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Abstract

In 2009, Harbater, Hartmann, and Krashen gave a necessary and sufficient condition for a 

finite group G to be admissible over a semi-global field F so long as the characteristic of 

the corresponding residue field does not divide the order of G. They used a method known 

as field patching in order to show the sufficiency of their condition. Here we explore what 

happens when the characteristic of F (and also that of the residue field) divides the order of 

the group G. In particular, we show that if G is any p-group, where p is the characteristic 

of F , then it is admissible over F .
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Chapter 1

Introduction and Historical Remarks

1.1 Admissibility over Q

In his 1968 thesis work, Murray Schacher asked if one could find a k-central division algebra

containing a root of a given irreducible polynomial f ∈ k[x]. If k is a stable1 field, e.g. a

global field, he showed that this is equivalent to asking if a given field extension K/k appears

as a maximal subfield of some k-central division algebra. Even more, he was particularly

interested in instances when these maximal subfields were Galois over k. Accordingly, he

called a finite group G k-admissible if one could find a k-central division algebra with a

G-Galois maximal subfield over k.

The majority of Schacher’s work in [17] focused on the case where k is a number field.

Among other things, he showed that if a finite group G is Q-admissible, then its Sylow

subgroups must necessarily be metacyclic, i.e. an extension of a cyclic group by another

cyclic group. He believed, but was unable to prove, that this condition is also sufficient. At

the time of this writing, the full conjecture remains open though several results ([16], [3],

[4], [5], [6], [19]) have surfaced since then. Possibly the strongest result at this time is due

1A field k is stable if per(A) = ind(A) for any central simple k-algebra A.
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to Sonn who in [19] showed that Sylow metacyclic solvable groups are admissible over Q.

1.2 Admissibility over Semi-Global Fields

In 2009, Harbater, Hartmann, and Krashen [9] investigated the admissibility problem in a

different setting. Instead of working over global fields like Q and its finite extensions, they

decided to approach the problem over particular semi-global fields. A semi-global field is a

field which arises as the function field of a curve over a complete discretely valued field. An

example would be the field C((t))(x), which is the function field of the C((t))-curve P1
C((t)).

The crucial advantage that we gain by working over fields of the sort is that it allows us to

use a technique known as field patching.

In a nutshell, field patching allows us (in certain cases) to take compatible structures

over relatively nicer fields and patch them together to get a corresponding structure over

the semi-global field. The main theorem proved in [9] utilizes patching in a way that allows

them to solve the admissibility problem one Sylow subgroup at a time and patching these

solutions together, ultimately arriving at the following:

Theorem 1.2.1. Let K be a complete discretely valued field with algebraically closed residue

field k and suppose F/K is a finitely generated extension with transcendence degree one. If

G is a finite group such that char(k) ∤ |G|, then G is F -admissible if and only if every Sylow

subgroup of G is abelian of rank2 at most two.

This theorem impressively, though not entirely, characterizes the admissible groups over

such semi-global fields. In fact, if char(k) = 0, this theorem addresses the admissibility

question over these fields completely; however, this naturally leads us down a path that we

are compelled to embark on for the sake of completeness: what can be said in the case where

char(k) | |G|? It is precisely this question which we pursue in this document. In chapter

2The rank of a group is the cardinality of the smallest generating subset.
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3, we will follow the methods of Harbater, Hartmann, and Krashen in order to prove the

following extension of Theorem 1.2.1 in the case where char(K) = char(k) = p.

Theorem 3.2.3. Let K be a discretely valued field with algebraically closed residue field k

and let F/K be a finitely-generated field extension with transcendence degree one. Assume

further that char(K) = char(k) = p. Let G be a finite group whose Sylow-q subgroups are

all abelian of rank at most 2 for q ∕= p and whose Sylow-p subgroup is cyclic. Then G is

admissible over F .

The cyclicity of the Sylow subgroup corresponding to the characteristic of the residue

field is likely far from necessary, but there is evidence that it could be a crucial stepping

stone: using Saltman’s results in [14], admissibility of cyclic p-groups imply admissibility of

arbitrary p-groups, as summarized by the following result.

Theorem 3.2.4. Let K be a discretely valued field with residue field k and let F/K be a

finitely-generated field extension with transcendence degree one. Assume that char(K) =

char(k) = p. If G is a p-group, then G is admissible over F .

Because of this, it seems reasonable to expect that any group G whose Sylow q-subgroups

are abelian of rank at most 2 when q ∕= p would be admissible over such fields as above.
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Chapter 2

Background

Before we can discuss our main results, it would be helpful to introduce some definitions

along with some fundamental results. This chapter will be home to these prerequisite topics.

A daring reader may wish to skip this chapter entirely.

Throughout this document, a ring will have a multiplicative identity but will not be

commutative unless otherwise specified. The set N of natural numbers will not contain 0.

For a field F , Fs will denote a fixed separable closure of F .

2.1 Central Simple Algebras

Let F be a field. We begin by defining the objects and morphisms in the category of

(associative) algebras over F . Throughout, we will only consider F -algebras which are

finite-dimensional over F .

Definition 2.1.1. The center Z(A) of a ring A is the set

Z(A) := {r ∈ A | ra = ar ∀a ∈ A}
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Definition 2.1.2. Let R be a commutative ring. An algebra (or R-algebra if we wish to

emphasize the ring) is a ring A equipped with a ring homomorphism ϕ : R → A such that

ϕ(R) ⊆ Z(A). The map ϕ is sometimes referred to as the structure map of the algebra.

Equivalently, an R-algebra is a ring A equipped with the structure of an R-module such

that c · (ab) = (c · a)b = a(c · b) for all c ∈ R and for all a, b ∈ A.

Remark 2.1.3. Observe that the first definition matches the usual one from commutative

algebra. The reason we require ϕ(R) ⊆ Z(A) is so that the scalar multiplication is compatible

with the ring multiplication, as expressed in the second definition.

Example 2.1.4. Since we require that a ring R must have a multiplicative identity 1R, and

since all ring homomorphisms must map multiplicative identities to multiplicative identities,

we see that there always exists a unique ring homomorphism ϕ : Z → R. The image of this

homomorphism must necessarily be contained in the center of the ring R, so we see that

every ring can be regarded as an algebra over the integers in a unique way.

Definition 2.1.5. Let A and B be R-algebras with structure maps ϕ and ψ, respectively.

An algebra homomorphism from A to B is a ring homomorphism ρ : A → B compatible

with the structure maps in the sense that the following diagram commutes:

R

A B

ϕ ψ

ρ

Although we have defined algebras over arbitrary commutative rings, we will mainly

concern ourselves with algebras over fields throughout this document. Not only does this

equip us with the tools of linear algebra but also this has the advantage of guaranteeing that

our structure maps are injective, thus allowing us to think of our field as a subset of the

algebra.

Definition 2.1.6. We define the dimension dim(A) of an F -algebra A to be its dimension

as an F -vector space.
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Definition 2.1.7. We say that an F -algebra A with structure map ϕ : F → A is central if

A is finite-dimensional over F and ϕ(F ) = Z(A).

We now come to our central (no pun intended) object of study:

Definition 2.1.8. Given a division ring D, one can show that F = Z(D) is indeed a field

(see Example 2.1.1 in [7]), and in this case we say that D is an F -central division algebra.

Vista 2.1.9. As is often the case in mathematics, our study of central division algebras

will greatly benefit from the flexibility afforded by expanding our scope to a larger class of

objects. For example, it turns out that division algebras are not conducive for patching;

however, this can be fixed by simply expanding our focus to include the more general central

simple algebras. Instead of asking whether our division algebras patch together, we will

instead show that the resulting central simple algebra is a division algebra.

Definition 2.1.10. Let A be a ring. We say that A is simple if it has no proper nonzero

two-sided ideals.

Definition 2.1.11. Let A be an algebra with structure map ϕ : F → A. We say that A is

a central simple F -algebra (CSA) if it is both central and simple.

Example 2.1.12. We can immediately see from centrality that the only commutative central

simple algebra over a given field is the field itself.

Example 2.1.13. By definition, every nonzero element of a division ring D is a unit, and

the only ideal of D containing a unit is D itself. Thus, every division ring D is a central

simple algebra over its center.

6



Example 2.1.14. Let D be a central division F -algebra, and let Mn(D) be the collection of

n-by-n matrices with entries in D. Then Mn(D) itself is an F -algebra, with structure map

ϕ : F → Mn(D)

c '→ c · I

where I is the identity matrix. Consider the matrices Eij ∈ Mn(D) whose entries are all

0 except for the ij-th entry, which is 1. If a matrix A has a nonzero ij-th entry aij where

i ∕= j, then EjiA ∕= AEji (to see this, observe that the ii-th entry on the left is 0 while the

ii-th entry on the right is aij). Thus, any matrix which is not a diagonal matrix cannot be

in the center of Mn(D). Now, if the matrix A is a diagonal matrix with entries aij, observe

that the ij-th entry of EijA is ajj, while the ij-th entry of AEij is aii, which means that any

matrix in the center must be a scalar matrix given by an element of D. Since Z(D) = F ,

we find that Z(Mn(D)) = ϕ(F ) and so Mn(D) is central.

Now, let I ⊆ Mn(D) be a nonzero two-sided ideal and let A ∈ I be a nonzero matrix

with nonzero entry akl, which we may assume to be equal to 1. Then, Eij = EikAElj ∈ I

for all i and j. Since the Eij generate Mn(D), it follows that I = Mn(D) and so Mn(D) is

also simple and thus a CSA over F .

This example illustrates how we may create new central simple algebras starting with a

central division algebra D. Surprisingly, it turns out that every finite dimensional central

simple algebra can be constructed in this way.

Theorem 2.1.15 (Wedderburn). Let A be a finite dimensional simple algebra over a field

F . Then there exists a division F -algebra D, unique up to isomorphism, along with some

n ∈ N such that A ∼= Mn(D).

Proof. This is Theorem 2.1.3 in [7].
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Definition 2.1.16. We say that a finite dimensional central simple algebra A over a field

F is split if A ∼= Mn(F ) for some positive integer n.

Proposition 2.1.17. If k is an algebraically closed field, then every central simple k-algebra

is split.

Proof. This is Corollary 2.1.7 in [7].

Proposition 2.1.18. Let A be a finite dimensional algebra over a field F and let K be some

field extension of F . Then A is central simple over F if and only if A⊗F K is central simple

over K.

Proof. See Proposition b.(ii) in section 12.4 of [12].

Corollary 2.1.19. If A is a finite dimensional central simple algebra over a field F , then

dim(A) is a square.

Proof. According to the proposition, A ⊗F F̄ is a central simple F̄ -algebra; however, every

central simple algebra over an algebraically closed field is split, so A⊗F F̄ ∼= Mn(F̄ ) for some

n ∈ N. Since dim(Mn(F̄ )) = n2 and dimension is preserved by extending scalars, we may

conclude that dim(A) = n2 which completes the proof.

Definition 2.1.20. We define the degree of a central simple F -algebra A to be
!

dim(A).

Proposition 2.1.21. Let A be a finite dimensional CSA over a field F . Then there exists a

finite extension K of F such that A⊗F K is split as a CSA over K. We may further assume

that K is separable, or even Galois, over F .

Proof. See Corollaries 2.2.11 and 2.2.12 in [7].
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2.2 Brauer Groups and Cohomology

Proposition 2.2.1. If A and B are finite dimensional central simple algebras over some

field F , then so is A⊗F B.

Proof. This is Proposition b.(i) in section 12.4 of [12].

Let CSA(F ) be the collection of isomorphism classes of finite dimensional central simple

algebras over F . We define an equivalence relation ∼ on CSA(F ) by

A ∼ B ⇐⇒ ∃n,m ∈ N such that A⊗F Mn(F ) ∼= B ⊗F Mm(F )

We shall refer to this equivalence relation as “Brauer equivalence.” We define Br(F ) to be the

quotient CSA(F )/ ∼. We will refer to the equivalence class containing the central simple

algebra A as [A]. One can show (see section 12.5 of [12] for example) that this quotient

inherits a binary operation which turns Br(F ) into a monoid via the tensor product using

Proposition 2.2.1 with identity [F ]. In fact, even more is true. We shall require the following

definition and proposition.

Definition 2.2.2. Let A be an F -algebra with multiplication given by $. The opposite

algebra Aop is defined as follows. As an abelian group, it is exactly the same as (A,+). As

a ring, we define the multiplication $̂ by

a $̂ b := b $ a

Notice that if ϕ : F → A is the structure map for the algebra A, then the same function will

satisfy the requirements for a structure map on Aop, and so Aop is also an F -algebra.

Remark 2.2.3. One can immediately convince oneself that if A is central, then also Aop is

central. Similarly, if A is simple then so is Aop. Thus by Proposition 2.2.1, so is A⊗F Aop.
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Proposition 2.2.4. If A is an n-dimensional simple F -algebra, then A⊗F Aop ∼= Mn(F ).

Proof. Since A is simple, it follows that both Aop and A ⊗F Aop are also simple. Now, we

define a function σ : A⊗F Aop → End(A) by taking a⊗ b to the map x '→ axb and extending

by linearity. Observe that in fact, σ is an F -algebra homomorphism (pay particular attention

to how the multiplication in the opposite algebra is being used). Since A⊗FA
op is simple and

σ(1⊗ 1) = 1A, σ must have a trivial kernel and so must be injective. Comparing dimensions

and noting Mn(F ) ∼= End(A) as F -algebras completes the proof.

In other words, we find that in the quotient Br(F ), [A] · [Aop] = [Mn(F )] = [F ], which

means Br(F ) is in fact an abelian group. We refer to Br(F ) as the Brauer group of F . One

may also speak of the Brauer group in a more relative manner. Let Br(K|F ) be the Brauer

equivalence classes of finite dimensional CSAs over F split by the extension K/F . We call

this subgroup of Br(F ) the Brauer group of F relative to K. Since every central simple

algebra is split by a Galois extension K/F , we see that

Br(F ) =
"

Br(K|F )

where the union is over all finite Galois extensions K/F inside a fixed separable closure Fs

of F .

As it turns out, it will be fruitful to consider a different characterization of the Brauer

group using Galois cohomology. Here, we will skip over the general theory, instead focusing

on just the second cohomology group.

Definition 2.2.5. Let G be a finite group. An abelian group A is a (left) G-module if it

is equipped with a left action by G, i.e. if there is a group homomorphism ϕ : G → EndZ A.

As is standard, we will denote (ϕ(σ))(a) simply as σ · a.
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Definition 2.2.6. Let G be a finite group. A 1-cocycle a with values in some G-module

A is a function

a : G → A

such that for any σ, τ ∈ G,

a(στ) = a(σ) + σ · a(τ)

Definition 2.2.7. Let G be a finite group. A 2-cocycle c with values in some G-module

A is a function

c : G×G → A

such that for any σ, τ, ρ ∈ G,

σ · c(τ, ρ)− c(στ, ρ) + c(σ, τρ)− c(σ, τ) = 0

We say that the 2-cocycle c is a 2-coboundary if there exists a 1-cocycle a such that

c(σ, τ) = σ · a(τ)− a(στ) + a(σ)

Example 2.2.8. Let E/F be a degree n cyclic field extension with Galois group G generated

by σ and let b ∈ E×. For each τ ∈ G, we may associate a unique integer i with 0 ≤ i < n

such that τ = σi. Using this, we define a function c : G×G → E× as follows:

c(σi, σj) =

#
$$%

$$&

1 i+ j < n

b else

We can check to see that c is indeed a 2-cocycle.

11



One can show using the machinery of Galois cohomology that the Brauer group of a field

F is in fact isomorphic to the second Galois cohomology group H2(F, F×
s ) whose elements

are (continuous) 2-cocycles modulo 2-coboundaries (Theorem 4.4.3 in [7]). We can describe

this isomorphism more explicitly using crossed-product algebras.

Construction 2.2.9. Suppose E/F is a G-Galois extension for some finite group G and let

c : G×G → E be a 2-cocycle with values in E (which is naturally a G-module via the Galois

action). Let ∆(E,G, c) be the (left) E-vector space with basis {uσ | σ ∈ G}. We endow

∆(E,G, c) a ring structure by defining

uσuτ := c(σ, τ)uστ

uσe := σ(e)uσ

for all σ, τ ∈ G and for all e ∈ E. Of course, one should wonder if this multiplication is

associative, and this is precisely where we would use the 2-cocycle condition. In fact, we can

show that ∆(E,G, c) is indeed a central simple F -algebra.

Definition 2.2.10. We say that a central simple F -algebra A is a crossed-product alge-

bra if it is isomorphic to ∆(E,G, c) for some choice of E,G, and c as above.

If the 2-cocycle we choose is 2-coboundary, then the corresponding algebra ∆(E,G, c)

is Brauer trivial. Using this construction gives us a map H2(F, F×
s ) → Br(F ) which is

indeed an isomorphism (Corollary 7.8 in [15]). Thus, every central simple algebra is Brauer

equivalent to a crossed-product algebra.

2.3 Witt Vectors and Cyclic Extensions

Throughout this section, let p be some prime number. Let F be a field and suppose that

char(F ) = p. Artin-Schreier theory tells us that any degree p cyclic extension of F is gotten

12



by adjoining to F a root α of some irreducible polynomial of the form xp − x− a ∈ F [x]. In

fact, the existence of degree p cyclic extensions is equivalent to the existence of some a ∈ F

such that xp − x − a is irreducible over F . Even more, Artin and Schreier showed that the

same hypothesis guarantees the existence of degree p2 cyclic extensions; however, for our

purposes here, we will need to be able to construct degree pm cyclic extensions over such

fields F for arbitrarily large m. This was done by Witt using Witt vectors.

For explicit constructions, refer to [18] or [10]. To motivate the construction of Witt

vectors, let us first recall some examples of ring structures one might impose on the set Rm

given some ring R.

Example 2.3.1. The most natural way to do this is by applying the operations in R

component-wise, which would give our standard ring structure on Rm. More explicitly,

if (x0, ..., xm−1) and (y0, ..., ym−1) are two elements of Rm, we have

(x0, ..., xm−1) + (y0, ..., ym−1) = (x0 + y0, ..., xm−1 + ym−1)

(x0, ..., xm−1) · (y0, ..., ym−1) = (x0y0, ..., xm−1ym−1)

Example 2.3.2. Let us now consider a slightly more mysterious ring structure on R4. Given

elements (x0, x1, x2, x3), (y0, y1, y2, y3) ∈ R4, define addition component-wise as before but

this time, define multiplication as:

(x0, x1, x2, x3) · (y0, y1, y2, y3) = (x0y0 + x1y2, x0y1 + x1y3, x2y0 + x3y2, x2y1 + x3y3)

It may seem bizarre at first until you realize that this multiplication endows R4 with the

familiar structure of M2(R).

An interesting and important observation from Example 2.3.2 is that we are not restricted

to using only the corresponding components from the two inputs we are given. So long as

13



the appropriate ring axioms are satisfied, we are welcome to use more intricate polynomials

if we wish. The only thing to be careful about is where we take our coefficients from. Notice

that the component polynomials defining these binary operations in both examples make

sense regardless of the ring R. This is because every ring R is an algebra over Z and all

coefficients of the component polynomials are integers.

We will now define new binary operations on Rm using polynomials S0, ..., Sm−1 for

addition and P0, ..., Pm−1 for multiplication. Special care must be taken to make sure these

polynomials would make sense for any ring R, which is to say that we will want these

polynomials to have integer coefficients as discussed above.

Let X∗ = (Xn)
∞
n=0 be a sequence of indeterminates and consider the polynomials

W0(X∗) = X0

W1(X∗) = Xp
0 + pX1

W2(X∗) = Xp2

0 + pXp
1 + p2X2

...

Wn(X∗) =
n'

i=0

piXpn−i

i

The polynomials Wn(X∗) are known as the ghost components of X∗. Let Y∗ = (Yn)
∞
n=0

be another sequence of indeterminates. Then of course we also have ghost components for

Y∗. The idea then is to define the sum (respectively, product) of X∗ and Y∗ so that the

corresponding ghost components of the sum (respectively, product) will be the component-

wise sum (respectively, product) of the ghost components for X∗ and Y∗. It may not be

immediately clear that we can define this sum (respectively, product) in terms of polynomials

in X∗ and Y∗ with integer coefficients, but we certainly can, as the next theorem (which is

Theorem 6 in section 2.6 of [18] and whose proof we will omit here) guarantees.
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Theorem 2.3.3. Let Φ ∈ Z[X, Y ]. Then there is a unique sequence of elements φ∗ = (φn)
∞
n=0

in Z[X∗, Y∗] such that

Wn(φ∗) = Φ(Wn(X∗),Wn(Y∗))

In particular, the polynomial Φ = X + Y gives rise to a sequence of polynomials S∗ =

(Sn)
∞
n=0 and the polynomial Φ = XY gives rise to a sequence of polynomials P∗ = (Pn)

∞
n=0.

It will be helpful to collect some useful facts concerning these polynomials.

Facts 2.3.4.

1. The polynomials Sn and Pn are in Z[X0, . . . , Xn, Y0, . . . , Yn].

2. In particular, Sn = Xn+Yn+γ where γn is a polynomial in X0, . . . , Xn−1, Y0, . . . , Yn−1.

3. The polynomials Sn and Pn have 0 constant term.

We can now define the ring Wm(R). As a set, it is simply Rm. Given two elements

a = (a0, . . . , am−1) and b = (b0, . . . , bm−1), define

a+ b := (S0(a0, . . . , am−1, b0, . . . , bm−1), . . . , Sm−1(a0, . . . , am−1, b0, . . . , bm−1))

ab := (P0(a0, . . . , am−1, b0, . . . , bm−1), . . . , Pm−1(a0, . . . , am−1, b0, . . . , bm−1))

These operations make Wm(R) into a ring. Furthermore, given another characteristic p ring

S and a ring homomorphism ϕ : R → S, there is an induced homomorphism φ∗ : Wm(R) →

Wm(S) where we apply φ component-wise. Since the binary operations in these rings of

Witt vectors are given by polynomials which are necessarily preserved by ϕ, this makes

sense. One can check that this defines a functor from the category of characteristic p rings

to characteristic pm rings.
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Equipped with these definitions, we now proceed to the theory of degree pn cyclic exten-

sions of a field F with characteristic p. To begin, let K/F be a Galois extension with Galois

group G. Then we can equip Wm(K) with a G action by declaring that σ · ρ := σ∗(ρ) (that

is, we let σ act component-wise on ρ, which makes sense as discussed above). This gives

Wm(K) the structure of a G-module.

Proposition 2.3.5. Let F be a field with char(F ) = p. Then H1(F,Wm(Fs)) = 0 ∀m ∈ N.

Proof. The proof is by induction on m. The case m = 1 is the additive version of Hilbert’s

Theorem 90. Suppose the statement holds for any k < m for some m ∈ N and let G be the

absolute Galois group of F . We have a homomorphism T : Wm(Fs) → Wm−1(Fs) defined by

(β0, . . . , βm−2, βm−1) '→ (β0, . . . , βm−2) whose kernel can be identified with W1(Fs). Thus we

have a short exact sequence of G-modules

1 → W1(Fs) → Wm(Fs) → Wm−1(Fs) → 1

which gives rise to the following exact sequence

H1(F,W1(Fs)) → H1(F,Wm(Fs)) → H1(F,Wm−1(Fs))

Since the outer groups are trivial by hypothesis, so is the middle group.

In order to generalize Artin-Schreier theory, following Witt, we will need to extend the

Artin-Schreier map on F to one onWm(F ). Let P : Wm(F ) → Wm(F ) be the homomorphism

induced by the Frobenius endomorphism on F and define ℘ : Wm(F ) → Wm(F ) by

℘(ρ) = P (ρ)− ρ

It should be noted that just as the usual Artin-Schreier map on F is not a ring homomor-
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phism, neither is this one on Wm(F ). It is, however, an endomorphism of the additive group

of Wm(F ).

Proposition 2.3.6. Let F be a field with char(F ) = p and let β = (β0, . . . , βm−1) ∈ Wm(F ).

Then there exists ρ = (ρ0, . . . , ρm−1) ∈ Wm(Fs) such that ℘(ρ) = β and ρi is a root of

fi(x) = xp − x− γi(ρ0, . . . , ρi−1, β0, . . . , βi−1)− βi

where γi is the polynomial Si − Xi − Yi described in Facts 2.3.4. Furthermore, if ρ′ =

(ρ′0, . . . , ρ
′
m−1) ∈ Wm(Fs) also satisfies ℘(ρ′) = β, then ρ′i must be a root of

f ′
i(x) = xp − x− γi(ρ

′
0, . . . , ρ

′
i−1, β0, . . . , βi−1)− βi

Proof. The proof is by induction on m. For m = 1, we can let ρ0 be a root of the separable

polynomial f1(x) = xp − x − β0. Now suppose the proposition holds for some m ∈ N and

consider the Witt vector (ρ0, . . . , ρm−1, x). If

(ρp0, . . . , ρ
p
m−1, x

p)− (ρ0, . . . , ρm−1, x) = (β0, . . . , βm)

then by Facts 2.3.4 we know that xp = x + βm + γm(ρ0, . . . , ρi−1, β0, . . . , βm−1) where γm is

as described in Facts 2.3.4. Then if we let ρm be a root of

fm(x) = xp − x− γm(ρ0, . . . , ρi−1, β0, . . . , βm−1)− βm

we find that ℘(ρ0, . . . , ρm) = (β0, . . . , βm). Finally, if ρ′ = (ρ′0, . . . , ρ
′
m−1) ∈ Wm(Fs) also

satisfies ℘(ρ′) = β, then the same process applied above shows that ρ′i is a root of the

polynomial f ′
i(x) = xp − x− γi(ρ

′
0, . . . , ρ

′
i−1, β0, . . . , βi−1)− βi.
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Proposition 2.3.7. Let F be a field with char(F ) = p, let F ′ be the prime subfield of F ,

and let G be the absolute Galois group of F . Then there is an isomorphism

δ : Wm(F )/℘(Wm(F )) → Hom(G,Wm(F
′)).

Proof. By Proposition 2.3.6, the map ℘ : Wm(Fs) → Wm(Fs), whose kernel is Wm(F
′), is

surjective. Equipping Wm(Fs) with its usual Galois action (by letting σ ∈ G act component-

wise), we get an exact sequence of G-modules

0 Wm(F
′) Wm(Fs) Wm(Fs) 0

℘

Since G acts on Wm(F
′) trivially, we find that H1(F,Wm(F

′)) ∼= Hom(G,Wm(F
′)). Using

this along with the short exact sequence above gives us an exact sequence

Wm(F ) Wm(F ) Hom(G,Wm(F
′)) H1(F,Wm(Fs))

℘ δ̃

where the last group is trivial by Proposition 2.3.5. Descending δ̃ to the quotient gives us

the required isomorphism δ.

It will be immensely helpful for us to examine the map δ above. First, let us recall how

the boundary map δ̃ is defined. Given β ∈ Wm(F ), choose ρ ∈ Wm(Fs) such that ℘(ρ) = β.

Now we may define a homomorphism χρ : G → Wm(F
′) by the assignment σ '→ σ(ρ) − ρ.

This homomorphism, as it turns out, does not depend on our choice of ρ, and the assignment

β '→ χρ defines δ̃.

The significance of this proposition is that it allows us to construct cyclic extensions of

F of degree pk. Let Kρ be the kernel of χρ. This then corresponds to a Galois extension

L/F with Galois group isomorphic to G/Kρ, which in turn is isomorphic to a subgroup of

Wm(F
′). But since Wm(F

′) ∼= Z/pmZ, every subgroup will be cyclic and so the extension

L/F is a cyclic extension.

18



But can we construct the field L more concretely using β? Well, recall that L is the fixed

field of Kρ, the kernel of χρ. By definition, Kρ consists of σ ∈ G such that σ(ρ) = ρ. Thus if

ρ = (ρ0, . . . , ρm−1), L = F (ρ0, . . . , ρm−1). As discussed, χρ (and so also Kρ and L) does not

depend on the choice of ρ. For this reason, we will denote F (ρ0, . . . , ρm−1) by F (℘−1(β)).

All that remains is to find the degree of this extension; luckily, the degree of the extension

is equal to the size of the corresponding subgroup of Wm(F
′), which itself is equal to the

order of χρ ∈ Hom(G,Wm(F
′)) and by the proposition, this is equal to the order of β ∈

Wm(F )/℘(Wm(F )). Finally, the following result (which is essentially Lemma 3 in section

8.11 of [10]) tells us precisely when β has order pm in the quotient Wm(F )/℘(Wm(F )).

Lemma 2.3.8. Let β = (β0, . . . , βm−1) ∈ Wm(F ). Then β ∈ Wm(F )/℘(Wm(F )) has order

pm if and only if the polynomial xp − x− β0 has no roots in F .

We will end this section with a discussion on what we gain by considering these construc-

tions over a field which is complete with respect to a non-Archimedean absolute value. We

begin by collecting some results which we will use in this discussion. The first result makes

precise the fact that the roots of a polynomial vary continuously in terms of its coefficients.

Lemma 2.3.9. Let F be a normed field, f(x) = anx
n + · · · + a1x + a0 ∈ F [x], and fix an

extension of the norm to the algebraic closure F . Then for all ε > 0, there exists δ > 0

such that whenever g(x) = bnx
n + · · · + b1x + b0 ∈ F [x] satisfies |ai − bi| < δ for each i,

then there exists orderings of the roots α1, . . . ,αn of f and the roots β1, . . . , βn of g such that

|αi − βi| < ε for all i.

Proof. This follows from Theorem 2 in [2].

The following result is an analogue of the previous one in the realm of Witt vectors. It

says that an Artin-Schreier root ℘−1(β) also depends continuously on β.
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Lemma 2.3.10. Suppose F is field with char(F ) = p such that Fs is a normed field. Let

β = (β0, . . . , βm−1) ∈ Wm(F ) and ρ = (ρ0, . . . , ρm−1) ∈ Wm(Fs) be such that ℘(ρ) = β. Then

for all ε > 0, there exists δ > 0 such that whenever β′ = (β′
0, . . . , β

′
m−1) ∈ Wm(F ) satisfies

|βi−β′
i| < δ for each i, then we may find ρ′ = (ρ′0, . . . , ρ

′
m−1) ∈ Wm(Fs) satisfying ℘(ρ′) = β′

and |ρi − ρ′i| < ε for each i.

Proof. The proof is by induction on m. For the case m = 1, the result is a direct con-

sequence of Lemma 2.3.9. Now suppose the statement holds for some m ∈ N; let ε > 0,

and let β = (β0, . . . , βm) ∈ Wm+1(F ) and ρ = (ρ0, . . . , ρm) ∈ Wm+1(Fs) be such that

℘(ρ) = β. We have a polynomial cm = γm + Ym ∈ Z[X0, . . . , Xm−1, Y0, . . . , Ym] where

γm ∈ Z[X0, . . . , Xm−1, Y0, . . . , Ym−1] is the one given by Facts 2.3.4. By Proposition 2.3.6, we

know that ρm is a root of the polynomial f(x) = xp−x−cm(ρ0, . . . , ρm−1, β0, . . . , βm). Again

by Lemma 2.3.9, there exists ε > 0 such that |cm(ρ0, . . . , ρm−1, β0, . . . , βm) − c| < ε implies

that the polynomial xp−x−c has a root ρ′m such that |ρm−ρ′m| < ε. Now, if we endow F 2m−1

the product topology induced by the norm on F , evaluation of cm gives a continuous map

F 2m−1 → F , so there exists δ1 > 0 such that whenever |ρi − ρ′i| < δ1 for 0 ≤ i ≤ m− 1 and

|βj−β′
j| < δ1 for 0 ≤ j ≤ m, |cm(ρ0, . . . , ρm−1, β0, . . . , βm)−cm(ρ

′
0, . . . , ρ

′
m−1, β

′
0, . . . , β

′
m)| < ε.

Without loss of generality, we may assume that δ1 ≤ ε. Letting β = (β0, . . . , βm−1) and

ρ = (ρ0, . . . , ρm−1), we know that ℘(ρ) = β, and so we may apply the inductive hypothesis

to find δ2 > 0 such that whenever β
′
= (β′

0, . . . , β
′
m−1) ∈ Wm(F ) satisfies |βi − β′

i| < δ2 for

0 ≤ i ≤ m − 1, then we may find ρ′ = (ρ′0, . . . , ρ
′
m−1) ∈ Wm(Fs) satisfying ℘(ρ′) = β

′
and

|ρi − ρ′i| < δ1 for 0 ≤ i ≤ m − 1. Thus if we let δ = min(δ1, δ2), then whenever we have

β′ = (β′
0, . . . , β

′
m) ∈ Wm(F ) satisfying |βj − β′

j| < δ for each i, we can find ρ′0, . . . , ρ
′
m−1 ∈ Fs

such that |ρi − ρ′i| < δ1 for 0 ≤ i ≤ m− 1. Since also |βj − β′
j| < δ1 for 0 ≤ j ≤ m, it follows

that |cm(ρ0, . . . , ρm−1, β0, . . . , βm)− cm(ρ
′
0, . . . , ρ

′
m−1, β

′
0, . . . , β

′
m)| < ε. Finally, letting ρ′m be

a root of g(x) = xp−x− cm(ρ
′
0, . . . , ρ

′
m−1, β

′
0, . . . , βm) such that |ρm− ρ′m| < ε completes the

proof.
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A striking result in algebraic number theory states that when working over a field F

which is complete with respect to some non-Archimedean norm, one can, in some sense,

approximate separable extensions. Suppose L/F is a finite separable extension. Then by the

primitive element theorem, L = F (α) where α is a root of some polynomial m(x) ∈ F [x].

The assertion, then, is even if we perturb the coefficients of m(x) up to some threshold,

adjoining a root of the new polynomial yields the same extension. If the new coefficients

belong to a subfield of F , this process allows us to then pull back the extension L/F to a

separable extension over the subfield.

Our goal for the remainder of this section is to prove an analogous statement in terms

of Witt vectors. Mirroring the proof of the previous assertion, ours will crucially rely on

Krasner’s lemma which we now state.

Lemma 2.3.11 (Krasner’s Lemma). Let F be a complete non-Archimedean normed field

and let α ∈ Fs with Galois conjugates α0,α1, . . . ,αn ∈ F where α0 = α. If β ∈ Fs such that

|α− β| ≤ |α− αi|

for 1 ≤ i ≤ n, then α ∈ F (β).

Proof. See p. 141 in [13].

Proposition 2.3.12. Let F be a field which is complete with respect to a non-Archimedean

norm with char(F ) = p and suppose we have β = (β0, . . . , βm−1) ∈ Wm(F ) such that β ∈

Wm(F )/℘(Wm(F )) has order pm. Then there exists some ε > 0 such that for any β′ =

(β′
0, . . . , β

′
m−1) ∈ Wm(F ) satisfying |βi − β′

i| < ε for all i, F (℘−1(β)) = F (℘−1(β′)).

Proof. The proof is by induction on m. We will denote by | · | the extension of the norm

of F to the separable closure. For the case m = 1, let ρ0 be a root of the polynomial

f0(x) = xp − x − β0 (which must be irreducible by the assumption on β) and let δ be the
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minimum distance between any two roots of f0(x). By Lemma 2.3.10, there exists ε > 0

such that for any β′
0 ∈ F with |β0 − β′

0| < ε, g0(x) = xp − x − β′
0 has a root ρ′0 satisfying

|ρ0 − ρ′0| < δ. Then by Krasner’s lemma, F (℘−1(β0)) ⊆ F (℘−1(β′
0)). But [F (℘−1(β′

0)) : F ] ≤

[F (℘−1(β0)) : F ], so in fact F (℘−1(β0)) = F (℘−1(β′
0)). Now suppose the statement holds for

some m ∈ N. Let β = (β0, . . . , βm) ∈ Wm+1(F ) and choose ρ = (ρ0, . . . , ρm) ∈ Wm+1(Fs)

such that ℘(ρ) = β. Let L = F (℘−1(β)) where β = (β0, . . . , βm−1). As in the proof of

Lemma 2.3.10, let cm = γm + Ym. By Proposition 2.3.6, we know that F (℘−1(β)) = L(ρm)

where ρm is a root of the polynomial f(x) = xp−x−cm(ρ0, . . . , ρm−1, β0, . . . , βm). We should

first note that f(x) is irreducible over L, for otherwise the degree of F (℘−1(β))/F would be

strictly less than pm+1, contradicting the assumption on β. As before, let δ be the minimum

distance between any two roots of f(x). Again by Lemma 2.3.10, there exists ε1 > 0 such

that for any β′ = (β′
0, . . . , β

′
m) ∈ Wm+1(F ) satisfying |βi−β′

i| < ε1 for each i, then there exists

ρ′ = (ρ′0, . . . , ρ
′
m) ∈ Wm(Fs) such that ℘(ρ′) = β′ and |ρi−ρ′i| < δ for each i. By the inductive

hypothesis, there exists ε2 > 0 such that whenever β
′
= (β′

0, . . . , β
′
m−1) ∈ Wm(F ) satisfies

|βi − β′
i| < ε2 for 0 ≤ i ≤ m − 1, L = F (℘−1(β)) = F (℘−1(β

′
)). Taking ε = min(ε1, ε2), we

then see that given any β′ = (β′
0, . . . , β

′
m) ∈ Wm+1(F ) satisfying |βi − β′

i| < ε for each i, we

have ρ′ = (ρ′0, . . . , ρ
′
m) ∈ Wm(Fs) such that ℘(ρ′) = β′ and |ρi − ρ′i| < δ for each i. Thus,

F (℘−1(β′)) = L(ρ′m) = L(ρm) = F (℘−1(β))

where the second equality again follows from Krasner’s lemma as it did in the base case.
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Chapter 3

Admissibility over Semi-Global Fields

The main result of this document will be discussed in section 2. Before then, we will formalize

our understanding of field patching, as well as state some fundamental results from [9] which

will be used later.

3.1 Field Patching

The method of patching over fields was developed by Harbater and Hartmann back in 2007

and takes inspiration from “cut-and-paste” constructions in topology and analysis. Other

forms of patching exist, e.g. formal and rigid patching, but we shall not discuss those here.

Most of what follows come from [8] and [9].

Definition 3.1.1. Let I be a finite partially ordered set and let F = {Fi}i∈I be an inverse

system of fields indexed by I with inclusion maps ιij : Fi → Fj whenever i ≥ j. A patching

problem V for the inverse system F is given by the following data:

1. A finite dimensional Fi-vector space Vi for each i ∈ I.

2. Fi-linear maps νij : Vi → Vj whenever i ≥ j such that the induced maps Vi⊗Fi
Fj → Vj

are isomorphisms.
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Definition 3.1.2. Given patching problems V = {Vi}i∈I and V ′ = {V ′
i }i∈I on the inverse

system F = {Fi}i∈I , a morphism of patching problems V → V ′ will be given by an

Fi-linear map ηi : Vi → V ′
i for each i ∈ I such that whenever i ≥ j, the following square

commutes:

Vi Vj

V ′
i V ′

j

ηi

νij

ηj

ν′ij

Thus we have a category PP(F) of patching problems over the inverse system F . Let

Vect(k) be the category of finite dimensional vector spaces over the field k and suppose that

the inverse limit F of the system F is a field. Given a finite dimensional F -vector space V ,

let Vi = V ⊗F Fi and let νij : Vi → Vj be the maps 1 ⊗ ιij. This data gives us a patching

problem β(V ). We may similarly induce a morphism of patching problems from an F -linear

map, and one can check that this indeed results in a functor

β : Vect(F ) → PP(F)

The functor β is what we shall refer to as the base change functor. Of course, what we

are much more interested in is the reverse direction. As such, there are two questions one

might naturally ask concerning our set up:

1. For which inverse systems F is the base change functor an equivalence of categories?

2. Can we impose more structure on our patching problems instead of only requiring

vector spaces over the given fields?

Definition 3.1.3. Let F be a finite inverse system of fields with inverse limit F and let V

be a patching problem on F . We say that an F -vector space V is a solution to the patching

problem V if β(V ) ∼= V .

24



In [8], Harbater and Hartmann provide some answers to these questions. The inverse

systems they consider all come from geometric settings, and this is where semi-global fields

come into play. Here, we will discuss only the relevant constructions. Throughout, let T be

a complete discrete valuation ring with uniformizer t, residue field k, and fraction field K.

Finally, let F/K be a finitely generated field extension with transcendence degree one.

Definition 3.1.4. Let (X be a regular connected projective T -curve with function field F

such that the reduced irreducible components of the closed fiber X are regular (given F ,

such an (X always exists; see [1] or [11]). Let f : (X → P1
T be a finite morphism such that

the inverse image S of ∞ contains all the points where distinct irreducible components of X

meet. We will call ( (X,S) a regular T -model of F , following the terminology used in [9].

Construction 3.1.5. Given such a regular T -model, we extract an inverse system of fields

as follows. For each point Q ∈ S, we let RQ be the local ring of (X at Q and let (RQ be its

completion with field of fractions FQ. For each connected component U of X \ S, we let RU

be the subring of F consisting of functions which are regular at each point of U and let (RU

be its t-adic completion. Again, we let FU be the field of fractions of (RU . Now, if a point Q

is a limit point of a connected component U , then there is a unique branch p of X at Q lying

on Ū (since Ū is regular). In this case, p is a height one prime in the ring (RQ which contains

t and we let (Rp be the completion of the discrete valuation ring obtained by localizing (RQ

along the ideal p. As before, we denote by Fp the field of fractions of (Rp.

From the definition of (Rp, we see that (RQ naturally includes into (Rp. Moreover, we can

observe that RU and RQ have the same localization at the generic point of Ū . One can

further show that this localization naturally includes into the t-adically complete ring (Rp,

which implies that (RU also includes into (Rp. From these inclusions, we get corresponding

inclusions of the fields FQ and FU into Fp. Taking all of these fields together along with

these inclusions gives us an inverse system F whose inverse limit is the semi-global field F .
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Letting F be the inverse system from Construction 3.1.5, Harbater and Hartmann [8]

showed that the base change functor β : Vect(F ) → PP(F) is indeed an equivalence of

categories. In fact, they showed even more. Suppose we have a category A(L) of algebraic

structures over a field L (i.e. L-vector spaces, possibly with some additional structure, e.g.

L-algebras), along with base change functors A(L) → A(L′) whenever L ⊆ L′. Then we

can similarly define A-patching problems as we did when A(L) = Vect(L). We would then

have a similar base change functor β : A(F ) → PPA(F) where PPA(F) is the category of

A-patching problems over the inverse system F .

Theorem 3.1.6 (Harbater, Hartmann; 2007). Let F be the finite inverse system resulting

from Construction 3.1.5. If A(L) is one of the following categories of algebraic structures:

1. finite dimensional L-algebras,

2. G-Galois L-algebras for some fixed finite group G, with G-equivariant morphisms, or

3. central simple L-algebras,

then the base change functor β : A(F ) → PPA(F) is an equivalence of categories.

We will now apply Theorem 3.1.6 towards solving the admissibility problem.

Definition 3.1.7. Let F be a field. We say that a field extension L/F is adequate if there

exists a central division F -algebra D such that L is isomorphic to a maximal subfield of D

as an F -algebra.

Definition 3.1.8. Let F be a field and let G be a finite group. We say that G is admissible

over F if there exists a division algebra D which contains a maximal subfield L such that

L/F is Galois with group G.

Lemma 3.1.9. Let G be a finite group and let F , (X, S, and F be as in Construction 3.1.5.

Suppose that for each Q ∈ S we are given subgroups HQ ⊆ G and an HQ-Galois adequate
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extension LQ/FQ such that LQ ⊗FQ
Fp is a split extension F

|HQ|
p over Fp for each branch p.

Further suppose that the greatest common divisor of the indices [G : HQ] is 1. Then there

exists a G-Galois adequate extension E/F .

Proof. For a detailed proof, see Lemma 4.2 in [9]. We will provide a sketch of the proof

here to see how patching over fields is utilized. Let n = |G|. We are given HQ-Galois

adequate extensions LQ/FQ for each Q ∈ S, which means we also have FQ division algebras

DQ for each Q ∈ S. We will extend this to all other fields in our inverse system by letting

Dξ = Lξ = Fξ for all other ξ in our indexing set. Each of these new extensions are thus

Hξ-Galois over their respective base fields, where Hξ is trivial.

Now that we have a Galois extension Lξ/Fξ for each field Fξ in our inverse system, let

Eξ = IndG
Hξ
(Lξ) (see page 31 of [8] for the definition) be the induced G-Galois algebra. Also,

if nξ = [G : Hξ], let Aξ = Mnξ
(Dξ). As shown in [9], Eξ embeds into Aξ as a maximal

commutative separable subalgebra for all ξ. At this point, one checks using the splitness

assumption that the G-Galois algebras Eξ, the central simple algebras Aξ, and the inclusions

Eξ → Aξ can all be patched together to get a G-Galois algebra E which embeds as a maximal

commutative separable subalgebra into a central simple algebra A.

All that remains is to show that A is in fact a division algebra, from which it follows that

E must be a G-Galois maximal subfield, thus proving the claim. We do this by showing that

the index of A is equal to the degree of A. Note that for all ξ,

n/nξ = |Hξ| = deg(Dξ) | ind(A) | deg(A)

which means that the least common multiple of the n/nξ must also divide the index of A.

But by the hypothesis on the indices [G : HQ], we know that this least common multiple

27



must be n, which incidentally is equal to the degree of A. Thus,

deg(A) = n | ind(A) | deg(A)

so in fact deg(A) = ind(A) as claimed

3.2 Results

In [14], Saltman showed that if K is a field with characteristic p and D is a K-central cyclic

division algebra of degree pn, then in fact D contains a maximal subfield which is G-Galois

over K where G is any group of order pn. This rather surprising result tells us that in order

to show that arbitrary p-groups are admissible over a semi-global field with characteristic p,

it is enough to construct cyclic division algebras of degree pn over such semi-global fields for

any n ∈ N. Of course, we shall require more in order to patch these along with the results

of [9], but Saltman’s results tell us that the cyclic case will play a central role in pursuing

admissibility when the characteristic of the semi-global field divides the order of the group

in question.

Throughout this section, we assume that T is a complete discretely valued ring with

uniformizer t, residue field k, and fraction field K, both with characteristic p . We also

assume that F/K is a finitely generated field extension with transcendence degree one. Let

( (X,S) be a regular T -model of F . Finally, let (RQ, (RU , (Rp, FQ, FU , and Fp be defined as in

Construction 3.1.5 for all Q, U , and p.

Lemma 3.2.1. Let R be a domain with fraction field F and suppose there exists a height

one prime ideal p ⊂ R such that the completion (Rp is a complete discrete valuation ring with

uniformizer b, valuation v, and fraction field (F . Furthermore, suppose there exists a cyclic
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extension L/F with cyclic Galois group of order n, generated by an element σ, such that

(L := L⊗F
(F is an unramified field extension of (F . Then L/F is adequate.

Proof. Let A be the cyclic F -algebra (L, σ, b) and consider B = A⊗F
(F = ((L, σ, 1⊗b), which

is also a cyclic algebra, this time over (F . Corollary 4.7.5 from [7] states that the period of

the cyclic algebra B is equal to the order of 1 ⊗ b in (F×/N!L| !F (
(L×). Corollary 2.4 in [18]

says that for every x ∈ (L, v
)
N!L| !F (x)

*
= n · w(x) where w is the valuation on (L. Thus we

get a map

(F×/N!L| !F (
(L×) → Z/nZ

sending 1 ⊗ b to v(b) = 1, which has order n in Z/nZ. Tracing back through these homo-

morphisms, we find that

n | per(B) | per(A) | ind(A) | deg(A) = n

which forces ind(A) = deg(A), implying that A had to be a division algebra to begin with.

Lemma 3.2.2. Let Q ∈ X be a point at which X is regular and let (RQ be the completion

of the local ring of (X at Q with fraction field FQ. Then, for every n ∈ N, there exists an

adequate cyclic extension LQ/FQ of degree pn which is split along p where p is the unique

branch of X at Q.

Proof. Let m ⊆ (RQ be the maximal ideal. Since X is regular at Q, there is a unique height

one prime ideal p ⊆ (RQ containing t, which must necessarily be a principal ideal, i.e. p = (tQ)

for some tQ ∈ (RQ. Since tQ is irreducible, tQ /∈ m2 and so we can find some x ∈ (RQ such

that m = (tq, x). In fact, the equicharacteristic hypothesis tells us that (RQ
∼= k[[tq, x]]. Let

(Rx be the x-adic completion of (RQ and let Fx be its fraction field and kx the residue field.

In particular, this means that (Rx
∼= k((t))[[x]] and kx ∼= k((t)). In order to use Lemma 3.2.1,

we begin by carefully constructing a degree pn cyclic unramified extension of Fx.
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Consider the polynomial f(z) = zp − z − 1
tQ

∈ kx[z]. Since char(kx) = p, this polynomial

is irreducible if and only if it has no roots. So suppose α ∈ kx is a root of f and let v be the

tQ-adic discrete valuation on kx. Then,

−1 = v

+
1

tQ

,
= v(αp − α) ≥ min(p · v(α), v(α))

which means that v(α) ∕= p · v(α). Thus we actually have that

−1 = min(p · v(α), v(α)) = p · v(α)

which is impossible since v(α) ∈ Z. Thus f is irreducible, and so is the polynomial f(z) =

zp − z − 1
tQ

∈ Fx[z]. Let β =
)

1
tQ
, 0, . . . , 0

*
∈ Wn(Fx) and denote by β its image in

the quotient Wn(Fx)/℘(Wn(Fx)). By Lemma 2.3.8, β has order pn, and thus if we let

Lx = Fx(℘
−1(β)), we find that Lx/Fx is cyclic of degree pn. Also, since the residue field

of Lx is lx = kx

)
℘−1

)
1
tQ
, 0, . . . , 0

**
(which is Galois over kx) and [lx : kx] = pn, Lx is

unramified over Fx.

Next, let | · |x be the x-adic norm on Fx and let | · |p be the p-adic norm on Fp. Proposition

2.3.12 says that for some ε1 > 0, any α0 ∈ Fx such that
---α0 − 1

tQ

---
x
< ε1 will guarantee that

Fx(℘
−1(α)) = Lx where α = (α0, 0, . . . , 0) ∈ Wn(Fx). Likewise, there exists ε2 > 0 such that

for any α0 ∈ Fp such that |α0|p < ε2, the polynomial zp−z−α0 ∈ Fp[z] has a root by Hensel’s

lemma. Using weak approximation along with the fact that FQ is dense in both Fp and Fx, we

can find α0 ∈ FQ such that
---α0 − 1

tQ

---
x
< ε1 and |α0|p < ε2. Let α = (α0, 0, . . . , 0) ∈ Wn(FQ)

and let LQ = FQ(℘
−1(α)). Since LQ/FQ is necessarily cyclic of degree pn and LQ⊗FQ

Fx
∼= Lx

is unramified, Lemma 3.2.1 assures us that LQ/FQ is adequate. Lastly, we also find that

LQ ⊗FQ
Fp

∼= F pn

p , which incidentally completes the proof.
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Theorem 3.2.3. Let K be a discretely valued field with algebraically closed residue field k

and let F/K be a finitely-generated field extension with transcendence degree one. Assume

further that char(K) = char(k) = p. Let G be a finite group whose Sylow-q subgroups are

all abelian of rank at most 2 for q ∕= p and whose Sylow-p subgroup is cyclic. Then G is

admissible over F .

Proof. If p ∤ |G|, this follows directly from Proposition 4.4 in [9]. Now assume p | |G|.

Following the proof of Proposition 4.4 in [9], let Q0, ..., Qr−1 ∈ X be distinct points at which

X is regular, where r is the number of distinct primes dividing |G|. Thus, X has a unique

branch along each of these points. By Proposition 6.6 of [8], there is a finite morphism

f : (X → P1
T such that S = f−1(∞) ⊂ X contains each Qi along with all points where

distinct irreducible components of X meet. As was shown in the proof of Proposition 4.4

in [9], the assumption on Sylow-q subgroups where q ∕= p allows us to find adequate field

extensions LQi
/FQi

for i > 0 whose Galois groups are the Sylow-q subgroups and such that

they are split along their respective branches. As for the Sylow-p subgroup, which is cyclic of

order pn for some n ∈ N, Lemma 3.2.2 tells us that we may also find an adequate extension

LQ0/FQ0 whose Galois group is cyclic of order pn and such that it is split along the branch

at Q0. Thus the result follows from Lemma 3.1.9 above.

Theorem 3.2.4. Let K be a discretely valued field with residue field k and let F/K be a

finitely-generated field extension with transcendence degree one. Assume that char(K) =

char(k) = p. If G is a p-group, then G is admissible over F .

Proof. Consider the cyclic group Cpn of order pn. By Lemma 3.2.2, we know that there exists

a Cpn-Galois adequate extension LQ/FQ where Q ∈ X is a point at which X is regular. Then

by Lemma 3.1.9, there exists a Cpn-Galois adequate extension L/F . Thus there exists an

F -central division algebra D containing a copy of L as a maximal subfield, which means

deg(D) = [L : F ] = pn. In particular, we know that D is a nontrivial p-algebra; Theorem 3
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in [14] then tells us that NF = dimF ′ F/℘(F ) is infinite, where F ′ is the prime subfield of F .

But then by Theorem 1’ in [14], there exists a G-Galois field extension E/F such that E is

a maximal subfield of D. Thus G is admissible over F .
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