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Abstract

We develop techniques for studying tropical compactifications of closed subvarieties of tori

by introducing a broad class of such tropical compactifications, called quasilinear tropical

compactifications, which satisfy a number of remarkable properties generalizing compactifi-

cations of complements of hyperplane arrangements. We apply these techniques to study the

birational geometry and intersection theory of certain compactifications of moduli spaces,

namely, the moduli spaces M(r, n) of hyperplane arrangements and Y (3, n) of marked del

Pezzo surfaces. In particular, we prove a conjecture of Keel and Tevelev that the stable pair

compactification of M(r, n) for r = 2 or r = 3 and n ≤ 8 is the log canonical compactifica-

tion, and we describe the intersection theory and cohomology of tropical compactifications

of M(r, n) for r = 2 or r = 3, n ≤ 8 and tropical compactifications of Y (3, n) for n ≤ 7.

Index words: Moduli space, tropical compactification, log canonical, tropical fan,

Chow ring, hyperplane arrangement, del Pezzo surface, stable pair.



Geometry of tropical compactifications of moduli spaces

by

Nolan Schock

B.S., California Polytechnic State University, 2017

A Dissertation Submitted to the Graduate Faculty of the

University of Georgia in Partial Fulfillment of the Requirements for the Degree

Doctor of Philosophy

Athens, Georgia

2022



©2022

Nolan Schock

All Rights Reserved



Geometry of tropical compactifications of moduli spaces

by

Nolan Schock

Major Professor: Valery Alexeev

Committee: Philip Engel

Daniel Litt

Laura Rider

Electronic Version Approved:

Ron Walcott

Vice Provost for Graduate Education and Dean of the Graduate School

The University of Georgia

May 2022



Acknowledgments

I am firstly deeply grateful to my advisor, Valery Alexeev, for teaching me so much

beautiful mathematics and for his guidance and support. I would also like to thank the

numerous other professors who taught me topics related to algebraic geometry, in particular,

Phil Engel, Daniel Litt, Dino Lorenzini, and Ben Bakker. Lastly I wish to thank my family,

for their constant love and support, and especially Jojo, without whom I would not have had

the strength to perservere when times were hardest.

iv



Contents

Acknowledgments iv

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 Tropical compactifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Compactifications of moduli spaces . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Setup and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

I Geometry of tropical compactifications 13

2 Tropical geometry 14

2.1 Tropical fans and fan cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Tropical fan cycles and cocycles . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Morphisms of tropical fan cycles . . . . . . . . . . . . . . . . . . . . . . . . . 29

v



2.4 Divisors and tropical modifications . . . . . . . . . . . . . . . . . . . . . . . 34

3 Tropicalizations and tropical compactifications 48

3.1 Tropicalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Tropical compactifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Intersection theory 70

4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Tropical intersection theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3 Intersection theory of tropical compactifications . . . . . . . . . . . . . . . . 94

II Geometry of compactifications of moduli spaces 110

5 Log canonical compactifications and compactifications of moduli spaces 111

5.1 Tropical and log canonical compactifications . . . . . . . . . . . . . . . . . . 111

5.2 Stable pair compactifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6 Moduli of n points on P1 119

6.1 Stable pair compactification . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.2 Log canonical compactification . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.3 Intersection theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7 Moduli of hyperplane arrangements 125

7.1 Moduli of stable hyperplane arrangements . . . . . . . . . . . . . . . . . . . 126

7.2 Log canonical compactifications . . . . . . . . . . . . . . . . . . . . . . . . . 131

vi



7.3 Intersection theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.4 Moduli of six lines on the plane . . . . . . . . . . . . . . . . . . . . . . . . . 148

8 Moduli of marked del Pezzo surfaces 159

8.1 Log canonical compactifications . . . . . . . . . . . . . . . . . . . . . . . . . 160

8.2 Intersection theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

8.3 Stable pair compactifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Bibliography 175

Appendices 189

A Quasilinearity computations 189

A.1 Computations for M(3, 7), M(3, 8) . . . . . . . . . . . . . . . . . . . . . . . 189

A.2 Computations for Y (3, 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

vii



List of Figures

2.1 Tropical and not-tropical fans. . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 The unique reduced tropical fan structure on the line 2y = 3x. . . . . . . . . 17

2.3 A non-reduced tropical fan. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Some reducible and irreducible tropical fans. . . . . . . . . . . . . . . . . . . 19

2.5 A refinement necessary to describe a tropical fan cycle. . . . . . . . . . . . . 26

2.6 The projection f(x, y) = y . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.7 The divisor of ϕ = min{2y, 3x} is supported on the rays ρ2 and ρ4, with weight 4 38

2.8 The divisor of ϕ = min{2x, 0} is supported on the rays ρ2 and ρ4, with weight

2. The divisor of ϕ′ = min{x, 0} has the same support but weight 1. . . . . . 38

2.9 A non-principal divisor on a tropical fan. . . . . . . . . . . . . . . . . . . . . 39

2.10 The divisor of ϕ = min{2x, 0} is supported on the rays ρ2 and ρ4, with weight

2. The divisor of ϕ′ = min{x, 0} has the same support but weight 1. . . . . . 40

2.11 The tropical modification of the standard tropical line with respect to ϕ(x, y) =

min{x, y, 0}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.12 Two distinct tropical modifications along two divisor with the same unweighted

support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

viii



2.13 The tropical modification of R2 with respect to ϕ(x, y) = min{x, y, 0}. . . . . 44

2.14 A fan structure which cannot be written as a tropical modification. . . . . . 44

2.15 Two isomorphic degenerate tropical modifications. . . . . . . . . . . . . . . . 45

2.16 The degenerate tropical modification of the standard tropical line with respect

to ϕ(x, y) = x. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1 Tropicalization and initial degenerations of Y = {x+ y + 1 = 0} . . . . . . . 51

3.2 The line Y = {x + y + z = 0} ⊂ P1 gives a combinatorial normal crossings

compactification of Y = {x+ y + 1 = 0} ⊂ C∗ . . . . . . . . . . . . . . . . . 58

4.1 The Fano matroid (picture taken from [Ale15, Figure 3.1]). . . . . . . . . . . 85

7.1 A matroid subdivision of ∆(2, 4) and the corresponding stable curve (picture

taken from [Ale15, Figure 4.7]). . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.2 Examples of stable hyperplane arrangements for M(3, 6) (pictures taken from

[Ale15, Figure 5.12]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.3 The two minimal unimodular refinements of the triangular bipyramid. . . . . 151

ix



List of Tables

7.1 Intersections of ψ-classes on M(3, 6) . . . . . . . . . . . . . . . . . . . . . . . 158

8.1 Ranges for stable marked del Pezzo surfaces. . . . . . . . . . . . . . . . . . . 171

8.2 Values of KS + cB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

8.3 Minimal weights for marked del Pezzo surfaces. . . . . . . . . . . . . . . . . 172

x



Chapter 1

Introduction

1.1 Tropical compactifications

Let Y be a d-dimensional closed subvariety of an n-dimensional algebraic torus T . It is

natural to attempt to compactify Y by compactifying T , i.e. by taking the closure Y of Y

in a (possibly non-complete) toric variety X(Σ) with torus T . One is then led to ask when

the compactification Y is well-behaved, and how close the geometry of Y is to the geometry

of the ambient toric variety X(Σ).

In general one should of course not expect much in this direction; for instance, any

quasiprojective variety can be viewed in this way. However, it was observed by Tevelev that

there is a family of nice compactifications Y ⊂ X(Σ) are described by fans Σ supported on a

combinatorial object called the tropicalization trop(Y ) of Y [Tev07]. This is the support of a

d-dimensional fan in Rn which encodes the behavior of all well-behaved compactifications of

Y in toric varieties. More precisely, Tevelev defined a notion of a tropical compactification of
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Y ⊂ T as a compactification Y ⊂ X(Σ) such that Y is proper and the induced multiplication

map m : Y × T → X(Σ) is flat and surjective; then the fan Σ is necessarily supported on

trop(Y ) [Tev07]. The main point of this definition is that for tropical compactifications, the

stratification of X(Σ) by torus orbits pulls back to a stratification of Y , which one can use

to study the geometry of Y . Tropical compactifications of closed subvarieties of tori are the

main object of study of this dissertation.

Even for a tropical compactification Y ⊂ X(Σ), the geometry of Y can be very far from

the geometry of the ambient toric variety X(Σ). For instance, any smooth projective variety

in Pn can be viewed as a tropical compactification of its intersection with the open dense

torus. However, the prototypical example of a tropical compactification is when Y is the

complement of a hyperplane arrangement, in which case Y ⊂ X(Σ) satisfies a number of

remarkable properties:

1. All strata of Y are also complements of hyperplane arrangements [KP11].

2. There is an isomorphism of Chow rings A∗(Y ) ∼= A∗(X(Σ)) [Gro15]. If X(Σ) is smooth,

then so is Y , and one further has

H∗(Y ) ∼= A∗(Y ) ∼= A∗(X(Σ)) ∼= H∗(X(Σ)).

The first main result of this dissertation is a generalization of these properties to a much

broader class of closed subvarieties of tori, which we call quasilinear varieties. We show the

following.
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Theorem 1.1.1 (Theorem 4.3.20, Theorem 4.3.22). Let Y ⊂ X(Σ) be a tropical compactifi-

cation of a quasilinear variety Y ⊂ T . Then

1. All strata of Y are also quasilinear.

2. There is an isomorphism A∗(X(Σ))
∼−→ A∗(Y ). If X(Σ) is smooth, then so is Y , and

H∗(Y ) ∼= A∗(Y ) ∼= A∗(X(Σ)) ∼= H∗(X(Σ)).

Our interest in quasilinear varieties comes from a desire to understand the geometry of

certain compactifications of moduli spaces, as we explain now.

1.2 Compactifications of moduli spaces

The first examples of moduli spaces in algebraic geometry are the moduli space M0,n of

n points on P1, and its compactification M0,n, the moduli space of stable n-pointed rational

curves [Knu83]. It is known that M0,n ⊂ M0,n satisfies a number of remarkable properties

not typically satisfied by other compactifications of moduli spaces:

1. M0,n is a smooth projective variety of dimension n− 3 [Knu83].

2. M0,n is the log canonical compactification of M0,n; roughly speaking, this is the smallest

compactification with reasonable boundary singularities [KT06].

3. The intersection theory of M0,n has an explicit presentation, and looks like the inter-

section theory of a toric variety [Kee92].
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The primary goal of this dissertation is to study the analogues of these properties for

compactifications of certain moduli spaces of higher-dimensional varieties. As we will later

explain, the fundamental reason why these properties hold is that M0,n is a complement

of a hyperplane arrangement, and M0,n is a tropical compactification given by the coarsest

fan structure on trop(M0,n). The higher-dimensional analogues of these properties will be

obtained by realizing the particular moduli spaces of higher-dimensional varieties not as

complements of hyperplane arrangements, but as quasilinear varieties as discussed above.

1.2.1 Moduli of hyperplane arrangements

From the point of view of modular compactifications of moduli spaces and the mini-

mal model program, the natural higher-dimensional generalization of M0,n ⊂ M0,n is the

moduli space M(r, n) of stable hyperplane arrangements, compactifying the space M(r, n)

of arrangements of n hyperplanes in Pr−1 in general position [HKT06; Ale15]. (Indeed,

M(2, n) = M0,n.) Unfortunately, the geometry of M(r, n) is typically much more compli-

cated than that of M0,n: in general, M(r, n) has multiple irreducible components, strata

of its main irreducible component M
m

(r, n) can have arbitrary singularities, and M
m

(r, n)

is usually not the log canonical compactification [HKT06; KT06]. Keel and Tevelev have

conjectured that the compactification M
m

(r, n) is well-behaved only in a few small cases.

Conjecture 1.2.1 ([KT06, Conjecture 1.6]). The compactification M(r, n) ⊂ M
m

(r, n) is

the log canonical compactification ⇐⇒ r = 2 or r = 3 and n ≤ 8 (as well as the cases

occuring by duality M
m

(r, n) ∼= M
m

(n− r, n)).
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The forward direction of this conjecture was shown by Keel and Tevelev [KT06]: they

showed that M(r, n) ⊂M
m

(r, n) is not log canonical for r = 3, n ≥ 9 and r ≥ 4, n ≥ 8. In

the backward direction, the case r = 2 is well-known as mentioned above, cf. [KT06], and

the cases r = 3, n ≤ 7 have also been shown via work of Luxton [Lux08] and Corey [Cor21].

As an application of Theorem 1.1.1, we settle the remaining case and unify the proofs of the

previous cases.

Theorem 1.2.2 (Theorem 7.2.3). If r = 2 or r = 3 and n ≤ 8, then M(r, n) is a quasilinear

variety.

In the cases of the theorem, M
m

(r, n) is a tropical compactification of M(r, n) given by

the coarsest fan structure on trop(M(r, n)) (Theorem 7.2.4). This implies the solution to

Keel and Tevelev’s conjecture.

Corollary 1.2.3 (Theorem 7.2.2). If r = 2 or r = 3 and n ≤ 8, then M
m

(r, n) is normal,

has toroidal singularities, and is the log canonical compactification of M(r, n).

The intersection theory ofM(r, n) is of great interest, as it gives the first higher-dimensional

version of the intersection theory of the moduli space of curves. As another consequence of

Theorems 1.1.1 and 1.2.2, we are able to describe the intersection theory in the above cases.

Corollary 1.2.4 (Theorem 7.3.1). Assume r = 2 or r = 3 and n ≤ 8. Let M
Σ

(r, n) ⊂ X(Σ)

be any tropical compactification of M(r, n). Then A∗(M
Σ

(r, n)) ∼= A∗(X(Σ)). If X(Σ) is

smooth, then M
Σ

(r, n) is a resolution of singularities of M
m

(r, n), and

H∗(M
Σ

(r, n)) ∼= A∗(M
Σ

(r, n)) ∼= A∗(X(Σ)) ∼= H∗(X(Σ)).
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The Chow ring of a (nonsingular) toric variety has a well-known explicit presentation

[Bri96; KP08]. Thus the above corollary in principle describes the intersection theory of

M
m

(r, n) and its resolutions, but in practice the fans Σ supported on trop(M(r, n)) are too

complicated to be useful. Nevertheless in Section 7.4 we completely describe the situation

for the first nontrivial higher-dimensional case, namely, M(3, 6).

1.2.2 Moduli of marked del Pezzo surfaces

From a combinatorial point of view, a better-behaved higher-dimensional generalization

of M0,n is the moduli space Y (3, n) of marked del Pezzo surfaces of degree 9 − n (n ≤

8). In [HKT09], Hacking, Keel, and Tevelev constructed, for n ≤ 7, the log canonical

compactification Y (3, n) as a tropical compactification using combinatorics of the root system

En. As another application of Theorem 1.1.1, we describe the intersection theory of Y (3, n).

Theorem 1.2.5 (Theorem 8.1.12). If n ≤ 7, then Y (3, n) is a quasilinear variety.

Corollary 1.2.6 (Theorem 8.2.1). Assume n ≤ 7. Let Y
Σ

(3, n) ⊂ X(Σ) be any tropical

compactification of Y (3, n). Then A∗(Y
Σ

(3, n)) ∼= A∗(X(Σ)). If X(Σ) is smooth, then so is

Y
Σ

(3, n), and

H∗(Y
Σ

(r, n)) ∼= A∗(Y
Σ

(r, n)) ∼= A∗(X(Σ)) ∼= H∗(X(Σ)).

In particular, we have an explicit presentation of the Chow ring of the log canonical compact-

ification Y (3, n).
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Remark 1.2.7. We expect the above results also hold for n = 8, but this is currently only

a conjecture.

Remark 1.2.8. We also expect that stable pair compactifications of Y (3, n) (or more precisely,

of the open subvariety Y ◦(3, n) parameterizing marked del Pezzo surfaces where the union of

the (−1)-curves is a normal crossings divisor) can be described as tropical compactifications.

This is known for n = 5, 6 [HKT09; GKS21]. Thus the above corollary would also describe

the intersection theory of moduli of stable marked del Pezzo surfaces.

1.3 Outline

This dissertation is organized as follows. There are two main parts.

1. In Part I we study tropical geometry and geometry of tropical intersection theory,

leading to the notion of quasilinear tropical compactifications mentioned above.

(a) Chapter 2 is a review of background material in tropical geometry. We introduce

the basic objects in tropical geometry, tropical fan cycles, and their natural tropical

Chow homology and cohomology groups. We also discuss the notion of a tropical

modification, which was first introduced by Mikhalkin in [Mik07b], and will be

our main technical tool in Part I of this dissertation.

(b) Chapter 3 is a review of background material on tropicalizations and tropical

compactifications of closed subvarieties of tori.
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(c) Chapter 4 discusses tropical intersection theory and its connections to the intersec-

tion theory of tropical compactifications. This chapter contains the first original

results of this dissertation. The chapter is split into three sections.

i. Section 4.1 is a review of some basic notions in intersection theory, especially

intersection theory of toric varieties.

ii. In Section 4.2 we introduce the general setup of tropical intersection theory of

tropical fan cycles, and review previous work by Fulton and Sturmfels [FS97],

Allermann and Rau [AR10], and Shaw [Sha13], on classes of tropical fan cycles

which admit a well-behaved tropical intersection theory. Then in Section 4.2.3,

we introduce a new, broader class of such tropical fan cycles, called quasilinear

tropical fan cycles.

iii. In Section 4.3 we prove a general theorem giving criteria for the intersection

theory of a tropical compactification to be the same as the tropical intersec-

tion theory of the corresponding tropical fan (Theorem 4.3.3). We review the

previous setting for which such a result was known to hold, namely, compactifi-

cations of complements of hyperplane arrangements, and then in Section 4.3.2,

we define and prove the main properties of our primary objects of interest:

quasilinear tropical compactifications.

2. In Part II we turn our attention to compactifications of moduli spaces.

(a) In Chapter 5, we review the basics of log canonical compactifications, and stable

pair compactifications of moduli spaces.

8



(b) In Chapter 6, we review the well-understood case of the compactification M0,n ⊂

M0,n.

(c) In Chapter 7, we study the moduli space of stable hyperplane arrangements.

This starts with a brief review of the definitions and construction in Section 7.1,

and then in the remaining sections we prove our main results about M(r, n) as

mentioned above.

(d) In Chapter 8, we study tropical compactifications of the moduli space of marked

del Pezzo surfaces. We begin with a summary of the construction of the log

canonical compactification by Hacking, Keel, and Tevelev [HKT09], and then we

prove our main results on the intersection theory of tropical compactifications of

the moduli space of marked del Pezzo surfaces.

The original work of this dissertation appears in the preprint [Sch21], and the article

[Sch22].

1.4 Setup and notation

1.4.1 Algebraic geometry

We assume familiarity with algebraic geometry and unless otherwise stated work over

the field C. (This is largely done for simplicity of exposition; many of the results of this

dissertation can be adapted to other base fields without great difficulty.) Unless otherwise

9



stated we assume varieties are irreducible, i.e. that a variety is an integral finite-type scheme

over C.

1.4.2 Toric geometry

We will assume some basic familiarity with fans and toric varieties as described in [Ful93;

CLS11]. We mostly follow the notations of [Ful93; AP21].

In particular throughout this dissertation we fix a torus T ∼= (C∗)n, and denote by

N = Hom(C∗, T ) and M = Hom(T,C∗) the cocharacter and character lattices respectively;

additionally we write NR = N ⊗R and MR = M ⊗R. By a fan Σ in NR we mean a collection

of finitely many strongly convex rational polyhedral cones, such that

1. each face of a cone in Σ is also a cone in Σ, and

2. the intersection of two cones in Σ is a face of each.

We denote by X(Σ) the corresponding toric variety. For a cone σ ∈ Σ, we write O(σ) ⊂ X(Σ)

for the corresponding torus orbit and V (σ) for its closure.

A cone σ is simplicial if it is generated by linearly independent vectors. If its generators

additionally form part of a basis of N , then σ is called unimodular [AP21] or strictly sim-

plicial [HKT09]. The fan Σ is simplicial (resp. unimodular) if each cone of Σ is simplicial

(resp. unimodular). Thus simplicial (resp. unimodular) fans correspond to simplicial (resp.

nonsingular) toric varieties.

10



For a cone σ, we write Nσ = 〈σ〉∩N for the sublattice of N spanned by σ. The dimension

of the cone σ is the dimension of Nσ. We write Σk for the set of k-dimensional cones of a fan

Σ, and |Σ| for the support of Σ, i.e. the union of all cones of Σ.

A cone of Σ is maximal if it is not contained in any other cone of Σ. The dimension

of Σ is the largest dimension of a maximal cone of Σ. The fan Σ is pure-dimensional if all

maximal cones have the same dimension.

If σ, τ are cones of Σ with τ a face of σ, then we write τ ≺ σ, and we write nσ,τ for any

lattice point in the relative interior of σ whose image generates the one-dimensional quotient

lattice Nσ/Nτ . Additionally we write Σσ for the star fan of Σ at σ, i.e. the fan in Nσ,R whose

cones are the images of the cones of Σ which have σ as a face.

A subfan ∆ of a fan Σ is a fan such that |∆| ⊂ |Σ| and every cone of ∆ is contained in a

cone of Σ. A refinement of Σ is a subfan ∆ such that |∆| = |Σ|.

Let ρ be a ray generated by a vector in the relative interior of a cone σ of a fan Σ. The

stellar refinement of Σ with respect to ρ is the refinement Σ(ρ) obtained by replacing the cone

σ with the collection of cones τ + ρ for τ a face of σ. The stellar coarsening is the reverse

of the stellar refinement. Stellar refinements and coarsenings correspond to toric blowups

and blowdowns in toric geometry. A stellar refinement or coarsening of Σ at σ is any stellar

refinement or coarsening of Σ with respect to a ray ρ generated by a vector in the relative

interior of σ. Further details of these constructions are not important for our purposes; we

refer to e.g. [Ful93; CLS11; AP21] for more details.

Remark 1.4.1. It is occasionally useful in tropical geometry to consider more generally fans

where the cones are not necessarily strongly convex [GKM09, Example 2.5(i)]. Since we

11



are only interested in fans which correspond to toric varieties, we restrict to fans as defined

above.

It is also occasionally useful to consider fans with infinitely many cones, but again we will

not be concerned with such fans.

12



Part I

Geometry of tropical compactifications
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Chapter 2

Tropical geometry

In this expository chapter we study the tropical geometry of fans as a subject in its own

right, following mainly [Mik07b; GKM09; AR10; AP21]; see the book in progress [MR18] for

a more detailed and general introduction to this perspective on tropical geometry.

2.1 Tropical fans and fan cycles

Minkowski weights

Definition 2.1.1 ([FS97]). A Minkowski weight of dimension k on a fan Σ is a function

ω : Σk → Z such that ∑
σ∈Σk
σ�τ

ω(σ)nσ,τ = 0 mod Nτ (2.1)

for all τ ∈ Σk−1. The relation (2.1) is referred as the balancing condition. Write Mk(Σ) for

the group of Minkowski weights of dimension k on Σ, and M∗(Σ) =
⊕

kMk(Σ).

14



Minkowski weights were introduced by Fulton and Sturmfels to give a combinatorial

description of the intersection theory of toric varieties [FS97]. One motivation for this is

given by the following proposition, which will be explained in Section 4.1.2.

Proposition 2.1.2 ([FS97]). Let Σ be any fan in NR. Then

Mk(Σ) ∼= Hom(An−k(X(Σ)),Z).

From the perspective of tropical geometry, the groups Mk(Σ) are the more natural Chow

homology groups compared to the classical Chow groups Ak(X(Σ)).

Remark 2.1.3. Since M∗(Σ) is dual to A∗(X(Σ)), from the toric perspective M∗(Σ) is

perhaps better interpreted as the Chow cohomology, cf. Section 4.1. But the toric side is

also dual to the tropical side, so from the tropical perspective M∗(Σ) is best thought of as

the Chow homology.

2.1.1 Tropical fans

Definition 2.1.4 ([GKM09; AR10]). A tropical fan is a pure d-dimensional fan Σ ⊂ NR,

together with a fixed nonzero Minkowski weight ω : Σd → Z on the top-dimensional cones,

called the fundamental weight.

Reduced tropical fans

Definition 2.1.5. A tropical fan (Σ, ω) is reduced if ω(σ) = 1 for all top-dimensional cones

σ.
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Remark 2.1.6. The terminology differs slightly in our main references [AR10; AP21]. In

[AP21] all tropical fans are assumed to be reduced. In [AR10], fans are allowed to have

weight zero on some cones, and a fan is said to be reduced if all weights are nonzero. Our

terminology seem more appropriate for our purposes.

Reduced tropical fans will be our primary fans of interest.

Example 2.1.7. Any complete fan Σ is a reduced tropical fan; the fundamental weight

defines the degree map on the Chow group A0(X(Σ)) of the corresponding toric variety.

Thus whenever we refer to a complete fan, we view it as a reduced tropical fan.

Example 2.1.8. The 1-dimensional fan Σ pictured in Figure 2.1a cannot be made tropical

with any weight, since

a(1, 0) + b(−1,−1) = (a− b,−b)

is nonzero unless a = b = 0. However, adding the ray through (0, 1) as pictured in Figure

2.1b now makes this a tropical fan with the constant weight 1, since

(1, 0) + (−1,−1) + (0, 1) = (0, 0).

This fan is called the standard tropical line (in R2).

Example 2.1.9. The line 2y = 3x has a unique fan structure Σ with two rays, as pictured

in Figure 2.2. This is a tropical fan with weight 1 on each ray.
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(1, 0)

(−1,−1)

(a) A fan which is not tropical.

(1, 0)

(−1,−1)

(0, 1)

(b) The standard tropical line.

Figure 2.1. Tropical and not-tropical fans.

(2, 3)

(−2,−3)

Figure 2.2. The unique reduced tropical fan structure on the line 2y = 3x.

Example 2.1.10. The fan Σ pictured in Figure 2.3 cannot be made into a reduced tropical

fan, since

(1, 0) + (0, 1) + (−1,−2) = (0,−1)

is nonzero. However, it is a tropical fan with the weights shown in the picture, since now

(1, 0) + 2(0, 1) + (−1,−2) = (0, 0).
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(1, 0)

1

(−1,−2) 1

(0, 1) 2

Figure 2.3. A non-reduced tropical fan.

Irreducible tropical fans

Definition 2.1.11 ([GKM09]). A reduced tropical fan Σ is irreducible if there is no reduced

tropical fan Σ′ of the same dimension with |Σ′| ( |Σ|.

Example 2.1.12. All of the reduced tropical fans given in the previous examples are irre-

ducible.

Example 2.1.13. The fan Σ pictured in Figure 2.4a is not irreducible; there are several

tropical subfans of the same dimension. Some are shown in Figures 2.4b, 2.4c. Note this

example also indicates that there is not an obvious well-behaved notion of the irreducible

components of a tropical fan, cf. [GKM09, Remark 2.19], [AP21, Definition 3.10, Remark

3.12]

Remark 2.1.14. Alternative definitions of irreducibility are given in [RSS16; AP21]. It is

easily verified that these definitions are equivalent to the one given above. (We point this

out as we will later use results from [RSS16; AP21].)
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(a) A reducible tropical fan.

(b) A reducible tropical
subfan of the fan in Figure
2.4a.

(c) An irreducible tropical
subfan of the fan in Figure
2.4a.

Figure 2.4. Some reducible and irreducible tropical fans.

One can also define irreducibility in the same way for possibly nonreduced tropical fans,

but we will only need the notion in the reduced case, where it is somewhat better behaved.

Local properties

Note that if (Σ, ω) is a tropical fan, then all of its star fans are also tropical, with the

fundamental weight inherited from ω.

Definition 2.1.15 ([AP21, Section 5.4]). A property P of tropical fans is local or stellar-stable

if whenever a tropical fan Σ satisfies P , all of its star fans Σσ also satisfy P .

In particular the property of being reduced is automatically local. On the other hand,

irreducibility is not a local property, see [AP21, Example 11.3].

Definition 2.1.16 ([GKM09; RSS16; AP21]). A reduced tropical fan Σ is locally irreducible

if all of its star fans are irreducible.

Example 2.1.17. All of the irreducible tropical fans given in the previous examples are also

locally irreducible.

19



Products

Example 2.1.18. If (Σ, ω) and (Σ′, ω′) are two tropical fans, then their product Σ̃ = Σ×Σ′

is also tropical, with weight ω̃ given by ω̃(σ×σ′) = ω(σ)ω(σ′) [GKM09, Example 2.9(iii)]. In

particular the product of reduced tropical fans is reduced. The product of (locally) irreducible

tropical fans is also (locally) irreducible [GKM09, Proposition 2.20].

2.1.2 Tropical fan cycles

Tropical fan cycles on NR

Recall that a subfan ∆ of a fan Σ is a fan such that |∆| ⊂ |Σ| and each cone of ∆ is

contained in a cone of Σ. For a cone τ ∈ ∆, we denote by τ∆,Σ the unique inclusion-minimal

cone of Σ containing τ , cf. [GKM09, Definition 2.6].

Definition 2.1.19 ([GKM09, Definition 2.10]). Let (Σ, ω) and (Σ̃, ω̃) be two tropical fans.

We say (Σ̃, ω̃) is a tropical refinement of (Σ, ω) if Σ̃ is a refinement of Σ (i.e. a subfan of Σ

with the same support), and

ω̃(σ̃) = ω(σ̃∆,Σ) for all maximal cones σ̃ ∈ Σ̃.

Remark 2.1.20. Suppose in the above definition that the weights ω and ω̃ are not necessarily

balanced (so (Σ, ω) and (Σ̃, ω̃) are only weighted fans, not necessarily tropical). Then (Σ, ω)

is a tropical fan ⇐⇒ (Σ̃, ω̃) is a tropical fan [GKM09, Example 2.11(iv)]. In particular if
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(Σ, ω) is a tropical fan and Σ̃ is any refinement of Σ, then Σ̃ is made into a tropical fan with

fundamental weight ω̃ as given in Definition 2.1.19.

Say two tropical fans are equivalent if they have a common tropical refinement. This is

indeed an equivalence relation, cf. [GKM09, Example 2.11], [AR10, Lemma 2.11].

Definition 2.1.21 ([GKM09, Definition 2.10], [AR10, Definition 2.12]). A tropical (fan) cycle

(on NR) is an equivalence class of tropical fans (on NR) up to common tropical refinement.

A fan structure or fan supported on a tropical fan cycle is a choice of representative of

the tropical fan cycle. The support of a tropical fan cycle is the support of any fan structure

on the tropical fan cycle.

Thus we view tropical fan cycles as pairs (F , ω) consisting of the support F of a (pure-

dimensional) fan in NR, together with a nonzero function ω : F → Z which makes some fan

supported on F into a tropical fan. In particular, whenever we refer to the support of a

tropical fan, we view it as a tropical fan cycle with the inherited fundamental weight.

Remark 2.1.22. In general there is no distinguished choice of representative of a tropical

fan cycle, i.e. there is no coarsest fan structure on a tropical fan cycle. For instance the

function ω : Rn → Z sending every point to 1 makes any complete fan into a tropical fan

(Example 2.1.7). See [MS15, Example 3.5.4] for a more nontrivial example. Tropical fan

cycles which do have a coarsest fan structure will play an important role in the second part

of this dissertation, cf. Section 5.1.3.

Remark 2.1.23. Likewise, not every fan whose support is a tropical fan cycle F necessarily

defines a tropical fan structure on F , cf. Example 2.2.3.
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Remark 2.1.24. One can make the same definitions not just for fans but for rational

polyhedral complexes in general [AR10, Section 5]—this is what is meant by a tropical cycle

rather than a tropical fan cycle. In [AHR16] it is shown that every tropical cycle can be

decomposed into a sum of tropical fan cycles and their translates, cf. Section 2.2.1, Remark

2.2.5.

Properties of tropical fan cycles

Definition 2.1.25. A property P of tropical fans is intrinsic to the support if whenever Σ

and Σ′ are two tropical fans supported on the same tropical fan cycle, then Σ satisfies P

⇐⇒ Σ′ satisfies P .

Remark 2.1.26. We emphasize that in the above definition, since Σ and Σ′ are supported

on the same tropical fan cycle, they by assumption also have the same fundamental weight.

In order for a property P of tropical fans to give a well-behaved property of tropical fan

cycles, it is clearly necessary to ask that P is intrinsic to the support.

Definition 2.1.27. Let P be a property of tropical fan which is intrinsic to the support.

Then a tropical fan cycle F satisfies P if some (hence any) fan structure on F satisfies P .

Local properties

Definition 2.1.28 ([Gub12, A.6]). Let F ⊂ NR be a tropical fan cycle and w ∈ F . The

local fan cycle of F at w is the tropical fan cycle

Fw = {v ∈ NR | v + εw ∈ F for all sufficiently small ε}.
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In the above definition, if Σ is a fan structure on F such that w is in the relative interior

of a cone σ of Σ, then

Fw = |Σσ| × Rdimσ,

hence Fw is indeed a tropical fan cycle with the fundamental weight inherited from F (cf.

Example 2.1.18).

Definition 2.1.29. A property P of tropical fan cycles is local if whenever a tropical fan

cycle F satisfies P , all of its local fan cycles Fw also satisfy P .

Let P be a property of tropical fans which is intrinsic to the support and local. One

would like P to define a local property of tropical fan cycles. However, this is not necessarily

well-behaved: if Σ and Σ′ are two fan structures on F such that w is in the relative interiors

of σ ∈ Σ and σ′ ∈ Σ′, then

Fw = |Σσ| × Rdimσ = |(Σ′)σ′ | × Rdimσ′ ,

and a priori one of Σσ or (Σ′)σ
′

could satisfy P while the other does not. Thus P defines a

well-behaved local property of tropical fan cycles ⇐⇒ P is stably invariant in the following

sense.

Definition 2.1.30 ([AP21, Section 3.2.3]). Let P be a property of tropical fans which is

intrinsic to the support. We say P is stably invariant if for any tropical fan Σ and positive

integer k, tropical fans supported on |Σ| satisfy P ⇐⇒ tropical fans supported on |Σ| ×Rk

satisfy P .
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We summarize the above discussion in the following proposition.

Proposition 2.1.31. A property P of tropical fans defines a well-behaved local property of

tropical fan cycles ⇐⇒ P is intrinsic to the support, local, and stably invariant.

Proposition 2.1.32. The property of being a reduced (resp. locally irreducible) tropical fan

is intrinsic to the support, local, and stably invariant.

Proof. Immediate, cf. Example 2.1.18.

Thus we can take about reduced and locally irreducible tropical fan cycles. (Irreducibility

is also intrinsic to the support, so we can talk about irreducible tropical fan cycles as well,

although this is not a local notion.)

When a property of tropical fans is local, there is a direct criterion to show whether it

is also intrinsic to the support. Recall the definitions of stellar refinements and coarsenings

from Section 1.4.2.

Theorem 2.1.33 ([AP21, Theorem 5.7]). Let P be a local property of tropical fans. Then P

is intrinsic to the support ⇐⇒ P is preserved by stellar refinements and coarsenings along

cones whose star fans also satisfy P.

Proof sketch. The proof follows from the Weak Factorization Theorem for fans, which says

one can move between any two fans with the same support by a sequence of stellar refinements

and coarsenings. We refer to [AP21, Theorem 5.7] for more details.

The above theorem will play an important role later in this dissertation.
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2.2 Tropical fan cycles and cocycles

2.2.1 The group of tropical fan cycles

Definition 2.2.1 ([AR10, Definition 2.15]). Let (F , ω) be a tropical fan cycle. A k-

dimensional tropical fan (sub)cycle on F is a k-dimensional tropical fan cycle (F ′, ω′) such

that F ′ ⊂ F . Denote by Mk(F) the group of all k-dimensional tropical fan subcycles on F ,

and M∗(F) =
⊕

kMk(F).

It is not obvious in the above definition that Mk(F) is actually a group—one needs to

know how to add tropical fan cycles. An explicit construction of the sum of tropical fan

cycles is given in [AR10, Construction 2.13]. The basic idea is to take an appropriately fine

fan structure so that the union of the two representatives is a fan, and define the fundamental

weight on the union by the sum of the fundamental weights. Here we give a less explicit

construction which will be more relevant to our perspective, cf. [GS21]. First we define

tropical fan cycles on a tropical fan.

Definition 2.2.2. Let (Σ, ω) be a tropical fan. The group of k-dimensional tropical fan

cycles on Σ is the group Mk(Σ) of k-dimensional Minkowski weights on Σ.

Indeed, a k-dimensional Minkowski weight ω′ ∈ Mk(Σ) defines a k-dimensional tropical

fan cycle with support contained in |Σ|, as the equivalence class of the tropical fan (Σ′, ω′),

where Σ′ is the union of the k-dimensional cones of Σ on which ω′ is nonzero. But a tropical

fan cycle whose support is contained in |Σ| does not necessarily define a Minkowski weight

on Σ, as some refinements may be necessary (Example 2.2.3). So Mk(Σ) only captures those
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tropical fan cycles with a representative Σ′ such that every cone of Σ′ is a cone of Σ. For

this reason we prefer tropical fan cycles on NR to tropical fans in NR.

Example 2.2.3. The tropical fan cycle F on R2 defined by the standard tropical line of

Figure 2.1b is not a tropical fan cycle on the complete fan Σ pictured in Figure 2.5a, since

not every cone of F is a cone of Σ—one must refine Σ to the fan Σ̃ of Figure 2.5b.

(1, 0)(−1, 0)

(0, 1)

(0,−1)

(a) A complete tropical fan Σ.

(−1,−1)

(1, 0)(−1, 0)

(0, 1)

(0,−1)

(b) A refinement Σ̃ of Σ such that F is
a tropical fan cycle on Σ̃.

Figure 2.5. A refinement necessary to describe a tropical fan cycle.

Proposition 2.2.4 ([GS21]). Let F be a tropical fan cycle. Then

Mk(F) = lim−→
|Σ|=F

Mk(Σ) = lim−→
|Σ|=F

Σ unimodular

Mk(Σ).

Proof. Recall that if Σ̃ is a refinement of Σ, then there is a natural map Mk(Σ) → Mk(Σ̃)

given by Definition 2.1.19, cf. Remark 2.1.20. Thus the limits are well-defined. An element

of the first limit is a function ω : F → Z inducing a k-dimensional Minkowski weight on

some fan structure Σ on F . An element of the second limit is the same, except now the

fan structure must be unimodular. In particular an element of the second limit is also an
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element of the first, and an element of the first defines an element of the second by taking a

unimodular tropical refinement. Thus both limits are the same, and they are equal to Mk(F)

by definition of a tropical fan cycle.

In particular, the proposition implies that Mk(F) is indeed a group, with the sum of two

tropical fan subcycles given by taking a sufficiently fine fan structure so that one can add

the corresponding Minkowski weights.

Remark 2.2.5. The Chow homology groups Ak(X) in algebraic geometry consist of algebraic

cycles modulo rational equivalence. No such equivalence relation is necessary for tropical fan

cycles. In a sense this is because Mk(F) already takes rational equivalence of tropical cycles

into account—at least for F = NR ∼= Rn, it can be viewed as the group of tropical cycles (in

the sense of the previous remark), modulo bounded rational equivalence [AHR16].

2.2.2 The ring of tropical fan cocycles

Definition 2.2.6. The ring of tropical fan cocycles A∗(Σ) on a tropical fan Σ is the (opera-

tional [Ful98, Chapter 17]) Chow ring A∗(X(Σ)) of the corresponding toric variety.

The ring of tropical fan cocycles A∗(F) on a tropical fan cycle F is

A∗(F) = lim−→
|Σ|=F

A∗(Σ).

Remark 2.2.7. If Σ̃ is a refinement of Σ, then there is an induced proper morphism X(Σ̃)→

X(Σ) of toric varieties, hence a pullback morphism A∗(Σ)→ A∗(Σ̃). Thus the limit in the

definition of A∗(F) is defined.
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Remark 2.2.8. If Σ is a unimodular fan, then A∗(Σ) is isomorphic to the ring A∗pw(Σ) =

PP ∗(Σ)/LPP ∗(Σ) of piecewise polynomials on Σ modulo piecewise linear polynomials and

there is an explicit presentation of A∗(Σ) (Theorem 4.1.15), see [Bri96; KP08]. This is the

prevalent definition of A∗(Σ) in tropical geometry [Fra12]. As in Proposition 2.2.4 the two

definitions agree for A∗(F), since we can write

A∗(F) = lim−→
|Σ|=F

Σ unimodular

A∗(Σ).

However, A∗pw(Σ) is not the correct definition for fans which are not unimodular (or at least

simplicial), cf. Remark 4.2.5.

2.2.3 Cap products

Recall from Proposition 2.1.2 that Mj(Σ) ∼= Hom(An−j(X(Σ)),Z).

Definition 2.2.9. Let Σ be a tropical fan in NR ∼= Rn. Define the cap product

Ak(Σ)×Mj(Σ)→Mj−k(Σ)

by

Ak(X(Σ))× Hom(An−j(X(Σ)),Z)→ Hom(An−j+k(X(Σ)),Z),

(α, ω) 7→ (β 7→ ω(α ∩ β)),

where α ∩ β is the usual cap product between α ∈ Ak(X(Σ)) and β ∈ An−j+k(X(Σ)).
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Remark 2.2.10. In [Fra12], Francois gives a combinatorial definition of a cap product using

piecewise polynomials, see also [AR10; KP08]. When Σ is unimodular the two cap products

agree (cf. Remark 2.2.8).

Definition 2.2.11. Let F be a tropical fan cycle. The cap product α ∩ β ∈ Mj−k(F) of

α ∈ Ak(F) and β ∈Mj(F) is defined by choosing a fan structure Σ on F sufficiently fine so

that α ∈ Ak(Σ) and β ∈Mj(Σ), and taking (the equivalence class of) α ∩ β ∈Mj−k(Σ).

2.3 Morphisms of tropical fan cycles

2.3.1 Morphisms

For a fan Σ ⊂ NR, let NΣ,R be the subspace of NR spanned by the first lattice points of

the rays of Σ. If Σ̃ is a refinement of Σ, then any new ray of Σ̃ lies in the span of a collection

of rays of Σ, thus it also makes sense to talk about the subspace NF ,R spanned by a tropical

fan cycle F . We let NΣ = N ∩NΣ,R (resp. NF = N ∩NF ,R).

Remark 2.3.1. By definition, NΣ (resp. NF) is spanned by a subset of a basis of N , thus

we do not need to worry about finite index sublattices (cf. [CLS11, Proof of Proposition

3.3.9]). This is the reason for defining NΣ (resp. NF) as above rather than as the sublattice

spanned by the rays.

We can view Σ either as a fan in NΣ or as a fan in N ; write X(Σ, NΣ) and X(Σ, N) for

the corresponding toric varieties. Extending a basis of NΣ to a basis of N implies that

X(Σ, N) ∼= X(Σ, NΣ)× (C∗)dimN−dimNΣ ,
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see [CLS11, Proposition 3.3.9]. In particular,

A∗(X(Σ, N)) ∼= A∗(X(Σ, NΣ)× (C∗)n) ∼= A∗(X(Σ, NΣ))

(cf. Section 4.1), so M∗(Σ) is independent of the choice of N or NΣ as the ambient lattice.

For this reason we can replace N with NΣ (resp. NF) without affecting the tropical geometry.

Thus by abuse of notation we may often write N in place of NΣ (resp. NF) when notationally

convenient.

Example 2.3.2. Consider the unique fan Σ on the line 2y = 3x as considered in Example

2.1.9. Then a basis for NΣ is given by the vector (2, 3); this can be extended to e.g. the basis

(2, 3), (1, 1) of N = Z2. We have

X(Σ, N) ∼= X(Σ, NΣ)× C∗ ∼= P1 × C∗.

Definition 2.3.3. Let Σ ⊂ NR and Σ′ ⊂ N ′R be two fans. A morphism f : Σ→ Σ′ is a map

f : |Σ| → |Σ′| induced by a linear map f : NΣ → NΣ′ , such that f(σ) is contained in a cone

of Σ′ for all σ ∈ Σ [CLS11, Section 3.3].

Let F ⊂ NR and F ′ ⊂ N ′R be two tropical fan cycles. A morphism f : F → F ′ is a map

f : F → F ′ induced by a morphism of fans Σ→ Σ′ for some fan structures Σ on F and Σ′

on F ′.

Remark 2.3.4. There is no condition on the fundamental weights for a morphism of tropical

fans or tropical fan cycles, cf. [AR10, Definition 4.1].
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2.3.2 Pushforwards

Definition 2.3.5 ([GKM09; AR10]). Let f : F → F ′ be a morphism of tropical fan cycles.

Let ω ∈Mk(F) be a tropical fan cycle on F . The pushforward f∗ω ∈Mk(F ′) is the tropical

fan cycle on F ′ defined as follows. Choose fan structures Σ and Σ′ on F and F ′ so that f(σ)

is a cone of Σ′ for all σ ∈ Σ. Then for a k-dimensional cone σ′ ∈ Σ′, we define

f∗ω(σ′) =
∑
σ∈Σ

f(σ)=σ′

ω(σ) · [Nσ′ : f(Nσ)].

This is a group morphism f∗ : Mk(F)→Mk(F ′).

Remark 2.3.6. In particular if dimF ′ < k then the pushforward of a k-dimensional fan

cycle on F is 0.

Example 2.3.7. The projection from the standard tropical line Σ in R2 to R1 given by

f(x, y) = x+ y sends Σ to the unique fan on R1. There are two rays of Σ mapping to each

ray of R1, so the weights on the pushforward are 2. On the other hand, the pushforward

along the function f(x, y) = x has weights 1.

Example 2.3.8. Consider the fan Σ ⊂ R2 from Example 2.1.10 and the projection f :

R2 → R1, f(x, y) = y. For the ray σ3 through (−1,−2), we have Nσ3 = {(x, 2x) | x ∈ Z},

projecting to f(Nσ3) = 2Z ⊂ Z. Thus [Nf(σ3) : f(Nσ3)] = 2. Recall from Example 2.1.10

that the weights on the other two cones σ1 and σ2 are 1 and 2, respectively. It follows that

f∗Σ is the unique fan on R1, but with weight 2 rather than weight 1.
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(1, 0)

1

(−1,−2) 1

(0, 1) 2 2

2

Figure 2.6. The projection f(x, y) = y

2.3.3 Pullback of tropical fan cocycles

Definition 2.3.9. Let f : F → F ′ be a morphism of tropical fan cycles. The pullback

f ∗ : Ak(F ′) → Ak(F) is obtained by choosing fan structures Σ and Σ′ on F and F ′ so

that f induces a morphism of fans, and then taking the pullback morphism f ∗ : A∗(Σ′) =

A∗(X(Σ′))→ A∗(X(Σ)) = A∗(Σ).

2.3.4 Projection formula

Proposition 2.3.10 (cf. [AR10, Proposition 4.8]). Let f : F → F ′ be a morphism of tropical

fan cycles. Then

f∗(f
∗α ∩ β) = α ∩ f∗β

for α ∈ Ak(F ′), β ∈Mj(F).

Proof. This follows from the projection formula in the classical setting for toric varieties.
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2.3.5 Isomorphisms

Definition 2.3.11. Let (Σ, ω) ⊂ NR and (Σ′, ω′) ⊂ N ′R be two tropical fans. An isomorphism

f : (Σ, ω)
∼−→ (Σ′, ω′) is a morphism induced by an isomorphism f : NΣ

∼−→ NΣ′ , such that

f(σ) is a cone of Σ′ for all σ ∈ Σ, f−1(σ′) is a cone of Σ for all σ′ ∈ Σ′, f∗ω = ω′, and

(f−1)∗ω
′ = ω [AP21].

Let (F , ω) ⊂ NR and (F ′, ω′) ⊂ N ′R be two tropical fan cycles. An isomorphism f :

(F , ω)
∼−→ (F ′, ω′) is a morphism f : F → F ′ induced by an isomorphism of tropical fans for

some fan structures Σ on F and Σ′ on F ′.

Remark 2.3.12. In our definition, an isomorphism of fans Σ ⊂ NR and Σ′ ⊂ N ′R does not

necessarily induce an isomorphism of toric varietes X(Σ, N) ∼= X(Σ, N ′), but instead an

isomorphism of toric varieties X(Σ, NΣ) ∼= X(Σ′, NΣ′), cf. Remark 2.3.1.

Example 2.3.13. Let (Σ, ω) be the unique reduced tropical fan on the line 2y = 3x as in

Examples 2.1.9, 2.3.2. The map NΣ → Z, (x, y) 7→ y − x induces an isomorphism of Σ with

(the unique fan structure on) R1. On the other hand, the map f : NΣ → Z, (x, y) 7→ x

does not induce an isomorphism of Σ with R1, as in this case we have f(Nσ) = 2Z ⊂ Z for

each ray σ of Σ, so f∗ω(σ) = 2 instead of 1. Likewise for the map NΣ → Z, (x, y) 7→ y, the

pushforward of the fundamental weight is 3 instead of 1.

Proposition 2.3.14. Suppose Σ and Σ′ (resp. F and F ′) are isomorphic tropical fans (resp.

tropical fan cycles). Then M∗(Σ) ∼= M∗(Σ
′) and A∗(Σ) ∼= A∗(Σ′) (resp. M∗(F) ∼= M∗(F ′)

and A∗(F) ∼= A∗(F ′)).
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Proof. This is essentially immediate from the definitions, cf. Proposition 2.1.2 and Remarks

2.3.1, 2.3.12.

2.4 Divisors and tropical modifications

2.4.1 Rational functions and tropical Cartier divisors

Definition 2.4.1 ([AR10]). A rational function on a tropical fan Σ is a piecewise integral

linear function on Σ, i.e. a continuous function ϕ : |Σ| → R such that for each cone σ ∈ Σ,

ϕ|σ is identified with the restriction of an integral linear function ϕσ ∈ Mσ = Hom(Nσ,Z).

The group of rational functions on Σ is denoted PP 1(Σ).

A rational function on a tropical fan cycle F is a continuous function ϕ : F → R which

is a rational function on some tropical fan structure on F . The group of rational functions

on F is denoted PP 1(F). Thus as in Proposition 2.2.4, Remark 2.2.8,

PP 1(F) = lim−→
|Σ|=F

PP 1(Σ) = lim−→
|Σ|=F

Σ unimodular

PP 1(Σ).

Remark 2.4.2. From the tropical perspective the rational functions as defined above are all

nonzero; the zero function should be thought of as the constant function ∞ [AR10, Remark

3.2].

Remark 2.4.3. In [AR10], rational functions are defined not to be piecewise integral linear,

but more generally to be piecewise integral affine, i.e. they can take the form ϕ+c where ϕ is
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piecewise integral linear and c ∈ R. The situation is somewhat simplified by only considering

piecewise integral linear functions, and this will be the only case of interest for us.

In particular, the main construction [AR10, Construction 3.3] of the tropical Weil divisor

associated to a rational function (see Definition 2.4.13 below) already only uses the linear

part.

Definition 2.4.4 ([AR10]). A linear function on a tropical fan Σ (resp. a tropical fan cycle

F) is a continuous function ϕ : |Σ| → R (resp. ϕ : F → R) which is the restriction of a linear

function ϕ ∈M = Hom(N,Z). Thus the group of linear functions on Σ (resp. F) is just M .

Proposition 2.4.5 ([KP08, Theorem 4.5]). Let Σ be a tropical fan and F a tropical fan

cycle. There are isomorphisms

A1(Σ) ∼= PP 1(Σ)/M and A1(F) ∼= PP 1(F)/M.

Remark 2.4.6. PP 1(Σ)/M is also identified with the Picard group of the corresponding

toric variety X(Σ), thus the above proposition implies PicX(Σ) ∼= A1(X(Σ)) for any toric

variety X(Σ) [KP08, Corollary 4.6]

Definition 2.4.7 ([AR10]). A (tropical) Cartier divisor on a tropical fan Σ or a tropical fan

cycle F is an element of A1(Σ) or A1(F).

Remark 2.4.8. On the toric side A1(X(Σ)) is the group of Cartier divisors modulo principal

Cartier divisors. But on the tropical side A1(Σ) actually describes tropical Cartier divisors,

not just Cartier divisor classes. This is because the linear functions on a tropical fan Σ
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actually define trivial tropical divisors, in contrast to the nontrivial principal Cartier divisors

appearing on an algebraic variety. In fact for many tropical fans of interest, all tropical

divisors will be principal, cf. Definition 2.4.13. See [AR10, Section 6] for more details.

2.4.2 Tropical Weil divisors

Tropical Weil divisors

Definition 2.4.9. A (tropical) Weil divisor on a d-dimensional tropical fan Σ or tropical

fan cycle F is an element of Md−1(Σ) or Md−1(F), i.e. a codimension one tropical fan cycle

on Σ or F .

Principal tropical Weil divisors

Definition 2.4.10 ([AR10]). Let ϕ be a rational function on a d-dimensional tropical fan

(Σ, ω). The order of vanishing of ϕ along a cone τ ∈ Σd−1 is

ordτ (ϕ) = ϕτ

 ∑
σ�τ

dimσ=dim τ+1

ω(σ)nσ,τ

− ∑
σ�τ

dimσ=dim τ+1

ϕσ(ω(σ)nσ,τ )

Remark 2.4.11. The cones τ where ordτ (ϕ) is positive (resp. negative) should be interpreted

as the zeros (resp. poles) of the rational function ϕ.

Lemma 2.4.12 ([AR10, Proposition 3.7], [AP21, Propositions 4.1, 4.2]). The function

Σd−1 → Z, τ 7→ ordτ (ϕ) is a well-defined (independent of the choice of nσ,τ) (d − 1)-

dimensional Minkowski weight on Σ.
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Definition 2.4.13 ([AR10, Definition 3.4]). Let ϕ be a rational function on a d-dimensional

tropical fan (Σ, ω). The principal tropical Weil divisor associated to ϕ is the tropical fan

cycle div(ϕ) ∈Md−1(Σ) defined by div(ϕ)(τ) = ordτ (ϕ).

If ϕ is a rational function on a d-dimensional tropical fan cycle (F , ω), then the principal

tropical Weil divisor assocated to ϕ is the tropical fan cycle div(ϕ) ∈Md−1(F) obtained by

choosing a tropical fan structure Σ on F such that ϕ ∈ A1(Σ), and taking div(ϕ) ∈Md−1(Σ).

When we wish to view div(ϕ) as a tropical fan rather than a tropical fan cycle, we write it

as div(ϕ) = (∆, δ), where ∆ is the support of div(ϕ), i.e the (d−1)-dimensional fan consisting

of the cones τ ∈ Σd−1 for which ordτ (ϕ) 6= 0, and δ(τ) = ordτ (ϕ). Thus by abuse of notation

div(ϕ) could refer to either the tropical fan cycle div(ϕ) ∈Md−1(Σ) or the tropical fan (∆, δ).

Example 2.4.14. Consider the function ϕ = min{2y, 3x} on the complete fan Σ ⊂ R2

pictured in Figure 2.7. Then div(ϕ) ∈M1(Σ) has weight 4 on the rays ρ2 and ρ4 and weight

0 on the rays ρ1 and ρ3.

In particular the weights on div(ϕ) are not necessarily the minimal weights, as the support

of div(ϕ) in this case can also be viewed as a reduced tropical fan, cf. Example 2.1.9.

Example 2.4.15. Consider the function ϕ = min{2x, 0} on the complete fan Σ ⊂ R2

pictured in Figure 2.8. Then div(ϕ) ∈M1(Σ) has weight 2 on the rays ρ2 and ρ4 and weight

0 on the rays ρ1 and ρ3.

Now consider function ϕ′ = min{x, 0} on the same fan Σ. Then div(ϕ′) has the same

support as div(ϕ), but the weights are 1 for ϕ′ as opposed to 2 for ϕ.
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(1, 0)

ρ1

(−1, 0)

ρ3

(2, 3) ρ2

(−2,−3) ρ4

Figure 2.7. The divisor of ϕ = min{2y, 3x} is supported on the rays ρ2 and ρ4, with
weight 4

(1, 0)

ρ1

(−1, 0)

ρ3

(0, 1) ρ2

(0,−1) ρ4

Figure 2.8. The divisor of ϕ = min{2x, 0} is supported on the rays ρ2 and ρ4, with weight
2. The divisor of ϕ′ = min{x, 0} has the same support but weight 1.
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Example 2.4.16. Not every tropical Weil divisor on a tropical fan need be principal. Consider

the tropical fan Σ ⊂ R3 pictured in Figure 2.9. Then the reduced tropical divisor {y = z = 0}

pictured in red in Figure 2.9 is not principal [AP21, Example 11.5].

Figure 2.9. A non-principal divisor on a tropical fan.

Definition 2.4.13 defines a map div : A1(Σ) → Md−1(Σ). Another such map is given by

the cap product discussed in Section 2.2.3. These two maps are related as follows.

Proposition 2.4.17 ([AP21, Proposition 4.8]). Let (Σ, ω) be a d-dimensional tropical fan

and let ϕ ∈ A1(Σ). Then

ϕ ∩ ω = − div(ϕ)

The same holds if instead Σ is a tropical fan cycle F .

Example 2.4.18. Consider the function ϕ = min{x, y, 0} on the complete fan Σ ⊂ R2

pictured in Figure 2.10. Then ordρi(ϕ) = 1 for i = 1, 2, 3, so div(ϕ) ∈ M1(Σ) is the

Minkowski weight given by div(ϕ)(ρi) = 1 for i = 1, 2, 3. On the other hand, one can

compute ϕ ∩ ω using the formula given in [KP08, Theorem 1.4]. In this case one finds that

ϕ ∩ ω ∈ M1(Σ) is the Minkowski weight given by (ϕ ∩ ω)(ρi) = −1 for i = 1, 2, 3. Thus

ϕ ∩ ω = − div(ϕ).
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(1, 0)

ρ1

(0, 1) ρ2

(−1,−1)

ρ3

Figure 2.10. The divisor of ϕ = min{2x, 0} is supported on the rays ρ2 and ρ4, with
weight 2. The divisor of ϕ′ = min{x, 0} has the same support but weight 1.

Remark 2.4.19. Our definition of ordτ (ϕ) and div(ϕ) agrees with the definition given in

[AP21] (in the case of reduced fans) but is the negative of the one given in [AR10]. This is

because our perspective on tropical geometry is dual to the perspective taken in [AR10]—we

work with the “min-plus” convention, while [AR10] works with the “max-plus” convention.

The above proposition gives one reason why one might prefer the “max-plus” convention;

however, we use the “min-plus” convention so that our pictures of tropical fans match up

with the usual pictures of fans associated to toric varieties.

2.4.3 Tropical modifications

The following definition originally due to Mikhalkin [Mik07b] will play a fundamental

role in this dissertation.
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Definition 2.4.20 ([Mik07b; AR10; AP21]). The tropical modification of a tropical fan

(Σ, ω) in NR with respect to a rational function ϕ is the tropical fan TMϕ(Σ) = (Σ̃, ω̃) in

ÑR = NR × R with cones

1. σ̃ = {(x, ϕ(x)) | x ∈ σ} for σ ∈ Σ, and

2. τ≥ = τ̃ + {0} × R≥0 for τ ∈ div(ϕ),

and weights ω̃(σ̃) = ω(σ) and ω̃(τ≥) = ordτ (ϕ).

If ϕ is a rational function on a tropical fan cycle F in NR, then the tropical modification

TMϕ(F) is the tropical fan cycle in ÑR obtained by first choosing a fan structure Σ on F

such that ϕ ∈ A1(Σ), and then taking the equivalence class up to common tropical refinement

of the tropical modification TMϕ(Σ).

One needs to check that the tropical modification is actually a tropical fan (resp. tropical

fan cycle).

Lemma 2.4.21 ([Mik07b; AR10; AP21]). Let Σ (resp. F) be a tropical fan (resp. tropical

fan cycle), and ϕ a rational function on Σ (resp. F). Then TMϕ(Σ) (resp. TMϕ(F)) is

a tropical fan (resp. tropical fan cycle), and the natural projection p : ÑR → NR induces a

morphism of tropical fans (resp. tropical fan cycles) p : TMϕ(Σ)→ Σ (resp. p : TMϕ(F)→

F).

Tropical modifications are the tropical versions of graphs of rational functions on an

algebraic variety. If ϕ is a rational function on a fan Σ, then the graph of ϕ, though still a

fan, may no longer tropical—the induced weight can to satisfy the balancing condition. The
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cones where ordτ (ϕ) is nonzero are precisely the cones where the graph fails the balancing

condition, and adding the cones τ≥ for τ ∈ div(ϕ) restores the balancing condition [AR10,

Construction 3.3]. This is the motivation for Definitions 2.4.10 and 2.4.20, and the proof of

Lemma 2.4.21 essentially follows by working out the details of this construction. See [AR10,

Construction 3.3], [AP21, Section 5.1] for more details.

Example 2.4.22. Consider the function ϕ(x) = min{x, 0} on R1. Note ord0(ϕ) = 1. The

graph of ϕ is the fan pictured in Figure 2.1a, which is not tropical. The fan is made tropical

by adding the ray through (0, 1) as in Figure 2.1b. This is the tropical modification of R1

with respect to the function ϕ(x).

Example 2.4.23. The tropical modification of R1 with respect to the function ϕ(x) =

min{2x, 0} is the fan of Example 2.1.10. In particular note div(ϕ) has weight 2 rather than

weight 1, reflecting that the tropical modification is not reduced.

Example 2.4.24. The tropical modification of the standard tropical line with respect to the

function ϕ(x, y) = min{x, y, 0} is shown in Figure 2.11. This could be called the standard

tropical line in R3.

(1, 0, 1)

(0, 1, 0)

(−1,−1,−1)

(0, 0, 1)

Figure 2.11. The tropical modification of the standard tropical line with respect to
ϕ(x, y) = min{x, y, 0}.
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Example 2.4.25. The tropical modification of R2 with respect to the function ϕ(x, y) =

min{2x, 0} is pictured in Figure 2.12a. Since the weights on div(ϕ) are 2 (Example 2.4.15),

the weights on the two added maximal cones of the tropical modification are also 2.

On the other hand, the tropical modification of R2 with respect to the function ϕ′(x, y) =

min{x, 0} is shown in Figure 2.12b. It looks similar to the tropical modification with respect

to ϕ, since div(ϕ) and div(ϕ′) have the same support. However, the weights on div(ϕ′) are

1, so the tropical modification with respect to ϕ′ is reduced.

(a) The tropical modification of R2

with respect to ϕ(x, y) = min{2x, 0}.
(b) The tropical modification of R2

with respect to ϕ′(x, y) = min{x, 0}.

Figure 2.12. Two distinct tropical modifications along two divisor with the same
unweighted support.

Example 2.4.26. The tropical modification of R2 with respect to the function ϕ(x, y) =

min{x, y, 0} is the two-dimensional tropical fan cycle in R3 as pictured in Figure 2.13. Since

div(ϕ) is reduced by Example 2.4.18, it follows that this tropical modification is also reduced.

Example 2.4.27. Suppose F is a tropical fan cycle obtained as a tropical modification. Not

every fan structure on F need be obtained as a tropical modification as well. For instance, let

Σ be the tropical modification of the previous example, and let Σ̃ be the refinement obtained
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Figure 2.13. The tropical modification of R2 with respect to ϕ(x, y) = min{x, y, 0}.

by adding an extra ray as shown in blue in Figure 2.14. Then there is no way to write Σ̃ as

a tropical modification.

Figure 2.14. A fan structure which cannot be written as a tropical modification.

Remark 2.4.28. The tropical modification crucially depends on the rational function ϕ

and not just the underlying tropical Weil divisor div(ϕ), as Example 2.4.25 shows, see also

[BM12, Example 4.2]

On the other hand, if div(ϕ) is reduced and div : A1(Σ)→ Md−1(Σ) is an isomorphism

then this does not happen. Indeed, in this case if ϕ and ϕ′ are two rational functions

with div(ϕ) = div(ϕ′) a reduced principal tropical Weil divisor, then ϕ and ϕ′ differ by

a linear function, which induces an isomorphism between the two tropical modifications

[AP21, Section 5.1.5]. In this situation, we write TM∆(Σ) (resp. TMD(F)) for any tropical
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modification of Σ (resp. F) along a rational function whose corresponding principal tropical

Weil divisor is the reduced divisor ∆ (resp. D). This will be the primary situation of interest.

Remark 2.4.29. A particular special case is when the divisor div(ϕ) is trivial, i.e. has

empty support, in which case the tropical modification is said to be degenerate [AP21,

Section 5.1.4]. In general a degenerate tropical modification can be different from the original

tropical fan cycle, and somehow seems to be a “desingularization,” with the appropriate

notion of nonsingularity [AP21, Example 11.4]. On the other hand, the main situation where

degenerate tropical modifications occur is when ϕ is linear, in which case TMϕ(F) ∼= F

[AP21, Section 5.1.4]. This will again be our primary situation of interest.

Example 2.4.30. The tropical modification of R1 with respect to the function ϕ(x) = x is

a degenerate tropical modification pictured in Figure 2.15a. It is the line y = x.

The tropical modification of R1 with respect to the function ϕ(x) = 2x is also a degenerate

tropical modification, pictured in Figure 2.15b. It is the line y = 2x. Note this modification

is still a reduced tropical fan, isomorphic to R1 via the projection R2 → R1, (x, y) 7→ x.

(a) The degenerate tropical
modification of R1 with
respect to ϕ(x) = x

(b) The degenerate tropical
modification of R1 with
respect to ϕ(x) = 2x.

Figure 2.15. Two isomorphic degenerate tropical modifications.
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Example 2.4.31. The tropical modification of the standard tropical line with respect to

the function ϕ(x, y) = x is a degenerate tropical modification pictured in Figure 2.16. We

remark that this is also isomorphic to the (nondegenerate) tropical modification of the line

y = x at the origin.

(1, 0, 1)(0, 1, 0)

(−1,−1,−1)

Figure 2.16. The degenerate tropical modification of the standard tropical line with
respect to ϕ(x, y) = x.

Star fans of tropical modifications

Proposition 2.4.32 ([AP21, Proposition 5.2]). Let ϕ be a rational function on a tropical

fan Σ, and let Σ̃ = TMϕ(Σ). Let ∆ = div(ϕ) (possibly trivial). The star fans of Σ̃ are

described as follows.

1. If σ ∈ Σ, then Σ̃σ̃ ∼= TMϕσ(Σσ). In particular, if σ 6∈ ∆, then Σ̃σ̃ is a degenerate

tropical modification of Σσ.

2. If τ ∈ ∆, then Σ̃τ≥ ∼= ∆τ .

Properties preserved by tropical modifications

Definition 2.4.33. A property P of tropical fans (resp. tropical fan cycles) is preserved

by tropical modifications if whenever Σ (resp. F) is a tropical fan (resp. tropical fan cycle)
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satisfying P and ϕ is a rational function on Σ (resp. F) such that div(ϕ) is either trivial or

also satisfies P , then TMϕ(Σ) (resp. TMϕ(F)) satisfies P .

We emphasize that for a property to be preserved by tropical modifications, it is in

particular preserved by degenerate tropical modifications.

Theorem 2.4.34 ([AP21, Theorems 5.6, 5.9]). The properties of being a reduced or locally

irreducible tropical fan (resp. tropical fan cycle) are preserved by tropical modifications.

The proof of the theorem is essentially by direct verification, see. [AP21] for details.

Remark 2.4.35. Recall that for a property P of tropical fans to define a well-behaved local

property of tropical fan cycles, P must be intrinsic to the support, local, and stably invariant

(Proposition 2.1.31). Now we add another requirement: “nice” properties should also be

preserved by tropical modifications.

It follows from Proposition 2.1.32 and Theorem 2.4.34 that the properties of being reduced

or locally irreducible fit into this nice class of properties.

In [AP21], Amini and Piquerez study in depth a number of additional nice properties,

leading to the notion of shellability of properties of tropical fans. We will see more important

examples of such properties in Section 4.2.
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Chapter 3

Tropicalizations and tropical

compactifications

In this expository chapter we turn our attention to connections between algebraic and

tropical geometry, discussing tropicalizations and tropical compactifications of closed subva-

rieties of tori. The main references for this chapter are [Tev07; HKT09; LQ11; Cue12]; other

useful references include [MS15; Gub13].

Definition 3.0.1 ([Tev07]). A variety Y is very affine if it admits a closed embedding Y ⊂ T

into a torus T ∼= (C∗)n.

It is natural to attempt to compactify a very affine variety Y ⊂ T by compactifying T , i.e.

by taking the closure of Y in a toric variety with torus T . It is a remarkable fact that such

compactifications are often well-behaved and describe degenerations of the variety Y . Such

well-behaved compactifications are known as tropical compactifications, and are described
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combinatorially by a tropical fan cycle in NR = Hom(C∗, T ) known as the tropicalization of

Y .

3.1 Tropicalizations

There are multiple equivalent ways to define the tropicalization. Historically it was first

defined as a logarithmic limit set [Ber71; GKZ94; Bru+; Ite+19]. We will not use this

perspective and instead refer the interested reader to the aforementioned references as well as

[MS15, Section 1.4]. For our purposes it is more appropriate to describe the tropicalization

of Y ⊂ T in terms of initial degenerations and geometric tropicalization, as developed and

explained in [MS15; Gub13; HKT09; Cue12].

3.1.1 Initial degenerations

Throughout we fix a torus T ∼= (C∗)n and denote by M = Hom(T,C∗) and N =

Hom(C∗, T ) the character and cocharacter lattices of T .

Definition 3.1.1. For f =
∑
avt

v ∈ C[T ] ∼= C[t±1
1 , . . . , t±1

n ] and w ∈ NR, the initial form of

f is

inw(f) =
∑
v∈MR

〈v,w〉 is minimal

avt
v.

Example 3.1.2. 1. Consider f = x + 2y + 3z on T = (C∗)3. If w = (0, 0, 0), then

inw(f) = x+ 2y + 3z = f . If w = (2, 1, 1), then inw(f) = 2y + 3z.
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2. Now consider f = x + y2 + z3. If w = (2, 1, 1), then inw(f) = x + y2. If w = (3, 2, 1)

then inw(f) = x+ z3.

Definition 3.1.3. For an ideal I ⊂ C[T ] and for w ∈ NR, the initial ideal of I is the ideal

inw(I) = 〈inw f | f ∈ I〉.

For a closed subscheme Y ⊂ T , the initial degeneration of Y with respect to w ∈ NR is

the variety

inw(Y ) = Spec(C[T ]/ inw(I)),

where Y = SpecC[T ]/I.

Definition 3.1.4. The tropicalization of a closed subscheme Y ⊂ T is the set

trop(Y ) = {w ∈ NR | inw(Y ) 6= ∅}.

In order for the tropicalization to deserve its name, it must be a tropical fan cycle, i.e.

the support of a tropical fan. This is achieved as follows.

Theorem 3.1.5 ([MS15, Theorem 3.3.5]). If Y ⊂ T is a very affine variety, then there is a

pure (dimY )-dimensional fan Σ supported on trop(Y ) such that, for all cones σ ∈ Σ, inw(Y )

is constant on the relative interior of σ. For a top-dimensional cone σ ∈ Σ, let ω(σ) be the

sum of the multiplicities of the irreducible components of inw(Y ), for any w in the relative

interior of σ. Then (Σ, ω) is a tropical fan, hence trop(Y ) is a tropical fan cycle.
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Example 3.1.6. Consider Y = {x+ y + 1 = 0} ⊂ (C∗)2. One computes that trop(Y ) is the

standard tropical line of Example 2.1.8, with corresponding initial degenerations as pictured

in Figure 3.1. This explains why this tropical fan is called a “line”.

y + 1

x+ 1

x+ y

x+ y + 1

Figure 3.1. Tropicalization and initial degenerations of Y = {x+ y + 1 = 0}

Example 3.1.7. Consider Y = {y = x2} ⊂ (C∗)2. Note the only nontrivial initial degenera-

tion of Y is Y itself (since x, y are nonvanishing). The tropicalization of Y is therefore the

line y = 2x, with weight 1.

Example 3.1.8. By the same logic as the previous example, if Y = {y2 = x3} ⊂ (C∗)2, then

trop(Y ) is the line 2y = 3x, with weight 1, cf. Example 2.1.9.

Remark 3.1.9. There is a natural notion of the tropicalization of a rational function f on

a very affine variety Y , by replacing multiplication with addition and addition with taking

the minimum [MS15]. For instance, following the previous example, if f = y2 − x3, then

trop(f) = min{2y, 3x}. If f is a regular function on a torus T , then trop(div(f)) is identified

with the support of div(trop(f)) [MS15, Theorem 3.1.3], but in general the weights are

different—continuing with the example f = y2 − x3, we computed in Example 2.4.14 that

the weights on div(trop(f)) are 4, as opposed to the weight 1 on trop(div(f)).
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Remark 3.1.10. The fan Σ in Theorem 3.1.5 can be taken to be the Gröbner fan, a fan

defined exactly to have the desired property that inw(Y ) is constant on the relative interior

of each cone of Σ [MS15, Section 2.5]. There is not a unique tropical fan structure on

trop(Y )—clearly any refinement of the Gröbner fan is also tropical; furthermore, as we will

see, the Gröbner fan need not be the coarsest tropical fan structure on trop(Y ). We will

get a better intuition for the different fan structures on trop(Y ) and the weights below. For

more on computing the tropicalization, we refer to [MS15; Gub13].

Proposition 3.1.11 ([OP13, Definition 2.5.2, Proposition 2.5.7]). Let Y ⊂ T be any pure-

dimensional closed subscheme and Y = Y1 ∪ · · · ∪ Yk its decomposition into irreducible

components, with multiplicities ai > 0. Then

trop(Y ) = trop(Y1) ∪ · · · ∪ trop(Yk)

with weights

ω(σ) = a1ω1(σ) + · · ·+ akωk(σ),

where ωi is the induced weight on trop(Yi), extended to all of trop(Y ) by ωi(σ) = 0 if σ is

not a cone of trop(Yi).

The following corollary will be useful in Chapter 4.

Corollary 3.1.12. Let Y ⊂ T be a pure-dimensional closed subscheme such that trop(Y ) is

reduced and irreducible. Then Y is irreducible and generically reduced.
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Proof. Let Y = Y1 ∪ · · · ∪ Yk be the decomposition of Y into irreducible components, with

multiplicities ai > 0. We need to show k = 1 and ai = 1.

By Proposition 3.1.11,

trop(Y ) = trop(Y1) ∪ · · · ∪ trop(Yk),

with

ω(σ) = a1ω1(σ) + · · ·+ akωk(σ),

where ω is the induced weight on trop(Y ), ωi is the induced weight on trop(Yi), σ is a top-

dimensional cone of a tropical fan structure on trop(Y ) and ωi(σ) = 0 if trop(Yi) does not

contain σ.

Since trop(Y ) is reduced and irreducible and trop(Yi) is a tropical fan subcycle of trop(Y )

of the same dimension, trop(Yi) = trop(Y ) as sets. Furthermore, reducedness means that

ω(σ) = 1 for all top-dimensional cones σ, which implies by irreducibility that for each i there

is some constant λi > 0 such that ωi(σ) = λi for all top-dimensional cones σ [GS12, Lemma

2.20]. Thus

1 = a1λ1 + · · ·+ akλk,

with all ai, λi > 0. This implies that k = 1 and ai = λi = 1.

Example 3.1.13. In (C∗)2 consider Y1 = {x = y}, Y2 = {x = −y}, and Y = Y1∪Y2 = {x2 =

y2}. Then trop(Y1) = trop(Y2) is the line y = x with weight 1. One directly computes that
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trop(Y ) = trop(Y1) = trop(Y2) as sets, but the weight function on trop(Y ) is 2, corresponding

to the sum of the weight functions on trop(Y1) and trop(Y2).

Remark 3.1.14. Implicit in this section is that we are taking the tropicalization over the

field C with the trivial valuation, cf. Section 3.1.2 below. This ensures that the tropicalization

is indeed a tropical fan cycle. More generally one can consider tropicalizations over fields with

nontrivial valuations, e.g. the field C{{t}} of Puiseux series, in which case the tropicalization

will only be (the support of) a balanced polyhedral complex, i.e. a more general tropical

cycle—see [MS15; Gub13] for more details. Additionally, we use the min convention when

defining the initial degeneration, which says that we are working with the min convention in

tropical geometry, rather than the max convention.

3.1.2 Geometric tropicalization

Geometric tropicalization was first developed by Hacking, Keel, and Tevelev in [HKT09]

as a method to compute the tropicalization of a very affine variety Y ⊂ T from any simple

normal crossings compactification of Y . The method was further developed by Cueto to

describe the weights on the geometric tropicalization [Cue12]. In this section we mainly

follow the exposition of [Cue12]; the other main references are [HKT09, Section 2] and [MS15,

Section 6.5].
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Normal crossings compactifications

By a compactification Y ⊂ Y of a variety Y , we always mean a complete variety containing

Y as an open dense subset. We say a compactification Y ⊂ Y has divisorial boundary if

Y \ Y is a union of codimension one subvarieties of Y , called boundary divisors.

Definition 3.1.15 ([Tev07]). Let Y be any variety. A compactification Y ⊂ Y of Y has

combinatorial normal crossings if it has divisorial boundary and for all k, the intersection

of k boundary divisors of Y has codimension k. The compactification has simple normal

crossings if in addition each such intersection of boundary divisors is transversal.

Definition 3.1.16. Let Y ⊂ Y be a combinatorial normal crossings compactification. The

boundary complex ∆ of Y ⊂ Y is the abstract simplicial complex with a vertex vi for each

boundary divisor of Y ⊂ Y , with a collection of k vertices forming a k-dimensional simplex

if the corresponding boundary divisors intersect.

Divisorial valuations

Now fix a very affine variety Y ⊂ T and a combinatorial normal crossings compactification

Y ⊂ Y . Assume furthermore that Y is normal and Q-factorial. Then to each boundary

divisor D there is an associated discrete valuation valD : C(Y ) → Z, called the divisorial

valuation at D, given by the order of zeros and poles along D. More precisely, if U is an

affine open of Y intersecting D, and p is the prime ideal of C[U ] defining D∩U , then since Y

is normal and D ⊂ Y has codimension one, it follows that C[U ]p is a discrete valuation ring,
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so valD is just the associated discrete valuation on the fraction field C(Y ) of C[U ]p. (See

[MS15, Section 6.5] for more details.)

Example 3.1.17 ([MS15, Example 6.5.1]). Let Y = {x0 + x1 + x2 + x3 = 0} ⊂ P3 and

Y = Y ∩ (C∗)3. The boundary of Y ⊂ Y consists of 4 lines, the intersections of Y with the

coordinate hyperplanes in P3. Let D = Y ∩{x1 = 0}. To compute valD we work in the affine

open U = {x0 6= 0}, so that

C[U ] =
C[y1, y2, y3]

(1 + y1 + y2 + y3)

where yi = xi/x0. Then D ∩ U = {y1 = 0} ⊂ U , and for f ∈ C(Y ), valD(f) = m, where we

write f = ym1 f
′ with m ∈ Z and neither the numerator nor the denominator of f ′ is divisible

by y1.

Geometric tropicalization

Recall that M = Hom(T,C∗) and N = Hom(C∗, T ) = Hom(M,Z) denote the character

and cocharacter lattice of the torus T . For a boundary divisor D of Y ⊂ Y , we define an

element [D] ∈ NR by

[D](m) = valD(m|Y )

for m ∈M . (Here m|Y is a morphism Y → C∗, viewed as an element C(Y ).)

Recall that ∆ denotes the boundary complex of Y ⊂ Y . For a simplex σ ∈ ∆ corre-

sponding to an intersection of boundary divisors Di, let [σ] ∈ NR be the cone spanned by

the [Di].

56



Theorem 3.1.18 ([HKT09, Section 2], [Cue12, Section 2]). Let Y ⊂ T be a smooth very

affine variety, Y ⊂ Y a combinatorial normal crossings compactification, and ∆ the boundary

complex. Then

trop(Y ) =
⋃
σ∈∆

R≥0[σ]

If R≥0[σ] is a maximal cone of trop(Y ), so σ corresponds to the intersection of boundary

divisors D1, . . . , Dm, then the weight on R≥0[σ] given by

ω (R≥0[σ]) = ω(σ) = (D1 · · ·Dm)[R[σ] ∩N : Z[σ]]

agrees with the weight defined in Theorem 3.1.5, and in particular makes trop(Y ) into a

tropical fan.

Remark 3.1.19. The above theorem is what is meant by “geometric tropicalization.” Roughly

speaking, it says that the tropicalization of a smooth very affine variety is the (cone over the)

boundary complex of any combinatorial normal crossings compactification, embedded into NR

via the divisorial valuations. The weight on a maximal cone is just given by the intersection

product of the corresponding boundary divisors, times the index factor [R[σ] ∩ N : Z[σ]]

accounting for the specific embedding into the lattice.

Remark 3.1.20. Without the smoothness assumption on Y , the cone over the boundary

complex may strictly contain trop(Y )—for instance if too many boundary divisors intersect

at a point, then the dimension will be larger than dimY , cf. [ST08, Remark 2.7]. Likewise

if Y is only a partial compactification (i.e. Y is not complete), then trop(Y ) can be bigger

than the cone over the boundary complex.
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Remark 3.1.21. Geometric tropicalization requires resolution of singularities in order to

work with a combinatorial normal crossings compactification—otherwise, one needs to use a

simple normal crossings compactification [Cue12, Section 2].

Example 3.1.22. The line Y = {x + y + z = 0} ⊂ P2 is a tropical compactification of

Y = Y ∩ (C∗)2. It has 3 boundary divisors at 0, 1,∞ ∈ Y ∼= P1, corresponding to the three

intersection points of Y with the coordinate lines in P2 (see Figure 3.2). For each boundary

divisor D, computing valD(m|Y ) for the basis vectors of M , one finds the corresponding rays

to be the rays of the standard tropical line. Thus using geometric tropicalization, we recover

that the tropicalization of a line in (C∗)2 is the standard tropical line in R2, as in Example

3.1.6.

x = 0

y = 0

z = 0

x+ y + z = 0

Figure 3.2. The line Y = {x+ y + z = 0} ⊂ P1 gives a combinatorial normal crossings
compactification of Y = {x+ y + 1 = 0} ⊂ C∗

3.1.3 Maps between tropicalizations

A morphism of tori π : T → T ′ is the same as a corresponding linear map

p : N = Hom(C∗, T )→ Hom(C∗, T ′) = N ′,
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which can be described explicitly as follows. Suppose T ∼= (C∗)n, T ′ ∼= (C∗)m, and π is given

by wi = zai , where ai ∈ Zn. Then the m× n matrix A whose rows are given by the vectors

ai defines the linear map p : N ∼= Zn → Zm ∼= N ′. We also denote by p the induced map

NR → N ′R.

Lemma 3.1.23 ([Tev07, Proposition 3.1], [ST08, Proposition 2.8]). Suppose Y ⊂ T and

Y ′ ⊂ T ′ are closed subvarieties, and π : T → T ′ induces a dominant morphism Y → Y ′.

Then under the induced map p : NR → N ′R, one has p(trop(Y )) = trop(Y ′) (as sets).

Recall from Definition 2.3.5 that if p : (F , ω) → (F ′, ω′) is a morphism of tropical fan

cycles of the same dimension, then the pushforward p∗F of F is given by choosing fan

structures Σ, Σ′ on F and F ′ such that p maps each cone of Σ to a cone of Σ′, and then

defining, for a top-dimensional cone σ′ ∈ F ′

p∗ω(σ′) =
∑
σ∈Σ

p(σ)=σ′

ω(σ)[Nσ′ : p(Nσ)].

Theorem 3.1.24 ([ST08, Theorem 3.12]). Suppose Y ⊂ T and Y ⊂ T ′ are closed subvarieties,

and π : T → T ′ induces a dominant, generically finite morphism Y → Y ′ of degree δ. Then

trop(Y ′) =
1

δ
p∗ trop(Y ).

Example 3.1.25. Let Y = {y = x2} ⊂ (C∗)2. Then trop(Y ) is the line y = 2x as described

in Example 3.1.7. The projection π : (C∗)2 → C∗, π(x, y) = x sends Y isomorphically onto
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C∗, and p∗ trop(Y ) = trop(Y ′). On the other hand, the projection π : T → C∗, π(x, y) = y

realizes Y as a 2 : 1 cover of C∗, and p∗ trop(Y ) = 2 trop(Y ′).

Example 3.1.26. Let Y = {y2 = x3} ⊂ (C∗)2. Then trop(Y ) is the line 2y = 3x as described

in Example 3.1.8. The projection π : (C∗)2 → C∗, π(x, y) = y/x sends Y isomorphically onto

C∗ and trop(Y ) isomorphically onto R1, cf. Example 2.3.13.

Remark 3.1.27. Theorem 3.1.24 goes under the name tropical elimination theory. Elimina-

tion theory is concerned with computing the image of a variety Y ⊂ T under a morphism

T → T ′. Tropical elimination theory gives a combinatorial approach to this by first computing

the tropicalization, and using this to recover the image, see [ST08].

3.1.4 Intrinsic tori

When considering tropicalizations above, we assumed a fixed closed embedding of a very

affine variety Y in a torus T . But for a given very affine variety Y , there are potentially

many possible closed embeddings of Y in tori, which can give different tropicalizations.

Example 3.1.28. Y = C∗ could be viewed as a closed subvariety of itself, or embedded

into the torus T = (C∗)2 in many different ways, e.g. as Y = {y = x2}, Y = {y2 = x3}, or

Y = {x+ y + 1 = 0}. As discussed previously, the first three embeddings give distinct but

isomorphic tropicalizations (all isomorphic to R1), while the last embedding gives a different

tropicalization, namely the standard tropical line.

The most important ambient torus for a very affine variety Y is the intrinsic torus TY ,

described as follows [Tev07; HKT09]. For any variety Y , let M = O∗(Y )/C∗. Then a
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splitting of the exact sequence

0→ C∗ → O∗(Y )→M → 0

induces an evaluation map Y → TY := Hom(M,C∗). The torus TY is called the intrinsic

torus, and Y is very affine ⇐⇒ the evaluation map Y → TY is a closed embedding. Note

there are many possible choices of evaluation map, differing by translation. Any other closed

embedding Y ⊂ T factors through Y ⊂ TY and a morphism of tori π : TY → T . In particular,

if p : NY,R → NR is the linear map corresponding to π, then trop(Y ⊂ T ) = p(trop(Y ⊂ TY ))

by Lemma 3.1.23.

Example 3.1.29. A complement Y of an arrangement of n + 1 hyperplanes in Pd, not

all meeting at a point, is a very affine variety. Taking equations for the hyperplanes gives

an embedding Pd ↪→ Pn realizing the ith hyperplane in Pd as the complement of the ith

coordinate hyperplane in Pn, hence realizing Y as a closed subvariety of the open dense torus

(C∗)n ⊂ Pn. This is the embedding of Y in its intrinsic torus, cf. [Tev07].

More generally, if Y is the complement in a torus T of k hypersurfaces H1, . . . , Hk, then

the intrinsic torus of Y is TY = T × (C∗)k, and the embedding of Y in TY is obtained by

taking the graph of the equations of the Hi, see [HKT09, Lemma 6.1].

This example will play a fundamental role in the remainder of this dissertation.

Example 3.1.30 ([MS15, Example 6.4.3(4)]). Consider Y = {x3 + y3 − 2x2y − 2x + 1 =

0} ⊂ (C∗)2. The tropicalization of this embedding is the standard tropical line in R2, but

with weights 3 instead of 1. This is not the embedding of Y in its intrinsic torus: 1− x+ y
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is also a unit of Y , and the embedding of Y in its intrinsic torus is given by taking the graph

of 1− x+ y in (C∗)3:

Y = {x3 + y3 − 2x2y − 2x+ 1 = 0, z = 1− x+ y} ⊂ (C∗)3.

Remark 3.1.31. It is an interesting problem to compare different tropicalizations of a

very affine variety. In some sense the intrinsic tropicalization is universal, as it maps to all

other tropicalizations. In another sense the correct universal object to consider is really the

analytification, a more complicated object encoding all tropicalizations [Pay09].

More concretely, if Y ⊂ T and Y ⊂ T ′ are two closed embeddings of Y , then both are

mapped to from the embedding in the intrinsic torus Y ⊂ TY . So there are maps

trop(Y ⊂ TY )

trop(Y ⊂ T ) trop(Y ⊂ T ′).

One could ask whether it is possible to understand the relationship between trop(Y ⊂ T )

and trop(Y ⊂ T ′) via these maps. For instance, can the above diagram be factored into a

sequence of tropical modifications and their inverses? We are not aware of any serious results

in this direction.
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3.2 Tropical compactifications

We have already seen that, by geometric tropicalization, the tropicalization of a smooth

very affine variety Y ⊂ T is determined by a combinatorial normal crossings compactification

of Y . We now go in the other direction, and show how the tropicalization of Y describes

reasonable (“tropical”) compactifications of Y .

Tropical compactifications were introduced by Tevelev in [Tev07] and have been studied

in more depth in [HKT09; LQ11].

3.2.1 Tropical compactifications

Proposition 3.2.1 ([MS15, Proposition 6.4.7]). Let Y ⊂ T be a very affine variety and Y

the closure of Y in a toric variety X(Σ) with torus T .

1. Y is proper ⇐⇒ |Σ| ⊃ trop(Y ).

2. Assume the equivalent conditions of part (1) hold. Then trop(Y ) = |Σ| ⇐⇒ for all

σ ∈ Σ, Y ∩O(σ) is nonempty of pure dimension dimY − dimσ.

In other words, a compactification Y of Y in a toric variety X(Σ) is proper and intersects

toric strata properly ⇐⇒ Σ is supported on trop(Y ). Thus the stratification of X(Σ) by

torus orbits pulls back to a stratification of Y . Note if X(Σ) is smooth this also implies

that Y is a combinatorial normal crossings compactification. However, one can run into

unexpected singularities on Y : even a compactification in a smooth toric variety can have

“bad” singularities.
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Example 3.2.2 ([MS15, Example 6.4.16]). Let Y ⊂ Pn be any projective variety which is

not Cohen-Macaulay at a point p. Then one can arrange coordinates on Pn so that Y is a

compactification of Y = Y ∩ (C∗)n in a smooth toric variety with fan supported on trop(Y ),

but p = Y ∩O(σ) is a non-Cohen-Macaulay point of Y .

Tropical compactifications eliminate situations like the above example.

Definition 3.2.3 ([Tev07, Definition 1.2]). Let Y ⊂ T be a very affine variety. Let X(Σ)

be a toric variety with torus T , and let Y be the closure of Y in X(Σ). Then Y is a tropical

compactification of Y if Y is proper and the induced multiplication map Y × T → X(Σ) is

flat and surjective.

Theorem 3.2.4 ([Tev07, Theorem 1.2, Proposition 2.5]). If Y ⊂ X(Σ) is a tropical com-

pactification of a very affine variety, then Σ is supported on trop(Y ). If Σ′ is any refinement

of Σ, then the closure Y
′

of Y in X(Σ′) is also a tropical compactification, and is obtained

as the pullback of Y by the proper toric map X(Σ′)→ X(Σ).

Additionally if X(Σ) is smooth, then Y has at worst Cohen-Macaulay singularities on the

boundary Y \ Y .

Remark 3.2.5. In particular, if Y ⊂ X(Σ) is a tropical compactification, then Y intersects

each torus orbit in X(Σ) properly, cf. Proposition 3.2.1.

Example 3.2.6. Consider the line Y = {x+ y + 1 = 0} ⊂ (C∗)2. The tropicalization of Y

is the standard tropical line in R2 as shown in Examples 3.1.6, 3.1.22. There is a unique fan

structure Σ on trop(Y ), and the corresponding toric variety X(Σ) is isomorphic to P2 minus

the coordinate points. The corresponding tropical compactification Y of Y is isomorphic to
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P1 = {x+ y + z = 0} ⊂ P2, with the three boundary points given by the intersections of Y

with the three coordinate lines in P2, as in Example 3.1.22, Figure 3.2.

We refer to [MS15] for some more examples, see e.g. [MS15, Examples 6.4.10, 6.4.11].

We will see many more examples of tropical compactifications throughout the rest of this

dissertation.

It is a nontrivial theorem that tropical compactifications indeed exist.

Theorem 3.2.7 ([Tev07, Theorem 1.2]). Any very affine variety has a tropical compactifica-

tion in a smooth toric variety.

Remark 3.2.8. This theorem is closely related to Theorem 3.1.5, that there is a fine enough

fan structure on trop(Y ) so that weights can be defined on maximal cones—indeed, the so-

called “Gröbner fan” mentioned in Remark 3.1.10 works to find a tropical compactification;

see [Tev07] and [MS15, Proposition 6.4.17] for more details. The idea of the proof is related

to Kapranov’s “visible contours” construction introduced in [Kap93] and further considered

in [HKT06]. We will see this construction come up again in the second part of this thesis.

The connection between geometric tropicalization and tropical compactifications is now

hopefully obvious—a (suitably nonsingular) combinatorial normal crossings compactification

Y of Y ⊂ T determines a particular fan structure Σ on the tropicalization trop(Y ) realizing

Y as the tropical compactification defined by the fan Σ, and other tropical compactifications

of Y are determined by other fan structures on trop(Y ). The connection between tropical

compactifications and the tropicalization is made even stronger by the following proposition.
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Proposition 3.2.9. Let Y ⊂ X(Σ) be a tropical compactification of a very affine variety Y ,

let σ be a cone of Σ, and let w be a point in the relative interior of σ. Then

1. (a) trop(Y ∩O(σ) ⊂ O(σ)) = |Σσ|.

(b) trop(inw(Y )) = trop(Y )w, the local cycle of trop(Y ) at w (cf. Definition 2.1.28).

2. If w is any point in the relative interior of the cone σ, then

inw(Y ) = (Y ∩O(σ))× Tσ,

and in particular

Y ∩O(σ) = inw(Y )/Tσ,

where Tσ is the subtorus Nσ ⊗ C∗ ⊂ T (so O(σ) = T/Tσ).

3. If σ is a top-dimensional cone of Σ, then the weight ω(σ) on σ as given in Theorem

3.1.5 is the length of the 0-dimensional scheme Y ∩O(σ) = Y ∩ V (σ).

Proof. 1. (a) See [Gub13, Proposition 14.3].

(b) See [Spe05, Proposition 2.2.3].

2. Recall from Section 2.1.2 that the local cycle of trop(Y ) at w is equal to |Σσ| × Rdimσ.

Thus this follows from the first part. See also [MS15, page 308].

3. Immediate from the second part.
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Remark 3.2.10. The weight ω(σ) can also be viewed as the degree of the intersection

product [Y ] · [V (σ)] in the toric variety X(Σ) [ST08, Proposition 3.2]. (Although in general

X(Σ) need not be proper, one can still consider the degree of [Y ] · [V (σ)] by e.g. viewing it

as a refined intersection product in the proper scheme Y ∩ V (σ). See also [Kat08, Section

9].) From this perspective the connection between the definitions of the weight in Theorems

3.1.18 and 3.1.5 is obvious.

The above results justify our intuition that the tropicalization is “a combinatorial object

encoding the information of all tropical compactifications of Y ⊂ T .”

3.2.2 Schön compactifications

We turn our attention now to a particularly well-behaved class of tropical compactifications

called schön compactifications. These will be our primary tropical compactifications of interest

in the remainder of this dissertation.

Definition 3.2.11 ([Tev07]). A tropical compactification Y ⊂ X(Σ) of a very affine variety

Y ⊂ T is schön if all strata Y ∩O(σ) are smooth.

Theorem 3.2.12. 1. A tropical compactification Y ⊂ X(Σ) is schön ⇐⇒ the multipli-

cation map Y × T → X(Σ) is smooth and surjective.

2. If Y ⊂ X(Σ) is a schön tropical compactification, then it is regularly embedded, normal,

and has toroidal singularities, and if X(Σ) is nonsingular then so is Y . The log canonical

bundle ωY (B), where B = Y \ Y is the boundary, is globally generated and equal to the

determinant of the normal bundle of the regular embedding Y ⊂ X(Σ). If in addition Σ′
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is any refinement of Σ and Y
′ ⊂ X(Σ′) is the corresponding tropical compactification,

then Y
′ → Y is log crepant, meaning the pullback of the log canonical bundle is the log

canonical bundle.

Proof. 1. See [Hac08, Lemma 2.7].

2. See [Tev07, Theorem 1.4].

Theorem 3.2.13 ([Tev07, Theorem 1.4], [LQ11, Theorem 1.5]). If a very affine variety

Y ⊂ T admits a schön compactification, then any fan supported on trop(Y ) gives a schön

compactification.

In particular, it makes sense to call a very affine variety schön. Furthermore with schön

compactifications we do not need to worry about situations like Example 3.2.2—now any fan

on trop(Y ) gives a (schön) tropical compactification.

Remark 3.2.14. The above theorem should not be surprising, since strata of any tropical

compactification are described by initial degenerations, so being schön is equivalent to all

initial degenerations being smooth—this does not depend on the fan structure on trop(Y )

(see [Cor21] for more on this perspective).

Example 3.2.15. The tropical compactification of the line Y = {x+ y + 1 = 0} ⊂ (C∗)2 as

discussed in Example 3.2.6 is schön.

Example 3.2.16. If Y ⊂ P2 is a (sufficiently general) nodal cubic, then Y can be viewed as

a tropical compactification of Y = Y ∩ (C∗)2 in P2 minus the coordinate points, see [MS15,
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Exercise 6.8.11]. Since Y is singular but the ambient toric variety is nonsingular, this cannot

be a schön compactification.

Theorem 3.2.17 ([LQ11, Theorem 1.4]). Any variety contains an open very affine schön

subvariety.
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Chapter 4

Intersection theory

In this chapter we discuss the intersection theory of tropical fans and tropical compactifi-

cations, and connections to the intersection theory of toric varieties. This chapter contains

the first original results of this dissertation, in Theorem 4.3.3 and Sections 4.2.3 and 4.3.2.

4.1 Preliminaries

4.1.1 Algebraic preliminaries

Recall our conventions from the introduction: we work over C unless otherwise stated.
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Kronecker duality

Suppose Y is any complete variety. Then there is a well-defined degree morphism
∫

:

A0(Y )→ Z, inducing a Kronecker duality morphism

Ak(Y )
DY−−→ Hom(Ak(Y ),Z), α 7→

(
β 7→

∫
α ∩ β

)
.

The analogous map between singular cohomology and homology is always an isomorphism (up

to torsion), but generally DY is very far from being an isomorphism, even if Y is nonsingular

[Ful+95]. However, Fulton-MacPherson-Sturmfels-Sottile, as well as Totaro, have studied a

large class of varieties, including all complete toric varieties, for which DY is an isomorphism

[Ful+95; Tot14].

Definition 4.1.1. A complete variety Y satisfies Kronecker duality if the Kronecker duality

morphism is an isomorphism for all k.

Definition 4.1.2. A variety X satisfies Chow-Künneth if for all finite-type schemes Z, the

natural map A∗(X)⊗ A∗(Z)→ A∗(X × Z) is an isomorphism.

Proposition 4.1.3 ([Ful+95, Corollary to Theorem 2]). If a complete variety Y is nonsingu-

lar and satisfies Chow-Künneth, then the cycle class map A∗(Y )→ H∗(Y ) is an isomorphism.

In particular, the proposition implies that any nonsingular complete variety Y which

satisfies Chow-Künneth also satisfies Kronecker duality. If Y is singular, then A∗(Y )→ H∗(Y )

can fail to be an isomorphism, but remarkably Y will still satisfy Kronecker duality.
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Proposition 4.1.4 ([Ful+95, Section 4, Proposition]). If a complete variety Y satisfies

Chow-Künneth, then the Kronecker duality morphism

DY : Ak(Y )→ Hom(Ak(Y ),Z)

is an isomorphism for all k.

Weakly linear varieties

Definition 4.1.5 ([Tot14]). A variety Y is weakly linear if it is isomorphic to affine space,

it is the complement of a weakly linear variety in a weakly linear variety, or it contains a

weakly linear variety Z such that the complement Y \ Z is also weakly linear.

It follows from the definition that a variety stratified by weakly linear varieties is itself

weakly linear.

Remark 4.1.6. Weakly linear varieties are called “linear” in [Tot14; Jan06]. We rename

them “weakly linear” to avoid confusion with our notion of linear varieties to be discussed

below.

Proposition 4.1.7 ([Tot14, Proposition 1]). Weakly linear varieties satisfy Chow-Künneth.

Corollary 4.1.8. Let Y be a complete, weakly linear variety. Then Y satisfies Chow-Künneth

and Kronecker duality, and if Y is nonsingular then the cycle class map A∗(Y )→ H∗(Y ) is

an isomorphism.

Proof. Immediate from the propositions.
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Poincaré duality

Proposition 4.1.9 ([Ful98, Corollary 17.4]). Let Y be a nonsingular complete algebraic

variety of dimension d. Then Y is Poincaré: the cap product with the fundamental class [Y ]

induces an isomorphism

− ∩ [Y ] : Ak(Y )
∼−→ Ad−k(Y )

for all k.

This can be used to define the intersection product on A∗(X) via the ring structure on

A∗(X); by [Ful98, Corollary 17.4], the intersection product defined in this fashion agrees

with the expected one constructed in [Ful98, Chapter 6]. For this reason, Poincaré duality

will play an important role in our discussion of tropical intersection theory below.

Remark 4.1.10. It is common in algebraic geometry to abuse the isomorphism Ak(Y ) ∼=

Ad−k(Y ) for complete nonsingular varieties Y to view the cocycles as codimension d − k

cycles and write the cup product on A∗(Y ) as the intersection product. In this setting, the

Kronecker duality morphism DY : Ak(Y )→ Hom(Ak(Y ),Z) is identified with the morphism

Ak(Y )→ Hom(Ad−k(Y ),Z), α 7→
(
β 7→

∫
α · β ∩ [Y ]

)
.

Thus in this case the statement that Y satisfies Kronecker duality is equivalent to the

statement that the intersection pairing

Ak(Y )× Ad−k(Y )→ Z, (α, β) 7→
∫
α · β ∩ [Y ]
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is a perfect pairing. This is what is often referred to in algebraic geometry as Poincaré duality,

although for our purposes it is perhaps better referred to as Kronecker-Poincaré duality.

Chow-free varieties

Definition 4.1.11 ([PV15]). A variety Y is Chow-free if AdimY (Y ) ∼= Z and Ak(Y ) = 0 for

k 6= dimY .

Lemma 4.1.12. An open subvariety of a Chow-free variety is Chow-free.

Proof. Let Y be Chow-free, U ⊂ Y open, and Z = Y \ U . Then dimZ < dimY , so the

result is immediate from the exact sequence

Ak(Z)→ Ak(Y )→ Ak(U)→ 0.

The main examples of Chow-free varieties are affine space and open subvarieties of affine

space (cf. the definition of weakly linear varieties). Our interest in Chow-free varieties comes

from the following proposition, whose proof is essentially given in [Ful93, Section 5.2].

Proposition 4.1.13. Let Z be a variety with a stratification by locally closed strata which are

all Chow-free. Then Ak(Z) is generated by the classes of the closures k-dimensional strata.

Proof. We induct on n = dimZ. When n = 0 the claim is obvious. Suppose the result holds

for all i < n.
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Let Zi be the union of the closed strata of dimension ≤ i. This gives a filtration

∅ = Z−1 ⊂ Z0 ⊂ Z1 ⊂ · · · ⊂ Zn = Z.

Each Zi \ Zi−1 is the disjoint union of the strata of dimension i.

Consider the exact sequence

Ak(Zi−1)→ Ak(Zi)→ Ak(Zi \ Zi−1)→ 0.

If k = i, then for dimension reasons Ai(Zi−1) = 0, so Ai(Zi) ∼= Ai(Zi \ Zi−1), hence by

assumption is generated by the classes of the closures of the i-dimensional strata.

If k < i, then by assumption Ai(Zi \ Zi−1) = 0, so Ak(Zi) is generated by Ak(Zi−1).

By induction, Ak(Z) is generated by Ak(Zk), which is generated by the classes of the

closures of the k-dimensional strata.

4.1.2 Intersection theory of toric varieties

Chow homology

Recall a toric variety X(Σ) is stratified in dimension n − k by the torus orbits O(σ) ∼=

(C∗)n−k for σ ∈ Σk. In particular, all strata are Chow-free and weakly linear. This implies

the following.
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Proposition 4.1.14 ([FS97, Proposition 2.1]). Let Σ be any fan in NR. Then An−k(X(Σ))

is generated by the classes [V (σ)] for σ ∈ Σk, with relations

∑
σ�τ

dimσ=dim τ+1

〈u, nσ,τ 〉[V (σ)] = div (χu)

for all τ ∈ Σk−1 and all u ∈M(τ) = τ⊥ ∩M , where χu denotes the corresponding character

of V (τ).

This proposition motivates the balancing condition of Definition 2.1.1, and implies Propo-

sition 2.1.2, that

Mk(Σ) ∼= Hom(An−k(X(Σ)),Z).

Chow cohomology

Theorem 4.1.15 ([Bri96; KP08]). Let Σ be a unimodular fan in NR. Then

A∗(X(Σ)) ∼= H∗(X(Σ)) ∼= PP ∗(Σ)/LPP ∗(Σ) ∼=
Z[Dσ | σ ∈ Σ1]

the following relations

1. (Linear relations)
∑

σ∈Σ1
〈u, nσ〉Dσ = 0 for all u ∈M , where nσ is a primitive generator

of the ray σ.

2. (Multiplicative relations) Dσ1 · · ·Dσk = 0 unless σ1, . . . , σk form a cone of Σ.

If Σ is simplicial, the same result holds with rational coefficients.
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Cap product and Kronecker-Poincaré duality

Proposition 4.1.16 ([FS97]). Let Σ be any fan in NR. Then X(Σ) satisfies Chow-Künneth.

Now assume Σ is complete. Then X(Σ) also satisfies Kronecker duality, and if Σ is unimod-

ular then X(Σ) satisfies Kronecker-Poincaré duality and A∗(X(Σ)) ∼= H∗(X(Σ)).

Proof. Recall X(Σ) is stratified by weakly linear varieties O(σ) ∼= (C∗)n−k, so X(Σ) is itself

weakly linear. Then the result follows from the discussions of Kronecker and Poincaré duality

above.

4.2 Tropical intersection theory

Let Σ (resp. F) be a tropical fan (resp. tropical fan cycle). Recall that in Chapter 2 we

defined a ring A∗(Σ) (resp. A∗(F)) and a group M∗(Σ) (resp. M∗(F)), which respectively play

the roles of the Chow cohomology ring and Chow homology group in tropical geometry. Our

above discussion of Poincaré duality for complete nonsingular algebraic varieties motivates

the following definition.

Definition 4.2.1. A reduced tropical fan (Σ, ω) of dimension d is Poincaré if the cap product

with the fundamental weight induces an isomorphism

− ∩ ω : Ak(Σ)
∼−→Md−k(Σ)

for all k. The tropical fan is star-Poincaré if all of its star fans are Poincaré.
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Remark 4.2.2. Recall tropical fans usually are not complete. The definition above could be

thought of as saying that the intersection theory of a Poincaré tropical fan behaves like the

intersection theory of a complete nonsingular variety, even in cases where the fan is neither

complete nor unimodular.

Recall from Proposition 2.1.31 and Remark 2.4.35 that for a property P of tropical fans

to define a nice local property of tropical fan cycles, P should be intrinsic to the support,

local, stably invariant, and preserved by tropical modifications.

Theorem 4.2.3. The property of being a star-Poincaré tropical fan is intrinsic to the support,

local, stably invariant, and preserved by tropical modifications.

Proof sketch. The property of being star-Poincaré is local by definition. To show it is also

intrinsic to the support, one uses Theorem 2.1.33—the key is to show that being star-Poincaré

is preserved by stellar refinements and coarsenings. This is the most nontrivial part of the

proof and this property has played a fundamental role in the development of combinatorial

Hodge theory, see [AHK18; ADH20; AP20; AP21]. In particular we refer to [AP21, Section

6.7.3] for more details on the proof.

The proofs of stable invariance and preservation by tropical modifications are obtained

by direct verification. For stable invariance, this follows by the Chow-Künneth property for

toric varieties as discussed in Section 4.1, cf. [AP21, Section 6.7.1]. For preservation by

tropical modifications, this follows by a direct computation of the tropical Chow cohomology

ring and Chow homology group of a tropical modification, cf. [AP21, Theorem 6.8, Section

6.7.2].
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Remark 4.2.4. Let Σ be a star-Poincaré tropical fan. Since by definition Σ is reduced and

A1(Σσ) ∼= Md−1(Σσ) for all σ ∈ Σ, we avoid the subtle technical issues mentioned in Remarks

2.4.28, 2.4.29—any tropical Weil divisor on Σ is principal, any two tropical modifications

of Σ along the same reduced tropical Weil divisor are isomorphic, and degenerate tropical

modifications are isomorphic to Σ.

Remark 4.2.5. As is evidenced by the proof sketch, the above theorem is essentially shown

in [AP21, Theorem 6.11]. The only difference is that in our version we work more generally

with possibly non-unimodular tropical fans. This difference is immaterial when discussing

tropical fan cycles as below, cf. Proposition 2.2.4 and Remark 2.2.8. However, if one works

with A∗pw(Σ) instead of A∗(Σ), as has previously been the convention in tropical geometry (cf.

Remark 2.2.8), then one runs into problems with non-unimodular fans. Indeed, as we will

see, all complete tropical fans are star-Poincaré, but by [KP08], there are non-unimodular

complete fans Σ such that A∗(Σ) 6∼= A∗pw(Σ)—this implies that there are non-unimodular

complete fans which are not even Poincaré if one uses A∗pw(Σ) instead of A∗(Σ) (see also

[AP21, Example 11.9]). This is why we prefer the definition A∗(Σ) = A∗(X(Σ)), rather than

the previously suggested definition in terms of piecewise polynomials.

Definition 4.2.6. A reduced tropical fan cycle F of dimension d is star-Poincaré if some

(hence any) fan structure on F is star-Poincaré.

The isomorphism of tropical fan cycles and cocycles on a star-Poincaré tropical fan/fan

cycle allows us to define an intersection product on tropical fan cycles.

79



Definition 4.2.7. The tropical intersection product on a star-Poincaré tropical fan Σ or

tropical fan cycle F is the product on M∗(Σ) or M∗(F) induced by the Poincaré duality

isomorphism with the ring A∗(Σ) or A∗(F).

Typically one is interested in giving an alternative definition of the tropical intersection

product, from which one can extract more meaningful geometric information. In the remain-

der of this section, we discuss three classes of star-Poincaré tropical fan cycles for which this

can be done. The first two classes are complete tropical fan cycles (Section 4.2.1) and linear

tropical fan cycles (Section 4.2.2). These are the examples which were previously understood

in the literature. In Section 4.2.3 we introduce a new class of star-Poincaré tropical fan cycles

which we call quasilinear tropical fan cycles.

Remark 4.2.8. From our perspective, star-Poincaré tropical fan cycles form the natural

class of smooth tropical fan cycles. The definition of smoothness in tropical geometry has

been a nontrivial topic of study. Originally, smooth tropical fan cycles were taken to be

those which are linear as discussed below, in part because they are star-Poincaré and admit

a well-behaved tropical intersection product [Mik07b; Sha13; FR13; GS21]. We observed,

following a priori unrelated computations in [Sch22], that there are non-linear tropical fans

which are still star-Poincaré, suggesting a broader possible definition of smooth tropical fan

cycles. Around the same time, Amini and Piquerez made the similar observation in the realm

of tropical homology and cohomology, and proposed a definition of smooth tropical fans

as those which satisfy a local Poincaré duality between tropical homology and cohomology

[AP21]. The definition of Amini and Piquerez, which differs subtly from ours, is perhaps the

best definition of a smooth tropical fan cycle; however, for our purposes it will be best to
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stick to star-Poincaré tropical fan cycles. We refer to [Ite+19; AP21] for a more in depth

discussion of tropical homology and smoothness in tropical geometry.

4.2.1 Complete tropical fan cycles

The following theorem is immediate from Proposition 4.1.16.

Theorem 4.2.9 ([FS97]). Complete tropical fan cycles are star-Poincaré.

A tropical intersection product on complete tropical fan cycles was first proposed by

Mikhalkin in [Mik07b], and the details were first worked out by Allermann and Rau in

[AR10], where they proposed an alternative definition of the tropical intersection product. A

third definition, well-suited to explicit computation, was given by Jensen and Yu in [JY16].

It has been shown that all three of these definitions coincide and are in fact given by the fan

displacement rule introduced by Fulton and Sturmfels in [FS97] to describe the intersection

theory of toric varieties [Kat12; Rau16]. From our perspective the definition in terms of

the fan displacement rule makes it obvious (following [FS97]) that the tropical intersection

product on M∗(Rn) coincides with the intersection product induced by A∗(Rn). Thus we

give a brief description of the fan displacement rule below, although we note that it is not

necessary for our later results. We refer to the aforementioned references for the alternative

definitions of the tropical intersection product on Rn.
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Theorem 4.2.10 ([Kat12, Theorem 4.5], [Rau16, Theorem 1.9]). Let Σ be a complete fan,

ω1 ∈Mk1(Σ), and ω2 ∈Mk2(Σ). Then

ω1 · ω2 =
∑

σ1∈Σk1
,σ2∈Σk2

τ≺σ1,σ2

mτ
σ1,σ2

ω1(σ1)ω2(σ2),

where

mτ
σ1,σ2

=


[N : Nσ1 +Nσ2 ], if (σ1 + v) ∩ σ2 6= ∅,

0, otherwise,

for any fixed choice of generic vector v ∈ N in the sense of [FS97].

It is a nontrivial statement that the intersection product constructed in the theorem is

well-defined, i.e. does not depend on the choice of generic vector v—see [FS97]. Since the

fan displacement rule will not come up again, the details of this construction are not be

necessary for our purposes, and so we omit further explanation. See [FS97; Kat12] for more

details and examples, especially [Kat12, Example 2.2], [FS97, Example 4.3].

Remark 4.2.11. Note the property of being a complete tropical fan is obviously intrinsic to

the support, local, and stably invariant; however, it is not preserved by tropical modifications.

4.2.2 Linear tropical fan cycles

Linear tropical fan cycles are tropical fan cycles defined by supports of Bergman fans of

matroids (to be defined momentarily). That linear tropical fan cycles are star-Poincaré is

by now a well-established fact which has played a fundamental role in tropical intersection
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theory and combinatorial and tropical Hodge theory [Fra12; GS21; AHK18; ADH20; Adi19;

BES20; AP21]. We will sketch a proof below following [Sha13; AP21]; essentially the same

proof will be repeated to show our broader class of quasilinear tropical fan cycles defined in

Section 4.2.3 is also star-Poincaré.

Definitions of a tropical intersection product on linear tropical fan cycles were given

by Shaw in [Sha13] and separately by Francois and Rau in [FR13]. The details of these

definitions are not important for our purposes, so we omit them, although we remark on

Shaw’s definition below (Remark 4.2.30).

Matroids

Matroids are combinatorial objects abstracting the notion of linear independence. A

detailed introduction can be found in [Oxl92]. We will be brief in our exposition and mainly

follow [Sha13], see also [Ale15, Chapter 3].

Definition 4.2.12. A matroid M is a pair (E, r) consisting of a finite set E = {0, 1, . . . , n}

and a nonnegative function r : 2E → Z≥0 satisfying the following properties.

1. For any I ⊂ E, r(I) ≤ |I|.

2. If I ⊂ J then r(I) ≤ r(J).

3. r(I ∪ J) + r(I ∩ J) ≤ r(I) + r(J).

Definition 4.2.13. • A base of a matroid M = (E, r) is a subset B ⊂ E such that

|B| = r(B) = r(E).
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• A loop of a matroid M = (E, r) is an element i ∈ E such that i is not contained in any

base of M .

• A flat of a matroid M = (E, r) is a subset I ⊂ E such that r(I ∪ j) > r(I) for all j 6∈ I.

• The rank of a matroid is the maximal length of a nested chain of flats.

Definition 4.2.14. Let M = (E, r) be a matroid and i ∈ E.

1. The deletion with respect to i is the matroid M \ i = (E \ i, r|E\i).

2. The restriction with respect to i is the matroid M |i = (E \ i, r′), where r′(I) =

r(I ∪ i)− r(i).

Example 4.2.15. To an arrangement A of n+ 1 hyperplanes H0, H1, . . . , Hn in Pd one can

associate a loopless matroid MA on E = {0, . . . , n} via the rank function

r(I) = codim

(⋂
i∈I

Hi

)
.

The hyperplane arrangement is essential if
⋂n
i=0Hi = ∅. This is equivalent to the rank of

the matroid MA being d+ 1.

The flats of MA correspond to the intersections of the hyperplanes. The bases correspond

to rank d + 1 subsets I ⊂ E such that
⋂
i∈I Hi = ∅. (Loops correspond to degenerate

hyperplanes defined by equations fi = 0; we assume this does not occur.)

The deletion matroid MA \ i is the matroid associated to the hyperplane arrangement

obtained by removing the hyperplane Hi. The restriction matroid MA/i is the matroid

associated to the hyperplane arrangement obtained by restricting to the hyperplane Hi.
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A matroid associated to a hyperplane arrangement is called realizable. These will be the

primary matroids of interest for us.

Example 4.2.16. The uniform matroid Ud,n is the matroid whose bases are given by all

rank d subsets of [n] = {1, . . . , n}. It is the realizable1 matroid associated to the arrangement

of n+1 hyperplanes in general position in Pd−1. An important special case is when d = n−1,

in which case the corresponding hyperplane arrangement can be taken to be the coordinate

hyperplanes.

Example 4.2.17. The Fano plane is the projective plane over F2 = Z/2Z. It has 7 points

and 7 lines as pictured in Figure 4.1. This arrangement defines a matroid which is realizable

over F2 but not realizable over any field of characteristic different from 2.

Figure 4.1. The Fano matroid (picture taken from [Ale15, Figure 3.1]).

1Assuming the base field is sufficiently large, but we assume the base field is C unless otherwise mentioned.
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Linear tropical fan cycles

Definition 4.2.18 ([AK06; ARW05; Sha13]). Let M = (E, r) be a loopless matroid on

E = {0, 1, . . . , n}. The Bergman fan of M is the fan ΣM ⊂ Rn defined as follows. Let

e1, . . . , en be the standard basis vectors of Rn and let e0 = −e1 − · · · − en. For a flat F of

M , let eF =
∑

i∈F ei. Then the k-dimensional cones of ΣM are the cones σF1,...,Fk spanned

by eF1 , . . . , eFk , for ∅ 6= F1 ⊂ · · · ⊂ Fk 6= E a chain of flats of M .

Remark 4.2.19. The loops of a matroid correspond to cones “at infinity” and the correct

notion of the Bergman fan for a matroid with loops is not a fan in NR, but rather a fan in

the tropical projective space TNR [Sha13]. We will not be concerned with this situation, and

therefore will assume unless otherwise stated that all of our matroids are loopless.

Lemma 4.2.20 ([Sha13]). The Bergman fan of a loopless matroid is a reduced and locally

irreducible tropical fan.

Definition 4.2.21. A linear (tropical) fan is a reduced tropical fan supported on the Bergman

fan of a (loopless) matroid.

Example 4.2.22. The Bergman fan of the uniform matroid Un−1,n is the normal fan to the

permutohedron. It is a complete fan, and the corresponding toric variety is the blowup of

Pn−2 at the intersections of the coordinate hyperplanes, in increasing order of dimension, cf.

[Kap93].

Theorem 4.2.23. The property of being a linear tropical fan is intrinsic to the support, local,

and stably invariant.
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Proof. The property of being a linear tropical fan is intrinsic to the support by definition, and

it is local and stably invariant by [Sha13] and [AP21, Theorem 5.11, Proposition 5.14].

Definition 4.2.24. A tropical fan cycle F is linear if some (hence any) fan structure on F

is linear. In other words, F is the support of the Bergman fan of a matroid.

Proposition 4.2.25 ([Sha13]). Let M be a loopless matroid. Then ΣM is a tropical modifi-

cation of ΣM\i along ΣM/i.

Example 4.2.26. When M is realizable by a hyperplane arrangement H0, . . . , Hn in Pd,

M \ 0 is realizable by the hyperplane arrangement H1, . . . , Hn. The tropical modification

ΣM → ΣM\0 corresponds to adding the hyperplane H0 to the arrangment of hyperplanes

H1, . . . , Hn, cf. Proposition 4.3.9.

Example 4.2.27. Let Y be the complement in P2 of the coordinate hyperplanes as well as

the hyperplanes xi = xj. We will see in Chapter 6 that Y = M0,5 is the moduli space of

5 points on P1. If M denotes the corresponding matroid, then ΣM is a 2-dimensional fan

in R5 which can be identified with the cone over the Petersen graph. It is obtained from a

complete fan in R2 by a sequence of three tropical modifications; however, determining the

fan structure from this sequence is very subtle, see [Sha13; RSS16].

Example 4.2.28. Let M be the Fano matroid as in Example 4.2.17. This is a rank 3 matroid

on [7] = {1, . . . , 7}, which is not realizable over C. Let the conic in Figure 4.1 be labeled by 7.

Then M \7 is the hyperplane arrangement considered in the previous example; in particular it

is realizable. The restriction matroid M/7 is also realizable. Thus ΣM = TMΣM/7ΣM\7 is the

tropical modification of a realizable Bergman fan along a realizable Bergman fan, but ΣM is
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not realizable. The problem is essentially that the two realizations are not compatible—they

would have to fit together to form the Fano arrangement, which is not possible over C.

Theorem 4.2.29 ([GS21; AP21]). Linear tropical fan cycles are star-Poincaré.

Proof. By Proposition 4.2.25, the Bergman fan of any matroid can be obtained from the

(complete) Bergman fan of the uniform matroid Un−1,n by a sequence of tropical modifications

along Bergman fans. Since complete fans are star-Poincaré, the result follows by induction

and Theorem 4.2.3.

Remark 4.2.30. In [Sha13], Shaw uses Proposition 4.2.25 to inductively define a tropical

intersection product on linear tropical fan cycles by starting with the intersection product

on Rn.

Remark 4.2.31. We note that Proposition 4.2.25 does not imply that the property of being

a linear tropical fan is preserved by tropical modifications. Indeed, this is false, as observed by

Amini and Piquerez [AP21, Example 11.11]. Thus neither the properties of being complete

nor being linear are preserved by tropical modifications (Remark 4.2.11). Since the property

of being star-Poincaré is preserved by tropical modifications, this indicates that the classes

of complete or linear tropical fans are too restrictive. This issue is fixed by the next class of

tropical fans below.

4.2.3 Quasilinear tropical fan cycles

Theorem 4.2.3 and Remark 4.2.31 motivate the following definition.

88



Definition 4.2.32. A reduced tropical fan cycle F is quasilinear if it is isomorphic to a

complete tropical fan cycle or a tropical modification of a quasilinear tropical fan cycle F ′

along a trivial or quasilinear tropical divisor D. A quasilinear tropical fan is any (reduced)

tropical fan supported on a quasilinear tropical fan cycle.

Remark 4.2.33. The tropical Weil divisor D on F ′ can be viewed either as a tropical fan

cycle on F ′ or on the ambient space. In the definition we take the latter viewpoint.

Remark 4.2.34. If F is isomorphic to a degenerate tropical modification of F ′, then in

fact F ∼= F ′, see Remark 4.2.41 below. If F is isomorphic to a nondegenerate tropical

modification of F ′ along D, then dimND ≤ dimNF ′ = dimNF − 1. Thus the definition of

quasilinearity is inductive on dimension of the ambient space.

Example 4.2.35. It follows from Proposition 4.2.25 and induction that linear tropical fan

cycles are also quasilinear.

Remark 4.2.36. We comment on some differences between linear and quasilinear tropical

fan cycles.

1. Allowing degenerate modifications leads to a much larger class of tropical modifications

than just the matroidal tropical modifications considered in Proposition 4.2.25. The

same effect is achieved by also working up to isomorphism, see Remark 4.2.41.

2. The image of a linear tropical fan cycle under any coordinate projection is also linear

[Sha13]. This need not be true for quasilinear tropical fan cycles. Indeed, for quasilin-

earity, all one needs is that, after composing with an isomorphism, some projection is

quasilinear. This leads to a much broader class of tropical fan cycles.
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See below for more examples of quasilinear tropical fan cycles. We now discuss the main

properties.

Theorem 4.2.37. The property of being a quasilinear tropical fan is intrinsic to the support,

local, stably invariant, and preserved by tropical modifications.

Proof. Quasilinearity is intrinsic to the support and preserved by tropical modifications by

definition. It follows from Propositions 4.2.38 and 4.2.39 that it is also local and stably

invariant.

Proposition 4.2.38. If F and G are two reduced tropical fan cycles, then F×G is quasilinear

⇐⇒ F and G are both quasilinear.

Proof. Note that F ×G is complete ⇐⇒ F and G are both complete. Thus we can assume

without loss of generality that F × G and G are not complete. We will prove the result by

induction on the dimension of the ambient vector space of F × G. Note the base case n = 2

is trivial.

( =⇒ ) Suppose F and G are both quasilinear. By assumption G is a non-complete

quasilinear tropical fan cycle, so we can write G ∼= TMDG ′ for some quasilinear tropical fan

cycle G ′ and trivial or quasilinear divisor D. Then

F × G ∼= F × TMDG ′ ∼= TMF×D(F × G ′),

so by induction F × G is quasilinear.

(⇐= ) Suppose F ×G is quasilinear. By assumption both F ×G and G are not complete,

so (after composing with an isomorphism if necessary), we can assume the projection to the
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last coordinate realizes F × G as a tropical modification of a quasilinear tropical fan F × G ′

along a trivial or quasilinear divisor D. By induction G ′ is quasilinear. If D is trivial then G

is a degenerate tropical modification of G ′, so we are done. Suppose D is nontrivial. Then

D = F ×D′ +D′′ × G for some tropical divisors D′ on G ′ and D′′ on F [AP21, Proposition

6.3]. But dimD = dimF × D′ = dimD′′ × G, and since D is quasilinear it is reduced and

irreducible, thus either D = F ×D′ or D = D′′×G. Since F ×G ∼= TMD(F ×G ′), it follows

that D = F ×D′. We conclude that

F × G ∼= TMF×D′(F × G ′) ∼= F × TMD′G ′,

so G = TMD′G ′. Since by induction D′ and G ′ are quasilinear, it follows that G is quasilinear.

Proposition 4.2.39. Star fans of quasilinear tropical fans are quasilinear.

Proof. Recall (Proposition 2.4.32) that the star fans of a tropical modification TM∆(Σ) are

all isomorphic to either star fans of ∆ or (possibly degenerate) tropical modifications of star

fans of Σ along star fans of ∆. Thus if the star fans of Σ and ∆ are all quasilinear, then the

star fans of TM∆(Σ) are quasilinear. Since star fans of complete fans are complete (hence

quasilinear), the result follows by induction and the fact that quasilinearity is stably invariant

by the previous proposition.

Theorem 4.2.40. Quasilinear tropical fan cycles are locally irreducible and star-Poincaré.

Proof. By definition a quasilinear tropical fan cycle is obtained from a complete tropical fan

cycle by a sequence of tropical modifications along trivial or quasilinear tropical divisors. Since
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complete tropical fan cycles are locally irreducible and star-Poincaré, and these properties

are preserved by tropical modifications along divisors which are trivial or satisfy the same

properties (Theorems 2.4.34, 4.2.3), the result follows by induction.

Remark 4.2.41. The theorem implies that any two tropical modifications of a quasilinear

tropical fan cycle along the same reduced tropical divisor are isomorphic, and a degenerate

tropical modification of a quasilinear tropical fan cycle is isomorphic to the original fan cycle,

cf. Remark 4.2.4.

In particular, in the definition of quasilinearity, we could have only considered tropical

modifications along quasilinear tropical divisors, rather than trivial or quasilinear tropical

divisors. We include trivial divisors in the definition to better emphasize the difference

between quasilinearity and linearity. (Degenerate tropical modifications will also be useful

for showing a given tropical fan cycle is quasilinear, see Theorem 4.3.23 and Sections 7.2.1,

8.1.1.)

Remark 4.2.42. The properties of quasilinear fans discussed above should not come as a

surprise—in a sense, quasilinearity is defined in order to force these properties to be true.

Quasilinear tropical fans also satisfy a number of additional desirable properties discussed

in [AP21]; for instance, they are tropically smooth in the sense of op. cit. The class of

quasilinear tropical fans should also be compared with the (a priori larger) class of shellable

tropical fans introduced in [AP21].

Remark 4.2.43. In principle one could follow the arguments of Shaw [Sha13] to inductively

define a tropical intersection product on quasilinear tropical fan cycles, cf. Remark 4.2.30.
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However, the technicalities of this construction are likely to be quite subtle, as a priori

they depend on the choice of tropical modification. We do not pursue this construction any

further.

Examples

Example 4.2.44. The standard tropical line of Example 2.1.8 is quasilinear, since it is the

tropical modification of R1 with respect the function ϕ(x) = min{x, 0}, as shown in Example

2.4.22. Note however the tropical modification of R1 with respect to ϕ(x) = min{2x, 0} is

not reduced, hence not quasilinear, cf. Example 2.4.23.

Example 4.2.45. Let Σ be the line ay = bx, a, b ∈ Z \ 0, with unique reduced tropical fan

structure given by the rays through the points (a, b) and (−a,−b). After scaling down the

equation if necessary, we can assume that a and b are coprime. Then there exist x, y ∈ Z

such that ax+ by = 1. The map

NΣ → Z, (a, b) 7→ ax+ by = 1

therefore induces an isomorphism of Σ with R1, so Σ is quasilinear (cf. Example 2.3.13).

Note however that Σ cannot be written as a degenerate tropical modification of R1 unless

either a/b or b/a is an integer.

Example 4.2.46. The degenerate tropical modification of the standard tropical line, as

shown in Example 2.4.31, is quasilinear.
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Example 4.2.47. The tropical modification of the standard tropical line with respect to the

function ϕ(x, y) = min{x, y, 0}, as shown in Example 2.4.24, is quasilinear.

Example 4.2.48. The tropical modification of R2 with respect to the functions ϕ(x, y) =

min{x, 0} is quasilinear, but the modification with respect to ϕ(x, y) = min{2x, 0} is not

quasilinear, cf. Example 2.4.25.

Example 4.2.49. The tropical modification of R2 with respect to the function ϕ(x, y) =

min{x, y, 0} is quasilinear, cf. Example 2.4.26.

Example 4.2.50. In Chapters 7 and 8, we will show that the tropicalizations of the moduli

spaces M(3, n) of n ≤ 8 lines in P2 and Y (3, n) of marked del Pezzo surfaces of degree 9− n

for n ≤ 7 are quasilinear. These moduli spaces at first glance are very far from linear, and

this result is one of the main results of this dissertation (and one of the motivations for the

definition of quasilinearity).

4.3 Intersection theory of tropical compactifications

Let i : Y ↪→ X(Σ) be a tropical compactification of a d-dimensional very affine variety

Y ⊂ T . The goal of this section is to give criteria under which the intersection theory of the

algebraic variety Y is the same as the intersection theory of the tropical fan Σ. In general

one might not expect much in this direction, since the intersection theory of Σ is essentially

the same as the intersection theory of the toric variety X(Σ), and Y can be very far from

toric: any smooth projective variety Y ⊂ Pn can be thought of as a tropical compactification

of Y = Y ∩ (C∗)n [MS15, Exercise 6.8.11]. On the other hand, the prototypical examples of
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tropical compactifications are linear tropical compactifications, where it was observed by A.

Gross that the intersection theories of Y and Σ agree [Gro15]. We present a generalization

of this result to broader classes of tropical compactifications.

Before stating our main theorem, we make a few preliminary comments.

1. Since A∗(Σ) = A∗(X(Σ)), there is a natural pullback morphism i∗ : A∗(Σ) → A∗(Y )

offering a comparison of the Chow cohomologies.

2. In general there is no analogous obvious comparison map i∗ : A∗(Y )→M∗(Σ). There

is a pushforward of cycles from A∗(Y ) to A∗(X(Σ)), but since the dimension of Y

is typically much smaller than the dimension of X(Σ), this pushforward is typically

trivial. The tropical Chow homology group M∗(Σ) is preferable in this setting because

dimY = dim Σ; the isomorphism Mk(Σ) ∼= Hom(An−k(Σ),Z) shifts the grading so that

the pushforward can occur in the appropriate dimension.

To define the pushforward, we need to assume i : Y ↪→ X(Σ) is a regular embedding.

(This occurs for instance if Y is a schön tropical compactification (Theorem 3.2.12),

or if both Y and X(Σ) are nonsingular.) Then by [Ful98, Section 6.2], there exists a

Gysin pullback morphism

i∗ : An−d+k(X(Σ))→ Ak(Y ).

Dualizing, we get a morphism

Hom(Ak(Y ),Z)→ Hom(An−d+k(X(Σ)),Z) ∼= Md−k(Σ).
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We view this as the correct pushforward of cycles, and denote it by i∗ : Hom(Ak(Y ),Z)→

Md−k(Σ).

Proposition 4.3.1. Assume i : Y ↪→ X(Σ) is a regular embedding. Then the following

diagram is commutative.

Ak(Σ) Md−k(Σ)

Ak(Y ) Hom(Ak(Y ),Z)

−∩ω

i∗

DY

i∗ (4.1)

Proof. Unwinding definitions, we are asking that for α ∈ Ak(X(Σ)), β ∈ An−d+k(X(Σ)),

ω(α ∩ β) =

∫
Y

i∗α ∩ i∗β,

where i∗α is the pullback on Chow cohomology and i∗β is the Gysin pullback on Chow

homology. But i∗α ∩ i∗β = i∗(α ∩ β), and the result follows simply by definition of ω,

cf. Proposition 3.2.9, Remark 3.2.10.

Remark 4.3.2. The composition

Ak(Y )
DY−−→ Hom(Ak(Y ),Z)

i∗−→Md−k(Σ)

can reasonably be interpreted as the tropicalization of cocycles on Y , cf. [Gro18]. In

particular it sends [Y ] ∈ A0(Y ) ∼= Z · [Y ] to the fundamental weight on Σ, i.e. to

trop(Y ). As a generalization of this idea one can define the extended tropicalization of

any quasiprojective variety, not necessarily very affine, see [Pay09].
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3. In order for Σ to have a well-defined tropical intersection theory, we require that Σ is

star-Poincaré. This already imposes strong conditions on Σ, and since Σ is supported

on trop(Y ) and the property of being star-Poincaré is intrinsic to the support (Theorem

4.2.3), it also imposes strong conditions on Y .

4. To say that the intersection theories of Y and Σ are “the same,” we ask that both

i∗ : A∗(Σ)→ A∗(Y ) and i∗ : Hom(A∗(Y ),Z)→M∗(Σ) are isomorphisms. Thus we are

asking that all arrows in the commutative diagram (4.1), except for DY : Ak(Y ) →

Hom(Ak(Y ),Z), are isomorphisms. This of course implies DY is also an isomorphism,

i.e. Y satisfies Kronecker duality. So this also imposes very strong conditions on Y .

Theorem 4.3.3. Assume i : Y ↪→ X(Σ) is a regular embedding and Σ is star-Poincaré.

1. If all strata Y ∩O(σ) of Y are irreducible and Chow-free, then i∗ : Hom(Ak(Y ),Z)→

Md−k(Σ) is an isomorphism.

2. If in addition to condition 1 one of the following conditions holds, then i∗ : Ak(Σ)→

Ak(Y ) is also an isomorphism, and Y satisfies Kronecker duality.

(a) All strata Y ∩O(σ) are weakly linear.

(b) Y and X(Σ) are both nonsingular.

3. If all of the above conditions hold, then we also have isomorphisms

H∗(Y ) ∼= A∗(Y ) ∼= A∗(Σ) ∼= H∗(X(Σ)).
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Proof. The condition that Σ is star-Poincaré implies that − ∩ ω : Ak(Σ) → Md−k(Σ) is an

isomorphism, which by the commutative diagram 4.1 implies that i∗ : Ak(Σ) → Ak(Y ) is

injective and i∗ : Hom(Ak(Y ),Z)→Md−k(Σ) is surjective.

1. Assume all strata Y ∩ O(σ) are irreducible and Chow-free. We need to show i∗ :

Hom(Ak(Y ),Z) → Md−k(Σ) is injective. It is enough to show the Gysin pullback

i∗ : An−d+k(X(Σ)) → Ak(Y ) is surjective. But An−d+k(X(Σ)) is generated by [V (σ)]

for σ ∈ Σd−k (Propositions 4.1.13, 4.1.14) and Ak(Y ) is generated by [Y ∩ V (σ)] for

σ ∈ Σd−k (Proposition 4.1.13). Furthermore, since Y is a tropical compactification, it

intersects torus orbits properly, so i∗[V (σ)] = [Y ∩ V (σ)] The result follows.

2. (a) If all strata Y ∩O(σ) are weakly linear, then Y satisfies Kronecker duality (Corollary

4.1.8), so all arrows in the commutative diagram 4.1 are isomorphisms except for

i∗ : Ak(Σ)→ Ak(Y ). This implies i∗ is also an isomorphism.

(b) If Y and X(Σ) are both nonsingular, then we can identify An−d+k(X(Σ)) ∼=

Ad−k(Σ) andAk(Σ) ∼= Ad−k(Y ). Then i∗ : Hom(Ak(Y ),Z)→ Hom(An−d+k(X(Σ)),Z)

is just the dual of

i∗ : Ad−k(Σ)→ Ad−k(Y ).

So in this case i∗ is an isomorphism for all k ⇐⇒ i∗ is an isomorphism for all k, and

the result follows. (Alternatively, we can now say thatAk(Σ) is generated by [V (σ)],

σ ∈ Σk, and Ak(Y ) is generated by [Y ∩V (σ)], σ ∈ Σk, and i∗[V (σ)] = [Y ∩V (σ)]

so i∗ is surjective.)
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3. All we need to show now is that H∗(Y ) ∼= A∗(Y ) and A∗(Σ) = A∗(X(Σ)) ∼= H∗(X(Σ)).

But this follows because Y and X(Σ) are both nonsingular and stratified by weakly

linear varieties (Corollary 4.1.8).

Remark 4.3.4. The theorem should be compared with the work of A. Gross on intersection

theory of tropicalizations of toroidal embeddings [Gro18].

In the remainder of this chapter we describe two classes of tropical compactifications for

which all of the results of Theorem 4.3.3 hold. These are the compactifications of varieties

whose tropicalizations are linear or quasilinear tropical fan cycles as discussed in the previous

section.

Remark 4.3.5. Of course, the results also trivially hold for varieties Y ⊂ T whose tropi-

calizations are complete tropical fan cycles: then Y = T and Y = X(Σ) is a complete toric

variety.

4.3.1 Linear tropical compactifications

Definition 4.3.6. A very affine variety Y ⊂ T is linear if trop(Y ) is a linear tropical fan

cycle.

Recall from Example 3.1.29 that if Y is the complement of n+ 1 hyperplanes in Pd, then

Y is very affine and taking equations for the hyperplanes gives an embedding of Y in its

intrinsic torus (C∗)n.
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Proposition 4.3.7 ([KP11]). A very affine variety Y ⊂ T is linear ⇐⇒ Y is a complement

of a hyperplane arrangement.

Theorem 4.3.8 ([Gro15]). Let Y ⊂ X(Σ) be a tropical compactification of a linear variety

(a linear tropical compactification). Then

1. Σ is star-Poincaré.

2. all strata of Y are also linear, and in particular smooth, irreducible, Chow-free, and

weakly linear.

Thus Theorem 4.3.3 applies, i.e.

H∗(Y ) ∼= A∗(Y ) ∼= A∗(Σ) ∼= H∗(X(Σ)).

Proofs of the above propositions will follow from our discussion of quasilinear tropical

compactifications below. The proofs we will give are essentially generalizations of the same

ideas used in [KP11; Gro15]. The key idea for our generalization is that the results can be

obtained inductively: recall if ΣM is the Bergman fan of a matroid, then ΣM is a tropical

modification of ΣM\i along ΣM/i (Proposition 4.2.25). The following algebraic analog, whose

proof is straightforward, offers intuition for this statement, cf. Example 4.2.26.

Proposition 4.3.9. Let Y ⊂ (C∗)n be a linear variety. Then either Y = (C∗)n or Y =

Γf ∩ (C∗)n, where Γf ⊂ Y ′ × A1 ⊂ (C∗)n−1 × A1 is the graph of a linear function f on a

linear variety Y ⊂ (C∗)n−1.
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4.3.2 Quasilinear tropical compactifications

Quasilinear varieties

Definition 4.3.10. A very affine variety Y ⊂ T is quasilinear if trop(Y ) is a quasilinear

tropical fan cycle.

As the class of quasilinear tropical fan cycles is much larger than the class of linear tropical

fan cycles, so too is the class of quasilinear very affine varieties much larger than the class of

linear very affine varieties. See below for some basic examples, as well as Chapters 7 and 8

in the second part of this dissertation for some more involved examples.

The theory of quasilinear tropical cycles and compactifications is essentially analogous to

that of linear tropical cycles and compactifications, except for some subtle technical details.

First of all, we need to work up to tropical isomorphism, cf. Definitions 4.2.32, 2.3.11.

Definition 4.3.11. Two very affine varieties Y ⊂ T and Y ′ ⊂ T ′ are tropically isomorphic

if there is an isomorphism of tropicalizations trop(Y ) ∼= trop(Y ′) inducing an isomorphism

of algebraic varieties Y ∼= Y ′.

Remark 4.3.12. Let Y ⊂ T be a very affine variety, and suppose trop(Y ) spans a proper

subspace V of NR. Let T ′ be the subtorus of T corresponding to V . Then a translate Y ′ of

Y is contained in T ′, and trop(Y ) ∼= trop(Y ′) [Jel20, Proposition 5.3]. In particular, Y is

tropically isomorphic to Y ′.
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Definition 4.3.13. Let f be a regular function on a very affine variety Y ⊂ (C∗)n−1. The

very affine graph of f on Y is Ỹ = Γf ∩ (C∗)n ⊂ (C∗)n, where Γf ⊂ Y × A1 ⊂ (C∗)n−1 × A1

is the usual graph of f .

Remark 4.3.14. Note the very affine graph of f is identified via the natural projection with

the complement Y \ div(f).

Theorem 4.3.15. Let Ỹ be a quasilinear variety. Then either Ỹ is a torus, or Ỹ is tropically

isomorphic to the very affine graph of a regular function f on a quasilinear variety Y , such

that either f is nonvanishing or D = div(f) is also quasilinear.

Proof. Following Remark 4.3.12 we can reduce to the case where Ỹ ⊂ (C∗)n and trop(Ỹ ) ⊂ Rn

is the tropical modification of a quasilinear tropical cycle F ⊂ Rn−1 along a trivial or

quasilinear divisor D. Let π : (C∗)n → (C∗)n−1 be the projection of tori corresponding

to the projection p : Rn → Rn−1, and let Y = π(Ỹ ) ⊂ (C∗)n−1. Then π : Ỹ → Y

is dominant, so by Lemma 3.1.23, trop(Y ) = p(trop(Ỹ )) = F . In particular, dimY =

dim trop(Y ) = dim trop(Ỹ ) = dim Ỹ , so π : Ỹ → Y is a dominant morphism of varieties of

the same dimension, hence it is generically finite, say of degree δ. Then by Theorem 3.1.24,

trop(Y ) = 1
δ
p∗ trop(Ỹ ). But since trop(Ỹ ) → trop(Y ) is a tropical modification of reduced

tropical fan cycles, p∗ trop(Ỹ ) = trop(Y ) and δ = 1. Thus π : Ỹ → Y is dominant and

generically finite of degree 1, i.e. π is birational.

Since trop(Y ) = F is quasilinear, Y is quasilinear. If Y = (C∗)n−1, then Y is smooth and

rational. In particular, Y is normal, so the birational morphism π : Ỹ → Y is an isomorphism

with an open dense subset of Y . Thus Ỹ is also smooth and rational. By induction (on
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n− dim Ỹ ), we conclude that even if Y ( (C∗)n−1, both Y and Ỹ are smooth and rational,

and π : Ỹ → Y is an isomorphism π : Ỹ
∼−→ U with an open dense subset U of Y .

If U = Y , then Ỹ is the graph of the nonvanishing regular function on Y given by the

composition Y
π−1

−−→ Ỹ → C∗, where Ỹ → C∗ is induced by the projection complementary to

(C∗)n → (C∗)n−1. So we are done in this case.

Suppose U ( Y . Note U is actually an affine open subset of Y , since the inclusion U ↪→ Y

is identified with the morphism of (very) affine varieties π : Ỹ → Y . Since in addition Y is

nonsingular, it follows that Y \U is an effective Cartier divisor D [SPA21, Tag 0BCW]. Since

Y is rational, all of its divisors are principal, so D = div(f) for some regular function f on

Y . Then by construction trop(D) = D, so D is quasilinear, and Ỹ is tropically isomorphic

to the very affine graph of f on Y .

We extract from the above theorem and its proof some fundamental properties of quasi-

linear varieties below.

Theorem 4.3.16. Quasilinear varieties are smooth, rational, Chow-free, and weakly linear.

Proof. We have shown in the proof of the previous theorem that quasilinear varieties are

smooth and rational. To show they are Chow-free and weakly linear, we use induction on the

dimension of the ambient torus. If Ỹ ⊂ (C∗)n is quasilinear, then by the previous theorem,

either Ỹ = (C∗)n, or Ỹ ∼= Y \ D for some quasilinear variety Y ⊂ (C∗)n−1 and trivial or

quasilinear divisor D on Y . By induction both Y and D are Chow-free and weakly linear,

hence Ỹ is Chow-free and weakly linear.
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Remark 4.3.17. Of course since quasilinear varieties are quasiaffine and rational, Chow-free

is already immediate. For most of our applications it is enough to know quasilinear varieties

are smooth and rational.

Remark 4.3.18. The above results should be compared with, and are inspired by, [KP11,

Section 4], [Jel20, Section 5], where the analogous results for linear varieties are shown.

Quasilinear compactifications

Definition 4.3.19. A tropical compactification Y ⊂ X(Σ) of a very affine variety Y ⊂ T is

quasilinear if Y ⊂ T is quasilinear.

Theorem 4.3.20. All strata of quasilinear compactifications are quasilinear varieties. In

particular, they are smooth, irreducible, rational, Chow-free, and weakly linear.

Proof. Let Y ⊂ X(Σ) be a quasilinear compactification, and denote the strata of Y by

Yσ = Y ∩O(σ). By Proposition 3.2.9 trop(Yσ) = |Σσ| and the weights on the tropical fan Σσ

are induced by Yσ. Since Σ is quasilinear, so is Σσ by Proposition 4.2.39. In particular, Σσ is

reduced and irreducible by Theorem 4.2.40, so Yσ is irreducible and generically reduced by

Corollary 3.1.12. Let Y red
σ be the reduced induced scheme structure on Yσ. Then trop(Y red

σ ) =

trop(Yσ) = Σσ (with the same weights, since the weights on trop(Yσ) are 1), so since Σσ

is quasilinear, Y red
σ is a quasilinear variety. In particular Y red

σ is smooth and irreducible by

Theorem 4.3.16. Therefore, by [Car12, Theorem 11], Yσ is also reduced, i.e. Yσ = Y red
σ , hence

Yσ is a quasilinear variety. We have shown that strata of quasilinear compactifications are

quasilinear varieties. The last statement of the theorem follows from Theorem 4.3.16.
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The following corollary and theorem will play an important role in Part II of this disser-

tation.

Corollary 4.3.21. Quasilinear varieties are schön.

Proof. The above theorem shows that all strata of any quasilinear compactification are

smooth. The result follows by definition.

Theorem 4.3.22. Let Y ⊂ X(Σ) be a quasilinear compactification. Then i∗ : A∗(Σ)→ A∗(Y )

is an isomorphism and Y satisfies Kronecker duality. If in addition X(Σ) is smooth, then Y

is also smooth and

H∗(Y ) ∼= A∗(Y ) ∼= A∗(X(Σ)) ∼= H∗(X(Σ)).

Proof. Since quasilinear tropical fans are star-Poincaré (Theorem 4.2.40) and strata of quasi-

linear tropical compactifications are irreducible, Chow-free, and weakly linear (Theorem

4.3.20), the first statement follows immediately from Theorem 4.3.3. The last statement

also follows from Theorem 4.3.3 and the above Corollary 4.3.21 that quasilinear varieties are

schön.

Criteria for quasilinearity

In this section we give criteria for showing a very affine variety is quasilinear. The main

advantage of these criteria is that they do not require directly computing the tropicalization,

which in general can be computationally challenging.

The following partial converse to Theorem 4.3.15 is our main criterion.
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Theorem 4.3.23. Let Y ⊂ T be a quasilinear variety, and f a regular function on Y such

that either f is nonvanishing, or D = div(f) ⊂ Y ⊂ T is also quasilinear. Then the very

affine graph Ỹ of f on Y is quasilinear.

Proof. Since trop(Y ) is quasilinear, it is reduced, locally irreducible, and star-Poincaré by

Theorem 4.2.40. It is shown in [RSS16, Proposition 4.1], that the properties that f is regular

on Y and trop(Y ) is locally irreducible together imply that the fibers of the natural projection

trop(Ỹ ) → trop(Y ) are all either a single point, or a half-line in the upwards direction;

furthermore, the locus of points with infinite fibers is precisely trop(D). Since trop(Y ) is

principal, trop(D) = div(g) for some rational g on trop(Y ), and trop(Ỹ ) is isomorphic to the

tropical modification of trop(Y ) along trop(D), with respect to g.

Remark 4.3.24. The rational function g in the proof above is not necessarily the tropical-

ization of the regular function f , cf. Example 2.4.14, Remarks 2.4.28, 3.1.9, [RSS16, Section

4]. It is also not necessarily a tropically regular function, cf. [Sha13].

This theorem can be used to show a very affine variety Ỹ ⊂ T n is quasilinear by the

following inductive procedure: find a projection π : T n → T n−1 realizing Ỹ as the graph of a

regular function f on a variety Y ⊂ T n−1, then show that Y ⊂ T n−1 and D = div(f) ⊂ Y ⊂

T n−1 are quasilinear by the same procedure. In practice this procedure can be computationally

difficult, as one has to check an increasing number of cases. The steps of this procedure can

be simplified by the following criteria.
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Theorem 4.3.25. Let Y ⊂ T be a quasilinear variety and D1, . . . , Dk ⊂ Y quasilinear

hypersurfaces on Y such that all nonempty intersections of the Di are also quasilinear in T .

Then Y \ (D1 ∪ · · · ∪Dk) ⊂ T × (C∗)k is also quasilinear.

Proof. The proof is by induction on k. The base case k = 1 is immediate from Theorem

4.3.23. Assume the result for k − 1. Then Y ′ = Y \ (D1 ∪ · · · ∪ Dk−1) is quasilinear by

induction, and Y \ (D1∪· · ·∪Dk) = Y ′ \D′k, wher D′k = Dk \ ((Dk∩D1)∪· · ·∪ (Dk∩Dk−1)).

Since Dk and all intersections of the Di’s are quasilinear, D′k is also quasilinear by induction.

Thus Y ′ \D′k is quasilinear.

Theorem 4.3.26. Let Y1 ⊂ T1 and Y2 ⊂ T2 be two very affine varieties. Then Y1 × Y2 ⊂

T1 × T2 is quasilinear ⇐⇒ both Y1 ⊂ T1 and Y2 ⊂ T2 are quasilinear.

Proof. We have trop(Y1 × Y2) = trop(Y1)× trop(Y2) [Cue10, Theorem 3.3.4], so the result is

immediate from Proposition 4.2.38.

Theorem 4.3.27. Linear varieties are quasilinear.

Proof. Let Y be a linear variety, given as the complement of n + 1 hyperplanes in Pd. Let

M be the matroid corresponding to the hyperplane arrangement. Then trop(Y ) = |ΣM |. By

[Sha13], ΣM is a tropical modification of ΣM\i along ΣM/i. The result follows by induction

on n, where the base case is n = d, in which case ΣM is complete.

Remark 4.3.28. If one wishes, one could avoid the tropical side in the above proof, by

invoking Theorem 4.3.23: a linear variety Y is the complement of a hyperplane in a linear

variety Y ′, and the result follows by induction.
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Since quasilinearity is defined in terms of the tropicalization, it depends not just on the

very affine variety Y , but on the specific embedding Y ⊂ T , as different embeddings of Y

into tori can have different tropicalizations. In some cases, one can reduce to a smaller torus.

Proposition 4.3.29. Suppose Y ⊂ T ′ ⊂ T are closed subvarieties. Then Y ⊂ T ′ is

quasilinear ⇐⇒ Y ⊂ T is quasilinear.

Proof. Since Y ⊂ T ′, trop(Y ⊂ T ′) is contained in trop(T ′ ⊂ T ). Thus by [Jel20, Proposition

5.3], trop(Y ⊂ T ′) ∼= trop(Y ⊂ T ). In particular, Y ⊂ T ′ is quasilinear ⇐⇒ Y ⊂ T is

quasilinear.

Examples

Compare this section with the examples of quasilinear tropical fan cycles in Section 4.2.3.

Example 4.3.30. As mentioned above, linear varieties are quasilinear, cf. Example 4.2.35.

Example 4.3.31. In (C∗)2, the varieties Y = {ax + by + c = 0} and Y = {ya = cxb},

a, b ∈ Z \ 0, c ∈ C∗ are quasilinear. Indeed, the first is linear, and the second is tropically

isomorphic to C∗. The corresponding tropicalizations are the standard tropical line and the

line ay = bx, cf. Examples 4.2.44, 4.2.45.

Example 4.3.32. Consider Y = {y2 = x3}, which is quasilinear by the previous example.

Indeed, trop(Y ) is the line 2y = 3x (Example 3.1.8), which is quasilinear by Example 4.2.45.

Since there is a unique fan structure Σ on trop(Y ), there is a unique tropical compactification

Y ⊂ X(Σ) of Y . Since Y is quasilinear, it is schön, so since X(Σ) is smooth, Y must be
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smooth. Indeed, Y ∼= P1, as follows for instance from the isomorphism of trop(Y ) with R1

and the isomorphism X(Σ) ∼= P1 × C∗ (Example 2.3.2).

Remark 4.3.33. Note in the previous example that the more naive compactification of Y

by the plane cuspidal cubic {y2z = x3} ⊂ P2 is not a tropical compactification; rather, the

tropical compactification in this case is the normalization.

Example 4.3.34. In (C∗)3, varieties defined by two monomial equations, a monomial equa-

tion and a linear equation, or two linear equations, are quasilinear. They correspond respec-

tively to a classical line in R3, a degenerate tropical modification of the standard tropical

line in R2, and a nondegenerate tropical modification of the standard tropical line in R2, cf.

Example 4.2.46, 4.2.47.

Example 4.3.35. In (C∗)3, the varieties

Y = {z` = axmyn}, Y = {z = y − axm}, Y = {z = ax+ by + c}

are all quasilinear. They correspond respectively to a classical plane in R3, and to the

quasilinear fan cycles in Examples 4.2.48 and 4.2.49.

Example 4.3.36. In Chapters 7 and 8 we will show that the moduli spaces M(3, n), n ≤ 8

and Y (3, n), n ≤ 7 are quasilinear, cf. Example 4.2.50.
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Part II

Geometry of compactifications of

moduli spaces
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Chapter 5

Log canonical compactifications and

compactifications of moduli spaces

5.1 Tropical and log canonical compactifications

In this section we review some results on tropical and log canonical compactifications.

These compactifications are important from the point of view of the minimal model program,

as the log canonical compactification of a variety is essentially the smallest compactification

with reasonable boundary singularities.

5.1.1 Log canonical pairs and compactifications

Let (X,B =
∑
biBi) be a pair of a normal variety X and a Q- or R-divisor B with all

bi ≥ 0. The log canonical divisor of (X,B) is the divisor KX + B. Let f : Y → X be a

resolution of singularities of X. If the log canonical divisor KX +B is Q- or R-Cartier, then
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one can pull it back, and one obtains

KY = f ∗(KX +B) +
∑

ajDj

for some divisors Dj on Y and coefficients aj, and where the equality denotes rational

equivalence [KM98, Section 2.3].

Definition 5.1.1 ([KM98, Definition 2.34]). The pair (X,B) has log canonical singularities

if all aj ≥ −1.

Example 5.1.2. If (X,B) is a pair of a (normal) toric variety X and its boundary B = X \T ,

then the pair (X,B) has log canonical singularities [Kol96, Proposition 3.7]. More generally

a pair (X,B) has toroidal singularities if it is locally isomorphic to a pair of a toric variety

and its boundary. Thus toroidal singularities are log canonical. This will be the only example

which appears for us.

Definition 5.1.3 ([KM98, Section 3.8]). A pair (X,B) is a log canonical model if it has log

canonical singularities and the R-Cartier divisor KX +B is ample.

The motivation for this definition is as follows. Suppose (X,B) is a pair with log canonical

singularities and such that X is proper. The abundance conjecture asserts that if KX +B is

nef, then for some m > 0, the linear system |m(KX +B)| is basepoint-free [KM98, Conjecture

3.12]. This implies that the log canonical ring

∞⊕
m=0

H0(X,m(KX +B))
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is finitely generated. Then the pair of

Xlc = Proj

(
∞⊕
m=0

H0(X,m(KX +B))

)

and the image Blc of B under the natural rational map X 99K Xlc is a log canonical pair,

called the log canonical model of X. The intuition behind this is that X 99K Xlc contracts

all of the curves C on which KX + B is 0, hence making KX + B ample. Thus the pair

(Xlc, Blc) should be thought of as the smallest model of (X,B) which still has log canonical

singularities.

5.1.2 Log canonical compactifications

Definition 5.1.4 ([HKT09]). Let Y be a smooth variety. Then Y is log minimal if there

is a normal crossings compactification (Y ,B) of Y such that for some m > 0, the natural

rational map

Y 99K P
(
H0(Y ,m(KY +B))∨

)
is an embedding.

If Y is log minimal, then the natural rational map Y 99K Y lc is regular and an embedding,

thus Y ⊂ Y lc is a natural compactification of Y , called the log canonical compactification.

Phrased another way, we have the following definition.
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Definition 5.1.5. Let Y be a smooth, log minimal variety. A compactification Y ⊂ Y lc is

the log canonical compactification of Y if the pair (Y lc, B = Y lc \Y ) is a log canonical model,

i.e. it has log canonical singularities and KY lc
+B is ample.

Again our intuition for the log canonical compactification is that it is the smallest com-

pactification of Y with log canonical singularities.

5.1.3 Hübsch tropical compactifications

Recall from Chapter 3 that if Y ⊂ T is a closed subvariety of a torus, then there is a natural

class of well-behaved compactifications of Y called tropical compactifications, obtained by

taking the closures of Y in appropriate toric varieties associated to fans supported on the

tropicalization of Y . The nicest situation is when Y is schön, meaning all strata of any

tropical compactification of Y are smooth—this implies that any fan supported on trop(Y )

gives a schön tropical compactification.

Definition 5.1.6 ([HKT09, Definition 1.9]). A schön very affine variety Y ⊂ T is hübsch if

Y is log minimal and the log canonical compactification Y lc is a tropical compactification of

Y . The corresponding fan structure Σlc on trop(Y ) is called the log canonical fan.

In general there is no canonical coarsest fan structure on the tropicalization of a very

affine variety, cf. Remark 2.1.22. However, if Y is hübsch, then the log canonical fan gives

the coarsest fan structure.

Theorem 5.1.7 ([HKT09, Theorem 1.10]). Suppose Y ⊂ T is a hübsch very affine variety.

Then any fan supported on trop(Y ) is a refinement of the log canonical fan.
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Thus in this setting the log canonical compactification should be thought of as the smallest

tropical compactification. This gives a strategy for finding the log canonical compactification

of a very affine variety Y ⊂ T using tropical geometry:

1. Show Y ⊂ T is schön.

2. Show there is a unique coarsest fan structure on trop(Y ), and that this gives the log

canonical compactification.

In practice the first step (showing that Y is schön) is often the most difficult. In Chapter

4 we gave a method for showing Y is schön by showing it is quasilinear, which essentially

reduces the problem to direct (yet tedious) computations with equations.

For the second step, we use the following strategy developed by Hacking, Keel, and Tevelev

[HKT09], see also [LQ11; Cor21].

Definition 5.1.8 ([HKT09, Definition 1.15]). A fan Σ is convexly disjoint if any convex

subset of |Σ| is contained in a cone of Σ.

Clearly if Σ is convexly disjoint then it is the coarsest fan on its support.

Theorem 5.1.9 ([LQ11, Theorem 4.9]). Let Y be a schön very affine variety admitting a

tropical compactification all of whose strata are irreducible. If there is a convexly disjoint fan

Σ supported on Y , then Y is hübsch and Y ⊂ X(Σ) is the log canonical compactification.

Proof sketch. Hacking, Keel, and Tevelev have shown that if Y ⊂ T is schön, then either

Y is log minimal or Y is preserved by translation by a nontrivial subtorus of T [HKT09,

Theorem 3.1]. The second condition is equivalent to trop(Y ) being preserved by a proper
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linear subspace of NR. The condition that Σ is convexly disjoint immediately implies that

this does not occur for any star fans of Σ, hence all strata of Y ⊂ X(Σ) (including Y itself)

are log minimal.

5.2 Stable pair compactifications

In this section we briefly review the theory of stable pair (also known as KSBA) compact-

ifications of moduli spaces, following the treatment of [Ale15, Chapter 1]. The basic idea

is that a moduli space M of smooth varieties or pairs is not complete, since it fails to see

singular limits. The canonical singular limits from the point of view of the minimal model

program are the so-called stable pairs, as defined below. The prototypical example is when

M is a moduli space of curves, in which case the stable pair compactification is the usual

Deligne-Mumford compactification [DM69; Knu83].

5.2.1 Moduli of stable pairs

Definition 5.2.1. A pair (X,B =
∑
biBi) of a variety X and a Q- or R-divisor B on X is

semi-log canonical (slc) if the following hold.

1. X satisfies Serre’s condition S2.

2. X has only double normal crossings (locally analytically isomorphic to xy = 0) in

codimension one, and the double locus has no components in common with the Bi’s.

3. KX +B is R-Cartier.
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4. If ν : Xν → X denotes the normalization, then the pair (Xν ,
∑
biν
−1(Bi) + Dν) has

log canonical singularities, where Dν is the preimage of the double locus of X.

Remark 5.2.2 ([Ale15, Remark 1.3.2]). Recall that a variety is normal if it satisfies Serre’s

condition S2 and is regular in codimension one. Thus the first two conditions in the definition

of slc above should be thought of as a generalization of normality.

Example 5.2.3 ([Ale15, Example 1.3.5]). If X is a curve, then the pair (X,B =
∑
biBi) is

slc ⇐⇒ X has at worst nodal singularities, the divisors Bi do not contain the nodes, and

for every non-nodal point x ∈ X, one has multxB = bi
∑

multxBi ≤ 1.

Definition 5.2.4. A pair (X,B =
∑
biBi) of a projective variety X and an R-divisor B on

X is a stable pair if the following two conditions hold.

1. (Singularities) (X,B) is slc.

2. (Numerical) KX +B is ample.

Example 5.2.5. If X is a curve, then the pair (X,B =
∑
biBi) is stable if it satisfies the

description of the singularities in Example 5.2.3 and KX +B is ample. The latter condition

is equivalent to saying that for every irreducible component E ⊂ X,

deg(KX +B)|E = 2pa(E)− 2 + E · (X − E) +
∑
Bi∈E

bi > 0,

see [Ale15, Section 1.1]. For instance if the arithmetic genus of X is 0 and all bi = 1, then X

is a tree of P1’s attached at nodes, such that each P1 has at least 3 nodes or marked points

on it.
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The reason for this definition is the following theorem.

Theorem 5.2.6. Let π0 : (X0, B0) → S0 be a family of irreducible stable pairs over a

punctured curve S0 = S \ 0. Then π0 can be uniquely completed to a complete family

π : (X,B)→ S with central fiber a (possibly reducible) stable pair.

This theorem allows one to construct complete moduli of stable pairs. The details of this

construction are more involved, as the definition of a family of stable pairs is nontrivial, and

then the steps to construct the moduli space are somewhat involved and require the minimal

model program in dimension one higher than the dimension of the stable pairs, see [Ale15,

Section 1.4] for an outline and [Kol21] for a detailed treatment. For our purposes the details

are not important, as we will only consider moduli spaces which can be explicitly constructed

through more direct means.
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Chapter 6

Moduli of n points on P1

Let M0,n denote the moduli space of n distinct points on P1. Fixing the last point at ∞

and scaling coordinates for the remaining points, one obtains an open embedding M0,n ⊂ Pn−3

as the complement of the 2× 2 minors of the matrix

 1 1 · · · 1 0

x1 x2 · · · xn−1 1

 . (6.1)

Here the coordinates on Pn−3 are (x1, . . . , xn−1) with
∑
xi = 0. Thus M0,n is the complement

in Pn−3 of the hyperplanes xi = xj.

6.1 Stable pair compactification

The stable pair compactification M0,n of M0,n is the first example of a geometrically

meaningful compactification of a moduli space [Knu83]. As mentioned in Example 5.2.5,
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stable n-pointed curves of genus 0 are trees of projective lines attached by nodes, with at

least 3 nodes or marked points on each irreducible component.

Example 6.1.1. The boundary divisors of M0,n parameterize stable curves consisting of two

P1’s meeting in a point, with at least 2 points on each component. We label these divisors

by DI,J , |I| ≥ 2, |J | ≥ 2, I q J = [n], where I and J denote the set of points on the two

components. For instance, D12,345 ⊂ M0,5 has points 1, 2 on one component, and 3, 4, 5 on

the other component.

Note two boundary divisors intersect ⇐⇒ there is a common degeneration of the

corresponding stable curves. It follows that DI,J and DI′,J ′ intersect ⇐⇒ I ⊂ I ′, I ⊂ J ′,

J ⊂ I, or J ⊂ J ′ [Kee92].

A construction of M0,n as a tropical compactification was given by Kapranov in [Kap93].

It is the closure of M0,n in the toric variety associated to a unimodular fan known as the

Dressian Dr(2, n), which is also equal to the tropical Grassmannian TG(2, n) [SS04]. This

is the coarsest fan structure on trop(M0,n). We will discuss this construction in more depth

in Chapter 7.

Remark 6.1.2. Kapranov’s construction of M0,n in [Kap93] appeared long before the notion

of a tropical compactification was introduced in [Tev07]. In a sense Kapranov’s construction

is the first example of a tropical compactification, and the motivation for studying tropical

comapctifications in the first place.
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6.2 Log canonical compactification

As described above, M0,n is linear and M0,n is the closure of M0,n in the toric variety

associated to the coarsest fan structure Dr(2, n) = TG(2, n) on trop(M0,n). Furthermore,

this fan structure is convexly disjoint (a proof of this will be given in Chapter 7). This implies

the following.

Theorem 6.2.1 ([KT06; Tev07; HKT09]). M0,n is hübsch and M0,n is the log canonical

compactification.

6.3 Intersection theory

The intersection theory of M0,n was explicitly described by Keel in [Kee92].

Theorem 6.3.1 ([Kee92]).

H∗(M0,n) ∼= A∗(M0,n) ∼=
Z[DI,J | |I|, |J | ≥ 2, I q J = [n]

the following relations

1. (Linear relations)
∑

i,j∈I
k,l∈J

DI,J =
∑

i,k∈I
j,l∈J

DI,J =
∑

i,l∈I
j,k∈J

DI,J .

2. (Multiplicative relations) DI,J ·DI′,J ′ = 0 unless I ⊂ I ′, I ⊂ J ′, J ⊂ I ′, or J ⊂ J ′.

Remark 6.3.2. The linear relations are just the pullbacks of the relations 0 = 1 = ∞ on

M0,4
∼= P1 via the natural forgetful maps f : M0,n →M0,4.

The multiplicative relations are just the obvious ones, cf. Example 6.1.1.
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Remark 6.3.3. Since M0,n is linear and M0,n is a tropical compactification of M0,n in a

nonsingular toric variety, the above theorem follows from Theorems 4.3.22 and 4.1.15. Keel’s

original proof instead uses an explicit construction of M0,n as a sequence of blowups of

M0,n−1 ×M0,4 [Kee92]. In Chapter 7 we will see higher-dimensional generalizations of both

proofs, cf. Theorem 7.3.1, Section 7.4.

6.3.1 Tautological classes and intersection theory of Mg,n

Although the intersection theory of M0,n has a nice explicit description by Theorem 6.3.1,

in general the intersection theory of the moduli spaces Mg,n of stable genus g curves with n

marked points is far more complicated for g > 0. Indeed, there is typically no hope in finding

an explicit presentation of A∗(Mg,n) analogous to Theorem 6.3.1. For this reason, when

studying the intersection theory of Mg,n, most attention is placed on studying a smaller

subring of A∗(Mg,n) called the tautological ring. The basic idea is that, since Mg,n is a

moduli space, it has a number of natural classes in its Chow ring coming from the geometry

of the moduli problem. These classes are called the tautological classes, and the tautological

ring is the subring generated by them. This idea was first developed by Mumford in [Mum83].

By [Fab99], all top intersections of tautological classes on a given Mg,n are governed by the

intersection numbers of certain tautological classes called ψ-classes ψi on all Mg,n. In turn,

these intersection numbers are determined by the famous Witten’s conjecture/Kontsevich’s

theorem [Wit91; Kon92].

On M0,n, the intersection numbers of the ψ-classes have a particularly nice description.

To explain this, we first introduce some notation. Let fi : M0,n → M0,n−1 denote the
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forgetful map, forgetting the ith marked point (then restabilizing if necessary). It turns out

that fn+1 : M0,n+1 →M0,n is the universal family over M0,n [Knu83], and it has n sections

σ1, . . . , σn corresponding to the n marked points.

Definition 6.3.4 ([Wit91]). Define ψi = c1(σ∗i (ωfn+1)), where ωfn+1 is the relative dualizing

sheaf of the universal family fn+1 : M0,n+1 →M0,n.

Thus the ith ψ-class ψi is the first Chern class of the line bundle on M0,n whose fiber at

a stable curve (C, p1, . . . , pn) is the cotangent line to C at pi.

Proposition 6.3.5 ([Wit91]). Let fk : M0,n+1 →M0,n be a forgetful map, and suppose i 6= k.

Then

ψi = f ∗k (ψi) +Dik,

where Dik is the divisor in M0,n parameterizing stable curves with two irreducible components,

marked points i and k on one component, and all other marked points on the other component.

Corollary 6.3.6 ([Get98, Section 4]). On M0,n, one has

ψi =
∑

i∈I,j,k∈J

DI,J .

Corollary 6.3.7 (String equation [Wit91]).

∫
ψk1

1 · · ·ψknn ∩ [M0,n+1] =
n∑
i=1

∫
ψk1

1 · · ·ψ
ki−1
i · · ·ψknn ∩ [M0,n]
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Corollary 6.3.8 ([Wit91]).

∫
ψk1

1 · · ·ψknn ∩ [M0,n] =

(
n− 3

k1, . . . , kn

)
.

We will investigate higher-dimensional versions of the ψ-classes in Section 7.3.2.

Remark 6.3.9. The linear system associated to ψn defines a birational map M0,n → Pn−3

described on the interior by the matrix (6.1). In [Kap93], Kapranov factors this birational

map as a sequence of blowups of the intersections of the hyperplanes xi = xj, in increasing

order of dimension.
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Chapter 7

Moduli of hyperplane arrangements

Let M(r, n) denote the moduli space of arrangements of n hyperplanes in general position

in Pr−1. Note M(2, n) = M0,n, so M(r, n) is a natural higher-dimensional generalization of

M0,n. As we saw forM0,n, fixing the last r hyperplanes and scaling equations for the remaining

hyperplanes, we obtain an open embedding M(r, n) ⊂ (Pn−r−1)r−1 as the complement of the

r × r minors of the matrix



1 · · · 1 0 · · · 0

x1
1 · · · x1

n−r 1 · · · 0

...
...

...
...

...
...

xr−1
1 · · · xr−1

n−r 0 · · · 1


(7.1)

In particular, M(r, n) is a very affine variety with intrinsic torus (C∗)(
n
r)−n.
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7.1 Moduli of stable hyperplane arrangements

The stable pair compactification M(r, n) of M(r, n) was constructed by Hacking, Keel,

and Tevelev in [HKT06]. It is called the moduli space of stable hyperplane arrangements, and

is the first example of a stable pair compactification of a moduli space of higher-dimensional

varieties/pairs.

7.1.1 Stable hyperplane arrangements

Stable hyperplane arrangements have a concrete interpretation in terms of so-called

matroid subdivisions of the hypersimplex [HKT06; Ale15]. This works as follows.

Definition 7.1.1. Let M be a rank r matroid on [n]. The matroid (base) polytope of M is

the convex hull in Rn of the vectors eI =
∑

i∈I ei for I ⊂ [n] a base of the matroid M .

Example 7.1.2. The hypersimplex ∆(r, n) is the matroid polytope of the uniform matroid

Ur,n, i.e. the convex hull in Rn of the vectors eI for all I ⊂ [n], |I| = r. It can also be

described as

∆(r, n) =
{

(x1, . . . , xn) ∈ Rn | 0 ≤ xi ≤ 1,
∑

xi = r
}
.

It follows from the above example that the matroid polytope of any rank r matroid on

[n] is a subpolytope of the hypersimplex ∆(r, n). A matroid subdivision of ∆(r, n) is a tiling

of ∆(r, n) by these matroid polytopes.

The connection to hyperplane arrangements is the following. Recall (Example 4.2.15) that

an arrangement of n hyperplanes H1, . . . , Hn in Pr−1 is the same as a rank r matroid on [n]
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whose bases consist of the rank r subsets I ⊂ [r] such that HI =
⋂
i∈I Hi = ∅. The uniform

matroid Ur,n corresponds to an arrangement of n hyperplanes in Pr−1 in general position.

Thus the hypersimplex ∆(r, n) corresponds to the moduli space M(r, n) of hyperplanes in

general position. Each matroid in a (realizable) matroid subdivision of ∆(r, n) corresponds

to a degenerate hyperplane arrangement, so a matroid subdivision of ∆(r, n) corresponds to

a union of degenerate hyperplane arrangements glued in a particular way.

The correspondence described above is best understood through examples.

Example 7.1.3. Figure 7.1, shows a matroid subdivision of the hypersimplex ∆(2, 4) and

the corresponding stable curve. There are three matroid polytopes in this subdivision. For

example, the matroid polytope shown on the left corresponds to the curve where points 3

and 4 coincide, because 34 ⊂ [4] is not a base of the corresponding matroid.

Figure 7.1. A matroid subdivision of ∆(2, 4) and the corresponding stable curve (picture
taken from [Ale15, Figure 4.7]).
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Following the description of [Ale15], each matroid polytope in a matroid subdivision of

∆(r, n) can be described by a collection of inequalities of the form

n∑
i=1

xi = r, xi ≥ 0 for i ∈ [n],

xI =
∑
i∈I

xi ≤ r(I), for all nondegenerate flats I 6= ∅, [n].

The first two types of inequalities are always present, so we only write inequalities of the

third type xI ≤ r(I), called the essential inequalities [Ale15, Definition 4.2.3].

Example 7.1.4. 1. When r = 2, the essential inequalities are those of the form xI ≤ 1,

parameterizing when the points on P1 indexed by I coincide.

2. When r = 3, the essential inequalites are those of the forms xI ≤ 1, parameterizing

when the lines on P2 indexed by I coincide, and xI ≤ 2, parameterizing when the lines

on P2 indexed by I meet in a point.

Example 7.1.5. Three examples of stable hyperplane arrangements for M(3, 6) are shown

in Figure 7.2. The inequalities for the corresponding matroid subdivisions are labeled in

the figure. These three stable hyperplane arrangements are representative of the boundary

divisors of M(3, 6), see Section 7.4. All stable hyperplane arrangements for M(3, 6) are listed

in [Ale15, Figures 5.12, 5.13].
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(a) {x456 ≤ 1}, {x123 ≤ 2} (b) {x56 ≤ 1}, {x1234 ≤ 2}

(c) {x12 ≤ 1, x1234 ≤ 2},
{x34 ≤ 1, x3456 ≤ 2},
{x56 ≤ 1, x1256 ≤ 2}

Figure 7.2. Examples of stable hyperplane arrangements for M(3, 6) (pictures taken from
[Ale15, Figure 5.12]).

7.1.2 Construction of the main irreducible component

The moduli space M(r, n) is constructed in [HKT06] using the multigraded Hilbert scheme.

This is a generalization of Kapranov’s Chow quotient construction ofM0,n [Kap93]. In general

M(r, n) has many irreducible components. The main irreducible component M
m

(r, n), i.e.

the closure of M(r, n) in M(r, n), will be the only component we consider in this chapter.

The construction of M
m

(r, n) is somewhat simpler than the construction of the whole moduli

space M(r, n), and is more relevant for our purposes, so we briefly review it now.

The basic idea of the construction is to formalize the correspondence between stable

hyperplane arrangements and matroid subdivisions of the hypersimplex as described in the

previous section. A fact which essentially dates back to Kapranov in this setting [Kap93;

GKZ94] is that there is a fan Sec(∆(r, n)) whose cones parameterize all regular1 subdivisions

of the hypersimplex ∆(r, n). A subfan Dr(r, n) of Sec(∆(r, n)), known as the Dressian,

1We have not defined what we mean by a regular subdivision of a polytope, as it will not be necessary
for our purposes. See e.g. [GKZ94] for more details.
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parameterizes all regular matroid subdivisions of ∆(r, n) [Her+09]. The fan Dr(r, n) should

be interpreted as a sort of tropical moduli space. The corresponding toric variety X(Dr(r, n))

also has a modular interpretation, as a moduli space of stable toric varieties—to each polytope

in a matroid subdivision of ∆(r, n), one can associate a projective toric variety, and the data of

how the polytopes meet can be used to glue together these projective toric varieties to form a

stable pair, see [Ale15, Chapter 2] for details. In particular X(Dr(r, n)) has a universal family.

Now the key observation is that M(r, n) is contained in the dense open torus in X(Dr(r, n)),

and that the pullback of the universal family over X(Dr(r, n)) to the closure M
m

(r, n) of

M(r, n) in X(Dr(r, n)) is the desired universal family of stable hyperplane arrangements

[Kap93; HKT06; Ale15]. This is known as Kapranov’s visible contours construction, and we

refer to op. cit. for more details.

Remark 7.1.6. The tropicalization trop(M(r, n)) is in fact the tropical Grassmannian

TG(r, n) of [SS04], which parameterizes matroid subdivisions of ∆(r, n) by realizable matroid

polytopes. It is well-known that TG(r, n) ⊂ Dr(r, n), but in general Dr(r, n) is much larger

[Her+09; HJS14]. This is reflected in our setting by the fact that M(r, n) ⊂ M
m

(r, n) is

typically not a tropical compactification [KT06]—M
m

(r, n) can intersect nontrivially torus

orbits of X(Dr(r, n)) corresponding to cones not contained in TG(r, n).

Example 7.1.7. TG(2, 4) = Dr(2, 4) is the standard tropical line of Example 2.1.8. The

three rays correspond to the three different matroid subdivisions of ∆(2, 4).

130



7.2 Log canonical compactifications

As we have mentioned above, although the compactification M(r, n) ⊂ M
m

(r, n) is ob-

tained by taking the closure of M(r, n) in the toric variety X(Dr(r, n)), this compactification

is usually neither tropical nor log canonical [KT06]. However, Keel and Tevelev have made

the following conjecture.

Conjecture 7.2.1 ([KT06, Conjecture 1.6]). If r = 2 or r = 3 and n ≤ 8, then (the

normalization of) M
m

(r, n) is the log canonical compactification of M(r, n).

Furthermore, Keel and Tevelev showed that (up to the natural duality M
m

(r, n) ∼=

M
m

(n− r, n)), the cases of the conjecture are the only cases for which M
m

(r, n) is possibly

the log canonical compactification [KT06].

Of course, for the case r = 2, M
m

(2, n) = M0,n, and it is well-known that this is

the log canonical compactification, cf. Chapter 6. Furthermore, M
m

(3, 4) is a point and

M
m

(3, 5) ∼= M
m

(2, 5). Thus the only nontrivial cases of the conjecture are when r = 3

and n = 6, 7, 8. The cases r = 3, n = 6, 7 were shown respectively by Luxton [Lux08] and

Corey [Cor21], both using tropical techniques. In this section we use the theory developed

in Chapter 4 to simplify the proofs of these cases and settle the remaning case n = 8.

Theorem 7.2.2. Let r = 2 or r = 3 and n ≤ 8. Then M
m

(r, n) is normal, has toroidal

singularities, and is the log canonical compactification of M(r, n).

To prove the theorem, we use the strategy outlined in Section 5.1.3. There are two steps.
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Theorem 7.2.3. Let r = 2 or r = 3 and n ≤ 8. Then M(r, n) is quasilinear. In particu-

lar, M(r, n) is schön and all strata of any tropical compactification of M(r, n) are smooth,

irreducible, and rational.

Theorem 7.2.4. Let r = 2 or r = 3 and n ≤ 8. Then the Dressian Dr(r, n) induces a

convexly disjoint fan structure Σlc on trop(M(r, n)), and M
m

(r, n) is the closure of M(r, n)

in X(Σlc).

Assuming these two theorems, let us prove Theorem 7.2.2.

Proof of Theorem 7.2.2. Since M(r, n) is schön by Theorem 7.2.3, any fan on trop(M(r, n))

induces a schön tropical compactification of M(r, n) by Theorem 3.2.13. Thus by Theorem

7.2.4, M
m

(r, n) is the schön tropical compactification defined by the fan structure Σlc on

trop(M(r, n)). It follows by Theorem 3.2.12 that M
m

(r, n) is normal and has toroidal

singularities. Furthermore, since all strata of M
m

(r, n) are irreducible by Theorem 7.2.3 and

Σlc is convexly disjoint by Theorem 7.2.4, it follows by Theorem 5.1.9 that M
m

(r, n) is the

log canonical compactification.

7.2.1 Quasilinearity of M(r, n)

In this section we prove Theorem 7.2.2. We refer back to Chapter 4, and in particular

Section 4.3.2 for our discussion of quasilinear varieties and how to show a given very affine

variety is quasilinear (and therefore schön). The basic idea is to write M(r, n) as a sequence

of very affine graphs of quasilinear regular functions, starting with the torus (C∗)(r−1)(n−r−1).
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This is done by removing the r×r minors of the matrix (7.1) one at a time, in an appropriate

order.

Quasilinearity of M(2, n)

We showed in Chapter 6 that M(2, n) = M0,n is linear, and in particular quasilinear.

Remark 7.2.5. An inductive construction of trop(M0,n) as a sequence of tropical modifi-

cations is also given in [Her07]. The construction given there is a tropical version of Keel’s

construction of M0,n [Kee92]. Our inductive construction of trop(M0,n) is a tropical version

of Kapranov’s construction of M0,n [Kap93].

Setup for M(3, n)

For r = 3, the matrix (7.1) can be written as


1 · · · 1 1 1 0 0

x1 · · · xn−4 xn−3 xn−2 1 0

y1 · · · yn−4 yn−3 yn−2 0 1

 . (7.2)

This yields an open embedding M(3, n) ⊂ Pn−4 × Pn−4 realizing M(3, n) as the complement

of the 3× 3 minors of the matrix. Here the coordinates on Pn−4 × Pn−4 are (x1, . . . , xn−2)×

(y1, . . . , yn−2) with
∑
xi =

∑
yi = 0. There are two types of minors:

• Hyperplanes Xij = {xi = xj} and Yij = {yi = yj}.

• Hypersurfaces Qijk = {(xi − xk)(yj − yk) = (xj − xk)(yi − yk)}.
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Remark 7.2.6. One can obtain more familiar bihomogeneous coordinates on Pn−4 × Pn−4

by setting xn−2 = yn−2 = 0; further setting xn−3 = yn−3 = 1 gives affine coordinates for an

open embedding M(3, n) ⊂ A2(n−4). We will use these coordinates in the appendix and in

Section 8.1.1.

Denote by M1 = M1(3, n) the complement of all of the hyperplanes. Then M1 embeds

into its intrinsic torus T1 = T (n−2
2 )−1×T (n−2

2 )−1, with bihomogeneous coordinates xij, yij, via

the equations

xij = xi,n−2 − xj,n−2, yij = yi,n−2 − yj,n−2.

Thus M1 is linear. (In fact, M1 = M0,n−1 ×M0,n−1.) In M1 we can write equations for the

remaining hypersurfaces as

Qijk = {xikyjk = xjkyik} = {xijyik = xikyij} = {xijyjk = xjkyij}.

Lemma 7.2.7. All Qijk’s are quasilinear in M1.

Proof. Dehomogenizing the coordinates on M1 by setting xij = yij = 1 gives a linear equation

Qijk = {xik = yik} for Qijk in the linear variety M1.

Remark 7.2.8. The dehomogenization in the above proof amounts to setting columns i and

j in the above matrix to (1, 1, 1)T and (1, 0, 0)T , cf. Remark 7.2.6.

For n ≥ 6, it is not possible to dehomogenize or choose coordinates so that all Qijk are

simultaneously linear, in which case M itself would be linear.
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To show M(3, n) is quasilinear, it is now enough to show that all intersections of the

Qijk’s in M1 are quasilinear. We will do this on a case-by-case basis; in order to improve

readability, some of the details are postponed to the appendix. However, as we will see below,

the statement is false for M(3, 8), where another step is necessary.

We will make frequent use of the following observation.

Observation 7.2.9. Let i, j, k, l ∈ [n− 2] be distinct. Then the intersection of any two of

Qijk, Qijl, Qikl, Qjkl in M1 is the same as the intersection of all four, and is quasilinear.

Proof. The intersection of any two of these hypersurfaces is naturally identified with the

moduli space of n lines in the plane such that no two lines coincide, any number of the first

n− 2 lines are allowed to meet in a point, there can be no triple intersections involving the

last two lines, and lines i, j, k, l meet in a point. This is clearly also the intersection of all

four hypersurfaces.

Quasilinearity can be checked directly with equations, as in the previous lemma: deho-

mogenizing by setting xij = yij = 1 reveals that Qijk ∩Qijl = {xik = yik, xil = yil} is defined

by linear equations in the linear variety M1.

Quasilinearity of M(3, 6)

There are four Qijk’s in M1(3, 6), for ijk ⊂ [4]. By Observation 7.2.9, the intersection of

any two is the same as the intersection of all four, and is quasilinear. Therefore, M(3, 6) is

quasilinear.
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Quasilinearity of M(3, 7)

There are ten Qijk’s in M1(3, 7), for ijk ⊂ [5]. Up to symmetry, there are three types of

intersections: Q145 ∩Q245 ∩Q345, Q245 ∩Q345, and Q125 ∩Q345.

1. Dehomogenizing by setting x45 = y45 = 1 reveals that

Q145 ∩Q245 ∩Q345 = {x15 = y15, x25 = y25, x35 = y35} ⊂M1,

Q245 ∩Q345 = {x25 = y25, x35 = y35} ⊂M1,

so both of these intersections are linear.

2. To show Z = Q125∩Q345 we work directly with equations. This is slightly more difficult

than the previous cases, as one cannot write linear equations for Z. We show Z is

quasilinear by performing a sequence of projections reducing to the M(3, 6) case, see

Appendix A.1.1 for details.

We have shown that all intersections of the Qijk’s in M1 are quasilinear. It follows that

M(3, 7) is quasilinear.

Quasilinearity of M(3, 8)

There are 20 Qijk’s in M1(3, 8), for ijk ⊂ [6]. Not all intersections of the Qijk’s are

quasilinear: the intersection

Q126 ∩Q346 ∩Q135 ∩Q245
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has two irreducible components. Therefore, another step is necessary to show M(3, 8) is

quasilinear.

First let M2 = M2(3, 8) ⊂ T2 = T 38 be the complement in M1 of the 10 hypersurfaces Qijk

for ijk ⊂ [5]. An identical argument to the M(3, 7) case shows that M2 is quasilinear. (In

fact, the forgetful map dropping the line 6 on M2(3, 8) identifies M2(3, 8) with a complement

of hyperplanes in M(3, 7)× T 2.)

The only remaining hypersurfaces in M2 are Qij6 for ij ⊂ [5]. Up to symmetry, there are

only two types of intersections of these hypersurfaces in M2: Q126 ∩Q456, and Q456.

1. Z = Q126 ∩ Q456 ⊂ M2 can be interpreted as the moduli space of 8 lines in P2, with

two triple intersection points 126 and 346, but no further degenerate arrangements

allowed. Then dropping line 6 gives an arrangement of 7 lines in general position in

P2, and conversely, adding to such an arrangement the line through points 12 and 45,

one obtains Z. Therefore Z ∼= M(3, 7). Furthermore, under this isomorphism, the

embedding Z ⊂ T 38 factors through the embedding M(3, 7) ⊂ T 28 of M(3, 7) in its

intrinsic torus. We conclude by Proposition 4.3.29 that Z ⊂ T 38 is quasilinear; see

Appendix A.1.2 for more details.

2. To show Q456 ⊂M2 is quasilinear, we show that Q456 ⊂M1 intersects any collection of

the Qijk, ijk ⊂ [5], quasilinearly. There are 7 cases, which we split up into two types.

137



(a) (Linear cases) Q145 ∩ Q245 ∩ Q345 ∩ Q456, Q145 ∩ Q245 ∩ Q456, Q145 ∩ Q456. Deho-

mogenizing by setting x45 = y45 = 1, we get linear equations

Q145 ∩Q245 ∩Q345 ∩Q456 = {x15 = y15, x25 = y25, x35 = y35, x46 = y46} ⊂M1,

Q145 ∩Q245 ∩Q456 = {x15 = y15, x25 = y25, x46 = y46} ⊂M1,

Q145 ∩Q456 = {x15 = y15, x46 = y46} ⊂M1.

(b) (Nonlinear cases) Q124 ∩Q135 ∩Q456, Q123 ∩Q124 ∩Q456, Q124 ∩Q456, Q123 ∩Q456.

We show each of these are quasilinear directly from the equations, by performing

a sequence of projections to reduce to the M(3, 7) case; see Appendix A.1.2 for

details.

Completion of proof of Theorem 7.2.3

Proof of Theorem 7.2.3. We have shown in the above subsections that M(r, n) is quasilinear

when r = 2 or when r = 3 and n ≤ 8. Quasilinear varieties are schön and all strata of

their tropical compactifications are smooth, irreducible, and rational, by Theorem 4.3.20 and

Corollary 4.3.21.

7.2.2 Convexly disjoint fan on trop(M(r, n))

Lemma 7.2.10. Let Σ be a convexly disjoint fan, and ∆ a fan such that every cone of ∆ is

a cone of Σ. Then ∆ is convexly disjoint.
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Proof. Let C be a convex subset of |∆|. Then since |∆| ⊂ |Σ|, C is a convex subset of Σ.

Since Σ is convexly disjoint, C is contained in a cone σ of Σ. If C is not contained in a cone

of ∆, then it intersects the relative interiors of two distinct cones of ∆. Since these are also

cones of Σ by construction, we obtain a contradiction—C cannot be contained in a cone σ

of Σ and also meet the relative interiors of two distinct cones in Σ.

Proposition 7.2.11. Suppose trop(M(r, n)) admits a coarsest fan structure ∆. Then ∆ is

convexly disjoint.

Proof. The intersection of any r−2 hyperplanes in general position in Pr−1 gives a line `, and

the intersection of ` with four more hyperplanes gives a configuration of four points in general

position on P1. This yields, for any M(r, n), a collection of cross-ratio maps M(r, n)→M0,4.

By [Lux08, Proposition 3.1.3], the product of all such cross-ratio maps induces a closed

embedding

M(r, n) ↪→
∏

M0,4,

and an injection

N ↪→
∏

N4

from the cocharacter lattice N of the intrinsic torus of M(r, n), to the product over all cross-

ratios of the cocharacter lattice N4 of the intrinsic torus of M0,4. Let Σ4 be the unique fan

structure on trop(M0,4). (This is the standard tropical line as in Example 2.1.8.) Viewing N

as a sublattice of
∏
N4, define the intersection fan

Σ = NR ∩
∏

Σ4 ⊂ NR.
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By [Lux08, Proposition 3.1.3], X(Σ) can be identified with its image in X (
∏

Σ4), cf. [HKT09,

Proof of Theorem 9.14]. Since the closure of
∏
M0,4 in X (

∏
Σ4) is

∏
M0,4, it follows that

the closure M
Σ

(r, n) of M(r, n) in X(Σ) is the same as the closure of M(r, n) in
∏
M0,4; in

particular, M
Σ

(r, n) is proper. Thus by [Tev07, Proposition 2.3], trop(M(r, n)) ⊂ |Σ|. The

fan Σ is convexly disjoint (cf. [HKT09, Proof of Theorem 9.14]), so it is the coarsest fan

structure on its support. But since ∆ is the coarsest fan structure on trop(M(r, n)), it follows

that each cone of ∆ is a cone of Σ. Thus by the previous lemma, ∆ is convexly disjoint.

Remark 7.2.12. In fact, by [ST21, Corollary 3.5], M
Σ

(r, n) is (up to normalization) the

same as M
m

(r, n).

Proof of Theorem 7.2.4. It is well-known that for r = 2 or r = 3 and n = 6, the Dressian

Dr(r, n) is actually supported on the tropical Grassmannian TG(r, n) = trop(M(r, n)), see

[SS04; Lux08]. For r = 3 and n = 7, 8, the only cones of Dr(r, n) whose relative interiors do

not meet TG(r, n) are cones which parameterize non-realizable matroid subdivisions of the

hypersimplex, see [Her+09] for n = 7 and [HJS19, Proposition 5.5], [Ben+20, Remark 4.6]

for n = 8. In particular, it follows by the discussion of Section 7.1.2 that M
m

(r, n) does not

meet the torus orbits of X(Dr(r, n)) corresponding to cones not contained in the TG(r, n).

Removing these cones defines the coarsest fan structure Σlc on TG(r, n) by [Her+09; Ben+20],

and by the previous sentence M
m

(r, n) is the closure of M(r, n) in X(Σlc). Finally, Σlc is

convexly disjoint by the proposition.

Note that with this proof we have also concluded the proof of Theorem 7.2.2.
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Remark 7.2.13. The description of the coarsest fan structure on trop(M(r, n)) for r = 3, n =

7, 8 in [Her+09; Ben+20] is very complicated and involves massive computer computations,

especially for the (3, 8) case. It would be interesting to understand the coarsest fan structure

by more theoretical means.

7.2.3 The log canonical compactification in general

As mentioned previously, M
m

(r, n) is not the log canonical compactification in general.

However, since M(r, n) is still log minimal [KT06, Proposition 2.18], it (conjecturally) still has

a log canonical compactification M
lc

(r, n). Determining the log canonical compactification

in general would be a significant result, as it would give a reasonable birational model of a

space M
m

(r, n) with arbitrary boundary singularities, cf. [KT06, Question 1.7]. We cannot

offer anything in this direction other than speculation, so we content ourselves with a few

comments.

1. If M
Σ

(r, n) is a tropical compactification of M(r, n), then there is a natural map

M
Σ

(r, n)→M
m

(r, n) [Tev07, Theorem 5.4]. Thus the geometry of M
m

(r, n) could still

be studied by studying tropical compactifications of M(r, n).

2. Corey has constructed an initial degeneration of M(3, 9) with two connected compo-

nents [Cor21, Theorem 1.4]. This implies M(3, 9) is not quasilinear. However, the

corresponding stratum of a tropical compactification of M(3, 9) is 0-dimensional (i.e.

consists of two distinct points). This does not rule out the possibility (however un-
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likely) that M(r, n) is schön or that the log canonical compactification is a tropical

compactification.

3. Our proof of quasilinearity of M(r, n) (for r = 2 or r = 3 and n ≤ 8) describes

trop(M(r, n)) via a sequence of tropical modifications of a complete fan; each tropical

modification corresponds to removing a single hypersurface. In general the proof fails

because at some point one has to remove a hypersurface which is not quasilinear. If one

stops before this point, then one obtains a quasilinear variety M ′ containing M(r, n)

as an open dense subset. Thus there is a surjection of tropicalizations trop(M(r, n))→

trop(M ′) (Lemma 3.1.23), and trop(M ′) is well-understood since it is quasilinear. In

theory this could be used to understand trop(M(r, n)), but in practice it may not be

useful outside of some small cases, since M ′ could still be much larger than M(r, n).

7.3 Intersection theory

Theorem 7.3.1. Let r = 2 or r = 3 and n ≤ 8, and let M
Σ

(r, n) ⊂ X(Σ) be any tropical

compactification of M(r, n). Then i∗ : A∗(Σ) → A∗(M
Σ

(r, n)) is an isomorphism and

M
Σ

(r, n) satisfies Kronecker duality. Furthermore if X(Σ) is smooth then M
Σ

(r, n) is a

resolution of singularities of M
m

(r, n) and

H∗(M
Σ

(r, n)) ∼= A∗(M
Σ

(r, n)) ∼= A∗(X(Σ)) ∼= H∗(X(Σ)).
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Proof. Immediate from Theorems 7.2.3, 7.2.2 and 4.3.22, see also Theorems 3.2.12 and

5.1.7.

In principle Theorem 7.3.1 gives an explicit presentation of the Chow ring of e.g. small

resolutions of M
m

(r, n) (r = 2 or r = 3 and n ≤ 8) via Theorem 4.1.15. However, in practice

fan structures on trop(M(r, n)) are quite complicated and we are not aware of an explicit

description of any unimodular fan structure on trop(M(r, n)) for r = 3, n = 7, 8. From this

perspective the closely related moduli space of marked del Pezzo surfaces, which we will study

in the next chapter, is more well-behaved. Additionally, the details are all fully understood

for the case r = 3, n = 6 as we will discuss below.

More generally, since M(r, n) ⊂M
m

(r, n) is not even a tropical compactification outside

of the aforementioned cases, one cannot expect a result like Theorem 7.3.1 to hold in general.

The problem of understanding the intersection theory of M(r, n) is of compelling interest as

it gives one of the first higher-dimensional generalizations of the intersection theory ofMg,n,

and can be thought of as the first step towards a generalization of Gromov-Witten theory

to moduli spaces of stable maps from surfaces. We outline below two possible approaches to

understanding the intersection theory of M(r, n) in general.

7.3.1 Tropical intersection theory

One approach to understanding the intersection theory of M(r, n) is to instead study the

tropical intersection theory of trop(M(r, n)). Since for a tropical compactification M
Σ

(r, n)

there is a map M
Σ

(r, n)→M
m

(r, n) induced by a morphism of toric varieties [Tev07, Theo-

rem 5.4], and since trop(M(r, n)) encodes the information of all tropical compactifications
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of M(r, n), the intersection theory of trop(M(r, n)) could be viewed as a sort of virtual

intersection theory for M(r, n). This would also likely be related to the intersection theory

of the log canonical compactification, cf. Section 7.2.3. Additionally, trop(M(r, n)) is the

tropical Grassmannian [SS04], so its intersection theory is also of great interest from the

tropical point of view.

However, there are a couple of problems with this approach.

1. Corey’s example [Cor21, Theorem 1.4] of an initial degeneration ofM(3, 9) with two con-

nected components implies that trop(M(3, 9)) is not star-Poincaré. Thus trop(M(r, n))

doesn’t even have a well-define tropical intersection theory in general. It is possible that

this problem could be fixed by working with rational rather than integral coefficients,

but currently this is only speculation.

2. Since fan structures Σ on trop(M(r, n)) are already very difficult to understand,

A∗(trop(M(r, n))) is likely too large to be useful in general. Indeed, we do not even

have an explicit description of the Chow rings of unimodular fans on trop(M(r, n)) in

the known cases r = 3, n = 7, 8.

The second problem would be solved by the following, more classical, approach.

7.3.2 Tautological classes

Recall the discussion of tautological classes, and in particular ψ-classes, from Section

6.3.1. This discussion suggests an approach to studying the intersection theory of M(r, n) by

introducing higher-dimensional versions of ψ-classes and studying their intersection numbers.
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Since M(r, n) is a moduli space, it has a universal family π : (S,B =
∑n

i=1 Bi)→M(r, n),

whose fibers are stable hyperplane arrangements. By [HKT06, Proposition 5.1], there are(
n
r−1

)
sections σI : M(r, n)→ S of π, for I ⊂ [n] with |I| = r − 1, with images BI =

⋂
i∈I Bi.

Furthermore, at a fiber (S,B =
∑
Bi) of π, S is smooth and B has normal crossings at the

point BI =
⋂
i∈I Bi.

Definition 7.3.2. With notation as above, define LI = σ∗I (ωπ) and φI = c1(LI), where ωπ

denotes the relative dualizing sheaf of the universal family π : S→M(r, n).

Observe that LI is a vector bundle whose fiber at a stable hyperplane arrangement (S,B)

is the cotangent space to S at BI .

Definition 7.3.3. For i ∈ I, define LI,i = σ∗I (ωπ|Bi) and ψI,i = c1(LI,i).

By adjunction, the curve CI\i =
⋂
j∈I\iBj on a stable hyperplane arrangment (S,B) is a

stable (n− r + 2)-pointed curve of genus zero, where the marked points are Pk = Bk ∩ CI\i

for k 6∈ I \ i. This implies that there is a natural restriction morphism

rI\i : M(r, n)→M0,n−r+2,

sending (S,B) to CI\i.

Observe that LI,i is a line bundle whose fiber at (S,B) is the cotangent line to CI\i at

BI . There is a decomposition

LI =
⊕
i∈I

LI,i, φI =
∑
i∈I

ψI,i.
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To understand the vector bundle LI and its first Chern class φI , it is therefore enough to

understand the individual line bundles LI,i and their first Chern classes ψI,i.

Example 7.3.4. When r = 2, I = {i}, and we write ψI,i = ψi. Then φI = φi = ψi is just

the usual ψ-class on M0,n.

Example 7.3.5. When r = 3, I = {i, j}, and we write ψI,j = ψij. Note that ψij = r∗i (ψj).

The class φij = ψij + ψji is a symmetric version of ψij.

Example 7.3.6. Generalizing the previous examples, on any M(r, n) one can write ψI,i =

r∗I\i(ψi), where rI\i : M(r, n)→M0,n−r+2 is the restriction to the curve CI\i.

The φI and ψI,i are thus the natural higher-dimensional versions of the ψ-classes on M0,n.

This makes the following question of compelling interest, as it would offer a higher-dimensional

analogue of Witten’s conjecture/Kontsevich’s theorem [Wit91; Kon92].

Question 7.3.7. Is there a nice combinatorial formula for the intersection numbers of the

φI or ψI,i on M(r, n), analogous to Corollary 6.3.8?

As a partial result, we have a pullback formula analogous to Proposition 6.3.5.

Proposition 7.3.8 ([Sch22, Lemma 6.6]). On M(r, n) (r ≥ 3), one has

ψI,i = f ∗k (ψI,i) + r∗I\i(Dik)

Proof. The result is trivial for n = r + 1, because M(r, r + 1) is a point.
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For n ≥ r + 2, the following diagram commutes.

M(r, n) M0,n−r+2

M(r, n− 1) M0,n−r+1

fk

rI\i

fk

rI\i

The pullback formula ψi = f ∗k (ψi) +Dik for M0,n together with the formula ψI,i = r∗I\i(ψi)

(Example 7.3.6) gives

ψI,i = r∗I\i(f
∗
k (ψi) +Dik) = r∗I\if

∗
kψi + r∗I\iDik on M(r, n).

Commutativity implies that

r∗I\if
∗
kψi = f ∗k (r∗I\iψi) = f ∗k (ψI,i),

so the result follows.

Unfortunately, the intersections of the r∗I\i(Dik) are typically nonzero, which makes re-

cursive computations of intersections of ψ-classes on M(r, n) more complicated than in the

rank 2 case, and we have not been able to obtain an analogue of e.g. the string equation

(Corollary 6.3.7).

In principle, we could use Theorem 7.3.1 to compute intersection numbers of ψ-classes

on M(3, n) for n ≤ 8. We carry this out for M(3, 6) in Theorem 7.4.10 below. However, we

have found no pattern to these intersection numbers, and even the cases n = 7, 8 are out of

reach for purely computational reasons.
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Remark 7.3.9. One approach to computing intersection numbers of ψ-classes on M(r, n) is

to define analogous classes on the tropicalization trop(M(r, n)) and compute the intersections

there using tropical geometry. This is done for M0,n, where it is known the tropical and

classical intersection numbers coincide, in [Kat12; GKM09; KM09; Mik07a]. This approach

is of great interest, both because it seems like the most feasible approach, and because it

would describe a sort of “tautological intersection theory,” for the tropical Grassmannian as

well, cf. Section 7.3.1.

7.4 Moduli of six lines on the plane

Although in general the geometry of M(r, n) is very complicated, even for the nice cases

M(3, 7) and M(3, 8) as described above, everything is completely understood in the first

higher-dimensional case M(3, 6) [Lux08; Sch22].

7.4.1 Boundary and singularities

Boundary

The tropicalization trop(M(3, 6)) is the tropical Grassmannian TG(3, 6) described ex-

plicitly in [SS04]. The coarsest fan structure on TG(3, 6) is described as follows. Define an

abstract simplicial complex ∆ as the flag complex on the graph whose vertices are labeled

as eijk, ijk ⊂ [6], fij, ij ⊂ [6], and gij,kl,mn, ij q kl qmn = [6], and whose edges are given as

follows.

1. 90 edges like {e123, e145} and 10 edges like {e123, e456}.
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2. 45 edges like {f12, f34}.

3. 15 edges like {g12,34,56, g12,56,34}.

4. 60 edges like {e123, f45} and 60 edges like {e123, f12}.

5. 180 edges like {e123, g12,34,56}.

6. 90 edges like {f12, g12,34,56}.

The maximal simplices of this complex are all 3-dimensional, except for 15 4-dimensional

simplices of the form

{f12, f34, f56, g12,34,56, g12,56,34}.

Following [SS04; Lux08], the cone over this simplicial complex induces the coarsest fan Σlc

structure on TG(3, 6). This is a purely 4-dimensional fan in R14 which is unimodular except

at 15 top-dimensional cones which are not even simplicial, corresponding the 15 simplices

above. Each such cone looks like the cone over the triangular bipyramid of Figure 7.3a.

From Theorems 7.2.2, 7.2.4, the closure of M(3, 6) in X(Σlc) is M(3, 6) and is also the

log canonical compactification. Thus ∆ describes the boundary complex of M(3, 6). There

are 65 boundary divisors, labeled as Dijk,lmn (corresponding to eijk), Dij,klmn (corresponding

to fij), and Dij,kl,mn (corresponding to gij,kl,mn).

Example 7.4.1. The stable hyperplane arrangements parameterized by D456,123, D56,1234,

and D12,34,56, are shown in Figure 7.2.
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Singularities and resolutions

Since M(3, 6) ⊂ X(Σlc) is a schön tropical compactification (Theorem 7.2.3) and Σlc is

unimodular except at the 15 non-simplicial top-dimensional cones mentioned above, it follows

that M(3, 6) is smooth with normal crossings boundary except for the 15 boundary points

of the form

P12,34,56 = D12,3456 ∩D34,1256 ∩D56,1234 = D12,34,56 ∩D12,56,34.

The singularities of the corresponding points of M(3, 6) look like 0 ∈ C(P1 × P2), where

C(P1×P2) denotes the cone over the Segre embedding of P1×P2 [Lux08], [Sch22, Proposition

2.1].

There are two minimal ways to refine the triangular bipyramid to turn Σlc into a unimod-

ular fan.

1. Split along the center triangle into two smaller polytopes, as shown in Figure 7.3b.

This corresponds to the small resolution replacing the singular point Pij,kl,mn with a

line P1. This resolution makes the strict transforms of Dij,kl,mn and Dij,mn,lk disjoint.

2. Split down the middle into three smaller polytopes, as shown in Figure 7.3c. This

corresponds to the small resolution replacing the singular point Pij,kl,mn with a plane

P2. This resolution makes the strict transforms of D12,3456, D34,1256, and D56,1234 disjoint.

We can make either choice of refinement for each of the 15 non-simplicial top-dimensional cones

[Sch22, Section 2.2]. If S1 and S2 form a partition of the 15 non-simplicial top-dimensional
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cones, we write Σ̃S1,S2 for the refinement which splits the cones in S1 into two polytopes and

the cones in S2 into three polytopes, and we write M̃S1,S2(3, 6) for the closure of M(3, 6) in

the corresponding nonsingular toric variety X(Σ̃S1,S2). Thus M̃S1,S2(3, 6) is a small resolution

of M(3, 6) with fiber P1 over the singular points indexed by S1 and fiber P2 over the singular

points indexed by S2. The M̃S1,S2(3, 6) describe all the small resolutions of M(3, 6); there

are 215 in total.

There are two special small resolutions, where S1 consists of all non-simplicial cones and

S2 is empty, and vice-versa. We denote the fans in these cases by Σ̃1 and Σ̃2, and denote the

corresponding small resolutions of M(3, 6) by M̃1(3, 6) and M̃2(3, 6).

f12

f34 f56

g12,34,56

g12,56,34

(a) The triangular
bipyramid.

(b) The first refinement of
the triangular bipyramid:
split along the center
triangle.

(c) The second refinement of
the triangular bipyramid:
split along the line through
the two endpoints.

Figure 7.3. The two minimal unimodular refinements of the triangular bipyramid.

We refer to [Sch22] for a more detailed discussion of the singularities and resolutions of

M(3, 6).
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7.4.2 Blowup construction

Recall that Kapranov has factored the map |ψi| : M0,n → Pn−3 into a sequence of

blowups [Kap93], cf. Remark 6.3.9. In [Sch22] we discovered an analogous result for the

map |φ56| : M(3, 6) → P2 × P2. To state the result, let coordinates on P2 × P2 be given by

(x1, . . . , x4)× (y1, . . . , y4) as in (7.2), and for any P2 with coordinates (z1, . . . , z4), write

Pijk = {zi = zj = zk}, Lij = {zi = zj}.

Additionally, we will need the notion of the dominant transform of a subvariety. If π : X̃ → X

is a blowup of a variety X along a subvariety Z, then the dominant transform of a subvariety

Y ⊂ X is either the inverse image of Y , if Y ⊂ Z, or the strict transform of Y , if Y 6⊂ Z.

Theorem 7.4.2 ([Sch22, Theorem 3.4]). The small resolution M̃1(3, 6) is obtained from

P2 × P2 via the following sequence of blowups.

1. Blowup the eight surfaces Pijk × P2, P2 × Pijk.

2. Blowup the dominant transforms of the four points Pijk × Pijk.

3. Blowup the dominant transforms of the six surfaces Lij × Lij.

4. Blowup the dominant transform of the surface ∆(P2).

5. Blowup the dominant transforms of the 30 lines Pijk × Lij, Lij × Pijk, ∆(Lij).

Remark 7.4.3. It turns out that each blowup in the above construction is along a union of

codimension two subvarieties intersecting transversally.
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Remark 7.4.4. This blowup construction could be thought of as an algebraic version of the

sequence of tropical modifications used to obtain trop(M(3, 6)) in the proof that M(3, 6) is

quasilinear.

We refer to [Sch22, Section 3] for more details on this blowup construction and a proof

of Theorem 7.4.2.

7.4.3 Intersection theory

Since we have explicit descriptions of the fans Σlc and Σ̃S1,S2 , Theorems 7.3.1, 4.1.15

imply explicit descriptions of the Chow rings of M(3, 6) and all of its small resolutions.

Theorem 7.4.5 ([Sch22, Theorem 4.1]). Let M̃S1,S2(3, 6) be any small resolution of M(3, 6).

1.

A∗(M̃S1,S2(3, 6)) =
Z[Dijk,lmn, Dij,klmn, Dij,kl,mn]

the following relations

(a) (Linear relations)

i. Dij,kl,mn = Dmn,ij,kl = Dkl,mn,ij.

ii. f ∗(0) = f ∗(1) = f ∗(∞), where f is any composition of restriction and forgetful

maps M̃S1,S2(3, 6)→M(3, 6)
ri−→M0,5

fj−→M0,4 = P1.

(b) (Multiplicative relations)
∏
Di = 0 if

⋂
Di = ∅ in M̃S1,S2(3, 6) (see Remark 7.4.7

below).
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2. The nontrivial (i.e. 6= 0, 1) ranks of the Chow groups are

rkA1(M̃S1,S2(3, 6)) = 51,

rkA2(M̃S1,S2(3, 6)) = 127 + |S2|,

rkA3(M̃S1,S2(3, 6)) = 51.

3. (a) Pic M̃S1,S2(3, 6) is generated by the boundary divisors, modulo the linear relations.

(b) A basis for Pic M̃S1,S2(3, 6) is given by

i. D156,234, D256,134, D345,126, D346,125, D356,124, D456,123,

ii. all 15 Dij,klmn,

iii. all 30 Dij,kl,mn.

4. (Over C) The map cl : A∗(M̃S1,S2(3, 6))→ H∗(M̃S1,S2(3, 6)) is an isomorphism.

Remark 7.4.6. The relations Dij,kl,mn = Dmn,ij,kl = Dkl,mn,ij reflect that these divisors are

all the same. We will assume these relations implicitly.

Remark 7.4.7. The explicit descriptions of the fans Σ̃S1,S2 imply that multiplicative relations

on A∗(M̃S1,S2(3, 6)) are as follows.

1. (Relations from M(3, 6))

(a) Dijk,lmnDabc,def = 0 if |ijk ∩ abc| = 2.

(b) Dij,klmnDab,cdef = 0 if |ij ∩ ab| = 1.

(c) Dij,kl,mnDab,cd,ef = 0 unless {ij, kl,mn} = {ab, cd, ef}.
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(d) Dijk,lmnDab,cdef = 0 if |ijk ∩ ab| = 1.

(e) Dijk,lmnDab,cd,ef = 0 unless ijk = abc or ijk = abd (after sufficient cyclic permuta-

tion).

(f) Dij,klmnDab,cd,ef = 0 unless ij = ab or cd or ef .

2. (Relations from S1) Dij,kl,mnDij,mn,kl = 0 for Pij,kl,mn ∈ S1.

3. (Relations from S2) Dij,klmnDkl,ijmnDmn,ijkl = 0 for Pij,kl,mn ∈ S2.

By Theorem 7.3.1, we also have an isomorphism A∗(X(Σlc)) ∼= A∗(M(3, 6)), but since

Σlc is not even simplicial, it is more difficult to obtain an explicit presentation in this case.

However, one can use the proper birational map X(Σ̃1) → X(Σlc) or the corresponding

small resolution M̃1(3, 6) → M(3, 6) to obtain a description of A∗(M(3, 6)) as a subring of

A∗(M̃1(3, 6)).

Define

δijk,lmn = Dijk,lmn,

δij,k,lmn = Dij,klmn +Dkl,ij,mn +Dkm,ij,ln +Dkn,ij,lm for k < l,m, n,

δij,kl,mn = Dij,kl,mn −Dkl,ij,mn for k < l,m, n.

The conditions k < l,m, n are so we do not have to worry about permuting the indices. Note

that there are 20 δijk,lmn, 15 δij,k,lmn, and 15 δij,kl,mn. One can show that these are Cartier

divisors on M(3, 6) [Sch22, Proposition 2.2].
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Theorem 7.4.8. 1. A∗(M(3, 6)) is the subring of A∗(M̃1(3, 6)) described by Ak(M(3, 6)) =

Ak(M̃1(3, 6)) for k 6= 1, and

A1(M(3, 6)) = {α ∈ A1(M̃1(3, 6)) | α|Lij,kl,mn = 0 for all Pij,kl,mn}.

2. The nontrivial (i.e. 6= 0, 1) ranks of the Chow groups are

rkA1(M(3, 6)) = 36,

rkA2(M(3, 6)) = 127,

rkA3(M(3, 6)) = 51.

3. (a) PicM(3, 6) = A1(M(3, 6)) and is generated by the δijk,lmn, δij,k,lmn, δij,kl,mn, modulo

the linear relations f ∗(0) = f ∗(1) = f ∗(∞) for any composition f : M(3, 6)
ri−→

M0,5
fj−→M0,4.

(b) A basis for PicM(3, 6) is

i. δ156,234, δ256,134, δ345,126, δ346,125, δ356,124, δ456,123,

ii. all 15 δij,k,lmn,

iii. all 15 δij,kl,mn.

4. A∗(M(3, 6)) is generated by A1(M(3, 6)).

We refer to [Sch22, Section 5] for a proof of Theorem 7.4.8.
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Remark 7.4.9. Both Theorems 7.4.5 and 7.4.8 can be proven classically (i.e. without

any tropical geometry), by using the blowup construction of M̃1(3, 6) in Theorem 7.4.2.

This is how we first proved these theorems in [Sch22], and it was the observation that the

presentations look like the presentation of the Chow ring of a toric variety which eventually

led to our defining quasilinearity and discovering the main results of this dissertation.

In fact, in [Sch22], we proved all stated facts about M(3, 6) using pure algebraic geometry,

with no tropical geometry involved. In particular we also gave a proof, just using the blowup

construction of Theorem 7.4.2, that M(3, 6) is the log canonical compactification.

Tautological classes

The explicit presentations of the Chow rings of M(3, 6) and its small resolutions above

also allow us to completely describe all possible intersections of the ψ-classes ψij on M(3, 6),

cf. Sections 6.3.1, 7.3.2.

Theorem 7.4.10 ([Sch22, Theorem 6.9]). On M(3, 6), ψi1j1 · · ·ψi4j4 = 0 ⇐⇒ at least 3 of

the ik’s coincide.

The nonzero intersection numbers of the ψij are listed, up to S6-symmetry, in Table 7.1.
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Table 7.1. Intersections of ψ-classes on M(3, 6)

n Product
1 ψ12ψ12ψ21ψ21, ψ12ψ12ψ21ψ31, ψ12ψ12ψ23ψ23, ψ12ψ12ψ23ψ32, ψ12ψ12ψ31ψ41, ψ12ψ12ψ32ψ32,

ψ12ψ12ψ34ψ34, ψ12ψ12ψ34ψ43

2 ψ12ψ12ψ21ψ23, ψ12ψ12ψ21ψ32, ψ12ψ12ψ21ψ34, ψ12ψ12ψ23ψ24, ψ12ψ12ψ23ψ31, ψ12ψ12ψ23ψ34,
ψ12ψ12ψ23ψ41, ψ12ψ12ψ23ψ42, ψ12ψ12ψ23ψ43, ψ12ψ12ψ31ψ32, ψ12ψ12ψ31ψ34, ψ12ψ12ψ31ψ42,
ψ12ψ12ψ31ψ43, ψ12ψ12ψ31ψ45, ψ12ψ12ψ32ψ34, ψ12ψ12ψ32ψ42, ψ12ψ12ψ32ψ43, ψ12ψ12ψ34ψ35,
ψ12ψ12ψ34ψ45, ψ12ψ12ψ34ψ54, ψ12ψ13ψ21ψ31, ψ12ψ13ψ21ψ41, ψ12ψ13ψ23ψ32, ψ12ψ13ψ24ψ42,
ψ12ψ13ψ41ψ51, ψ12ψ13ψ45ψ54

3 ψ12ψ12ψ23ψ45, ψ12ψ12ψ32ψ45, ψ12ψ12ψ34ψ56, ψ12ψ21ψ31ψ41, ψ12ψ21ψ34ψ43, ψ12ψ23ψ42ψ52,
ψ12ψ32ψ42ψ52

4 ψ12ψ13ψ21ψ23, ψ12ψ13ψ21ψ24, ψ12ψ13ψ21ψ32, ψ12ψ13ψ21ψ34, ψ12ψ13ψ21ψ42, ψ12ψ13ψ21ψ43,
ψ12ψ13ψ21ψ45, ψ12ψ13ψ23ψ24, ψ12ψ13ψ23ψ34, ψ12ψ13ψ23ψ41, ψ12ψ13ψ23ψ42, ψ12ψ13ψ23ψ43,
ψ12ψ13ψ24ψ25, ψ12ψ13ψ24ψ34, ψ12ψ13ψ24ψ41, ψ12ψ13ψ24ψ43, ψ12ψ13ψ24ψ45, ψ12ψ13ψ24ψ51,
ψ12ψ13ψ24ψ52, ψ12ψ13ψ24ψ54, ψ12ψ13ψ41ψ52, ψ12ψ13ψ41ψ54, ψ12ψ13ψ41ψ56, ψ12ψ13ψ42ψ43,
ψ12ψ13ψ42ψ45, ψ12ψ13ψ42ψ52, ψ12ψ13ψ42ψ54, ψ12ψ13ψ45ψ46, ψ12ψ13ψ45ψ56, ψ12ψ13ψ45ψ65,
ψ12ψ21ψ31ψ42, ψ12ψ21ψ31ψ43

5 ψ12ψ21ψ34ψ45, ψ12ψ21ψ31ψ45, ψ12ψ23ψ34ψ53, ψ12ψ23ψ42ψ53, ψ12ψ23ψ43ψ53

6 ψ12ψ13ψ23ψ45, ψ12ψ13ψ24ψ35, ψ12ψ13ψ24ψ53, ψ12ψ13ψ24ψ56, ψ12ψ13ψ42ψ53, ψ12ψ13ψ42ψ56,
ψ12ψ21ψ34ψ54, ψ12ψ21ψ34ψ56, ψ12ψ23ψ31ψ41, ψ12ψ23ψ34ψ41, ψ12ψ23ψ34ψ52, ψ12ψ23ψ42ψ56,
ψ12ψ23ψ43ψ54, ψ12ψ32ψ42ψ56

7 ψ12ψ23ψ34ψ45, ψ12ψ23ψ34ψ54, ψ12ψ23ψ43ψ56, ψ12ψ23ψ45ψ56

8 ψ12ψ23ψ34ψ56, ψ12ψ23ψ45ψ65, ψ12ψ32ψ45ψ65

9 ψ12ψ23ψ31ψ45
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Chapter 8

Moduli of marked del Pezzo surfaces

Let Y (2, n) = M(2, n) = M0,n, and for n ≤ 8 let Y (3, n) denote the moduli space of n

points in general position in P2, meaning

1. no two points coincide,

2. no three points lie on a line,

3. no six points lie on a conic, and

4. no eight points lie on a cubic singular at one of the points.

By projective duality, Y (3, n) ⊂M(3, n) is the complement of the locus where six points lie

on a conic or eight points lie on a cubic singular at one of the points.

Recall a del Pezzo surface S of degree d is a smooth projective surface S with −KS ample

and K2
S = d. It is a classical fact that 1 ≤ d ≤ 9, and with the exception of the degree 8 del

Pezzo surface P1 × P1, every del Pezzo surface of degree d is the blowup of P2 at n = 9− d

points in general position [DP80]. Furthermore, if S 6= P1 × P1 or P2, then S has finitely
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many (−1)-curves, which can be labeled according to a blowup construction S = BlnP2. We

call such a labeling a marking, and we say a pair (S,B) of a del Pezzo surface S and the

union B of its (−1)-curves, marked as described, a marked del Pezzo surface. It follows that

Y (3, n) can be identified with the moduli space of marked del Pezzo surfaces of degree 9− n

[HKT09].

Throughout this section we fix r = 2 or r = 3 and n ≤ 8 unless otherwise mentioned. In

[HKT09], Hacking, Keel, and Tevelev studied interesting tropical compactifications of Y (r, n)

using combinatorics of the root systems E2,n = Dn, E3,n = En. These moduli spaces form

another example of higher-dimensional generalizations of M0,n, which from the combinatorial

point of view are better behaved than the moduli spaces M(r, n) studied in the previous

chapter. In this Chapter we use the technical results developed in Chapter 4 to study the

intersection theory of tropical compactifications of Y (r, n).

8.1 Log canonical compactifications

Recall we write E2,n = Dn and E3,n = En for the root systems Dn and En.

Definition 8.1.1. For r = 2 or r = 3, n ≤ 8, define a simplicial complex ∆r,n as follows. The

vertices of ∆r,n are proper root subsystems Θ×Θ⊥ ⊂ Er,n whose Dynkin diagram looks like

the Dynkin diagram obtained by deleting a single vertex from the extended Dynkin diagram

of Er,n. A collection {Θ1 × Θ⊥1 , . . . ,Θk × Θ⊥k } forms a simplex of ∆r,n ⇐⇒ for all i 6= j,

Θi ⊂ Θj, Θi ⊂ Θ⊥j , Θ⊥i ⊂ Θj, or Θ⊥i ⊂ Θ⊥j .
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Additionally, for r = 3, n = 7, remove the simplices formed by 7-tuples of A1 × A⊥1 ’s

with the A1’s pairwise orthogonal, and for r = 3, n = 8, remove the simplices formed

by 7- or 8-tuples of A1 × A⊥1 ’s with the A1’s pairwise orthogonal, and simplices involving

D4×A×4
1 ’s. (These correspond to root systems which do not give du Val singularities on del

Pezzo surfaces.)

Example 8.1.2. 1. The vertices of ∆2,n correspond to root subsystems Dk×Dn−k ⊂ Dn

for k ≥ 2. Note these correspond in an obvious way to the boundary divisors of M0,n,

and the simplicial complex ∆2,n is naturally identified with the boundary complex of

M0,n [HKT09, Lemma 7.2].

2. There are 76 vertices of ∆3,6, in 2 W (E6)-classes: 36 of the form A1 × A5, and 40 of

the form A2 × A2 × A2 [Nar82; HKT09].

3. There are 1065 vertices of ∆3,7, in 4 W (E7)-classes:

(a) 63 A1 × E6’s.

(b) 336 A2 × A5’s.

(c) 630 A3 × A1 × A3’s.

(d) 36 A7’s.

4. There are 227911 vertices of ∆3,8, in 8 W (E8)-classes.

(a) 120 A1 × E7’s.

(b) 1120 A2 × E6’s.
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(c) 7560 A3 ×D5’s.

(d) 12096 A4 × A4’s.

(e) 201600 A5 × A1 × A2’s.

(f) 4320 A7 × A1’s.

(g) 960 A8’s.

(h) 135 D8’s.

Remark 8.1.3. A slightly different definition of the complex ∆r,n is given for r = 2 and

r = 3, n ≤ 7 in [HKT09], but it is easily seen to give the same complex as in the above

definition.

Definition 8.1.4. Let ZA1(Er,n) denote the free Z-module with basis [α] = [±α] for α a

positive root of Er,n ({±α} is an A1 root subsystem of Er,n).

For a root subsystem Θ×Θ⊥ ⊂ Er,n, define ρΘ,Θ⊥ in RA1(Er,n) as the ray passing through

the point ∑
α∈Θ×Θ⊥

α a positive root

[α].

Define a collection of cones Σ̃r,n in RA1(Er,n) by saying ρΘ1,Θ⊥1
, . . . , ρΘk,Θ

⊥
k

span a cone ⇐⇒

{Θ1 ×Θ⊥1 , . . . ,Θk ×Θ⊥k } form a simplex of ∆r,n.

Let X(Er,n) denote the complement of the Coxeter hyperplane arrangement

{(xα = 0) | α a positive root of Er,n} ⊂ An.
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Since X(Er,n) is the complement of a hyperplane arrangement, it is very affine and linear;

its intrinsic torus is (C∗)A1(Er,n). In [HKT09, Section 6], Hacking, Keel, and Tevelev define a

morphism Ψ : X(Er,n)→ Y (r, n) as follows.

Definition 8.1.5 ([HKT09]). • Define Ψ : X(E2,n)→ Y (2, n) by sending (x1, . . . , xn) ∈

X(E2,n) to the n points x2
1, . . . , x

2
n ∈ P1. Note points i, j coincide ⇐⇒ xi = ±xj, but

these are exactly the root hyperplanes.

• Define Ψ : X(E3,n) → Y (3, n) by sending (x1, . . . , xn) ∈ X(E3,n) to the n points

(xi : x3
i : 1) ∈ P2. These n points lie on a cuspidal plane cubic with a cusp at (0 : 0 : 1),

and the conditions for the points to be in general position are described exactly by the

root hyperplanes.

The morphism Ψ : X(Er,n) → Y (r, n) induces a morphism of tropicalizations ψ :

trop(X(Er,n)) → trop(Y (r, n)). For r = 2 or r = 3, n ≤ 7, Ψ is dominant, so ψ is sur-

jective by Lemma 3.1.23. However, for r = 3, n = 8, Ψ is not dominant, so we cannot say

anything about ψ.

Definition 8.1.6. Define a collection of cones Σr,n in N(Y (r, n))R as the image under ψ of

the cones of Σ̃r,n.

Theorem 8.1.7 ([HKT09]). If r = 2 or r = 3 and n ≤ 7, then Σr,n is a unimodular convexly

disjoint fan supported on trop(Y (r, n)).

Theorem 8.1.8 ([HKT09]). If r = 2 or r = 3 and n ≤ 7, then Y (r, n) is schön.

Corollary 8.1.9 ([HKT09]). If r = 2 or r = 3 and n ≤ 7, then Y (r, n) is hübsch, the log

canonical fan is Σr,n, and the log canonical compactification is nonsingular.
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Hacking, Keel, and Tevelev prove these results by using geometric tropicalization as

discussed in Section 3.1.2: they consider nice compactifications of Y (r, n) and use them to

show Y (r, n) is schön and describe the tropicalizaton [HKT09]. In the next section we will

give another proof that Y (r, n) is schön.

Remark 8.1.10. The collection of cones Σ̃r,n is not supported on trop(X(Er,n)). It is not a

priori obvious that Σ̃r,n is even a fan; furthermore, one can check even in small cases that

Σ̃r,n is not tropical (i.e. does not satisfy the balancing condition).

Remark 8.1.11. Note the above results are not stated for r = 3, n = 8; this case is still open.

The reason for this is that the map Ψ : X(E3,8) → Y (3, 8) is not dominant, as mentioned

above, so the techniques of Hacking, Keel, and Tevelev do not work. We expect however that

the above stated results also hold for Y (3, 8); in particular note that Σ3,8 is also still defined.

8.1.1 Quasilinearity of Y (r, n)

Theorem 8.1.12. If r = 2 or r = 3 and n ≤ 7, then Y (r, n) is quasilinear.

Note this theorem implies Theorem 8.1.8, that Y (r, n) is schön. The proof of the theorem

is by the same strategy as the proof for M(r, n) in Section 7.2.1. Note Y (2, n) = M0,n and

Y (3, 5) = M(3, 5), so the only new cases are Y (3, 6) and Y (3, 7). We describe these as

complements of hypersurfaces in M(3, n).

Quasilinearity of Y (3, 6)

Y (3, 6) is the complement in M(3, 6) of the hypersurface Q parameterizing the locus

where 6 points lie on a line. Recall from Section 7.2.1 and Remark 7.2.6 that M(3, 6) is the
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complement of a collection of 10 hypersurfaces in T 4, where coordinates on T 4 are x1, x2, y1, y2.

In these coordinates,

Q =



∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1

x1 y1 x1y1

x2 y2 x2y2

∣∣∣∣∣∣∣∣∣∣∣∣
= 0


.

The automorphism

ϕ : T 4 → T 4

(x1, x2, y1, y2) 7→
(

1

x1

,
1

x2

,
1

y1

,
1

y2

)

sends Q ⊂ T 4 to

Q123 = {(x1 − 1)(y2 − 1) = (x2 − 1)(y1 − 1)}

and vice-versa. It sends each of the remaining 9 hypersurfaces to itself. Let M ′ = M ′(3, 6) ⊂

T 13 be the complement of these 9 remaining hypersurfaces. Then M ′ is quasilinear by the

arguments of Section 7.4, and ϕ induces an automorphism of T 13, restricting to an automor-

phism of M ′ which swaps the divisors Q and Q123. The composition of this automorphism

with the projection showing Q123 is quasilinear in M ′ (cf. Section 7.4) therefore shows that

Q is quasilinear in M ′. One directly verifies that Q and Q123 are disjoint in M ′. Thus we

conclude that Q ⊂M(3, 6) is quasilinear, hence Y (3, 6) = M(3, 6) \Q is quasilinear.

Remark 8.1.13. The automorphism ϕ is induced by the Cremona transformation P2 99K P2,

(x : y : z) 7→
(

1
x

: 1
y

: 1
z

)
centered at the coordinate points. This Cremona transformation
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sends the conic through the 6 points to the line through the images of the three non-coordinate

points.

Remark 8.1.14. Note Q ∼= M0,6. However, the embedding Q ⊂ M(3, 6) ⊂ T 14 is different

from the embedding of M0,6 in its intrinsic torus T 9; Q ⊂ T 14 is not linear, while M0,6 ⊂ T 9

is. On the other hand, they have isomorphic tropicalizations, and under the isomorphism

Q ∼= M0,6, the embedding Q ⊂ T 14 factors through the embedding M0,6 ⊂ T 9.

Quasilinearity of Y (3, 7)

Y (3, 7) is the complement in M(3, 7) of the seven hypersurfaces Q1, . . . , Q7, where Qi

parameterizes the locus where the six points pj 6= pi lie on a conic.

By symmetry, the Qi’s in M(3, 7) are all isomorphic to each other. Furthermore, the

intersection of any two of the Qi’s is the same as the intersection of all seven; it is the locus

where all seven points lie on a conic. Therefore, to show the Qi’s and their intersections are

quasilinear, we will restrict our attention to i = 1, 2, 3, 4, cf. Remark 8.1.15.

Recall from Section 7.2.1 and Remark 7.2.6 that M(3, 7) is the complement of an ar-

rangement A of 22 hypersurfaces in T 6, where coordinates on T 6 are x1, x2, x3, y1, y2, y3. The

automorphism

ϕ : T 6 → T 6

(x1, x2, x3, y1, y2, y3) 7→
(

1

x1

,
1

x2

,
1

x3

,
1

y1

,
1

y2

,
1

y3

)
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gives a correspondence

Q1 ↔ Q234, Q2 ↔ Q134, Q3 ↔ Q124, Q4 ↔ Q123,

and sending each remaining hypersurface H ∈ A′ = A\ {Q123, Q124, Q134, Q234} to itself. Let

M ′ = M ′(3, 7) ⊂ T 24 be the complement of the hypersurfaces in A′. Then M ′ is quasilinear

by the arguments of Section 7.2.1, and ϕ induces an automorphism of T 24 which restricts to

an automorphism of M ′ swapping Qi, i ∈ [4] and Qjkl, jkl ⊂ [4] as above. The compositions

of this automorphism with the projections showing the Qijk, ijk ∈ [4], and their intersections,

are quasilinear (cf. Section 7.2.1), therefore shows that Qi, i ∈ [4], and their intersections, are

quasilinear in M ′. Thus in order to show that the Qi and their intersections are quasilinear

in M = M(3, 7), all that remains is to show that the intersections of the Qi’s and Qjkl’s in

M ′ are quasilinear.

It is an immediate verification that Qi and Qjkl are disjoint in M ′, where i, j, k, l are

distinct. Since the intersection of any two of the Qi’s is the same as the intersection of all

four, and likewise for the Qjkl’s, this implies that the only nontrivial case, up to symmetry, is

Q4∩Q234. But the forgetful map dropping point 3 induces a projection T 24 → T 13 identifying

Q4 ∩ Q234 ⊂ T 24 with M ′(3, 6) ⊂ T 13, where M ′(3, 6) is as in the proof of the Y (3, 6) case

above. This identification induces inclusions

Q4 ∩Q234
∼= M ′(3, 6) ⊂ T 13 ⊂ T 24,
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so since M ′(3, 6) ⊂ T 13 is quasilinear, we conclude by Proposition 4.3.29 that Q4∩Q234 ⊂ T 24

is also quasilinear. See Appendix A.2 for details.

Since we have shown all intersections of the Qi’s, i ∈ [4], and Qjkl’s, jkl ⊂ [4], in M ′(3, 7)

are quasilinear, we conclude that Q1, Q2, Q3, Q4 and their intersections are quasilinear in

M(3, 7); by symmetry, the same holds for all Qi’s. Thus the complement Y (3, 7) of the Qi’s

in M(3, 7) is quasilinear.

Remark 8.1.15. Under the automorphism ϕ : T 6 → T 6 above, the hypersurfaces Q5, Q6,

and Q7 do not correspond to any of the hypersurfaces in A. We know by symmetry that Q5,

Q6, and Q7 are quasilinear in M(3, 7). To show this directly with an argument as above, one

would have to change coordinates or work with a different automorphism, e.g. by swapping

points 1,2,3 with points 5,6,7.

Completion of proof

Proof of Theorem 8.1.12. We have shown above that Y (r, n) is quasilinear for r = 2 and

r = 3, n ≤ 7.

8.2 Intersection theory

Theorem 8.2.1. Assume r = 2 or r = 3 and n ≤ 7. If Y
Σ

(r, n) ⊂ X(Σ) is any tropical

compactification of Y (r, n), then A∗(Y
Σ

(r, n)) ∼= A∗(Σ) and Y
Σ

(r, n) satisfies Kronecker

duality. If in addition X(Σ) is smooth, then so is Y
Σ

(r, n), and

H∗(Y
Σ

(r, n)) ∼= A∗(Y
Σ

(r, n)) ∼= A∗(X(Σ)) ∼= H∗(X(Σ)).
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Proof. Immediate from Theorem 8.1.12 and Theorem 4.3.22.

As a particular case, we get an explicit description of the Chow ring of the log canonical

compactification Y (r, n).

Theorem 8.2.2. Let r = 2 or r = 3 and n ≤ 7. Then

A∗(Y (r, n)) ∼= H∗(Y (r, n)) ∼=
Z[DΘ,Θ⊥ ]

the following relations

• (Linear relations) f ∗(0) = f ∗(1) = f ∗(∞) for any cross-ratio map f : Y (r, n)→M0,4.

• (Multiplicative relations) DΘ1,Θ⊥1
· DΘ2,Θ⊥2

unless Θ1 ⊂ Θ2, Θ1 ⊂ Θ⊥2 , Θ⊥1 ⊂ Θ2, or

Θ⊥1 ⊂ Θ⊥2 .

Proof. The fan Σr,n can be viewed as the intersection fan for the product of all cross-ratio

maps Y (r, n)→M0,4 (obtained by restricting to a D4 root subsystem) [HKT09], cf. Proof of

Proposition 7.2.11. Then the given presentation describes the Chow ring of Σr,n by Theorem

4.1.15. It is the same as the Chow ring of Y (r, n) by Theorem 8.2.1.

Remark 8.2.3. Partial results on the Chow ring of Y (3, 6) were previously obtained by

Colombo and van Geemen in [CG04]. Additionally, Luxton has shown that Y (3, 6) is obtained

from the small resolution M̃1(3, 6) of M(3, 6) by blowing up the ten surfaces Dijk,lmn∩Dlmn,ijk

(see Section 7.4). This implies the results on the Chow ring of Y (3, 6) given the results on

the Chow ring of M̃1(3, 6) from Theorem 7.4.5.

169



8.3 Stable pair compactifications

In this section we summarize partial results due to Hacking, Keel, and Tevelev [HKT09],

and Gallardo, Kerr, and Schaffler [GKS21] on understanding modular compactifications of

moduli of marked del Pezzo surfaces and their connections to tropical compactifications.

There are no results in this section which are original to this dissertation, but see Remark

8.3.8.

In a general a marked del Pezzo surface (S,B) is not a stable pair, even if S is smooth,

because B can fail to be a normal crossings divisor.

Example 8.3.1. An Eckardt point of a cubic surface S is a point where three lines intersect.

The locus of cubic surfaces with an Eckardt point has codimension one in the moduli space

of smooth cubic surfaces; it is the union of 45 irreducible hypersurfaces [Dol, Section 9.4.5],

[Nar82]. An example of a cubic surface with Eckardt points is the Clebsch cubic surface in

P4, defined by the equations

x0 + x1 + x2 + x3 + x4 + x+ 5 = 0, x3
0 + x3

1 + x3
2 + x3

3 + x3
4 + x3

5 = 0.

This surface has 10 Eckardt points [Dol, Section 9.5.4].

Lemma 8.3.2. Fix 5 ≤ n ≤ 8. Let (S,B) be a smooth marked del Pezzo surface of degree

9−n such that B is a normal crossings divisor. Then (S, cB) is a stable pair for all rational

c in the ranges shown in Table 8.1.
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Table 8.1. Ranges for stable marked del Pezzo surfaces.

n c
5 (1/4, 1]
6 (1/9, 1]
7 (1/28, 1]
8 (1/240, 1]

Proof. The pair (S, cB) has log canonical singularities for all c ∈ Q∩ (0, 1], since S is smooth

and B is a normal crossings divisor. Thus we just need to determine when KS + cB is ample.

By definition −KS is ample. One directly computes (e.g. using a blowup construction of S)

that KS + cB is as in Table 8.2. The result follows.

Table 8.2. Values of KS + cB.

n KS + cB
5 (4c− 1)(−KS)
6 (9c− 1)(−KS)
7 (28c− 1)(−KS)
8 (240c− 1)(−KS).

Definition 8.3.3. Fix 5 ≤ n ≤ 8. A smooth weighted stable marked del Pezzo surface of

degree 9 − n and weight c is a pair (S, cB) such that (S,B) is a marked del Pezzo surface

of degree 9− n with B a normal crossings divisor, and c is a rational number in the range

given in Table 8.1.

Let Yc(3, n) denote the moduli space of smooth weighted stable marked del Pezzo surfaces

of degree 9− n and weight c.

Remark 8.3.4. We do not consider other values of n because they give no moduli.
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Note that regardless of the weight c, the moduli space Yc(3, n) is identified with the open

subvariety Y ◦(3, n) ⊂ Y (3, n) parameterizing smooth marked del Pezzo surfaces (S,B) with

B a normal crossings divisor.

We would like to construct and understand the stable pair compactification Y c(3, n)

of Yc(3, n). The general expectation is that the weight interval from Table 8.1 splits into

finitely many subintervals, called chambers, such that Y c(3, n) is the same for all c in the

interior of a given chamber. The boundaries between the chambers are called walls, and one

expects that as the weight decreases c > c′ crossing a wall, there is a birational morphism

Y c(3, n)→ Y c′(3, n). In particular, the compactification Y c(3, n) for c in the lowest chamber

should be the smallest of these compactifications. This motivates the following conjecture.

Conjecture 8.3.5 ([HKT09, Remark 1.3(4)]). The log canonical compactification Y (3, n) of

Y (3, n) is isomorphic to (the normalization of) the stable pair compactification Y c(3, n) for

the minimal weight c. That is, Y (3, n) = Y c(3, n) for c as in Table 8.3.

Table 8.3. Minimal weights for marked del Pezzo surfaces.

n Minimal c
5 1

4
+ ε

6 1
9

+ ε
7 1

28
+ ε

8 1
240

+ ε

Progress on the conjecture has been made by Hacking, Keel, and Tevelev [HKT09], and

Gallardo, Kerr, and Schaffler [GKS21].

Theorem 8.3.6 ([HKT09; GKS21]). We have Y (3, 5) = Y 1
4

+ε(3, 5) = Y 1(3, 5) and Y (3, 6) =

Y 1
9

+ε(3, 6).
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Note the theorem implies that there are no walls for n = 5. However, there are walls

when n = 6.

Theorem 8.3.7 ([HKT09]). There is a unimodular refinement Σ1
3,6 of the log canonical fan

Σ3,6 such that Y 1(3, 6) is the closure of Y1(3, 6) in X(Σ1
3,6).

The refinement Σ1
3,6 is explicitly described in [HKT09, Definition 10.4].

Remark 8.3.8. In particular, Theorems 8.2.1 and 8.2.2 give explicit presentations of the

Chow rings of the stable pair compactifications Y 1
4

+ε(3, 5) = Y 1(3, 5), Y 1
9

+ε(3, 6), and

Y 1(3, 6).

Remark 8.3.9. The construction of Y 1(3, 6) by Hacking, Keel, and Tevelev [HKT09] is

reminiscent of their construction of M
m

(r, n) described in Section 7.1.2, [HKT06]. Indeed,

Y 1(3, 6) is obtained as the closure of Y1(3, 6) in a toric variety X(Σ1
3,6); this toric variety has

an interpretation as a moduli space of certain stable toric varieties, and the universal family

over Y 1(3, 6) is the pullback of the universal family over X(Σ1
3,6).

An alternative construction of M(r, n) was given by Alexeev in [Ale08; Ale15]. We

speculate that an adaptation of these ideas to marked del Pezzo surfaces could be used to

construct all weighted stable pair compactifications Y c(3, n) as tropical compactifications

whose corresponding fans are refinements of the log canonical fan Σ3,n.

Recall that the forgetful map fn+1 : M0,n+1 → M0,n realizes M0,n+1 as the universal

family over M0,n. There is a similar result for weighted stable marked del Pezzo surfaces

with weight 1. First note that contracting a (−1)-curve on a del Pezzo surface gives a natural

forgetful map f : Y (3, n+ 1)→ Y (3, n).
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Theorem 8.3.10 ([HKT09, Theorem 1.2]). Assume n = 5 or 6. Then forgetful map f :

Y (3, n+ 1)→ Y (3, n) induces a commutative diagram

S Y (3, n+ 1)

Y 1(3, n) Y (3, n),

where the horizontal maps are isomorphisms for n = 5 and birational log crepant morphisms

for n = 6, and S is the universal family over Y 1(3, n). In particular Y 1(3, 6)→ Y 1(3, 5) is

the universal family.

Note the theorem is also suggestive of our expectation that Y 1(3, 7) is obtained as a

tropical compactification by a refinement of the fan Σ1
3,7. But currently we have no further

results on the weighted stable pair compactifications of Yc(3, n); in particular nothing is

known for n = 7 or 8.
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Appendix A

Quasilinearity computations

A.1 Computations for M(3, 7), M(3, 8)

In this appendix we perform in detail the computations showing M(3, 7) and M(3, 8) are

quasilinear. The basic idea is to perform a sequence of projections to reduce from the M(3, n)

case to the M(3, n− 1) case. We refer to Section 7.2.1 for the notation and setup.

A.1.1 M(3, 7)

Recall from Section 7.2.1 that we only need to show that Z = Q125 ∩Q345 ⊂M1(3, 7) is

quasilinear. For ease of notation, we relabel xi = xi5, yi = yi5, and dehomogenize by setting

x4 = y4 = 1. This amounts to using the following matrix to get coordinates on M(3, 7) as
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an open subset of A6. 
1 1 1 1 1 0 0

x1 x2 x3 1 0 1 0

y1 y2 y3 1 0 0 1

 (A.1)

Then equations for Z ⊂ T1 = T 18 are as follows.

x12 = x1 − x2, x13 = x1 − x3, x23 = x2 − x3,

x14 = x1 − 1, x24 = x2 − 1, x34 = x3 − 1,

y12 = y1 − y2, y13 = y1 − y3, y23 = y2 − y3,

y14 = y1 − 1, y24 = y2 − 1, y34 = y3 − 1,

x1y2 = x2y1, x3 = y3.

The projection T 18 → T 16 dropping y3 and y34 realizes Z as the graph of the nonvanishing

regular functions x3 and x34 on the subvariety Z ′ ⊂ T 16 defined by the equations

x12 = x1 − x2, x13 = x1 − x3, x23 = x2 − x3,

x14 = x1 − 1, x24 = x2 − 1, x34 = x3 − 1,

y12 = y1 − y2, y13 = y1 − y3, y23 = y2 − y3,

y14 = y1 − 1, y24 = y2 − 1,

x1y2 = x2y1.
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Thus it suffices to show Z ′ ⊂ T 16 is quasilinear. For this consider the projection T 16 → T 11

dropping coordinates x13, x23, x34, y13, y23. Then Z ′ is the complement of the hyperplanes

{x1 = x3}, {x2 = x3}, {x3 = 1}, {y1 = x3}, {y2 = x3} (A.2)

on the variety Z ′′ ⊂ T 11 defined by the equations

x12 = x1 − x2, x14 = x1 − 1, x24 = x2 − 1,

y12 = y1 − y2, y14 = y1 − 1, y24 = y2 − 1,

x1y2 = x2y1.

Observe that Z ′′ ∼= Q124 × T 1
x3
⊂ M1(3, 6) × T 1

x3
. In particular, Z ′′ is quasilinear. Now all

that remains is to show Z ′′ intersects any collection of the hyperplanes in (A.2) quasilinearly,

but this is a direct verification which we leave to the reader.

A.1.2 M(3, 8)

Recall from Section 7.2.1 that M2(3, 8) is the complement in M1(3, 8) of the hypersurfaces

Qijk, ijk ⊂ [5], and to show M(3, 8) is quasilinear, it suffices to show that Q456 ⊂ M2(3, 8)

and Q126 ∩Q456 ⊂M2(3, 8) are quasilinear.

Q456 ⊂M2(3, 8)

To show Q456 ⊂M2(3, 8) is quasilinear, we show Q456 ⊂M1(3, 8) intersects any collection

of the Qijk ⊂M1(3, 8), ijk ⊂ [5], quasilinearly. As discussed in Section 7.2.1, it suffices show
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Q123 ∩ Q124 ∩ Q456, Q124 ∩ Q135 ∩ Q456, Q124 ∩ Q456, and Q123 ∩ Q456 are all quasilinear in

M1(3, 8) ⊂ T1 = T 28. For ease of notation, we can by symmetry replace Q123 ∩Q124 ∩Q456,

Q124∩Q135∩Q456, and Q124∩Q456 with Q356∩Q456∩Q126, Q125∩Q136∩Q456, and Q126∩Q456

respectively.

Now, simplify the coordinates on M1 by setting xi = xi6, yi = yi6, and dehomogenizing

by x5 = y5 = 1. This amounts to using the following matrix to get coordinates on M(3, 8)

as an open subset of A8. 
1 1 1 1 1 1 0 0

x1 x2 x3 x4 1 0 1 0

y1 y2 y3 y4 1 0 0 1

 (A.3)

Then M1 ⊂ T 28 is defined by the following equations.

x12 = x1 − x2, x13 = x1 − x3, x14 = x1 − x4, x23 = x2 − x3, x24 = x2 − x4,

x34 = x3 − x4, x15 = x1 − 1, x25 = x2 − 1, x35 = x3 − 1, x45 = x4 − 1,

y12 = y1 − y2, y13 = y1 − y3, y14 = y1 − y4, y23 = y2 − y3, y24 = y2 − y4,

y34 = y3 − y4, y15 = y1 − 1, y25 = y2 − 1, y35 = y3 − 1, y45 = y4 − 1.
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The four subvarieties of M1 are given by the following equations.

Q456 ∩Q356 ∩Q126 = {x4 = y4, x3 = y3, x1y2 = x2y1} ⊂M1,

Q125 ∩Q136 ∩Q456 = {x4 = y4, x1y3 = x3y1, x15y25 = x25y15} ⊂M1,

Q126 ∩Q456 = {x4 = y4, x1y2 = x2y1} ⊂M1,

Q123 ∩Q456 = {x4 = y4, x13y23 = x23y13} ⊂M1.

The projection T 28 → T 26 dropping coordinates y4, y45 identifies Q456 ⊂M1 with the graph

of the nonvanishing regular functions x4, x45 on the linear variety Q ⊂ T 26 defined by the

following equations.

x12 = x1 − x2, x13 = x1 − x3, x14 = x1 − x4, x23 = x2 − x3, x24 = x2 − x4,

x34 = x3 − x4, x15 = x1 − 1, x25 = x2 − 1, x35 = x3 − 1, x45 = x4 − 1,

y12 = y1 − y2, y13 = y1 − y3, y14 = y1 − x4, y23 = y2 − y3, y24 = y2 − x4,

y34 = y3 − x4, y15 = y1 − 1, y25 = y2 − 1, y35 = y3 − 1.

Now the projection T 26 → T 19 dropping coordinates x14, x24, x34, x45, y14, y24, y34 identifies

Q ⊂ T 26 with the complement of the hyperplanes

{x1 = x4}, {x2 = x4}, {x3 = x4}, {x4 = 1}, {y1 = x4}, {y2 = x4}, {y3 = x4}

(A.4)
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in the linear variety Q′ ⊂ T 19 defined by the following equations.

x12 = x1 − x2, x13 = x1 − x3, x23 = x2 − x3,

x15 = x1 − 1, x25 = x2 − 1, x35 = x3 − 1,

y12 = y1 − y2, y13 = y1 − y3, y23 = y2 − y3,

y15 = y1 − 1, y25 = y2 − 1, y35 = y3 − 1.

Observe that Q′ ∼= M1(3, 7)×T 1
x4

. The images of the four subvarieties of interest under these

projections are as follows.

Q456 ∩Q356 ∩Q126 : {x3 = y3, x1y2 = x2y1} ⊂ Q′

∼= (Q345 ∩Q125)× T 1 ⊂M1(3, 7)× T 1,

Q125 ∩Q136 ∩Q456 : {x1y3 = x3y1, x15y25 = x25y15} ⊂ Q′

∼= (Q135 ∩Q124)× T 1 ⊂M1(3, 7)× T 1,

Q126 ∩Q456 : {x1y2 = x2y1} ⊂ Q′

∼= Q125 × T 1 ⊂M1(3, 7)× T 1,

Q123 ∩Q456 : {x13y23 = x23y13} ⊂ Q′

∼= Q123 × T 1 ⊂M1(3, 7)× T 1.

In particular, these projections are all quasilinear. All that remains is to show that each

projection intersects any collection of the hyperplanes in (A.4) quasilinearly, but this is an

immediate verification we leave to the reader.
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Q126 ∩Q456 ⊂M2

Recall from Section 7.2.1 that Z = Q126 ∩ Q456 ⊂ M2(3, 8) is naturally identified with

M(3, 7) via the forgetful map dropping line 6. We describe this isomorphism explicitly with

coordinates.

We take our starting coordinates on T 8 to be given by the matrix (A.3). The forgetful

map dropping line 6 is induced by the rational map

f6 : T 8 99K T 6,

(x1, x2, x3, x4, y1, y2, y3, y4) 7→
(
x1 − 1

x4 − 1
,
x2 − 1

x4 − 1
,
x3 − 1

x4 − 1
,
y1 − 1

y4 − 1
,
y2 − 1

y4 − 1
,
y3 − 1

y4 − 1

)
.

This is obtained by dropping column 6 in the matrix (A.3), then performing matrix trans-

formations to write the resulting matrix in the form of matrix (A.1). If coordinates on T 6

are labeled by z1, z2, z3, w1, w2, w3, then f6 induces the following correspondence between

hypersurfaces on T 8 and hypersurfaces on T 6.

{xi = xj} ↔ {zi = zj}, {yi = yj} ↔ {wi = wj},

{xi = x4} ↔ {zi = 1}, {yi = y4} ↔ {wi = 1},

Qijk ⊂ T 8 ↔ Qijk ⊂ T 6, ijk ⊂ [5].

It sends the remaining hyperplanes {xi = 1} and {yi = 1} to all of T 6. We conclude

that f6 : T 8 → T 6 induces a projection f6 : T 38 → T 28 mapping M2(3, 8) ⊂ T 38 onto
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M(3, 7) ⊂ T 28. Furthermore, f6 restricts to an isomorphism of

Z = Q126 ∩Q456 = {x1y2 = x2y1, x4 = y4} ⊂M2(3, 8)

with M(3, 7); using the computer algebra system Magma, we computed that a regular inverse

to f6 : Z →M(3, 7) is induced by the following rational map g : T 6 99K T 8.

x1 =
(z1 − z2)(w1 − z1)

z1w2 − z2w1

,

x2 =
(z1 − z2)(w2 − z2)

z1w2 − z2w1

,

x3 =
w2(z1 − z3) + w1(z3 − z2) + z3(z2 − z1)

z1w2 − z2w1

,

x4 =
(z1 − 1)(w2 − 1)− (z2 − 1)(w1 − 1)

z1w2 − z2w1

,

y1 =
(w1 − w2)(w1 − z1)

z1w2 − z2w1

,

y2 =
(w1 − w2)(w2 − z2)

z1w2 − z2w1

,

y3 =
z2(w1 − w3) + z1(w3 − w2) + z3(w2 − w1)

z1w2 − z2w1

,

y4 =
(z1 − 1)(w2 − 1)− (z2 − 1)(w1 − 1)

z1w2 − z2w1

.

This is regular on M(3, 7) because the locus Q125 = {z1w2 = z2w1} where the denominator

vanishes is removed in M(3, 6). In particular, g induces inclusions

Z ∼= M(3, 7) ⊂ T 28 ⊂ T 38.
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Since Z ∼= M(3, 7) is quasilinear in T 28, we conclude that it is quasilinear in T 38 by Proposition

4.3.29.

A.2 Computations for Y (3, 7)

In this appendix we give the details showing thatQ4∩Q234 ⊂M ′(3, 7) ⊂ T 24 is quasilinear,

cf. Section 8.1.1. The strategy is essentially the same as the strategy forQ126∩Q456 ⊂M2(3, 8)

given in the previous section.

The projection

f3 : T 6 → T 4,

(x1, x2, x3, y1, y2, y3) 7→ (x1, x2, y1, y2)

induces the following correspondence between hypersurfaces in T 6 and hypersurfaces in T 4.

xi = 1↔ xi = 1, yi = 1↔ yi = 1, i = 1, 2

x1 = x2 ↔ x1 = x2, y1 = y2 ↔ y1 = y2,

Q125 ↔ Q124, Q145 ↔ Q134, Q245 ↔ Q234.

It sends the remaining hypersurfaces for M ′(3, 7) to all of T 4. We conclude that f3 : T 6 → T 4

induces a projection f3 : T 24 → T 13 sending M ′(3, 7) onto M ′(3, 6), where M ′(3, 6) ⊂

T 13 is the complement of all hypersurfaces for M(3, 6) except for Q123, cf. Section 8.1.1.

Furthermore, f3 restricts to an isomorphism of Q4 ∩Q234 ⊂M ′(3, 7) with M ′(3, 6); using the
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computer algebra system Magma, we compute that an inverse to f3 : Q4 ∩Q234 →M ′(3, 6)

is induced by the rational map g : T 4 99K T 6 given by

x1 = x1, x2 = x2,

x3 =
x1x2y1 − x1x2y2 − x1y1y2 + x1y

2
2

(x1y2 − x2y1)(y2 − 1)
,

y1 = y1, y2 = y2,

x3 =
x1x2y1 − x1y1y2 − x2

2y1 + x2y1y2

(x1y2 − x2y1)(y2 − 1)
.

This is regular on M ′(3, 6), because the locus {x1y2 = x2y1} ∪ {y2 = 1} where the denomina-

tors vanish is removed to obtain M ′(3, 6). In particular, g induces inclusions

Q4 ∩Q234
∼= M ′(3, 6) ⊂ T 13 ⊂ T 24,

and since M ′(3, 6) is quasilinear in T 13, we conclude that Q4 ∩Q234 is quasilinear in T 24 by

Proposition 4.3.29.
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