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Introduction 

This paper is the first of  two papers dealing with compactifications of the period 
space of Enriques surfaces which are of  geometric intcrcst. The motivation for 
this work comes from two origins. One is the work of Shah [24] on projective 
degenerations of Enriques surfaces. The other is the work of Looijenga [14, 15] 
on new compactification techniques for locally symmetric varieties. Shah's paper 
can be interpreted as dealing with the moduli aspect (it is phrased in terms of 
Mumford's  geometric invariant theory [16]), whereas Looijenga's work refers to 
the period space aspect. Our ultimate aim then is to describe a compactification 
of the period space of Enriques surfaces which accounts for Shah's results. This 
turns out to be a normalized blow-up of the Satake-Baily-Borel compactification 
along the closure of the divisor describing periods of  'special' Enriques surfaces 
(see w for the notion of a 'special' Enriques surface). 

The period space which we use is of  the form D / F  where D is a bounded 
symmetric domain of type IV and dimension 10 and F is some arithmetic group 
(see w Such a situation also occurred in the work of Horikawa [11, 12] and 
Namikawa [17] on Enriques surfaces. It should be pointed out, however, that 
our group is smaller than theirs. The reason is that we wish to take into account 
the specific geometric setting of Shah's approach i.e., we think of our Enriques 
surfaces as being endowed with an (almost) polarization (of degree 2), which 
realizes the K3 cover as the minimal resolution of a branched double cover 
of Y',0 = p1 x P~ or a quadratic cone ~ c p3. The degree of the resulting 

map between the two spaces, 27 �9 17 - 31 (w expresses the fact that a 'general' 
Enriques surface (in the sense of [2]) can be given, up to automorphisms, an 
(almost) polarization of degree 2 in 27 �9 17 - 31 different ways. We then expect 
this geometric background to be at least partially reflected in, for instance, the 
Satake-Baily-Borel compactification of the period space ([21, 22] and [1]). We 
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refer to w 5 for the first relation. Indeed, in part  I we shall confine ourselves 
to this Satake-Baily-Borel compactification, postponing a more refined analysis 
of  the results of  Shah in terms of the period space to part  II. We remark 
here that it is easily deduced from Shah's work that we should be looking 
for a compactification of the period space which is actually bigger than the 
Satake-Baily-Borel compactification (and yet not of toroidal type). 

In w 1 we collect some definitions and notations. In w 2 we give a description 
of the period space as a quotient of a bounded symmetric domain of type IV by 
a certain arithmetic group. 

To determine the boundary components of  the Satake-Baily-Borel compacti- 
fication we need some arithmetical results, due to Looijenga, which are stated in 
w 3, as well as several corollaries. 

Then in 34 we actually compute the boundary components. An important 
tool here is Vinberg's theory of  reflection groups in hyperbolic space [26]. The 
incidence relations between the boundary components is described by the diagram 
in (4.4). 

Finally, in w 5 we indicate a relation between Shah's list of degenerations and 
our list of boundary components. Our method involves the use of 'stable K3 
surfaces' as introduced by Friedman [9, 10] and (part of) the Clemens-Schmid 
exact sequence. 

I Notations and preliminaries 

1.1 I f  A is a Z-module of finite rank, then we denote by Af the quotient by 
its torsion subgroup. A lattice is a free Z-module of  finite rank endowed with 
an integral symmetric bilinear form, which we usually denote by ( , ). If  A 
is a lattice and for all x E A (x, x) is even, then the lattice A is called even; 
otherwise it is called odd. The lattice A is called positive (resp. negative) definite 
if (x, x) > 0 (resp. (x, x) < 0) for all x e A - {0}. The signature of A is the pair 
of  integers (p, n) where p (resp. n) is the maximal possible rank of a positive 
(resp. negative) definite sublattice of  A. We have a natural homomorphism 
(the correlation morphism) from A to its dual A* := Homz(A,Z  ) defined by 
x ~ (x, - ) .  If  this map is injective we say that A is nondegenerate. In this case A 
is identified with a submodule of  A'. The bilinear form on A extends to A* and 
although it is usually not Z-valued we nevertheless usually refer to A* with this 
bilinear form as the dual lattice. In case A(~ 0) is actually identified with A" we 
call A unimodular (equivalently I det((vi,vj))l = 1, where v 1 . . . . .  v m is a basis of 
A). By A(n), for n 6 N, we mean the Z-module A with bilinear form n( , ). A 
sublattice K c A is called isotropic if  the restriction of the bilinear form to K 
vanishes identically. The sublattice K is called primitive if A / K  is torsion free. 
For a lattice A we denote by O(A) the orthogonal group of A and by Ira(A) the 
set of primitive rank m isotropic sublattices of  A. For A nondegenerate we set 

O*(A) := {g ~ O(A) :g acts as identity on A*/A}. 

1.2 A K3 surfaces is a compact connected complex analytic surface X with 
dim H l (X, (_9) = 0 and trivial canonical bundle. An Enriques surface is a compact 
connected complex analytic surface Y such that dim H 1 (Y, (_9) = 0, K v 7 ~ 0 and 
2Ky --~ 0, where K r denotes the canonical divisor. It is also characterized by the 
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fact that its universal (double) cover is a K3 surface. For  a K3 surface X (resp. 
Enriques surface Y) we have H 2 ( X ; Z )  ~ Z 22 (resp. H 2 ( Y ; Z )  ~ z l ~  Z2) and 

the cup product  provides H 2 ( X ; Z )  (resp. H2(Y;Z)f) with the structure of  an 
even unimodular  lattice of  signature (3, 19) (resp. (1, 9)). In fact we have 

H 2 ( X ; Z )  ~ H e3 @ E8(--1) ~2 
and 

H2(y;z) f  ~ H @ E8(--1 ) 

(as lattices), where we have fixed the following notation. 
H = Z e @ Z f  with (e,e) = (f, f )  = (e, f ) -  1 = 0, the hyperbolic plane. 

Notat ions  like ~, f or e', f '  etc. will also be used occasionally to denote  the 
s tandard basis of  H or H(n). 

E8: root lattice for Dynkin  d iagram E 8 

(11 (13 (14 (15 (16 (17 (18 

I C~2 

Fig. 1. 

By ~1 . . . . .  ~8 E E 8 we denote the basis o f  E 8 such that  (~i, %) = bij. 
We set: 

L = H ~3 @ E8(-1)  .2, and call it the K3 lattice 
and 

M = H @ E8(--1), the Enriques lattice. 

1.3 Involutions induced by (or related to) the covering t ransformat ion  of  the 
universal cover ~ : X ~ Y of an Enriques surface Y will usually be denoted by 
I or I ' .  Write L = M ~ M @ H and let I : L --~ L be the involution defined by 

I : (m, m', h) ~-~ (m', m, -h). 

This definition is mot iva ted  by a result o f  Hor ikawa  [11], Theorem 5.1, which 
states that there exists an isometry # : H 2 ( X ; Z )  --~ L satisfying I o # = # o I ' .  It  
gives rise to the following commuta t ive  d iagram 

H 2 ( X ; Z )  ~, L (m,m,O) 
T T 

H 2 ( Y ; Z ) f  ~) M m 

Fix the following notat ion:  

L+= {x E L : I (x)= x}=  {(m,m,O) E M ~ M  ~ H  : m E  M};  

L _ = { x E L  : I ( x ) = - - x } = ( ( m , - m , h ) E M ~ M @ H : m E M ,  hEH) .  

We have identifications 

~+ : L+ --~ M(2) (m, m, 0) ~ m, 

e_ : L_ --* H ~ M(2) (m, - m ,  h) ~-~ (h, m). 
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In general, a superscript + (resp. - )  or subscript + (resp. _) will be used to denote 
the invariant (resp. anti-invariant) part with respect to some involution (usually 
I, I* etc.). 

1.4 The quotient L ' / L ( - ~  M(2)*/M(2)) is a Z/2-rnodule of rank 10 and 
inherits a Z/2Z-valued bilinear form ( , )' given by 

(x + L  ,y  + L _ ) '  := 2(x,y) mod2 

and a nondegenerate quadratic form q, 

q(x + L_) = (x,x) mod2, 

satisfying 

q(~ + y) = q(~) + q(y) + (x, y)' (~ = x + L , y = y + L ). 

Denote by O(L*_/L,q))  (or O(q) for short) the group of automorphisms of 
L ' _ / L  which respect q. It follows from a result of Nikulin [18], Theorem 1.13,2, 
that L is determined up to isometry by its signature, which is (2,10), and its 
quadratic form. Moreover, the natural maps 

O(L+) ~ O(L*+/L+, q) 

and 
O(L ) --* O(L*_/L ,q) 

are surjective ([18], Theor. 1.14,2) and from this it follows that every g E O ( L )  
(resp. g E O(L+)) extends to an element of O(L) commuting with the involution 
([19, Prop. 1.1). Note that L*+/L+ --~ L L / L .  

2 Description of the period space 

Let Y be an Enriques surface and let n : X --~ Y be its universal K3 cover. 
According to results o f  Horikawa [11] (see also [3], Chap. VIII w 18) we are 
always in one of the following two situations. 

(1) There exists an I-invariant bihomogeneous polynomial of bidegree (4,4) with 
zero-set B such that X is the minimal resolution of the double covering of ~0  
ramified over B. We refer to this case as the general case (see [loc. cit.] and the 
introduction of [24]). 
(2) There exists an I-invariant polynomial of degree 4 in z 0, z 1, z 2, z 3 defining 

a curve B on the quadratic cone Z~ = {z0z3 = z~} ~ p3, such that X is the 

minimal resolution of the double cover of  ~ ramified over B. We refer to this 
case as the special case. 

These two kinds of realizations suggest to study Enriques surfaces together with 
an almost polarization o f  degree 2 (i.e. a line bundle of  self-intersection 2, which 
intersects any curve nonnegatively). In the general case above, the two rulings of 
~ 0  define two elliptic pencils on X and the 'sum' of these gives rise to an almost 

polarization of degree 2 on Y. In the special case, the ruling on ~ 0  defines 
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an elliptic pencil on X and over the vertex of ~0  we find two nodal curves. 
The 'sum' gives rise to an almost polarization of degree 2 on Y. In particular, 
Horikawa's results show that any Enriques surface can be endowed with an 
almost polarization of  degree 2. 

2.1 Remark. We can also exploit the geometry of  H2(Y;Z) and H2(X;Z) to 
prove the existence of an almost polarization of degree 2 on Y ([25], p. 35 -  37). 

The 'splitting' of the polarization on X we observed is determined by the 
almost polarization on Y. To make this more precise, let r/r be an almost 
polarization of degree 2 on Y. Choose isometries q~y : H2(y;z ) f  ~ M and 

(~x :H2(X; Z) ~ L such that the following diagram commutes: 

H2 (X; Z) 

~z" T 

H2(y ; Z)f 

and such that q~y(r/r) = e + f .  Except for 
Horikawa's result mentioned in (1.3). As 
following. We have O(M) = {_1}. W(M), 

~bx 
L 

~Y 
, M 

the last condition, this follows from 
for the last condition, we note the 
where W(M) is the group generated 

by reflections in (-2)-vectors (see e.g. [26], p. 340-341). A Dynkin diagram for 
W(M) is given on p. 347 of [loc. cit.]. Any vector of  norm 2 is equivalent to one 
contained in a fundamental domain for W(M). Such a vector is a nonnegative 
linear combination of  the weights corresponding to a root basis. It is easily 
checked that there is only one possibility, i.e. O(M) acts transitively on the set 
of elements of norm 2 in M. Moreover, since O(M(2)) ~ O(M(2)'/M(2)) is 
surjective, see (1.4), any g E O(M) can be lifted to a ~ E O(L) commuting with 1. 

For later purposes we state here the following definition. 

2.2 Definition. A pair �9 = (q~x, ~br) of isometries as above will be called a 
marking for (Y,~/Y). 

2.3 Proposition. I f  (Y, rIy) is general, then the elliptic fibrations are given by 
I~b~l(e,e,0)l and I~xl(f , f ,0)l  . 

Proof The orthogonal complement (e + f ) l  splits as A I ( - 1 ) ~  Es(-1).  If 
e + f = a + b with a 2 = b 2 = (a,b) - 1 = 0, then it is easily verified that 
a -  b spans the Al(--1)-summand which implies {a,b} = {e,f}. So, in fact e + f  
determines the set {e,f}. Apply this to the images of the two elliptic pencils on 
X. [] 
In the special case, the linear system I~-l(t/,r/,0)l is of the form 1 2 E ' + - 4 +  ,4'[, 

where E '  is elliptic and A, A are nodal curves arising from the vertex of ~0. 
Reasoning as in the proof of  (2.3) yields in this case: 

2.4 Proposition. I f  (Y, fly ) is special, -s is an elliptic curve of the elliptic pencil, 

A, A the two nodal curves, then {(e, e,0), (f, f,0)} = {t~([E"]), qS([E + A + A ])}. 

2.5 Remark. In [7], Proposition 1.6.1, Cossec shows that O(H) ~ Es(-1))  acts 
transitively on the set of exceptional sequences of  length r < 9 (an exceptional 
sequence of  length r > 1 being a sequence (fl . . . . .  fr) of r > 1 isotropic vectors 
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with (fi, f j) = 1 for i =p j). Implicit in our argument above is a proof for the case 
r = 2 .  

2.6 Remark. The fact that an element of square 2 determines its decomposition 
as a sum of two isotropic elements having inner product 1 shows that our notion 
of an almost polarized Enriques surface of degree 2 is equivalent to Dolgachev's 
notion of an H-marked Enriques surfaces [8]. 

Next we define the period point of an almost polarized Enriques surface of degree 
2. Let (Y,r/y) be an almost polarized Enriques surface of degree 2 and let cI) be 
a marking. Choose co x E H2(~ 2) - {0}. As h~ = 0, we have lco x = -cox 
and therefore cox E H2(X; C)_. The Hodge-Riemann bilinear relations then show 
that ~bx,c(cox) determines a point in 

f ~  :----- {co E P(L_ | C) : (co, co) =-- 0, (co, ~)  > 0}, 

independent of the choice of cox. If (I)' --- (q~, q~'y) is another marking, then we 
find on the level of M: 

(#r )  - t  oq~r ~ {g ~ O(M) : g ( e + f )  = e + f }  

and on the level of L: 

(CYx) -1 o49 x ~ {g ~ O(L) : g o I = I o g ,  g(e + f , e  + f ,O) = (e + f , e  + f ,O)}. 

To get rid of  the ambiguities, due to choosing a marking, we therefore divide out 
by the group F, where F is the image of 

{g E O(L) : g o I  = I o g ,  g ( e + f , e + f , O )  = ( e + f , e + f , O ) }  

in O(L_). 

2.7 Proposition. 
induced map on 

This image F is precisely the set o f  all g E O(L_) such that the 

L'_/L_ = 1 H ( 2 ) / H ( 2 ) ~  ~ E s ( - 2 ) / E 8 ( - 2  ) 

respects the decomposition in two summands. 

Proof. The isomorphism L+/L+ ~- L*_/L_ 0.4) arises in the following way. 
The correlation morphism L - ,  L" induces isomorphisms L/L+ ~ L --~ L+/L+ 
and L/L+ ~ L_ ~ L'_/L_ and by composing we find L+/L+ ~ L*_/L_. If we 
identify L+/L+ and L'_/L_ with 

~H(2)/H(2) ~ ~ E s ( - 2 ) / E s ( - 2  ) 

in the obvious way, then the isomorphism L+/L+ ~ L'__/L_ is just the identity. 
Suppose now that g E O(L) is such that 

g o l = I o g  and g ( e + f , e + f , O ) = ( e + f , e + f , O ) ,  

then the restriction glL+ stabilizes 

e + f ~ L+ = H(2) ~ E8(-2  ) 



Compactifications of the period space of Enriques surfaces 7 

and 
( e + f ) •  = Z ( e - f )  ~ E8(-2  ) ~ A1(-2 ) @ E8(--2 ). 

It therefore stabilizes the Al(-2)-summand. Using the above remarks about the 
identifications of L+/L+ with L*_/L_ we conclude that glL_ belongs to the set 
mentioned in the lemma. 

Conversely, let g E O(L_) respect the decomposition of L*_/L_. By composing 
g, if necessary, with the involution p on L_ defined by: p is the identity on the 
summands H and E8(-2  ) and p interchanges the two vectors e' and f '  in the 
summand H(2), we may restrict our attention to g's which induce the identity 

on ~H(2)/H(2). Note that p is easily seen to extend to an involution on L which 

commutes with I and fixes (e + f ,  e + f ,  0). The surjectivity of the map 

O(E8( -2 ) ) - - -~O(~Es( -2 ) /Es ( -2 ) ,q  ) 

(see [2], p. 388) and the obvious injection O(E8(-2)) ,--* O(L_) allow us to change 
g in such a way that the induced map on L*_/L_ is the identity (again, elements 
of O(E8(-2)) ~ O(L_) extend to elements in O(L) commuting with I and fixing 
(e + f ,  e + f ,  0)). Now lift the result to L (use (1.4)). [] 

2.8 Remark. Contrary to what one might hope, F does not equal 

g ~ O(L_) :g stabilizes ~ ( e ' - f ' ) + L  . 

To see this, consider the following Siegel-Eichler transformation: tp = Ed+f,+e21~l,.2 

1 , f l  lp(y) = y + (y, ~N1)(e + + c~2) 

1 ( 1 )  2 1 
2 ~1 ( Y , e ' + f ' + ~ e ) ( e ' + f ' + ~ 2 ) - ( Y , e ' + f ' + ~ 2 ) ~ l .  

Then ~o 6 0 ( L _ ) ,  ~p(d) = e' + 2(e' + f '  +cr 1 and ~0(f') = f '  + 2(d + f '  +ct2)-~ 1 
from which it follows that ~o stabilizes ~ (e' - f ' )  + L and ~o ~ F. 

The image of (~x,c(~Ox) in I ) / F  is now well-defined (the period point) and we 
obtain the period map P : M E ~ Y~_/F, where M~ is the set of isomorphism 
classes of almost polarized Enriques surfaces of  degree 2. 

2.9 Remark. The space f ~  consists of two disjoint (isomorphic) connected 
complex manifolds of dimension 10, both of which are isomorphic to a bounded 
symmetric domain of type IV. The group F acts properly discontinuously 
on ~_,  which implies that the quotient O _ / F  inherits the structure of a 
normal analytic space by Cartan's result [5]. The space f 2 / F  is connected as 
(-1)  e �9 1H~2)~Es~_2) E F interchanges the two components. The analytic structure 
on Y~_/F even underlies the structure of a quasi-projective variety [1]. 

To state the appropriate Torelli theorem, we first make a definition. 
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2.10 Definition. For any subset V c L with V 2 "( 0 f o r  all v E g define 

D v : = { c o E f ~ _  :(co, v ) = 0  for s o m e v ~ V } .  

I f  V is a union of  finitely m a n y  F-orbits,  then D V is locally finite and Dv/F is a 
Weil-divisor in f2_/F.  As we shall see later (see 3.6), the set 

R_ = {x ~ L_ : (x ,x )  = - - 2 }  

satisfies this condition. In fact, R_ is a single F-orbit ,  which means that  DR_IF 
is irreducible. This is an analogue of  [17], Theorem (2.13). The Torelli theorem 
in our  setting can now be stated as follows (see [11, 12] and [25]): 

2.11 Proposition. The map P establishes a bijection 

M E ~ ( n  -DR_)/F.  

2.12 Remark. Hor ikawa  [11, 12] and N a m i k a w a  [17] consider f~_/G, where 
G is the set o f  all g ~ O(L_) such that  g is the restriction of  an element of  
O(L) which commutes  with I.  Actually, N a m i k a w a  shows that  G = O(L_). It  is 
s t raightforward to compute  the degree of  the natural  m a p  f2_ /F  ~ ~ / O ( L _ ) ,  
i.e. the index [O(L_) : F]. As the m a p  O ( L )  --~ O(L*__/L_) is surjective, see (1.4), 
we have 

[O(L_) :F]  = (O(L'__/L_) : I m a g e  (F --~ O(L;/L_))] 

and by [2], p. 388, we find that  this last index equals 

(221 - 35 �9 52 . 7 . 1 7 . 3 1 ) / ( 2 . 2 1 3  �9 35 . 52. 7) = 27 �9 17- 31, 

which of  course agrees with the number  of  inequivalent realizations of  an 
Enriques surface, 'general '  in the sense of  [loc. cit.], as a 'double plane'  ([loc. cit.], 
Theor.  3.9). 

3 Arithmetical results 

We collect several ar i thmetical  results, which we shall use in later paragraphs ,  
and some o f  their consequences. 

3.1 Proposition. Let A = H ~ H(2) with basis e, f  c H,e ' , f '  E H(2). Suppose 
v E A is primitive. Then: 

V,~o(A) e + k f  if  (v,v) = 2k and v q~ 2A* 

v,,,O(A) e ' + k f '  if  (v ,v )=4k and v E 2 A ' .  

Proof. Let 

} M := ~ M2(Z) :c  even . 
c 

This is a lattice with quadrat ic  form given by the determinant .  (Note that  the 

associated bilinear fo rm assumes its values in �89 
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Set B :=  SL2(Z) f3 M and let G be the group of  automorphisms of  M 
generated by B x B, where the first factor acts on the left and the second on the 
right, and the involution which sends 

to 

This group leaves the determinant det : M ~ Z invariant. We have an isometry 
A ~ M(2) defined by 

( x,)y 
x e + y f  + x ' e ' + y ' f ' ~  -2y '  w 

Let v ~ A be primitive and suppose it corresponds to 

( a ~ )  cr= c M .  
c 

I f  a is not  primitive in M 2(z), then a, b, d are even and �89 is odd. I f  we first 

apply to v the au tomorphism of  A which interchanges e' and f ' ,  then a changes 
to ( 1) 

a --~c 

- 2 b  d " 

Therefore we may assume that  a is primitive. Let e 1, e 2 be the standard basis o f  
Z 2. We distinguish between 2 cases. 

1. a(e 1 + 2Z 2) contains a primitive vector 
In this case there exists a primitive u 1 E e I + 2 Z  2 such that a(Ul) is primitive (and 

a(u 0 ~ e 1 +2Z2).  Choose u 2, v 2 such that (Ul, u2) and  (v I = a(Ul),V2) are oriented 
bases. Define U, V E B by: U(ei) = u i, V(ei) = v i (i = 1,2). Then V - l a U  looks 
like 

0 * (V-laUet = V-laul  = el)" 

It is clear that  
1 0 (1o .) 

So v ~O(A) e + kf  for some k E Z. 

2. a(e 1 + 2Z 2) does not contain a primitive vector. 
As a is primitive, a (Z  2) does contain a primitive vector. I t  follows that there 
exists a primitive u 1 a el + 2Z 2 with ~r(ul) = 2v 1, v~ primitive. 
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a) vt ~ Ze 1 + 2Z 2. 
Define U and V as in (1.). Then V - ~ a U  is of the following type 

(o ~ :) 
and we get for b even: 

( ~  b ) , , ~  ( ~  ~ )  (multiply on the rigbt by ( ~  i ) )  

and 

H. Sterk 

2 1 

( g  1 ) , , ~ 6 ( 1 7 2 d  1 )  (multiply on the right by ( 1 2  10)) ,  

If d is even: 

-2d 01) (multiply on the left by ( 1  d 0 ) ) .  

If d is even: 

(0 :)_o (~ ~ ~) (~ ,~ ,on~~,  (~0 ~)) 
and so V "~o~^) e' + k f '  for some k 6 Z. 

So v "~o(^} e' + d r '  in this case. If d is odd: 

-2d 0 )  ' 

According to case (I.) we then have v "~o~A) e + k f  for some k. 

b) v l S z e ~ + 2 Z  2. 
In this case the second coordinate of v I is odd. Choose a vector v 2 such that 
the second coordinate of v 2 is even and (v2,v 0 is a positively oriented basis. 
Define V ~ B by Ve 1 = v2, Ve 2 = vl, U E B by Ue i = ui(i = 1,2). Then 
V - l a U ( e l )  = V-l(2vx) = 2e 2, so V - % ' U  is of the form 

(0 ~ ~)-G(~ ~) 
Now d is odd because ~r(Z 2) contains a primitive vector. But then we are back 
in case (1.). For b odd: 
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I f  d is odd:  

By case (1.): v ~O(A) e + k f .  [] 

3.2 Corollary. Suppose v E A is primitive. Then 

e + k f  i f  (v,v) = 2k and 

v ~O'(A) e' + k f '  or 

ke' + f '  i f  ( v , v ) = 4 k  and 

v q~ 2A' .  

v E 2A*. 

Proof  This is an immediate consequence of  (3.1) and the fact that the involution 
determined by 

e'~-+ f ' , f '~- -~  e',e~--~ e , f  ~ f 

generates the quotient O(A)/O' (A) .  []  

3.3 Corollary. Let  P be an even nondegenerate lattice and let N :=  A @ P. I f  
v, w E N are primitive such that 

(v, v) = (w, w), 

(v, N) = (w, N) (= :pZ ,  p > 0), 

v - w mod  pN,  

then v "~o'(N) w. 

Proof  In two steps. 

Step I. 3j  E O ' (N)  such that ( j (v ) , f )  = p. The previous corollary implies the 
existence of  a Jl E O ~ (A) ___ O" (P) such that v' :=  Jl(v) E H ( 2 ) ~  P or v' E H ~ P. 
In the first case we choose y ~ H(2) ~ P such that  (v', y) --- p. Consider the Siegel- 
Eichler t ransformation Ee,y , defined by 

1 
Ee,y(x ) = x + (x ,y)e  - -~(y,y)(x,e)e - (x,e)y. 

One easily verifies that  Ee,yO*(N ). Now Ee,y(v' ) = pe + v' and therefore 

(Ee,y(V'),f) = p. In the second case we choose y E H @ P with (y,v') = p. 

Let v" :=  Ee,,y(v') = v' + pe'. I f  the A-component  o f  v" is kx  primitive vector, 

then k[p. Applying (3.1) again yields: 3j2 E O*(A) such that for v" :--- j2(v") we 
have: v"  E H ( 2 ) ~ P ,  and this brings us back to the first case, or the A-component  
o f v "  is o f  the form k ( e + I f )  for some I E Z. Then ( f , v ' )  = k, so plk. We conclude 
p = k .  

Step 2. Conclusion. By step 1 we may assume (v, f )  = (w, f )  = p. Now v - w  = pu 
(some u E N) and of  course (u, f )  = 0. Then for ,p :=  Ef, u we find: 

,p(v) = v - ( f  , v ) u m o d Z f  =-- w m o d Z f .  

I f  we write ,p(v) = w + Xf, then from (w,w) = (v,v) = 0p(v),,p(v)) = 
(w + 2f,  w + X f )  = (w, w) + 22p we conclude that  2 = 0. []  
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Let 
S :=  {~ E L : (~,~) = - 2 ,  (~,I~) = 0,~ + 1 ~  = (f  - e , f  - e , 0 ) }  

1 and let S_ be the or thogonal  projection o f  S in L'_. If  ~ E S, then i(~ -- 1~) is 

the or thogonal  projection o f  c~ in L L. Write ~ = (a, b, h) ~ M ~ M @ H, then we 
1 1 have a + b = f - e and so ~ (a - b) = ~ Or - e) - b. We therefore find: 

1 1 - a), h / -~(a-  Ia) = ( ~(a-b) , -~(b  
I 

) = ( f - - e ) , ~ ( e - f ) , O  +(-b ,b ,h )  ~ ~ f - e , e  

3.4 Lemma. Under the action o f  F on L ' ,  S is precisely the F-orbit of  

~(f - e , e -  f,O). 

Proof Let ~ E S_ and suppose it is the or thogonal  projection o f  ~ E S. Then 
we have 

(e_,c~_) = ~(c~,e) + (I~,I~) = --1. 

Moreover (e_, (e , -e ,0) )  -- l (mod 2) (use e_ E ~ ( f - e , e - f , O ) + L _ ) .  As (c~_,2e) = 
1 2 and 2e_ ~ L_  we conclude:  (e_,L_)  = Z. Clearly e_ and ~ ( f - e , e - f , O )  have 

1 the same reduction in L ; / L _ ,  so (3.3) implies: c~_ "~o'(L_) g (f  - e, e -- f ,  0), which 

suffices since O ' (L_)  c F. 

Conversely, let 8 -  = g(�89 ( f -  e, e -  f ,  0)) for some g ~ F. By (2.7) there exists 

an extension ~" ~ O(L) such that  ~(e+f ,e+f ,O)  = (e+f ,e+f ,O)  and ~'oI = Io~'. 
Consider ~ :=  (f, f ,  0) - ~(e, f ,  O) E L. Then B + 1 8  = ( f - e , f - e , O ) ,  (B, IB) = 0 
and (8,B) = - 2 ,  so/~ ~ S. []  

3.5 Proposition. Let (Y, tly) be an almost polarized Enriques surface of  degree 
2 and let q~ be a marking. Then: 

(Y, tly) is special ~*.3cc E PicX with (e,c 0 = -2 ,  (e,I~ = 0 and 

~x(e + I'~) = +( f  - e , f  - e,O). 

Proof '=~': Clear f rom (2.4). '~=': Suppose ~ ~ P icX satisfies the above 
mentioned conditions. We may  assume that ~ is an effective class, say ~ = [D] 
where D > 0. Suppose (Y,r/r)  is 'general', so I r~ ' r ty I  maps X 2  : 1 onto  Y'.0. Then 

Iq~l(e, e,0)l and [q~l ( f , f ,0 ) l  correspond to two elliptic pencils IEI and IF] on X 
by (2.3). Clearly D + ID E [E - F[ (or ~ IF - El). So there exists a fibre E '  o f  

X ~ p  I 

and a F '  E IFI such that  F '  < E ' .  As ( F ' , F ' )  = 0, we must  have F' ,,~ rE' (some 
r E Q). But then 2 = (E, F) = r(E, E) = 0, a contradiction. []  



Compactifications of the period space of Enriques surfaces 13 

This proposit ion enables us to describe the 'special'  divisor in f2_/F  determined 
by the periods o f  special Enriques surfaces. Let (Y, th , ,~  ) be as usual. Choose 
co E H~ if2 2) - {0} and let c~_ E S_ be the or thogonal  projection o f  cr c S. I f  

(~-,q~x.c(co)) = 0, then also (c~,qSx,c(co)) = 0 and so ~bxl(~) C PicX. By (3.5) we 
conclude that (Y,r ly)  is special. In the terminology of  (2.10) we obtain a special 
divisor Ds_/F  which parametrizes (outside D R / F  ) periods o f  special Enriques 

surfaces. Lemma 3.4 implies that Ds_/F is actually irreducible. 

3.6 Remark. Corollary (3.3) implies that R_ (see (2.10)) is also a single F-orbit. 
To see this, let x 6 R_. Then surely 2Z c ( x , L )  as x 2 = - 2 .  Write x = a + b 

with a E H and b E H ( - 2 )  ~ E8(--2 ). Now a ~ 0, since otherwise 4Ix 2 = b 2. Let 

a = k~ with k E Z and c~ primitive. The integer k must be odd (otherwise 4ix 2) 
and so we find that (x, L )  = 2Z + kZ = Z. The rest of  the p roof  is left to the 
reader. 

We conclude this section with some results related to the natural map  
n I F  --4 f l_ /O(L_) .  

3.7 Proposition. { g ( e ' - - f ' }  : g E O ' ( L  )} = { g { e ' - - f ' )  : g C F} and the 
O(L_)-orbit o f  e' -- f '  consists o f  precisely four F-orbits. 

Proof  The first equality follows from the proof  of  (3.4). 
Let x be of  the form g ( e ' - f ' )  with g c O(L_), then (x, L_) = ( e ' - f ' ,  L_) = 2Z 

and x 2 = - 4 .  We obtain ~x + L_ E L*_/L_, with q(�89 + L_) = l mod2 .  U p o n  

writing ~x + L_ = x 1 + x2, with x 1 ~  n/FI and x2 e we 

distinguish two cases. 

Case A. q(x 0 = 0 m o d 2 ,  q(x2) = l mod2 .  Let ~ c E8(-2) ,  ~2 = --4, then, 
possibly after applying an element of  O(H(2)) x O(E8(--2)), we may assume that 

1 t 1 t 1 either 5e + L  or 5(e +~) equals i x + L _ .  I f y  E L , (y ,L_)  = 2Z, y2 = --4, then, 

by (3.3), y ~ r  ~ or y ~ r  e ' +  ~ if q(Yl) = 0 m o d 2  (where we have decomposed 
1 
5y + L ) .  Note that ~ and e' + ~ are not F-equivalent. 

Case B. q(xl) = l m o d 2 ,  q(x2) = 0 m o d 2 .  Proceeding as in A, we find 

x ~ r  e~ - f '  or x ~i- e' + f ' +  co, where co E E 8 ( - 2  ) satisfies co2 = - 8 .  
It is easily checked that no two elements o f  {~, e' + ~, e' - f ' ,  e' + f '  + co} are 

F-equivalent, but  that all belong to the O(L_)-orbit  o f  e' - f '  as there is only 
one O(H(2) @ Es(--2))-orbit of  (--4)-vectors in H(2) ~ E8( -2  ). [] 

According to [2], p. 393, nodal Enriques surfaces have their periods in the set 
Droots inL+" In fact, if Y is nodal with C ~ Y a nodal  curve, then g - l ( c )  = B+I(B) ,  

yielding a class b(= [B]) with b 2 = - 2 ,  (b, lb) = 0. The 2-form cox will 
be l b  and of  course _ L b -  lb. In terms of  L we are considering the set 

N :=  { b - I b  : (b, Ib) = 0, b 2 = -2} .  Conversely, suppose b E N with (b, cox) = O, 
then .b = [B] for some effective B and B + IB = g*(D) for some effective divisor 
D with D 2 = - 2 .  But this implies that Y is nodal. 

Let b -  lb ~ N. In particular, ( b -  Ib) 2 = - 4 ,  so b -  Ib is primitive in L_ 
and therefore (b - lb, L )  = Z or 2Z. If/~ ~ L ,  then (b - Ib,/~) = 2(b,//) c 2Z, 
so b - Ib ~ 2L'_ and an analysis as before shows that b - lb  = g(e' - f ' )  with 
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g E O(L ). Moreover, if b -  lb E N and g E O(L ), then using an extension 
"~ ~ O(L) of g satisfying ~ o I  = I o ~  we deduce that g ( b - I b )  E N and 
g(b - I b )  c { h ( e ' - f ' )  :h E O(L_)}. In conclusion, N equals the O(L_)-orbit of 
et __ f t .  

3.8 Proposition. a) Every nodal Enriques surface can be given a special almost 
polarization of degree 2. 
b) A 'general' nodal Enriques surface can be given both a special and a general 
almost polarization of degree 2. 

Proof. a) Consider p : f~_/F ~ ~2_/O(L_). Let [co] E Y~_/O(L_) correspond to 
a nodal Enriques surface, so (co, n) = 0 for some n E N. By applying an element 
of O(L_) we may assume n E S_. But then [co] is in the image of D s / F .  As 
I R / F ]  -- [R_/O(L)], we still have [c~] ~ DR_/F, so [col corresponds to a special 
Enriques surface. 

b) As the O(L_)-orbit of e ' - f '  strictly contains the F-orbit of e t -  f ' ,  
p-lp(Ds_/F) strictly contains Ds_/F. Therefore, if the period point (in F2/O(L_)) 
of  a nodal Enriques surface in sufficiently general, then it will also have a 
preimage outside Ds_ IF. [] 

4 The Satake-Baily-Borel compactification of ~_ /F  

In this paragraph we determine the boundary components of the Satake-Baily- 
Borel compactification f i / F .  Their incidence relations are described by the 
diagram in (4.4). The structure of the one-dimensional boundary components is 
given in (4.3.16) and (4.3.17). Before we start with the actual computations, let us 
recall the description of this Satake-Baily-Borel compactification in a somewhat 
larger setting. 

4.1 Let D be a bounded symmetric domain, i.e. D is a connected complex n- 
dimensional manifold such that: 

1. D can be embedded in C ~ as an open bounded set; 
2. every point in D is an isolated fixed point of an involution of / ) .  

Examples are the (generalized) upper half-space or a connected component of 

The (holomorphic) automorphism group of D acts transitively on D with 
compact isotropy groups and can be viewed as a union of connected components 
of the set of real points G(R) of some connected semi-simple linear algebraic 
group G defined over R. Suppose G is actually defined over Q and let F c G(Q) 
be an arithmetic group, meaning that F is commensurable with 0 -1GLm(Z) for 
some faithful representation Q: G --~ GL m defined over Q. D is then said to have 
a Q-structure. The group F is discrete in G(R) and acts properly on D, hence 
D/F is a (usually non-compact) analytic space in a natural way [5]. The domain 

/) is embedded as an open subset in its so-called compact dual/3,  a projective 

manifold. E.g. H c / - / =  pl (H : upper half-plane), 

n c ~ = {co e P ( L _  ~ C) : (co, co) = 0}. 
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The boundary ~?D of D in / )  decomposes into boundary components, the maximal 
connected complex analytic submanifolds of  D -  D. This decomposition is 
compatible with G. The boundary components correspond precisely to the 
maximal parabolic subgroups of G(R) via 

F (a boundary component) ~ N(F) = {g E G(R) : g(F) = F}. 

Just like D itself, these boundary components are bounded symmetric domains. 
A boundary component F is called rational if N(F) is defined over Q with respect 
to the Q-structure of  G. It then has a Q-structure and F(F) = Nr(F)/Zr(F ) is 
an arithmetic group of automorphisms of F. Now set 

:= D W U { F  : F is a rational boundary component}. 

The group F acts on this set and D can be given a topology (not the one induced 

by/ ) )  such that D / F  is a compact Hausdorff  space which contains D/F as a dense 

open set. The topology on D / F  underlies the structure of  a normal analytic space 
which extends the analytic structures on D/F and the strata F/F(F) (Cartan's 
result); this compactification is even projective. 

A simple example illustrating the above construction is the following. 

D = H c / ~ / =  p1, F = SL2(Z ). Now 

-- H u Q u {oo} = H u p1 (Q) 

and the topology (the horocycle topology) on H is generated by: 

1. the topology on H;  
2. sets of  the form { z E H ' I m z > r > 0 } U { o o } ;  
3. sets of  the f o r m { r } U { z E H  " l z - - a 1 < l a - - r l , a E H ,  R e a = r } w h e r e r E Q .  

The quotient kI/SL2(Z ) is isomorphic to p1. 
Let us describe the rational boundary components in our main example 

f l  c ~ .  The closure of a boundary component  F I of ~_ is of  the form 

Fl = P(Ic)  n ~_,  where I is a nontrivial isotropic subspace of L_ | R. Such 
a boundary component is rational precisely when I is defined over Q. As 
sgnL_ --- (2, 10) there are only two possibilities: either dim R I = 1 and F I is a 
singleton or dima I -- 2 and in this case F I c P(Ic) is a half-plane. In particular 

d i m c ( f i _ / F -  f~_/F) < 1. 

4.2 Zero-dimensional boundary components 

The zero-dimensional boundary components of the Satake-Baily-Borel compacti- 

fication ~ _ / F  (now F is the group we determined in (2.7)) are in 1 - 1  
correspondence with the F-orbits of  primitive isotropic sublattices of  rank one. 
In this subparagraph we compute the number of  these orbits, i.e. we compute 
II(L_)/F. 

Let e,f (resp. e',f') be the standard basis of  the H (resp. H(2)) summand in 
L . 
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4.2.1 Lemma.  Let  v E L be a primitive isotropic vector such that (v, L_) = Z. 
Then v "~r e (i.e. v E F{e}). 

Proof  Apply  corollary (3.3) to v and e to conclude v "~o'(L_) e and a f o r t i o r i  
V~Fe. 

4.2.2 Suppose Zv E 1 I(L ) and (v,L_) :fi Z. Write v = m a + n b  with a E H, 
b E H(2) @ E8(--2 ) primitive, and m,n C: Z;  then ( v , L )  = Zm + Z2n. As v is 
primitive we must have gcd (m, n) = 1. It is easy now to conclude (v, L )  = 2Z. So 
1 ~v determines a nontrivial element in L*_/L_. Our strategy is to do computations 

in this simpler space, which is endowed with a quadrat ic  form (see w 1), first. Let 

a = h + y e ~ H ( Z ) / H ( 2 ) ,  ~ E s ( - Z ) / & ( - 2 )  = L' /L  

b e  isotropic. Then 0 --- q(a) = q(h) + q(y). 

1 t 1 t Case (i) q ( h ) = q ( y ) = O .  In this case h = O, ~e + L _  or ~f  + L  . U s i n g  

Fq = {g E O(L '_ /L  ,q) : g  respects the decomposi t ion } 

which is the image of  F under  O ( L )  -~ O(L'_/L_,q) ,  we can arrange h = 0 or 
1 t 1 h = ~e + L _ .  From (1.4) we conclude that  either y = 0 or y -- ~ + L _  for some 

~t E E s ( - 2  ) with ~ 2  : --8. AS all ( -8 ) -vec tors  in E 8 ( - 2  ) are O(Es(-2) ) -equiva lent  
(by an a rgument  similar to the one preceding (2.2)), we see that  in this case the 

1 t 1 1 + 1  possibilities modulo  Fq are a = 0, ~e + L_ and ~e ~ + L .  

1 I 1 r Case (ii) q(h) = q(y) -= 1 E m/2. Here we have: h = $e + ~f  + L_ and 
1 y = $co + L _  with co E E8(--2 ), co 2 ----- --4 (again using (1.4)). So in this case there 

i t 1 t is, mod  Fq, only one possibility: ~e + $ f  + co + L .  

These four vectors in L*_/L_ can all be 'lifted' to primitive isotropic 
vectors in L_. To see this consider e ' ,2e + 2 f  + ~ , e ' +  2 f ' +  ~(ct E E , ( - 2 ) ,  
~2 = --8),e '  + f '  + a~(~o E Es(--2), r 2 = --4). 

4.2.3 Proposition. Let  v E L_  be a primitive isotropic vector. Then v is in the F- 
orbit o f  one o f  the following vectors: e, e', e' + f '  + co, e' + 2f '  q2 ~, 2e + 2 f  + ct(a, co E 
Ea(--2),c~ 2 = --8,o0 2 = --4). Moreover, these five vectors are all inequivalent 
modulo F. 

Proof  By (4.2.1) we may  assume v E 2L 2. Then �89 determines a nontrivial  

isotropic element in L*_/L_. The discussion above implies the existence of  a 
- -  1 1 g E F such that  for the induced ~ E Fq we have g(5v + L_) = $fl + L_, where fl 

is one of  the vectors ment ioned in the proposi t ion (but ~ e). Now apply (3.3) to 
conclude v " T  fl" 

The last s tatement  of  the proposi t ion is easy. [] 

4.2.4 Remark. It  follows form (4.2.3) that  ~ / F  contains precisely five zero- 
dimensional  boundary  components .  
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4.3 One-dimensional boundary components 

The one-dimensional boundary components correspond to F-orbits of  primitive 
isotropic planes in L_. To determine I2(L_)/F we use Vinberg's work on 
hyperbolic reflection groups [26]. 

4.3.1 If  v E L is primitive isotropic, then the quotient v•  inherits a 
quadratic form of hyperbolic signature (which is (1,9) here), and the stabilizer 
Fv of v determines a subgroup G v c O(v• If  F E I2(L_) contains v, then 
F determines an element of  Ii(vZ/Zv).  Vinberg's results can be used to find 
11 (vZ/Zv)/Gv. If  we follow this procedure for each of the five equivalence classes 
of isotropic primitive vectors (4.2.3), we will end up with a complete list of  
I2(L_) mod F, though we must be careful as the same F will occur for different v. 

4.3.2 We briefly discuss Vinberg's results. Let N be a nondegenerate lattice of 
signature (1,n) (in the application we have in mind n = 9) and let C be one of 
the connected components of  

{x  E N R = N | R : (x, x) > 0) .  

The quotient A(N) = C/R+ is the associated Lobachevskii space. Points of  

A ( N ) -  A(N), where A(N) denotes the closure of  A(N) in (N R --{0})/R+, are 
called points at infinity and correspond to isotropic lines in N R. Let G be a 
subgroup of Oc(N) (= isometries of  N which fix C) of finite index and let W(G) 
be it subgroup generated by reflections s v E G, where 

2(x, v) 
s~(x) = x -  (v,v--~v ((v,v)  < 0). 

If  W(G) is of finite index in G, then it has a polyhedral fundamental domain 
P c A(N) of finite volume, some of whose vertices however are at infinity and 

a = w ( a )  >~ s,  

where S is a subgroup of the group of symmetries of P. The polyhedron P and 
the group W(G) can best be described in terms of its Dynkin diagram. Suppose 
P is bounded by hyperplanes H i (i E I), none of which is superfluous, orthogonal 
to e i : 

e = {x ~ C : (x, el) ~> O, Vi E I}/R+.  

The Dynkin diagram ~ (G)  is then constructed as follows: the vertices represent 
the indices i E I (or the faces of  P). The vertices i and j are then connected as 
shown in the table below. Here gij = (ei, ej)/v/(ei, ei)(ej, ej), and (if Igij[ ~ 1) mij 
is the positive integer such that gij = c~ (then mij is the order of  the 

product of  reflections Sei Sej ). 
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connection of vertices glj mlj 

i ,  " J  0 2 

�9 �9 1 / 2  3 

l / v~  4 

v~/2 6 

�9 �9 1 oo  

: ~ 1. I �9 > 1  

Fig. 2. 

If  (e~, el) (: (e j, e j), then an arrow (>) points in the direction of the vector 
with smallest (absolute) length. 

4.3.3 In this setting Vinberg shows: 

1. every isotropic line in N o is W(G)-equivalent to some vertex at infinity of 
P;  
2. the vertices at infinity of P correspond to the parabolic subdiagrams of rank 
n - 1 of Z(G). 

Here a diagram is called parabolic if each of its connected components is an 
extended Dynkin diagram as in [26], table 2. The rank of a parabolic diagram is 
the number of vertices minus the number of connected components. It is clear 
that the group S can be identified with a subgroup of  the symmetry group of ~(G) 
and so by using (4.3.3) II(N) modulo G can be determined (for each parabolic 
subdiagram a suitable linear combination of the vectors corresponding to the 
vertices in this subdiagram yields a representative isotropic vector, see [27], (1.9)). 
Vinberg also describes an effective algorithm to determine the diagram ~(G). 
Roughly speaking, it comes down to the following. Take a vector x ~ C n N. 
Then look for hyperplanes H 1 = e~,H 2 = e~ . . . .  (where Sel,Se2 . . . .  C W ( G ) )  

such that H 1 is closest to x (in A(N); according to Vinberg this means that the 
expression 

(X, y )2  

I(Y,Y)[ 

is minimal for y = el) and e 2 is such that (el, e2) >_ 0 and ti2 is closest to x under 
the above conditions, and so on. 

4.3.4 Lemma. Let  v be one o f  the five vectors in (4.2.3). Then v •  ~- 
H 6) E8(-2 ) for  v ~ e and e •  ~ H(2) 6) E8(-2). 

Proof  The claim is trivial for v = e. If v E H(2) 6) E8(-2), then 

V '~'O(H(2)~E8(_2) ) e' 

and clearly (e')-L/Ze ' TM H 6) E8(-2  ). We are left with the case v = 2e + 2f  + ~. It 
suffices to show e' "~oIz_) 2e § 2f + a. To see this look at the diagram of E8(-2  ). 
We may assume ~ ~ E8(-2  ) has coefficients as indicated. (An argument as given 
just above (2.2) shows that there is only one (-8)-vector modulo O(E8(--2). ) 
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4 7 1 0  8 6 4 2 
c --- -- -- -- c -'- 

Fig. 3. 

Consider y := ~ + 2(cq + e' + 2 f ' ) ,  then y2 = 0. It follows from (3.3) that  
Y ~o'(L ) 2e + 2 f  + c~. Now y ~ H(2) @ E8(--2 ) and therefore y ,-~ e'. []  

We treat each of  the five cases of  (4.2.3) separately. Set G~ := Image  of  F~ in 
O(v• where F v = {g 6 F :g(v) = v}. The first case is: 

4.3.5 e. The summand  M(2) of  L_ projects isomorphical ly onto e •  It is 
easy to see that  G~ = {g E O(M(2)) : the induced m a p  on M(2)*/M(2) respects 
the decomposit ion}. 

The d iagram of  the reflection group W, c G~ is as follows. 

Otl 

QI 5 ~ C~7 

C16 

Fig. 4. 

~ g  = ] ' t  - -  e I 

alo = ~s + 2e I 
a n  =2e  1 + 2 f  t+&x+6ta  
a12 = 5e I + 3 f  ~ + 2ci2 

Let us indicate Vinberg's algori thm in this case. As our vector x we take 
x = e ' +  f ' .  Orthogonal  to x we find ~l . . . . .  c% and e9. Then el0 satisfies 
(~10, ei) > 0, i -= 1 . . . . .  9, it minimalizes the expression ment ioned above (under 
the restriction that  the reflection s~l ~ belongs to Fe). In the same way we find ~I1 

and cq2. We have 

(~10, e, + f , ) 2  = 4, (~ l l , e ,  + f , ) 2  16, (~12, e, + f , ) 2  
- -  = 64. 

[(~10, ~ I (cr ~i1)1 I (~ ~12)1 

Note that  (~i,c~i) = 2, because we are working in E8(--2 ). It is left to the reader 
to verify that  the symmetries o f  the d iagram come from isometries in G e (these 
can then be lifted to F e by letting them be the identity on the H-summand) .  So 

G e -~ {~.~.1} W e 2,~ S e 

where Se ~ Z / 2  x Z/2 .  The maximal  parabol ic  subdiagrams (modulo symmetries)  
are indicated below. 

In this way we have (essentially) computed  11 (e• . It  is s t ra ightforward 
now to compute  explicitly isotropic vectors representing these four classes. We 
leave this to the reader. 
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ba 

Fig. 5. 

Note that we do not only find four equivalence classes in Ii(e• but that 

we find four labelled classes, the labelling being given by the root systems Av ~ A1 

etc. We may therefore speak of an isotropic plane of type /~7 @ Z~l or A 7 ~ A 1 
etc. These four classes are not distinguished by the isomorphism type of FX/F, 
where F ~ I2(L_ ) is one of the above types. In all cases we even find the same 
isomorphism type, namely E8(-2 ), because modulo O ( L )  the four types are 
equivalent. But things change if we consider such isotropic planes as sublattices 
of the polarized K3 lattice of degree 4 

L 4 := ( e + f , e + f , O )  j- 

(c  M ~ M ~ H = L). Here we can distinguish them by looking at F• and its 
(generalized) type [23], 5.6.10 and w 6. Scattone [loc. cit.], p. 100 lists the following 
nine possibilities: 

E8(--1 ) ~ E 8 ( - 1 ) ~  < - 4  > ;  

D16(--1 ) ~) < - 4  > ;  

E8(--1 ) �9 D9(--1); 

E7(--1) �9 E7(--1) �9 A3(-1); 

D17(--1); 

D12(--1) �9 Ds(-1); 

Ds(--1 ) ~D8(--1)~ < - 4  > ;  

A15(-1) ~ At(-1) ~ A~(--1); 

E6(--1) �9 All(-1). 
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What is behind this of course, is the fact that not all elements of O(L_) can 
be lifted to  O(L4) .  In w 5 we shall find an application for the remarks above when 
we look at the relation with Shah's work [24]. 

The four classes that we have found so far correspond to four one- 

dimensional boundary components in ~ _ / F  which have the zero-dimensional 
boundary component corresponding to e in their closure. The root systems 
occurring in the diagrams are not without geometric significance. See w 5 and 
Part II. 

4.3.6 e'. In this case (e')• ' can be identified with the sublattice H ~ E8(--2 ) 
of L_. It is evident that G e, = O(H ~ E8(-2)). 

The diagram of  the reflection subgroup looks like: 

aa = as + 2 f  
Cr ~ e -- f 
o : ( -4 )  - vec tor  

Otl Or3 Or4 Or5 Or6 t~7 Or8 Otg,. CtlO , :  ( - -2 )  -- v e c t o r  

Fig. 6. 

As there are no symmetries we have 

O(H ~ Es(-2))  = {+l}-  We,. 

. . . . .  > - )  

Fig. 7. 

In the picture we see the two maximal parabolic subdiagrams. The equivalence 
class of rank 2 primitive isotropic lattices corresponding to the first parabolic 

subdiagram is the same as the one labelled 38 in (4.3.5). It is represented by the 
lattice spanned by e and e'. 

4.3.7. e ' +  f ' +  ~8. Set v = e ' +  f ' +  ~8. By lemma (4.3.4) we have v• ~- 
H ~ E 8 ( -2) ;  a basis of  v • being e, f ,  ~1, ~2 . . . .  , ~7, - f '  + ~8. 
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The diagram of the reflection subgroup of Gv is: 

H. Sterk 

~4 

QII OqO 

~s= f -e  
a]o = 2 f '  + 6s  

axl  = 2e - 2 f ' -  a8 = (e + f ) -  a , -  alo 
al= = 2e + (~1 - e,8) 

als  = (e + f )  + (aa - f 9  

Fig. 8. 

The Z-span of the roots is 

Z{e 1, . . . ,  0~7, e g - f ' , e  + f , e - - f } .  

It can be checked that the symmetry of the diagram comes from an element in 
l~v (see (4.3.10)). We find 

G v = {  1}W v X z / 2 .  

The parabolic subdiagrams of maximal rank (up to symmetry) are: 

Fig. 9. 
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The 37 ~ .4~-diagram determines the same equivalence class of isotropic 

planes as the E7 ~ -41-diagram in (4.3.5): the isotropic vector we read off from 
0 e t  e r t that diagram is~9+~io  - e ' ) + ( ~ 8 + 2 e ' ) =  + f  =~8. 

4.3.8 2e' + f '  + ~1. Let v = 2e' + f '  + ~1, then a basis for v •  ~ H ~ E 8(-2) 
is e , f , - e ' +  el, e2, - . . ,  e8. The diag,'am for the reflection subgroup of G v is as in 
the picture below. 

~11 Ct3 Ct4 Cr Ct6 Ct7 Or8 Cr Cr 

C~2 ~ I 0  

Fig. 10. 

~rg~- f ~ e  
a2o = ~ s  "t- 2e  ~ 

a l l  = e + / + a l  - - e '  
a l :  = 2e - 2e I + 5s  - ~it 

The roots span the sublattice 

Z{e + f , e  - f , - e '  + cq,a 2 . . . . .  ~8} 

and the symmetry is induced by an element of F~ (see (4.3.10)). We obtain the 
following maximal parabolic subdiagrams (modulo symmetry): 

Fig.  11. 

The diagram labelled b s (resp. C8) represents the same class of isotropic planes 

as the one labelled D8 (resp. C8) in (4.3.5) (resp. (4.3.7)). 

4.3.9 2e + 2f + ~1. Set v = 2e + 2f + ~1- We have the following basis for v•  

= e + e ' + f ' - c q ,  f = f + e ' + f ' - ~ l , ~ l  = e ' - f ' , ~ 2 = ~ 2 , ~ 3  = f ' + ~ 3 ,  
~4 = ~4, . . - ,  ~8 = cts; ~ , f  span a H-summand, ~1, . . . ,  ~8 an E8(-2)-summand. 
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We obta in  the following d i ag ram:  

H. Stork 

C~6 

O~ 5 , , 0C7 

Xll J ~ ,  

~10 

0~8 

a ,  = 2~ - &l 
aao = 2~ + (32 - 3=) a12 = ~ + ] + (36 - &s) 
aa3 = ~ + ] + (&l + &a - ~3) 

a l 4 = ~ + / + ~ s  

Fig. 12. 

The span o f  the roots  in this case is 

Z{~ + f , ~  - f ,~1,~2 . . . . .  ~8}. 

Symmetries  o f  the g raph  can be lifted to F v (see (4.3.10)). Parabol ic  subd iagrams  
of  maximal  rank  (up to symmetry) arc as indicated below. 

e,e~~,eG 

Fig. 13. 
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The diagram labelled -47 (9 Al (resp. C8, C 6 (9 C2, C 4 (9 C4) represents the same 

class of  isotropic planes as the one labelled "47 (9 -~1 (resp. B8, B6 (9 C2, B4 (9 B4) 
in (4.3.5) (resp. (4.3.6), (4.3.7), (4.3.8)). 

4.3.10 To check whether a symmetry of  a diagram lifts to the stabilizer group 
of  the corresponding isotropic vector, one can proceed as follows. Note  that 
in the last cases ((4.3.7), (4.3.8), (4.3.9)) the span of  the roots occurring in the 
diagram is of  the form Z{e - f ,  e + f}  (9 E 8 ( -2 )  (e, f s tandard basis for H). Firstly, 
we show that isometries of  this lattice extend to H (9 E8(--2 ). 

Let K = I (9 I(--1) (9 E8(--1 ) (I denotes a rank one lattice here, such that 
(x, x) = 1 for a generator x). The lattice K is odd and unimodular  of  signature 
(1,9). Suppose I = Zv, 1 ( -1 )  = Zw. Consider the inclusion H(2) (9 E8( -1  ) c K 
where H(2) = H(2) --- Z{v + w, v - w}. 

4.3.11 Lemma.  H(2) (9 E8(--1) is the largest even sublattice of K. 

Proof Let K be an even sublattice and let av+bw+e 6 K (a, b 6 Z, c~ ~ E8(-1)) .  
Then c~ 2 - b 2 - 0 mod 2 and consequently a - b and a + b are even. But then 

av+bw+ct=(a-~----~b)(v+w)+(a-~-~2b)(v-w)+ctcH(2)(gE8(-1) 

which finishes the proof. [] 

Let A = H (9 E8 ( -2  ), (H = Z{e,f}) and let 

K' = Z { e + f , e - - f }  (9 E 8 ( -2  ) c A 

a sublattice of  index 2. Note that K '  ~- K(2). 

4.3.12 Proposition. Every g E O(K(2)) extends to an isometry of A. 

Proof The inclusion K '  = K(2) ~ A induces A ~ ~ K'* and so 

(2) ~K(4) "~ A* ~-+ = K  

II II 

H(2) (9 {E8(--4) Z{�89 + f) ,  ~ ( e - / ) }  (9 {E8(-4)  

a situation as described in the lemma. Now let g c O(K(2)), then g acts on K(2)" 
and therefore both A'(2) ~ K and g(A'(2)) ~ K satisfy the conditions of  the 
lemma. So g(A'(2)) = A'(2). But then g fixes A, i.e. g c O(A). [] 

Actually, the resulting injection O(K(2)) ~ O(A) is an isomorphism. To see this, 
we give an intrinsic description of  the sublattice K(2) c A. 

4.3.13 Proposition. K(2) is the unique rank 10 sublattice A of A such that 
= 1 -  �89 is A" -~A and odd. 

Proof First of  all K(2) indeed satisfies K(2)" = ~K(2), �89 is odd. Now 

suppose A c A satisfies these properties. Then we have 

H (9 ~ E 8 ( - - 2 ) =  A" '--~ A" 1 -  1 1 =~Ac ~A= ~H(9 E 8 ( - 2  ) (of  index 4). 
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The following two alternatives do not occur: 

1. A" = A', for then A = 2A* = 2H @ E8(-2), contradicting A" = 5A;I 

2. ~," 1 = 5A, for then A = A and we arrive again at a contradiction. 

Therefore the image of A" under A" ~ �89 �89 is of order two. If 

A" = Z~e + Z f  + 1E8(--2), then A = Ze + ZZf + E8(-2  ) and ~.(2) is even. 

Likewise, A" = Ze + z l f  + �89 ) is impossible. The only possibility left is: 

( )1 
~ . ' =  Z ~ ( e + f ) + H  ~ E 8 ( - - 2  ) 

and so 

= (Z(e + f )  + 2H) ~ E8(-2  ) = Z{e + f , e - f }  ~ E8(-2  ) = K(2). [] 

Consequently any g 6 0 ( A )  preserves the sublattice K(2). Another proof, perhaps 
closer to the methods of this paragraph, is based on Vinberg's theory. It comes 
down to checking that the Dynkin diagrams for O(A) and O(K(2)) are the same. 

In the cases (4.3.7), (4.3.8) and (4.3.9), we define a decomposition of L_ as 
follows. 

H @ H(2) ~ E8(-2 ) 
v = e' + f '  + ~ 8 e , f  v , f  I el . . . .  , ~7,~8--f  t 
v = 2 e ' + f ' + ~  1 e , f  e',v --e' + e1,~2 . . . . .  ~8 
v = 2 e + 2 f  + ~  1 "d,f v,e--"d ~1 . . . . .  ~8 

Using these decompositions of L_ and the results above, it is fairly easy to lift 
symmetries of a diagram to isometries of L_ fixing the relevant isotropic vector. 
What remains to be checked is that we actually end up in F. This (computational) 
step as well as the treatment of the case (4.3.5) (which is much easier) is left to 
the reader. 

4.3.14 Remark. The labelling ofisotropic planes, using the parabolic diagrams is 

not unambiguous. For instance, B and (~ diagrams sometimes correspond to the 
same class of  isotropic planes. If F = Zv + Zw ~ I2(L_), then' the stabilizers (Gw) ~ 
and (G~) w are not necessarily isomorphic and this is reflected in the corresponding 
affine root systems. So we must be careful with our terminology. 

4.3.15 Remark. It is not difficult to see beforehand what types of  primitive 
isotropic vectors may or may not be combined to span an isotropic plane. For 
example, the first isotropic vector of the list (4.2.3) can be combined with any of  
the other four types to yield a primitive isotropic plane, but there is no isotropic 
plane all of whose primitive isotropic elements are equivalent to e. To specify the 
type of an isotropic plane we can also indicate the types of isotropic vectors it 
contains. For example: 

A 7@A 1 ~ ~ {1,2} 

(e (resp. e') corresponds to an isotropic vector of  type 1 (resp. 2)). 
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4.3.16 To describe the precise structure of  the one-dimensional boundary 
components we have to compute the group F(F) = Nr(F) /Zr (F  ) for each 
type of isotropic plane F. 

Let us first deal with the boundary components of  type E 8, D s, A 7 @ A 1 
and E 7 (~ A 1 (we occasionally forget about (-1)s,  which should not give rise to 
confusion). Let E E I2(L_) be of  the form E = Ze + Zv where v ~ H(2) ~ E8(--2 ) 
and so if, L )  = 2Z. Then v is in the O(H(2) ~ Es(-2))-orbit  of  e' and hence 
there is a decomposition. 

L ~H~H(2)@E• 

with E c H @ H(2). Suppose g E Nr(E) and write g(e) = ae + cv, g(v) = be + dr. 
As ( e , L )  = Z and ( v , L )  = 2Z we find ( g ( e ) , L )  = Z, so a is odd and 
(g(v) ,L)  = 2Z, so b is even. Conversely, any element of GL(E) satisfying 
these restrictions is easily seen to extend to an element of  O*(L_): just use the 
decomposition L_ ---H ~ H(2) @ E• In conclusion: 

(a congruence subgroup of SL2(Z)). The corresponding boundary components B E 
are isomorphic to H / F  1 (2) ((4.1)) and we have also seen how a natural (= Satake- 

Baily-Borel) compactification is constructed: H/F1(2), where H = H U Q u {c~} 

is endowed with the horocycle topology. The closure of  B e in ~ / F  is obtained 

from H/FI (2 )  by possibly identifying some of the cusps. However, the fact that 
each of the isotropic planes of  type E 8, D s, A 7 ~ A 1, E 7 E) A 1 is built up from two 
nonequivalent isotropic vectors implies that no identification among the cusps 
Occurs. 

4.3.17 The computations in the remaining five cases are more involved. (We 
refer the reader to [23], Chap. 5, for more details.) By explicit computation one 
finds a splitting 

L_ ~ H(2) ~9 H(2) @ F•  

where F denotes the isotropic plane. It is then easy to see that FnSL(F)  contains 
F(2), the level 2 subgroup of SL2(Z ) (under the appropriate identifications). 
The number of  inequivalent (mod F) primitive isotropic vectors in F restricts 
the possibilities even further. If  necessary, the use of certain Siegel-Eichler 
transformations finishes the job. Let us illustrate the last two steps for F of 
type {3, 4}. From (4.3.7) we see that 

F = Z(v = e' + f '  +~s) ~ Zoo 

with co = ~9 -]- ~12 + ~1 -~- (x3 -+- ~4 -~- ~5 "~ ~6 -~- ~7 + ~13. Suppose g E NF, 
g(v) = av + bta (a,b ~ Z). As 02 is of type 4 (i.e. co " r  2e' + f '  +~1) b must be 
even. S o  we find 

r(2) = F(F) N SL(F) = El(2) 

with 

F ~ ( 2 ) = { (  b d ) E S L 2 ( Z ) ' b  even}  �9 
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Now consider the Siegel-Eichler transformation E ,'-s' ' L_ ~ L given by V, 2 

( ' -  ' 1 ( @ )  2 e ' - f '  
y~-. y +  y , ~ - ~ f - ) v - - ~  (y,v)v--(y,v) 2 

It is easily checked that Ev, e, J ,  E N F and that 

Ev, e,_ f,_~ (V) = V, E e ' - f '  (09) = CO - -  ~. 
V, 2 

Conclusion: F(F)A SL(F) -~ F1(2). 
Summarizing then, the results about the stabilizers of the remaining five types 

are as follows: 

F of type {2, 4, 5} : 
F of type {4, 5} : 
F of type {3, 5} : 
F of type {3, 4} : 
F of type {5, 5} : 

F(F) n SL(F) ~= F(2); 
F(F) n SL(F) ~- r 1(2); 
F(F) n SL(F) ~- El(2); 
F(F) N SL(F) ~- F1(2); 
r(V) n SL(F) ~- SL2(Z ). 

4.4 The incidence relations between boundary components (resp. equivalence 
classes of isotropic sublattices) can be represented by a diagram as follows. A 
closed (resp. open) dot represents a zero-dimensional (resp. one-dimensional) 
boundary component or, equivalently, the corresponding F-equivalence class of 
primitive isotropic rank one (resp. two) sublattices of L_. The specific type a dot 
represents is also indicated. An open dot representing a boundary component B 
is connected with a closed dot representing a boundary point p if p E B. If  B 
corresponding to [E] E 12(L_)/F and p to [Zv] E I I ( L ) / F  this means that E 
contains a vector equivalent to v. 

{1.2} {2} 

~ 3 1  {3")~~~.....~........- -a {3.41 
{I} ~ - - ~  "4} { 4 ~ .  13.5 } 

(5,s} 

Fig. 14. Incidence relations between the boundary components 

If we forget about the almost polarization, i.e. replace F by O(L_), the results 
about the boundary components would be as follows. 

4.5 Proposition. There are only two types of primitive isotropic vectors in L 
modulo O(L_), representatives being e and e'. 

Proof e and e' are certainly inequivalent as (e,L_) = Z and (e',L_) = 2Z. 
It remains to show that e',2e + 2f + ~,g + f ' +  ~t and e ' +  f ' +  co are all 
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equivalent. As H(2)@Es(- -2  ) contains only one primitive isotropic vector modulo  
O ( H ( 2 ) � 9  E 8 (--2)) we m a y  restrict our  at tent ion to 2e + 2f  + e. Now use the p roof  
of  4.3.4. [] 

4.6 Proposition. There are two types of primitive isotropic rank 2 sublattices 
modulo O(L_). 

Proof Let F be an isotropic plane and suppose that  e E F. Then F determines 
a primitive isotropic rank 1 sublattice in e Z / Z e  = H ( 2 ) � 9  E8(--2). As all primitive 
isotropic elements of  H(2) @ E 8 ( - 2  ) are in the same O(H(2) @ Es(--2))-orbit  we 
may assume that  this sublattice is generated by e', i.e. F = Ze @ Ze'.  

Suppose e' E F, then in e ' •  ' we find two types of  isotropic vectors 
according to our  earlier computa t ions  (see (4.3.6)). One of  them leads again to 
Ze �9 Ze', the other  one only contains primitive isotropic vectors equivalent to e', 
so is not  equivalent to the previous one. [] 

As to the stabilizers o f  the two one-dimensional  boundary  components  we have 

4.7 Proposition. I f  F is equivalent to Ze ~ Ze', then N F / Z F n S L(F) ~- F 1 (2). In 
the other case N F / Z  F n SL(F) ~- SL(F). 

Proof The argument  we gave in the case of  F also works here for the first case. 
As for the second case use our  result for the boundary  componen t  of  type{5, 5}. 
[] 

5 A first comparison with Shah's results 

In [24] J. Shah uses the techniques o f  geometr ic  invariant  theory [16], G I T  for 
short, to study projective degenerations of  Enriques surfaces. As we saw before 
(w 2), any Enriques surface T can be obtained as a quotient  o f  a K3 surface S of  
degree 4 which itself is a double cover of  22 o or I2 o (a cone over a smooth  quadric  
in p2). The covering involution of  S ~ T is a lift o f  I : 220 ~ 220 given by 

I((Xo:Xl),(Yo:Yl)) = ( (Xo:- -Xl) , (Yo:- -Yl) ) '  

By doing G I T  in the space of  branch curves (bidegree (4,4)) he finds a list o f  
s tandard forms of  central fibres of  one-parameter  degenerat ions of  Enriques 
surfaces. He subdivides this list according to what  he calls the type. 

5.1 �9 Type I* : M H S  on H 2 of  the double cover is pure of  weight 2. 
�9 Type II" : M H S  on H 2 of  the double cover has h ~176 = 0, h 1,~ 5~ 0. 
�9 Type I I I  ~ : M H S  on H 2 of  the double cover has h ~176 :p 0. 

(MHS:  mixed Hodge  structure.) 
In this pa ragraph  we will link the Type II* branch curve configurations on 

E 0 of  his list with the one-dimensional  Satake-Baily-Borel boundary  components  
(because of this link, they are also referred to as type II boundary  componen ts ;  
similarly, zero-dimensional  boundary  components  are said to be type I I I  

boundary  components)  of  the Satake-Baily-Borel  compact i f icat ion f i / F .  To 
be more  accurate, suppose X ~ A is a one-parameter  degenerat ion of  
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Enriques surfaces with central fibre of  type I I ' .  The corresponding period map 
p : A" --. I ) _ /F  extends to a holomorphic map 

by Borel's extension theorem [4]. The limit point p(0) will be an element of  a 
type II Satake-Baily-Borel boundary component  which we shall determine. In 
proving this we modify the covering family of  K3's so that we obtain a family 
in which the central fibre is a stable K3 in the sense of Friedman [10]. The 
Clemens-Schmid exact sequence is then used to find the isotropic plane which 
determines the boundary component. The results are summarized in (5.15). 

Let us briefly recall some of  the relevant facts about 'stable K3s'. See [10] 
for further details. Firstly recall the following result due to Kulikov [13] and 
Persson-Pinkham [20]. 

5.2 Theorem. Let  ~ : X ~ ~ be a semistable degeneration o f  K3  surfaces 
with all components o f  the central f ibre rc-l(O) = U  Vi algebraic, and let N = 

i 

logarithm o f  the monodromy on H2(Xt). Then, after birational modifications, it 

may be assumed that K x ,,~ O. In this case ~z-l(O) is one o f  the following: 

(1) Type I:  ~-1(0) is a smooth K3 surface and N = O. 
(2) Type I I :  r~-l(O) = VoUV~U.. .UVr;  V o and V r are smooth rational, V 1 . . . . .  Vr_ 1 
smooth elliptic ruled and V i ~ Vj -7/= 0 i f  and only i f  j = i +_ 1. I f  V i and Vj meet, 
the intersection is a smooth elliptic curve and a section o f  the ruling on V i i f  V i is 
elliptic ruled. N ~ 0, N 2 = 0. 

(3) Type I I I :  zc-l(O) = U  Vi, where each ~'i ( =  normalization o f  Vi) is smooth 
i 

rational and all double curves are cycles o f  rational curves. The dual graph is a 
triangulation o f  the sphere S 2. N 2 ~ O, N 3 = O. 

We will be concerned (of course) with the surfaces of  type II. Note the various 
uses of  the same terminology type I, I* etc. This reflects the intimate connections 
of  the corresponding notions. This paragraph will illustrate this point again. 

5.3 Definition. Let X be a variety with normal crossings and let D : =  Xsing 
(singular locus). I f  

(Tx 1 :=) Extl(fl~, C x) ~- (9 o 

then X is called d-semistable. (This notion is inspired by deformation theory. It 
is useful in dealing with 'smootlaability' matters.) 

5.4 I f  X = V 0 U V 1 is a union of two smooth surfaces meeting normally along 
a smooth curve D, then 

Xis  d-semistable *~ No/vo | No~v1 ~- (9 o 

5.5 Definition. A stable K3  surface of type II  is a d-semistable surface 
(5.3) of  the form X = V 0 U V 1 as in (5.2) type II (r = 1) such that 
D = Xsing -~- g o f ' ~  g 1 E I - - K v ,  [ for i = 0,1. 

5.6 Now suppose a stable K3 surface X 0 occurs as the central fibre in a 
semistable degeneration n : X  -* A. The Clemens-Schmid exact sequence [6] 
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relates the limiting mixed Hodge  structure (LMHS)  LH2(X TM) and the canonically 
defined mixed Hodge  structure on HZ(x0). The central fibre X 0 comes with a 
canonical Cartier divisor 

= ~ x ( V o ) l X o  

which restricts to 
~lV o = CVo(-D), r = Cvl(D ). 

5.7 Facts. i) The following portion of the Clemens-Schmid sequence, 

H4(Xo) --* H2(Xo) ~ L H 2 ( 2 ,  ) N LH2(~.,) ,  

is exact over Z. 
ii) WIH2(Xo) -~ W1LH2(X'). 
iii) I f  ~ is viewed as a class in H2(Vo) ~ H2(V0,  then 4 2 = 0 and: 

W2LHZ(X') /WILH2(2 ") ~- {r 

iv) WILH2(X ") = I m N  is a primitive isotropic sublattice of  LH2(X ") of  rank 2. 

5.8 Definition. A polarization on a stable K3 surface X of  type II  is a 
Cartier divisor L on X which is numerically effective and satisfies L 2 > 0. 
Two polarizations L 1 and L 2 are called equivalent if 

L l -- L 2 mod  

i.e. L 1 and L 2 define the same class in H2(X;Z/Z~.  

Now consider a branch curve configuration C0(c  Z0) of  type II* as in Shah's list 
[24], p. 482 and assume, for simplicity, that  it is sufficiently general. Note  that  C o 
has an I - invar iant  equation, say f0. Let C be a general curve of  bidegree (4,4) on 
Z 0 with l - invar iant  equat ion f and consider the one-parameter  family of  curves 
over the disk ~ (which may  be made  smaller if necessary; we shall not  bother  
about  such details) 

:= {C t : C t has equat ion fo + t f  where t E A} c Z 0 x A. 

Take the double cover branching along this c#. This yields a one-parameter  
degenerat ion X ~ A of  K3 's  of  degree 4, together with an involution I which 
lifts the involution on ~ 0  The quotient  X / I  ~ A is then a degenerat ion of  
Enriques surfaces. As usual we have a period m a p  

p :/X* --. ~ _ / F .  

Let ~r'~ 4 be the period domain  for K3 's  o f  degree 4, I" 4 the corresponding ari thmetic 
group associated with the lattice L 4 (see (4.3.5)). The inclusion f~_ c ~'~4 induces 
~ _ / F  "-'* ~4/1"4 and the composi t ion 

A* ~ ~'-~_/F --.- ~')4/F4 

is the period m a p  for the restriction of  the family X ~ A to A*. The first thing 
we shall do is study the extension 

---r f i4/F4.  
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Suppose we have modified the family so that the central fibre is a polarized stable 
K3. Then Im N determines the isotropic plane corresponding to the boundary  
component  we are looking for (modulo the involution I). The isomorphism type 
o f  ker N~ Im N (within L4) completely determines the equivalence class o f  Im N 
in I2(L4) and F 4 and using (5.7iii) this quotient k e r N / I m  N can be computed.  
Below we shall discuss this procedure for some of  the nine types of  configurations 
in Shah's list (referring for more details concerning the other cases to [25]) and 
then return to the original question. 

5.9 First we reproduce Shah's list of  branch curves as far as we need it, 
describing only 'generic'  members o f  his list. The branch curve is called B. 

1. B = 2C, where C is a smooth  genus one curve whose equation is I-invariant.  

2. B = 2C, where C is a smooth genus one curve whose equation is /-anti-  
invariant. 

3. B = 2C + B0, where C has bidegree (1,1) and is I-invariant,  and where B 0 is 
a genus one curve as in (1.). 

4. B = C + I ( C ) +  L + I(L),  where C is a twisted cubic and L is a line such that 
C, I(C) and L are mutually tangent  at a point  P (and therefore C, I(C) and I(L)  
are mutually tangent  at I(P)) .  None of  the curves passes through a fixed point 
o f  I. 

5. B has two quadruple points P and P ' .  B consists of  four distinct curves of  
bidegree (1,1), each passing through P and P' .  
a) P and P '  are fixed by I. 
b) P and P '  are not  fixed by I. 

6. B = 2C + L + I(L),  where C is a twisted cubic and L is a line which is not 
an edge (the four lines x 0 = 0, x I = 0, Y0 = 0, Yl = 0 are called the edges), such 
that C • L consists o f  two distinct points. C is l - invariant  and contains exactly 
two points o f  the fixed locus of  I which are connected by an edge. 

7. B consists of  lines, B = 2C + 2C'  + L + I(L) + I(Lt), with C and C '  skew, L 
and L'  skew and neither L nor  L'  an edge. 
a)  c'  = t(c) 
b) C and C t are different edges. 

5.10 Case (1.). Let C O be a smooth  genus one curve on g 0 as in case (1.) 
above, so that  B = 2C 0. A general curve C intersects C o in 16 (distinct) points 
Px . . . . .  P16- The resulting flat divisor cd c Z 0 x A exhibits ordinary double points 

at Pl . . . . .  P16 (local equation x 2 + ty = 0). The double cover X ~ A therefore has 

singularities at the 16 points lying over Pl . . . . .  Pl6 (local equation z 2 + x 2 +  ty = 0). 
Blow up these points. It introduces 16 exceptional surfaces S1, . . . ,  $16, all ~ Z0, in 
the central fibre. The components  S i meet the strict t ransform of  the original two 
components  in the central fibre in a sum of  fibres: Sis i = -F1,  ~ - F 2 ,  ~ . Using the 

N a k a n o  criterion we see that  we can smoothly blow down the S~'s along either of  

the two rulings. This yields a family X ~ A where the central fibre consists o f  two 
rational components  T 1 and T 2 glued along an elliptic curve (Co). T 1 is obtained 
from Z 0 by blowing up some of  the points P l , . . . ,  P~6 and T 2 is obtained from Z 0 
by blowing up the remaining ones. The two rulings o f  2:0 yield generators E 1 and 
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F 1 (resp. E 2 and /72) o f  H2(Z0;Z) c H2(T1;Z)  (resp. H2(Z0;Z) c H2(T2;Z)).  

Let e 1 . . . . .  e i (resp. f l  . . . . .  f l 6 - i )  denote the exceptional classes in H2(T1  ; Z )  (resp. 
H2(T2;Z) ) .  Then the polarization class in H 2 ( T I ) ~ H 2 ( T 2 )  is h = E I + F  I + E 2 + F  2 
and the class ~ ((5.6)-(5.7)) is given by 

= 2E1 + 2F1 - el . . . . .  ei -- 2E2 - 2F2 + f l  + " "  + f l6-i .  

Now look for the roots in ~•  c3 h i : 

e2 - e3 el + A . - i  A - 13 
. . . . . . . . . . . . .  A 1 5 ( - 1 )  

el - e2  e l - 1  - e i  f 1 5 - i  - f l ~ - i  

E1 - F~ �9 Aa(-O 

/~2 - F ,  �9 AI(-D 

Fig. 15. 

I f  you do everything compatibly with the involution 1, then we may assume 
that P9 = IPl . . . . .  PI6 = IP8, and that T 1 (resp. T2) is blown up in Pl . . . . .  P8 (resp. 
lp l  . . . . .  Ip8 ). The involution acts on the diagram as indicated. 

C 1 ~ e 2 ~7 - -  C 8 

) e 2 - -  e 3 

f = - A  

A - h  / ~ - f ,  

E~-F~-  ( ) �9 E~-F~ 

Fig. 16. 

e s +  Ia  

5.11 Remark.  Considering vectors ~ - I e  where ct occurs in the above diagram, 
one obtains a diagram of  type A 7 (gA 1, suggesting what the relation with Enriques 
surfaces is. 

5.12 Case (2 . )  is similar to case (1.). The difference is in the action o f  the 
involution. 

5.13 Case (3.) .  C O = 2B + F where B is an I- invariant  curve o f  bidegree (1,1) 
and F is I - invariant  o f  bidegree (2,2) Blow up Z 0 x / x  along B x {0}. This creates 
a copy of  Z 2 in the central fibre which meets the strict t ransform of  Z 0 x {0} in 
its unique section E with E 2 = - 2 .  I f  F denotes a fibre of  Z 2 w.r.t, the ruling, 

then the strict t ransform @ of  the branching divisor cg meets Y'2 in a smooth  

curve P 6 I2E + 8FI. Now take the double cover branching over @. In the central 
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fibre we obtain two components :  

S 1 ~ Z2, a double cover branching over F;  

S 2 --~ E 0, a double cover branching over F. 

By using Castelnuovo's  criterion, one shows that  S~ and S 2 are rat ional  with 
h2(S1) = 14, h2($2) = 6. The computa t iona l  da ta  are (we may  think of  S 1 and S 2 
as being obtained by blowing up p1 x p1; the e i denote  exceptional classes, E i 
and Fi come from the rulings on p1 x p1): 

dj = (2E 1 + 2F 1 - e 1 . . . . .  e12) -- (2F2 + 2F2 -- f l  . . . . .  f4);  

h = 2(e 1 + 2F: - e I -- e2) + 2E 2 + 2F 2 - -  f l  . . . . .  f 4 "  

The rootsystem is: 

�9 1 - - e  3 
% 

Fl - el - e ~  

. /  
El -F1 

C 3 - - e 4  e l l  - - e l 2  
. . . . . . .  D~2(-I) 

e 4 - -  ~$ e l O  --  e l l  

-7. 

]'2 E~ :- F2 

h - h  
Fig. 17. 

Ds(-1) 

5.14 In Shah's  list nine types o f  Type II* degenerat ions occur and our 
computa t ions  yielded nine type I I  Satake-Baily-Borel  boundary  components .  
Any F_ E I2(L_) determines via L_  _~ L 4 an element F in I2(L4), and, modu lo  
F4, these can be distinguished by F-L/F (see (4.3.5)). The above computa t ions  
give us the following correspondence.  

1. D16(-1 ) (3 ( -4 )  : case (6.). 
2. D12(-1) (3D5(-1) : case (3.). 
3. E8(--1) (3E8(-1)  (3 (--4) : case (4.). 
4. D s ( - 1  ) (3D8(-1) (3 ( - 4 )  : case (7a) and (7b). 
5. E7 ( -1  ) (3E7(-1)  (3 A3( -1  ) : case (5a) and (5b). 
6. A15(-1) (3A1(-1) (3 A : ( - 1 )  : case (1.) and (2.). 

For  a pair  o f  configurations in one of  the last three situations, the two can be 
distinguished by the i somorphism type of  FX_/F_ for the corresponding isotropic 
plane. The above considerat ions set up a bijective correspondence between the 
nine configurations and the nine one-dimensional  Satake-Baily-Borel  boundary  
components .  To make  this more  explicit, consider the following m a p  

I2(L_)/F --. I2 (L4) /F4 
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induced by L_ __q L 4. Computa t ion  (in which the diagrams of  w 3 can be o f  help, 
since the root systems there should be the 'anti-invariant part '  of  a root  system 
occurring for some F C I2(L4)) yields: 

E 8 mod  F 
D 8 mod  F 
E 7 (9 A 1 mod F 
A 7 (9 A 1 mod  F 
B 6 (9 B 2 mod  F 
B 4 (9 B 4 mod F 
B 3 (9 B 3 (9 B 2 m o d F  
B 8 (type {3, 4}) mod  F 

E 8 (9 E 8 (9 (--4) mod  F 4 
D 8 (9 D 8 @ (--4) m o d F  4 

v-. E 7 (9 E 7 (9 A 3 mod F 4 
A15 (9AI (9 A1 m o d F  4 

~-~ D12 (9 D 5 rood F 4 
D 8 (9 D 8 (9 (--4) mod  F 4 
E 7 (9 E 7 (9 A 3 mod F 4 

A15 (9 A 1 (9 A 1 mod  F 4 
B 8 (type {2, 4, 5}) rood F w-~ D16 (9 (--4) mod  F 4 

The fact that  in the left column all o f  the last five lattices contain ( -2)-vectors  
implies that the corresponding configurations meet the fixed point  locus o f  I 
on 570; it also means that tile limit period point is in the closure of  the divisor 
determined by the collection R_ (see (2.10) and (3.6)). 

5.15 These considerations finally lead to the following correspondence. 

1. B 8 (type {2,4, 5}) : case (6.) ; 
2. B 6 (9 B 2 : case (3.) ; 
3. E s :  case (4.); 
4. 0 8 : case (7a); 
5. B 4 (9 B 4 : case (7b); 
6. E 7 (9 A 1 : c a s e  (5b); 
7. B 3 (9 B 3 (9 B 2 : c a s e  (5a) ; 
8. A 7 (9 A t : case (1.) ; 
9. B 8 : case (2.). 
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