Reading graph: Number of vertices: 10 Dimension: ? Vertices: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 Field generated by the entries of the Gram matrix: Q[sqrt(2)] File read Finding connected subgraphs...... Finding graphs products...... Connected spherical graphs Graphs of rank 0 Graphs of rank 1 A1 ; 1 A1 ; 2 A1 ; 3 A1 ; 4 A1 ; 5 A1 ; 6 A1 ; 7 A1 ; 8 A1 ; 9 A1 ; 10 Graphs of rank 2 A2 ; 1 3 A2 ; 2 4 A2 ; 3 4 A2 ; 4 5 A2 ; 5 6 A2 ; 6 7 A2 ; 7 8 A2 ; 8 9 G2 ; 9 10 (4) Graphs of rank 3 A3 ; 1 3 4 A3 ; 2 4 3 A3 ; 2 4 5 A3 ; 3 4 5 A3 ; 4 5 6 A3 ; 5 6 7 A3 ; 6 7 8 A3 ; 7 8 9 B3 ; 8 9 10 Graphs of rank 4 A4 ; 1 3 4 2 A4 ; 1 3 4 5 A4 ; 2 4 5 6 A4 ; 3 4 5 6 A4 ; 4 5 6 7 A4 ; 5 6 7 8 A4 ; 6 7 8 9 B4 ; 7 8 9 10 D4 ; 2 4 3 | 5 Graphs of rank 5 A5 ; 1 3 4 5 6 A5 ; 2 4 5 6 7 A5 ; 3 4 5 6 7 A5 ; 4 5 6 7 8 A5 ; 5 6 7 8 9 B5 ; 6 7 8 9 10 D5 ; 1 3 4 2 | 5 D5 ; 6 5 4 2 | 3 Graphs of rank 6 A6 ; 1 3 4 5 6 7 A6 ; 2 4 5 6 7 8 A6 ; 3 4 5 6 7 8 A6 ; 4 5 6 7 8 9 B6 ; 5 6 7 8 9 10 D6 ; 7 6 5 4 2 | 3 E6 ; 1 3 4 5 6 | 2 Graphs of rank 7 A7 ; 1 3 4 5 6 7 8 A7 ; 2 4 5 6 7 8 9 A7 ; 3 4 5 6 7 8 9 B7 ; 4 5 6 7 8 9 10 D7 ; 8 7 6 5 4 2 | 3 E7 ; 1 3 4 5 6 7 | 2 Graphs of rank 8 A8 ; 1 3 4 5 6 7 8 9 B8 ; 2 4 5 6 7 8 9 10 B8 ; 3 4 5 6 7 8 9 10 D8 ; 9 8 7 6 5 4 2 | 3 E8 ; 1 3 4 5 6 7 8 | 2 Graphs of rank 9 B9 ; 1 3 4 5 6 7 8 9 10 Graphs of rank 10 Connected euclidean graphs Graphs of rank 0 Graphs of rank 1 Graphs of rank 2 Graphs of rank 3 Graphs of rank 4 Graphs of rank 5 Graphs of rank 6 Graphs of rank 7 Graphs of rank 8 Graphs of rank 9 TB8 ; 10 | 9 8 7 6 5 4 2 | 3 TE8 ; 1 3 4 5 6 7 8 9 | 2 Graphs of rank 10 Product of euclidean graphs TE_8^1 | N: 1 TB_8^1 | N: 1 Computations...... Products of spherical graphs 1: A_1^1 | N: 10 / Order: 2 2: G_4^1 | N: 1 / Order: 8 2: A_2^1 | N: 8 / Order: 6 2: A_1^2 | N: 36 / Order: 4 3: B_3^1 | N: 1 / Order: 48 3: A_3^1 | N: 8 / Order: 24 3: A_1^1 | G_4^1 | N: 7 / Order: 16 3: A_1^1 | A_2^1 | N: 47 / Order: 12 3: A_1^3 | N: 57 / Order: 8 4: D_4^1 | N: 1 / Order: 192 4: B_4^1 | N: 1 / Order: 384 4: A_4^1 | N: 7 / Order: 120 4: A_2^1 | G_4^1 | N: 6 / Order: 48 4: A_2^2 | N: 13 / Order: 36 4: A_1^1 | B_3^1 | N: 6 / Order: 96 4: A_1^1 | A_3^1 | N: 38 / Order: 48 4: A_1^2 | G_4^1 | N: 15 / Order: 32 4: A_1^2 | A_2^1 | N: 84 / Order: 24 4: A_1^4 | N: 39 / Order: 16 5: D_5^1 | N: 2 / Order: 1920 5: B_5^1 | N: 1 / Order: 3840 5: A_5^1 | N: 5 / Order: 720 5: A_3^1 | G_4^1 | N: 6 / Order: 192 5: A_2^1 | B_3^1 | N: 5 / Order: 288 5: A_2^1 | A_3^1 | N: 19 / Order: 144 5: A_1^1 | D_4^1 | N: 4 / Order: 384 5: A_1^1 | B_4^1 | N: 5 / Order: 768 5: A_1^1 | A_4^1 | N: 27 / Order: 240 5: A_1^1 | A_2^1 | G_4^1 | N: 18 / Order: 96 5: A_1^1 | A_2^2 | N: 30 / Order: 72 5: A_1^2 | B_3^1 | N: 10 / Order: 192 5: A_1^2 | A_3^1 | N: 47 / Order: 96 5: A_1^3 | G_4^1 | N: 11 / Order: 64 5: A_1^3 | A_2^1 | N: 53 / Order: 48 5: A_1^5 | N: 9 / Order: 32 6: E_6^1 | N: 1 / Order: 51840 6: D_6^1 | N: 1 / Order: 23040 6: D_4^1 | G_4^1 | N: 1 / Order: 1536 6: B_6^1 | N: 1 / Order: 46080 6: A_6^1 | N: 4 / Order: 5040 6: A_4^1 | G_4^1 | N: 5 / Order: 960 6: A_3^1 | B_3^1 | N: 5 / Order: 1152 6: A_3^2 | N: 6 / Order: 576 6: A_2^1 | D_4^1 | N: 2 / Order: 1152 6: A_2^1 | B_4^1 | N: 4 / Order: 2304 6: A_2^1 | A_4^1 | N: 11 / Order: 720 6: A_2^2 | G_4^1 | N: 4 / Order: 288 6: A_2^3 | N: 1 / Order: 216 6: A_1^1 | D_5^1 | N: 7 / Order: 3840 6: A_1^1 | B_5^1 | N: 4 / Order: 7680 6: A_1^1 | A_5^1 | N: 13 / Order: 1440 6: A_1^1 | A_3^1 | G_4^1 | N: 11 / Order: 384 6: A_1^1 | A_2^1 | B_3^1 | N: 10 / Order: 576 6: A_1^1 | A_2^1 | A_3^1 | N: 25 / Order: 288 6: A_1^2 | D_4^1 | N: 3 / Order: 768 6: A_1^2 | B_4^1 | N: 6 / Order: 1536 6: A_1^2 | A_4^1 | N: 24 / Order: 480 6: A_1^2 | A_2^1 | G_4^1 | N: 12 / Order: 192 6: A_1^2 | A_2^2 | N: 18 / Order: 144 6: A_1^3 | B_3^1 | N: 5 / Order: 384 6: A_1^3 | A_3^1 | N: 15 / Order: 192 6: A_1^4 | G_4^1 | N: 2 / Order: 128 6: A_1^4 | A_2^1 | N: 9 / Order: 96 7: E_7^1 | N: 1 / Order: 2903040 7: D_7^1 | N: 1 / Order: 322560 7: D_5^1 | G_4^1 | N: 2 / Order: 15360 7: B_7^1 | N: 1 / Order: 645120 7: B_3^1 | D_4^1 | N: 1 / Order: 9216 7: A_7^1 | N: 3 / Order: 40320 7: A_5^1 | G_4^1 | N: 3 / Order: 5760 7: A_4^1 | B_3^1 | N: 4 / Order: 5760 7: A_3^1 | D_4^1 | N: 1 / Order: 4608 7: A_3^1 | B_4^1 | N: 4 / Order: 9216 7: A_3^1 | A_4^1 | N: 5 / Order: 2880 7: A_2^1 | D_5^1 | N: 3 / Order: 11520 7: A_2^1 | B_5^1 | N: 3 / Order: 23040 7: A_2^1 | A_5^1 | N: 2 / Order: 4320 7: A_2^1 | A_3^1 | G_4^1 | N: 3 / Order: 1152 7: A_2^2 | B_3^1 | N: 1 / Order: 1728 7: A_1^1 | E_6^1 | N: 3 / Order: 103680 7: A_1^1 | D_6^1 | N: 2 / Order: 46080 7: A_1^1 | D_4^1 | G_4^1 | N: 1 / Order: 3072 7: A_1^1 | B_6^1 | N: 3 / Order: 92160 7: A_1^1 | A_6^1 | N: 6 / Order: 10080 7: A_1^1 | A_4^1 | G_4^1 | N: 5 / Order: 1920 7: A_1^1 | A_3^1 | B_3^1 | N: 4 / Order: 2304 7: A_1^1 | A_3^2 | N: 3 / Order: 1152 7: A_1^1 | A_2^1 | D_4^1 | N: 1 / Order: 2304 7: A_1^1 | A_2^1 | B_4^1 | N: 4 / Order: 4608 7: A_1^1 | A_2^1 | A_4^1 | N: 10 / Order: 1440 7: A_1^1 | A_2^2 | G_4^1 | N: 3 / Order: 576 7: A_1^1 | A_2^3 | N: 1 / Order: 432 7: A_1^2 | D_5^1 | N: 4 / Order: 7680 7: A_1^2 | B_5^1 | N: 3 / Order: 15360 7: A_1^2 | A_5^1 | N: 6 / Order: 2880 7: A_1^2 | A_3^1 | G_4^1 | N: 3 / Order: 768 7: A_1^2 | A_2^1 | B_3^1 | N: 5 / Order: 1152 7: A_1^2 | A_2^1 | A_3^1 | N: 6 / Order: 576 7: A_1^3 | B_4^1 | N: 2 / Order: 3072 7: A_1^3 | A_4^1 | N: 4 / Order: 960 7: A_1^3 | A_2^1 | G_4^1 | N: 1 / Order: 384 7: A_1^3 | A_2^2 | N: 2 / Order: 288 8: E_8^1 | N: 1 / Order: 696729600 8: E_6^1 | G_4^1 | N: 1 / Order: 414720 8: D_8^1 | N: 1 / Order: 5160960 8: D_6^1 | G_4^1 | N: 1 / Order: 184320 8: B_8^1 | N: 2 / Order: 10321920 8: B_4^1 | D_4^1 | N: 1 / Order: 73728 8: B_3^1 | D_5^1 | N: 2 / Order: 92160 8: A_8^1 | N: 1 / Order: 362880 8: A_6^1 | G_4^1 | N: 1 / Order: 40320 8: A_5^1 | B_3^1 | N: 1 / Order: 34560 8: A_4^1 | B_4^1 | N: 2 / Order: 46080 8: A_4^2 | N: 1 / Order: 14400 8: A_3^1 | D_5^1 | N: 1 / Order: 46080 8: A_3^1 | B_5^1 | N: 2 / Order: 92160 8: A_2^1 | E_6^1 | N: 1 / Order: 311040 8: A_2^1 | B_6^1 | N: 1 / Order: 276480 8: A_2^1 | A_4^1 | G_4^1 | N: 1 / Order: 5760 8: A_1^1 | E_7^1 | N: 2 / Order: 5806080 8: A_1^1 | D_7^1 | N: 1 / Order: 645120 8: A_1^1 | D_5^1 | G_4^1 | N: 1 / Order: 30720 8: A_1^1 | B_7^1 | N: 1 / Order: 1290240 8: A_1^1 | A_7^1 | N: 2 / Order: 80640 8: A_1^1 | A_5^1 | G_4^1 | N: 1 / Order: 11520 8: A_1^1 | A_4^1 | B_3^1 | N: 2 / Order: 11520 8: A_1^1 | A_3^1 | B_4^1 | N: 1 / Order: 18432 8: A_1^1 | A_3^1 | A_4^1 | N: 1 / Order: 5760 8: A_1^1 | A_2^1 | D_5^1 | N: 1 / Order: 23040 8: A_1^1 | A_2^1 | B_5^1 | N: 2 / Order: 46080 8: A_1^1 | A_2^1 | A_5^1 | N: 1 / Order: 8640 8: A_1^1 | A_2^1 | A_3^1 | G_4^1 | N: 1 / Order: 2304 8: A_1^1 | A_2^2 | B_3^1 | N: 1 / Order: 3456 8: A_1^2 | E_6^1 | N: 1 / Order: 207360 8: A_1^2 | B_6^1 | N: 2 / Order: 184320 8: A_1^2 | A_6^1 | N: 1 / Order: 20160 8: A_1^2 | A_2^1 | B_4^1 | N: 1 / Order: 9216 8: A_1^2 | A_2^1 | A_4^1 | N: 1 / Order: 2880 9: E_7^1 | G_4^1 | N: 1 / Order: 23224320 9: B_9^1 | N: 1 / Order: 185794560 9: B_4^1 | D_5^1 | N: 1 / Order: 737280 9: B_3^1 | E_6^1 | N: 1 / Order: 2488320 9: A_4^1 | B_5^1 | N: 1 / Order: 460800 9: A_1^1 | E_8^1 | N: 1 / Order: 1393459200 9: A_1^1 | B_8^1 | N: 1 / Order: 20643840 9: A_1^1 | A_2^1 | B_6^1 | N: 1 / Order: 552960 Computation time: 0.00310994s Information Guessed dimension: 9 Cocompact: ? Finite covolume: ? f-vector: (10, 45, 120, 210, 252, 210, 120, 45, 10, 1) Number of vertices at infinity: 2 Alternating sum of the components of the f-vector: 2 Euler characteristic: 0