--- date: 2022-04-21 23:13 modification date: Thursday 21st April 2022 23:13:47 title: moduli space aliases: - moduli space - fine moduli space - coarse moduli space - moduli problem created: 2022-04-21T23:13 updated: 2024-05-15T17:50 --- # moduli space ![](2024-01-10.png) ![](attachments/Pasted%20image%2020220503102938.png) ![](attachments/Pasted%20image%2020220503103316.png) - One can say a great deal about the moduli space purely in terms of the moduli functor without even knowing the moduli space exists - For example, the [dual numbers](dual numbers). $\spec k\dualnumbers$ - Prototypical example of a moduli space: the [Grassmannian](Grassmannian.md) $\Gr_k(\CC^n)$. - Common example: the [Hilbert scheme](Hilbert%20scheme.md). - Apparently a [fundamental class](fundamental%20class.md) exists for closed subvarieties? Maybe just closed subvarieties of a moduli space? - Prominent example when studying [elliptic curves](MOCs/elliptic%20curve.md) over $\QQ$: the [modular curve](Unsorted/modular%20curve.md) $X_0(n)$. - [level structure](Unsorted/level%20structure.md): examples are $\Gamma(N), \Gamma_1(N), \Gamma_0(n)$ for squarefree $n$. ## Fine moduli spaces ![](2024-01-10-1.png) The first condition determines $M$ as a topological space (point set); condition b) determines the scheme structure on $M$ uniquely. ![](attachments/Pasted%20image%2020220806134815.png) ![](attachments/Pasted%20image%2020210627224433.png) ![](attachments/Pasted%20image%2020220322153642.png) ![](attachments/Pasted%20image%2020220322153755.png) # Examples ![](attachments/Pasted%20image%2020220322153853.png) ![](attachments/Pasted%20image%2020220322153907.png) # Counterexamples ![](attachments/Pasted%20image%2020220322153829.png) ![](attachments/Pasted%20image%2020220322154015.png) # Examples - $\mbar_{0, 4}\cong \PP^1\slice \CC$ using the classical cross-ratio.