fact, for the Grothendieck-Riemann-Roch formula it is not even very
natural to restrict to locally free sheaves, as already the direct image sheaves
Ktf*E of a locally free sheaf E are in general not locally free anymore.

As an example one might consider the structure sheaf Oy of a smooth
hypersurface Y C X. The structure sheaf sequence 0 —> O{—Y) —> O —>
Oy —> 0 provides a locally free resolution of Oy. The Hirzebruch-Riemann-
Roch formula (5.2) yields

X(Y,OY) = x(X,Ox) -X(X,O(-Y)) = f td(X)- / ch(O(-Y))td(X)
Jx Jx

J .A

where 1 — e~~[yl could also be considered as ch(Cy).
What happens if X is not projective? A priori, neither the algebraic ap-

proach of the Grothendieck-Riemann-Roch formula nor the analytic one of
the Atiyah-Singer index theorem, where one works with differential operators
on vector bundles, seem to work. A very different technique was invented by
O'Brian, Toledo, and Tong [96, 109] in order to prove (5.2) for arbitrary cohe-
rent sheaves on arbitrary compact complex manifolds. In fact, even for vector
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bundles they can avoid to choose hermitian structures. Moreover, they also

succeeded to prove a version of the Grothendieck-Riemann-Roch formula for

complex manifolds. Very roughly, instead of computing cohomology in terms

of harmonic forms, they use Cech-cohomology. Thus, any of the above men-

tioned results holds true for arbitrary complex manifolds and coherent sheaves.

(Warning: We have actually not even defined Chern classes of arbitrary co-

herent sheaves. This can be done by using the Atiyah class approach sketched

in Exercise 4.4.11 (see [3]).)

Exercises

5.1.1 Let X be a K3 surface (cf. Exercise 2.5.5). Show that b2(X) = 22. Prove
that the Picard number p(X) is bounded by 20.

5.1.2 Let X = Cn/T be a complex torus and L € Pic(X). Consider ci(L) e
H2(X, R) as an alternating form on H1(X, M)* and choose a basis such that it
corresponds to the matrix

'A, \

An,
' - A i

V I

Show that x(X, L) = Ai • . . . • An.
(Together with Kodaira's vanishing result for an ample line bundle L it yields

Frobenius' theorem asserting h°(X,L) = Ai • . . . • An- Here, h°(X,L) can also be
interpreted as the dimensions of the space of certain theta functions.)

5.1.3 The Hilbert polynomial of a polarized manifold (X,L), i.e. L is an ample
line bundle on X, is defined as the function

Show that P(x,L) is indeed a polynomial in m. Determine its degree and its leading
coefficient.

(Using Proposition 5.2.7 one can prove that P(X,L){™) = h°(X, L®m) for m > 0.
Notice that m i-> h°(X,L®m) is not a polynomial function, as h°(X, L®m) = 0 for
m < 0. See Exercise 5.2.11.)

5.1.4 Compute the Hilbert polynomial of a hypersurface Y C Pn of degree k.

5.1.5 Let L be a line bundle on a compact connected curve C with deg(L) >
g(C) — 1. Show that L admits non-trivial global holomorphic sections.
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5.1.6 Let L be a line bundle on a compact connected curve C with deg(L) >
2g(C) — 1. Show that L is globally generated.

5.1.7 Let £ be a line bundle on a compact surface X with fxc\(L)2 > 0.
Show that for m > 0 either L®m or L8 (~m ) admits non-trivial global holomorphic
sections.

5.1.8 Let X be a compact surface such that ci(X) € 2H2(X,Z). Use (5.2) to
show that fx ci(L)2 is even for any line bundle L on X.

5.1.9 Let X and Y be compact complex manifolds and let / : X —+ Y be a
smooth finite morphism of degree d. In other words, / : X —*• Y is smooth surjective
with dim(X) = dim(y) and every fibre f~1(y) contains d points.

Show that td(X) = /*td(y) and deduce x(X, Qx)=d- x(Y, Oy). In particular,
if X and Y are K3 surfaces, then d = 1.

Comments: - For the proof of the Hirzebruch-Riemann-Roch formula and the
Atiyah-Singer index theorem we recommend [15, 54, 68]. The algebraic approach is
explained in [47, 49].

- The Hirzebruch Xy-genus is yet a special case of a more general function,
the elliptic genus. The elliptic genus is a mathematical analogue of the physicist's
partition function.

- The Hirzebruch signature theorem can also directly be deduced from the
Atiyah-Singer index theorem. For historical comments we refer to [69].

- A deep and important result of Kollar and Matsusaka [81] says that the two
highest coefficients of the Hilbert polynomial of a polarized manifold (X, L) deter-
mine the whole Hilbert polynomial up to finitely many possibilities.

- Under certain assumptions on the positivity of the curvature of a holomor-

phic line bundle, one can prove approximative formulae for the truncated Hilbert

polynomials YJt=o(-lYhi(XiL®m)- S e e t35]-
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5.2 Kodaira Vanishing Theorem and Applications

Let X be a compact Kahler manifold of dimension n and let L be a holomor-
phic line bundle on X. Assuming a certain positivity of L, the higher coho-
mology groups of L can be controlled due to the so called Kodaira(-Nakano-
Akizuki) vanishing theorem. In conjunction with the Hirzebruch-Riemann-
Roch formula (5.2) this often yields effective (and topological) bounds for the
dimension of the space of global holomorphic sections H°(X, L) of a holomor-
phic line or vector bundle. This sections contains, besides the proof of the
Kodaira vanishing theorem, a discussion of important applications like the
Weak Lefschetz theorem and Serre's theorem.

Let us start out by introducing the appropriate positivity concept.

Definition 5.2.1 A line bundle L is called positive if its first Chern class
ci(L) € H2(X,M) can be represented by a closed positive real (l,l)-form.

Note that a compact complex manifold X that admits a positive line bun-
dle L is automatically Kahler. Indeed, the closed positive real (1, l)-form rep-
resenting ci(L) defines a Kahler structure on X.

The notion of positive forms and positive curvature has been discussed in
Section 4.3. Since any closed real (1, l)-form representing c\(L) is the curva-
ture of a Chern connection (modulo the factor i/2n) (cf. Exercise 4.4.10 or
Remark 4.B.5), a line bundle L is positive if and only if it admits an hermitian
structure such that the curvature of the induced Chern connection is positive
in the sense of Definition 4.3.15.

The algebraic inclined reader might replace 'positive' by 'ample'. The
equivalence of both concepts will be proved in the next section. Note that
in particular the manifolds considered in the present section will usually be
projective.

Proposition 5.2.2 (Kodaira vanishing) Let L be a positive line bundle on
a compact Kahler manifold X. Then

Hq(X, QP
X®L) = Q for p + q>n.

Before proving this result, we will state and prove a few lemmas which are
valid without any assumption on L and some of them work even for vector
bundles of arbitrary rank.

Let E be an arbitrary holomorphic vector bundle on X with a fixed her-
mitian structure. In addition to the two operators BE and dg introduced in
Section 4.1, we shall use the linear Lefschetz operators L and A on Ap'q(E)
depending on a chosen Kahler structure on X, i.e. L — L (g> 1 and A := A ® 1
on f\p'qX®E.
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Recall the following two Kahler identities on Ap'q(X) (cf. Propositions
1.2.26 and 3.1.12):

i) [A, L] = (n-(p + q)) • id and ii) [A, 8} = -id*.

The first one, which is linear, holds true for the corresponding operators on
Ap'q(E). The second one is generalized by the following

Lemma 5.2.3 (Nakano identity) Let V be the Chern connection on E.
Then

[A, 8E] = -i (V1-0)* = i (*£. o V^? o *E).

Proof. The second equality is the definition of the adjoint operator of V1'0.
The first equality is local and we may, therefore, use an orthonormal triv-

ialization ip '• E\u = U x C . With respect to such a trivialization the Hodge
operator *E becomes the complex conjugate * of the usual Hodge operator
*. Writing the connection on E with respect to t/> as V B = d + A one has
VB . = d + A* = d - A, BE = 8 + A0'1, and (V^0)* = - * o (3 - A1'0) o * =
- * o 5 o * - 5 o A1'0 o 5 = d* - (A1'0)*.

This yields

[̂ 1,8E] + i (V^0)* = [A, 8} + id* + [A, A0'1} - i (A1'0)*

where we used the original Kahler identity (Proposition 3.1.12). Thus, the
global operator [A, BE] + i (Vg )* turns out to be linear. In order to show
that it vanishes, it thus suffices to choose the orthonormal trivialization ip in
a neighbourhood of x £ X such that A{x) = 0. This can always be achieved
(cf. Remark 4.2.5). •

It should be clear from the proof that the compactness of X has not been
used yet. If X is compact then (V^ )* = — *E* "Vg, o*E is indeed the formal
adjoint of V^° with respect to the natural hermitian product on Ap'q(X, E).
Copy the proof of Lemma 4.1.12.

Lemma 5.2.4 Let (E, h) be an arbitrary hermitian holomorphic vector bundle
on a compact Kahler manifold (X, g). Then for the curvature F\/ of the Chern
connection V and an arbitrary harmonic form a £ 'Hp'q(X,E) one has:

i) ^(FvA(a),a)<0 and ii) ^ - (AFv(a),a) > 0.

Proof. As before, ( , ) is the natural hermitian product on Ap'q(X, E)
depending on both hermitian structures, on E and on X. Since A(a) £
Ap~1'q~1(X,E) (which is not necessarily harmonic), the form FsjA(a) is in-
deed in Ap'q{X,E).
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Since the Chern connection is hermitian with Vo>1 = BE, one has F\j =
V1'0 o BE + dE o V1'0. Also recall that the form part of FT? (a), which is of
bidegree (p + l,q + 1), is just the exterior product of of the form part of the
curvature form Fy and the form part of a. The assumption that a is harmonic
means BE® = BEa = 0.

Using this information one computes

(iFvA(a), a) = i ), a) + i (BEVh°A(a), a)

= i {BEA(a), (V1-0)*a) + i ia), B*E(a))

= (dEA(a), -i(V l l0)*(a)) +0, as a is harmonic

= (BEA(a), [A,BE](a)) by Lemma 5.2.3

= — (BEA(O), BEACX) , as a is harmonic

= -\\BEA(a)\\2<0.

Similarly,

(iAF\>(a),a) = i (yl3£;V1'0(a),a) by harmonicity of a

= i ([A, BE]Vll0(a), a) + i (BEAWlfi(a), a)

= i (-^V1 '0)*V l l0(a), a) +

[a 0 > 0

D

Let us now come to the proof of the Kodaira vanishing theorem.

Proof. Choose an hermitian structure on the positive line bundle L such that
the curvature of the Chern connection is positive, i.e. 57-Fv is a Kahler form
on X. Thus, with respect to this Kahler structure on X, which we will fix once
and for all, the Lefschetz operator L is nothing but the curvature operator
2 -̂Fv- Using Lemma 5.2.4 and the commutator relation [A,L] = —H, we
obtain

0 < ^— \\a\\

for any a € Hp'q(X, L) = Hq(X, QP
X®L). This proves the assertion. •

Example 5.2.5 Consider 0(1) on Pn, which is positive due to Example 4.3.12
(see also page 197). Thus, Hq{Pn, flp ® 0(m)) = 0 for p + q > n and m > 0.
In particular, Hq(Pn, O(m)) = 0 for q > 0 and m > -n, as Kv~ ^ 0 ( - n - 1)
by Proposition 2.4.3. Using Serre duality this yields

{ 0 if 0 < q < n
0 if g = 0 ,m<0
0 if o = n , m > - n - l .
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Due to Proposition 2.4.1 one also knows

H°(¥n,O(m))=C[z0,...,zn]m

for m > 0 and

Hn(Fn, O(m)) = H°{¥n, O(-n - 1 - m))*

for m < — n — 1.

As another application of the Kodaira vanishing theorem, we prove the
so called weak Lefschetz theorem. In fact, the injectivity below was already
studied in Exercise 3.3.5.

Proposition 5.2.6 (Weak Lefschetz theorem) LetX be a compact Kabler

manifold of dimension n and let Y C X be a smooth hypersurface such that

the induced line bundle O{Y) is positive. Then the canonical restriction map

Hk(X,C) >Hk(Y,C)

is bijective for k < n — 2 and injective for k < n — 1.

Proof. For both manifolds we have the bidegree decomposition Hk = 0 Hp'q

and the restriction map Hk(X,C) —> Hk(Y,C) is compatible with it. Hence,
it suffices to show that the map Hq(X,fip

x) —> Hq{Y,f^y) is bijective for
p + q < n — 2 and injective for p + q < n — 1. For this we will use the two
short exact sequences

0 ^ Ox(-Y) ^ Ox OY 0

and

0 OY(-Y) QX\Y VY 0,

where the latter is the dual of the normal bundle sequence. (See Definition
2.2.16 and use Exercise 2.3.2, which shows that the normal bundle of Y C X is
Ox(Y).) Twisting the first one with Qp

x and taking the p-th exterior product
of the second one yields short exact sequences of the form:

0 »Ox(-Y) ^Qx ^nx\Y - 0 (5.3)

and

0 ^flY-\-Y) *~fix\Y ^ y ^0 . (5.4)

(For (5.4) we use Exercise 2.2.2.) Kodaira vanishing 5.2.2, Serre duality 4.1.16,
and the fact that Qp

x* <g> Kx = Ox~~p (see Exercise 2.2.3) prove

H"{X, flp
x{-Y)) = Hn-q{X, Qp

x ® O(Y)

= Hn-q{X,nx-
p ®O(Y))*

= 0 for p + q < n.
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Thus, using the long exact cohomology sequence induced by (5.3), one
finds that the natural restriction map Hq(X, fiv

x) —> Hq(Y, £2P
X\Y) is bijective

for p + q + 1 < n and at least injective for p + q <n.
This map will be composed with the natural map Hq(Y: /2^|y) —>

Hq(Y, Qy), whose kernel and cokernel are contained in cohomology groups
of the bundle QY~ <g) Oy{—Y). (In order to see this, we use the long exact
cohomology sequence associated to (5.4).) Since the restriction of O(Y) to
Y is again positive, we can apply the Kodaira vanishing theorem as before.
Hence, Hq(Y, QX\Y) ->• Hq(Y, ttY) is bijective for p + q < n - 1 and injective
for q + p < n.

Both statements together prove the assertion. •

A slight modification of the proof of the Kodaira vanishing yields also the
following result, which is known as Serre's theorem.

Proposition 5.2.7 Let L be a positive line bundle on a compact Kdhler mani-
fold X. For any holomorphic vector bundle E on X there exists a constant
m,Q such that

Hq(X,E®Lm)=0

for m > TOO and q > 0.

Proof. Choose hermitian structures on E and L and denote the associated
Chern connections by V.E and Vj,, respectively. By assumption we may sup-
pose that (i/27r)i?vi, is a Kahler form u>. We endow X with the corresponding
Kahler structure. By Lemma 5.2.4 we have

for any a e W'q{X, E ® Lm). Here, V = V J B ® 1 + 1 ® V/,™, where, the
connection Vz,™ on Lm is induced by VL on L. In particular, (i/2n)F^Lm =
TO • u>. Hence,

and, therefore,

= ( [ A , F v E } ( a ) , a ) + m ( n ( p + q ) ) \ \ a \ \ .

Thefibrewise Cauchy-Schwarz inequality \([A, FyE}(a), a)\ < ||[yl,FvE]|| •
||a||2 provides a corresponding global inequality, where the operator norm
C := \\[A, F\jE]\\ does not depend on TO. Hence, if C + 2TT -m(n — (p + q)) < 0
one necessarily has a = 0.

Therefore, if TO0 > C/2TT, then Hq(X, E®Kx®Lm) = 0 for all TO > mo

and q > 0. To conclude, we apply these arguments to the bundle E 0 K*x
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instead of E. (The constant mo might change in the process.) This proves the
assertion. D

As an application of Serre's vanishing theorem we will prove the following
classification result for vector bundles on P1.

Corollary 5.2.8 (Grothendieck lemma) Every holomorphic vector bundle
E on P1 is isomorphic to a holomorphic vector bundle of the form Q)O(ai).
The ordered sequence a\ > 0,2 > ... > aT is uniquely determined.

Proof. If E is a rank one vector bundle, i.e. a line bundle, then the assertion is
known already (Exercise 3.2.11). For arbitrary rank r the assertion is proved
by induction.

Let ai be maximal among all a with Hom(O(a), E) - F ^ P 1 , E(-a)) ^ 0.
First of all, there always exists a with i?°(P1, E(—a)) ^ 0, since by Serre
vanishing Hl(P1,E(-a)) = 0 for a < 0 and %(P1,£'(-a)) = deg(E) - (1 -
a) • rk(E') by the Riemann-Roch formula for curves (5.1). Hence, the Euler-
Poincare characteristic is positive for a -C 0. There also exists a maximal
such a, because again by Serre vanishing 5.2.7 one knows iifo(P1, E{—a)) =
H1(F1,E*(a-2))* =0fora>0.

Thus, we have a short exact sequence

0 ^O(oi) ^E ^£1 »0, (5.5)

where the quotient E\ is a priori only a sheaf. It is locally free if the map
s : O(a{) —•> E has constant rank, i.e. is nowhere trivial. But if s vanished in
some point 1 6 P 1 , then we could divide by the equation sx £ iJ°(P1,O(l))
of x in order to obtain a section O[a\ + 1) —• E, which would contradict the
maximality of a\. Hence, s is an inclusion of vector bundles and hence E\ is
a holomorphic vector bundle.

By induction hypothesis we may assume that E\ is split, i.e. E\ =
0 i > x O(cti). It remains to show that the sequence (5.5) splits, which would
yield E = 0(ai) © ©4 > 1 O{ai).

In order to see this, we first show that a^ < a\. Indeed, if we had ai > a\ for
one i, then i/°(P1 ,£1(-ai - 1)) ^ 0. This combined with i?1(P1,O(-l)) = 0
and the long exact cohomology sequence associated with

0 ^ O(-l) ^ E(-cn - 1) ^ Eii-ax - 1) ^ 0

would yield H°(P1 ,E(—a\ — 1)) 7̂  0, which contradicts the maximality of
a\. Secondly, the splitting of (5.5) is equivalent to the splitting of its dual
sequence twisted by O(a{):

0 *• ^r(ai) ^ E*{ax) ^ o *• 0.

The splitting of the latter follows from H1^1, Ef(ai)) = H1(P1,^i>1 O{ax -
ai)) = 0, as a\ — a* > 0, which implies the surjectivity of H°(E*(ai)) —>
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H°(O). The lift of 1 G H°(F\ O) considered as a homomorphism O -> E*{a{)
splits the sequence. D

Very roughly, the corollary says that there are no interesting vector bun-
dles others than line bundles on the projective line P1. The situation differs
drastically on curves of positive genus and, as well, on higher dimensional pro-
jective spaces. Already an explicit classification of rank two vector bundles on
the projective plane P2 is impossible, although the situation is expected to
become easier on projective spaces P" with n > 5.

Exercises

5.2.1 Let (E, h) be an hermitian holomorphic vector bundle on a compact Kahler
manifold X. Suppose that the curvature Fv of the Chern connection is trivial, i.e.
the Chern connection is flat. Prove that the Lefschetz operator A preserves the
harmonicity of forms and thus defines a map A : W'q{X,E) -> W ' 1 ^ 1 ^ ^ ) .

Deduce from this the existence of a Lefschetz decomposition on H*'*(X,E).

5.2.2 Let C be an elliptic curve. Show that Hl(C,Oc) = C and use this to
construct a non-splitting extension 0—> 0 —* E —> O —> 0. Prove that E cannot be
written as a direct sum of two holomorphic line bundles.

(There is an algebraic argument using H1(C,Oc) = Ext1(Oc, Oc), but one
might as well try to construct a new 9-operator on the trivial bundle of rank two
by means of a representative of a non-trivial class in HX(C, Oc) = H°'l(C).)

5.2.3 Show that on P2 there exists a rank two vector bundle which is not iso-
morphic to the direct sum of holomorphic line bundles.

5.2.4 (The degree-genus formula) Let C C P2 be a smooth curve defined by
a homogeneous polynomial of degree d. Show that the genus g(C) = dim H°(C, Kc)

is given by the formula

Use this to show that there are curves which are not plane, i.e. not isomorphic
to a smooth curve in P2. Prove that for a smooth curve C C X in a K3 surface X

one has g(C) = ([C]2 + 2)/2.

5.2.5 Show that hypersurfaces in Pn with n > 3 do not admit non-trivial holo-
morphic one-forms. In particular, the Albanese of any such hypersurface is trivial.

5.2.6 Which complex tori could possibly be realized as complete intersections in

5.2.7 Let L be an ample line bundle on a K3 surface X. Show that h°(X, L) =

2 + (1/2) Jx ci(L)2. Study ample line bundles on complex tori.

5.2.8 Use Serre duality to give a direct algebraic proof of the Kodaira vanishing
theorem for curves.
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5.2.9 Prove that Hq(¥n, f2p(m)) = 0 for p + q > n, m > 0 and for p + q < n,

m < 0.

5.2.10 Let Y be a hypersurface of a compact complex manifold X with O(Y)

positive. Suppose that H2(X,Z) and H2(Y, Z) are torsion free. Prove that the re-
striction induces an isomorphism Pic(X) —* Pic(Y) if dim(X) > 4. (Use the expo-
nential sequence and the weak Lefschetz theorem. The assumption on H2( , Z) is
superfluous, see the comments at the end of this section.)

5.2.11 Let X be a projective manifold of dimension n and let L € Pic(X) be an
ample line bundle.

i) Show that m i—> h°(X,L®m) for m >̂ 0 is a polynomial of degree n with
positive leading coefficient.

ii) Deduce from this that a{X) = dim(X) = n, i.e. X is Moishezon. Use the
arguments of Section 2.2.

Comments: - The proof of the Kodaira vanishing follows closely the classical
argument, see [35, 100]. An algebraic proof had long been missing. In fact, the
Kodaira vanishing does not hold for arbitrary smooth projective varieties in positive
characteristic. An algebraic proof was eventually found by Deligne and Illusie in [32]
(see also [42]).

- There are various versions of the Kodaira vanishing theorem for positive vector
bundles, e.g. the so called Le Potier vanishing theorem [85]. Roughly, the positivity of
a vector bundle E is translated into positivity of the relative O-n (1) on n : V(E) —> X.

Using Kodaira vanishing for Ow(l) on ¥(E) and the formula 7r*0(l) = E*, one can
deduce the vanishing of certain cohomology groups.

- Another far-reaching generalization of the Kodaira vanishing theorem is the
Kawamata-Viehweg vanishing which predicts the same sort of vanishing but this
time for line bundles which are not quite positive, but only big and nef. The result
is often used in Mori theory.

- The Weak Lefschetz theorem actually holds for the integral cohomology groups.
Moreover, there are versions of it for the homotopy groups. E.g. if dim(X) > 3 then
TTI(X) = TTI(Y) for any positive hypersurface Y <Z X. See [50] for Lefschetz theorems
for subvarieties of higher codimensions.

- For the algebraic version of Serre's theorem 5.2.7 see [66, Ch.III, Thm.5.2]. In
fact, E could be an arbitrary coherent sheaf.

- A proof of Grothendieck's lemma can be found in many standard text books.

The original source is [63]. Indecomposable vector bundles on elliptic curves have

been investigated by Atiyah. The results of [4] are central for ongoing research in

mathematical physics (F-theory).
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5.3 Kodaira Embedding Theorem

Not every compact complex manifold is Kahler and not every compact Kahler
manifold is projective. Of course, one would like to have a criterion that
decides whether a Kahler manifold is projective. Such a criterion is provided
by the Kodaira embedding theorem which will be proved now. Roughly, it
suffices to be able to describe the Kahler cone inside H2(X, K) in order to
decide whether an ample line bundle exists. The analogous question, which
complex manifolds are in fact Kahler, is essentially open. In particular, it is
not known whether being Kahler is a purely topological property.

Let L be a holomorphic line bundle on a compact complex manifold X.

For any choice of a basis so , . . . , sjv £ H°(X, L) there exists a natural rational
map (pi, : X --•* FN given by x t—> (so(x) : . . . : s^{x)) (cf. Proposition
2.3.26). When does this map define a closed embedding of X? Clearly, the
answer to this question does not depend on the choice of the basis.

i) The rational map y>L is a morphism, i.e. everywhere defined on X, if
and only if for any x € X there exists at least one section s € H°(X, L) with
s(x) 7̂  0 or, equivalently, if and only if Bs(L) = 0 (see Definition 2.3.25).

In other words, <PL is a morphism if and only if for any x g X the natural
restriction map

H°(X,L) *L{x)

is surjective. Notice that this map sits in the long exact cohomology sequence
associated to

0 ^L®l{x} ^L ^L(x) ^ 0 ,

where X{xy denotes the ideal sheaf of the point x € X.

ii) Suppose that <PL is defined everywhere. Then ip^ is injective if and
only if for two two arbitrary distinct points x\ ^ x2 £ X there exists a
section s G H°(X,L) with s(xi) = 0 and s{x2) ^ 0. One says that <£>L (or L)

separates points.

Together with the criterion i) we find that the complete linear system
\L\ defines an injective morphism if and only if for any two distinct points
xi, X2 & X the restriction map

H°(X, L) L{xx) e L{x2)

is surjective. Again, this map is induced by a short exact sequence:

iii) Assume that ip^ : X —> ¥N is an injective morphism. In order to
ensure that ipi, is a closed embedding, one has to check that for any x € X
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the differential dtpLiX : TXX —* TV^PN is injective. Choose a section So £
H°(X, L) with so(2;) 7̂  0. Then we may find a basis so , . . . , sjv of H°(X, L)

such that Sj(:c) = 0 for i > 0. Thus, locally around 2 e X the map </?£ is
given by X -> C^ , 1/ H^ (*X (y), . . .,tN(y)) with ti(z) = . . . = ijv(z) = 0. Here
ti = Si/SQ. Hence, dipitX is injective if and only if the one-forms dt\,...,dtj^

span the cotangent space /\* X in x.

Let us reformulate this as follows. The sections S I , . . . , S J V form a basis
of the subspace H°(X, L <g> I{x }) C #° (X, L) of all global sections of L that
vanish in x. On this subspace there exists a natural map

dx:H°(X,L®l{x}) ^L(x)®f\lX,

which can be defined in terms of a local trivialization ?/>:Z/|[/ = ? 7 x C a s

s >—> d(ips)x. If we change the local trivialization i/> to A?/>, then d(Xtps)x =

X(x)d(tps)x for any s vanishing in x. Thus, dx is independent of ip.

Next, it is easy to see tha t d(ti)x = (jjjso)~^d(ipSi)x for i = 1 , . . . , n. Hence,

d<pi, is injective in x £ X if and only if

dx : H°{X, L ® J w ) L(a;) ® /\^ X

is surjective. As before, the map dx is induced by a short exact sequence which
in this case takes the form

We leave it to the reader to verify that X ^ / I ? , is canonically isomorphic to

Mx.
Summarizing the above discussion, we find that the complete linear system

\L\ induces a closed embedding <p : X <—> P ^ if and only if the global sections
of L separate points x\ ^ xi e X and tangent directions v G TXX. These two
properties can be rephrased as has been done in i) and ii) respectively iii).

Recall that a line bundle L on a compact complex manifold X is called
ample if and only if Lk for some k > 0 defines a closed embedding >pi : X -̂>

Proposition 5.3.1 (Kodaira embedding theorem) Let X be a compact
Kdhler manifold. A line bundle L on X is positive if and only if L is ample.

In this case, the manifold X is projective.

Before actually proving the proposition we need to study positivity of line
bundles under blow-ups. Let X be a complex manifold and let L be a positive
line bundle on X. Denote by a : X —• X the blow-up of X in a finite number
of distinct points x\,..., xg £ X and by Ej the exceptional divisors a"1 (XJ),

j = !,...,£.
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Lemma 5.3.2 For any line bundle M on X and integers n\,... ,ni > 0 the
line bundle a*(Lk <g> M) ® 0 ( - YlnjEj) on X is positive for k 3> 0.

Proof. In a neighbourhood Xj G Uj C X of each point Xj the blow-up can be
seen as the incidence variety Uj = 0(—1) C Uj x P™"1. Moreover, O(Ej) is
isomorphic to to p*O(—1), where pj : Uj —> P™"1 is the second projection (see
the proof of Proposition 2.5.6). Thus, we can endow O(—Ej) with the pull-
back of the natural Fubini-Study hermitian structure on 0(1) (cf. Examples
4.1.2 and 4.3.12).

Gluing these hermitian structures (or rather their rij-th powers) by means
of a partition of unity yields an hermitian metric on 0(— YlnjEj)- Locally
near any Ej the curvature F\r of the Chern connection on 0(— ]T) rijEj) with
respect to this hermitian structure is —nj(2m)p*u>ps, where uj-ps is the Fubini-
Study Kahler form on P™"1.

Thus, Fy semi-positive locally around each Ej and strictly positive for
all tangent directions of Ej itself. Indeed, the curvature is compatible with
pull-back and the curvature of the Chern connection of the Fubini-Study
hermitian product on 0(1) is — (2ni)uiFs- (Note that p*uips depends on the
chosen local coordinates on Uj used to realize Uj inside Uj x P""1. But all
positivity considerations are not affected by this ambiguity.)

For any real (l,l)-forms a and (3 on X with a positive the positivity
property of F\j immediately implies that the form a* (k • a + f3) + (i/2n)Fy
is a positive form on X for i ; > 0 .

To conclude, one chooses a and ft such that [a] = ci(L) and [/?] = ci(M). •

Let us now turn to the proof of the Kodaira embedding theorem.

Proof. If L is ample then for some k >̂ 0 the line bundle Lk is isomorphic to
the restriction of 0(1) under an embedding X C P^. Thus, c\(L) is, up to a
positive scalar, given by the restriction of the Fubini-Study Kahler form and
thus positive. In other words, any ample line bundle is positive.

For the converse, we will show that a high power Lk of a positive line
bundle L defines a closed embedding cp^k : X •—» P^.

Let us first prove the injectivity f^k. If a : X —> X is the blow-up of
X in x £ X we denote the exceptional divisor <r~1(x) by E. Consider the
commutative diagram:

H°(X, Lk) *• Lk(x)

•
H°(X, a*Lk) >- H°{E, OE) ® Lk{x)

The vertical map on the left is given by pulling back sections of Lk to a*Lk on
X. Since the blow-up map is surjective, this map is injective. We shall show
that it is in fact bijective.
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If X is one-dimensional, a : X —> X is an isomorphism and H°(X, Lk) —>
H°(X,Lk) is clearly bijective.

If dim(X) > 2 then, due to Hartogs' theorem (see Exercise 2.2.6), any sec-
tion s G H°(X,a*Lk) can first be restricted toX\E = X\x and then
extended to a global section of Lk. Thus, also in this case the pull-back
H°(X,Lk) -> H°{X,Lk) is bijective.

The cokernel of H°(X,a*Lk) -* H°(E,OE) ® Lk(x) is contained in
^ a * ^ ® O(—E)), as it is induced by the short exact sequence

0 »- a*Lk <g> O(-E) >• a*Lk >• <r*Lk\E >- 0

Lk(x) ® OE

If n = dim(X), Proposition 2.5.3 shows K% = a*Kx ® O{{n - l)E).

Hence, by Lemma 5.3.2 the line bundle L' := (T*V!®K*ji®O(-E) = a*(Lk®

K$r) <S> O(—nE) is positive for k 3> 0. Thus, by Kodaira vanishing 5.2.2 one
finds for k > 0:

Hl(X,a*Lk 0 O(-E)) = Hl{X,K^®L') = 0.

Therefore, x € X is not a base-point of Lk for fc 3> 0.

Using the map F°(X,L2*) -^ F°(X,L 2 £ + 1 ) , s ^ s2 one finds Bs(L) D
... D Bs(L2 ) D Bs(L2 ) D . . . , which is a decreasing sequence of compact
subsets with empty intersection. Hence, the line bundle Lk is base-point free
for k = 2e 3> 0. (In fact, with a bit more work one can even show that this
holds true for any k 3> 0, but we won't need this.)

A similar argument, using the blow-up X —> X in two distinct points x\^

x2 € X and working with a*Lk ® C ( - £ i - E 2 ) , shows that also H°(X, Lk) -*

Lk{xi) © Lk{x2) is surjective for all k ^> 0 and xi ̂  X2 G X.
It thus remains to check that Lk separates tangent directions for k 3> 0.

In order to show this, we compare the two exact sequences

and
0 *• O(-2E) »• O(-E)

Clearly, pulling-back functions that vanish of order one respectively two
in x yields a commutative diagram

O(-2E)
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Twisting by Lk and passing to the quotients we obtain the commutative
diagram

H°(X, Lk®l{x}) *• Lk{x) ® f\l
xX

H°{X,a*Lk{-E)) ^ Lk{x) ® H°(E, OE(-E))

As before, the vertical arrow on the left is an isomorphism. In order to see
that also the other one is bijective we recall that E = P(7V{x}/x) = P(TXX)
and OE(-E) = 0(1) (cf. Corollary 2.5.6).

Hence, H°(E,OB{-E)) = H°(F(TXX),O(1)) = I\X
XX. The map tfxX®

OE —> OE(-E), which yields the vertical arrow on the right, is nothing but
the evaluation map O®n -» Cpn-i(l) and thus also surjective on the level of
global sections.

Once the surjectivity of the vertical maps is shown, it suffices to prove that
Hl{X,a*Lk ® O(-2E)) = 0 for k > 0, which again follows from Kodaira
vanishing by applying Lemma 5.3.2 as before. •

The projectivity of a compact Kahler manifold can now be read off the
position of the Kahler cone Kx C H2(X, R) relative to the integral lattice
Im(#2(X,Z) cH2(X,R)).

Corollary 5.3.3 A compact Kahler manifold X is •protective if and only if
JCxnH2(XZ)^<b

Proof. By abuse of notation we write Kx n H2(X,Ii) instead of K,x n
Im(H2(X,Z) -> H2(X,R)). The Kahler cone Kx is by definition the cone
of all Kahler classes on X and hence contained in Jf1'1(X). Thus, a class
a G Kx H H2(X, 1) is in particular of type (1,1). Hence by Proposition 3.3.2
one has a = ci(L) for some line bundle L. This line bundle L is positive
and, therefore, by the Kodaira embedding theorem also ample. Hence, X is
projective.

Conversely, if X is projective then ci(C?(l)|x) for any projective embed-
ding X CPN yields a class in Kx n H2{X, Z). •

Definition 5.3.4 A class in Kx n H2(X, Z) is a Hodge class.

For complex tori the projectivity criterion takes the following very precise
form (compare with Proposition 3.C.11).

Corollary 5.3.5 Let X = V/F be a complex torus. Then X is projective if
and only if there exists a Riemann form, i.e. an alternating bilinear form
LU :V xV ^R such that

i) uj(iu, iv) = u>(u, v),
ii) u>( ,i( )) is positive definite, and
iii) ur(u,v) 6 Z whenever u,v £ F.
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Proof. Clearly, the Riemann form u> can be considered as a constant two-form.
Recall that j \ 2 V* ^ H2{X,R). Conditions i) and ii) ensure that u is in fact
a Kahler form and iii) is equivalent to w G H2(X, Z). D

Examples 5.3.6 i) Any compact complex curve is projective. Indeed, any curve
is Kahler and since H^^X) = H2{X,C) the open subset Kx C H2{X,R)
contains integral classes. Of course, a direct proof without using Kodaira's
theorems can also be given.

ii) Every compact Kahler manifold X with H°'2(X) = 0 is projective.
This is in fact a very useful statement which applies to many Calabi-Yau
manifolds.

Corollary 5.3.7 If X is projective, the natural homomorphism Div(X) —>
Pic(X) (see Section 2.3) is surjective.

Proof. Let L £ Pic(X) be an ample line bundle. In particular, L is positive
and we may apply Serre vanishing 5.2.7. If M £ Pic(X) is any line bundle
then X(X, M®Lk) = h°(X, M ® Lk) for k > 0.

On the other hand, the Hirzebruch-Riemann-Roch formula (5.2) shows
that x{X, M ® Lk) is a polynomial in k of degree n := dim(X) with leading
coefficient (1/ra!) Jx c\{L)n. The latter is positive, as L is positive, and thus
one obtains h°(X,M <g> Lk) ^ 0 for k > 0. Applied to M = O we find
in particular that H°(X,Lk) ^ 0 for k ^ 0 (which is actually clear from
the definition of 'ample'). Following the discussion in Section 2.3 one sees
that M <g> Lk and Lk are both contained in the image of the homomorphism
Div(X) -> Pic(X) and so is M.

More explicitly, if 0 ^ sx e H°(X, M <g> Lk) and 0 ̂  s2 £ H°(X, Lk) then
M. O

The reader may notice that we actually only used the easy direction of the
Kodaira embedding theorem, namely that an ample line bundle is positive
and thus satisfies the assumption of the Kodaira vanishing theorem.

The argument in the proof shows as well that any line bundle on a pro-
jective manifold admits non-trivial meromorphic sections, namely s\/s2 with
the above notation.

The corollary also shows that the Neron—Severi group NS(.X') = H^'l(X, Z)
of a projective manifold is indeed spanned by the fundamental classes of di-
visors. See Sections 2.3 and 3.3.

Exercises

5.3.1 Show that a complex torus C jF is abelian, i.e. projective, if and only if
there exists a line bundle L with J*Cj(L) > 0. (In fact, this criterion is valid for any
compact complex surface, but more difficult to prove in general [8].)
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5.3.2 Show that any vector bundle E on a projective manifold X can be written
as a quotient (Lk)®e -» E with L an ample line bundle, k <C 0 and £ 3> 0. (Imitate
the first step of the proof of Proposition 5.3.1, which shows the assertion for E = O.

You will also need to revisit Proposition 5.2.7.)

5.3.3 Let a : X —* X be the blow-up of X in x 6 X with the exceptional divisor
E and let L be an ample line bundle on X. Show that a*Lk ® O(—E) is ample for
£ :>0 .

(This is obtained by a revision of the proof of the Kodaira embedding theorem.
In particular, the blow-up X of a projective manifold X is again projective.)

5.3.4 Continue Exercise 5.1.6 and show, by using the techniques of this section,
that any line bundle L of degree deg(L) > 1g on a compact curve C of genus g is
very ample, i.e. the linear system associated with L embeds C.

Conclude that any elliptic curve is isomorphic to a plane curve, i.e. to a hyper-
surface in P2.

5.3.5 Show that there exists a complex torus X of dimension n such that X is
projective and, therefore, a(X) — n.

Comments: - The Kodaira embedding theorem is complemented by a theorem
of Chow saying that any complex submanifold X C P^ can be described as the
zero set of finitely many homogeneous polynomials. This, eventually, establishes the
precise relation between our notion of projective complex manifolds and the notion
of smooth projective varieties (over C) used in algebraic geometry.

The proof of Chow's theorem is not difficult, see e.g. [59]. It works more generally
for analytic subvarieties and uses, besides some elementary linear projections etc.,
the proper mapping theorem. The proof for analytic hypersurfaces can easily be
deduced from Pic(Pw) = Z • 0(1) and the description of all global holomorphic
sections of 0(1).

We also mention the deep result of Moishezon showing that a compact complex
manifold X is projective if and only if X is Kahler and Moishezon (cf. Exercise
5.2.11). A proof using singular metrics can be found in [35].

- There is yet another relevant result dealing with the embedded manifold X C
P"^. Namely, Bertini's theorem asserting that the generic hyperplane section of X,

i.e. the generic divisor in the linear system defined by 0( l ) |x , is smooth. For its
algebro-geometric proof see [66] or [99].

- It might be worth emphasizing that in the proof of the Kodaira embedding
theorem blow-ups are used in order to pass from a high codimension situation (e.g.
a point x in X) and the non-locally free sheaf that comes with it (the ideal sheaf
Xx) to a codimension one situation to which cohomological methods can be applied
by viewing the ideal sheaf of the exceptional divisor as a holomorphic line bundle.
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Deformations of Complex Structures

We have seen many examples of complex manifolds. Some of them, like the
projective space Pn, seemed rather unique and 'rigid', others, like complex
tori, never come alone, as other complex manifolds seem to exist close by.

Classifying all complex structures, e.g. on a real torus (S1 x S1)71, eventu-
ally leads to the theory of moduli spaces. Riemann himself brought to light the
most fascinating aspect: The set of all complex structures on a given differen-
tiable manifold comes itself with a natural differentiable and in fact complex
structure.

This chapter has the modest aim to acquaint the reader with certain lo-
cal aspects of this theory. The two sections treat the deformation theory of
complex manifolds, but each from a slightly different angle.

Section 6.1 considers all almost complex structures on a given differentiable
manifold. A deformation of a certain integrable almost complex structure is
studied by a power series expansion of this linear operator. It turns out, that
the recursive equations for the coefficients imposed by the integrability condi-
tion cannot always be solved. For the important class of Calabi-Yau manifolds
however a (formal) solution exists due to the Tian-Todorov lemma 6.1.9. Ap-
pendix 6.A presents a formalized approach to this circle of ideas using the
language of differential algebras. This has recently been promoted by Kont-
sevich, Manin and others. The underlying philosophy to study deformations
in terms of differential graded Lie algebras goes back to Deligne. Section 6.2
surveys a number of rather deep theorems mostly due to Kodaira and collab-
orators. Here, a deformation is viewed as a complex manifold fibred over a
base space, the fibres being deformations of a distinguished fibre isomorphic
to a given complex manifold.

6.1 The Maurer—Cartan Equation

A complex manifold is by definition a differentiable manifold M endowed with
an atlas whose transition functions are holomorphic. As we have seen, a com-
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plex structure defined by such an atlas can also be encoded by an integrable
almost complex structure /, which is just an endomorphism of the tangent
bundle satisfying a certain non-linear integrability condition. In this section,
we will work with the latter description of complex structures. We will explain
how to view the various complex structures I on M or, more precisely, the
(small) deformations of a given one.

In order to study all complex structures, one might naively consider just
the subset of the endomorphisms of the tangent bundle that define integrable
almost complex structures, but many of them will define isomorphic complex
manifolds. Recall that two complex manifolds (M, /) and (M', / ') are isomor-
phic if there exists a diffeomorphism F : M —> M' such that dF o I = I' o dF.
Thus, the set of diffeomorphism classes of complex structures / on a fixed
differentiable manifold M is the quotient of the set

AC(M) := {I | I = integrable almost complex structure}

of all complex structures by the action of the diffeomorphism group

Diff(Af) x AC(M) ^ Ac(M), (F, I) i ^ dF o I o (dF)-1.

The description of the space of isomorphism classes of complex structures
comprises therefore two things:

i) Describe the subset of integrable almost complex structures inside the
space of all almost complex structures on M.

ii) Divide out by the action of the diffeomorphism group Diff (M).

In this section we will deal with these questions on an infinitesimal level, i.e.
we shall consider the power series expansion of any deformation of a complex
structure and study the coefficients of it.

We start out with the set

Ac(M) := {I\I2 = -id} c End(TAf)

of all almost complex structures on M. Although we will not discuss this in
any detail here, the space Aac(M) is a nice space, i.e. (after completion) it
is an infinite dimensional manifold. This, in general, is no longer true for the
subspace AC(M) C Aac(M) of integrable almost complex structures.

Let us first consider an arbitrary almost complex structure / £ Aac(M).
Recall that an almost complex structure I is uniquely determined by a de-
composition of the tangent bundle TCM = T1-0 © T0'1 with / = i • id on Tlfi

and / = -i • id on T0-1. In fact, giving T0-1 c TCM is enough, for T1-0 = T0'1.
If I(t) is a continuous family of almost complex structures with /(0) = /,

one has a continuous family of such decompositions TcM = Tt' ®Tt' or,
equivalently, of subspaces Tt'
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Thus, for small t the deformation I(t) of / can be encoded by a map

<l>(t) : T0-1 »- T1 '0 with v + 4>{t){v) e T°'\

We write T1'0 and T0 '1 for the subbundles defined by / . Explicitly, one has

(i,o o j ,

where j : T0 '1 C Tc and prTi,o : Tc —* Tt' are the natural inclusion respec-

tively projection.
Conversely, if 4>(t) is given, then one defines for small t

The condition t be 'small' has to be imposed in order to ensure that with this
definition Tt' has the right dimension. More precisely, t small means that
Tt' C Tc —> T0 '1 is an isomorphism, which is certainly an open condition, at
least on a compact manifold. To avoid problems caused by non-compactness
we will henceforth assume that M is compact.

Let us now consider the power series expansion

of a given cf>. Then CJ>Q = 0 and the higher order coefficients 0,>o will be
regarded as sections of f\ ' (giT1'0.

Next, we shall study the integrability of the deformed almost complex
structures /(£). From now on we will assume that / is integrable and we will
denote the complex manifold (M,I) by X. In particular, the higher order
coefficients <j>i correspond to elements in A°'1(Tx)-

The integrability condition for I(t) can be expressed as (cf. Proposition
2.6.17)

[7iO,l rpO,ll _ mO,l
I 1 1 ! J t J *- X t •

Let us rephrase this in terms of <fi{t). First note that there exists the d-

operator on the holomorphic tangent bundle Tx of X = (M, / ) , which can in
particular be applied to 4>{t) € A°'l(Tx)- Secondly, one defines a 'Lie bracket'

by taking the Lie bracket in Tx and the exterior product in the form part
in .4.0'*. Spelled out in local coordinates this gives for a = Y^dzj ® vj and
/3 = Y<dzj <£> wj with vj = J2aiJlk~ anc^ WJ = J2Pjc§re ^e following
formula

O

.,.,.,.

This is indeed well-defined, as any holomorphic coordinate change would
change the tangent vector fields VJ,WJ by antiholomorphic factors / and

#
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Remark 6.1.1 Using the local description, one easily checks that d[a:f3] =

[Ba,0\ ± [a, 8(3]. In particular, the Lie bracket of two 9-closed sections in
A°'*(Tx) is again closed and the bracket of a closed one and an exact one is
exact. Thus, the bracket induces a map

HP(X,TX) x H«{X,TX) ^Hr+"(X,TX).

Lemma 6.1.2 The integrability equation [Tt' ,Tt' } C Tt' is equivalent to

the Maurer-Cartan equation

d(/>(t) + [<l>(t),<t>(t)]=O. (6.2)

Proof. The assertion can be proved locally. We will omit the parameter t in
the notation and shall write

If the integrability condition holds true, then we have in particular

Since [J^-, jp-] — 0, this is equivalent to

a , a i . ^ r , o 5 l ^ r , o , d

^[k^k^V'-k-k^V'-k^M^1

d d 1 _ d<t>u d \ d d 1 _ d^ d

Now,

[az, dzt\ dzi azt [ OZJ dzk\ dzk dz3

and, hence,

d d

V 9zi dzk ) dzdzk

d d

On the other hand,

dze\ \dzi dzk
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Therefore, the integrability condition implies that d(p+[(f>, <f>] G A°'2(T1'°X)

satisfies

Hence, Bcjj + [0, $ e A°'2(TlfiX n Tt
0>1). But for small i one has TX'°X n

1if '1 = 0 and, therefore, c?0 + [<f>, 4>) = 0.
Conversely, if the Maurer-Cartan equation (6.2) holds true, then the in-

tegrability condition is satisfied for a local frame of Tt' . This immediately
shows that it is true for all sections of Tt

0' . •

Let us now consider the power series expansion of the Maurer-Cartan
equation, i.e. we replace cf> in (6.2) by (f> = J2^11 4>itz:

This yields a recursive system of equations:

0 =501 (6.3)

0 =8

0 = 0 f c +
0<i<k

We shall first study the first-order equation 5<f>\ — 0 in detail. The Maurer-
Cartan equation is, in particular, saying that the first-order deformation of the
complex structure / is described by a enclosed (0, l)-form <pi with values in the
holomorphic tangent bundle Tx- Thus, it defines an element [<fii] € Hl {X,

Definition 6.1.3 The Kodaira-Spencer class of a one-parameter deforma-
tion It of the complex structure I is the induced cohomology class [<j>i] £

In order to identify isomorphic (first order) deformations, the (infinitesi-
mal) action of the diffeomorphism group Diff (M) has to be taken into account.
Let Ft be a one-parameter family of diffeomorphisms of the manifold M. With
respect to local coordinate functions Xj this can be expanded into a power se-
ries oti = Xi + tFi{x) + t2 .... The first order term ^ -Pi^r defines a global
vector field

f
Moreover, any global vector field is obtained in this way. If the diffeomor-
phism group Diff (M) is considered as an infinite-dimensional Lie group, this
calculation identifies the tangent space of it with A°(TM). (It is intuitively
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clear how to view Diff(Af) a s a Lie group, but special attention has to be
paid to the fact that everything is infinite-dimensional.)

We can rewrite this identification on the complex manifold X — (M, I)
with respect to holomorphic coordinates Zj as Zi = Zi + tfi(z, z) + t2 .... For
the antiholomorphic coordinates Ei we then have z, = z$ + tfi(z, z) + t2 ....
Thus, ^f|t=o 6 A°(TX) in local coordinates (up to the factor 2) is given as

Any diffeomorphism can be used to construct new complex structures out
of the given one / by pushing-forward / via the differential of the diffeomor-
phism. More explicitly, for the diffeomorphism Ft the new complex structure is
given by dFt o Io (dFt)~

1 (see the formula on page 256). The antiholomorphic
tangent bundle of this complex structure is thus

T?'1 =dFt(T°*1X).

In local coordinates the first order deformation of TOllX is described as

the image of T°^X under

dti , d dfi , o ofi , o

= 0 on T ^ X =0 on TO^X

In this sum, only the third and the fifth terms are non-trivial on T0>1X.
Moreover, the fifth term is an endomorphism of T0'1.

Thus, the first order deformation of T°rlX induced by a one-parameter
family of diffeomorphisms Ft of M is described by the homomorphism

This yields

Lemma 6.1.4 The first-order deformation of the complex structure I on the
manifold M (defining the complex manifold X = (M, I)) induced by a one-
parameter family Ft of diffeomorphism of M is determined by the map

•

As a consequence of this, we derive a description of all first-order defor-
mations of isomorphism classes of complex structures of X = (M, I). We will
present another point of view on this result in the next section.
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Proposition 6.1.5 Let X be a complex manifold. There is a natural bijection

between all first-order deformations of X and elements of H1(X,Tx).

Proof. Write X = (M, / ) . Then the first order deformations of / correspond
to <5-closed elements in A°'l(Tx) and by the previous lemma those that define
isomorphic ones differ by elements of the image of d : A°(Tx) —* -4.0'1 (T^r),
i.e. <9-exact ones. As the Dolbeault cohomology just computes the sheaf coho-
mology of Tx, this proves the assertion •

In other words, the Kodaira-Spencer class determines the first-order de-
formations of X and any class in H1(X,Tx) occurs as a Kodaira-Spencer
class.

The principal task in deformation theory is to integrate given first-order
deformations v 6 H1(X,Tx), i.e. to find a one-parameter family It such that
its Kodaira-Spencer class is v. In general this is not possible. Obstructions may
occur at any order. Thus, it frequently happens that we find 4>\t + ... + 4>ktk,

but a <j>k+i does not exist.

Moreover, since we have to divide by the action of the diffeomorphism
group at any step, we have to study all possible 0, carefully. This is needed in
order to ensure the convergence of the power series and to solve the recursive
equations.

That there in general exist obstructions can already be guessed at order
two: Once a lift <fii of v £ H1(X, Tx) is chosen, we have to find <f>2 such that
d(f>2 = —[4>ii<l>i\- But it may very well happen that the form [<£i,<£i] is never
9-exact, no matter how <j>\ is chosen.

Using Remark 6.1.1 we can associate to any first order deformation v €

Hl(X,Tx) a class \v,v] € H2(X,TX).

Corollary 6.1.6 A first-order deformation v £ H1(X,Tx) cannot be inte-

grated if[v,v] € H2(X,Tx) does not vanish. •

Next, we will describe how the recursive system of equations (6.3) given
by the Maurer-Cartan equation can be solved when the underlying manifold
X admits a holomorphic volume form, i.e. when X is a Calabi-Yau manifold.

More precisely, by a Calabi-Yau manifold we mean here a compact Kahler
manifold X of dimension n with trivial canonical bundle / \ " Qx = Kx —
Ox- Moreover, we fix a holomorpic volume form, i.e. a trivializing section
QeH°(X,Kx).

The form Q can be used to define a natural isomorphism

V : /\PTx - nx~
P-

As different sign conventions are possible here, we will try to be very
concrete. One defines

•q{vi A . . . / \ v p ) = i V l . . . i
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where iv is the contraction defined by iv(a)(wi,..., wi) = a(v, w\,..., Wi). If
Q is locally written in the form fdz\ A . . . A dzn, then

?7 ( -~— A . . . A - — j = (-l){1-Zj>~pfdz1 A...Adzh A . . . A dzip A...dzn,

for ii < ... < ip.

Moreover, the isomorphism 77 induces canonical isomorphisms

77 : AO>«(/\PTX) ^ An~p'q{X).

Definition 6.1.7 The operator A : A°'q{/\PTX) -^ A°'q(/\P~X Tx) is denned
as

A : A0'q(/\pTx) —^ An-p'q(X) —?-*• An-p+1'q(X) - ^ A0'q(AI"1Tx) •

Note that d itself is not well-defined on A°'q(f\pTx).

Warning: The operator A has nothing to do with the Laplacian. The notation
is a bit unfortunate here, but historical. In fact, we have not (yet) even chosen
a metric on X, so strictly speaking there is no Laplacian.

Lemma 6.1.8 The operator A anti-commutes with 8, i.e. A o § = —do A.

Proof. We use the fact that Q £ An'°(X) is holomorphic, i.e. 9-closed. If

we write in local coordinates Q = fdz\ A ... A dzn, then / is a holomorphic

function. Then

g-dzi® -— j = ±(fg) • dzj <g> ck{i,...,n}\j.

Hence, B o 77 = 77 o 8 and, therefore,

B(A(a)) = rj-^ddriia)) = - r ? " 1 {ddr]{a))

•
Also note that A2 = (ri~ldrf)^"1 drj) = 0. Thus, A can be used as a

differential, but it is not well-behaved with respect to the exterior product
A°'p{/\rTx) x A°'q(/\STX) -> A°'p+q(f\r+sTx). This is made more precise
by the following key result due to Tian and Todorov ([107, 108]).

Lemma 6.1.9 (Tian-Todorov lemma) If a e A°'P(TX) and j3 e A°'q{Tx),
then

(-l)p[a, (3} = A(a A /?) - A{a) A (3 - (-l)p+1a A A(0).
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Proof. As the claim is local and additive in a and /?, it suffices to prove it for
a = adzj ® J j - and (3 = bdzj ® J j - .

Then, by definition, [a, (3] = dzr A dzj[a-^-, b-J^-}.

In a first step we shall reduce the assertion to the case p = q = 0. Using
the short hand

G(a, (3) := A(a A (3) - A(a) A /? - (-l)p+1a A A(f3),

one does this by proving

G(a,(3) = (-l)p(dz7Adzj)®G a — , 6 ^ .

Using the standard sign rules, one indeed computes

A(a(3) = r)~1dri(a A (3) •= (—l)qrj~ldi] I (dzi A dzj) ® (a —— A i

izj A dzj) ® 77 I a—— A b——

V UZi VZj j

= (—I)9 • (—l)p+qri~1 ( (dzj A dzj) ® dri I a A b I I
V V dzi OZJ I j

\ % j

Similarly,

(a) A 8 = ri~ldn ( dzj <8> T? f a^— I 1 A 8 = (-l)p { dzj ® A[ a^— ) ) A ,

and

Thus,

G(a,/3) = ( - l ) p (dz/ A dzj) £

oz UZ

V dzJJ
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In order to treat the case p = q = 0, let us first mention explicitly

( d \ —-

— = (-lYf dzi A ... Adzi A ... Adznand

(
g g \

A I = (-l)i+j-2fdzi A ... A dzi A . . . A dz, A ... A dzn.
dzi dzjj

This also shows ri~l(dz\A.. .AdziA.. .Adzn) = f~l-§— and rj(dziA.. .Adzn)

r1-
Hence,

a— ) = r]~ld ( ( - l ) i " 1 ( a / ) d z 1 A . . . A dz{ A ... A dz

OZ J \
i d(af)

and similarly

Furthermore,

A (a^-,b^-) = rj-^-d ((-l)i+j(abf)dzi A ... A dz^ A ... A dzj A ... A dzn)

^-dz, A...Adz~jA...Adzn

Zi

z! A...Adz~iA...Adzn
OZj

djabf) , d _ d(abf)rld
dzi dzj dzj dzi

5 5 1 . / 8 \ J d /d
—,b— \+A[ a— b- a—A b—

OZi OZjj \ OZi) OZj OZi \ OZj

Thi s proves t h e asser t ion for p = q = 0. HI

Corollary 6.1.10 Let a and (3 be A-closed elements of A°'*(Tx). Then the

bracket [a, 0\ is A-exact. D

The Tian-Todorov lemma will be applied to the coefficients <fii G A°'1(Tx)

of the power series expansion of a deformation of the complex structure. Before
proving the general result, we shall spell out the first two steps.

Let v G H1(X,Tx) be given. We first look for a good representative <j>i G
-40>1(73s:). In order to solve the Maurer-Cartan equation 8<j>2 = —[4>i, 4>i\, we
have to ensure that

i) [</>i,0i] is d—closed and ii) [</>i,</>i] has no harmonic part.
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Here we use the Hodge decomposition AOtl(Tx) = BA°(TX) ©H°'1(Tx) ©
B*A°'2(Tx) with respect to an hermitian metric on X and thus on Tx (see
Theorem 4.1.13).

The first condition is always satisfied:

• If «i G A°'qi(Tx), i = 1,2, are 9-closed, then so is [0:1,0:2].
This follows from Remark 6.1.1, but you may also use the Tian-Todorov
lemma and Lemma 6.1.8 to deduce directly that 9(0:1,0:2] = 0.

The Tian-Todorov lemma also yields:

• If aii G A°'qi(Tx), i = 1,2 are chosen such that 77(0:*) G An~1'qi(X) are

9-closed, then 77(0:1,0:2] is 9-exact. More explicitly, 77(0:1,0:2] = (—I)91 -drj(ai A

0L2)

Eventually, we find:
• If 01 G A0>1(Tx) is chosen such that 77(01) G An~1'1(X) is harmonic

with respect to a Kahler metric on X, then 902 = — [0i, 0i] admits a solution
02 G A°'x{Tx) which can, moreover, be chosen such that 77(02) is 9-exact.

Indeed, by the above arguments ?7[0i, 0i] is 9-exact and 9-closed. Since by
Hodge theory on a compact Kahler manifold a 9-exact form cannot have a
non-trivial harmonic part, this proves that [0i,0i] is 9-exact. But using the
99-lemma (cf. Corollary 3.2.10), we can, moreover, say that there exists a
form 7 G An~2'°(X) with 997 = "~r?[0i)0i]- Then set 02 := ?7~1(97). Since 77
commutes with 9, this proves the claim.

We wish to emphasize that not only have we shown that [0i, 0i] is 9-exact
for any choice of 0i , but also that for the harmonic choice for 77(01) the form
7?[0i)0i] is 9-exact. In fact, for the latter it suffices to assume that rj((f>i) is
9-closed.

All these arguments can now easily be generalized to prove the general
result, which is also due to Tian and Todorov.

Proposition 6.1.11 Let X be a Calabi-Yau manifold and letv G H1(X,Tx).

Then there exists a formal power series (pit + fat2 + ... with (pi G A°'1(Tx)

satisfying the Maurer-Cartan equations

90 i — 0 and 90^ — — y [0j,0/c_^],

0<i<fc

with [0i ] = v and such that

7?(0i) G An~l'l{X) is 9—exact

for all i > 1.

Proof. We begin with 0i G A°'1(Tx) representing v such that ?7(0i) G
•4n~ l ! l(X) is harmonic (9-closed would be enough). Then one finds 02 as
above. Let us suppose that we have found fa,... ,cpk~~i as claimed by the
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Proposition. Then r][<f>i,4>k-i\ is <9-exact for 0 < i < k by the Tian-Todorov
lemma. Thus, in order to find 4>k satisfying the assertion, we have to ensure
that the sum X^o<i<fc[^'^fc-»] ^s <5-closed. As we have used implicitly before,
one has

0<i<k

and by induction hypothesis this equals

E E
0<i<k \0<j<i

0<i<fc

where we use [a,0\ = — [/?, a] for a S A°'2(Tx) and arbitrary /3.

The (9<9-lemma eventually ensures that we can choose (f>k of the form
r]~1(d'j), i.e. i](4>k) is 3-exact. D

Remarks 6.1.12 i) There might be very well other solutions of the Maurer-
Cartan equation which do not satisfy the extra condition that rj((f)i) is <9-exact
for i > 1. In fact, the r}((f>i) need not even be 9-closed.

ii) Even with the extra condition that 77(̂ 1) is harmonic the solution given
by the proposition is not unique. At any step of the recursion we may change
<pk (or rather r/((f>k)) by a d<9-exact form. This then affects all higher order
equations.

By evoking the Green operator G for the chosen Kahler metric it is possible
to single out a distinguished solution. More precisely, one can recursively
define the <j>k by

:=-B*

This is due to the fundamental property of the Green operator, that Ag o G =
id on the space of all <9-exact forms. In this way, one thus kills all ambiguity in
the power series expansion (pit + </>2t2 + .. . , which only depends on the chosen
Kahler structure on X.

iii) So far, we have not said anything about the existence of a convergent
solution. In fact, there is a standard procedure to turn any formal solution
into a convergent one. At this point, a good deal of analysis enters the game.
For the details we refer to [80, Sect. 5.3].

The principal idea is to consider the operator 8 on A°'q(Tx) and its ad-
joint operator with respect to a chosen Kahler (or just hermitian) metric. For
clarity, let us write BTX respectively Bjx for these two operators. Then one
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shows that a formal solution converges if the coefficients 4>k are d^-x -exact. It
is then not too difficult to transform any formal solution into one that satisfies
this additional condition, as the mere existence of a formal solution ensures
that all possible obstructions are trivial.

iv) It is noteworthy that so far we have not used the existence of a
Kahler-Einstein metric on X (cf. Corollary 4.B.22), but have worked with
a completely arbitrary Kahler metric. In fact, once the formal solution in
the proposition has been chosen as proposed in ii), i.e. rj(<f>) harmonic and
r)(4>k) •= —d* (G (r?So<i<fc[|fo><£fc-*]))' then it is automatically convergent
provided the chosen Kahler metric is indeed Kahler-Einstein. In other words,
the existence of the Kahler-Einstein metric ensures that a convergent formal
solution can be constructed directly.

The argument, why the Kahler-Einstein metric works better than any
other Kahler metric goes as follows. In hi) we have quoted the fact that a
formal solution converges if the 7)(4>k) are d^-x-exact. But now, with respect
to a Kahler-Einstein metric the isomorphism 77 : A°'q(Tx) = A1'q(X) is
compatible with the natural hermitian structures on Tx and fix (up to a
constant scalar). In particular, B* o 77 = 77 o 8j-x- The compatibility of the
hermitian metrics under 77 follows from Corollary 4.B.23. A priori, under 77
the two metrics might pointwise differ by a scalar. But, due to the description
of Kahler-Einstein metrics in terms of the holomorphic volume form provided
by Corollary 4.B.23, this scalar is a constant.

Exercises

6.1.1 Compute the dimensions of H1(X,Tx) in the following cases: i) X = ¥n,

ii) X a compact complex torus, and iii) X a curve.

6.1.2 Let X be a compact complex manifold (not necessarily Kahler) with a
everywhere non-degenerate holomorphic two-form a £ H°(X,nx), i-e. the induced
homomorphism Tx —* Ox is an isomorphism. Show that also in this case there
exists a formal solution J^ 4>it* satisfying the Maurer-Cartan equation, such that
[4>i] = v 6 H1(X,Tx) is a given class.

6.1.3 Let X be a compact complex manifold with H2(X,Tx) = 0. Show that
any v G H1(X,Tx) can formally be integrated. This in particular applies to complex

Comments: - The original proof of the Tian-Todorov lemma, which strikes
one as indeed very clever, has been reproduced at various places. Our proof is very
close to the original one.

- The convergence seems more difficult than the mere existence of a formal
solution, but this kind of problem had been studied and well-understood before.

- For results on the structure of the diffeomorphism group of a manifold we refer

to [6],
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6.2 General Results

In this section we collect standard results from deformation theory of com-
pact complex manifolds, but essentially no proofs are given. In this sense the
section is closer in spirit to the various appendices, but we think that such a
central topic deserves its own section. So, the following can be read as a survey
which should be enough for the understanding of many applications, but for
a thorough understanding the reader is advised to consult other sources.

As stressed earlier, deformation theory is difficult to learn and to teach.
The analysis required is far beyond the scope of this book. In fact, [80] is a
whole book on the subject. Moreover, the appropriate language uses complex
spaces which we have avoided so far. Our approach to deformation theory and
the use of complex spaces will thus appear very ad hoc to the more expert
reader.

Let X and S be connected complex manifolds and let n : X —•> S be a
smooth proper morphism. Then the fibres Xt := ir~x{t) are compact complex
submanifolds of X and we say that n : X —> S is a smooth family of complex
manifolds parametrized by S.

Examples 6.2.1 i) Let E be a vector bundle on S. Then X := ¥(E) -> S
is a family. All fibres are isomorphic to fr~1 with r = rk(£l). However, the
isomorphism Xt = fr~1 is not canonical.

Furthermore, IT : X = P(£1) —> S is a locally trivial family, i.e. if S = (J Ui
is a trivializing covering for the vector bundle E then TT""1(C/J) is isomorphic as
a complex manifold to Ui x P*""1. Often, however, the family is not trivial, i.e.
X is not isomorphic to S x Wr~1. As an example one may take E = O © 0(1)
on5 = P1.

ii) Consider the linear system |O(A;)| on Pn of hypersurfaces of degree k and
let X C \O(k)\o x Pn be the universal hyper surf ace. Here, \O{k)\Q C \O(k)\
is the open subset of all smooth hypersurfaces. In coordinates, X is denned
by a single equation Yl ajfj: where / i , . . . , /jv is a basis of H°(Fn, O(k)) and
ai,..., <ZJV are linear coordinates on |C(fc)|.

The projection yields a family X —> S := \O(k)\o. Note that there are fibres
which might be isomorphic to each other. Indeed, PGl(n + 1) acts on P" and
thus on S. The orbits of this action parametrize isomorphic hypersurfaces. On
the other hand, if k > 2 the family is not locally trivial.

iii) Consider X := (C x H)/ ~ with (Z,T) - (Z',T) if and only if z - z' G
Z + Zr. Then X —> 5 := HI is the universal elliptic curve over the upper
half-plane. As was mentioned before, two fibres XT and XT> are isomorphic if
and only if r and r ' are in the same orbit of the natural Sl(2, Z)-action on H
(see page 57).

iv) Let us consider the manifold X of all tuples (y, x,t) £ P1 x P2 x C
satisfying y^xo — y\x\ — tj/o2/î 2 = 0. Then the projection X —» C defines a
family of smooth surfaces. It turns out that for t ^ 0 the fibre Xt is isomorphic
to P1 x P1 (e.g. using the map F x P U Xu (y,z) .-> {y,{{yiz0 + yxzxf :
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,4t~1zoZiyoyi),t)). However, the special fibre XQ is not at all
isomorphic to P1 x P1, it is the Hirzebruch surface V(O @ 0(2)) over P1 .

In these examples we observe many different phenomena:

- The fibres of a family might be all isomorphic without the family being
isomorphic to a product (see i)).

- The fibres might be very different and the family parametrizes them all
in a more or less effective way (see iii)).

- The general fibres might be all isomorphic, but still converging to a
non-isomorphic central fibre (see iv)).

In the differentiable category life is much easier due to the following

Proposition 6.2.2 (Ehresmann) Let n : X -> S be a proper family of

differentiable manifolds. If S is connected, then all fibres are diffeomorphic.

Proof. By connecting two points of the base by an arc, we may assume that
the base S is an interval (—£,1 + e). Then one has to show that the fibres
XQ and X\ are diffeomorphic. Locally in X, the morphism TC looks like the
projection IRm+1 —> E and we may thus lift the vector field d/dt on 5 to

More precisely, there exist finitely many open subsets Ui C X covering
the fibre XQ such that d/dt can be lifted to a vector field Vi on {/$. Using a
partition of unity, one constructs in this way a vector field v on (J Ui that
projects to d/dt on some open neighbourhood of 0 £ (—s, 1 + e).

Since the family is proper, there exists a point to > 0 such that Xto is
contained in (J Ui. Using the compactness of [0,1] it suffices to show that XQ

and Xto are diffeomorphic. A diffeomorphism XQ —> Xto is provided by the
flow associated to the vector field v. •

The arguments in the proof can be used to show more:

Corollary 6.2.3 Every proper family of differentiable manifolds is locally

diffeomorphic to a product. •

It should also be clear from the proof that the arguments do not work in
the complex setting. But once we know that the fibres are all isomorphic as
complex manifolds, the family is in fact locally trivial. This result is due to
Fischer and Grauert [45]:

Theorem 6.2.4 Let X —> 5 be proper family of complex manifolds such that

all fibres are isomorphic as complex manifolds. Then X —> S is locally trivial.O

We will not deal with the more global aspects of families of complex man-
ifolds. In particular, the construction of moduli spaces and universal families,
i.e. families parametrizing all complex manifolds of a certain type effectively,



270 6 Deformations of Complex Structures

will not be touched upon. Let us rather turn to the local aspects of deforming
a complex manifold X.

Let TT : X —> S be a smooth family and 0 6 5. Then TT : X —» S can be
considered as a deformation of the fibre X := XQ. Usually, one restricts to
a germ of 0 £ S, i.e. the family w is only studied over arbitrary small open
neighbourhoods of 0 € S. In this context, X —> S will be called a deformation

ofX.
In particular, we may trivialize n : X —» S as a differentiate family. More

precisely, we may choose a diffeomorphism ^ = X x 5 (passing to a small open
neighbourhood of 0 £ S" is tacitly assumed). In this way, the family of complex
manifolds TT : X —> 5* can be viewed as a family of complex structures on the
differentiable manifold M underlying the complex fibre X. This explains the
relation between our approach in this section and the discussion of Section
6.1.

The first result we want to quote deals with compact Kahler manifolds
that have interested us throughout the whole course.

Theorem 6.2.5 (Kodaira) Let X be a compact Kahler manifold. If X —> S

is a deformation of X = XQ, then any fibre Xt is again Kahler. D

We stress that this is a local result. By definition the fibres of a deformation
X —> S are all close to the central fibre X. So, more precisely, the above result
says that if X —> S is a smooth family and the fibre XQ over 0 € 5 is Kahler,
then there exists an open neighbourhood 0 g ( / c S such that for any t 6 U

the fibre Xt is again Kahler. There are indeed examples where for t £ S 'far'
away from 0 G 5 the fibre Xt is not Kahler anymore.

Let us next describe an alternative approach to the definition of the
Kodaira-Spencer class of an infinitesimal deformation. Let TT : X —* S be
a smooth proper family as before and consider the fibre X := XQ over a
distinguished point 0 £ S. Since TT is smooth, we obtain a surjection of the
tangent spaces TT : TXX —> TQS for any point x £ X. The kernel of this surjec-
tion is the tangent space TXX of the fibre. More globally, we obtain a short
exact sequence of the form

0 ^Tx *TX\X ^T0S®Ox ^ 0 (6.4)

Definition 6.2.6 The boundary map

K:T0S >Hl{X,Tx)

of the associated long exact cohomology sequence is called the Kodaira-

Spencer map. The class n(v) £ if1(X, Tx) is the Kodaira-Spencer class asso-
ciated with the infinitesimal deformation v GToS.

Remark 6.2.7 It is not too difficult to check that this definition of the Kodaira-
Spencer class is compatible with the one given in Definition 6.1.3. In order
to see this, one has to pass from the Cech description of the boundary map
K : T0S -> Hl(X, Tx) to the Dolbeault interpretation of Hl(X, Tx).
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Often, our notion of families and deformation used so far is not flexible
enough. In the language of the previous section, it might happen that the
Maurer-Cartan equation has solutions up to a certain order, but a complete
power series expansion (we are not even talking about convergence yet) does
not exist. In our context, this amounts to allow as the base space S of a family
or a deformation not only complex manifolds but more singular and even non-
reduced structures. The crucial concept here is that of a complex space which
in many respects parallels the notion of a scheme in algebraic geometry.

Definition 6.2.8 A complex space consist of a Hausdorff topological space
X and a sheaf of rings Ox such that locally (X, Ox) is isomorphic to an
analytic subset Z C U C Cn (see Definition 1.1.23) endowed with the sheaf
OJJ /I where I is a sheaf of holomorphic functions with Z — Z(X).

A complex space may have various properties. The topological ones, like
connectedness, properness, etc., only concern the underlying topological space
X, whereas the ring theoretic ones, like reduced, integral, etc., deal with the
properties of the structure sheaf Ox and often just its germs Ox,x which are
local rings. The maximal ideal of Ox,x will be denoted m .̂.

Examples 6.2.9 i) Clearly, any complex manifold provides an example of a
complex space which is locally modeled on Z = U C Cn and X = (0).

ii) Also the equation z\ • zi = 0 defines a complex space X within C2. Its
structure sheaf is O^i/fa • z?). Here, 0 € X is the only singular point, i.e.
X \ {x} is a complex manifold..

iii) The easiest non-reduced complex space is the double point Spec(C[s]).
By definition, Spec(C[e]) consist of one point 0 and the value of the structure
sheaf over the only non-empty open subset {0} is C[x]/x2.

A morphism (X, Ox) —+ (Y,Oy) between complex spaces consists of a
continuous map </? : X —> Y and a ring homomorphism <p : ip~xOy —• Ox-
The fibre of a morphism ip : (X,Ox) —> (Y,Oy) over a point y £ Y is by
definition the complex space ((p^1(y), Ox/<^^1(tny)), where my is the maximal
ideal of the local ring Oyy. Note that this sometimes deviates from our use
of the word. E.g. if one considers the map C —> C, z i—> z2 the fibre over 0 € C
in the new sense would be the double point and not the complex submanifold
{0} C C.

A morphism (X, Ox) —> (Y, Oy) is flat if the stalk Ox,x is a fiat Oyv^xy
module for any x £ X via the natural ring homomorphism Oy^^j —> Ox.x-
In the following, the mentioning of the structure sheaf Ox of a complex space
will often be suppressed.

Using these more general spaces, one defines a smooth family of complex
manifolds as a flat proper morphism X —> S of complex spaces such that
all fibres Xt are smooth. Similarly, one defines a deformation of a complex
manifold X as a complex space X that is flat over a base space 5, which
could be an even non-reduced complex space, and such that all the fibres are
smooth.
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The tangent space of a complex space (S, Os) at a point 0 G S is by
definition the vector space

T0S :=Homc(m0/mg,C).

Analogously to the smooth situation (cf. (6.4)), every deformation X —> S

induces a short exact sequence

0 Tx >• 9x\x T0S ® Ox *• 0 .

As soon as the spaces involved are no longer necessarily smooth, one
changes the notation from Tx to &x or sometimes Dei {Ox)- We are not
going into the precise definition of the tangent sheaf (!) 0 of a complex space
here, but one obtains, as before, the Kodaira-Spencer map ToS —> H1(X, Tx)

as the boundary map of the associated long exact cohomology sequence.

From here it is not difficult to prove the following (cf. Proposition 6.1.5)

Proposition 6.2.10 Let X be a compact complex manifold. Then there is a

natural bijection between classes in H1(X,Tx) and isomorphism classes of

deformations X —> Spec(C[e]) of X. •

A deformation over the double point Spec(C[e]) is called an infinitesimal
deformation (of first order). It corresponds to the first coefficient in the power
series expansion in Section 6.1. In this sense, infinitesimal deformations are
well understood. A central question in deformation theory is whether any
infinitesimal deformation can be integrated, i.e. given a class v G H1(X,Tx)

can one find a deformation over a smooth base S such that v is contained in
the image of the Kodaira-Spencer map ToS —» i71(X, Tx). Since this is not
always possible, one has to deal with arbitrary complex spaces and not only
the double point.

Let IT : X —> S be a deformation of X and / : 5 ' —> S a morphism of
germs (in particular, / maps the distinguished point 0' G 5 ' to 0 G S). Then
the pull-back f*X = X xs S' defines a deformation of X over S'.

Definition 6.2.11 A deformation TT : X —> S of the compact complex mani-
fold X = Xo is called complete if any other deformation IT' : X' —> S" of X is
obtained by pull-back under some / : S' —> S.

If in addition / is always unique, then n : X —> S is called universal. If
only its differential Ts'(O') —> Ts(0) is unique, then the deformation is called
versal.

The existence of a complete (let alone versal) deformation for any compact
complex manifold is a deep theorem. Let us begin with the following criterion
for completeness.

Theorem 6.2.12 (Kodaira—Spencer) A deformation TT : X —> S of X =

Xo over a reduced base S is complete if and only if the Kodaira-Spencer map

ToS —* H1(X, Tx) is surjective.
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In the examples, a complete deformation, which roughly is a deformation
that parametrizes, in a possibly non-effective way, all small deformations of a
given complex manifold, can often be found. It is often much harder to find
a deformation that parametrizes all possible deformations in an effective way.
In fact, in many situations a universal deformation does not exist. But at least
one has:

Theorem 6.2.13 (Kuranishi) Any compact complex manifold admits a ver-
sal deformation.

Note that for a versal deformation X —> S the Kodaira-Spencer map TQS —>
Hl{X,Tx) is bijective.

Using the existence of the versal deformation, one might try to develop
criteria for various additional properties. None of the following results is easy.
We refer to the literature for more details.

• A versal deformation is always complete for any of its fibres.

• If H°(X,Tx) = 0, then any versal deformation is universal and hence
unique.

• If the dimension of H1(Xt,Txt) stays constant in a versal deformation
of X —> S1 of S, then it is versal for any of its fibres.

• One says that X has unobstructed deformations if X admits a smooth
versal deformation, i.e. the base S is an honest complex manifold. This is the
case if H2{X,Tx) = 0.

In fact, the results explained in the last section (cf. Proposition 6.1.11)
show that any Calabi-Yau manifold X, i.e. a compact Kahler manifold with
trivial canonical bundle Kx, has unobstructed deformations. An algebraic
approach was developed by Ran and Kawamata [74], using the so called T1-
lifting property.

The idea why Calabi-Yau manifolds should have unobstructed deforma-
tions is the following: One observes that for any deformation Xt of a Calabi-
Yau manifold X of dimension n one has Hl(Xt,TXt) = tf1^, J?^1) . The
dimension of the latter space does not depend on t, as it occurs as a direct sum-
mand of the Hodge decomposition of Hn(Xt,C) which in turn only depends
on the underlying topological manifold. By iii) this shows that the family is
versal and that all tangent spaces of S are of the same dimension. Now, if S
is reduced this would be enough to conclude that S is in fact smooth, i.e. that
X has unobstructed deformations. Of course, the fact that S could a priori be
non-reduced makes the problem much harder (see e.g. [61, Sect. 14] for more
details).

Comments: - For the general deformation theory of complex manifolds see
Kodaira's original papers or his book [80]. We also recommend Douady's survey
[39].
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- For the theory of complex spaces one might consult [58].
- Note that a small deformation of a projective manifold need not be projective

again. Thus, if one wants to work exclusively in the algebraic context, one has to
modify the techniques accordingly. In particular, the first-order deformation of a
polarized manifold (X, L) are in general not parametrized by H1(X,Tx)-
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Appendix to Chapter 6

6.A dGBV-Algebras

In this appendix we will give a first introduction to differential Gerstenhaber-
Batalin-Vilkovisky algebras and their deformations. It will turn out that the
Tian-Todorov lemma, and thus the unobstructedness of Calabi-Yau mani-
folds, can be interpreted in this more general framework. This more abstract
approach makes very clear which algebraic structures are really needed to
make the Tian-Todorov deformations work.

Let us begin with the definition of an abstract dGBV algebra. In the
following we let (A, d) be a differential supercommutative C-algebra. This is
a slightly weaker notion than that of a dga used in Appendix 3.A. Here,
only a Z/2Z-grading of A is required. In particular, there is a decomposition
A = A0 © A1, where A0 (resp. A1) is the set of even (resp. odd) elements. If
a s A is a homogeneous element then a 6 Z/2Z is determined by a £ Aa.

The differential d is a C-linear odd derivative. More precisely, d(A°) C A1

and diA1) C A0, d(a • (3) = d(a) • (3 + ( - l )"a • d(/3) for all homogeneous a,
and d2 = 0.

Definition 6.A.I A supercommutative C-algebra A (no differential yet) to-
gether with an odd C-linear map A : A —> A is called a Batalin-Vilkovisky
algebra (BV algebra, for short) if for any a £ A the map

Sa : A - A, /3I - (-lfA(a • /?) - ( - l )M(a) • /? - a • A{P)

is a derivation of parity a + 1. If in addition A2 = 0, then (A, A) is a
Gerstenhaber-Batalin-Vilkovisky algebra (GBV algebra for short).

One speaks of a differential (Gerstenhaber-)Batalin-Vilkovisky algebra if
A is also endowed with a differential d satisfying \d,A] =doA + Aod = 0.

Let now (A, d, A) be a dGBV algebra, then one introduces the following
bracket. For any Q,/3 G A one sets

[a*/3]:=6a((3).

At first sight, this is just a new notation for Sa, but it turns out that [ • ]
shares indeed many properties of a Lie bracket. In fact, it is what one calls an
odd Lie bracket. What this means, is expressed by

Proposition 6.A.2 Let (A,d,A) be a dGBV algebra. Then

ii) [ a . [/3.7]] = [[a./3] .7] + (-l)(«+D(/3+D[/?. [a .7]].
iii) [d,Sa] =5d{a) = [d(a)» }.
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Proof. All these properties can be proved by a rather straightforward compu-
tation. As an example let us show iii) for an even a. By definition and using
do A = —Aod one computes

= d(5a(p))+6a{d{p))

= d {A(a • (3) - A(a) -(3-a- A{P))

+A(a • df3) - A(a) • d/3 - a • A{df3)

= -A((da) • p) + A(da) • (3 - d(a) • A((3)

U

Proposition 6.A.3 Let (A,d,A) be a dGBV algebra and let 0 € A0. Then

d,), := d+S,/, is an odd derivation. Furthermore, d^ = 0, i.e. d^ is a differential,

if and only if the master equation

= 0 (6.5)
L\ *• / J

holds true.

Proof. Since d and 8^ are both odd derivations, their sum d^ is a derivation
as well.

Clearly, d2^ = [d, 5$] + [4> • [<f> • ]]• By iii) of Proposition 6.A.2 we know

t h a t [d, 8^} — [d((f>) • ] a n d u s i n g ii) o n e finds [<fi • [<j> • ]] = | [ [ ^ • (/>} • }.

T h i s s h o w s t h a t d | = 0 if a n d o n l y if [(d(<f>) + \ [<f> •< /> ] ) • ] = 0 . O

Clearly, the master equation can also be written as

= 0.

We now come back to the example that interests us most: The case of
a complex manifold and more specifically of a Calabi-Yau manifold X. It
will turn out that deforming a complex structure can also be viewed as a
deformation of a differential algebra as above.

Let X be a complex manifold. One defines

The Z/2Z-grading given by p + q and the exterior product determine the
structure of a supercommutative algebra on Ax- Note that, we require
dzi A (d/dzj) = —(d/dzj) A dzi (otherwise the product wouldn't be Z/2-
commutative.)
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Since Tx and all exterior powers /\p Tx are holomorphic bundles, 8 endows
Ax with the structure of a differential graded algebra. (Verify the signs!)

This example shows an additional feature, namely the existence of a Lie
bracket

[ , ] : A°>o(f\pTx) x A°'*'(/\P'TX) A°«+«(hP+p'-1Tx) ,

called the Schouten-Nijenhuis bracket. In local coordinates it is given by

aijdzj-—,f3KLdzKT.— | = dzj A dzK
clz az

,f3KLdzKT.
clzj az

9 R 8

dzj dzL

with [viA.. .Avp,WiA.. .Awp>] = J2{-^Y+i[vi,Wj]Avi A.. .A^A. . .AupAwiA
... Aw] A ... AWpi and [v\ A .. .Avp, / ] = ^2(—l)p"lVi(f)vi A ... AVi A ... Avp

for p' = 0. In particular, it generalizes the Lie bracket [ , ] on A°'*(7~x)

introduced in Section 6.1. The sign convention used here yields

In fact, the Schouten-Nijenhuis bracket is the analogue of the odd Lie
algebra bracket [ • ] on a dGBV algebra. The difference is that for an
arbitrary complex manifold X the algebra Ax is not endowed with the ad-
ditional structure A. This is only the case for a Calabi-Yau manifold, as we
will see shortly, but for the moment we stick to the case of a general complex
manifold. Although, the Schouten-Nijenhuis bracket is not induced by an ad-
ditional differential A, it still satisfies most of the properties of [ • ]. In
particular, we will again write Sa := [a, ] and with the local description at
hand, one easily verifies:

Lemma 6.A.4 Let a e A0'q(f\pTx). Then:
i) [a, ] : A —> A is a derivation.

iii) [d,Sa] =
{a)

This yields immediately the analogue of Proposition 6.A.3 for Ax with X

an arbitrary complex manifold:

Corollary 6.A.5 Let X be a complex manifold and let <j> e Ax-

Then d^ := d + S^ is an odd derivation on Ax- Furthermore, B^ = 0, i.e.

dfj, is a differential, if and only if the master equation

§(<!>)+ 1 ^ , ^ = 0 (6.6)

holds true. D
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Remark 6.A.6 There is an obvious similarity between the Maurer-Cartan
equation (6.2) and the master equation (6.6). More precisely, if 4>(t) £
A0'1(Tx) describes the deformation I(t) of the complex structure denning
X then I(t) is integrable, which is equivalent to (f>(t) satisfying the Maurer-
Cartan equation (6.2), if and only if \4>{t) G A°'l(Tx) C A°x satisfies the
master equation.

In other words, we can study deformations of the complex structure / in
terms of deformations of the differential d on A°'*(f\* Tx). (This should not be
confused with the differential d(t) associated with the complex structure /(£),
which a priori lives on a different algebra.) The factor 1/2 in the transition
from the Maurer-Cartan equation to the master equation is harmless.

In this sense, solutions of the master equations can be viewed as gene-
ralized deformations of the given complex structure. However, a satisfactory
geometric interpretation of those is still missing for the time being.

For an arbitrary manifold X the differential algebra (Ax, d) has no reason
to carry the additional structure of a BV algebra. This is only ensured for
Calabi-Yau manifolds, as we shall explain next.

Let X be a complex manifold with trivial canonical bundle Kx = Ox and
fix a trivializing section fl € H°(X,Kx)- Then, due to Definition 6.1.7, one
obtains an odd operator

A : A°'«(f\pTx) ^A^itf-1 Tx) •

As in the general context, one then defines the operators 6a for any a G
A°'q{f\pTx) in terms of A.

Proposition 6.A.7 (Generalized Tian-Todorov lemma) The above as-
sumption implies

-{a, (3) = ( - l ) M ( a • (3) - (-l)&A(a) • (3 - a • A(J3)

for any a,(3 £ Ax-

Proof. The proof is slightly more involved than the one of Lemma 6.1.9, but
the idea is of course the same. •

This immediately yields:

Corollary 6.A.8 Let X be a Calabi-Yau manifold X. Then d and A define
the structure of a dGBV algebra on A°'*(X, /\* Tx).

Proof. Since [a,(3} = (-\)&A{a • /3) - (-l)&A(a) -(3-a- A(j3) by Proposition
6.A.7 and since [a, ] is a derivation by Lemma 6.A.4, (A°'*(X, f\* Tx), A) is
a BV algebra. It is in fact GBV, as A2 = ry"1 o d2 o 77 = 0.

Moreover, since the holomorphic volume form Q is holomorphic, one
has dA(a) = dri~1dr](a) = i]~1ddr](a) = -r]~1ddr](a) = -A(da). Hence
[d, A}=0. a
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From now on, for a Calabi-Yau manifold X, we will use the two notations
[ , ] and [ • ] interchangeably, the difference in the sign being of no
importance and often suppressed altogether.

Remark 6.A.9 In the general context of a dGBV algebra (A, d, A), the defor-
mation dff, of the differential d yields again a dGBV algebra (A, d^, A) if one
assumes in addition A(4>) = 0, because this implies immediately [d^, A] = 0. In
the geometric situation of a Calabi-Yau manifold X, the condition A((f)) = 0
amounts to r](<j)) be 9-closed. This condition has been encountered before in
the proof of Proposition 6.1.11.

Once the analogy between the Maurer-Cartan equation for a Calabi-Yau
manifold X and the master equation for Ax has been understood, one can
go one and construct (formal) solutions of the master equation for a general
dGBV algebra following the Tian-Todorov approach. In the case of a Calabi-
Yau manifold X, we have seen that any first-order deformation, which are
parametrized by elements in Hl(X,Tx), can be extended to a formal solu-
tion. In other words, we have seen how to construct a formal solution of the
Maurer-Cartan equation as an element in A°'1{X,TX) ® C[Hl(X,Tx)*). We
will proceed similarly in the case of a dGBV algebra.

So, let (.4, d, A) again be a general dGBV algebra.

Definition 6.A.10 The cohomology H(A) of a (A,d,A) is the cohomology
with respect to the differential d, i.e.

Kev(d-.A^A)

Clearly, the cohomology H(A) is again a Z/2Z-graded algebra. To simplify
the discussion, we will assume however that H1 (A) = 0, i.e. only even elements
give rise to non-trivial cohomology classes. The aim is to construct a formal
solution of the master equation as an element in A <3 C[H(A)*}. In order
to achieve this one has to add two further conditions on our dGBV algebra
(A,d,A):

(1) The cohomology H(A) is finite-dimensional.
(2) Im(d o A) = (Ker(d) n Ker(zA)) n (Im(d) +

Proposition 6.A.11 Let Ax be the dGBV algebra associated to a compact
Kahler manifold X with trivial canonical bundle. Then the conditions (1) and
(2) hold true.

Proof. Clearly, (1) is satisfied, as the cohomology H(Ax) is just the direct sum
0 Hq(X, /\p Tx) of Dolbault cohomology groups, which is finite-dimensional
as soon as X is compact.

The assertion for (2) follows from formality, i.e. from the 95-lemma, for
compact Kahler manifolds. Indeed, the inclusion ' c ' is obvious and to verify
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' 3 ' one first writes any element 7 E (lm(d) + Im(Z\)) as rj~l{da + drj/3).

Then one shows that 7 E (Ker(tf) PI Ker(Z\)) implies that one can write da =

dda' and di](/3) — dd(i](P')), which is an immediate consequence of the dd-

lemma. •

Proposition 6.A.12 Let (A,d,A) be a dGBV algebra satisfying the addi-

tional hypotheses (1) and (2).
Then there exists an element <P G A® C[H(A)*] whose homogeneous part

of degree k is denoted $>k, such that

i) d($) + j [ $ • <£] = 0 (master equation).
ii) # 0 = 0.

iii) $1 £ i ® H(A)* defines a split of the surjection Ker(d : A —> A) —>
H(A). Moreover, one may assume that <3>i G (Ker(rf) PlKer(Z\)) ® H(A)*.

iv) <£fc G Ker(Z\) ® C[H(A)*] for k>2.

Proof. We leave the proof to the reader, as it is identical to the original proof
of Proposition 6.1.11. The reader is advised to again construct <2>i and $2 first,
in order to get a feeling for how the recursion works. The recursion for the
higher order term is analogous. •

Comments : - All results of this section can be found in [7], where Barannikov
and Kontsevich used dGBV algebras in order to construct Frobenius manifolds. Our
presentation is based on Manin's book [89] which also contains a detailed account
of the relation between dGBV algebras and Frobenius manifolds.

- There is also a symplectic version of the Barannikov-Kontsevich approach due
to Merkulov, see [90].



Hodge Theory on Differentiable Manifolds

This appendix is meant to remind the reader of a few basic definitions and facts
from differential geometry, but it cannot replace an introduction to the sub-
ject. We use the opportunity to introduce the related notations used through-
out the text. No proofs are given, the material is far from being complete and
the reader is advised to go back to any of the standard textbooks for details.

Definition A.0.1 An m-dimensional Cfc-manifold is a topological space M

together with an open covering M = [jUi and homeomorphisms <pi : Ui == V,
onto open subsets V* C Rm such that

i) M is Hausdorff.
ii) The topology of M admits a countable basis.
hi) The transition functions <pj o ipT1 \ <pt(Ui D fj) —+ <Pj{JJ% n Uj) are

Cfc-maps.

A differentiable manifold is a C°°-manifold and only those will be con-
sidered. The datum {(Ui,ipi)} is called an atlas and each tuple (Ui,ipi) is
a chart. We say that two atlases define the same manifold if the transition
functions ^ o tp~l are differentiable.

If M is a differentiable manifold, then one can introduce differentiable
functions on M. By CM we denote the sheaf of differentiable functions, i.e. for
any open subset U C M the value of CM on U is the space of differentiable
functions / : U —> H., i.e. functions such that / o (p~l : <pi(U n Ui) —> M. is
differentiable for any chart (Ui,<f*i). Analogously, one introduces differentiable
maps between differentiable manifolds.

In particular, there is the stalk CM,X of the sheaf of differentiable functions
at every point x € M. The tangent space TXM of M at the point x (E M can
be denned as

TxM:=DerR(CM ,x,K),

the vector space of derivations D : CM,X —» K, i-e. of M-linear maps satisfying
D{f • g) = f(x) • D(g) + D(f) • g{x).'E.g. any curve 7 : (-e,e) -» M with
7(0) = x defines a tangent vector D1 by -D7(/) = (d(f o j)/dt)(O).
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All the tangent spaces TXM glue to the tangent bundle TM = {JxeM TXM

which is an example of a differentiable real vector bundle on M.

Definition A.0.2 Let M be a differentiable manifold. A differentiable vector

bundle of rank r on M consists of a differentiable manifold E, a differen-
tiable map •K : E —> M, and the structure of a real vector space on any fibre
E(x) := TT~1(X), such that there exists an open covering M = (J Ui and dif-
feomorphisms ipi '• n~l(Ui) —* Ui x R r with pr^. o ^ = n and such that for all
x £ Ui the map ipi(x) : E(x) —> M1" is an isomorphism of real vector spaces.

A real vector bundle can also be described in terms of the cocycle
4>ij : Ui n Uj —> Gl(r, M). For line bundles, i.e. vector bundles of rank one,
this leads to a complete parametrization of isomorphism classes by the sheaf
cohomology HX(M,CM) of the multiplicative sheaf of nowhere vanishing dif-
ferentiable functions. Similarly, isomorphism classes of complex line bundles
are in bijection with the elements of H1(M,CM c ) , where CM,C is the sheaf of
complex valued differentiable functions. See also Appendix B.

In fact, all this works also for higher rank vector bundles, which are
parametrized by H1(M, Gl(r, CM)) with the difference that the latter coho-
mology group needs an extra definition, for the sheaf of functions with values
in the group of invertible matrices is not abelian for r > 1.

In the cocycle language the tangent bundle TM corresponds to {D(tpi o
fJl)OiPj}, where DfajOtpJ1) is the total differential of the transition function.

To any vector bundle TT : E —> M one associates its sheaf of differentiable
sections, also denoted E, by

E(U) := r(U, E) := {s : U - • E TT O S =

(This might lead to confusion: In the main body of the text we often speak
about holomorphic vector bundles E, which in particular are differentiable
vector bundles. Thus, there are two sheaves associated with it: the sheaf of
holomorphic sections and the sheaf of differentiable sections, both denoted E.

It should be clear from the context which one is meant.)

Recall that vector bundles E, F on a manifold M give rise to new vector
bundles (still on M) by taking direct sums E © F, tensor products E ® F,

homomorphisms Hom(E,F), etc. Moreover, any sub-bundle F C E is a di-
rect summand of E by writing E — F © F1-, where F1- is the orthogonal
complement of F with respect to a metric on E.

In this vain, one defines the cotangent bundle f\M as the dual (TM)* =

Hom(TM, M x l ) and the bundles of /b-forms

Their sheaves of sections are given special names: By Ak
M one denotes the sheaf

of sections of /\ M, the sheaf of k-forms. In particular, A°M — CM, which is
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a sheaf of real algebras, and all the higher AM are sheaves of modules over
A°

•AM-

If / : M —> N is a differentiable map, then there exists a natural pull-back
map f~1A% —> AM for any k.

Using the local description of Ak{U) for an open subset U C Mm as the
space of differential forms ]T) f^.^dx^ A . . . A dxik with f^...^ 6 C(U), one
defines the exterior product

which is a map of CM sheaves, and the exterior differential d : AM

which is a map of sheaves of M-vector spaces only. Using vector fields, i.e.
sections of TM, one can invariantly define the exterior differential by

fc+i

(da)(vi,..., vk+i) :=

Here, the Lie bracket is understood as the Lie bracket of derivations.
Since d2 = 0 locally, one obtains a complex of sheaves, the de Rham

complex

CM ^AM *A2
M - • • •

Proposition A.0.3 (Poincare lemma) The de Rham complex of sheaves is

a resolution of the sheaf of locally constant functions M C CM-

Definition A.0.4 The de Rham cohomology of a differentiable manifold M

is defined as

Rk(M R) _
[ ' j Im(d:Ak1(M)^Ak(M))

Due to the Poincare lemma and the fact that the sheaves AM are acyclic,
because they are soft (cf. Definition B.0.38), the de Rham cohomology co-
incides with the sheaf cohomology of the sheaf R of locally constant real
functions.

Definition A.0.5 The k-th Betti number of M is bk(M) := dimR Hk(M,R).

The Euler number is e(M) := £(- l ) f c6 f c (M).

Of course, this definition makes only sense if the cohomology is finite di-
mensional, which is often the case in particular for compact manifolds.
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The exterior product yields a multiplicative structure on the de Rham
cohomology H*(M,R) = <$Hk(M,R):

Hk{M,R) x He(M,R) ^Hk+e(M,R) .

If M is compact and oriented, i.e. /\m M is trivial and a trivializing section
has been chosen up to scaling by positive functions, then integration yields a
linear map

fM:Hm(M,R) *R, [a] I *fMa.

If M is in addition connected, then the integral is an isomorphism and one
obtains a pairing

Hk{M,R)xHm-k{M,R) ^K, ([a],[/3])i ^ / M « A / 3 .

Proposition A.0.6 (Poincare duality) Under the above assumptions the

pairing is non-degenerate.

In particular, &fe(M) = 6m_fc(M). One possible approach to prove the
proposition is via harmonic forms (see Corollary A.0.15).

Examples A.0.7Using the Mayer-Vietoris sequence one can easily compute
the Betti-numbers of some of the basic examples:

i) Hk(Sm, R) = R for k = 0, m and trivial otherwise.
ii) tf*(Pn,M) = H2*{Pn,R) = R[t]/{tn+1) with deg(t) = 2. (Here, as

always for us, P" is the complex projective space.)

Let us now turn to Riemannian manifolds. A Riemannian manifold is
a differentiable manifold M with the additional structure of a Riemannian
metric g, i.e. a section g of f\M®f\M inducing a positive definite symmetric
bilinear form, i.e. a scalar product, on each TXM.

By standard linear algebra, the metric g also endows /\x M and all f\x M

with a natural scalar product.
If M is in addition oriented, then one has a unique m-form, the volume

form, vol = vol(M,s) which is of norm one and positive oriented at every point
x £ M. The volume of the Riemannian manifold (M,g) is Jx vol(jw,g)-

Let (M, g) be an oriented Riemannian manifold of dimension m. Using the
metric and the orientation one introduces the Hodge ^-operator

*: Ak(M) ^Am~k(M)

(cf. Section 1.2). The form *1 is the volume form vol(^]9). The adjoint d* of
the exterior differential d is given by

d* :=(-l)m( f c+1)+1*d* on Ak{M)
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and the Laplace operator is

A := d*d + dd*.

Clearly, d* is of degree —1, whereas A is of degree zero, i.e. A induces an
endomorphism of each Ak(M).

Since the metric g induces a natural scalar product on any fibre /\x M for
all x € M, one can introduce a scalar product on the space of global k-iorms
whenever M is compact.

Definition A.0.8 If (M, g) is a compact oriented Riemannian manifold then
for a,/3 e Ak(M) one defines

(a, /3) := I g(a, 0) • vol(Afiff) = / a A */?.
JM JM

Lemma A.0.9 If M is compact, then

(da,[3) = (a,d*(3) and (Act,?) = (a,A0),

i.e. d* is the adjoint operator of d with respect to ( , ) and A is self-adjoint.

Remark A.0.10 Note that for the standard metric on M.m the Laplacian A as
defined above applied to a function / : IRm —> M is A(f) = — ^2d2f/dxf, i.e.
A differs from the standard definition by a sign.

Definition A.0.11 The form a £ Ak(M) is harmonic if A(a) = 0. The space
of all harmonic k-forms is denoted by Tik(M,g) or simply 7ifc(M) if the metric
is understood.

Lemma A.0.12 On a compact oriented manifold (M,g) a form a is har-
monic, i.e. A(a) = 0, if and only if da = d*a = 0.

Corollary A.0.13 The natural map Hk{M) -* Hk(M,U) that associates to
any harmonic form its cohomology class is injective. (In fact, it is bijective,
as will be explained shortly.)

Lemma A.0.14 For any Riemannian manifold (M,g), not necessarily com-
pact, one has *A = A* and * : Hk{M,g) = Hm~k{M,g).

Corollary A.0.15 (Poincare duality) Let (M,g) be a compact oriented
connected Riemannian manifold. Then the pairing

Hk(M,g)xHm-k(M,g) -K, (a,/?)i - / M « A / 3

is non-degenerate.

It is not difficult to check that on a compact manifold the three subspaces
d{Ak-1{M)), d*{Ak+1(M)) &ndHk(M,g) of Ak(M) are pairwise orthogonal.
All results mentioned so far are more or less elementary. The following however
requires some hard, but by now standard, analysis.
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Theorem A.0.16 (Hodge decomposit ion) Let (M,g) be a compact ori-

ented Riemannian manifold. Then, with respect to the scalar product ( , ),
there exists an orthogonal sum decomposition with respect to the scalar prod-

uct ( , ):

Ak(M) = d{Ak~x(M)) 8 Hk(M,g) © d*{Ak+1 (M)).

Moreover, the space of harmonic forms Hk(M, g) is finite-dimensional.

Corollary A.0.17 The projection in Corollary A.0.13 yields an isomorphism

Equivalently, every cohomology class has a unique harmonic representative.

The following characterization of harmonic forms is often useful.

Lemma A.0.18 Let (M,g) be a compact oriented Riemannian manifold and

let a £ Ak(M) be closed. Then a is harmonic if and only if \\a\\ is minimal

among all forms representing the cohomology class [a] of a.

Comments : - Any textbook on global differential geometry will cover most of
what we need, e.g. [12, 10, 79, 102].

- The approach to cohomology via differential forms is stressed in [16].
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Sheaf Cohomology

In the bulk of the book we make frequent use of the theory of sheaves. It could
often be avoided, but it is the appropriate language whenever one studies the
interaction of local and global properties of a topological space, e.g. a manifold.
The most relevant aspect for our purpose is sheaf cohomology and it would
be very unnatural to avoid using this powerful machinery.

The appendix reminds the reader of the basic definitions (sheaves, res-
olutions, cohomology) and how to use them in some easy situations. With
the appendix at hand, the parts of the book where sheaf cohomology is used
should be accessible also to the reader with little or no prior knowledge.

In the following, M will be a topological space. In most of the examples it
is the topological space underlying a differentiable or even complex manifold.

Definition B.0.19 A pre-sheaf T of abelian groups (or vector spaces, rings,
etc.) on M consists of an abelian group (resp. a vector space, a ring, etc.)
r(U, J-) = J~(U) for every open subset U C M and a group homomorphism
(resp. linear map, ring homomorphism, etc.) ruy '• 3~(V) —> J-{U) for any two
nested open subsets U C V satisfying the following two conditions:

i) ru,u = id;F(i/)-
ii) For open subsets U C V C W one has ruy °fv,w = rjj,w-

Sometimes, one additionally requires J-{0) = 0. In order to lighten the
notation a bit, one may also write s\u instead of ruy(s).

Example B.0.20 The basic example is T = C°M, the pre-sheaf of continuous
functions on M. More precisely, C^iU) is the ring of all continuous maps
f:U-*R.

For T = C°M one easily verifies the following additional conditions, which
do not hold for arbitrary pre-sheaves. We let U = \J U{ be the union of open
subsets Ui C M. Then:

iii) If f,g G C°M({JUi) with rUuU(f) = rUt%u(g) for all i, then f = g.
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iv) If functions fi £ C°M{Ui) are given for all i such that rUjnu^U

rUitiUjVjifj) f° r anY 3i then there exists a continuous function / G C^(U)

with rjji,u(f) = fi f°r all i-

This leads to the definition of a sheaf.

Definition B.0.21 A pre-sheaf T is called a sheaf if iii) and iv) are satisfied.

Examples B.0.22\) The constant pre-sheaf R, for which F(U) = E for all
open subsets 0 ^ U C M is not a sheaf as soon as M contains a disconnected
open subset.

Usually one works rather with the constant sheaf(!) JR., which, on an open
set U C M, yields the set of all continuous functions / : U —> M, where K is
endowed with the discrete topology.

Of course, one defines in the same manner constant sheaves associated to
other vector spaces, groups, rings, etc. E.g., we frequently use Z, which is the
constant sheaf associated with Z. Often, the notation is simplified by writing
M. and Z instead of M respectively Z.

ii) Another important example is the sheaf £ of sections of a (topological)
vector bundle ir : E —> M. By definition £(U) is the set of all (continuous)
maps s : U —> -E with TT o s = idjy (cf. Definition A.0.2).

In fact, £ is a sheaf of C^-modules, i.e. each £(U) is a C^(£/)-module
and the restriction maps are compatible with the module structures on the
different open subsets.

Since the vector bundle E can be recovered from its sheaf of sections £,

one often uses the same notation E for both.

Definition B.0.23 Let J- and Q be two (pre-)sheaves. A (pre-)sheaf homo-

morphism if : T —> Q is given by group homomorphisms (linear maps, ring
homomorphisms, etc.) <pu : J-(U) —> Q(U) for any open subset U C M satis-
fying r ^ y otpv = ipu o rfjV for any [/ C V.

Once a homomorphism ip : T —> Q of (pre-) sheaves of abelian groups is
given, one constructs the associated pre-sheaves Ker(c^), Im(y), and Coker(</s)
which are denned in the obvious way, e.g. Coker^) (U) = Coker(y[/ : J-(U) —*

There is an important subtlety here. If <p is a sheaf homomorphism then
is a sheaf itself, but Im(</?) and Coker((p), in general, are just pre-

sheaves.
In order to define the cokernel and the image of a sheaf homomorphism as

honest sheaves, one needs to introduce the notion of a stalk.

Definition B.0.24 Let J ' b e a (pre-)sheaf on M and x £ M. Then the stalk

of T at x is

Tx := {(U, s) | x G U C M, s G .F(C0}/ ~ •

Here, for two open subsets C/j, i = 1,2 and sections s* G J-(Ui), i = 1,2, one
sets (f/i, si) ~ (C/2, S2) if there exists an open subset x £ U C Ui n U2 such
that
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Equivalently, one could introduce the stalk Tx as the direct limit Tx =

limxeU?(U).
One immediately finds that any section s £ J~(U) induces an element

sx £ J~x f° r a n y point x £ U. Furthermore, any (pre-)sheaf homomorphism
tp : J- —> G induces homomorphisms J-x —> Qx for any x G M.

Definition B.0.25 The sheaf T^ associated to a pre-sheaf T is the sheaf for
which J- + (U) of an open subset U c M is the set of all maps s : U —> [jx£u J-x

with s(x) £ J-x and such that for all x £ U there exists an open subset
x G V C U and a section t G J-(V) with s(y) = t(y) for all y G V.

With this definition, J-+ is a sheaf and the natural inclusion J- C J-+ is an
isomorphism if the pre-sheaf T was already a sheaf. For many constructions
one needs to pass from a naturally defined pre-sheaf to its sheafification. E.g.
the tensor product J- (S)ii Q of two 7£-modules J- and Q is defined as the
sheafification of U i—> J-{U) ®iz{U) G{U)-

Definition B.0.26 Let <̂  : J7 —> ^ be a homomorphism of sheaves. Then
the image sheaf Im(</?) is the sheaf associated with the image pre-sheaf U i—>
hn((pu)- Analogously, one defines the cokernel sheaf Coker(y).

The sheaf homomorphism ip is injective if and only if Ker(iy3) is trivial.
Similarly, one says that ip is surjective if its cokernel sheaf Cokex(ip) is trivial.
The essential difference between these two properties is that <p is injective if
and only if ipu is injective for any open subset U. On the other hand, ip might
be surjective without ipu being surjective for all/any open subset. However,
both properties can be detected by their stalks. More precisely, ip is injective
or surjective if and only if <px : Tx —> Qx is injective respectively surjective for
any point x £ M.

Definition B.0.27 A sequence T' of sheaf homomorphisms

is a complex if <pz+1 o ip% = 0 for all i. It is an exact complex if Kei(ip1+1) =

Im(tpl) for all i.

An exact complex of the form 0 *- JF0 *• Tl *- T2 *- 0 is
called short exact sequence.

Corollary B.0.28 A complex of the form

0 *• F° *• T1 *• T2 *• 0

is exact if and only if the induced complex of stalks

0

is exact for any x G M.
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Since surjectivity does not mean surjectivity for any open subset, a short
exact sequence as above does not necessarily define short exact sequences

0 »• F°(U) >• Tl{U) ^ F2(U){ >• 0)

for any open subset U C M and in particular not for M. This is where
cohomology comes in. It turns out that the failure of surjectivity of

is measured by the cohomology of !F0.

In order to introduce sheaf cohomology, one has to make a choice. There is
the theoretically superior but rather abstract approach via derived categories
or the more ad hoc one using acyclic resolutions. We outline the second one.

One first has to single out special sheaves with no cohomology in order to
define cohomology for all other ones by resolving them.

Definition B.0.29 A resolution of a sheaf T is a complex 0 —> J-° —* J-1 —>
. . . together with a homomorphism J- —> J-° such that

is an exact complex of sheaves.

One possible choice for sheaves without cohomology is provided by flasque
sheaves.

Definition B.0.30 A sheaf J- is called flasque if for any open subset U C M

the restriction map ru,M '• 3~(M) —> J-(U) is surjective.

Why flasque sheaves are the right ones is explained by the following

Lemma B.0.31 / /

0 *- JF° *• Tx *• T2 *- 0

is a short exact sequence and !F° is flasque, then the induced sequence

0 *• J*{U) *- Fl(U) *• F2{U) >• 0

is exact for any open subset U C M.

Next, one has to ensure that any sheaf can be resolved by flasque sheaves.
This will allow to define the cohomology of any sheaf.

Proposition B.0.32 Any sheaf J- on M admits a resolution

0 *• T *• JP° •- T1 *• J^ *• • • •

such that all sheaves T%, i = 0 , 1 , . . . are flasque.
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Definition B.0.33 The i-th cohomology group Hl{M,J~) of a sheaf T is the
i-th cohomology of the complex

induced by a fiasque resolution J- —> J-*. Explicitly,

ff*(M,.F) =

Clearly, with this definition any fiasque sheaf T has vanishing cohomology
H\M,T) = 0 for i > 0. Moreover, for any sheaf T one has HQ(M,T) =

F(M,J-) = J-(M). That this definition of cohomology is really independent
of the chosen fiasque resolution is due to

Proposition B.0.34 If J- —* T* and J- —> Q* are two fiasque resolutions of

a sheaf T then both define naturally isomorphic cohomology groups.

The most striking feature of cohomology is that it explains fully the non-
exactness of short exact sequences on the level of global sections.

Proposition B.0.35 Let

be a short exact sequence of sheaves on M. Then there exists a long exact
cohomology sequence

Definition B.0.36 Suppose J- is a sheaf of vector spaces on M. Then
hl{M, J-) denotes the dimension of HZ(M, J-), which inherits a natural vector
space structure. If all hl(M, J-) are finite and only finitely many are non-trivial
{J- has 'finite cohomology'), one defines the Euler-Poincare characteristic of
J- as

An easy consequence of the existence of the long exact cohomology se-
quence is
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Corollary B.0.37 Let

0

be a short exact sequences of sheaves of vector spaces with finite cohomology.

Then

It might happen that flasque resolutions are difficult to find. But in order
to compute the cohomology of a sheaf, any resolution by acyclic sheaves,

i.e. sheaves with trivial higher cohomology groups, can be used. What kind
of acyclic sheaves are convenient depends on the situation. For topological,
differentiable, and complex manifolds, the following one is very useful. For the
Zariski topology one has to use different ones.

Definition B.0.38 A sheaf T is called soft if the restriction F(M,Jr) ->
F(K, J7) is surjective for any closed subset K C M.

The space of sections F(K, F) of T over the closed set K is defined as the
direct limit of the spaces of sections over all open neighbourhoods of K.

Proposition B.0.39 Soft sheaves are acyclic. Any sheaf of modules over a

soft sheaf of commutative rings is soft and hence acyclic.

This is frequently applied to the sheaf of continuous (or differentiable)
functions on a manifold which is easily shown to be soft. Notice that the sheaf
of holomorphic functions on a complex manifold is not soft.

Cech cohomology is another cohomology theory. It has the advantage to be
defined without using any sheaf resolution. Since it often coincides with the
cohomology defined above, we will sketch the main steps of its construction.

Let us first fix an open covering M = \Ji Ui with / an ordered set and
consider the intersections t^io...ip := Ui0 n . . . n Uip. Then we set

There is a natural differential

with
P+1

k=o

A calculation shows that d2 = 0, i.e.

is a complex. Since J- is a sheaf, one finds F(M, J-) = Kev(d : C°({Ui}, J-)

c 1 ({£/<}, JO).
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Definition B.0.40 The i-th Cech cohomology group with respect to the fixed
open covering M = [JiUi is

In this way, we have defined cohomology groups without using acyclic
sheaves, but which still depend on the open covering M = [jUi. This can be
remedied by passing to the limit. More precisely, if M = 1J4 £/, is refined by
an open covering M = |J • Vj, then there exists a natural map

and one defines the Cech cohomology of a sheaf without specifying an open
covering as

^(M.-F) :=lim#*

Examples B.0.41 i) Let us compute the Cech cohomology of S1. Take the
standard open covering of S1 by the two hemispheres U\ and U2, both home-
omorphic to ffi1. Their intersection XJ\ n U2 consists of two disjoints open
intervals. Hence, the Cech complex in this situation for J- = Z is

Z x Z >- Z x Z , (a, b) I *- (a - b, a - b) .

This determines the Cech cohomology of S1 with respect to this open covering,
but in fact also in the limit: ^ ( S 1 , Z) = Z for i = 0,1 and = 0 otherwise.

ii) This calculation can be generalized in two ways, depending on whether
one views S2 as a sphere or as the projective line P1.

For the higher dimensional spheres Sn one finds that Hl(Sn,'Z) = Z for
i = 0, n and trivial otherwise.

For the complex projective space Pn one considers the standard open cov-
ering by open subsets homeomorphic to C™. This yields Hl(¥n,Z) = Z for
i = 0 ,2 , . . . , 2n and Hi{¥n, Z) = 0 otherwise.

Using a sheaf version of the Cech complex one obtains

Proposition B.0.42 For any open covering M = \^_}iUi there exists a natural

homomorphism

Of course, these homomorphisms are in general not bijective, as the open
covering might be very coarse. However, passing to the limit often results in
isomorphisms with the true cohomology groups, i.e. when the topological space
is reasonable (e.g. paracompact), the induced maps Hl(M,J-) —> Hl(M,J-)

are indeed bijective. E.g. the examples in B.0.41 do compute the true co-
homology groups Hl(Sn,'E) and i7*(Pn,Z). The case that interests us most
is:
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Proposition B.0.43 The natural map H1(M,Jr) —> ^(M,^) is always bi-

jective.

This opens the way to parametrize line bundles by cohomology classes.
Let us sketch this for differentiable real line bundles.

Let 7T : L —> M be a line bundle that can be trivialized over open subsets
U{ of an open cover M = (JC/J by maps ipi : L\tj. = Ut x M. Then {tpij :=
V'i ° TpJ1 € Chilli C\Uj)} can be considered as a cocycle and thus gives rise to
an element in H1({Ui},Cli), where C^ is the sheaf of differentiable functions
without zeros.

One verifies that this cohomology class does not depend on the choice of
the trivializations -0»- Moreover, any class in Hl{{Ui},C*M) can be interpreted
as a cocycle of a line bundle trivialized over the open subsets Ui.

Thus, by definition every line bundle L gives rise to a cohomology class
in the covering independent Cech cohomology group HX{M, C*M) which does
not depend neither on the open covering nor on the trivializations. The above
proposition then yields

Corollary B.0.44 There is a bijection between the set of isomorphism classes

of real line bundles on a differentiable manifold M and the group l

There is also the algebraic topology way of computing cohomology. Let M
be a manifold. A continuous map 7 : [0, l]fc —> M is called a k-chain. For any
t G [0,1] and any 1 < i < k one obtains a k - 1-chain d(i,t)(^) : [0, l ] f c - 1 —>
M by d(i,t)(-j)(ti,...,tk-i) = j(h,... , t j_ i , t,tt,..., tk-i). The k- chain 7 is

non-degenerate if for any i the map 11—> d(i, £)(7) is non-constant.

Let for any open subset U C M the group Ck(U) be the abelian group

generated by /c-chains in U. The differential d : Ck(U) —> Ck-i(U) is by

definition ^(7) := X^i=i(""l)J(^(^0)(7) ~ (̂*> 1)(7))- This yields a complex

^ Ck+1 ^ Ck(U)

We are more interested in its dual

^ C*- 1^) *• Ck(U) ^ Ck+1(U) ^ • • •

with Ck(U) = Hom(Cfc(£/),Z).
It turns out, that for the unit ball in M™ the sequence

Z *• C°(U) ^ Cl(U) ^ C2(U) ^ • • •

is exact. It is not difficult to verify that the sheaves Ck are actually soft and
one, therefore, obtains a soft resolution of the constant sheaf

Z
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Thus, the sheaf cohomology Hl(M, Z) of the constant sheaf Z on M can
be computed as the cohomology of the complex

C°(M) ^ Cl(M) *- C2{M) .

Similarly, one can compute the cohomology Hl(M,M.) by using Hom(Cfc,M).
The advantage of the approach is that it allows to define the fundamental

class of any submanifold N C M of an oriented compact manifold M.

Indeed, if 7 : [0, l]fc —> M is a k-chsan, where k is the codimension of
N C M, then one might define the value of [N] € Hk(M, Z) as the number of
intersection points of N and 7. (One has to show that any 7 is homologous
to a chain transversal to N.) Passing to the real cohomology Hk(M,M.) one
recovers the fundamental class denned by a i-> fN a.

Evidently, a good theory should also deal with morphisms. E.g. the direct

image sheaf f*J- of a sheaf J- on M under a continuous map f : M —> N is
the sheaf U ̂  f(f-l(U)).

We rarely use direct images (let alone higher direct images), but we do use
the pull-back of a sheaf. In fact, there are usually two of them.

Definition B.0.45 Let / : M —> N be a continuous map and T a sheaf on
N. Then the inverse image f~xJ- is the sheaf on M such that for an open
subset U C M its space of sections [f~1J-){U) is the set of all maps s : U —>
Uzst/^/O) s u c n that for any x E U there exist open subsets x S Ux C U,

f(Ux) C V c N and an element t € T(V) with s(y) = t(f(y)) for all y e Ux.

Clearly, with this definition the stalks are given by {f~1J-)x = Ff{x)-

Often, one considers a space M together with a sheaf of 'functions' IZM,

e.g. TZM could be any subsheaf (of rings) of CM (of differentiable, analytic, or
holomorphic functions). One calls (M,1ZM) a ringed space. A continuous map
/ : (M,TZM) —* (N,11N) between two ringed spaces consist of a continuous
map / : M —> N and a homomorphism of sheaves of rings f~lrR-N —> "R-M-

(Compare this with the definition of a complex space 6.2.8.)

Definition B.0.46 Let / : (M,1ZM) —* {N,7ZN) be a continuous map of
ringed spaces. Then the pull-back f*!F of any 7?.jv-niodule F on N is the
7?-M-module given by f~1Jr®f~iriN TZM-

Remark B.0.47If (M,1ZM) is a locally ringed space, i.e. the stalks
all local, then one can define the fibre of any 7?.M-niodule J- at a point x £ M

as J-{x) := J- ®-R.M x TZM,X/™-, where m C HM,X is the maximal ideal. One
should be aware of the essential difference between the stalk J-x and the fibre
J-(x) of a sheaf.

If J- is the sheaf of sections of a vector bundle E, then its fibre J-{x) is
nothing but the fibre E(x) = n~1(x) of the vector bundle. Its stalks are much
bigger.
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analytic subvariety, 63
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Atiyah-Singer index theorem, 236
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of form bundle, 106
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of a linear subspace, 99
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Bogomolov-Liibke inequality, 219, 220
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Calabi-Yau manifold, 261
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deformation of, 265
dGBV algebra of, 279
projectivity of, 252

Calabi-Yau theorem, 225
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Cauchy integral formula, 3, 5, 204
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of complex manifold, 199
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of hypersurface, 200
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Chern connection, 177, 184, 189, 209,
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curvature of, 186, 217
Chern form, 196
Chern number, 235
Chern root, 199, 234
Chern-Weil homomorphism, 195
Chow's theorem, 253
Christoffel symbols, 207
cohomology
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complete intersection, 59, 90, 245

canonical bundle of, 89, 96
Kodaira dimension of, 96
normal bundle of, 89

complex
of sheaves, 291

complex Lie group, 59
complex space, 272

tangent space of, 273
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connected sum, 101
connection, 173

compatible with holomorphic
structure, 177, 184

hermitian, 176, 184, 208
holomorphic, 179, 205
metric, 176, 206, 208
on direct sum, 174, 175, 181
on dual , 175
on manifold, 206
on pull-back, 175
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cotangent bundle, 71, 284
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curvature, 182, 193
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of direct sum, 184, 191, 197
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of hermitian manifold, 186
of tensor product, 184, 191
under pull-back, 184, 197

curvature tensor, 210
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deformation of, 267
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divisor on, 87
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projectivity of, 252

de Rham cohomology, 146, 285
multiplicative structure of, 285
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259
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cohomology of, 145
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dimension
algebraic, 55, 64, 74, 89, 246, 253
Kodaira, 73, 98, 143

of P", 95
of torus, 76, 95

divisor, 77
fundamental class of, 80
associated to line bundle, 82
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Cartier, 79
degree of, 87
effective, 77, 83
exceptional, 100

normal bundle of, 101
linear equivalence for, 82
on curve, 87
pole, 78
principal, 78, 81
pull-back, 81
Weil, 79
zero, 78

divisor group, 77, 79, 252
Dolbeault cohomology, 109, 261

of vector bundle, 110
product structure, 111

double point, 272

Ehresmann theorem, 270
Euler number, 234, 285
Euler sequence, 93, 167, 190, 200

relative, 95
Euler-Poincare characteristic, 231, 244,

293
additivity of, 294

exponential sequence, 70, 131, 132, 201,
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exterior differential, 106, 182, 285
exterior product, 285

family, 269
fibre of, 269
locally trivial, 269, 270
smooth, 272

flag manifold, 62
Frobenius integrability, 192
Fubini-Study metric, 50, 117, 123, 167,

178, 188, 205, 223, 249
function field, 54, 56

of tori, 58
fundamental class, 142, 202, 297

of hypersurface, 80
fundamental form, 29, 48, 114, 217

Gauss lemma, 14
Gauss-Bonnet formula, 235
genus

L-, 235
arithmetic, 234
elliptic, 238
Hirzebruch *„-, 234, 238
of a curve, 172, 233
of plane curve, 245

germ, 18
analytic, 18

dimension of, 20
ideal of, 18
irreducible, 19
of codimension one, 21

Gerstenhaber—Batalin—Vilkovisky

algebra, 276
Godeaux surface, 65
Grassmannian, 61, 190

Pliicker embedding of, 64, 97
pojectivity of, 64
tautological sequence, 97

Grothendieck lemma, 244
Grothendieck-Riemann-Roch formula,

235

harmonic form, 287
B-, 126

harmonic section
of vector bundle, 169

Hartogs' theorem, 6, 53, 75
Hermite-Einstein condition, 217, 228
hermitian manifold, 114, 208
hermitian structure, 114, 166

on complex manifold, 123
on vector bundle, 166

existence, 168
pull-back, 168

Hilbert polynomial, 237, 238
Hirzebruch Xy-genus, 234, 238
Hirzebruch signature theorem, 235
Hirzebruch surface, 97, 269, 270
Hirzebruch—Riemann—Roch formula,

232
Hodge *-operator, 32, 114, 127, 286

on cohomology, 137
on vector bundle, 168

Hodge class, 251
Hodge conjecture, 141, 142
Hodge decomposition, 128, 288

for vector bundle, 170
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Hodge filtration, 161
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Hodge number, 73, 140

of projective space, 131
Hodge structure, 160

integral, 163
mixed, 163
polarization of, 162
weigth one, 163

Hodge-Frohlicher spectral sequence,
131

Hodge—Riemann bilinear relation
for exterior algebra, 39
for Kahler manifolds, 138

Hodge-Riemann pairing
for exterior algebra, 39
on two-forms, 40

holomorphic atlas, 52
holomorphic chart, 52
holomorphic form

on Kahler manifold, 131
holomorphic function, 53

of several variables, 4
sheaf of, 14, 53

holomorphic map, 53
holonomy

of Riemannian manifold, 213
holonomy group, 213

restricted, 214
holonomy principle, 215
Hopf fibration, 75
Hopf manifolds, 61, 64
Hopf surface, 64, 131
hyperkahler manifold, 159, 215
hypersurface, 63, 77, 97, 143, 242

affine, 58
normal bundle of, 89, 95
projective, 58
structure sheaf sequence of, 236
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ideal sheaf, 63, 236
of point, 247

identity theorem, 3
implicit function theorem, 11
induced reduced structure, 63
inverse function theorem, 11
irreducible element, 14
Iwasawa manifold, 61, 76, 153

Jacobian, 10
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intermediate, 144
of complex manifold, 134
of Hopf surface, 143
of transition maps, 70

K3 surface, 103, 112, 237, 238, 245
Kahler class, 130, 136
Kahler cone, 130, 131, 226, 251
Kahler form, 116, 130, 217

parallel, 210
Kahler identities, 120, 219, 240
Kahler manifold, 116, 209

deformation of, 271
formality of, 150
product of, 123
Ricci-flat, 215
volume form, 123

Kahler metric, 116
conformal equivalent to, 123
on ball quotient, 119, 224
on curve, 119
on torus, 119
osculates, 49

Kahler potential, 50
Kahler-Einstein manifold, 221
Kawamata—Viehweg vanishing, 246
Kodaira embedding theorem, 248
Kodaira vanishing, 239
Kodaira-Spencer class, 259, 261, 271
Kodaira-Spencer map, 271, 273, 274
Kuranishi theorem, 274

L-genus, 235
Laplace operator, 115, 286

on holomorphic vector bundle, 169
Le Potier vanishing, 246
Lefschetz decomposition, 245

for exterior algebra, 36
for forms, 115
orthogonality of, 40, 125

Lefschetz operator, 31, 114, 127, 239,
241

dual, 32
on cohomology, 136
on harmonic forms, 127

Lefschetz theorem
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weak, 143, 239, 242

Leibniz rule, 72, 145, 170, 173, 182, 194,
206

for d, 106
Levi-Civita connection, 207, 213, 222
Lie bracket, 285

odd, 257, 276
Schouten-Nijenhuis, 278

line bundle, 66
ample, 86, 248
associated to divisor, 79
cocycle description, 284
differentiable, 284
first Chern class of, 70
globally generated, 86
Hermite-Einstein structure on, 219
hermitian connection on, 178
meromorphic section of, 84, 89, 97
numerically trivial, 134
on curve, 87, 233
on surface, 233

on torus, 233

positive, 239, 241
separating points, 247
tautological on Pn , 68, 89, 197, 205,

241, 244
cohomology of, 172
relative, 97
sections of, 75

trivial, 75
linear system, 86

complete, 86, 247
Liouville theorem, 4

manifold
compact, 52
complex, 52

deformation of, 271, 272
connected, 52
differentiable, 283
formal, 149
Kahler-Einstein, 224
Moishezon, 76, 246, 253
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parallelizable, 76
polarized, 237
projective, 62, 76, 86

Ricci-fiat, 224
Riemannian, 286

volume of, 286
Massey triple-product, 151
master equation, 277, 278, 281
Maurer—Cartan equation, 258, 278

convergent solution of, 266
formal solution of, 265

maximum principle, 3, 5, 53, 225
meromorphic function, 21, 54, 74

order of, 78
pole of, 21, 78
sheaf of, 54
zero of, 21, 78

metric
compatible with almost complex

structure, 48
Einstein, 222
Hermite-Einstein, 217, 221
Kahler-Einstein, 222, 267
osculating, 48
Ricci-fiat, 211, 215, 227
Riemannian, 286

Miyaoka-Yau inequality, 224
morphism, 53

dominant, 80
fibre of, 272
finite, 238
6at, 272
smooth, 107, 238

Mumford-Takemoto stability, 221

Nakano identity, 240
Neron-Severi group, 133, 141, 252
Newlander—Nierenberg theorem, 109
Nijenhuis tensor, 215
Noether's formula, 233
normal bundle, 71

of hypersurface, 89
sequence, 71, 242

Nullstellensatz, 19

parallel
almost complex structure, 210
form, 208
Kahler form, 210
section, 173
tensor field, 215
transport, 213



308 Index

partition of unity, 168
Picard group, 69, 79, 132, 141, 252
Picard number, 134
Pliicker embedding, 64, 97
pluri-genus, 76

under blow-up, 103
Poincare duality, 286, 287
Poincare lemma, 285

in one variable, 44
of Grothendieck, 46

polydisc, 4
positive

curvature, 189
form, 188

pre-sheaf, 289
primitive cohomology, 136
primitive form, 35, 39, 115

harmonicity of, 123
product of, 40

projective manifold, 62, 133, 141, 251
is Kahler, 120

projective space, 56, 91
canonical bundle of, 92
deformation of, 267
Hodge numbers of, 131
Kahler structure on, 117
Kodaira dimension of, 95
standard open covering, 56
tautological bundle, 68

sections of, 91
pull-back

of forms, 285
of sheaf, 297
vector bundle, 68, 175, 184

quasi-isomorphism
of dga, 146, 148

quaternionic structure, 40
quotient, 59

free, 59

radical, 19
regular point, 10, 63
regular value, 10
residue, 97
residue theorem, 4
resolution, 292

flasque, 292
Ricci curvature, 211, 222, 226

Ricci tensor, 211
Riemann extension theorem, 3, 9
Riemann form, 251
Riemann mapping theorem, 3, 24
ringed space, 297

Schouten-Nijenhuis bracket, 278
Schubert variety, 63
second fundamental form, 175, 178, 189
section

flat or parallel, 173
Segre map, 86, 90
Serre duality, 127, 130, 233, 245

for vector bundle, 171
on curve, 172

Serre's theorem, 243
sheaf, 290

acyclic, 294
associated to pre-sheaf, 291
direct image of, 297
fibre of, 297
flasque, 292
homomorphism, 290

cokernel of, 291
image of, 291

inverse image of, 297
locally free, 72
of fc-forms, 284

acyclic, 285
of differentiable functions, 283
pull-back of, 297
soft, 294

Siegel's theorem, 54
signature, 140, 143, 234, 235
singular point, 24, 63, 272
slope, 218
smooth

family, 269
point, 63, 107, 111

sphere, 64, 111, 255
splitting principle, 198
stable, 220

Mumford-Takemoto, 221
slope-, 221

stalk
of (pre-)sheaf, 290

submanifold, 62, 76
codimension of, 62
of Cn, 64
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structure sheaf sequence, 63, 242

subset
analytic, 18, 63, 272

irreducible, 23
thin, 10

subvariety, 63
super Lie algebra, 156
supersymmetry algebra, 157
surface, 52

Hodge index for, 138
projectivity of, 252

symmetric map, 193
invariant, 193, 205
polarized form, 193

symplectic structure, 123, 144

tangent bundle, 178, 186, 208, 284
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holomorphic, 71, 105, 221

cohomology of, 261
of torus, 76

of Grassmannian, 190
theta function, 237
Tian-Todorov lemma, 262

generalized, 279
Todd class, 196

total, 196
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under finite morphism, 238
torsion, 206
torus, 57, 60, 76, 130, 136, 178, 191,

224, 237, 245, 253
deformation of, 267
Kahler structure on, 119
line bundle on, 233, 245
projectivity of, 252

unique factorization domain, 14

vector bundle
cocycle description, 67, 74
determinant, 67, 75, 181, 191
differentiable, 284
direct sum of, 67, 166, 174, 175, 181,

184, 191, 197, 219, 228
dual, 67, 166, 168, 175, 184, 191, 228
exterior power

pairing, 75
exterior power of, 67, 181
flat, 192, 217, 245
globally generated, 97

curvature of, 190
Hermite-Einstein, 217
holomorphic, 66

cohomology of, 72
Dolbeault cohomology of, 110
space of global sections, 73

homomorphism, 66, 166
(co) kernel, 67

on P1, 244
on P2, 245
on curve, 231
on elliptic curve, 246
polystable, 221
projectivization of, 67
pull-back, 68, 175, 184
quotient, 68
rank of, 66
restriction, 68
sheaf of sections, 71
short exact sequence of, 67, 178, 232

dual of, 93
stable, 220, 228

Hermite-Einstein structure on, 221
subbundle, 68, 166, 175, 178
symmetric power of, 67
tensor product of, 67, 166, 174, 181,

184, 191, 219, 228
zero section of, 67, 75

Veronese map, 86, 90
volume form, 28, 123, 226, 286

holomorphic, 216, 227, 261

Weierstrass division theorem, 15
Weierstrass polynomial, 7
Weierstrass preparation theorem

(WPT), 8
Weil formula, 37
Whitney product formula, 197, 200
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zero set
germ of, 14, 17
of holomorphic function, 9, 77
of section of line bundle, 82
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