{\rtf1\ansi\ansicpg1252\cocoartf2636 \cocoatextscaling0\cocoaplatform0{\fonttbl\f0\fswiss\fcharset0 Helvetica;} {\colortbl;\red255\green255\blue255;} {\*\expandedcolortbl;;} \paperw11900\paperh16840\margl1440\margr1440\vieww11520\viewh8400\viewkind0 \pard\tx566\tx1133\tx1700\tx2267\tx2834\tx3401\tx3968\tx4535\tx5102\tx5669\tx6236\tx6803\pardirnatural\partightenfactor0 \f0\fs24 \cf0 #The following script is for the (18,2,0) 0-cusp.\ #Here the lattice is U(2)+E_8+E_8.\ #In particular, it computes the "naively" folded diagram\ #with respect to the diagonal symmetry.\ \ #E8 lattice in Bourbaki notation.\ ME8=matrix([\ [-2,0,1,0,0,0,0,0],\ [0,-2,0,1,0,0,0,0],\ [1,0,-2,1,0,0,0,0],\ [0,1,1,-2,1,0,0,0],\ [0,0,0,1,-2,1,0,0],\ [0,0,0,0,1,-2,1,0],\ [0,0,0,0,0,1,-2,1],\ [0,0,0,0,0,0,1,-2]\ ])\ \ #The following is the Gram matrix for the entire lattice U(2)+E_8+E_8.\ M=matrix([\ [0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],\ [2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],\ [0,0,-2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0],\ [0,0,0,-2,0,1,0,0,0,0,0,0,0,0,0,0,0,0],\ [0,0,1,0,-2,1,0,0,0,0,0,0,0,0,0,0,0,0],\ [0,0,0,1,1,-2,1,0,0,0,0,0,0,0,0,0,0,0],\ [0,0,0,0,0,1,-2,1,0,0,0,0,0,0,0,0,0,0],\ [0,0,0,0,0,0,1,-2,1,0,0,0,0,0,0,0,0,0],\ [0,0,0,0,0,0,0,1,-2,1,0,0,0,0,0,0,0,0],\ [0,0,0,0,0,0,0,0,1,-2,0,0,0,0,0,0,0,0],\ [0,0,0,0,0,0,0,0,0,0,-2,0,1,0,0,0,0,0],\ [0,0,0,0,0,0,0,0,0,0,0,-2,0,1,0,0,0,0],\ [0,0,0,0,0,0,0,0,0,0,1,0,-2,1,0,0,0,0],\ [0,0,0,0,0,0,0,0,0,0,0,1,1,-2,1,0,0,0],\ [0,0,0,0,0,0,0,0,0,0,0,0,0,1,-2,1,0,0],\ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-2,1,0],\ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-2,1],\ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-2]\ ])\ \ #Next, we list the relevant basis for U(2)+E_8+E_8.\ ep=matrix([1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])\ fp=matrix([0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])\ \ a1=matrix([0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])\ a2=matrix([0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0])\ a3=matrix([0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0])\ a4=matrix([0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0])\ a5=matrix([0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0])\ a6=matrix([0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0])\ a7=matrix([0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0])\ a8=matrix([0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0])\ \ a1b=matrix([0,0,-4,-5,-7,-10,-8,-6,-4,-2,0,0,0,0,0,0,0,0])\ a2b=matrix([0,0,-5,-8,-10,-15,-12,-9,-6,-3,0,0,0,0,0,0,0,0])\ a3b=matrix([0,0,-7,-10,-14,-20,-16,-12,-8,-4,0,0,0,0,0,0,0,0])\ a4b=matrix([0,0,-10,-15,-20,-30,-24,-18,-12,-6,0,0,0,0,0,0,0,0])\ a5b=matrix([0,0,-8,-12,-16,-24,-20,-15,-10,-5,0,0,0,0,0,0,0,0])\ a6b=matrix([0,0,-6,-9,-12,-18,-15,-12,-8,-4,0,0,0,0,0,0,0,0])\ a7b=matrix([0,0,-4,-6,-8,-12,-10,-8,-6,-3,0,0,0,0,0,0,0,0])\ a8b=matrix([0,0,-2,-3,-4,-6,-5,-4,-3,-2,0,0,0,0,0,0,0,0])\ \ a1p=matrix([0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0])\ a2p=matrix([0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0])\ a3p=matrix([0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0])\ a4p=matrix([0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0])\ a5p=matrix([0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0])\ a6p=matrix([0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0])\ a7p=matrix([0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0])\ a8p=matrix([0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1])\ \ a1pb=matrix([0,0,0,0,0,0,0,0,0,0,-4,-5,-7,-10,-8,-6,-4,-2])\ a2pb=matrix([0,0,0,0,0,0,0,0,0,0,-5,-8,-10,-15,-12,-9,-6,-3])\ a3pb=matrix([0,0,0,0,0,0,0,0,0,0,-7,-10,-14,-20,-16,-12,-8,-4])\ a4pb=matrix([0,0,0,0,0,0,0,0,0,0,-10,-15,-20,-30,-24,-18,-12,-6])\ a5pb=matrix([0,0,0,0,0,0,0,0,0,0,-8,-12,-16,-24,-20,-15,-10,-5])\ a6pb=matrix([0,0,0,0,0,0,0,0,0,0,-6,-9,-12,-18,-15,-12,-8,-4])\ a7pb=matrix([0,0,0,0,0,0,0,0,0,0,-4,-6,-8,-12,-10,-8,-6,-3])\ a8pb=matrix([0,0,0,0,0,0,0,0,0,0,-2,-3,-4,-6,-5,-4,-3,-2])\ \ #This is an example of intersection between the above roots.\ (a7p)*M*transpose(a7pb)\ \ #We now code the 22 roots which are output of the Vinberg algorithm for (18,2,0).\ v1=a8p\ v2=ep+fp+a1b+a8pb\ v3=a1\ v4=a3\ v5=a4\ v6=a5\ v7=a6\ v8=a7\ v9=a8\ v10=ep+fp+a8b+a1pb\ v11=a1p\ v12=a3p\ v13=a4p\ v14=a5p\ v15=a6p\ v16=a7p\ v17=ep+a8pb\ v18=a2\ v19=ep+a8b\ v20=a2p\ v21=fp-ep\ v22=5*ep+3*fp+2*a2b+2*a2pb\ \ #We now make the roots of the "naively" folded diagram.\ v1p=v1+v9\ v2p=v2+v8\ v3p=v3+v7\ v4p=v4+v6\ v5p=v5\ v6p=v13\ v7p=v12+v14\ v8p=v11+v15\ v9p=v10+v16\ v10p=v17+v19\ v11p=v18\ v12p=v20\ v13p=v21\ v14p=v22\ \ #Now we simply want to compute the intersection matrix\ #of the roots v1p,...,v14p.\ roots=[v1p,v2p,v3p,v4p,v5p,v6p,v7p,v8p,v9p,v10p,v11p,v12p,v13p,v14p]\ \ RootsIntersectionMatrix=[]\ for i in range(0,14):\ row=[]\ vi=roots[i]\ for j in range(0,14):\ vj=roots[j]\ number=(vi*M*transpose(vj))[0][0]\ row.append(number)\ RootsIntersectionMatrix.append(row)\ \ matrix(RootsIntersectionMatrix).rank()}