Reading graph: Number of vertices: 11 Dimension: ? Vertices: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 Field generated by the entries of the Gram matrix: Q[sqrt(2)] File read Image created: testgraph.jpg Finding connected subgraphs...... Finding graphs products...... Connected spherical graphs Graphs of rank 0 Graphs of rank 1 A1 ; 1 A1 ; 2 A1 ; 3 A1 ; 4 A1 ; 5 A1 ; 6 A1 ; 7 A1 ; 8 A1 ; 9 A1 ; 10 A1 ; 11 Graphs of rank 2 A2 ; 2 3 A2 ; 3 4 A2 ; 3 10 A2 ; 4 5 A2 ; 5 6 A2 ; 6 7 A2 ; 7 8 A2 ; 7 11 G2 ; 1 2 (4) G2 ; 8 9 (4) Graphs of rank 3 A3 ; 2 3 4 A3 ; 2 3 10 A3 ; 3 4 5 A3 ; 4 3 10 A3 ; 4 5 6 A3 ; 5 6 7 A3 ; 6 7 8 A3 ; 6 7 11 A3 ; 8 7 11 B3 ; 3 2 1 B3 ; 7 8 9 Graphs of rank 4 A4 ; 2 3 4 5 A4 ; 3 4 5 6 A4 ; 4 5 6 7 A4 ; 5 4 3 10 A4 ; 5 6 7 8 A4 ; 5 6 7 11 B4 ; 4 3 2 1 B4 ; 6 7 8 9 B4 ; 10 3 2 1 B4 ; 11 7 8 9 D4 ; 2 3 4 | 10 D4 ; 6 7 8 | 11 Graphs of rank 5 A5 ; 2 3 4 5 6 A5 ; 3 4 5 6 7 A5 ; 4 5 6 7 8 A5 ; 4 5 6 7 11 A5 ; 6 5 4 3 10 B5 ; 5 4 3 2 1 B5 ; 5 6 7 8 9 D5 ; 5 4 3 2 | 10 D5 ; 5 6 7 8 | 11 Graphs of rank 6 A6 ; 2 3 4 5 6 7 A6 ; 3 4 5 6 7 8 A6 ; 3 4 5 6 7 11 A6 ; 7 6 5 4 3 10 B6 ; 4 5 6 7 8 9 B6 ; 6 5 4 3 2 1 D6 ; 4 5 6 7 8 | 11 D6 ; 6 5 4 3 2 | 10 Graphs of rank 7 A7 ; 2 3 4 5 6 7 8 A7 ; 2 3 4 5 6 7 11 A7 ; 8 7 6 5 4 3 10 A7 ; 10 3 4 5 6 7 11 B7 ; 3 4 5 6 7 8 9 B7 ; 7 6 5 4 3 2 1 D7 ; 3 4 5 6 7 8 | 11 D7 ; 7 6 5 4 3 2 | 10 Graphs of rank 8 B8 ; 2 3 4 5 6 7 8 9 B8 ; 8 7 6 5 4 3 2 1 B8 ; 10 3 4 5 6 7 8 9 B8 ; 11 7 6 5 4 3 2 1 D8 ; 2 3 4 5 6 7 8 | 11 D8 ; 8 7 6 5 4 3 2 | 10 D8 ; 10 3 4 5 6 7 8 | 11 D8 ; 11 7 6 5 4 3 2 | 10 Graphs of rank 9 Graphs of rank 10 Graphs of rank 11 Connected euclidean graphs Graphs of rank 0 Graphs of rank 1 Graphs of rank 2 Graphs of rank 3 Graphs of rank 4 Graphs of rank 5 TB4 ; 1 | 2 3 4 | 10 TB4 ; 9 | 8 7 6 | 11 Graphs of rank 6 Graphs of rank 7 Graphs of rank 8 Graphs of rank 9 TB8 ; 1 | 2 3 4 5 6 7 8 | 11 TB8 ; 9 | 8 7 6 5 4 3 2 | 10 TC8 ; 1 2 3 4 5 6 7 8 9 TD8 ; 2 10 3 4 5 6 7 8 | 11 Graphs of rank 10 Graphs of rank 11 Product of euclidean graphs TB_4^1 | N: 2 TD_8^1 | N: 1 TC_8^1 | N: 1 TB_8^1 | N: 2 TB_4^2 | N: 1 Computations...... Products of spherical graphs 1: A_1^1 | N: 11 / Order: 2 2: G_4^1 | N: 2 / Order: 8 2: A_2^1 | N: 8 / Order: 6 2: A_1^2 | N: 45 / Order: 4 3: B_3^1 | N: 2 / Order: 48 3: A_3^1 | N: 9 / Order: 24 3: A_1^1 | G_4^1 | N: 16 / Order: 16 3: A_1^1 | A_2^1 | N: 52 / Order: 12 3: A_1^3 | N: 86 / Order: 8 4: G_4^2 | N: 1 / Order: 64 4: D_4^1 | N: 2 / Order: 192 4: B_4^1 | N: 4 / Order: 384 4: A_4^1 | N: 6 / Order: 120 4: A_2^1 | G_4^1 | N: 10 / Order: 48 4: A_2^2 | N: 13 / Order: 36 4: A_1^1 | B_3^1 | N: 12 / Order: 96 4: A_1^1 | A_3^1 | N: 50 / Order: 48 4: A_1^2 | G_4^1 | N: 44 / Order: 32 4: A_1^2 | A_2^1 | N: 108 / Order: 24 4: A_1^4 | N: 80 / Order: 16 5: D_5^1 | N: 2 / Order: 1920 5: B_5^1 | N: 2 / Order: 3840 5: B_3^1 | G_4^1 | N: 2 / Order: 384 5: A_5^1 | N: 5 / Order: 720 5: A_3^1 | G_4^1 | N: 10 / Order: 192 5: A_2^1 | B_3^1 | N: 8 / Order: 288 5: A_2^1 | A_3^1 | N: 24 / Order: 144 5: A_1^1 | G_4^2 | N: 5 / Order: 128 5: A_1^1 | D_4^1 | N: 10 / Order: 384 5: A_1^1 | B_4^1 | N: 22 / Order: 768 5: A_1^1 | A_4^1 | N: 26 / Order: 240 5: A_1^1 | A_2^1 | G_4^1 | N: 38 / Order: 96 5: A_1^1 | A_2^2 | N: 30 / Order: 72 5: A_1^2 | B_3^1 | N: 20 / Order: 192 5: A_1^2 | A_3^1 | N: 81 / Order: 96 5: A_1^3 | G_4^1 | N: 52 / Order: 64 5: A_1^3 | A_2^1 | N: 90 / Order: 48 5: A_1^5 | N: 33 / Order: 32 6: D_6^1 | N: 2 / Order: 23040 6: D_4^1 | G_4^1 | N: 2 / Order: 1536 6: B_6^1 | N: 2 / Order: 46080 6: B_4^1 | G_4^1 | N: 4 / Order: 3072 6: B_3^2 | N: 1 / Order: 2304 6: A_6^1 | N: 4 / Order: 5040 6: A_4^1 | G_4^1 | N: 6 / Order: 960 6: A_3^1 | B_3^1 | N: 8 / Order: 1152 6: A_3^2 | N: 11 / Order: 576 6: A_2^1 | G_4^2 | N: 2 / Order: 384 6: A_2^1 | D_4^1 | N: 6 / Order: 1152 6: A_2^1 | B_4^1 | N: 14 / Order: 2304 6: A_2^1 | A_4^1 | N: 8 / Order: 720 6: A_2^2 | G_4^1 | N: 4 / Order: 288 6: A_1^1 | D_5^1 | N: 8 / Order: 3840 6: A_1^1 | B_5^1 | N: 8 / Order: 7680 6: A_1^1 | B_3^1 | G_4^1 | N: 6 / Order: 768 6: A_1^1 | A_5^1 | N: 16 / Order: 1440 6: A_1^1 | A_3^1 | G_4^1 | N: 28 / Order: 384 6: A_1^1 | A_2^1 | B_3^1 | N: 14 / Order: 576 6: A_1^1 | A_2^1 | A_3^1 | N: 34 / Order: 288 6: A_1^2 | G_4^2 | N: 8 / Order: 256 6: A_1^2 | D_4^1 | N: 12 / Order: 768 6: A_1^2 | B_4^1 | N: 32 / Order: 1536 6: A_1^2 | A_4^1 | N: 30 / Order: 480 6: A_1^2 | A_2^1 | G_4^1 | N: 44 / Order: 192 6: A_1^2 | A_2^2 | N: 22 / Order: 144 6: A_1^3 | B_3^1 | N: 10 / Order: 384 6: A_1^3 | A_3^1 | N: 48 / Order: 192 6: A_1^4 | G_4^1 | N: 26 / Order: 128 6: A_1^4 | A_2^1 | N: 26 / Order: 96 6: A_1^6 | N: 4 / Order: 64 7: D_7^1 | N: 2 / Order: 322560 7: D_5^1 | G_4^1 | N: 2 / Order: 15360 7: B_7^1 | N: 2 / Order: 645120 7: B_5^1 | G_4^1 | N: 2 / Order: 30720 7: B_3^1 | D_4^1 | N: 2 / Order: 9216 7: B_3^1 | B_4^1 | N: 4 / Order: 18432 7: A_7^1 | N: 4 / Order: 40320 7: A_5^1 | G_4^1 | N: 4 / Order: 5760 7: A_4^1 | B_3^1 | N: 4 / Order: 5760 7: A_3^1 | G_4^2 | N: 1 / Order: 1536 7: A_3^1 | D_4^1 | N: 6 / Order: 4608 7: A_3^1 | B_4^1 | N: 14 / Order: 9216 7: A_3^1 | A_4^1 | N: 4 / Order: 2880 7: A_2^1 | D_5^1 | N: 4 / Order: 11520 7: A_2^1 | B_5^1 | N: 4 / Order: 23040 7: A_2^1 | B_3^1 | G_4^1 | N: 2 / Order: 2304 7: A_2^1 | A_3^1 | G_4^1 | N: 2 / Order: 1152 7: A_1^1 | D_6^1 | N: 6 / Order: 46080 7: A_1^1 | D_4^1 | G_4^1 | N: 4 / Order: 3072 7: A_1^1 | B_6^1 | N: 6 / Order: 92160 7: A_1^1 | B_4^1 | G_4^1 | N: 10 / Order: 6144 7: A_1^1 | B_3^2 | N: 1 / Order: 4608 7: A_1^1 | A_6^1 | N: 6 / Order: 10080 7: A_1^1 | A_4^1 | G_4^1 | N: 10 / Order: 1920 7: A_1^1 | A_3^1 | B_3^1 | N: 6 / Order: 2304 7: A_1^1 | A_3^2 | N: 9 / Order: 1152 7: A_1^1 | A_2^1 | G_4^2 | N: 4 / Order: 768 7: A_1^1 | A_2^1 | D_4^1 | N: 4 / Order: 2304 7: A_1^1 | A_2^1 | B_4^1 | N: 18 / Order: 4608 7: A_1^1 | A_2^1 | A_4^1 | N: 8 / Order: 1440 7: A_1^1 | A_2^2 | G_4^1 | N: 6 / Order: 576 7: A_1^2 | D_5^1 | N: 6 / Order: 7680 7: A_1^2 | B_5^1 | N: 6 / Order: 15360 7: A_1^2 | B_3^1 | G_4^1 | N: 4 / Order: 1536 7: A_1^2 | A_5^1 | N: 15 / Order: 2880 7: A_1^2 | A_3^1 | G_4^1 | N: 24 / Order: 768 7: A_1^2 | A_2^1 | B_3^1 | N: 6 / Order: 1152 7: A_1^2 | A_2^1 | A_3^1 | N: 12 / Order: 576 7: A_1^3 | G_4^2 | N: 5 / Order: 512 7: A_1^3 | D_4^1 | N: 4 / Order: 1536 7: A_1^3 | B_4^1 | N: 14 / Order: 3072 7: A_1^3 | A_4^1 | N: 10 / Order: 960 7: A_1^3 | A_2^1 | G_4^1 | N: 16 / Order: 384 7: A_1^3 | A_2^2 | N: 5 / Order: 288 7: A_1^4 | A_3^1 | N: 8 / Order: 384 7: A_1^5 | G_4^1 | N: 4 / Order: 256 8: D_8^1 | N: 4 / Order: 5160960 8: D_6^1 | G_4^1 | N: 2 / Order: 184320 8: D_4^2 | N: 1 / Order: 36864 8: B_8^1 | N: 4 / Order: 10321920 8: B_6^1 | G_4^1 | N: 2 / Order: 368640 8: B_4^1 | D_4^1 | N: 4 / Order: 73728 8: B_4^2 | N: 4 / Order: 147456 8: B_3^1 | D_5^1 | N: 2 / Order: 92160 8: B_3^1 | B_5^1 | N: 2 / Order: 184320 8: A_4^1 | B_4^1 | N: 4 / Order: 46080 8: A_3^1 | D_5^1 | N: 2 / Order: 46080 8: A_3^1 | B_5^1 | N: 2 / Order: 92160 8: A_2^1 | B_4^1 | G_4^1 | N: 2 / Order: 18432 8: A_1^1 | D_7^1 | N: 2 / Order: 645120 8: A_1^1 | D_5^1 | G_4^1 | N: 2 / Order: 30720 8: A_1^1 | B_7^1 | N: 2 / Order: 1290240 8: A_1^1 | B_5^1 | G_4^1 | N: 2 / Order: 61440 8: A_1^1 | B_3^1 | B_4^1 | N: 2 / Order: 36864 8: A_1^1 | A_7^1 | N: 4 / Order: 80640 8: A_1^1 | A_5^1 | G_4^1 | N: 6 / Order: 11520 8: A_1^1 | A_4^1 | B_3^1 | N: 2 / Order: 11520 8: A_1^1 | A_3^1 | G_4^2 | N: 2 / Order: 3072 8: A_1^1 | A_3^1 | D_4^1 | N: 2 / Order: 9216 8: A_1^1 | A_3^1 | B_4^1 | N: 8 / Order: 18432 8: A_1^1 | A_3^1 | A_4^1 | N: 2 / Order: 5760 8: A_1^1 | A_2^1 | D_5^1 | N: 2 / Order: 23040 8: A_1^1 | A_2^1 | B_5^1 | N: 2 / Order: 46080 8: A_1^1 | A_2^1 | B_3^1 | G_4^1 | N: 2 / Order: 4608 8: A_1^1 | A_2^1 | A_3^1 | G_4^1 | N: 2 / Order: 2304 8: A_1^2 | D_6^1 | N: 4 / Order: 92160 8: A_1^2 | D_4^1 | G_4^1 | N: 2 / Order: 6144 8: A_1^2 | B_6^1 | N: 4 / Order: 184320 8: A_1^2 | B_4^1 | G_4^1 | N: 6 / Order: 12288 8: A_1^2 | A_6^1 | N: 2 / Order: 20160 8: A_1^2 | A_4^1 | G_4^1 | N: 4 / Order: 3840 8: A_1^2 | A_3^2 | N: 1 / Order: 2304 8: A_1^2 | A_2^1 | G_4^2 | N: 2 / Order: 1536 8: A_1^2 | A_2^1 | B_4^1 | N: 6 / Order: 9216 8: A_1^2 | A_2^1 | A_4^1 | N: 2 / Order: 2880 8: A_1^2 | A_2^2 | G_4^1 | N: 2 / Order: 1152 8: A_1^3 | A_5^1 | N: 4 / Order: 5760 8: A_1^3 | A_3^1 | G_4^1 | N: 6 / Order: 1536 8: A_1^4 | G_4^2 | N: 1 / Order: 1024 9: B_4^1 | D_5^1 | N: 2 / Order: 737280 9: B_4^1 | B_5^1 | N: 2 / Order: 1474560 9: A_1^1 | D_8^1 | N: 2 / Order: 10321920 9: A_1^1 | D_6^1 | G_4^1 | N: 2 / Order: 368640 9: A_1^1 | B_8^1 | N: 2 / Order: 20643840 9: A_1^1 | B_6^1 | G_4^1 | N: 2 / Order: 737280 9: A_1^1 | B_4^2 | N: 1 / Order: 294912 9: A_1^1 | A_4^1 | B_4^1 | N: 2 / Order: 92160 9: A_1^1 | A_2^1 | B_4^1 | G_4^1 | N: 2 / Order: 36864 9: A_1^2 | A_7^1 | N: 1 / Order: 161280 9: A_1^2 | A_5^1 | G_4^1 | N: 2 / Order: 23040 9: A_1^2 | A_3^1 | G_4^2 | N: 1 / Order: 6144 ---------------------------------------------------------- Compactness test Trying to extend the product: B8 ; 2 3 4 5 6 7 8 9 Succeeded in 0 ways instead of 2 ---------------------------------------------------------- Computation time: 0.889584s Information Guessed dimension: 9 Cocompact: no Finite covolume: yes f-vector: (26, 125, 300, 450, 460, 330, 165, 55, 11, 1) Number of vertices at infinity: 5 Alternating sum of the components of the f-vector: 2 Euler characteristic: 0 Signature (numerically): 9,1,1 Growth series: f(x) = C(2,2,2,2,2,2,2,2,2,3,3,4,4,4,4,5,6,6,7,8,8,10,12,14,16)/(1 - 2 * x - x^3 + 3 * x^4 - x^5 + 3 * x^6 - 3 * x^7 + 7 * x^8 - 8 * x^9 + 6 * x^10 - 10 * x^11 + 11 * x^12 - 14 * x^13 + 11 * x^14 - 20 * x^15 + 23 * x^16 - 22 * x^17 + 19 * x^18 - 28 * x^19 + 28 * x^20 - 27 * x^21 + 28 * x^22 - 28 * x^23 + 40 * x^24 - 24 * x^25 + 27 * x^26 - 25 * x^27 + 35 * x^28 - 15 * x^29 + 19 * x^30 - 17 * x^31 + 20 * x^32 - 5 * x^33 - 8 * x^35 + 5 * x^37 - 20 * x^38 + x^39 - 12 * x^40 + 16 * x^41 - 25 * x^42 + 8 * x^43 - 20 * x^44 + 20 * x^45 - 21 * x^46 + 15 * x^47 - 7 * x^48 + 19 * x^49 - 15 * x^50 + 11 * x^51 - 7 * x^52 + 14 * x^53 - 7 * x^54 + 4 * x^55 - x^56 + 8 * x^57 - 4 * x^58 + x^59 - 2 * x^60 - 5 * x^62 - 4 * x^63 + x^64 + 4 * x^65) g(x) = (1 - (11 * x^1/[2]) + (2 * x^4/[2,4] + 8 * x^3/[2,3] + 45 * x^2/[2,2]) - (2 * x^9/[2,4,6] + 9 * x^6/[2,3,4] + 16 * x^5/[2,2,4] + 52 * x^4/[2,2,3] + 86 * x^3/[2,2,2]) + (x^8/[2,2,4,4] + 2 * x^12/[2,4,4,6] + 4 * x^16/[2,4,6,8] + 6 * x^10/[2,3,4,5] + 10 * x^7/[2,2,3,4] + 13 * x^6/[2,2,3,3] + 12 * x^10/[2,2,4,6] + 50 * x^7/[2,2,3,4] + 44 * x^6/[2,2,2,4] + 108 * x^5/[2,2,2,3] + 80 * x^4/[2,2,2,2]) - (2 * x^20/[2,4,5,6,8] + 2 * x^25/[2,4,6,8,10] + 2 * x^13/[2,2,4,4,6] + 5 * x^15/[2,3,4,5,6] + 10 * x^10/[2,2,3,4,4] + 8 * x^12/[2,2,3,4,6] + 24 * x^9/[2,2,3,3,4] + 5 * x^9/[2,2,2,4,4] + 10 * x^13/[2,2,4,4,6] + 22 * x^17/[2,2,4,6,8] + 26 * x^11/[2,2,3,4,5] + 38 * x^8/[2,2,2,3,4] + 30 * x^7/[2,2,2,3,3] + 20 * x^11/[2,2,2,4,6] + 81 * x^8/[2,2,2,3,4] + 52 * x^7/[2,2,2,2,4] + 90 * x^6/[2,2,2,2,3] + 33 * x^5/[2,2,2,2,2]) + (2 * x^30/[2,4,6,6,8,10] + 2 * x^16/[2,2,4,4,4,6] + 2 * x^36/[2,4,6,8,10,12] + 4 * x^20/[2,2,4,4,6,8] + x^18/[2,2,4,4,6,6] + 4 * x^21/[2,3,4,5,6,7] + 6 * x^14/[2,2,3,4,4,5] + 8 * x^15/[2,2,3,4,4,6] + 11 * x^12/[2,2,3,3,4,4] + 2 * x^11/[2,2,2,3,4,4] + 6 * x^15/[2,2,3,4,4,6] + 14 * x^19/[2,2,3,4,6,8] + 8 * x^13/[2,2,3,3,4,5] + 4 * x^10/[2,2,2,3,3,4] + 8 * x^21/[2,2,4,5,6,8] + 8 * x^26/[2,2,4,6,8,10] + 6 * x^14/[2,2,2,4,4,6] + 16 * x^16/[2,2,3,4,5,6] + 28 * x^11/[2,2,2,3,4,4] + 14 * x^13/[2,2,2,3,4,6] + 34 * x^10/[2,2,2,3,3,4] + 8 * x^10/[2,2,2,2,4,4] + 12 * x^14/[2,2,2,4,4,6] + 32 * x^18/[2,2,2,4,6,8] + 30 * x^12/[2,2,2,3,4,5] + 44 * x^9/[2,2,2,2,3,4] + 22 * x^8/[2,2,2,2,3,3] + 10 * x^12/[2,2,2,2,4,6] + 48 * x^9/[2,2,2,2,3,4] + 26 * x^8/[2,2,2,2,2,4] + 26 * x^7/[2,2,2,2,2,3] + 4 * x^6/[2,2,2,2,2,2]) - (2 * x^42/[2,4,6,7,8,10,12] + 2 * x^24/[2,2,4,4,5,6,8] + 2 * x^49/[2,4,6,8,10,12,14] + 2 * x^29/[2,2,4,4,6,8,10] + 2 * x^21/[2,2,4,4,4,6,6] + 4 * x^25/[2,2,4,4,6,6,8] + 4 * x^28/[2,3,4,5,6,7,8] + 4 * x^19/[2,2,3,4,4,5,6] + 4 * x^19/[2,2,3,4,4,5,6] + x^14/[2,2,2,3,4,4,4] + 6 * x^18/[2,2,3,4,4,4,6] + 14 * x^22/[2,2,3,4,4,6,8] + 4 * x^16/[2,2,3,3,4,4,5] + 4 * x^23/[2,2,3,4,5,6,8] + 4 * x^28/[2,2,3,4,6,8,10] + 2 * x^16/[2,2,2,3,4,4,6] + 2 * x^13/[2,2,2,3,3,4,4] + 6 * x^31/[2,2,4,6,6,8,10] + 4 * x^17/[2,2,2,4,4,4,6] + 6 * x^37/[2,2,4,6,8,10,12] + 10 * x^21/[2,2,2,4,4,6,8] + x^19/[2,2,2,4,4,6,6] + 6 * x^22/[2,2,3,4,5,6,7] + 10 * x^15/[2,2,2,3,4,4,5] + 6 * x^16/[2,2,2,3,4,4,6] + 9 * x^13/[2,2,2,3,3,4,4] + 4 * x^12/[2,2,2,2,3,4,4] + 4 * x^16/[2,2,2,3,4,4,6] + 18 * x^20/[2,2,2,3,4,6,8] + 8 * x^14/[2,2,2,3,3,4,5] + 6 * x^11/[2,2,2,2,3,3,4] + 6 * x^22/[2,2,2,4,5,6,8] + 6 * x^27/[2,2,2,4,6,8,10] + 4 * x^15/[2,2,2,2,4,4,6] + 15 * x^17/[2,2,2,3,4,5,6] + 24 * x^12/[2,2,2,2,3,4,4] + 6 * x^14/[2,2,2,2,3,4,6] + 12 * x^11/[2,2,2,2,3,3,4] + 5 * x^11/[2,2,2,2,2,4,4] + 4 * x^15/[2,2,2,2,4,4,6] + 14 * x^19/[2,2,2,2,4,6,8] + 10 * x^13/[2,2,2,2,3,4,5] + 16 * x^10/[2,2,2,2,2,3,4] + 5 * x^9/[2,2,2,2,2,3,3] + 8 * x^10/[2,2,2,2,2,3,4] + 4 * x^9/[2,2,2,2,2,2,4]) + (4 * x^56/[2,4,6,8,8,10,12,14] + 2 * x^34/[2,2,4,4,6,6,8,10] + x^24/[2,2,4,4,4,4,6,6] + 4 * x^64/[2,4,6,8,10,12,14,16] + 2 * x^40/[2,2,4,4,6,8,10,12] + 4 * x^28/[2,2,4,4,4,6,6,8] + 4 * x^32/[2,2,4,4,6,6,8,8] + 2 * x^29/[2,2,4,4,5,6,6,8] + 2 * x^34/[2,2,4,4,6,6,8,10] + 4 * x^26/[2,2,3,4,4,5,6,8] + 2 * x^26/[2,2,3,4,4,5,6,8] + 2 * x^31/[2,2,3,4,4,6,8,10] + 2 * x^23/[2,2,2,3,4,4,6,8] + 2 * x^43/[2,2,4,6,7,8,10,12] + 2 * x^25/[2,2,2,4,4,5,6,8] + 2 * x^50/[2,2,4,6,8,10,12,14] + 2 * x^30/[2,2,2,4,4,6,8,10] + 2 * x^26/[2,2,2,4,4,6,6,8] + 4 * x^29/[2,2,3,4,5,6,7,8] + 6 * x^20/[2,2,2,3,4,4,5,6] + 2 * x^20/[2,2,2,3,4,4,5,6] + 2 * x^15/[2,2,2,2,3,4,4,4] + 2 * x^19/[2,2,2,3,4,4,4,6] + 8 * x^23/[2,2,2,3,4,4,6,8] + 2 * x^17/[2,2,2,3,3,4,4,5] + 2 * x^24/[2,2,2,3,4,5,6,8] + 2 * x^29/[2,2,2,3,4,6,8,10] + 2 * x^17/[2,2,2,2,3,4,4,6] + 2 * x^14/[2,2,2,2,3,3,4,4] + 4 * x^32/[2,2,2,4,6,6,8,10] + 2 * x^18/[2,2,2,2,4,4,4,6] + 4 * x^38/[2,2,2,4,6,8,10,12] + 6 * x^22/[2,2,2,2,4,4,6,8] + 2 * x^23/[2,2,2,3,4,5,6,7] + 4 * x^16/[2,2,2,2,3,4,4,5] + x^14/[2,2,2,2,3,3,4,4] + 2 * x^13/[2,2,2,2,2,3,4,4] + 6 * x^21/[2,2,2,2,3,4,6,8] + 2 * x^15/[2,2,2,2,3,3,4,5] + 2 * x^12/[2,2,2,2,2,3,3,4] + 4 * x^18/[2,2,2,2,3,4,5,6] + 6 * x^13/[2,2,2,2,2,3,4,4] + x^12/[2,2,2,2,2,2,4,4]) - (2 * x^36/[2,2,4,4,5,6,6,8,8] + 2 * x^41/[2,2,4,4,6,6,8,8,10] + 2 * x^57/[2,2,4,6,8,8,10,12,14] + 2 * x^35/[2,2,2,4,4,6,6,8,10] + 2 * x^65/[2,2,4,6,8,10,12,14,16] + 2 * x^41/[2,2,2,4,4,6,8,10,12] + x^33/[2,2,2,4,4,6,6,8,8] + 2 * x^27/[2,2,2,3,4,4,5,6,8] + 2 * x^24/[2,2,2,2,3,4,4,6,8] + x^30/[2,2,2,3,4,5,6,7,8] + 2 * x^21/[2,2,2,2,3,4,4,5,6] + x^16/[2,2,2,2,2,3,4,4,4]))^-1; Growth rate: 1.6966920560872130213652866737221236251 Perron number: yes Pisot number: no Salem number: no