Dualities and
Representations of
Lie Superalgebras

Shun-Jen Cheng
Weiqgiang Wang

Graduate Studies
in Mathematics

Volume 144

e 2\t American Mathematical Society

yIntig: .
N&/" Providence, Rhode Island
ONDED *



EDITORIAL COMMITTEE

David Cox (Chair)
Daniel S. Freed
Rafe Mazzeo
Gigliola Staffilani

2010 Mathematics Subject Classification. Primary 17B10, 17B20.

For additional information and updates on this book, visit
www.ams.org/bookpages/gsm-144

Library of Congress Cataloging-in-Publication Data

Cheng, Shun-Jen, 1963—
Dualities and representations of Lie superalgebras / Shun-Jen Cheng, Weigiang Wang.
pages cm. — (Graduate studies in mathematics ; volume 144)
Includes bibliographical references and index.
ISBN 978-0-8218-9118-6 (alk. paper)
1. Lie superalgebras. 2. Duality theory (Mathematics) 1. Wang, Weiqiang, 1970— IL Title.

QA252.3.C44 2013
512/.482—dc23
2012031989

Copying and reprinting. Individual readers of this publication, and nonprofit libraries
acting for them, are permitted to make fair use of the material, such as to copy a chapter for use
in teaching or research. Permission is granted to quote brief passages from this publication in
reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication
is permitted only under license from the American Mathematical Society. Requests for such
permission should be addressed to the Acquisitions Department, American Mathematical Society,
201 Charles Street, Providence, Rhode Island 02904-2294 USA. Requests can also be made by
e-mail to reprint-permissionQams.org.

© 2012 by the American Mathematical Society. All rights reserved.
The American Mathematical Society retains all rights
except those granted to the United States Government.
Printed in the United States of America.

The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/

10987654321 17 16 15 14 13 12



To Mei-Hui, Xiaohui, Isabelle, and our parents







Contents

Preface

Chapter 1. Lie superalgebra ABC

§1.1.
1.11.
1.1.2.
1.1.3.
1.14.
1.1.5.
1.1.6.
1.1.7.

§1.2.

1.2.1.
1.2.2.
1.2.3.

1.2.4.
1.2.5.
1.2.6.

§1.3.

13.1.
13.2.
1.3.3.
1.3.4.
1.3.5.

§1.4.
14.1.

Lie superalgebras: Definitions and examples
Basic definitions

The general and special linear Lie superalgebras
The ortho-symplectic Lie superalgebras

The queer Lie superalgebras

The periplectic and exceptional Lie superalgebras
The Cartan series

The classification theorem

Structures of classical Lie superalgebras

A basic structure theorem

Invariant bilinear forms for gl and osp

Root system and Weyl group for gl(m|n)

Root system and Weyl group for spo(2m|2n+ 1)
Root system and Weyl group for spo(2m|2n)
Root system and odd invariant form for q(n)

Non-conjugate positive systems and odd reflections
Positive systems and fundamental systems
Positive and fundamental systems for gl(m|n)

Positive and fundamental systems for spo(2m|2n+ 1)

Positive and fundamental systems for spo(2m|2n)
Conjugacy classes of fundamental systems

0dd and real reflections
A fundamental lemma

X1ii

0N BN =

=l

12

13
13
16
16
17
17
18

19
19
21
22
23
25

26
26

vil



viii

Contents

1.4.2.
1.4.3.
1.4.4.
1.4.5.

§1.5.

1.5.1.
1.5.2.
1.5.3.
1.5.4.

§1.6.
Notes

QOdd reflections

Real refiections

Reflections and fundamental systems

Examples
Highest weight theory

The Poincaré-Birkhoff-Witt (PBW) Theorem
Representations of solvable Lie superalgebras
Highest weight theory for basic Lie superalgebras
Highest weight theory for q(n)

Exercises

Chapter 2.  Finite-dimensional modules

§2.1.
2.1.1.
2.1.2.
2.1.3.
2.14.
2.1.5.
2.1.6.

§2.2.
2.2.1.
222
2.2.3.
224
225.
2.2.6.
2.2.7.

§2.3.

23.1.
232.
2.33.
2.3.4.

§2.4.
24.1.
242
2.43.
§2.5.

Notes

Classification of finite-dimensional simple modules
Finite-dimensional simple modules of gl(m|n)
Finite-dimensional simple modules of spo(2m|2)

A virtual character formula

Finite-dimensional simple modules of spo(2m|2n+1)
Finite-dimensional simple modules of spo(2m|2n)
Finite-dimensional simple modules of q(n)

Harish-Chandra homomorphism and linkage
Supersymmetrization

Central characters

Harish-Chandra homomorphism for basic Lie superalgebras
Invariant polynomials for gl and osp

Image of Harish-Chandra homomorphism for gl and osp
Linkage for gl and osp

Typical finite-dimensional irreducible characters

Harish-Chandra homomorphism and linkage for q(n)
Central characters for q(n)
Harish-Chandra homomorphism for g(n)
Linkage for q(n)
Typical finite-dimensional characters of q(n)
Extremal weights of finite-dimensional simple modules
Extremal weights for gl(m|n)
Extremal weights for spo(2m|2n + 1)
Extremal weights for spo(2m|2n)

Exercises

Chapter 3. Schur duality

27
28
28
30

31
31
32
33
35

37
40

43

43
43
45
45
47
50
53

55
55
56
57
59
62
65
68

69
70
70
74
76

77
71
80
82

85
89

91



Contents ix

§3.1. Generalities for associative superalgebras 91
3.1.1. Classification of simple superalgebras 92
3.1.2. Wedderburn Theorem and Schur’s Lemma 94
3.1.3. Double centralizer property for superalgebras 95
3.1.4. Split conjugacy classes in a finite supergroup 96
83.2.  Schur-Sergeev duality of type A 98
3.2.1. Schur-Sergeev duality, I 98
3.2.2. Schur-Sergeev duality, II 100
3.2.3.  The character formula 104
3.2.4. The classical Schur duality 105
3.2.5. Degree of atypicality of A" 106
3.2.6. Category of polynomial modules 108
§3.3. Representation theory of the algebra 109
3.3.1. A double cover 110
3.3.2. Split conjugacy classes in B, 111
3.3.3. Aringstructure on R™ 114
3.3.4. The characteristic map 116
3.3.5. The basic spin module 118
3.3.6. The irreducible characters 119
§3.4. Schur-Sergeev duality for q(n) 121
3.4.1. A double centralizer property 121
3.4.2. The Sergeev duality 123
3.4.3. The irreducible character formula 125
§3.5. Exercises 125
Notes 128
Chapter 4. Classical invariant theory 131
§4.1. FFT for the general linear Lie group 131
4.1.1. General invariant theory 132
4.1.2. Tensor and multilinear FFT for GL(V) 133
4.1.3. Formulation of the polynomial FFT for GL(V) 134
4.1.4. Polarization and restitution 135
84.2. Polynomial FFT for classical groups 137
4.2.1. A reduction theorem of Weyl 137
4.2.2. The symplectic and orthogonal groups 139
4.2.3. Formulation of the polynomial FFT 140
4.2.4. From basic to general polynomial FFT 141
4.2.5. The basic case 142
84.3. Tensor and supersymmetric FFT for classical groups 145
4.3.1. Tensor FFT for classical groups 145

4.3.2. From tensor FFT to supersymmetric FFT 147



Contents

84.4. Exercises
Notes

Chapter 5. Howe duality

§5.1.  Weyl-Clifford algebra and classical Lie superalgebras
5.1.1.  Weyl-Clifford algebra

5.1.2. A filtration on Weyl-Clifford algebra

5.1.3. Relation to classical Lie superalgebras

5.1.4. A general duality theorem

5.1.5. A duality for Weyl-Clifford algebras

§5.2. Howe duality for type A and type Q
5.2.1. Howe dual pair (GL(k), gl(m|n))
5.2.2. (GL(k),gl(m|n))-Howe duality
5.2.3. Formulas for highest weight vectors
5.24. (q(m),q(n))-Howe duality

§5.3. Howe duality for symplectic and orthogonal groups
5.3.1. Howe dual pair (Sp(V), 0sp(2m|2n)) "
5.3.2. (Sp(V),o0sp(2m|2n))-Howe duality

5.3.3. Irreducible modules of O(V)

5.3.4. Howe dual pair (O(k),spo(2m|2n))

5.35. (O(V),spo(2m|2n))-Howe duality

§5.4. Howe duality for infinite-dimensional Lie algebras
5.4.1. Lie algebras ., €w, and 0.,

5.4.2. The fermionic Fock space

543. (GL(¢),a.)-Howe duality

5.4.4. (Sp(k),c.)-Howe duality

54.5. (O(k),0..)-Howe duality

§5.5. Character formula for Lie superalgebras

5.5.1. Characters for modules of Lie algebras ¢.. and 0..
5.5.2. Characters of oscillator 0sp(2m|2nr)-modules
5.5.3. Characters for oscillator spo(2m|2n)-modules

§5.6. Exercises

Notes

Chapter 6. Super duality

§6.1. Lie superalgebras of classical types
6.1.1. Head, tail, and master diagrams
6.1.2. The index sets

6.1.3. Infinite-rank Lie superalgebras

6.1.4. Thecase of m =0

6.1.5. Finite-dimensional Lie superalgebras

149
150

151

152
152
154
155
157
159

160
160
162
164
166

169
170
172
175
177
178

180
180
183
184
187
190

192
192
193
195

197
201

205

206
206
208
208
211
213



Contents X1

6.1.6. Central extensions 213
§6.2. The module categories 214
6.2.1. Category of polynomial modules revisited 215
6.2.2. Parabolic subalgebras and dominant weights 217
6.2.3. The categories O, O, and 0 218
6.2.4. The categories Oy, O,, and (5,, 220
6.2.5. Truncation functors 221
§6.3. The irreducible character formulas 222
6.3.1. Two sequences of Borel subalgebras of g 223
6.3.2. Odd reflections and highest weight modules 225
6.3.3. The functors T and T 228
6.3.4. Character formulas 231
86.4. Kostant homology and KLV polynomials 232
6.4.1. Homology and cohomology of Lie superalgebras 232
6.4.2. Kostant u~-homology and u-cohomology 235
6.4.3. Comparison of Kostant homology groups 236
6.4.4. Kazhdan-Lusztig-Vogan (KLV) polynomials 239
6.4.5. Stability of KLV polynomials 240
86.5. Super duality as an equivalence of categories 241
6.5.1. Extensions a la Baer-Yoneda 241
6.5.2. Relating extensions in O, O, and O 243
6.5.3. Categories o/, 6f, and/E)T 247
6.5.4. Lifting highest weight modules 247
6.5.5. Super duality and strategy of proof 248
6.5.6. The proof of super duality 250
§6.6. Exercises 255
Notes 258
Appendix A. Symmetric functions 261
8A.1. The ring A and Schur functions 261
A.1.1. Thering A 261
A.1.2.  Schur functions 265
A.1.3. Skew Schur functions 268
A.1.4. The Frobenius characteristic map 270
§A.2. Supersymmetric polynomials 271
A.2.1. The ring of supersymmetric polynomials 271
A.2.2. Super Schur functions 273
§A.3. Thering I' and Schur Q-functions 275
A3.1. TheringI’ 275
A.3.2. Schur Q-functions 277

A.3.3. Inner producton I’ 278



xii Contents

A.3.4. A characterization of I" 280
A.3.5. Relating Aand I’ 281
§A.4. The Boson-Fermion correspondence 282
A.4.1. The Maya diagrams 282
A.4.2. Partitions 282
A.4.3. Fermions and fermionic Fock space 284
A.4.4. Charge and energy 286
A.4.5. From Bosons to Fermions 287
A.4.6. Fermions and Schur functions 289
A.4.7. Jacobi triple product identity 289
Notes 290
Bibliography 291

Index 299



Preface

Lie algebras, Lie groups, and their representation theories are parts of the math-
ematical language describing symmetries, and they have played a central role in
modern mathematics. An early motivation of studying Lie superalgebras as a gen-
eralization of Lie algebras came from supersymmetry in mathematical physics.
Ever since a Cartan-Killing type classification of finite-dimensional complex Lie
superalgebras was obtained by Kac [60] in 1977, the theory of Lie superalgebras
has established itself as a prominent subject in modern mathematics. An inde-
pendent classification of the finite-dimensional complex simple Lie superalgebras
whose even subalgebras are reductive (called simple Lie superalgebras of classical
type) was given by Scheunert, Nahm, and Rittenberg in [106].

The goal of this book is a systematic account of the structure and representation
theory of finite-dimensional complex Lie superalgebras of classical type. The book
intends to serve as a rigorous introduction to representation theory of Lie superal-
gebras on one hand, and, on the other hand, it covers a new approach developed
in the past few years toward understanding the Bernstein-Gelfand-Gelfand (BGG)
category for classical Lie superalgebras. In spite of much interest in representa-
tions of Lie superalgebras stimulated by mathematical physics, these basic topics
have not been treated in depth in book form before. The reason seems to be that
the representation theory of Lie superalgebras is dramatically different from that
of complex semisimple Lie algebras, and a systematic, yet accessible, approach to-
ward the basic problem of finding irreducible characters for Lie superalgebras was
not available in a great generality until very recently.

We are aware that there is an enormous literature with numerous partial results
for Lie superalgebras, and it is not our intention to make this book an encyclopedia.
Rather, we treat in depth the representation theory of the three most important
classes of Lie superalgebras, namely, the general linear Lie superalgebras gl(m|n),

Xiii



X1v Preface

the ortho-symplectic Lie superalgebras osp(m|2n), and the queer Lie superalgebras
q(n). To a large extent, representations of sl(m|n) can be understood via gl(m|n).
The lecture notes [32] by the authors can be considered as a prototype for this book.
The presentation in this book is organized around three dualities with a unifying
theme of determining irreducible characters:

Schur duality, Howe duality, and super duality.

The new book of Musson [90] treats in detail the ring theoretical aspects of the
universal enveloping algebras of Lie superalgebras as well as the basic structures
of simple Lie superalgebras.

There are two superalgebra generalizations of Schur duality. The first one,
due to Sergeev [110] and independently Berele-Regev [7], is an interplay between
the general linear Lie superalgebra gl(m|n) and the symmetric group, which in-
corporates the trivial and sign modules in a unified framework. The irreducible
polynomial characters of gl(m|n) arising this way are given by the super Schur
polynomials. The second one, called Sergeev duality, is an interplay between the
queer Lie superalgebra q(n) and a twisted hyperoctahedral group algebra. The
Schur Q-functions and related combinatorics of shifted tableaux appear naturally
in the description of the irreducible polynomial characters of q(n).

It has been observed that much of the classical invariant theory for the polyno-
mial algebra has a parallel theory for the exterior algebra as well. The First Fun-
damental Theorem (FFT) for both polynomial invariants and skew invariants for
classical groups admits natural reformulation and extension in the theory of Howe’s
reductive dual pairs [51, 52]. Lie superalgebras allow an elegant and uniform treat-
ment of Howe duality on the polynomial and exterior algebras (cf. Cheng-Wang
[29)). For the general linear Lie groups, Schur duality, Howe duality, and FFT are
equivalent. Unlike Schur duality, Howe duality treats classical Lie groups and (su-
per)algebras beyond type A equally well. The Howe dualities allow us to determine
the character formulas for the irreducible modules appearing in the dualities.

The third duality, super duality, has a completely different flavor. It views the
representation theories of Lie superalgebras and Lie algebras as two sides of the
same coin, and it is an unexpected and rather powerful approach developed in the
past few years by the authors and their collaborators, culminating in Cheng-Lam-
Wang [24]. The super duality approach allows one to overcome in a conceptual
way various major obstacles in super representation theory via an equivalence of
module categories of Lie algebras and Lie superalgebras.

Schur, Howe, and super dualities provide approaches to the irreducible charac-
ter problem in increasing generality and sophistication. Schur and Howe dualities
only offer a solution to the irreducible character problem for modules in some
semisimple subcategories. On the other hand, super duality provides a conceptual
solution to the long-standing irreducible character problem in fairly general BGG
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categories (including all finite-dimensional modules) over classical Lie superalge-
bras in terms of the usual Kazhdan-Lusztig polynomials of classical Lie algebras.
Totally different and independent approaches to the irreducible character problem
of finite-dimensional gl(m|n)-modules have been developed by Serganova [107]
and Brundan [11]. Also Brundan’s conjecture on irreducible characters of gl(m|n)
in the full BGG category O has recently been proved in [26]. Super duality again
plays a crucial role in the proof. However, this latest approach to the full BGG
category O is beyond the scope of this book.

The book is largely self-contained and should be accessible to graduate stu-
dents and non-experts as well. Besides assuming basic knowledge of entry-level
graduate algebra (and some familiarity with basic homological algebra in the final
Chapter 6), the other prerequisite is a one-semester course in the theory of finite-
dimensional semisimple Lie algebras. For example, either the book by Humphreys
or the first half of the book by Carter on semisimple Lie algebras is sufficient. Some
familiarity with symmetric functions and representations of symmetric groups can
be sometimes useful, and Appendix A provides a quick summary for our purpose.
It is possible that super experts may also benefit from the book, as several “folk-
lore” results are rigorously proved and occasionally corrected in great detail here,
sometimes with new proofs. The proofs of some of these results can be at times
rather difficult to trace or read in the literature (and not merely because they might
be in a different language).

Here is a broad outline of the book chapter by chapter. Each chapter ends with
exercises and historical notes. Though we have tried to attribute the main results
accurately and fairly, we apologize beforehand for any unintended omissions and
mistakes.

Chapter 1 starts by defining various classes of Lie superalgebras. For the basic
Lie superalgebras, we introduce the invariant bilinear forms, root systems, funda-
mental systems, and Weyl groups. Positive systems and fundamental systems for
basic Lie superalgebras are not conjugate under the Weyl group, and the notion of
odd reflections is introduced to relate non-conjugate positive systems. The PBW
theorem for the universal enveloping algebra of a Lie superalgebra is formulated,
and highest weight theory for basic Lie superalgebras and q(n) is developed.

In Chapter 2, we focus on Lie superalgebras of types gl, osp and q. We clas-
sify their finite-dimensional simple modules using odd reflection techniques. We
then formulate and establish precisely the images of the respective Harish-Chandra
homomorphisms and linkage principles. We end with a Young diagrammatic de-
scription of the extremal weights in the simple polynomial gl(m|n)-modules and
finite-dimensional simple osp(m|2n)-modules. It takes considerably more effort to
formulate and prove these results for Lie superalgebras than for semisimple Lie al-
gebras because of the existence of non-conjugate Borel subalgebras and the limited
role of Weyl groups for Lie superalgebras.
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Schur duality for Lie superalgebras is developed in Chapter 3. We start with
some results on the structure of associative superalgebras including the super vari-
ants of the Wedderburn theorem, Schur’s lemma, and the double centralizer prop-
erty. The Schur-Sergeev duality for gl(m|n) is proved, and it provides a classifica-
tion of irreducible polynomial gl(m|n)-modules. As a consequence, the characters
of the simple polynomial gl(m|n)-modules are given by the super Schur polynomi-
als. On the algebraic combinatorial level, there is a natural super generalization of
the notion of semistandard tableau, which is a hybrid of the traditional version and
its conjugate counterpart. The Schur-Sergeev duality for q(n) requires understand-
ing the representation theory of a twisted hyperoctahedral group algebra, which we
develop from scratch. The characters of the simple polynomial ¢(n)-modules are
given by the Schur Q-polynomials up to some 2-powers.

In Chapter 4, we give a quick introduction to classical invariant theory, which
serves as a preparation for Howe duality in the next chapter. We describe sev-
eral versions of the FFT for the classical groups, i.e., a tensor algebra version, a
polynomial algebra version, and a supersymmetric algebra version.

Howe duality is the main topic of Chapter 5. Like Schur duality, Howe duality
involves commuting actions of a classical Lie group G and a classical superalgebra
g’ on a supersymmetric algebra. The precise relation between the classical Lie su-
peralgebras and Weyl-Clifford algebras 20¢ is established. According to the FFT
for classical invariant theory in Chapter 4 when applied to the G-action on the as-
sociated graded algebra gr 20€, the basic invariants generating (gr20¢)€ turn out
to form the associated graded space for a Lie superalgebra g’. From this it fol-
lows that the algebra of G-invariants 2¢C is generated by g’. Multiplicity-free
decompositions for various (G, g’)-Howe dualities are obtained explicitly. Charac-
ter formulas for the irreducible g’-modules appearing in (G, g’)-Howe duality are
then obtained via a comparison with Howe duality involving classical groups G
and infinite-dimensional Lie algebras, which we develop in detail.

Finally in Chapter 6, we develop a super duality approach to obtain a complete
and conceptual solution of the irreducible character problem in certain parabolic
Bernstein-Gelfand-Gelfand categories for general linear and ortho-symplectic Lie
superalgebras. This chapter is technically more sophisticated than the earlier chap-
ters. Super duality is an equivalence of categories between parabolic categories for
Lie superalgebras and their Lie algebra counterparts at an infinite-rank limit, and it
matches the corresponding parabolic Verma modules, irreducible modules, Kostant
u-homology groups, and Kazhdan-Lusztig-Vogan polynomials. Truncation func-
tors are introduced to relate the BGG categories for infinite-rank and finite-rank
Lie superalgebras. In this way, we obtain a solution a la Kazhdan-Lusztig of the
irreducible character problem in the corresponding parabolic BGG categories for
finite-dimensional basic Lie superalgebras.
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There is an appendix in the book. In Appendix A, we have included a fairly
self-contained treatment of some elementary aspects of symmetric function the-
ory, including Schur functions, supersymmetric functions and Schur Q-functions.
The celebrated boson-fermion correspondence serves as a prominent example re-
lating superalgebras to mathematical physics and algebraic combinatorics. The
Fock space therein is used in setting up the Howe duality for infinite-dimensional
Lie algebras in Chapter 5.

For a one-semester introductory course on Lie superalgebras, we recommend
two plausible ways of using this book. A first approach uses Chapters 1, 2, 3,
with possible supplements from Chapter 5 and Appendix A. A second approach
uses Chapters 1, 3, 5 with possible supplements from Chapter 4 and Appendix A.
It is also possible to use this book for a course on the interaction between repre-
sentations of Lie superalgebras and algebraic combinatorics. The more advanced
Chapter 6 can be used in a research seminar.

Acknowledgment. The book project started with the lecture notes [32] of the
authors, which were an expanded written account of a series of lectures delivered
by the second-named author in the summer school at East China Normal Univer-
sity, Shanghai, in July 2009. In a graduate course at the University of Virginia in
Spring 2010, the second-named author lectured on what became a large portion of
Chapters 3, 4, and 5 of the book. The materials in Chapter 3 on Schur duality have
been used by the second-named author in the winter school in Taipei in December
2010. Part of the materials in the first three chapters have also been used by the
first-named author in a lecture series in Shanghai in March 2011, and then in a
lecture series by both authors in a workshop in Tehran in May 2011. We thank the
participants in all these occasions for their helpful suggestions and feedback, and
we especially thank Constance Baltera, Jae-Hoon Kwon, Li Luo, Jinkui Wan, and
Youjie Wang for their corrections. We are grateful to Ngau Lam for his collabora-
tion which has changed our way of thinking about the subject of Lie superalgebras.

The first-named author gratefully acknowledges the support from the National
Science Council, Taiwan, and the second-named author gratefully acknowledges
the continuing support of the National Science Foundation, USA.

Shun-Jen Cheng
Weiqiang Wang






Chapter 1

Lie superalgebra ABC

We start by introducing the basic notions and definitions in the theory of Lie su-
peralgebras, such as basic and queer Lie superalgebras, Cartan and Borel subal-
gebras, root systems, positive and fundamental systems. We formulate the main
structure results for the basic Lie superalgebras and the queer Lie superalgebras.
We describe in detail the structures of Lie superalgebras of type gl, osp and q. A
distinguishing feature for Lie superalgebras is that Borel subalgebras, positive sys-
tems, or fundamental systems of a simple finite-dimensional Lie superalgebra may
not be conjugate under the action of the corresponding Weyl group; rather, they
are shown to be related to each other by real and odd reflections. A highest weight
theory is developed for Lie superalgebras. We describe how fundamental systems
are related and how highest weights are transformed by an odd reflection.

1.1. Lie superalgebras: Definitions and examples

Throughout this book we will work over the field C of complex numbers. Let
Zp ={0,1}

denote the group of two elements and let &, denote the symmetric group in n
letters.

In this section, we introduce many examples of Lie superalgebras. The ex-
amples, most relevant to this book, of the general linear and ortho-symplectic Lie
superalgebras are introduced first. Other series of finite-dimensional simple Lie

1



2 1. Lie superalgebra ABC

superalgebras of classical type, namely, the queer and the periplectic Lie super-
algebras, along with the three exceptional ones, are then described. The finite-
dimensional Cartan type Lie superalgebras are then realized explicitly as subal-
gebras of the Lie superalgebra of polynomial vector fields on a purely odd di-
mensional superspace. The section ends with Kac’s classification theorem of the
finite-dimensional simple Lie superalgebras over C, which we state without proof.

1.1.1. Basic definitions. A vector superspace V is a vector space endowed with
a Z-gradation: V = V5@ V;. The dimension of the vector superspace V is the tu-
ple dimV = (dimVj|dimV;) or sometimes dimV = dimV; + dim V; (which should
be clear from the context). The superdimension of V is defined to be sdimV :=
dimV; — dimVj. We denote the superspace with even subspace C™ and odd sub-
space C" by C”/"_ It has dimension (m|n). The parity of a homogeneous element
a € V; is denoted by |a| =i, i € Z,. An element in Vj is called even, while an
element in Vj is called odd. A subspace of a vector superspace V = V3@ Vj is a
vector superspace W = Wy & W; C V with compatible Z,-gradation, i.e., W; C V},
fori e Z,.

Let V be a superspace. Throughout the book, when we write |v| for an ele-
ment v € V, we will always implicitly assume that v is a homogeneous element
and automatically extend the relevant formulas by linearity (whenever applicable).
Also, note that if V and W are superspaces, then the space of linear transformations
from V to W is naturally a vector superspace. In particular, the space of endomor-
phisms of V, denoted by End(V'), is a vector superspace. When V = C"I" we write
I = I,,),, = Iy for the identity matrix on V.

There is a parity reversing functor IT on the category of vector superspaces.
For a vector superspace V = V& Vy, we let

V) =T(V)g V), TI(V)i =V, Vi€ Z.
Clearly, IT? =1.

Definition 1.1. A superalgebra A, sometimes also called a Z,-graded algebra,
is a vector superspace A = Ag & A equipped with a bilinear multiplication satis-
fying A;A; C Ajyj, for i,j € Z;. A module M over a superalgebra A is always
understood in the Z;-graded sense, that is M = My & Mj such that A;M i S My,
for i, j € Z,. Subalgebras and ideals of superalgebras are also understood in the
Z>-graded sense. A superalgebra that has no nontrivial ideal is called simple. A
homomorphism between A-modules M and N is a linear map f : M — N satisfy-
ing that f(am) = af(m), for all a € A, m € M. A homomorphism f : M — N is of
degree [f| € Z; if f(M;) C My 5 fori € Z,.

A homomorphism between modules M and N of a superalgebra A is sometimes
understood in the literature as a linear map f : M — N of parity |f| € Z, which
satisfies (x) f(am) = (—1)\"flaf(m), for homogeneous a € A, m € M. Let us call



1.1. Lie superalgebras: Definitions and examples 3

such a map a *»-homomorphism. These two definitions can be converted to each
other as follows. Given a homomorphism f : M — N of degree | f| in the sense of
Definition 1.1, we define 7 : M — N by the formula

(1.1) f1@) = (=) ).
Then 7 is a -homomorphism. Conversely, (1.1) also converts a x-homomorphism

into a homomorphism as in Definition 1.1.

Now we come to the definition of the main object of our study.

Definition 1.2. A Lie superalgebra is a superalgebra g = g5 © g7 with bilinear
multiplication [-, -] satisfying the following two axioms: for homogeneous elements
a,b,ceg,

(1) Skew-supersymmetry: [a,b] = —(—1)!4"¥[b, q].

(2) Super Jacobi identity: [a, [b,c]] = [[a,b],c] + (1)1l [b, [a,c]].

A bilinear form (-,-) : g x g — C on a Lie superalgebra g is called invariant if
([a,b],c) = (a,[b,c]), forall a,b,c € g.

For a Lie superalgebra g = g5 @ g7, the even part g; is a Lie algebra. Hence,
if g; = 0, then g is just a usual Lie algebra. A Lie superalgebra g with purely odd
part, i.e., g5 = 0, has to be abelian, i.e., [g,g] = 0.

Definition 1.3. Let g and g’ be Lie superalgebras. A homomorphism of Lie su-
peralgebras is an even linear map f : g — g’ satisfying

f([avb]) = [f(a)vf(b)]v a,beg.

Example 1.4. (1) Let A = Aj®Aj be an associative superalgebra. We can make A
into a Lie superalgebra by letting

[a,b] := ab— (— 1)l Plpg,

for homogeneous a,b € A and extending [-, -] by bilinearity.

(2) Let g be a Lie superalgebra. Then End(g) is an associative superalgebra,
and hence it carries a structure of a Lie superalgebra by (1). We define the adjoint
map ad : g — End(g) by

ad(a)(b) :=la,b], a,beg.

Then ad is a homomorphism of Lie superalgebras due to the super Jacobi identity.
The resulting action of g on itself is called the adjoint action.

(3) Let A = Ay ® Aj be a superalgebra. An endomorphism D € End(A),, for
s € 7y, is called a derivation of degree s if it satisfies that

D(ab) = D(a)b+ (—1)*aD(b), a,becA.
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Denote by Der(A), the space of derivations on A of degree s. One verifies that the
superspace of derivations of A, Der(A) = Der(A); @ Der(A)7, is a subalgebra of the
Lie superalgebra (End(A), [-,]).

In the case when g is a Lie superalgebra we have adg € Der(g), for all g € g,
by the super Jacobi identity. Indeed, such derivations are called inner derivations.
The inner derivations form an ideal in Der(g).

(4) Let g = gp @ g7 be a superspace such that g5 = Cz is one-dimensional.
Suppose that we have a symmetric bilinear form B(-,) on gi. We can make g into
a Lie superalgebra by letting z commute with g and declaring

[V,W] = B(V,W)Z, v,weE gy

The special cases when B(-,-) is zero and when B(-,-) is non-degenerate, respec-
tively, are of particular interest. Indeed, their corresponding universal enveloping
superalgebras (see Section 1.5.1) are isomorphic to the exterior and Clifford super-
algebras of Section 1.1.6 and Definition 3.33, respectively.

For a Lie superalgebra g = g © gi, the restriction of the adjoint homomor-
phism ad|g; : g5 — End(gy) is a homomorphism of Lie algebras. That is, gj is a
gg-module under the adjoint action.

Remark 1.5. To a Lie superalgebra g = gg & g7 we associate the following data:
(1) A Lie algebra gg.
(2) A gg-module g; induced by the adjoint action.
(3) A gg-homomorphism $*(gj) — gp induced by the Lie bracket.
(4) The condition coming from Definition 1.2(2) with a,b,c € g1.

Conversely, the above data determine a Lie superalgebra structure on gy ® g1.

1.1.2. The general and special linear Lie superalgebras. Let V = V; ®Vj be
a vector superspace so that End(V') is an associative superalgebra. As in Exam-
ple 1.4(1), End(V'), equipped with the supercommutator, forms a Lie superalgebra
called the general linear Lie superalgebra and denoted by gl(V). WhenV = crmin
we also write gl(m|n) for gl(V).

Choose ordered bases for V5 and V; that combine to a homogeneous ordered
basis for V. We will make it a convention to parameterize such a basis by the set

(1.2) I(mn)={1,...,m;1,...,n}
with total order
(1.3) T<..<m<0<1<...<n.

Here O is inserted for notational convenience later on. The elementary matrices
are accordingly denoted by E;;, with i, j € I(m|n). With respect to such an ordered
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basis, End(V') and gl(V) can be realized as (m +n) x (m+ n) complex matrices of
the block form

(14 o= (¢ Z)

where a, b, ¢, and d are respectively m x m, m X n, n X m, and n X n matrices. The
even subalgebra gl(V')5 consists of matrices of the form (1.4) with b = ¢ = 0, while
the odd subspace gl(V'); consists of those with @ = d = 0. In particular, gl(V )5 =
gl(m) @ gl(n), and as a gl(V)j-module, gl(V); is self-dual and is isomorphic to
(C"®@C™) @ (C™ @ C"). Here and below, C™ denotes the dual space of C".

Remark 1.6. Let IT be the parity reversing functor defined in Section 1.1.1. We
have an isomorphism of Lie superalgebras from gl(V') to gl(IIV) by sending T to
[I7T1"!. When dimV = (m|n), we obtain an isomorphism of Lie superalgebras

gl(m|n) = gl(n|m).
For each element g € gl(m|n) of the form (1.4) we define the supertrace as
str(g) := tr(a) — tr(d),
where tr(x) denotes the trace of the square matrix x. One checks that
str([g,£']) =0, for g, g’ € gl(m|n).
Thus, the subspace
sl(m|n) := {g € gl(m|n) | str(g) = 0}

is a subalgebra of gl(m|n), and it is called the special linear Lie superalgebra.
One verifies directly that [gl(m|n), gl(m|n)] = sl(m|n). Furthermore, sl(m|n) =
sl(n|m), and when m # n and m+n > 2, sl(m|n) is simple. When m = n, sl(m|m)

contains a nontrivial center generated by the identity matrix I,,. For m > 2,
sl(m|m)/Cl,, is simple.

Example 1.7. Let g = gl(1]|1) and consider the following basis for g:

01 00 10 00

Set h:= Ej1+E1 = I);. Then h is central, [e, f] = h, and s[(1|1) has a basis
{e.h. f}.
Let I = [ L I; be a parametrization of a homogeneous basis of the superspace

V = V5 ® Vi, where [ and [; parameterize the corresponding bases of V5 and Vj,
respectively. For an element i in I we define

i 0, if i € I,
T, ifiel;.

For example, for the parametrization /(m|n) with ordering (1.3), we have |i| =0
for i < 0, and |i| = 1 for i > 0. Choosing a total ordering of the homogeneous
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basis we may identify gl(V) with the space of |Ij x |I| matrices. For such a matrix
A =3, je1aijEij, aij € C, we define the supertranspose of A to be
(L.5) A=y (=)D g
ijel
We define the Chevalley automorphism 1 : gl{(V) — g{(V) by the formula
(1.6) T(A) := —A%.
It is straightforward to check that T is an automorphism of Lie superalgebras. We

note that T restricts to an automorphism of s{(V'). Also, for m,n both nonzero, T
has order 4 and hence is, in general, not an involution.

1.1.3. The ortho-symplectic Lie superalgebras.

Definition 1.8. Let V = V@ V; be a vector superspace. A bilinear form
B(-,:):VxV —V

is called even (respectively, odd), if B(V;,V;) =0 unless i + j = 0 (respectively,

i+ j=1). An even bilinear form B is said to be supersymmetric if Bly, .y, is

symmetric and Bly, xy; is skew-symmetric, and it is called skew-supersymmetric
if Bly, xv; is skew-symmetric and Bly; xv; is symmetric.

Let B be a non-degenerate even supersymmetric bilinear form on a vector su-
perspace V = V5 & Vj. It follows that dimVj is necessarily even. For s € Z, let

osp(V)s = {g € 8l(V)s | B(g(x),y) = —(=1)""B(x,8(»),¥x,y € V},

osp(V) 1= osp(V)y P osp(V);.
One checks that osp(V) is a Lie superalgebra, called the ortho-symplectic Lie
superalgebra; that is, osp(V) is the subalgebra of gl(V) that preserves a non-
degenerate supersymmetric bilinear form. Its even subalgebra is isomorphic to
s0(V) ®sp(Vy), a direct sum of the orthogonal Lie algebra on V; and the symplec-
tic Lie algebra on V;. When V = C*?", we write osp(¢|2m) for osp(V'). Note that
when ¢ (respectively, m) is zero, the ortho-symplectic Lie superalgebra reduces to
the classical Lie algebra sp(2m) (respectively, so({)).

Similarly, we define the Lie superalgebra spo(V) as the subalgebra of gi(V)

that preserves a non-degenerate skew-supersymmetric bilinear form on V' (here
dimVj has to be even). When V = C*"l, we write spo(2m|() for spo(V).

Remark 1.9. A non-degenerate supersymmetric bilinear form B on V' induces a
non-degenerate skew-supersymmetric bilinear form B'" on TI(V), defined by

BT(I1(v),11(v)) == (—~1)"B(v,v"), forv,V V.

The restriction of the isomorphism gl(V) = gl(ITV) in Remark 1.6 gives rise to a
Lie superalgebra isomorphism between osp(V) (with respect to B) and spo(ITV)
(with respect to B'T); see Exercise 1.3. It follows that osp(£]2m) = spo(2m|{).
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We now give an explicit matrix realization of the ortho-symplectic Lie super-
algebra. To this end, we first observe that the supertranspose (1.5) of a matrix in
the block form (1.4) is equal to

abSt_ a
c d) \=b d)’

where x' denotes the usual transpose of a matrix x.
Define the (2m+2n+1) x (2m+2n+ 1) matrix in the (m|m|n|n|1)-block form

0 I, 0 0 0

I, 0 0 0 0

(1.7) Sampmsr =] 0 0 0 I, 0
0 0 I, 00

0 0 0 0 1

Let Jou2, denote the (2m + 2n) x (2m + 2n) matrix obtained from Jam2.+1 by
deleting the last row and column. For ¢ = 2n or 2n+ 1, by definition spo(2m|¢)
is the subalgebra of gl(2m|{) that preserves the bilinear form on C2If with matrix
Jame relative to the standard basis of C2l¢, and hence

spo(2m|€) = {g € gl(2m|L) | & Fomje + Jomie 8 = 0}

By a direct computation, spo(2m|2n+ 1) consists of the (2m +2n+ 1) x (2m+
2n+ 1) matrices of the following (m|m|n|n|1)-block form

d e Y x 7
fo=d = =
(1.8) X X a b —V' |, b,cskew-symmetric, e, f symmetric.
y nw ¢ —d —u
Z

7] u v 0

Note that spo(2m|2n+1); = C?" ® C*>**1 (which is self-dual) as a module over
spo(2m|2n+1)5 = sp(2m) ®so(2n+1).

The Lie superalgebra spo(2m|2n) consists of matrices (1.8) with the last row
and column removed. Note that spo(2m|2n); = C¥" @ C*" (which is self-dual) as
a module over spo(2m|2n)y = sp(2m) ® s0(2n).

Here and below, the rows and columns of the matrices J,,,¢ and (1.8) (or its
modification) are indexed by the finite set I(2m|/).

Proposition 1.10. The automorphism T in (1.6) restricts to an automorphism of
spo(2m|l).

Proof. Take an element g € spo(2m|{). Thus, J,s8 + &% Jome = 0, and hence

(1.9) 8" e+ Iame(8™)" =0.
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Observe that 3;‘m| = (szw)_l. So if we multiply (1.9) on the left and on the right
by Jam|e» we obtain the identity

JZm\ZgS( + (gSt)StJZmM =0.
This implies that J2,,,T(g) +T(£)*Jome = 0, and so 1(g) € spo(2m|¢). O

1.1.4. The queer Lie superalgebras. LetV =V; @ V; be a vector superspace with
dimVj = dimVj. Choose P € End(V); such that P? = aln- The subspace

q(V) ={T € End(V) | [T, P] = 0}

is a subalgebra of gl(V) called the queer Lie superalgebra. Different choices of
P give rise to isomorphic queer Lie superalgebras. If V = C"", then q(V) is also
denoted by q(n).

To give an explicit matrix realization of ¢(n), let us take P to be the 2n x 2n
matrix
(1.10) P:=v-1 0 I .
-1, 0O
Then, for g € gl(n|n) of the form (1.4), we have g € q(n) if and only if gP —
(—1)lelpg =0, and in turn, if and only if

(L11) g = (g Z)

where a, b are arbitrary complex n x n matrices. Thus we have q(n); = gl(n) as Lie
algebras, and q(n); = gl(n) as the adjoint q(n)z-module. A linear basis for q(n)
consists of the following elements:

(1.12) Eij:=E;j+Eij, Eij:=E;;+E;;, 1<ij<n.

j?

The derived superalgebra [q(n),q(n)] consists of matrices of the form (1.11),
with a € gl(n) and b € sl(n), and so it contains a one-dimensional center generated
by the identity matrix I,,. The quotient superalgebra [q(n),q(n)]/CL,, has even
part isomorphic to s[(n) and odd part isomorphic to the adjoint module, and one
can show that it is simple for n > 3. For n = 2, the odd part of the quotient Lie
superalgebra is an abelian ideal, since the adjoint module of s[(2) does not appear
in the symmetric square of the adjoint module.

Remark 1.11. Consider the subspace q(n) of gl(n|n) consisting of elements that
commute with P. That is,

q(n) := {g € gl(n|n)|gP — Pg = 0}.

In matrix form, q(n) consists of the following n|n-block matrices:

a b
(1.13) (—b a)’



1.1. Lie superalgebras: Definitions and examples 9

where a and b are arbitrary n x n matrices. One checks that q(n) is closed under
the Lie bracket and hence is a subalgebra of gl(n|n). Indeed q(n) is isomorphic to
q(n), since the map T in (1.6) sends q(n) to q(n), and vice versa. Thus, (1.13) gives
another realization of the queer Lie superalgebra.

1.1.5. The periplectic and exceptional Lie superalgebras. Let us describe more
examples of Lie superalgebras.

The periplectic Lie superalgebras. Let V = V; @ Vj be a vector superspace
with dimV; = dimVj. Let C(-,-) be a non-degenerate odd symmetric bilinear form
on V. One checks that the subspace of gl(V) preserving C is closed under the Lie
bracket and hence is a Lie subalgebra of gl(V). This superalgebra is called the
periplectic Lie superalgebra and will be denoted by p(V). Different choices of C
give rise to isomorphic periplectic Lie superalgebras. In the case V = crin, p(V)is
also denoted by p(n).

To write down an explicit matrix realization of p(n) as a subalgebra of gl(n|n),
let us take the 2n x 2n matrix

: (0 1,
(1.14) P = (In 0),
which determines an odd symmetric bilinear form C on C**. Then, g € p(n) if and
only if g 4+ Pg = 0. It follows that

(1.15) p(n) = { <Z _bat) , where b is symmetric and c is skew—symmetric} .

We have
(1.16) p(n)g = ol(n), p(n); =S*(C) & A*(C™).
For n > 3, the derived superalgebra [p(n), p(n)] is simple, and it consists of matrices

of the form (Z _bat> with tr(a) =0, ' = b, and ¢’ = —c.

Remark 1.12. One checks that the Lie subalgebra p(n) of gl(n|n) preserving the
non-degenerate odd skew-symmetric bilinear form corresponding to P in (1.10)

. . a b . .
consists of matrices of the form (C a’) with o' = —b and ¢’ = ¢. Similar to

Remark 1.11, the map 7 in (1.6) restricts to an isomorphism between p(n) and p(n).

The exceptional Lie superalgebra D(2|1, o).

We take three copies of the Lie algebra sl(2) denoted by g; (i = 1,2,3), and
we associate to each g; a copy of the standard s((2)-module V;.

Clearly, as g;-modules, we have an isomorphism S*(V;) = g;. By Schur’s
Lemma we may associate a nonzero scalar a; € C to any such isomorphism. Now
consider g = g5 b g7, where g5 = g1 D g2 @ g3, and gy is the irreducible gz-module
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Vi@V, ®V3. We can associate three nonzero complex numbers o, i = 1,2,3,
to any surjective gg-homomorphism from S$?(g7) to go- Thus, our vector super-
space g satisfies Conditions (1)—(3) of Remark 1.5. It is easy to see that Condition
(4) of Remark 1.5 is equivalent to Z?:l o; = 0. Thus, we obtain a Lie superalgebra
g(au, 0, 03) depending on three nonzero parameters o, i = 1,2,3. For 6 € G5, we
have g(ou, 0, 03) = g(occ(l), 0(0(2),060(3)). Also, g(oy, 02,03) = g(hoy Aoz, Aai3),
for any nonzero A € C. Thus, we have a one-parameter family of Lie superalgebras
D(2|1,0) := g(at,1,—1 — o) that are simple for o0 # 0, —1.

We have g(o,1,—1 —a) = g(1,a,~1 —a) = g(1,a”!,—a~! — 1), and also
g(a,1,-1—0a) =2 g(-1—a,1,a), which imply

D(2|1,0) 2 D21, ") = D21, -1 —q).

The maps 0.~ o' and &+ (—1 — o) generate an action of &3 on C\ {0, —1}.

We have D(2|1,a) = D(2|1,B) if and only if B € &3 -o. This gives additional
isomorphisms

D(2[1,0) = D21, —(1+a) ') 2 D(2|1, -1 —a~ ) = D21, - (1 + )7 H).

Thus, any orbit of (C\ {0,—1}) /S5 consists of six points, except for the orbit
corresponding to the three points o0 =1, —2, —%, and the orbit corresponding to the

two points ot = —3 =& 1/ —3. Finally, note that D(2|1,1) = 0sp(4]2).

The exceptional Lie superalgebra F(3|1). There is a simple Lie superalge-
bra F(3[1) with F(3|1); = s[(2) ®s0(7). The odd part, as an F(3|1)5-module,
is isomorphic to the tensor product of the standard s{(2)-module and the simple
50(7)-spin module. Hence, dimF(3]1) = (24]16). In the literature, F(3|1) is often
denoted by F (4), which could be confused with the simple Lie algebra of type Fj.

The exceptional Lie superalgebra G(3). There is a simple Lie superalgebra
G(3) with G(3)5 = 5[(2) ® G,. The odd part as a G(3)z-module is isomorphic to
the tensor product of the standard sI(2)-module and the fundamental 7-dimensional
G»-module. Hence, dimG(3) = (17(14).

1.1.6. The Cartan series. In this subsection, we describe the Cartan series of
finite-dimensional simple Lie superalgebras without proof. This part is included
for the sake of presenting a complete classification of finite-dimensional simple
Lie superalgebras in Theorem 1.13 and will not be used elsewhere in the book.

Lie superalgebra W (n). Let A(n) be the exterior algebra in n indeterminates
€1,82,...,&n. We have §,&; = —§;&;, for all 4, j, and in particular, £? = 0, for all .
Setting |&;| = 1, for all i, the algebra A(n) becomes a superalgebra which we also
refer to as an exterior superalgebra.

By general construction in Example 1.4, we have a finite-dimensional Lie su-
peralgebra of derivations on A(n), which will be denoted by W (n).
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Fori=1,...,n, the derivation -a% : A(n) — A(n) of degree 1 is uniquely deter-
mined by

ég.(gj) =9, j=1,...,n

Given an element f = (f1, f2,..., fa) € A(n)", with | fi| = |f;], for all i, j, the linear
map Dy : A(n) — A(n) of the form

d

Z . d
Dy = Z{fla_f;,

is a derivation of A(n). Furthermore, all homogeneous derivations of A(n) are of
this form, since a derivation is determined by its values at &; for all i. Therefore,
sending f — Dy defines a linear isomorphism from A(n)" to W(n), and so W (n)
has dimension 2"n.

Setting deg&; = 1 and dega% = —1, for all i, gives rise to a Z-gradation on
W(n), called the principal gradation. We have

n—1
W(n)= @ Wn),;.

j=—1

The Z-gradation is compatible with the super structure on W (n); that is, W (n); =
@ j=s mod2W (n);, for s € Z,. The Oth degree component W (n)o is a Lie algebra iso-
morphic to gl(n), and each W (n); is a gl(n)-module isomorphic to A/ (C") @ C™.
In particular, when n = 2, we have W (2)o = gl(2), W(2)_| = C?* and W(2); 2 C?
as gl(2)-modules. Indeed, we have isomorphisms of Lie superalgebras W (2) =
0sp(2|2) = sl(2]1) (see Exercises 1.4 and 1.5).

The Lie superalgebra W (n) is simple, for n > 2. Moreover, W(n) contains
the following three series of simple Lie superalgebras as subalgebras that we shall
describe.

Lie superalgebra S(n). The first series is the super-analogue of the Lie algebra
of divergence-free vector fields given by

IS w1 S ()=
S(n) = {j;f, s, € W0 | 2 5, () o}.

The Lie superalgebra S(n) is a Z-graded subalgebra of W (n) and we have S(n) =

;?;31 S(n);. The Lie algebra S(n)o is isomorphic to sl(n), and the jth degree
component S(n) is isomorphic to the top irreducible summand of the s[(n)-module
ATH(C™) ® C*. The Lie superalgebra S(n) is simple, for n > 3.

~

Lie superalgebra S(n). Let n be even so that @ = 1 +&&,---&, is a Z,-
homogeneous invertible element in A(n). Consider the subspace of W(n) given
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by
={§fja_% 'Zag, ofj) = }

It can be shown that S (n) is a subalgebra of the Lie superalgebra W(n). The Lie
superalgebra S| (n) is no longer Z-graded, as the defining condition is not homo-
geneous. However, §( ) inherits a natural filtration from the filtration on W(n)
induced by the principal gradation. The associated graded Lie superalgebra of
S(n) is isomorphic to S(n). Explicitly, S(n) is the following direct sum of vector
spaces inside W (n):

n—2
(1.17) S(n) = P S(n)

j=—1
where S(n)_, is spanned by {(1 —ﬁliz“'in)a%jfi =1,...,n},and S(n); = S(n);,
for j=0,...,n—2. Forn>2and neven, S(n) is simple. Note that §(2) = spo(2]1).

Lie superalgebra H(n). As in the classical setting, W (n) contains a subalgebra
H(n) as defined below, which is a super-analogue of the Lie algebra of Hamiltonian
vector fields. For f,g € A(n), we define the Poisson bracket by

{f.g}=(- 1'f'z§{]§§

The Poisson bracket makes A(n) into a Lie superalgebra, which we will denote by
H(n). Now putting degf := k — 2, for f € A(n), H(n) becomes a Z-graded Lie
superalgebra. The superalgebra H (n) is not simple, as it has center C1. However,
the derived superalgebra of H(n)/C1, which we denote by H(n), is simple, for
n > 4. Moreover, H(n) = ?;EIH (n)j is a graded Lie superalgebra. The Oth
degree component is a Lie algebra isomorphic to so(n). As an so(n)-module we
have H(n); & AJT2(C"), for —1 < j < n—3. Finally, H(n) can be viewed as a

subalgebra of W (n), since the assignment f s (—1)/13" =1 %aﬁ , for f € A(n),
gives rise to an embedding of Lie superalgebras from H (rn) /C1 into W (n).

1.1.7. The classification theorem. The following theorem of Kac [60] gives a
classification of finite-dimensional complex simple Lie superalgebras. Note the
following isomorphisms of Lie superalgebras (see Exercises 1.5, 1.4, and 1.7):

0sp(202) 2s1(2]1) = W (2), s1(2[2)/Chyp = H(4), [p(3),p(3)] 2 5(3).

Theorem 1.13. The following is a complete list of pairwise non-isomorphic finite-
dimensional simple Lie superalgebras over C.

(1) A finite-dimensional simple Lie algebra in the Killing-Cartan list.
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(2) sl(m|n), for m > n > 1 (excluding (m,n) = (2,1)); sl(m|m)/Cl,,, for
m > 3; spo(2m|n), for m,n > 1.

(3) D(2|1,0), for a.€ (C\ {0, 41,-2,—1}) /&3, F(3]1); and G(3).
) [p(n),p(n)] and [q(n),q(n)]/Clyy, for n > 3.

(5) W(n), forn > 3; S(n), forn > 4; S(2n), forn > 2; and H(n), for n > 4.

A Lie superalgebra g = g5 @ g7 in Theorem 1.13(1)-(4) has the property that
gg 1s a reductive Lie algebra and the adjoint gg-module gi is semisimple. To dis-
tinguish between such a Lie superalgebra from one in the Cartan series of Theo-
rem 1.13(5), we introduce the following terminology.

Definition 1.14. A Lie superalgebra g = g5 & gj in Theorem 1.13(2)-(4) is called
classical. A classical Lie superalgebra in Theorem 1.13(2)-(3) is called basic. The
Lie superalgebra gl(m|n) for m,n > 1 is also declared to be basic.

Remark 1.15. The basic Lie superalgebras admit non-degenerate even supersym-
metric bilinear forms, and this property characterizes the simple basic Lie superal-
gebras among all simple Lie superalgebras in the list of Theorem 1.13.

Remark 1.16. Let us comment on the simplicity of the Lie superalgebras in The-
orem 1.13. It is not difficult to check directly the simplicity of the sl series,
spo(2m|2), and those in (4). A Lie superalgebra g in the remaining cases in (2)
and (3), with the exception of spo(2m|2), satisfies the properties that the adjoint
gg-module g7 is irreducible and faithful, and [g7,g7] = g5. A Lie superalgebra g
with such properties can be easily shown to be simple (see Exercise 1.9).

For the Z-graded Cartan type Lie superalgebras g = D ;>_; g, in (5), we first
note that they are all transitive (i.e., [g—1,x] = O implies that x = 0, for x € g; and
Jj > 0) and irreducible (i.e., the go-module g_; is irreducible). Furthermore, we
have [g_1,81] = g0, [g0,81] = g1, and g; is generated by g (i.e., g; = [gj—1,81]),
for j > 2. A Lie superalgebra g with these properties is simple (see Exercise 1.10).
Finally, the simplicity of S(n) can be verified with a bit of extra work using the
explicit realization given in (1.17).

1.2. Structures of classical Lie superalgebras

In this section, Cartan subalgebras, root systems, Weyl groups, and invariant bi-
linear forms for basic Lie superalgebras are introduced and described in detail for
type gl, osp and gq. A structure theorem is formulated for the basic and type q Lie
superalgebras.

1.2.1. A basic structure theorem. In this subsection, we shall assume that g =
9p D g7 is a basic Lie superalgebra (see Definition 1.14).
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A Cartan subalgebra b of g is defined to be a Cartan subalgebra of the even
subalgebra gg. Since every inner automorphism of g; extends to one of Lie super-
algebra g and Cartan subalgebras of gg are conjugate under inner automorphisms,
we conclude that the Cartan subalgebras of g are conjugate under inner automor-
phisms.

Let b be a Cartan subalgebra of g. For o € h*, let

go = {g € g|[h gl =a(h)g,Vheb}.
The root system for g is defined to be
®={ach”|go#0,07#0}.
Define the sets of even and odd roots, respectively, to be
Q5 := {0 € PlgaNgg # 0}, @j:={a € PlgaNg; #0}.

Definition 1.17. For a basic or queer Lie superalgebra g = g5 & g1, the Weyl group
W of g is defined to be the Weyl group of the reductive Lie algebra gg.

As we shall see, the Weyl groups play a less vital though still important role in
determining central characters and the linkage principle for Lie superalgebras that
is somewhat different from the theory of semisimple Lie algebras.

The following theorem shows that the structures of the basic Lie superalgebras
are similar to those of semisimple Lie algebras.

Theorem 1.18. Let g be a basic Lie superalgebra with a Cartan subalgebra b.

(1) We have a root space decomposition of g with respect to h:
gzb@GBga, andgozh.
ocd
(2) dimgg = 1, for oo € ®@. (Now fix some nonzero ey € gq.)
(3) [9a,88] € Gorp, for o, B, o+ P € D.
(4) ®, ©y and D7 are invariant under the action of the Weyl group W on h*.
(5) There exists a non-degenerate even invariant supersymmetric bilinear
form (-,-) on g.
(6) (go,9p) = O unless .= —B € P.

(7) The restriction of the bilinear form (-,-) on b X by is non-degenerate and
W -invariant.

(8) leq,e—a] = (eq,e—a)ho, where hy, is the coroot determined by (hy,h) =
oh) forhen.
9) @ = —®, By = —Py, and 7 = — ;.
(10) Let oo € @. Then, ko, € @ for some integer k # +1 if and only if o is an
odd root such that (o, o) # O, in this case, we must have k = £2.
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Proof. For g = gl(m|n) or osp(2m|¢), we will describe explicitly the root systems
and trace forms below in this section, and so the theorem in these cases follows
by inspection. The theorem for the other infinite series basic Lie superalgebras
sl(m|n) follows by some easy modification of the gi(m|n) case.

Part (4) follows by the invariance, under the action of the Weyl group W, of
the sets of weights for the adjoint gg-modules g5 and gj, respectively.

Since the remaining three exceptional Lie superalgebras D(2|1,a), G(3) and
F(3|1) will not be studied in detail in the book, we will be sketchy. Most parts
of the theorem, with the exception of (5), again follow by inspection from the
constructions of these superalgebras and standard arguments as for simple Lie al-
gebras (with the help of (5)). As the exceptional Lie superalgebras are simple, any
nonzero invariant supersymmetric bilinear form must be non-degenerate. For G(3)
and F(3|1), the Killing form is such a nonzero even form. A direct and ad hoc
construction of a nonzero invariant bilinear form on D(2|1, ) is possible. O

It follows by Theorem 1.18(1) that b is self-normalizing in g (and b is abelian),
justifying the terminology of a Cartan subalgebra. Since h C g and dimgy = 1 for
each oo € @ by Theorem 1.18(2), there exists i € Z; such that g C g;. Hence @ is
a disjoint union of ®; and @1, and we have

¢i={a€¢|gaggi}, 1€ Zs.

Remark 1.19. One uniform approach to establish Theorem 1.18 is as follows (see
(60, Proposition 2.5.3]). One follows the standard construction of contragredient
(i.e., Kac-Moody) (super)algebras (see [18, Chapter 14]) to show that any Lie su-
peralgebra in Theorem 1.18 is a Kac-Moody superalgebra (or rather the quotient
by its possibly nontrivial center) associated to some generalized Cartan matrix with
Z,-grading. These (quotients of) Kac-Moody superalgebras carry non-degenerate
even invariant supersymmetric bilinear forms by a standard Kac-Moody type argu-
ment (see [18, Chapter 16]).

A root 0. € @ is called isotropic if (o, ) = 0. An isotropic root is necessarily
an odd root. Denote the set of isotropic odd roots by
®&; ;= {a € 1 | (o,0) =0}

1.18
(118 = {0 € @7 | 200 ¢ D}
The second equation above follows by Theorem 1.18(10). Moreover, we have
21 0
ey = E[ea,ea] =0, for o € Py.

We also introduce the following set of roots

(1.19) @y = {0 € Pg | 00/2 ¢ D}
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1.2.2. Invariant bilinear forms for gl and osp. In contrast to the semisimple Lie
algebras, the Killing form for a basic Lie superalgebra may be zero, and even when
it is nonzero, it may not be positive definite on the real vector space spanned by
®. In this subsection, we give a down-to-earth description of an invariant non-
degenerate even supersymmetric bilinear form for Lie superalgebras of type gl and
osp.

The supertrace str on the general linear Lie superalgebra gives rise to a non-
degenerate supersymmetric bilinear form

(-,) : gl(m|n) x gl(m|n) — C, (a,b) = str(ab),

where ab denotes the matrix multiplication. It is straightforward to check that this
form is invariant. Restricting to the Cartan subalgebra b of diagonal matrices, we
obtain a non-degenerate symmetric bilinear form on b:

1 ifl<i=j<m,

(E,',',Ejj): —1 1f1§z:]§n,

0 ifis# ],
where i, j € I(m|n). We recall here that I(m|n) is defined in (1.2). Denote by
{8:,€;}i,; the basis of h* dual to {Ej;,Ej;};j, where | <i<mand 1< j<n.
Using the bilinear form (-,-) we can identify §; with (E;;,-) and €; with —(E;, ).
When it is convenient we also use the notation 7

(1.20) g:=0;, forl<i<m.

The form (-,-) on b induces a non-degenerate bilinear form on h*, which will
be denoted by (-, -) as well. Then, for i, j € I(m|n), we have
1 ifI<i=j<m,
(121) (8,’,8]'): —1 if1 Sl.:jgl’l,
0 ifi#j.
Such a bilinear form on gl(2n|¢) restricts to a non-degenerate invariant super-
symmetric bilinear form on the subalgebra spo(2n|¢), which will also be denoted
by (+,-). The further restriction to a Cartan subalgebra of spo(2n|¢) remains non-

degenerate. This allows us to identify a Cartan subalgebra b with its dual h*, and
one also obtains a bilinear form on h*.

1.2.3. Root system and Weyl group for gl(m|n). Let g = gl(m|n) and b be the
Cartan subalgebra of diagonal matrices. Its root system ® = &g U P; is given by

Oy ={ei—¢;|i#jel(m|n),i,j>0o0ri,j<0},
@7 = {£(e;—¢;) | i,j € [(m|n), i <0 < j}.

Observe that E;; is a root vector corresponding to the root €; —¢€;, for i # j € I(m|n).
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The Weyl group of gl(m|n), which is by definition the Weyl group of the even
subalgebra g = gl(m) @ gl(n), is isomorphic to &,, x &,, where we recall that S,
denotes the symmetric group of n letters.

1.2.4. Root system and Weyl group for spo(2m|2n + 1). Now we describe the
root system for the ortho-symplectic Lie superalgebra spo(2m|2n + 1), which is
defined in matrix form (1.8) in Section 1.1.3. Recall that the rows and columns
of the matrices are indexed by I{2m|2n+ 1). The subalgebra b of g of diagonal
matrices has a basis given by

H;Z=E;’;—E— 1§i§m,

m+i,m+i’
Hj:=Ejj—Epjnyj, 15j<m,
and it is the standard Cartan subalgebra for spo(2m[2n+1). Let {&;,&; |1 <

i <m,1 < j < n} be the corresponding dual basis in h*. With respect to b, the root
system @ = @y U P for spo(2m|2n+ 1) is

{iﬁi:izﬁj,ﬂ:%p,iek:tsl,:teq}U{ispiaq,:izsp},
where 1 <i<j<m,1<k<I<n1<p<m1<qg<n

A root vector is a nonzero vector in g, for o € @ and will be denoted by eq.
The root vectors for spo(2m|2n + 1) can be chosen explicitly as follows in (1.22)-
(1291 <i#j<ml1<k#l<n)

(1.22) e, = Eont1k4n —Ei2nt1,  €—g = Eont1k — Ekgn2nt1,
(1.23) ey, = E?,H——m’ €_35 = Ei.—i:ﬁj’

(1.24) €545, = Eg’m + E77m’ e_§,-8; = Ejj:,;’; + Ei-{»—m,}’
(1.25) es,-8;, = Ei5— Emmim  €a—e = B — Eltnkn
(1.26) eetre; = Exion—Ergtn,  e—g—e = Ektni — Eltnk,
(1.27) €oiter — Ek,i+—m + Ei,k+n7 €-8i—e = Ek—i—n,i - Em,k’
(1.28) €8—e; — Ek+n,i+—m +E?,kv €_diter — Ek,? - Ei+—m,k+n=
(1.29) €5 = E2n+1,m + E2,2n+1a e_g5 — E2n+1,i - Ei+—m,zn+1 .

The Weyl group of spo(2m|2n+ 1), which is by definition the Weyl group of
g5 = 5p(2m) © s0(2n+ 1), is isomorphic to (Z5 X &y,) X (Z5 X &y).

1.2.5. Root system and Weyl group for spo(2m|2n). Let g = spo(2m|2n). The

abelian Lie subalgebra b spanned by {H;,H;|1 <i<m,1 < j < n} is a Cartan

subalgebra for spo(2m|2n). Again, when it is convenient, we will use the notation

g; = ;, for 1 <i < m. With respect to b, the root system ® = @5 U ®@j is given by
{:i:S,- + 8j, i28p, tetgtuU {:I:S,, :t:sq},

where 1 <i<j<m,1<k<iI<n1<p<m,1<qg<n.
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The root vectors for spo(2m|2n) are given by (1.23)—(1.28).

The Weyl group of spo(2m|2n), which is by definition the Weyl group of the
even subalgebra g5 = sp(2m) @ 50(2n), is an index 2 subgroup of (Z} x &,,) x
(Z3 x &), with only an even number of signs in Z permitted.

1.2.6. Root system and odd invariant form for q(rn). In this subsection let o
be the queer Lie superalgebra q(n) (see Section 1.1.4). Since the case of q(n) is
different from the basic Lie superalgebra case, we will describe altogether its Car-
tan subalgebras, root systems, positive systems, Borel subalgebras, and invariant
bilinear form.

Recall that q(n) can be realized as matrices in the n|n block form <Z Z)

indexed by I(n|n). The subalgebra consisting of matrices with a,b being diago-
nal (which we refer to as “block diagonal matrices”) will be called the standard
Cartan subalgebra. We define a Cartan subalgebra b to be any subalgebra con-
jugate to the standard Cartan subalgebra by the adjoint action of some element in
the group GL(n) associated to q(n);. Note that b is self-normalizing in g and b is
nilpotent, justifying the terminology of a Cartain subalgebra. However, f = ho @ b5
is not abelian, since [hg, h] = 0 and [h1, hi] = b;.

Now fix h = by @ by to be the standard Cartan subalgebra. The vectors
(1.30) H; = E;+Ej, i=1,...,n

form a basis for b, while the vectors

(1.31) Hi:=E;+E; i=1,....n

[

form a basis for h;. We let {g; | i = 1,...,n} denote the basis in by dual to
{Hi |i=1,...,n}. With respect to hy, we have the root space decomposition
8 = b @ Duco ga With root system @ = ®g U ®;, where ®; and ®; are under-
stood as distinct isomorphic copies of the root system {g; —¢; | 1 <i# j < n} for
gl(n). We have dim¢ go = 1, for each o € ®, and gq C gi, foro € ®; and i € Z,.
The Weyl group of q(n) is identified with the symmetric group &,.

The matrices <Z Z) with a,b being upper triangular (which we refer to as

“block upper triangular matrices™) form a solvable subalgebra b, which will be
called the standard Borel subalgebra of g. The positive system corresponding to
the Borel subalgebra b is ®* = d)g UCI)%, where CI)g = (IJiF ={g -g;|1<i<j<
n}. Let ® = —®% and so @ = d*UD~. Let
nt = @ga» no= @Qa-
ocdt ocd-

Then, we have b = h @ n*, and we have a triangular decomposition

g=n"Ohent.
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To be compatible with the definition of Weyl vector p in (1.35) for basic Lie super-
algebras later on, it makes sense to set p = 0 for q(n).

Any subalgebra of g that is conjugate to b by GL(n) will be referred to as a
Borel subalgebra of g.

For g = (Z 2) in g(n), the odd trace is defined to be

(1.32) otr(g) :=tr(b).

Using this, we obtain an odd non-degenerate invariant symmetric bilinear form
(+,-) on q(n) defined by

(1.33) (g,8) =otr(gg'), g8 €qn).

Here “odd” is understood in the sense of Definition 1.8.

1.3. Non-conjugate positive systems and odd reflections

In this section, positive systems, fundamental systems, and Dynkin diagrams for
basic Lie superalgebras are defined and classified, along with Borel subalgebras.
In contrast to semisimple Lie algebras, the fundamental systems for a Lie superal-
gebra may not be conjugate under the Weyl group action.

1.3.1. Positive systems and fundamental systems. Let ® be a root system for
a basic Lie superalgebra g with a given Cartan subalgebra b, and let E be the real
vector space spanned by ®. We have E ®g C = b*, for g # gl(m|n). For g = gl(m|n)
the space E @ C is a subspace of h* of codimension one.

A total ordering > on E below is always assumed to be compatible with the

real vector space structure; that is, v > w and v/ > w' imply that v+v > w+w/,
—w>—v,andcv > cwforc € Rand ¢ > 0.

A positive system @ is a subset of ® consisting precisely of all those roots
o € @ satisfying oo > 0 for some total ordering of E. Given a positive system
&, we define the fundamental system IT C @ to be the set of oo € @ which
cannot be written as a sum of two roots in ®*. We refer to elements in @ as
positive roots and elements in IT as simple roots. Similarly, we denote by ®~ the
corresponding set of negative roots. Set ® = ®* N®; and ®; = ®~ N, for
i € Zy. By Theorem 1.18(9), we have @~ = —®" and ®; = —®], for i € Z,.
Then, we have

OF =Dy UDT.

Recall ®; from (1.18). Associated to a positive system @, we let

(1.34) dF = d;no*.
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Proposition 1.20. Let g be a basic Lie superalgebra with a Cartan subalgebra b.
There is a one-to-one correspondence between the set of positive systems for (g,)
and the set of fundamental systems for (g,h). The Weyl group of g acts naturally
on the set of the positive systems (respectively, fundamental systems).

Proof. It follows by definition that the fundamental system exists and is unique for
a given positive system. A positive root, if not simple, can be written as a sum of
two positive roots. Continuing this way, any positive root is a Z -linear combina-
tion of simple roots, and hence a positive system is determined by its fundamental
system.

By Theorem 1.18, @ = —® and @ is W-invariant. Then W acts naturally on the
set of positive systems, and then on the set of fundamental systems by the above
correspondence. O

We define
= @ o no= @ da-
ocdt acd-
Then n* are ad h-stable nilpotent subalgebras of g and we obtain a triangular de-
composition
g=n"®dhont.

The solvable subalgebra b = h@n™ is called a Borel subalgebra of g (correspond-
ing to ®*). We have b = by ® by, where b; = bNg; fori € Z,.

Remark 1.21. The rank one subalgebra corresponding to an isotropic simple root
is isomorphic to s{(1]1), which is solvable. Therefore, if we enlarge a Borel sub-
algebra by adding the root space corresponding to a negative isotropic simple root,
then the resulting subalgebra is still solvable. Thus, a Borel subalgebra is not a
maximal solvable subalgebra for Lie superalgebras in general.

Given a positive system @+ = d)(f)r U CD;F, the Weyl vector p is defined by
(1.35) P=Po—Pi;

where | .
2 CD 2 CIJ
Denote
(1.36) Lo = Gi1+...4+0m)—(e1+...+&).

The following lemma is proved by a direct computation.

Lemma 1.22. We have the following formulas for the Weyl vector p for the stan-
dard positive system ®*:

D) p=3X" (m—i+1)d; ——Z;Lljsj — %(m+n+ 1)1, for g = gl(m|n).
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Q) p=X"(m—n—i+ %)5i+Z’J’-:1(n—j+ %)ej,forg =spo(2m|2n+1).
B3) p=X(m—n—i+1)8+3_(n—j)e, forg = spo(2m|2n).

We shall next describe completely the positive and fundamental systems for
Lie superalgebras of type gl and osp case-by-case.

1.3.2. Positive and fundamental systems for g{(m|n). Recall the root system ®
for gl(m|n) and the standard Cartan subalgebra b described in Section 1.2.3. The
subalgebra of upper triangular matrices is the standard Borel subalgebra of g
that contains b, and the corresponding standard positive system of ® is given by
{ei—¢; | i,j € I(m|n),i < j}. Bearing in mind & = §;, the standard fundamental
system for gl(m|n) is
{Si_6i+178j_8j+158m_81 l 1 <i<m-— 171 < .] <n— 1}1
with the corresponding simple root vectors e; := E; j; 1, fori € I(m—1|n— 1), and
em = Egm,1. The simple coroots are hj:= E;; —E ;1 j+1, for j€ I(m—1|n—1), and
hm = Emm+El. Denote f;:=E;j1;, fori € I(m—1|n—1), and f := E1 5. (Here
we have slightly abused riotationto leti+ 1 meant1+ 1, fori =1with1 <1 <m—1.)
Then {e;, hi, f; | i € I(m|n— 1)} is a set of Chevalley generators for s[(m|n).
Note that

(8 — 841,08 —8ix1) =2, 1<i<m—1,
(Sm_gl,sm“el) 207
(&j—€ji1,8j—€p1) =2, 1<j<n-—L

Thus 8,, —€; is an isotropic simple root. Following the usual convention for Lie
algebras, we draw the corresponding standard Dynkin diagram with its funda-
mental system attached:

(1.37) o—0— @ —0O——0—=~0

8 -8 &H-9 Su—&1 &1—& €2 =Bl Euoi =&

Here, as usual, we denote by () an even simple root o such that %oc is not a root.
Following Kac’s notation, &) denotes an odd isotropic simple root.

Let us classify all possible positive systems for gl(m|n), keeping in mind &; =
0;, for 1 <i < m. If we ignore the parity of roots for the moment, the root system
of gl(m|n) is the same as the root system for gl(m + n). Hence, by definition, their
positive systems (respectively, fundamental systems) are exactly described in the
same way, and so there are (m+ n)! of them in total. It follows from the well-
known classification for gl(m + n) that a fundamental system for gl(m|n) consists
of (m+n—1) roots &, — €;,,&, —€izy---,E€ipn; — Eipens Where {i1,i2, ... imyn} =
I(m|n). Then we restore the parity of the simple roots in a fundamental system for
gl(m|n). The corresponding Dynkin diagram is of the form
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(1.38) O——C0— —0O0—0O0——0—7—0

& —&, & —E, i ~Eiy Cinsn—t ~ Eimgn

where © is either () or &), depending on whether the corresponding simple root
is even or odd.

Example 1.23. For n = m, there exists a fundamental system consisting of only odd
roots {&; —€1,€; — 82,8, —€2,...,8, — €n }, whose corresponding Dynkin diagram
is

O —®—— —®—Q

S —e g -& & —& & -8 €t —On B —€n

The £6-sequence for a fundamental system IT as in (1.38) is obtained by switch-
ing the ordered sequence €; &;, . . .€;, ,, for I to the €8-notation via the identification
€; = 9; and then dropping the indices. Clearly, an €8-sequence has m &’s and n €’s.
In general, there exist positive systems for @ that are not conjugate to each other
under the action of the Weyl group, in contrast to the semisimple Lie algebra case.

Example 1.24. (1) The standard Borel subalgebra of gl(m|n) corresponds to
the sequence §---3¢---€ while the Borel opposite to the standard one
N N~

m n
corresponds to g---€9- -+ J.
e

(2) The three W-conjugacy classes of fundamental systems for gl(1|2) corre-
spond to the three sequences dee, £0¢, €€d, respectively.

1.3.3. Positive and fundamental systems for spo(2m|2n+ 1). Now we describe
the positive/fundamental systems and Dynkin diagrams for spo(2m|2n+ 1) whose
root system is described in Section 1.2.4. The standard positive system ® =
@ U7 corresponding to the standard Borel subalgebra for spo(2m|2n+1) is

{6:%£6;,28,,ex L €1,6,} U{d, £84,8,},

where 1 <i< j<m,1<k<I<n,1<p<m,1<g<n. The fundamental system
IT of ®* contains one odd simple root 8,, — €1, and it is given by

M={8; —06i11,0m—€1, &k —&41,& | 1 <i<m—-1,1<k<n—1}

The corresponding standard Dynkin diagram for spo(2m|2n+ 1) is

(1.39) Oo—0— +—Q®—0O— —0=0

8 — 8 8 — 83 S —€ € — & €| — &, €
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Another often used positive system in @ for spo(2m|2n+ 1) is given by
{8,‘ :|:5j,25p,8k :EE[,Sq} U {Eq iSP,Sp},

where 1 <i< j<m,1<k<l<n 1<p<m 1<q<n, with the following
fundamental system

{Ek—sk-t,-],sn—81,8,"—8,'.{_[,8”;‘1 Slgm_]al SkSn_l}

The corresponding Dynkin diagram is

(1.40) o—0— Q@ —0O— —0=@

g —& € — & e-8 8-%& Sn-1=8n Oy

where we follow Kac’s convention and use @ to denote a non-isotropic odd simple
root, as (8y,,0,) = 1.

Now let us classify all the possible fundamental systems for spo(2m|2n + 1)
with given Cartan subalgebra b, keeping in mind €; = §;. Note that 2e5 € ®* if and
only if €5 € @, and that +2¢5 are never in any fundamental system by definition.
Hence, for the sake of classification of positive systems and fundamental systems
in @, it suffices to consider the subset ® := @\ {+2e5 | 1 < p < m}. Ignoring
the parity of the roots, ® may be identified with the root system of the classical
Lie algebra so(2m + 2n + 1), whose fundamental systems are completely known
and acted upon simply transitively by the Weyl group of so(2m + 2n+ 1) (which
is & ZJ*" % G y4). The number of W-conjugacy classes of fundamental systems
for spo(2m|2n+ 1) is [W(so(2m+2n+1))|/|W| = ("").

The ed-sequence associated to a fundamental system (or a Dynkin diagram)
for spo(2m|2n+ 1) is defined as for gl(m|n), starting from the type A end of the
Dynkin diagram (to fix the ambiguity). For example, the €d-sequence associated
to the standard Dynkin diagram above is m 8’s followed by n €’s.

Example 1.25. Let g = osp(1]|2). Then its even subalgebra g; is isomorphic to
sl(2) =C(e,h, f), and as a gz-module g5 is isomorphic to the 2-dimensional natural
51(2)-module CE + CF. The simple root consists of a (unique) odd non-isotropic
root &; so that 28; is an even root. The Dynkin diagram is @). The root vectors
E and F associated to the odd roots 8; and —8; can be chosen such that [E,E] =
2e,|F,F] = —2f,|E,F] = h.

1.3.4. Positive and fundamental systems for spo(2m|2n). Now we consider g =
spo(2m|2n), whose root system is described in Section 1.2.5. The standard pos-
itive system ®* = @ U® in @ corresponding to the standard Borel subalgebra
is

{8,»i8,~,28p,8ki£1} U {81, :i:Sq},
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where 1 <i<j<m, 1 <k<I<n, 1<p<m,1<gq<n,with its fundamental
system being

I={8;—8i+1,0m — €1, 8k —Et1,€n-1+€ | 1 <i<m—1,1<k<n-1}.

The corresponding standard Dynkin diagram is

(1.41) o—0— " —Q—0O— —

§ -8 &-& dn—€1 E—8 €12 —En-
€118,

Another often used positive system in ® is given by
{Si + 81', 28p,€k + 81} U {Sq + Sp},

where 1 <i<j<m, 1<k<I<n,1<p<m, 1<gq<n, with its fundamental
system being

{8~ €41,80— 81,0, —8i41,28, | 1 <i<m—1,1<k<n—1}.

The corresponding Dynkin diagram is

(1.42) O—0———0O— —0=0

& —& € —€3 & —81 81 782 8m71 *5,7, 28,,,

As we have already observed above, there are (at least) two Dynkin diagrams
for spo(2m|2n) of different shapes. The classification of all fundamental systems
for the root system @ of spo(2m|2n) is divided into 2 cases below. As usual, we
keep in mind &; = 9.

(1) First, we classify the fundamental systems IT in @ that do not contain
any long root (i.e., a root of the form +2e5). With parity ignored, the subset
@ := @\ {£2¢5 | 1 < p < m} may be identified with the root system of the clas-
sical Lie algebra so(2m+ 2n), whose fundamental systems are completely known,
and they are acted upon simply transitively by the Weyl group of so(2m + 2n)
(which is an index 2 subgroup of Z5*" x &,,4,). Observe that the positive sys-
tem @ for ® corresponding to IT is completely determined by the positive system
&N @* for ® (and vice versa). We conclude that the fundamental systems for
® that do not contain any long root are exactly the fundamental systems for .
However, not every fundamental system of ® gives rise to a fundamental system
of ®. To be precise, a fundamental system of @ cannot contain a pair of roots
of the form {+e; &5, +€; Fep}, i #p and 1 < p < m. It follows that there are
|W(so(2m +2n))| such fundamental Systems of @, and hence the number of

A |W(s0(2m+2n))| /|W| = ("r).
(2) Next, we classify the fundamental systems IT that contain some long root.

In this case, we consider @ := @ U {#2¢;,1 < j < n}. With the parity ignored, ®
may be identified with the root system of sp(2m + 2n), whose fundamental systems

m+n
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are completely described. Observe that the positive system ®* for @ that corre-
sponds to [T is completely determined by the positive system @ of ® that contains
®*. We conclude that the fundamental systems for @ that contain some long root
are exactly the fundamental systems for ® whose long root is of the form x2¢5. It
follows that the number of W-conjugacy classes of such fundamental systems for
gis ;2 [W(sp(2m+2n))|/|W| =2(""17Y).

m+n n

The ed-sequence for spo(2m|2n) associated to a positive system is now de-
fined as follows. We can first obtain an ordered sequence of €’s and &’s just as
for spo(2m|2n+ 1). If this sequence has an € as its last member, then it is the
ed-sequence. If the last member in this sequence is a J, then the £d-sequence is
obtained from this sequence by attaching a sign to the last €.

Example 1.26. For spo(4/4), the £8-sequences £50¢, £6€d, and €d(—¢€)d ate dis-
tinct.

1.3.5. Conjugacy classes of fundamental systems. We now describe the classi-
fication of the W-conjugacy classes of fundamental systems for these Lie superal-
gebras via the £d-sequences.

Proposition 1.27. Let ® be the root system and let W be the Weyl group for a Lie
superalgebra g of type gl or osp. Then the W-conjugacy classes of fundamental
systems in ® are in one-to-one correspondence with the associated €d-sequences.
In particular, there are (m;;") W-conjugacy classes of fundamental systems for
gl(m|n) and spo(2m|2n+ 1), while there are ("1") + (™" 1) W-conjugacy classes
of fundamental systems for spo(2m|2n).

Proof. By the case-by-case classification of fundamental systems in @ and defini-
tion of €d-sequences, we clearly have a well-defined map

© : {fundamental systems in ®} /W — {ed-sequences for g}.

As we can easily construct a fundamental system IT for a given €d-sequence, © is
surjective. To show O is a bijection, it remains to show that the two finite sets have
the same cardinalities.

The number of W-conjugacy classes of fundamental systems equals |W’|/|W],
where W’ denotes the Weyl group of gl(m+ n) when g = gl(m|n) and W’ denotes
the Weyl group of so0(2m+ 2n+ 1) when g = spo(2m|2n+ 1). In either case,
[W'|/|W| = (™). On the other hand, in either case, an €3-sequence is simply an

m
ordered arrangement of m &’s and n €’s. Thus the total number is also (m;").

In the case of spo(2m|2n), when the last slot of an €6-sequence is an &€, the
previous (m+ n— 1) slots can be filled with m &’s and (n — 1) €’s. Thus we obtain
(’"t;"l) different £8-sequences this way. When the last slot in an €8-sequence is
a 8, then the previous (m +n — 1) slots are filled with (m — 1) &’s and n €’s, with
the last € having either a positive or negative sign. This way we obtain additional
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2("*"1) distinct £8-sequences. Now ("1 +2(™ 1) s exactly the number
of W-conjugacy classes of fundamental systems for spo(2m|2n) that we have com-

puted earlier. |

The fundamental and positive systems for the exceptional Lie superalgebras
G(3),F(3|1),D(2|1, ) are also listed completely by Kac [60] (with one missing
for F(3|1); see [130, 5.1]).

From the classification of the fundamental and positive systems we immedi-
ately obtain the following proposition and lemma.

Proposition 1.28. Let g be a basic Lie superalgebra, excluding s\(n|n)/CI,, and
gl(m|n). Let b be a Cartan subalgebra of g. Then any fundamental system for the
root system of (g,h) forms a basis in b*. (For gl(m|n), any fundamental system is
linearly independent in h*.)

Lemma 1.29. Let g be a basic Lie superalgebra. Let I1 be the fundamental system
in a positive system @, and let o be an isotropic odd root in ®*. Then there exists
w € W such that w(a) € I.

1.4. Odd and real reflections

In this section, beside real reflections associated to even roots as for semisimple
Lie algebras, we introduce odd reflections associated to isotropic odd simple roots.
Both real and odd reflections permute the fundamental systems of a root system.

1.4.1. A fundamental lemma. We have seen that the fundamental systems of a
root system @ are not always W-conjugate due to the existence of odd roots. Re-
call a root o € @ is isotropic if (o,) = 0, and an isotropic root must be odd.
The following lemma plays a fundamental role in the representation theory of Lie
superalgebras.

Lemma 1.30. Let g be a basic Lie superalgebra and let 11 be a fundamental system
of a positive system ®. Let o be an odd isotropic simple root. Then,

(1.43) o} = {-a}udt\{o}
is a new positive system whose corresponding fundamental system [y is given by

(144) To={BeIl|(B,0)=0,B#a}U{B+o|B eIl (B,a)#0}U{-a}.

Proof. For g = gl(m|n), spo(2m|2n), or spo(2m|2n+ 1), which we are mostly
concerned about in this book, we have already obtained complete descriptions of
all fundamental systems. For most IT’s, the set {§ € IT| (B, ) # 0} has cardinality
at most 2 and consists of roots of the form +¢;+¢; for i  j € I(m|n). By inspection
we see that Iy is a fundamental system. There are a few extra cases when the
root o corresponds to a node in the corresponding Dynkin diagram which is either
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connected to a long simple root, or connected to a short non-isotropic root, or is a
branching node, or is one of the (short) end nodes of a branching node, as follows:

Here the vertical dashed lines indicate an edge when it connects two &’s and no
edge otherwise, @ means either O or @, and (© means either @ or (). It can be
checked directly in these cases that Iy, is also a fundamental system.

Take B € ®F N®*. Since I1 is a fundamental system for @+, by Proposi-
tion 1.28 we have a unique expression B = X e (o} MyY + ma0. for my € Z, and
my, € Z. It follows by definition of Iy, that B can be expressed as a linear combi-
nation of Iy of the form B = Yyery,\ {0} MK + Mg (—0t) for some suitable integer
mj,. By choice of B we have m] > 0 for some K, and hence m}, € Z ., since Iy is
a fundamental system. This shows that @, is the positive system corresponding to
I1,. .

For an exceptional Lie superalgebra g = D(2|1,), G(3), or F(3|1), which
will not be studied in any detail in this book, our proof shall be rather sketchy.
A conceptual approach (see [66]) would be to follow Remark 1.19 to regard g as
a Kac-Moody superalgebra with Chevalley generators e¢;, f;, h; for i € I associated
to a Cartan matrix A (and a fundamental system I1 = {o; | i € I}), where [ is Z;-
graded. For an isotropic odd root o € I1, one can construct a new set of Chevalley
generators ¢;, f{, h; associated to Iy, which gives rise to a new Cartan matrix A’.
By standard machinery of the Kac-Moody theory, the Kac-Moody superalgebra as-
sociated to A and A’ coincide with g. From this it follows that I, is a fundamental
system for g. The same argument as above shows that @, is the positive system
associated to the fundamental system Il. This uniform approach is applicable to
all basic Lie superalgebras. O

1.4.2. Odd reflections. Let b =hdnt, where n™ corresponds to the positive sys-
tem ®*. Then the new Borel subalgebra corresponding to @} in (1.44) for an
isotropic odd simple root o is given by

(1.45) b*:=ha P gg.
peey

Observe that by = bg‘ by Lemma 1.30. The process of obtaining Iy, (respectively,
@ or b*) from II (respectively, ®* or b) will be referred to as odd reflection
(with respect to o) and will be denoted by ry. We shall write

(146) ra(n) =n0.> ra(¢+) =q)§» ra(b) = ba'

Note that r_grq = 1.
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Remark 1.31. In contrast to a real reflection associated to an even root (see below),
an odd reflection ry, with respect to an isotropic odd root o may not be extended
to a linear transformation on §* which sends a simple root in IT to a simple root in
ITy. For example, for spo(2m|2n) with a fundamental system IT corresponding to
the first Dynkin diagram below, take o0 = J,, — €,. The odd reflection transforms
IT to I1y corresponding to the second Dynkin diagram below (with the - - - portion
unchanged). A plausible transformation would have to fix those &;,€; (for i <
m, j < n) and interchange €, and d,,, but this transformation would not send d,, + €,
to 28,,.

8y +€n

— O — Q=)

€p) — O €n-1—En €, —0n 20m
Sm —&

1.4.3. Real reflections. By Theorem 1.18, a basic Lie superalgebra g admits an
even non-degenerate supersymmetric bilinear form (-, -), which restricts to a non-
degenerate form (-,-) on b and on h*. For an even root o (which is automatically
non-isotropic), we define the real reflection r, as a linear map on h* given by

(x,0)
(o, )
In particular, ry, preserves ®, @5, and @y, respectively. The group generated by

real reflections rq, for o € @y, is precisely the Weyl group W of gg (and hence the
Weyl group of g by Definition 1.17).

Fa(x)=x-2 o, forxebh”.

For an even simple root o, we must have /2 ¢ @, that is, ot € CB() as defined in
(1.19). In this case, (1.46) can be understood with ® as in (1.43), b* as in (1.45),
and Il as the image of IT under ry.

For an odd root o such that 20 € ®, we define the reflection ry, as the real
reflection rpq associated to 20 In this case, it is understood that Iy, = 7o (IT), and

(1.47) & = {—a,—20}ud*\{0,20}

is the new positive system associated to I1.

1.4.4. Reflections and fundamental systems.

Proposition 1.32. For two fundamental systems I1 and 'T1 of a basic Lie superal-
gebra g, there exists a sequence consisting of real and odd reflections ry,ry, ...,y
such that ry...rpri(IT) = 'IL

Proof. Denote by ®* and '®™ the positive systems associated to IT and 'TI respec-
tively. We prove the corollary by induction on |®@+ N/'®~|. If |®T N'®~| =0, then
IT='T1. Assume now |®* N'®~| > 0. Then I1 # 'T1, and we pick o € I[IN'®~ # 0



1.4. Odd and real reflections 29

and apply the real or odd simple reflection ry. Observe that ® is the positive sys-
tem with fundamental system Il = r(IT), regardless of the parity of the simple
root o.. Note that

| N'®7| < | N'D.
By the inductive assumption, there exists a sequence of real and odd reflections
ra,...,rx such that ry ... ry(Tlg) = 'TI. Hence rg...rare(IT) = I1 O

Proposition 1.33. Let g be a basic Lie superalgebra. Let ®* be a positive system
with I1 as its fundamental system and p as its associated Weyl vector. Then, (p,B) =
%(B, B) for every simple root B € I1.

Proof. Let o € I1. Let ITy and @ be respectively the fundamental and positive
systems obtained by a real or odd reflection ry, defined above. Let py denote the
Weyl vector for the positive system @} . Recall @ is given in (1.43) for o odd or
for o € @, and in (1.47) otherwise. We compute that

p—o, for o € @y or non-isotropic odd,
pa = . .
p+a, for o isotropic odd.

Claim. Assuming that the proposition holds for a fundamental system IT, it
holds for the new fundamental system I, for o € IT.

Let us prove the claim. First assume o € [T is even or non-isotropic odd. In
this case, po = ro(p), [1o = ra(I1), and so we have for each B € IT that

(P a(B)) = (0, B) = 5 (B,B) = 5 ralB),r(B))

Now assume o € I1 is isotropic odd. We will check case-by-case, recalling the def-
inition of Iy, from (1.44). If (B, ) = O for B € I, then B € I1,,. By the assumption
of the claim, we have

(pa:B) = (p-+,8) = (p.B) = 5 (B,B).

If (B, ar) # O for B € I, then B+ o € I,. By the assumption of the claim, (p, o) =
%(a,oc) =0, and hence

(PasB-+ @) = (p+0,B+0) = (p-+a,8) = 5 (B, ) + (0. B) = 5 (B+ 01, B+0).

This completes the proof of the claim.

By the claim and Proposition 1.32, it suffices to prove the proposition for just
one fundamental system, e.g., the standard fundamental system for type gl and osp.
Assume that 3 is an even simple root or a non-isotropic odd simple root. In either
case, one checks that rg(p) = p — B. Since (-,-) is W-invariant, we have

(p,B) = (r3(p),73(B)) = (P — B, —B) = —(p, B) + (B,B).

It follows that (p,B) = %(B, B) just as for semisimple Lie algebras.
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For isotropic odd simple root 3, we do a case-by-case inspection. For type gl
or osp, the equation (p,B) = %(B, ) follows directly from Lemma 1.22. For the
three exceptional cases, it can be checked directly by using a fundamental system
with exactly one isotropic simple root and the detailed description of root systems
(cf. Kac [60]). We skip the details. O

1.4.5. Examples. Below we illustrate the notion of odd reflections by examples.

Example 1.34. Associated with gl(1]2), we have @5 = {£(g; —€2)} and &7 =
{£(8; —&1),£(81 —€2)}. There are 6 fundamental systems that are related by real
and odd reflections as follows. There are three conjugacy classes of Borel subalge-
bras corresponding to the three columns below, and each vertical pair corresponds
to such a conjugacy class.

3¢ 3¢
=0 = ®® = 0—®
8 —¢ & —& € -8 8 —& & —& -9
$ Ye —¢; r51 o i Te|—ey r51 . I Ye)—¢

®0 = &® = 00—

8 —e €2-€ ©-8 8 -¢g -8 &-9

Example 1.35. Let g = gl(4]2). The following sequence of fundamental systems
Mg = IT*, Iy, I1,, 13,114 (in descending order) is obtained from the standard fun-
damental system IT* by applying consecutively the sequences of odd reflections
with respect to the odd roots 84 — €1, 83 — €1, 6, —€;, and &; —€;.

O—0O0—0C—8——0 e
8 =8 8—8 8-08 -8 &-& \

783 -¢

O—0—8@—®—®

3-8 8- -8 &8-0 dW-&

O—R@——0—"®W |
8 -8 &-g £€§-8 &H-8& dW-& \24]
. & —O0—0—R
/

S—g €-8 -8 -4 -
&—0—0—0—8®

g -3 3-8 -8 &H-8& &-&

If we continue to apply to Il4 consecutively the sequence of odd reflections with
respect to the odd roots 84 — €, 83 —€,, 8, — €2, and 1 — €2, we obtain the following
fundamental systems Il4,I1s,I1¢, 17, I1s:
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—O0—0O0—"C0O—=R® _ ..,
g -8 8 -8 8&-8 8-8& &-u \

T3¢

®—O0—0—8—®

g — & 8 — & 8 -8 &-—e € — 8

—0——@—0O
g -8 8 -8 &H- € -8 86 -8 %

o O —Q—0—0
/ €1—~51 51—82 82—53 52——53 53—54
0—®—0—0—0

€ —€ € -8 8 — & 8 — & 8 — 84

1.5. Highest weight theory

In this section, we formulate the Poincaré-Birkhoff-Witt Theorem for Lie superal-
gebras. Finite-dimensional irreducible modules over certain solvable Lie superal-
gebras, including all Borel subalgebras, are classified. This is then used to develop
a highest weight theory of the basic and queer Lie superalgebras.

1.5.1. The Poincaré-Birkhoff-Witt (PBW) Theorem. Let g = g5 @ g1 be a Lie
superalgebra. A universal enveloping algebra of g is an associative superalgebra
with unity U(g) together with a homomorphism of Lie superalgebras 1 : g — U( 9)
characterized by the following universal property. Given an associative superalge-
bra A and a homomorphism of Lie superalgebras ¢ : g — A, there exists a unique
homomorphism of associative superalgebras y : U(g) — A such that the following
diagram commutes:

In particular, this implies that representations of g are representations of U(g) and
vice versa. It follows by a standard tensor algebra construction that a universal
enveloping algebra exists, and it is unique up to isomorphism by the defining uni-
versal property.

Theorem 1.36 (Poincaré-Birkhoff-Witt Theorem). Let {x1,X2,...,%p} be a basis
for gy and let {y1,y2,...,yq} be a basis for gi. Then the set

{x{'xﬁ"‘...xf,”y{‘yéz...y;q | 71372y ey Tp € gy 81,825+ +,5¢ € {0,1}}
is a basis for U(g).

The proof for Theorem 1.36 is a straightforward super generalization of the
Lie algebra case and will be omitted (see [102, Theorem 2.1] for detail).
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The superalgebra U(g) carries a filtered algebra structure by letting

Ui(g) = span{x]'x}’. x;,”yilyzz. .yé"}Zri—FZsjgk}, keZ,.
i J

Its associated graded algebra is isomorphic to S(gg) @ A(g7).

Given a Lie subalgebra [ of a finite-dimensional Lie superalgebra g and an
[-module V, we define the induced module as

IndfV = U(g) @y V.

By the PBW Theorem, if V is finite-dimensional, then so is Indgév

1.5.2. Representations of solvable Lie superalgebras. Just as for Lic algebras,
a finite-dimensional Lie superalgebra g = gg & gj is called solvable if g = 0 for
some n > 1, where we define inductively g = [g"~1) g(»=1)] and g©@ = g,

Let g = gy ® g; be a finite-dimensional solvable Lie superalgebra such that
[91,91] € (90, 90]- Given A € g with A([gg, gg]) = 0, we define a one-dimensional
g-module C; = Cv),_ by

xvy =Mx)v, forx € gg,
yvy, =0, foryegj.

There is a canonical linear isomorphism (g3/[gg, 95])* = {A € g; | M[95, 85)) = 0}.

Lemma 1.37. Let g = g5 g7 be a finite-dimensional solvable Lie superalgebra
such that [g1,91] C [g5,05). Then every finite-dimensional irreducible g-module
is one-dimensional. A complete list of finite-dimensional irreducible g-modules is

given by Cy, for A € (g5/[95, 90)™-

Proof. We have already shown that any such C; is a g-module. Clearly every
one-dimensional g-module is isomorphic to Cy, for some A € (g/[g5,95])*. So
it suffices to show that every finite-dimensional irreducible g-module V is one di-
mensional.

The even subalgebra g; is solvable since g is solvable and g( C g™ for every
n. By applying Lie’s theorem to g5, V contains a nonzero gg-invariant vector v;,
where A € g5 with A([g5,95]) = 0. Here, by a gg-invariant vector we mean that
xvy, = Mx)vy, Vx € gg. Now Frobenius reciprocity says that Homg(Indj Cvy, V) =
Homg, (Cvy, V), and thus, by the irreducibility of V, there exists a g- eplmorphlsm
from Ind}, Cv), = A(gj) ® Cvy, onto V. Thus, to prove that V is one dimensional,
it suffices to prove that InngCvx has a composition series with one-dimensional
composition factors. We shall construct such a composition series explicitly.
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Set dimg; = n. By Lie’s theorem, the gg-module gj has an ordered basis
{yjli=1,...,n} such that for all 1 <i <n we have

n n
(1.48) adgy(yi) € 2. Cyj, ad[gg,85)(vi) € DX, Cy;.
j=i j=i+1

Let B; = {1,y1}, and define inductively By = {B_1,Br_1yi}, for2 <k <n,
where the set B;_1yx denotes the ordered set of elements obtained by multiplying
all elements in ®B,_| on the right by y;. Then 2B,v,, is an ordered basis for Indgﬁ(}vk
of cardinality 2". Denote this ordered basis by {vi,---,van}. Set Vi := &7_,Cv;.
Thanks to (1.48), we have a filtration of gz-modules

V=ViD2V,2V32---2---Vn D0.

Clearly we have, for 1 <k,/<nandi; <...<ig<n,

(Vs Yig | Vi - - YigVh = Yir YiVia - - - YieVn,  if k # i1,

(1.49) ey yip -y = i j
e ! %[yk’yh]}’l’z"'ykaa if k=1ip.

Using the assumption that [g7, 97| C [g5, 85), it follows from (1.48) and (1.49)
that every y; leaves V; invariant, and hence each V; is a g-module. Thus, the above
filtration is a composition series with one-dimensional composition factors. O

Example 1.38. The Lie superalgebra g = Cz @ g7 in Example 1.4(4) associated
to a non-degenerated symmetric bilinear form B on a nonzero space gj is solvable.
But an irreducible module of g with the central element z acting as a nonzero scalar
has dimension more than one. So the condition [gi,gi] C [g5,gg] in Lemma 1.37
cannot be dropped.

1.5.3. Highest weight theory for basic Lie superalgebras. Let g be a basic Lie
superalgebra. Let b be the standard Cartan subalgebra and let @ be the root system.
Let b = h@nT be a Borel subalgebra of g = b@n~ and let ®* be the associated
positive system. The condition of Lemma 1.37 is satisfied for the solvable Lie
superalgebra b, since we have bj = n?’, and
[by,b7] = [nF,nf] C n =[h,n7] C [bg, b)-

Let V be a finite-dimensional irreducible representation of g. Then by Lemma 1.37
V contains a one-dimensional b-module that is of the form C) = Cv;, for A € h* =
(6/[b,5])*. That is,

hvy, = Mh)vy, (h € Y), vy, =0 (xen').

By the PBW theorem and the irreducibility of V, we obtain V = U(n™)vy, and thus
a weight space decomposition

(1.50) V=PV

uep*
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where the p-weight space V,, is given by
Vii={veV |hv=u(h)v,Vhe b}.

By (1.50), V, = O unless A — u is a Z -linear combination of positive roots. The
weight A is called the b-highest weight (and sometime called an extremal weight)
of V, the space Cv; is called the b-highest weight space, and the vector v, is called
a b-highest weight vector for V. When no confusion arises, we will simply say
highest weight by dropping b. Hence, we have established the following.

Proposition 1.39. Ler g be a basic Lie superalgebra with a Borel subalgebra b.
Then every finite-dimensional irreducible g-module is a b-highest weight module.

We shall denote the highest weight irreducible module of highest weight A
by L(A), L(g,\), or L(g,b,A), depending on whether b and g are clear from the
context.

Recall from Section 1.4 the notations I'l, and b* associated to an isotropic odd
simple root . Denote by (-,-) : h* x h — C the standard bilinear pairing. Denote
by h¢ the corresponding coroot for ¢, and denote by ey and fy the root vectors of
roots o and —ot so that [eq, fo| = hq.

Lemma 1.40. Let L be a (not necessarily finite-dimensional) simple g-module and
let v be a b-highest weight vector of L of b-highest weight \. Let o be an isotropic
odd simple root.

(1) If (A, hg) = 0, then L is a g-module of b*-highest weight A and v is a
b*-highest weight vector.

(2) If (A, hg) # O, then L is a g-module of b*-highest weight (A — o) and fyv
is a b%-highest weight vector.

Proof. We first observe three simple identities:

() eafov = [ea, fa]v = hov = (A, hg) V.

(ii) ep fav = [ep, fo]v = O for any B € @ N D, since either B — ot is not a root
or it belongs to ®* NP

(iii) f2v = 0, since o is an isotropic odd root and so f3 = 0.

Now, we consider two cases separately.

(1) Assume that (A,hy) = 0. Then we must have fuv = 0, for otherwise fuv
would be a b-singular vector in the simple g-module L by (i) and (ii). Also egv =0,
for B € ®" N, . Thus Lemma 1.30 implies that v is a b*-highest weight vector of
weight A in the g-module L.

(2) Assume that (A, hg) # 0. Then (i) above implies that fyv is nonzero. Now

it follows by (i1), (iii), and Lemma 1.30 that f,v is a b%-highest weight vector of
weight A — ot in L. O



1.5. Highest weight theory 35

Example 1.41. Let g = g[(4|2). Denote the sequence of Borel subalgebras cor-
responding to the fundamental systems I1; in Example 1.35 as b;, for 0 <i <8,
with b = bg. Consider the finite-dimensional irreducible gl(4|2)-module L(A),
where A = a161 +a20, +a303 +a4ds + b8 +brey withay > a; > a3 > aq > 2
and by > by > 0. We identify A = (ay,a2,as,aa|b1,b2). The b;-extremal weights,
denoted by A’ for 0 < i < 4, are computed as follows:

AN=r= (ar,a2,a3,a4|b1,b2),
A = (a1,a3,a3,a4 — 1|by +1,by),
A= (ay,az,a3 — 1,a4 — 1|by +2,b2),
A = (ay,ay—1,a3— 1,a5— 1|by +3,b)),
A = (a1 —1,a0— 1,a3 — 1,a4— 1|by +4,b).
If we continue to consecutively apply to A* the sequence of odd reflections with
respect to the odd roots 04 —€5, O3 — €2, 87 — €5, and &1 — €5, we obtain the following
b;-extremal weights A, for 5 <i < 8:
N =(a;~1,a;—1,a3— 1,a4—2|b1 +4,by + 1),
A= (a1 —l,ay—1,a3 —2,a4 — 2|by +4,by +2),
A = (a1 —1,a0—2,a3 —2,a4 —2|by +4,b +3),
A8 = (a1 —2,a0—2,a3 —2,a4 —2|by +4,b +4).

We shall see in Section 2.4 that all these weights A’ afford very simple visualization
in terms of Young diagrams.

1.5.4. Highest weight theory for q(n). Let g = q(n) be the queer Lie superalge-
bra. We recall several subalgebras of g from Section 1.2.6. Let § be the standard
Cartan subalgebra consisting of block diagonal matrices and let b be the standard
Borel subalgebra of block upper triangular matrices of g. We have b = h&nt and
g = b®n~. The Cartan subalgebra h) = b5 @ by is a solvable but nonabelian Lie
superalgebra, since [h71, 1] = hg and [bg, by + h1] =0.

For A € b;, define a symmetric bilinear form (-, -), on by by

(v, w)y := M[v,w)), for v,w € bj.

Denote by Rad(-,-), the radical of the form (-,-);. Then (-,-); descends to a non-
degenerate symmetric bilinear form on j/Rad(-,-);, and it gives rise to a superal-
gebra € as follows. Choosing an orthonormal basis {e;} of € hj/Rad(:,-)) with
respect to the form (-, -)3, the associative superalgebra ), is generated by {e;} sub-
ject to the relations (3.23), and hence is isomorphic to the Clifford superalgebra
Ck, where k = dimbj/Rad(:,-), (see Definition 3.33). By definition we have an
isomorphism of associative superalgebras

(1.51) C,=U(h)/h,
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where I, denotes the ideal of U (h) generated by Rad(-,); and a —A(a) for a € b;.

Let bli C by be a maximal isotropic subspace with respect to (-, )3, and define
the Lie subalgebra b’ := by ® b,i' The one-dimensional hz-module Cv;, defined by
hvy, = M(h)v,, extends to an h'-module by letting h7.vy = 0. Define the induced
h-module

Wy == Indz,Cv;b.

Recall the well-known fact that a Clifford superalgebra admits a unique irre-
ducible (Z,-graded) module W), (see, for example, Exercise 3.11 in Chapter 3).

Lemma 1.42. For A € bs the b-module W), is isomorphic to WA (viewed as an
h-module via the pullback through (1.51)) and is irreducible. Furthermore, every
finite-dimensional irreducible Y-module is isomorphic to Wy, for some A € b

Lemma 1.42 shows that the h-module W, is independent of a choice of a max-
imal isotropic subspace bj.

Proof. The action of U(h) on Wy, descends to an action of U(h)/I, and via (1.51)
we identify W, with the unique irreducible module W), of the Clifford superalgebra
C;.. Hence, the h-module W), is irreducible.

Suppose we are given an irreducible h-module U. Then it contains an f;-
weight vector V) of weight A € b5. Recall that b = h D b, and consider the
b'-submodule (m,U(h')v;) of U such that m([h},b]) = n([b;,b5]) = 0. By ap-
plying Lemma 1.37 to Lie superalgebra n(f’), there exists a one-dimensional b'-
submodule Cvy, of U(h")v, C U. By Frobenius reciprocity we have a surjective
h-homomorphism from W, onto U. Since W), is irreducible, we have U = W,. [

Let V be a finite-dimensional irreducible g-module. Pick an irreducible §-
module W, in V, where A € by can be taken to be maximal in the partial order
induced by the positive system @ by the finite dimensionality of V. By defini-
tion, Wy, is hy-semisimple of weight A. For any o € ®* with associated even root
vector ey, and odd root vector 4 in n', the space Ceq W, + Ce, W, is an h-module
that is hg-semisimple of weight A+ o. If CeqWs, + CeoWy, # 0 for some o € O,
then it contains an isomorphic copy of W, as an h-submodule, contradicting the
maximal weight assumption of A. Hence, we have n™W, = 0. By irreducibility of
V we must have U (n™ )W, =V, which gives rise to a weight space decomposition
of V= GB“E% V. The space W), = Vy, is the highest weight space of V, and it
completely determines the irreducible module V. We denote V by L(g,A), or L(A),
if g is evident from the context. Summarizing, we have proved the following.

Proposition 1.43. Let g = q(n). Any finite-dimensional irreducible g-module is a
highest weight module.
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Let £(A) be the number of nonzero parts in a composition A (generalizing the

notation for length of a partition A). We set
0, if4(A)iseven,
(1.52) (M) = { 1, if£(A)is odd.

Now for A € b*, recalling the notation H; from (1.30), we identify A with the
composition A = (A(H1),...,A(H,)), and hence, £(X) is equal to the dimension
of the space hj/Rad(-|-)5. We remark that the highest weight space W; of L(A)
has dimension 2(/(+3M)/2_ Note that the Clifford superalgebra C; admits an odd
automorphism if and only if ¢(A) is odd. Hence, the h-module Wy, or equivalently
the irreducible €;-module W, has an odd automorphism if and only if £(X) is an
odd integer. An automorphism of the irreducible g-module L(A) clearly induces
an h-module automorphism of its highest weight space. Conversely, any h-module
automorphism on W, induces an automorphism of the g-module Indi;L. Since an
automorphism preserves the maximal submodule, it induces an automorphism of
the unique irreducible quotient g-module. We have proved the following.

Lemma 1.44. Let g = q(n) be the queer Lie superalgebra with a Cartan subalge-
bra . Let L(\) be the irreducible g-module of highest weight A € b;. Then,

dim End,y (L(L)) = 25®.

This suggests that Schur’s Lemma requires modification for superalgebras.
This will be discussed in depth in Chapter 3, Lemma 3.4.

1.6. Exercises

Exercises 1.13, 1.14, 1.15, 1.16, and 1.24 below indicate that various classical
theorems in the theory of Lie algebras fail for Lie superalgebras.

Exercise 1.1. Let ¢ be an automorphism of Lie superalgebra gl(m|n), and let J €
gl(m|n)g. Define
9(¢.J) :={g € gl(mln) | Jg - ¢(g)J = 0}.

Prove that g(@,J) is a subalgebra of gl(m|n).
Exercise 1.2. Let 32m| ¢ be as defined in 1.1.3, and let 3’2 -y be the matrix obtained
from J,,,, by substituting 1, with —I,,. Prove:

(1) There exists an automorphism ¢ of Lie superalgebra gl(2m/|¢) given by

0(g) = —¢"
(2 9(9,Jomje) = spo(2m|L).
3) (0, Jame) = 8(9, Tp,0)-

Exercise 1.3. Prove that [Ig8T1~! = (Hgl'[_l)“a, for g € gl(m|n); conclude that
osp(m|n) = spo(n|m), for n even (as stated in Remark 1.9).
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Exercise 1.4. The space A(2) is naturally a W(2)-module with submodule C1.
Show that the action of W(2) on A(2)/Cl1 is faithful, and thus induces, by identi-
fying A(2)/C1 with C'/2, an isomorphism of Lie superalgebras W (2) = s(1/2).

Exercise 1.5. Prove that the following linear map y : spo(2|2) — sl(1]2) is an
isomorphism of Lie superalgebras:

PRI S . VR
x o ox _z g s V2x) d+a e
y i 0 a \/Ex f —d+a

Exercise 1.6. Suppose that g =g_1 B go D ¢ is a Z-graded Lie superalgebra such
that g5 = go, 97 = 91 D g-1, and [g1,9-1] = go. Assume further that g is a simple
Lie algebra and g are irreducible go-modules such that Homg, (go, g1 ®g—1) = C.
Prove that these data determine the Lie superalgebra structure on g uniquely.

Exercise 1.7. Prove:

(1) The simple Lie superalgebras S(3) and [p(3),p(3)] are isomorphic. (Hint:
use Exercise 1.6.)

(2) The Lie superalgebra H(4) and s1(2|2)/Cl,, are isomorphic.

Exercise 1.8. Let g = g5 @ g7 be a finite-dimensional simple Lie superalgebra with
g7 # 0. Prove:

(M [gg, 97} = 91
) [g1,01] = 8o
(3) The gz-module gj is faithful.

Exercise 1.9. Let g = g5 & g7 be a Lie superalgebra such that [g7, g7] = g and the
adjoint gg-module gj is faithful and irreducible. Prove that g is simple.

Exercise 1.10. Let g = 69;?:4 g, be a Z-graded Lie superalgebra satisfying
(1) [g—1,x] = O implies that x = 0, for all x € g; with j > 0;
(2) The adjoint go-module g_; is irreducible;
(3) [g-1,01] = go. [80,81] = g1, and g1 = [gj, ] for j > 1.

Prove that g is simple.

Exercise 1.11. Let g = s1(2[2)/Cl,. Prove that dim g = 2, for o € Pj.

Exercise 1.12. Let g be a Lie superalgebra. Prove that g ® A(n) is a Lie superal-
gebra with Lie bracket defined by

la@h by = (~1)MPla,b)@hy, a,be g:hpueAn).
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Exercise 1.13. Let g be a finite-dimensional simple Lie superalgebra. The Lie
superalgebra W (n) acts naturally on g ® A(n) so that the semidirect product § =
(g®A(n)) x W(n) is a Lie superalgebra. Prove that § is semisimple (which by
definition means that G has no nontrivial solvable ideal.)

Exercise 1.14. Find a filtration of subalgebras for § in Exercise 1.13 of the form
0=50C51C%C - CHhi-1SZ%=5,
for some k, such that G;_ is an ideal in §; wtih G;/G;_; simple, foralli=1,...,k.

Prove that G is not a direct sum of simple Lie superalgebras.

Exercise 1.15. Let G be constructed as in Exercise 1.13 from a not necessarily
simple Lie superalgebra g. Suppose that V is a faithful irreducible representation
of g. Prove that, as a representation of G, V ® A(n) is faithful and irreducible.

Exercise 1.16. Continuing Exercise 1.15, assume that g is the one-dimensional
abelian Lie algebra and V is a nontrivial irreducible representation of g. Prove
that G is not reductive, i.e., G is not a direct sum of a semisimple Lie superalgebra
and a one-dimensional even subalgebra. (It is known that a finite-dimensional Lie
algebra possessing a finite-dimensional faithful representation is reductive.)

Exercise 1.17. Let g be a simple Lie superalgebra whose Killing form is non-
degenerate. Prove that every derivation of g is inner.

Exercise 1.18. Prove that the Killing forms on the Lie superalgebras s[(k|¢) with
k# £, k+{> 2, and osp(m|2n) with m —2n # 2, m + 2n > 2 are non-degenerate.
Conclude that the derivations of these Lie superalgebras are all inner.

Exercise 1.19. Let g = gy @ gy be a finite-dimensional simple Lie superalgebra.
Suppose that gg is a semisimple Lie algebra and let Der(g) = ad(g) ®W be a de-
composition of ad(gg)-modules. Prove:

(1) W is a trivial ad(gg)-module.

(2) For D € W, the map D : g — g is an ad(gg)-homomorphism vanishing on

90- .

Exercise 1.20. Use Exercise 1.19(2) to prove the following:

(1) Every derivation of osp(m|2n) is inner.

(2) The space Der(g)/ad(g) for si(m -+ 1|+ 1)/Chys1ps. [p(m),p(m)],
and [q(m),q(m)]/CLj, for m > 2, are all one-dimensional.

(3) The space Der(g)/ad(g) for s{(2|2) /Cly, is three-dimensional.
Exercise 1.21. Let g = @;>_; g, be the simple Z-graded Lie superalgebra W (m),
S(m), or H(m+ 1), for m > 3, with principal gradation. Let b be a Borel subalge-
bra of go. Set g>0 = @008 >0 = D508, and b = by D go. Prove:

(1) b is a solvable Lie superalgebra satisfying by, b7] C [bg, bg].
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(2) A finite-dimensional irreducible representation of gs¢ is an irreducible
representation of go on which the subalgebra g~ acts trivially.

(3) Any finite-dimensional irreducible module of g is a quotient of Indg V,
where V is a finite-dimensional irreducible representation of g>g.

Conclude that, up to isomorphism, finite-dimensional irreducible go-modules are
in one-to-one correspondence with finite-dimensional irreducible g-modules.

Exercise 1.22. Let g = [p(2),p(2)]. Prove:

(1) [g,9] < g, and hence g is not simple.
(2) gis semisimple.

(3) Any nontrivial finite-dimensional irreducible g-module is a direct sum of
two copies of the same irreducible ggz-module.

Exercise 1.23. It is known that every finite-dimensional Lie algebra has a finite-
dimensional faithful representation. Prove that every finite-dimensional Lie super-
algebra has a finite-dimensional faithful representation.

Exercise 1.24. Prove that the exact sequence of Lie superalgebras
0 — Clyjyn — sl(m|m) — sl(m|m)/Cl,,, — 0

is non-split, though sl(m|m)/CL,, is simple, for m > 2. (Hence Levi’s theorem
fails for Lie superalgebras.)

Exercise 1.25. Prove that the bilinear form (1.33) induced from the odd trace form
(1.32) is a symmetric non-degenerate invariant form on q(n).

Notes

Section 1.1. The classification of finite-dimensional simple complex Lie superal-
gebras was first announced by Kac in [59]. The detailed proof of the classifica-
tion, along with many other fundamental results on Lie superalgebras, appeared in
Kac [60] two years later. An independent proof of the classification of the finite-
dimensional complex simple Lie superalgebras whose even subalgebras are reduc-
tive was given in the two papers by Scheunert, Nahm, and Rittenberg in [106]
around the same time.

Section 1.2. The structure theory of root systems, root space decompositions,
and invariant bilinear forms of basic Lie superalgebras presented here is fairly stan-
dard. More details can be found in the standard references (see Kac [60, 62] and
Scheunert [105]).

Section 1.3. The concept of odd reflections was introduced by Leites, Saveliev,
and Serganova [78] to relate non-conjugate Borel subalgebras, fundamental and
positive systems. The list of conjugacy classes of fundamental systems under the
Weyl group action for the basic Lie algebras was given by Kac [60]. We introduce
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a notion of £d-sequences (which appeared in Cheng-Wang [32]) to facilitate the
parametrization of the conjugacy classes of fundamental systems for Lie superal-
gebras of type gl and osp. For definitions of Borel subalgebras for general Lie
superalgebras, see [90, 95].

Section 1.4. Lemma 1.30 on odd reflections appeared for more general Kac-
Moody Lie superalgebras in Kac-Wakimoto [66, Lemma 1.2], and it is sometimes
attributed to Serganova’s 1988 thesis (cf., e.g., [108]).

Section 1.5. A detailed proof of the PBW Theorem for Lie superalgebras, The-
orem 1.36, can be found in Milnor-Moore (85, Theorem 6.20] and Ross [102, The-
orem 2.1]. As in the classical theory, the first step to develop a highest weight
theory for the basic and queer Lie superalgebras is to study representations of
Borel subalgebras. Lemma 1.37 on solvable Lie superalgebras appeared in Kac
[60, Proposition 5.2.4]. The proof given here is different. Lemma 1.40 on the
change of the extremal weights of an irreducible module under an odd reflection
(which appeared in Penkov-Serganova [94, Lemma 1]) plays a fundamental role in
representation theory of Lie superalgebras developed in the book.

Exercises 1.8, 1.9, and 1.17-1.20 are taken from [60] and [105], while Exer-
cise 1.21 was implicit in [60]. Exercise 1.16 was inspired by similar examples for
Lie algebras in prime characteristic, which we learned from A. Premet.
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Chapter 2

Finite-dimensional
modules

In this chapter, we mainly work on Lie superalgebras of type gl, osp, and q. The
finite-dimensional irreducible modules for these Lie superalgebras are classified in
terms of highest weights. In contrast to semisimple Lie algebras, there is more
work to do to achieve such classifications for Lie superalgebras. We describe
the images of the Harish-Chandra homomorphisms in terms of (super)symmetric
functions and formulate the linkage principle on composition factors of a Verma
module. As an application, we present a Weyl-type character formula for the so-
called typical finite-dimensional irreducible modules. The chapter concludes with
a study of extremal weights, i.e., highest weights with respect to (not necessarily
conjugate) Borel subalgebras, of various finite-dimensional irreducible modules.

2.1. Classification of finite-dimensional simple modules

In this section, the highest weights of finite-dimensional irreducible modules over
Lie superalgebras of type gl, osp, and q are determined.

2.1.1. Finite-dimensional simple modules of g{(m|n). Let g be the Lie superal-
gebra gl(m|n) and let b be the Cartan subalgebra of diagonal matrices spanned by
the basis elements {E;|i € I(m|n)}. Let n™ (respectively, n™) be the subalgebra
of strictly upper (respectively, strictly lower) triangular matrices of gl(m|n) so that
@+ corresponds to (1.37). Then we have the standard triangular decomposition

g=n ohdnt.
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The even subalgebra admits a compatible triangular decomposition
go =ny; hong,

where ngt =ggNn®. Letb=hPn" and bg=HhOny.

Moreover, the Lie superalgebra g admits a Z-gradation
2.1) g=0-19g909 g1,
where g_; (respectively, g1) is spanned by all E;; with i, j € I(m|n) such that i >
0 > j (respectively, i < 0 < j). Note that g_; and g; are abelian Lie superalgebras,
and that the Z-degree zero subspace gy coincides with the Z,-degree zero subspace
80-

For A € b*, let L°()) be the simple gz-module of highest weight A € b* (relative

to the Borel bg). Then L°()) may be extended trivially to a gg & gi-module due to
(2.1). Define the Kac module over g by

K(\) =1Ind? .. LI°(}),

goDg1
which, as a vector space, can be identified by the PBW Theorem 1.36 with
2.2) K(\) =N (g-1)®L'(A).

Proposition 2.1. Ler g = gl(m|n). There exists a surjective g-module homomor-
phism (unique up to a scalar multiple) K(A) — L(A). Moreover, the following are
equivalent:

(1) L(A) is finite dimensional.
(2) L°(M) is finite dimensional.
(3) K() is finite dimensional.

Proof. The existence of a surjective homomorphism K(A) —» L(A) follows by the
embedding of gz-modules L°(A) = L()) and Frobenius reciprocity.

(1) = (2). Note that L°(}) is an irreducible direct summand of L(A) regarded
as a gg-module.

(2) = (3). Follows from (2.2).
(3) = (1). Follows from the surjectivity of the map K(A) — L(A). O

According to Proposition 1.39, every finite-dimensional simple g-module is a
highest weight module L(A), for some A € h*. Moreover, L(A) 2 L(u), if A # .
By Proposition 2.1, the classification of finite-dimensional simple g-modules is the
same as the classification of finite-dimensional simple modules of g5 = gl(m) ®
gl(n), which is well known. Hence, we have established the following.

Proposition 2.2. A complete list of pairwise non-isomorphic finite-dimensional
simple gl(m|n)-modules are L()), for A = XL Aid; + X1 0;€; € b* satisfying
Ai —Nip1 € Zy and v; — V11 € Zy for all possible i, j.
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Remark 2.3. Note that gg is a Levi subalgebra of g = gl(m|n) (corresponding to
the removal of the odd simple root from the standard Dynkin diagram of g), and
hence the Kac module K(A) is a distinguished parabolic Verma module relative
to the standard Borel subalgebra. Since K(A) is a highest weight module, it is
indecomposable. However, for m > 1 and n > 1, K(A) is reducible for suitable
A, e.g., when A(hy) = O for the odd simple root oo by Lemma 1.40. Hence, the
category of finite-dimensional gl(m|n)-modules is not semisimple when m > 1 and
n>1.

2.1.2. Finite-dimensional simple modules of spo(2m|2). The classification of
finite-dimensional simple modules for g = spo(2m|2) is carried out similarly to
the gl(m|n) case. Let @ be the positive system of the root system ® of g corre-
sponding to the Dynkin diagram (1.42). Associated to @1 we have the triangu-
lar decomposition g = n~ ® h G nt, compatible with that of its even subalgebra
go=n; BHD ng, where n(?)—L = go\nE. In addition, g = spo(2m|2) admits the
following two favorable properties that are shared by gl(m|n) but not by other spo
superalgebras: first, g admits a Z-graded Lie superalgebra structure of the form
g=0_1PgoD g1, where go = 95 91 = g—1 D g1, and the set of roots for g; is given
by @}L ={&;£6;,1 <i<m}. Secondly, gj is a Levi subalgebra of g corresponding
to the removal of the odd simple root from the Dynkin diagram (1.42).

Hence we define the Kac module K (1) of g as before: K(A) = Ind§ g, L°(A),
where LO(A) denotes the simple gz-module of highest weight A relative to d)(f)r.
Proposition 2.1 remains valid in the current setting, and it implies that the classi-
fication of finite-dimensional simple g-modules is the same as the classification of

finite-dimensional simple modules of gg = sp(2m) ® C.

Proposition 2.4. A complete list of pairwise non-isomorphic finite-dimensional
simple spo(2m|2)-modules are L(A), for =¥ | A;8; +V1€1 € b*, such thatvy € C
and (A1, ..., Am) is a partition.

2.1.3. A virtual character formula. Let g be a Lie superalgebra of type gl or 0sp.
With respect to a positive system ®* = ®F U®; (see Sections 1.3.2, 1.3.3, and
1.3.4), we have the triangular decompositiong=n"®hdn™. Letting b =n* o b,
we define the Verma module

A(L) =IndiCvy,

associated to a weight A € h*. Here, as usual, Cv), stands for the one-dimensional
b-module on which b acts by the character A, and n™ acts trivially. Then A(A)
admits a unique simple quotient g-module, which is the irreducible g-module L())
of highest weight A.

A weight A € h* is called dominant integral with respect to CI)%' or sim-
ply @7 -dominant integral if (A,hq) € Z.., for all o € @y . A difference of two
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characters of finite-dimensional g-modules is called a virtual character of finite-
dimensional g-modules. Also recall the Weyl vector p = pg — pi from (1.35). We
shall need the following proposition (see Santos [104, Proposition 5.7]) to deter-
mine if certain weights could be highest weights of finite-dimensional g-modules.

Proposition 2.5. Let g be of type gl or osp. For any CI)ar-dominant integral weight
A € b*, the expression

Mpeo: (€2 +e7P7%)

1)) etp)
Hoce(bg (ea/Z - e—oc/2) WEW( ) e

(2.3)

is a virtual character of finite-dimensional g-modules.

Proof. Following the proof of [104, Proposition 5.7], we shall make use of the
so-called Bernstein functor £y [104, (12)] from the category of §-semisimple g-
modules to the category of gz-semisimple g-modules. Actually, when restricting to
the category of h-semisimple gz-modules, the functor Ly is just the classical Bern-
stein functor, which is a special case of the functor P defined in Knapp and Vogan
[72, (2.8)]. As we shall only need some standard properties of the Bernstein func-
tor, which can be found in [72, 104], we will not recall here the precise definition,
which is rather involved.

An immediate consequence of the definition of the functor Ly is that every
gg-composition factor of Lo(V) is also a gg-composition factor of V. Hence Lo
takes a finitely generated h-semisimple gz-module in the BGG category to a finite-
dimensional gz-module. Denote by £; the ith derived functor of £o. Then, each
L;(V) is a finite-dimensional g-module for any Verma g-module V (which lies in
the BGG category of gz-modules). Now it is a classical result (cf. [72, Corol-
lary 4.160]) that the resulting Euler characteristic when applying £ to a gg-Verma
module is given by the Weyl character formula, i.e.,

_1) . 9 _ zwew(—l)[(w)eW(X+p§)
0( e indy )= Moca; (/2 —e7/2) 7

Mz

and £ i(Indgng) = 0 for i > 0. This can be viewed as an algebraic version of the
Borel-Weil-Bott theorem.

Given a short exact sequence of finite-dimensional h-semisimple gz-modules
0—M-—E—N—0,

it follows by the Euler-Poincaré principle that

= o o

Y (—1)ich £i(M) + Y. (—1)'ch Li(N) = Y, (—1)'ch Li(E).

i=0 i=0 i=0
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As a gg-module, A(A) and Indg"(C;L ® A(n;) have finite g5-Verma flags, where
a Verma flag is a filtration whose sectlons are Verma modules. Since these two gg-
modules also have identical characters, their gg-Verma flags have the same Verma
module multiplicities. Now the character of the bg-module Cy, ®A(n{) equals

et Mpea; (1+e7B). Noting the W -invariance of peo: (eB/2 +¢B/2), we have

o0

2. (=1)ch Li(A(M)) =

i=0

(—1)'ch.L;(Indg)Cy ® A(ng )

'MX

0

M
=
M
S

(=190 e (1+€P))
Moca; (7 — e~7%)
Zwew(_l)f(w)w(el+P6—Pi HBGCI)T* (eB/2 4 e—B/2))
I E(I)+(ec)c/2_(:,—()c/2)
~ pear (P2 +eP2) £(w) w(hip).
Moa (€2 —e %) 2 (1)
acdy weW

Since the left-hand side is a virtual character of finite-dimensional g-modules, so
is the right-hand side. This proves the proposition. ]

Remark 2.6. Upon changing the sign + in the numerator of (2.3) to —, the result-
ing expression

B/2 _ o—B/2
HBQ(I)?» (e e ) z (_1)Z(W)6W(K+P)
ched)g (eoc/z _ e—oc/Z)

weWw
is a virtual supercharacter (see Section 2.2.4) of finite-dimensional g-modules.

2.1.4. Finite-dimensional simple modules of spo(2m|2n+ 1). We start with a
general remark for a Lie superalgebra g of type osp. By Proposition 1.39, every
finite-dimensional irreducible g-module is necessarily of the form L(A), for some
A € h*. Moreover, we have L(A) = L(u) if and only if A = u. However, the clas-
sification of finite-dimensional simple g-modules is nontrivial, partly because the
even subalgebra gg of g is not a Levi subalgebra.

Lemma 2.7. Let g be a basic Lie superalgebra. A necessary condition for the finite
dimensionality of the g-module L(\) is that A is q)g'-dominant integral.

Proof. The proof follows by noting that A is a hlghest weight with respect to (I)+
for L(A), regarded as a gg-module. D

In this subsection we consider g = spo(2m|2n + 1) and let ®* be the standard
positive system (1.39) for g. The next lemma is a reformulation of the well-known
dominance integral (DI) conditions for Lie algebras sp(2m) and 50(2n +1).
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Lemma 2.8. Let g = spo(2m|2n+ 1) with g5 = sp(2m) ®so(2n+1). A weight
A=3" di+ X0 vje; is (I)g -dominant integral if and only if the following two
conditions are satisfied:

(DLb-1) Ay > ... > A with all A€ Zy.
(DLb-2) vy > ... >y, with either (i) all v; € Z. or (i) all v; €  +Z,.

For g = spo(2m|2n+1), a (Dg -dominant integral weight is called an integer
weight if it satisfies (DLb-1), and it is called a half-integer weight if it satisfies
(DLb-2). The L(A)’s for integer and half-integer weights A turn out to be quite
different, and they are analyzed separately.

Proposition 2.9. Let g = spo(2m|2n+1) and let . = ¥ | 1:8; + e €h*
be a half-integer d)g-dominant integral weight. Then the highest weight g-module
L(A) is finite dimensional if and only if A, > n.

Proof. Take a half-integer @g-dominant integral weight A such that A,, > n. We
will look for the highest weight appearing in the virtual character (2.3) of finite-
dimensional g-modules in Proposition 2.5. Recalling the Weyl vector p = py — p;
from (1.35), we compute that

Po=md1+(m—1)8+... 48, +(n—1/2)e; + (n—3/2)e2+ ...+ (1/2)e,.

Since the Weyl group of sp(2m) is =2 Z4' x S, and it consists of the signed permu-
tations among 91,...,8,, we conclude by the assumption A,, > n that the weight
A+ p remains d)g—dominant and regular. Thus the highest weight occurring in the
virtual character of finite-dimensional g-modules (2.3) is (A +p) + p; — py = A,
and so L(X) must be finite dimensional by Proposition 2.5.

Conversely, suppose that the module L(A) is finite dimensional for a half-
integer CD(f)”-dominant integral weight A. We apply the following sequence of mn
odd reflections to the standard fundamental and positive systems of g in (1.39).
We first apply the n odd reflections with respect to 8,, — €1,8,, — €2,...,8, — €,
then the n odd reflections with respect to 8,,_1 — £1,...,8,,—1 — €, etc., until we
finally apply the n odd reflections with respect to 8; —€1,8; —¢€5,...,8; —&,. After
a computation similar to Example 1.35, the resulting fundamental system is that
of the diagram (1.40). By the half-integer weight assumption on A, the value of
A at any isotropic odd coroot belongs to % + Z and hence is nonzero. By Lemma
1.40, after an odd reflection with respect to an isotropic odd root o, the new high-
est weight is A — o, which again takes value in % + Z at any odd isotropic coroot.
Continuing this way and using a computation very similar to Example 1.41, we see
that the new highest weight corresponding to the above Dynkin diagram is equal to
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A—n¥; 8;+mY_; ;. Now this weight must take non-negative integer value at
hys, by the finite dimensionality of L(A), from which we conclude thatA,, > n. U

We next determine for which integer d)g-dominant integral weight A the g-
module L(}) is finite dimensional. Recall i/ denotes the conjugate partition of a
partition u. The following definition plays a fundamental role in the book.

Definition 2.10. A partition u = (ui,,...) is called an (m|n)-hook partition
(or simply a hook partition when m,n are implicitly understood) if 41 < n.
Equivalently, u is an (m|n)-hook partition if 1), ; < m.

Diagrammatically, the hook condition means that the (m+ 1,7+ 1)-box in the

Young diagram is missing; it can be visualized as follows:
n

Given an (m|n)-hook partition i, we denote by pu+ = (thni1,Mm+2, - - -) and write
its conjugate, which is necessarily of length < n, as v = (u*) = (vi,...,v,). We
define the weights

(2.4) o= &4 A O +VIE + .+ Vi 1€a—1 + VaEn,

,uh_ = wd +...+mOm + Vi€l + ...+ Vy_1€1—1 — VnEn.

(,uh_ is only used for spo(2m|2n) below.) It is sometimes convenient to identify e

and ,uh_ with the following tuples of integers:
= (e BV V),
,Uh_ = (’117"’7lum;vlv' . 'a_Vn)-
Theorem 2.11. Let g = spo(2m|2n+1), and let . = 3 | Aid; + X} vj€; € h* be
a (bg-dominant integral weight.

(1) Suppose that A is a half-integer weight. Then L(A) is finite dimensional if
and only if My, > n.

(2) Suppose that ) is an integer weight. Then L(M) is finite dimensional if
and only if \ is of the form i, where y is an (m|n)-hook partition.

Proof. Part (1) is Proposition 2.9. So it remains to prove (2).
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Let ube an (m|n)-hook partition. For an integer M such that M > max{m, ¢(u)},
consider the Lie superalgebra spo(2M|2n + 1) acting on its standard representa-
tion C*¥2+1 1t has highest weight 8;. The module AK(C2MP+1) contains a
highest weight vector of highest weight 21;:1 d;, for k < M. Write the conju-
gate partition ¢’ = (v1,vy,...). Then the spo(2M|2n + 1)-module AV (C2M12241)
AVI(C?MPr+1) & - .. contains the irreducible spo(2M|2n + 1)-module V of highest
weight u as a quotient, and hence V is finite dimensional. Now, we use a sequence
of odd reflections to change the standard Borel subalgebra of spo(2M|2n + 1) into
a Borel subalgebra that contains as a subalgebra the standard Borel subalgebra of
spo(2m|2n+1). (Here spo(2m|2n+-1) is regarded as a subalgebra of spo(2M|2n+
1).) A sequence of odd reflections that we may use for this purpose is the following:
We first apply the n odd reflections with respect to 8y —€1,8y — €2,...,8y — &,
then the n odd reflections with respect to 8, | —¢€,...,8y_; — €, etc., until we fi-
nally apply the n odd reflections with respect to 841 — €1, 8,11 — €2, ..., Oms| — En.
Thus, we have applied a total of (M —m)n odd reflections. The subdiagram consist-
ing of the first (m+n — 1) vertices of the new Dynkin diagram is of type gl(m|n).
Similar to Example 1.41, one shows that the highest weight of V with respect
to the new Borel subalgebra is u?. Hence by restriction we conclude that the
spo(2m|2n + 1)-module L(1") is finite dimensional, proving the “if” direction of
(2).

By Lemma 2.8, an integer q)g—dominant integral highest weight for a simple
finite-dimensional g-module is necessarily of the form u = & + ... + 5, +
Vi€l + ...+ V&, Where (u1,...,1,) and (vy,...,v,) are partitions. To prove the
remaining condition v’1 <y, it suffices to prove v’] < pj in the case of m = 1
by noting that spo(2|2n + 1) is a subalgebra of spo(2m|2n + 1). Let V be a finite-
dimensional simple spo(2|2n+ 1)-module of highest weight u. Via the sequence of
odd reflections with respect to 8; —&,8; —€5,...,8; —¢€,, we change the standard
Borel subalgebra to a Borel subalgebra with an odd non-isotropic simple root §;.
Now if py > n, then there is no condition on i and we are done. Suppose now that
p1 = k < n; we shall prove by contradiction by assuming that v;,; > 1 (and so
V| > u). This implies that v; > 1, for all 1 < < k, and hence, when applying the
odd reflection with respect to §; — ¢&;, the new highest weight is obtained from the
old one by subtracting 8; —¢;, for 1 < i < k. This also remains true when applying
the odd reflection with respect to 8; — €¢,.;. Hence the resulting new highest weight
has negative 8;-coefficient. But this implies that the new highest weight evaluated
at the coroot A5 must be negative, contradicting the finite dimensionality of the
module V. Hence p must satisfy the hook condition, as claimed. O

2.1.5. Finite-dimensional simple modules of spo(2m|2n). Let n > 2. Let g =
spo(2m|2n) with g5 = sp(2m) ® s0(2n). In this subsection ®* is the standard
positive system (1.41) for g. The next lemma is the well-known dominance integral
conditions for classical Lie algebras sp(2m) and so0(2n).
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Lemma 2.12. Let g = spo(2m|2n). Assume n > 2. A weight h = Y2 Lid; +
Yioivejehtis d)a'-dominant integral if and only if the following two conditions
are satisfied:

(DLd-1) A
(D1.d-2) v

2 lm with all 7\,,' €l..

2
> , with either (i) all v; € Z or (i) all v; € 1 + Z.

> 2 [,

For g =spo(2m|2n), a (IDg—dominant integral weight A € h* is called an integer
weight if it satisfies (DI.d-1), and it is called a half-integer weight if it satisfies
(DI.d-2). The L(A)’s for integer and half-integer weights A again are quite different.

Proposition 2.13. Ler g = spo(2m|2n) withn > 2. Let A = X1 Aid; + Xj_ V€
be a half-integer @5’ -dominant integral weight. Then the highest weight g-module
L(\) is finite dimensional if and only if A, > n.

Proof. Take a half-integer @g-dominam integral weight A with A,, > n. We com-
pute that p; = nX" 9, andso y:=A—p;isa @g—dominant integral weight by
Lemma 2.12. By virtue of the classical Weyl character formula, the virtual char-
acter of finite-dimensional g-modules (2.3) in Proposition 2.5 can be rewritten
as chL%(u) Hﬁecbg' (eP/2 4+ ¢~B/2). The highest weight in this expression is clearly
u~+p1 = A, and we conclude by Proposition 2.5 that L(A) is finite dimensional.

Now let A be a half-integer dDg -dominant integral weight such that L(A) is finite
dimensional. We apply exactly the same sequence of mn odd reflections as in the
proof of Proposition 2.9 now to the standard fundamental system for spo(2m|2n)
in (1.41) in Section 1.3.4. The resulting fundamental system is that of the diagram
in (1.42). Bearing in mind that A is half-integer, as in the proof of Proposition 2.9,
we can show that the highest weight with respect to this new Borel subalgebra is
A—n¥L, 8;4+mY_ ;. Since this weight must take non-negative integer value at
hys,, to ensure that L(A) is finite dimensional, we conclude that A,, > n. O

Theorem 2.14. Let g = spo(2m|2n) withn > 2. Let A = 3" | Aidi + X} V€ be
a d)g-dominant integral weight.

(1) Suppose that ). is a half-integer weight. Then L(A) is finite dimensional if
and only if hy, > n.

(2) Suppose that A is an integer weight. Then L(A) is finite dimensional if
and only if A is of the form i or i, where p is an (m|n)-hook partition.

Proof. Part (1) is Proposition 2.13. Since the proof for (2) is very similar to the
proof for Theorem 2.11(2), we shall only give a sketch below.

We recall from (1.41) that the standard Dynkin diagram of g = spo(2m|2n)
possesses a nontrivial diagram involution, which induces an involution of the Lie
superalgebra g. Twisting the module structure with this involution interchanges the
irreducible modules L(u') and L"),
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Given an (m|n)-hook partition u, we choose M > max{m,£(u)} and consider
the Lie superalgebra spo(2M|2n). Then, arguing as in the proof of Theorem 2.11,
the irreducible spo(2M|2n)-module of highest weight u is finite dimensional. We
apply the same sequence of odd reflections as in that proof to change the standard
Borel subalgebra of spo(2M|2n) to a Borel subalgebra that is compatible with the
standard Borel subalgebra of spo(2m|2n). Again, the subdiagram consisting of the
first (m+n— 1) vertices of the new Dynkin diagram is of type gl(m|n), and it is
easy to see that the new highest weight equals . By restriction to spo(2m|2n),
we see that L(1") is finite dimensional, and so L(,uh_) is also finite dimensional by
applying the Dynkin diagram involution.

Conversely, let u = 181 + ...+ tudyu + Vi€1 + ... +V,€, be an integer <Dg—

dominant integral weight. By Lemma 2.12, (u1,...,1,) and (v1,...,|v,|) are par-
titions. To prove that V| <y, it suffices to prove v{ < u; in the case that m = 1.
Using the sequence of odd reflections with respect to 8; —€1,8; —¢€,...,8; —¢,,

we change the standard Borel subalgebra to a Borel subalgebra with an even simple
root 28;. Now the same argument as in the proof of Theorem 2.1 1(2) shows that
if u does not satisfy the hook condition, then ¢ must take a negative value at hys,

contradicting the finite dimensionality of L(u). g
Example 2.15. Let £,& be two odd indeterminates, and let x = {x1,"+ xm}, £=
{X1,--+ ,%n} be 2m even indeterminates with m > 0. We identify the span of these

indeterminates with C2 5o that the exterior algebra
A(C?m) == A(CP) @ S(C2™)

is identified with the polynomial superalgebra generated by these indeterminates,
which we denote by C[£,€ x,7]. We denote by IT the fundamental system of
0sp(2[2m) given by {&; — 8,8, —&,,...,8,-1 — 8,,28,} with Dynkin diagram as
in (1.42) with n = 1. Let ey and fy, for o € I1, denote the Chevalley generators.
Define the following first-order differential operators on C[£, €, x, 7]

d d o d .0
o5 =C—+ X1 — & =Xl — C=——
€ 51 gaxl 1a§> fS] 81 lag &axl )
. _ 0 7 d _ 0 . |
85,8, = Xim—— — Xiy1=— iy =Xt —Xj——, i=1,-- . m—
8;—08;+1 laxi+1 i+1 a)?i’ 8;—8i 11 l+laxi la)EH—I’ ) 3 )
. 2 _ 0
€25, — Xm=> f28m =Xmz—-

0X,, Xy,

The map eq — €4 and fo — fas for o € T1, defines a representation of osp(2[2m)
on C[E, &, x,x]. Indeed, this gives an explicit realization of the irreducible represen-
tations L(g; + k81 ) = AK1(C22), for all k € Z., (see Exercise 2.12).

Example 2.16. In order to construct the symmetric tensors of the natural osp(2|2m)-
module we consider x, %, two even, and § = {§;,--- &}, E={&1,-+ ,Em ), 2modd
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indeterminates. We identify the span of these indeterminates with C227 5o that the
supersymmetric algebra

S(C2|2m) = S(@Z) ® /\((sz)

is identified with C[x, %,&, E]. We continue to use the notation from Example 2.15
and define the following first-order differential operators on C[x,%,&,&]:

~ 8 ~ a _ a
Ce1-8 = a +&~'] o’ f81—51 :gla —Xgé‘—]-,

981_81‘4 1 il a§1+] &H"] a(ty fSi—SH—l = éH—] a&l gl aéH_l

AZB,,, = &m f 28, — &..m

a&m’ 3§m

The map ey — &, and fy — fo, for o € I1, defines a representation of 0sp(2|2m)
on (C[x,f,i,é]. Just like for the orthogonal Lie algebra, the symmetric tensors
are not irreducible. The computation of the composition factors of the symmet-
ric tensor here is more involved than in the case of orthogonal Lie algebras (see
Exercises 2.13-2.16).

2.1.6. Finite-dimensional simple modules of q(n). Now suppose that g is the
queer Lie superalgebra q(n). Let h be the standard Cartan subalgebra of block
diagonal matrices and let b = h & n™ be the standard Borel subalgebra of block
upper triangular matrices; cf. Section 1.2.6. Recall that {H; = E;; + E;; | 1 <i<n}
forms the standard basis for by, with dual basis {g; | 1 <i <n} for h5. We have a
triangular decomposition g =n~ G hdn’.

Recall from Lemma 1.42 that W, is a finite-dimensional irreducible h-module,
for A € h3. Regarding W), as a b-module by letting n™ act trivially, we define the
Verma module of g to be

A(L) = Ind®W).

The highest weight space of A(A) can be naturally identified with W) and has di-
mension 2(“A+3M)/2 - Any nonzero vector in the highest weight space W, gener-
ates the whole g-module A()L). Following standard arguments for semisimple Lie
algebras, any g-submodule of A(A) has a weight space decomposition, and then the
Verma module A()) contains a unique maximal proper submodule J(A) (which is
the sum of all proper submodules). Hence, A(A) has a unique irreducible quotient
g-module L(A) = A(A)/J(N).

Assume that the g-module L(A) is finite dimensional, and write A = Y| Ai€;.
Since gg = gl(n), the gg-dominance integral condition imposes a necessary condi-
tion on A: A; —Aiy1 € Z, forall 1 <i < n— 1. However, this condition on A is not
sufficient for L(A) to be finite dimensional, as we see in the following lemma.



54 2. Finite-dimensional modules

Lemma 2.17. Let g = q(2) and A = me, +me, € by with m # 0. Then L(X) is

infinite dimensional.

Proof. Recall the notations E, ],E, j» etc. from Sections 1.1.4 and 1.2.6. Then E12,
E»y, and H) — H, = E1; — E» form a standard s[(2)-triple s. Take a highest weight
vector vy, in L(k). For A = me; + me,, we have

Epvy = 0= (H, — Hy)v,

To prove the lemma, it suffices to show that Ey vy, # 0 in L(A). Indeed, by the
5[(2) representation theory, E; v # O implies that the s-submodule generated by
vy, must be the infinite-dimensional Verma module of zero highest weight.

To that end, recalling H; = E;; + E;;, we compute that

i’

EnEynvy = EnEpvy+ (H, —Hy)vy,
= (H, —Hy)wn,

and (H; — Ha)*v), = (E11 + Ex)vy, = 2mvy, # 0. Hence, we have (H; — Hy)v) # 0
and E» vy # 0. This proves the lemma. O

Theorem 2.18. The highest weight irreducible q(n)-module L(\) is finite dimen-
sional if and only if A = X1 | A;€; satisfies the conditions (i)-(ii):
WD) A —Aipy €Zy; (1) Aj = Ajyq implies that h; =0, for1<i<n-—1.

Proof. For L()) to be finite dimensional, A = Y| A;€; must satisfy the usual domi-
nance integral condition for q(n); = gl(n), which is Condition (i). Now A also must
satisfy Condition (ii) by applying Lemma 2.17 to various standard subalgebras of
q(n) that are isomorphic to q(2). This proves the “only if” part.

Assume that A satisfies Conditions (i)-(ii), and assume in addition that A; ¢ Z.
This implies that A; # 0, for all i, and A; > A4y, for j=1,...,n—1. We want
to prove that L(A) is finite dimensional. Write ge¢ = n; + be +ng for the standard
triangular decomposition of gg, for € € Z,. The Verma g-module A(A), regarded as
a gg-module, has a gz-Verma flag, and we have

chA(L) = 2D/l ey (Indg“ i C18 A(n;)) :

where | | for a real number r denotes the largest integer no greater than r. As in the
proof of Proposition 2.5, we apply the Bernstein functor £y and its derived functor
L; (with g5 = gl(n)) to A(L) and compute the corresponding Euler characteristic
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(recall @7 and @y are identical copies of the root system for gl(n)):

Y (—1)chL; (A(L)) =2l VIS (—1)iehg; (maﬁ{r +CMgA(n;))
i>0 i>0
Swew (— 1>€(W)W (eM-p@ Hocebi* (1+ e—oc))

H(xe(ba' (ea/z _ efoc/Z)

1 —Q
Hose@ (I+e™) y (=1)f0) ),
Hocecbg( —e %) S
Since the highest weight appearing in this last expression is clearly A and the Euler

characteristic is a virtual character of finite-dimensional g-modules (see the proof
of Proposition 2.5), L(A) is a finite-dimensional module.

ol )2

_2L (n+1)/2]

Now suppose that A satisfies Conditions (i)-(ii) of the theorem and in addi-
tion that A; € Z for each i. We write A = (Aq,...,A,0,...,0,A,...,A,) such
that A; > -+ > A >0>X; > --- > A,. Denote AT = (Aq,...,A,0,...,0) and

~=(0,...,0,7;,...,A;). By Theorem 3.49 on Sergeev duality in Chapter 3, L(u)
is finite dimensional for u = ¥; u;€; corresponding to a strict partition (u1, ..., u,).
Then, the dual module L(u)* =2 L(y*) is finite dimensional, where we have denoted
p* = =" pns1-i€i (see Exercise 2.18). It follows that both L(A*) and L(A™)
are finite dimensional. Hence, as a quotient of the finite-dimensional g-module
L(AT)®L(A™), L(A) must be finite dimensional. O

2.2. Harish-Chandra homomorphism and linkage

In this section, we study the center of the universal enveloping algebra U(g) when
g is a basic Lie superalgebra, in particular of type gl and osp. The image of
the Harish-Chandra homomorphism is described with the help of supersymmet-
ric functions (see Appendix A). Then, we provide a characterization of when two
central characters are equal and hence obtain a linkage principle for composition
factors of a Verma module. The finite-dimensional typical irreducible representa-
tions of g are classified, and a Weyl-type character formula for these modules is
obtained.

2.2.1. Supersymmetrization. Let g be a finite-dimensional Lie superalgebra. De-
note by Z(g) = Z(g)s @ Z(g)y the center of the enveloping superalgebra U(g),
where

Z(g)i={zeU(g)i|za= (—1)*az,Ya € gy fork € Zo}, i€ Z,.

Recall 8(g) denotes the symmetric superalgebra of g. As a straightforward super
generalization of a standard construction for Lie algebras (cf. Carter [18, Proposi-
tion 11.4]), we may define a supersymmetrization map

Y:8(9)—U(g)
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and show that it is a g-module isomorphism. When restricting to the g-invariants,
we have the following.

Proposition 2.19. The supersymmetrization map y: 8(g)—U (g) induces a linear
isomorphismvy: 8(9)% — Z(g).

Given a finite-dimensional representation (,V) of a Lie superalgebra g, we
denote its supercharacter by schV. That is,

schV = ) sdim(V,)e*,
ueh”
where we recall from Section 1.1.1 that sdimW = dimW; — dimW; stands for the
superdimension of a vector superspace W = Wy & Wj. If we regard e as the Euler
number, a formal expansion of e gives us

oo

1 :
[schV](h) = ;) str [n(h)], Vheg.
=
A straightforward super generalization of the arguments for Lie algebras (see Carter
[18, pp. 212-3]) shows that x ~s str [n(x)i] defines a g-invariant polynomial func-
tion on g. From this we conclude the following.

Proposition 2.20. Let g be a basic Lie superalgebra with Cartan subalgebra b). Let
(7,V) be a finite-dimensional g-module. Then the polynomial functions str [Tt(h)i]
on b, for i > 0, can be identified with the homogeneous components of the super-
character of m, and they arise as restrictions of g-invariant polynomial functions
on g.

2.2.2. Central characters. In this subsection, we let g be a basic Lie superalge-
bra, and we let f) be its Cartan subalgebra.

Recall that g is equipped with an even non-degenerate invariant supersymmet-
ric bilinear form (see Section 1.2.2). Furthermore, the bilinear form (-,-) on g
allows us to identify g with its dual g* and b with h* so that we have correspond-
ing isomorphisms 8(g)? =2 8(g*)?® and S(h) = S(h*). Via such identifications, the
restriction map 8(g*) — S(b*) and the induced map

2.5) n:8(g) — S(b)

are homomorphisms of algebras.

Letg=n" @bh®n" be a triangular decomposition. By the PBW Theorem 1.36,
we have U(g) =U(h)® (n"U(g) + U(g)n"), and we denote by ¢ : U(g) — U(h)
the projection associated to this direct sum decomposition. Since [f),ni] C nt,
by considering adh(z) = O for any element z € Z(g), we conclude that z affords a
unique expression of the form

(2.6) z2=h,+ Y .n hin},  for h,,h; € U(h), nt € n*U(n?).
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Hence Z(g) consists of only even elements. The restriction of ¢ to Z(g), denoted
again by ¢, defines an algebra homomorphism from Z(g) to U(h) that sends z to
k..

As usual, we freely identify S(h) with the algebra of polynomial functions on
h*. Extending the standard pairing (-,-) : h* x h — C, we can make sense of (A, p)
for A € h* and p € S(h) by regarding it as the value at A of the polynomial function
pon b*. For A € h*, define a linear map

x.:Z(g) — C
x.(2) =, 0(2)), VzeZ(g).

Lemma 2.21. Let g be a basic Lie superalgebra. An element 7 € Z(g) acts as the
scalar ). (z) on any highest weight g-module V (A) of highest weight \.

2.7)

Proof. Our proof here is phrased so that it makes sense for q(n) later on as well.

Let z € Z(g). The highest weight space V() is an irreducible h-module,
which is one-dimensional for basic g (but may fail to be one-dimensional in the
q(n) case). The even element z commutes with b, and hence by Schur’s Lemma, z
acts as a scalar §(z) on V(A);. Now let vy, be a highest weight vector of V(A), and
write an arbitrary vector u € V(L) as u = xv) forx € U(h+n"). Since z is central,
we have zu = xzvy = §(z)u. It follows by (2.6) that

vy, = (h, +Zn,-_hin;“)\’x = (A h)vy =12
Hence &(z) = %».(z). The lemma is proved. O

Therefore, %, : Z(g) — C in (2.7) defines a one-dimensional representation of
Z(g), which will be called the central character associated to a highest weight A.

2.2.3. Harish-Chandra homomorphism for basic Lie superalgebras. In this
subsection, we assume that g is a basic Lie superalgebra.

Let ®* be a positive system in the root system @ for g. Recall the Weyl vector
p from (1.35). Regarding S(h) as the algebra of polynomial functions on h*, we
define an automorphism T of the algebra S(h) by

W) = F(h—p), VfES(H) andAe b,
We then define the Harish-Chandra homomorphism to be the composition
b =10:Z(g) — S(h).
The non-degenerate invariant bilinear form (-, -) on b induces a W-equivariant alge-
bra isomorphism 6 : S(h) — S(h*) and hence an isomorphism 6 : S()¥ — S(h*)V.
By composition we obtain an algebra homomorphism
br. = O : Z(g) — S(b").

Proposition 2.22. Let g be a basic Lie superalgebra. We have
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) = Xow(r+p)—pr forallwe W and A € h*.

(2) &(Z(g)) < S(h)" and x,(Z(g)) < S(H™)".
Proof. The character of the Verma module A(u) of highest weight u € h* is given
by chA(u) = e**PD~! where

_ Mpeo; (P12 —eP/2)

D= .
Hocecbf(ea/z‘*'e_a/z)

Since the character of a module is equal to the sum of the characters of its
composition factors, we have

(2.8) chA(A) = Y bachL(y),
u

where b, € Z, and by), = 1. Since A(A) is a highest weight module, the s
in the summation can be assumed to satisfy A — y € Y e+ Z4 0 and also ), =
Xu by Lemma 2.21. We choose a total order > on the set A — ¥, Z, o with the
property that v > uif v —u € ¥ ycq+ Z 0. Then the ordered sets {chA(u)},, > and
{chL(u)}, > are two ordered bases for the same space. Now (2.8) says that the
matrix expressing {chA(u)}, > in terms of {chL(u)}, > is upper triangular with 1
along the diagonal, and hence we have

chL(A) = ¥ aachA(y),
u

where a,; € Z with ayy = 1, and

(2.9) ap =OunlessA—pe Y Zipoand ) =Xy
acdt
Thus
(2.10) DchL(X) =Y apet .
u

Assume for now that A € b* is chosen so that the irreducible g-module L(A)
is finite dimensional. Then L(}) is a semisimple gg-module, and so chL(A) is W-
invariant. On the other hand, D is W-anti-invariant by Theorem 1.18(4). Thus the
right-hand side of (2.10) is W-anti-invariant, and hence can be written as
(2.11) > an Y, (1) ekt

ueX wew

where X consists of Qg—dominant integral weights such that a, # 0. We compute
that a,,(y1p)-px = Fay, = £1, and hence by (2.9) we have y = Xw(h+p)—p» for all
weWw.

Now Part (1) of the proposition as a polynomial identity on A € h* follows
from the following claim.

Claim. S := {A € b* | L()) is finite dimensional} is Zariski dense in h*.
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Let us verify the claim. Given a @g-dominant integral weight u € b*, the
induced module IndgﬁLO (u) is finite dimensional and has a highest weight p1+2pj.
It is clear that the set of such weights u+2pj associated to all Cbg—dominant integral
1 € h* (which is a subset of S) is Zariski dense in h*. Hence the claim follows.

By (1), we have that (A+p,k(z)) = (W(A+p),ix(z)), forall w € W and z €
Z(g). Thus k(z) € S(h)", and equivalently, k,(Z(g)) C S(b*)" by definition of
Ix,.. This proves (2). U

By Proposition 2.22, we have
(2.12) be:Z(g) —SMY, K, =6k:Z(g) — SO,
and we further define a homomorphism (see (2.5) for n)

(2.13) N« =0 : 8(g)? — S(h").

In the remainder of this section, we shall strengthen Proposition 2.22 for g of
type gl and osp by describing I, (Z(g)) precisely.

2.2.4. Invariant polynomials for gl and osp. Suppose that g is of type gl or osp.
The goal of this subsection is to establish Proposition 2.23 which partially describes
the image Im(m,) via supersymmetric polynomials; see Appendix A.2.1. (The
word “partially” can and will be removed subsequently.) The description of this
image plays a key role in the study of the Harish-Chandra homomorphism later on.

Associated to a positive system @7, we have the subset d—);r of positive isotropic
odd roots defined in (1.34). Introduce the following element

(2.14) P:= [] aes@).

acdf
Below we shall treat g = gl(m|n), spo(2m|2n+ 1), and spo(2m|2n) case-by-case.

Invariant polynomials for g = gl(m|n). Recall that the Weyl group W for
g = gl(m|n) is W = &,, X &,,, which is by definition the same as the Weyl group
of its even subalgebra gl(m) @ gl(n),. Applying Proposition 2.20 to the natural
representation (7,V) of g = gl(m|n) and recalling 1. from (2.13), we see that

(2.15) Oppi= 2.0 — Y e5cIm(n,), VkeZ,.
i=1 j=1

Here and further, we shall identify S(h*) = C[9, €], where we set
8={8,....0n}, e={e,....&}.

Hence an element of S(h*)¥ is precisely a polynomial that is symmetric in & and
symmetric in €. Recalling from A.2.1 the definition of supersymmetric polynomi-
als, we introduce the following subalgebra of S(h*)%:

(2.16) N (h*)xp = {supersymmetric polynomials in variables §,€}.
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By (A.33), the polynomials {c}, , | k € Z, } generate the algebra S(h* )oup- Thus
we have S(h* )4, C Im(n.).

The element P defined in (2.14), up to a possible sign that depends on the
choice of positive systems for gl(m|n), can be computed to be

P= [I @i-g).

1<i<m,1<j<n

It follows by (A.30) that fP € S(h* )Sup for any f € S(h*)V.

Invariant polynomials for g = spo(2m|2n+ 1). Recall the Weyl group W for
g = spo(2m|2n + 1), which is by definition the same as for sp(2m) ®so(2n+1), is

(2.17) Ws := (Z5 x 6,,) X (Z5 1 S,),

and hence an element f € S(h*)" = C[5,¢]V is exactly a polynomial that is sym-
metric among 8?’s and symmetric among e?’s. We introduce the following subal-
gebra of S(h*)W

(2.18) S(h* )Sup {supersymmetric polynomials in 8-2,8§, 1<i<m,1<j<n}.

Applying Proposition 2.20 to the natural representation of spo(2m|2n+-1), we
have that

=Y 8-y e eImn,), VkeZ,.

Hence we have S(h* )Sup C Im(n,), since 62, for k > 0 generate S(h* )Sup by (A.33).

In this case, we calculate that @;r = {8,- +e;|1<i<m1 < j<n} forthe
standard positive system @, and hence, P in (2.14) is given by

P= JI @G-e)@+e)= [JI &F-¢).

I<ism,1<j<n 1<i<m,1<j<n

(For other positive systems, P might differ from the above formula by an irrelevant
sign.) By (A.30), we have that fP € S(b*)J;, for any f € S(b* w.

Invariant polynomials for g = spo(2m|2n). We regard g = spo(2m|2n) as a
subalgebra of spo(2m|2n + 1) with the same Cartan subalgebra h. We continue
to denote by Wi the Weyl group of spo(2m|2n + 1) and then identify the Weyl
group W of g = spo(2m|2n) with a subgroup of Wy of index 2. By the same con-
sideration as for g = spo(2m|2n + 1) above using Proposition 2.20, we conclude
that the image Im(m..) contains S(h* )Sup, which consists of all the supersymmetric

polynomials in 87, ],1<z<m 1<j<n
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Noting now that (I)%L ={8;x¢;|1<i<m,1< j<n} for the standard positive
system @+, we set
DT - H (eoc/z _e—a/Z)
acd}
— H(eS[/Z—Ej/Z _ 6—51/24-8]/2)(65,'/2-{-8]‘/2 _ 678,‘/2—8//2)‘
iJ

For a homogeneous polynomial g € Z[8,€]"s, the expression
n
Q= H(eef —e ). g(ed —e ¥ L eIt _mE g —e &)
j=1

has €1€5---€,8(81,...,0,:€1,...,€,) as its homogeneous term of lowest degree.
Also observe that D has P as its lowest degree term, where the element P in (2.14)
associated to the standard positive system @ of spo(2m|2n) is given by
p= JI &-¢).
1<i<m,1<j<n

(For other positive systems, P might differ by a sign from the above formula.)
Since Q is an integral polynomial in e and e*® that is W-invariant, Q is actually
a virtual gg-character. By Remark 2.6, D;Q is a virtual supercharacter of finite-
dimensional g-modules. Hence every homogeneous term of D; Q lies in Im(1},) by
Proposition 2.20, and in particular so does the lowest degree term of D; Q, i.e.,

€1€2---€,Pg € Im(n,).

Introduce the following subspace S(b*)gp (which can be easily shown to be a
subalgebra) of S(h*)¥ = C[8,e]V:
(2.19) S(h*)ap = S(b") e @D C[8,e]"e e, - &, P
Summarizing the above discussions, we have shown that S(b*)%p C Im(n.).

It is a standard fact about the classical Weyl group W that any element f €
S(h*)" =CJ3,¢]" can be written as

f=h+eg &g,

where h,g € C[3,€]"5. Thus, we have hP € S(h*)%, and €€, ---e,gP € S(h*)¥ |
and hence, fP € S(h*)¥

sup*

Summarizing all three cases, we have established the following.
Proposition 2.23. Let g be either gl(m|n), spo(2m|2n+ 1), or spo(2m|2n), and let
W be its Weyl group. Then, we have
(D) PesHH)Y.
(2) fPeS(h*)k, forall f € S(h*)Y.
(3) S(h*)&p C Im(n,).
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2.2.5. Image of Harish-Chandra homomorphism for gl and osp. Let g be a
basic Lie superalgebra for now. We have a non-degenerate invariant bilinear form
(,-) on g, b, and h*. We recall here that (o, o) = 0, for any isotropic odd root
o. The non-degenerate form (-, -) induces an isomorphism b = h*. Also recall the
central characters y; from (2.7).

Lemma 2.24. Let g be a basic Lie superalgebra. Let 0. be an isotropic odd root
such that (A+p,0) = 0. Then we have Y, = Xy ira0 for all t € C.

Proof. Fix a positive system ®*. We may assume that the isotropic odd root o €
@ (otherwise, use —o to replace o).

First suppose that ot is an isotropic simple root in ®*. Then (p, o) = 3 (at, ) =
0, and hence (A,a) = 0 by assumption. Let vy be a highest weight vector in the
Verma module A(A). Then,

eafovy = [ea,fot]vl = hgv) = (7% 0‘)"7» =0.

Also, we have ey fyv) = 0 for simple roots ¥ # o by weight considerations. Hence,
favy, is a singular vector in A(A). This gives rise to a nontrivial g-module homo-
morphism A(A — o) — A(A), whence ) _q = Xa-

Now suppose o is any isotropic root in @*. By Lemma 1.29, there exists
w € W such that B = w(a) is simple. Then (o, ) = (B, ) = 0 by the W-invariance
of (+,-). By Proposition 2.22, we have

Xh—a = Xwh—o+p)—p = Xao»

where we have denoted y := w(A+p) —p — BB and used w(a) = B. Now by the
W-invariance of (-,-) again, we compute that

(1+9.B) = (w(h+p).w(c) — (B.B) = (A+p.c) ~0=0.

Thus, we can apply the special case established in the preceding paragraph to the
weight g and simple root [3 to obtain that
Kr—a = Xu = Xpt+B = Xw(r+p)—p = Xk

where we have used Proposition 2.22 again in the last equality. This implies that
X = Xn—ro» fOT any ¢ € Z, and any isotropic odd root o with (A+p, o) = 0. Since
Z is Zariski dense in C, we conclude that the polynomial identity Xy = Y 1q
holds for all € C. OJ

Now we specialize to the type gl and osp.

Proposition 2.25. Let g be either gl(m|n), spo(2m|2n+ 1), or spo(2m|2n). Then
we have tx,(Z(g)) C S(b*)gip, where S(h*)%p is given in (2.16), (2.18), and (2.19).

Proof. Let us proceed case-by-case.
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First let us consider the case of g = gl(m|n). Assume that A+p = >, a;0; +
1 bje; satisfies (A +p, o) = 0 for some isotropic root 0. = 8; — €, which means
that a; = —b;. Let z € Z(g). Then by Lemma 2.24 we have

(A +p.ix(2)) =x0(2) = Xn-ra(2) = M=t +p,1x(2)), VreC.

This implies that the specialization fx, (z)|5,— ;= is independent of ¢, where we

recall from (2.12) that fx, = Of. In addition, we have I, (z) € S(h*)" by Proposi-
tion 2.22, whence I, (z) € S(b*)3,, by the definition (2.16).

The case for g = spo(2m|2n+ 1) is analogous. Let A € h* be such that (A +
p,0) = 0 for some isotropic root o, = d; &= €;. We show by the same argument
as above that the specialization I, (z)|s—z¢,~ is independent of 7. In addition, it
follows by Proposition 2.22 that Ix, (z) € S(h*)" for W = Wz (see (2.17)), which
means that fr, (z) is symmetric in 81.2 for all i and symmetric in e? for all j. Then
we conclude that fr, (z) € S( b*)gp by the definition (2.18).

Now suppose that g = spo(2m|2n). Let W be the Weyl group of g, which is
regarded as a subgroup of Wp of index 2 as usual. Given z € Z(g), we can write

b, (2) € S(h*)" as
b, (2) = f+e1 - Eag,  for f,g € S(h7)" = C[3,e%] 5.
Since X = X)_ro for any A and any isotropic root o = §; —€; with (A+p, ) =0,
the specialization Ix, (z)[5,—¢,—s = f1 + &1 is independent of ¢, where we denote
fr:=Fflomej=ts  &1i=1€1 €jo1€)41 Englo—e;=1-

As a polynomial of ¢, f; has even degree while g; has odd degree. Thus both f;
and g; must be independent of ¢. Hence, recalling (2.18), we must have that

f € S(h*)x}}n g|5i=€j:t =0.

Since the polynomial g is symmetric in 8%, ..., 82, and symmetric in €7, ... ,€2, we
conclude that g is divisible by (87 — 8:‘;), for all i and j, and hence divisible by
P =TJ; ;(8; — €3). Thus we have g = goP for some go € S(h*)We.

The inclusion I, (Z(g)) C S(h*)% now follows by the definition (2.19). U

sup

Theorem 2.26. Let g = gl(m|n), spo(2m|2n+ 1), or spo(2m|2n), and let W be its
Weyl group. Then we have

. (Z(g)) = Im(M.) = S(H*)sups
where S(h*)?{lp is defined in (2.16), (2.18), and (2.19), respectively.

Proof. By Propositions 2.23 and 2.25, we have a map I, : Z(g) — Im(n.) and
that Ix, (Z(g)) C S(h*)¥_ C Im(n.). So it suffices to show that k., (Z(g)) = Im(n.)

sup =
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in order to complete the proof. The commutative diagram (where gr denotes the
associated graded)

(2.20) erZ(g) £ 8(g)?

s

implies that grix, : grZ(g) — Im(n,) is surjective.
Now the surjectivity of the map k, : Z(g) — Im(n.) follows by a standard
filtered algebra argument. Indeed, consider fx, (Z(g)) and Im(n,) as filtered spaces:

We shall prove by induction on k& that ¥, (Z(g))x = Im(n. )z, for all k. Clearly we
have b, (Z(g))o = Im(n.)o. Now assume that k,(Z(g))r—1 = Im(N.)x_1. Let us
take a = M. (x) € Im(n, ), for x € 8(g)®. Then a = gr (fr,y)(x), and

b Y(x) —a € Im(N k-1 = b (Z(g) )1
Therefore, we conclude that a € k., (Z(g) ). O

Define the subalgebra S(b)y,, of S(h) to be the preimage of S (b*)%p under
the isomorphism 0 : S(h) — S(h*). Various maps in this section can now be put
together in the following diagram, which only becomes commutative when we pass
from Z(g) to its associated graded (note that the other algebras are already graded).

1

(221) Z(g) —— S(g)?

| A

S(6")%y 5 S(5)%,
Remark 2.27. The surjective homomorphism fx : Z(g) — S (f])swup is actually in-
jective as well, and hence all the homomorphisms in the diagram (2.21) are iso-
morphisms. Actually Sergeev [111, Corollary 1.1] showed that 1y : 8(g)? — S(h) is
injective, and the injectivity of fx follows from this by a filtered algebra argument.
Except for its intrinsic value, the injectivity does not seem to play any crucial role
in the representation theory of g.

The following corollary is immediate from Proposition 2.23 and Theorem 2.26,
and will be used later on.

Corollary 2.28. Let g be one of the Lie superalgebras gl(m|n), spo(2m|2n+ 1), or
spo(2m|2n). Then for any f € S(h)V, we have fP € i (Z(g)).
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2.2.6. Linkage for gl and osp. In this subsection, we let g denote the Lie su-
peralgebra gl(m|n), spo(2m|2n), or spo(2m|2n+ 1). Using the description of the
images of Harish-Chandra homomorphisms, we obtain a necessary and sufficient
condition for two central characters of g to be equal.

Let b be its standard Cartan subalgebra of diagonal matrices. Let {9;,€;]1 <
i <m,1 < j<n} be the standard basis of h*. We fix a positive system Ot of the
root system @ for g. Recall the subset @7 C @ defined in (1.34).

Definition 2.29. The degree of atypicality of an element A € b*, denoted by #), is
the maximum number of mutually orthogonal roots o € ®7 such that (A +p, o) =
0. An element A € h* is said to be typical (relative to @) if #A = 0 and is atypical
otherwise.

We define a relation ~ on h* by declaring
kN“’ for}\'h"leh*’

if there exist mutually orthogonal isotropic odd roots o, 03, . . ., Oy, complex num-
bers ci,¢2,...,cp, and an element w € W satisfying that

‘
(2.22) p+p:w<l+p—2caaa), (A+p,0;)=0,j=1,...,¢L
a=1

The weights A and g are said to be linked if A ~ p. It follows from Theorem 2.30
below that linkage is an equivalence relation.

Theorem 2.30. Let g be gl(m|n), spo(2m|2n), or spo(2m|2n+ 1), and let b be its
Cartan subalgebra. Let h,u € b*. Then ) is linked to p if and only if () = Y

Proof. Assume first that A ~ gy, i.e., (2.22), holds. Since the o;’s are orthogonal to
one another, the second condition in (2.22) implies that we can repeatedly apply
Lemma 2.24 to conclude that

X?» = X?»—clocl = x7\.-c‘10.1——62(12 = .= X}L_Zﬁ:l a0, "

Since u+p = w(h+p — T4, c.0,) by (2.22) again, it follows by Proposition 2.22
that Xr—3!_, coog = K> whence X, = Xu-

Now assume that () = x,. Let us write A = 3" ; A;6; + 2iovj€j and p =
S mid + Xy mje;. Recall from Theorem 2.26 that, for g = gl(m|n), the poly-
nomials o}, , given in (2.15) lie in b, (Z(g)), for all k € Z,., while in the case of
g = spo(2m|2n) or spo(2m|2n+ 1), the polynomials ok, , lie in fx, (Z(g)), for all
even k € Z,. Let z},, be an element in Z(g) with f, (25, ,) = of,,, where k is
assumed to be even for type spo. Then for g in all three cases,

m n

x%(zfn,n) = Z O"+p78i)k - z 0"+ p7£j>k'

i=1 Jj=1
We now proceed case-by-case.
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(1) First, suppose that g = gl(m|n). Then, for all k > 0, we have

X}»(an,n) = XH(an,n)'
This implies that, for all £ > 0,

> (A+p,8) - Z (A +p, ;)" Z (u+p,8 Z(;u+p g;)t
i=1 i=1

j=1
Using exponential generating functions in a formal 1ndeterm1nate t, this is equiva-
lent to

(2.23) Y ettpdie 2 oAMpe))t 2 P8t Y elrtpe)

j=1

=

—_

Pick a maximal number of pairs (ig, ja) such that (A +p,d;,) = (A+p,€;,) and
all i, and all j, are distinct, for 1 < a < £. Similarly, pick a maximal number of
pairs (i}, j;) such that (u+ p,8;) = (u+p,e;) and all i and all j, are distinct,
for 1 <b < r. Note that the functions e are linearly independent for distinct
a. In the identity obtained from (2.23) by canceling the terms corresponding to
all the pairs (i4, ja) and (i}, j;,), the survived (A + p,d;)’s must match bijectively
with the survived (u+p,8;)’s, while the (A +p,€;)’s and (u+ p,€;)’s must match
bijectively. So £ =r. Now we can find a pair of permutations w = (G},0;) €
& x &, that extends the above bijections such that w™! (u+p) — A —p is a linear
combination of these mutually orthogonal isotropic odd roots §;, — ¢ Jj.» and hence
A~
(2) Now suppose that g = spo(2m|2n+ 1). Then, for all even k > 0, we have

Xl(diz,n) = X#(Z]r{n,n)'
This is equivalent to the following generating function identity:

(2.24) i SOP8 Z SMpes P _ i P8 Z PPt
i=1 j=1 i=1 j=1

Pick a maximal number of pairs (i4, ja) such that (A +p,8;,) = sq(A+p,g;,) for
some sign s, € {£} and all i, and all j, are distinct, for 1 < a < /. Similarly,
pick a maximal number of pairs (i}, j,) such that (u+ p,8; ) (u+p,e ) and
all 7, and all j, are distinct, for 1 < b < r. In the identity obtalned from (2 24) by
canceling the terms corresponding to all the pairs (i4, ja) and (i}, j; ), the survived
(A+p,8;)’s must match bijectively with the survived (u+p, 8;)’s up to signs, while
the (A+p,€;)’s and (u+p,€;)’s must match bijectively up to signs. So ¢ = r. Then,
there exists a pair of signed permutations w = (w1, w2) € W = Wp = (Z7 x G,,) x
(Z’z’ x &, ) that extends the above bijections such that

(2.25) w (u+p) — (Ap) = an io —Sa€j,), Cca€C.

This implies that A ~ p.
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(3) Finally, consider the case when g = spo(2m|2n). For all even k > 0, we have
x;\(z'fm,,) = Xy(zlr‘nvn). This is equivalent again to the generating function identity
(2.24). Following the case of spo(2m|2n+ 1), we make a similar choice of pairs
(igs ja), for 1 < a < 4, and (i}, j;,), for 1 < b < £, which leads to a choice of w =
(w1,w7) € Wy and a sequence of isotropic odd roots satisfying (2.25). But we are
not done yet, as the Weyl group W of spo(2m|2n) is not Ws, but a subgroup of Ws
of index 2. We will finish the job by considering two cases separately depending
on whether A is typical or atypical.

Assume first that A is atypical (and hence so is u), and we have ¢ > 1. If
w = (wy,wy) € W, we are done. Otherwise, let T; € W be the element changing
the sign for §;, while fixing all €; and §; (i # i1), and let 6; € W be the element
changing the sign for €;, while fixing all §; and €; (j # j1). Note that T, € W and
o1w™! € W, and 1} = 67 = 1. By the definition of the pair (i1, j;) and using (2.25),
we have

now ™ (u+p)— (A+p)

=101 (W™ (u+p)— (A+p)) + (o1 (A +p) — (A +p))
¢
= '—(2(7\,-%‘[),8,‘1) +cl)(8i1 _slsjl) + z ca(sia —SaSja).

a=2
Hence we have obtained a set of mutually orthogonal isotropic odd roots, a corre-
sponding set of complex numbers, and the Weyl group element woT; € W satis-
fying (2.22). Thus, A ~ .
By the description of the center Z(g) in Theorem 2.26 and (2.19), we have
additional elements in Z(g) to use. In particular, we have

(2.26) (e162-+-€,PO (M +p)) = (e182- €, P07 (u+p)).

Assume now that A is typical (and so is p), and hence £ = 0. Then the (m+n)-
tuple ((A+p,8;)%, (A+p,€5)?) ; j coincides with (u+p,8)% (u+ p,ej)z)w., up to
a permutation in &, X &,. Recall P =T, ;(& — 83) Note that (P,6~!(A+p)) =
(PO 1 (u+p)) # 0, since A and u are typical. By canceling this nonzero factor in
(2.26), we obtain that

(2.27) (e182-€0,07 (A +p)) = (182 -€,,07 (u+p)).

Note that in this case (2.22) reads that u+ p = w(A + p), where we recall w =
(wi,w2). If (e;,A+p) # O for all i, we conclude from (2.27) that w, changes the
signs for an even number of €;’s, and hence w = (w;,w7) lies in the Weyl group
W. If (g;,L+p) = O for some i and w & W, then w' = (w1, w,0) € W satisfies that
u+p =w(A+p), where ¢ denotes the sign change at €;. Hence A ~ y in this case
as well.

The theorem is proved. O
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Theorem 2.30 has the following implication, which will be referred to as the
linkage principle for Lie superalgebra g of type gl and osp.

Proposition 2.31. Let g be a Lie superalgebra of type gl and osp. For a com-
position factor L(u) in a Verma module A(N) of g, p must satisfy the following
conditions: A\—p € Z,. @ and yu ~ \.

Corollary 2.32. If ) = X then the degrees of atypicality for h and u coincide.
Proof. This can be read off from the proof of Theorem 2.30. g

Corollary 2.33. A finite-dimensional spo(2m|1)-module is completely reducible.

Proof. Recall from Theorem 2.11 that the irreducible spo(2m|1)-module L(}) is
finite dimensional if and only if the sequence (A1, ...,A,,) associated to the highest
weight A = ¥ | A;§; is a partition. Let A and u be highest weights for two irre-
ducible finite-dimensional spo(2m|1)-modules. Then A and u are CD(?)L—dominant
integral, and hence A ~ u if and only if A = u. By Theorem 2.30 this implies that
X» = Xu if and only if A = u, and hence every finite-dimensional spo(2m|1)-module
is completely reducible. O

2.2.7. Typical finite-dimensional irreducible characters. In this subsection we
assume that g is of type gl or osp. As an application of the linkage principle, we
obtain a character formula for the typical finite-dimensional irreducible g-modules.

We fix a positive system ®@* of g and denote by g =n~ @ h@n™ the associated
triangular decomposition. Recall the subset @ C & defined in (1.34). Clearly,
A € b* is typical (cf. Definition 2.29) if and only if (A+p,a) # 0, for all o € oF.
Alternatively, A is typical if and only if (A+p, P") # 0, where P’ := 0! (P) € S(b)
in terms of P in (2.14). The following is a partial converse of Proposition 2.22 and
follows immediately from Theorem 2.30. Below we shall provide a second proof
based on the weaker Corollary 2.28.

Lemma 2.34. Let g be of type gl or osp. Let A,u € h* with A typical. Suppose that
Xr = Xy Then, there exists w € W such that w(h+p) = u+p, and u is also typical.

Proof. Suppose that there is no w € W such that w(A+ p) = u+ p. Then we have
W(A+p)NW (u+p) = 0. We can choose an element f € S(h) that takes the value
1 on the finite set W(A +p) and O on the finite set W(u+ p). Averaging over
W if necessary, we may also assume that f € S(h)". Now by Corollary 2.28 we
have 0(f)P € Ix.(Z(g)). Thus there exists z € Z(g) so that 8(f)P = k,(z) and
equivalently fP’ = Ix(z). Hence,

x(2) = A+p,5(2)) = A+p, fP) = (A+p, /) (A+p,P) = (A+p,P) #0.
Similarly, we have

Xu(2) = (u+p,i(2)) = (w+p, fP) = (u+p,f){u+p,P)=0.
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This contradicts ), = . Hence there exists w € W such that w(A+p) = u+p.

It follows by definition that ®; = & U —® is W-invariant. Hence, for any
o € @, we have

(u+p,0) = (wh+p),0) = (A+p,w 'a) #0.
Therefore, u is typical. O
Recall that the finite-dimensional irreducible g-modules have been classified

in terms of highest weights in Section 2.1.

Theorem 2.35. Let g be of type gl or osp. Let A € h* be a typical weight such that
L(\) is a finite-dimensional irreducible representation of g. Then

Haed){(l +e %)
HBeth(l _e_ﬁ) weW

chL()) —1)W) v (Atp)—p,

Proof. Recall from the proof of Proposition 2.22 that

(2.28) DchL(A) = z a, z (_l)é(w)ew(lﬂrp)’
neX wew

where X consists of CIJ(T)L—dominant weights such that a,, # 0.

Since A is typical and y, =, for all 4 € X, it follows by Lemma 2.34 that
X = {A}. Recalling that a;; = 1, we can rewrite (2.28) as

DchL(A) = 3 (—1)fWew(+p),

wew

from which the theorem follows. 0
Example 2.36. Let g =gl(1]1). Then A = ad+ be is typical if and only if a+b # 0.

Example 2.37. The character formula in Theorem 2.35 applies to all irreducible
finite-dimensional spo(2m|1)-modules, as their highest weights are always typical.

2.3. Harish-Chandra homomorphism and linkage for q(n)

This section is the counterpart of Section 2.2 for the queer Lie superalgebra q(n).
The image of the Harish-Chandra homomorphism for q(n) is described with the
help of symmetric functions such as Schur Q-functions (see Appendix A). Then,
we obtain a linkage principle on composition factors of a Verma module of q(n).
The finite-dimensional typical irreducible representations of q(n) are classified,
and a Weyl-type character formula for these modules is obtained.
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2.3.1. Central characters for q(n). In this section, let g = q(n) be the queer Lie
superalgebra, and let b = b5 + h7 be its (nonabelian) Cartan subalgebra. As this
subsection is parallel to that of the basic Lie superalgebra case in Section 2.2.2, we
will be brietf and only point out the differences from therein.

Recall that g is equipped with a non-degenerate odd invariant supersymmetric
bilinear form (-, -), which allows us to identify g with its dual g*, b with h*, and
hp with bi. Via such identifications, the restriction map 8(g*) — 8(h*) and the
induced map n : 8(g) — 8(h) are homomorphisms of algebras. Letg =n~" G h @
n™ be a triangular decomposition. As before, we have a projection ¢ : U(g) —
U(b), and any element z € Z(g) affords a unique expression of the form (2.6).
Moreover, it follows from ad h(z) = O that h, € U(hg). Hence Z(g) consists of only
even elements. The restriction of ¢ to Z(g), also denoted by ¢, defines an algebra
homomorphism from Z(g) to U (hg), which sends z to k. For A € b7, define a linear
map X : Z(g) — C by xa(z) = (A, 6(2)).

The proof of Lemma 2.21 also works for the following lemma.

Lemma 2.38. Let g = q(n). An element z € Z(g) acts as the scalar ¥ (z) on any
highest weight g-module V (L) of highest weight M.

Therefore y : Z(g) — C defines a one-dimensional Z(g)-module, which will
be called the central character of g = q(n) associated to the highest weight A.

2.3.2. Harish-Chandra homomorphism for q(n). Let g=n" @& hdn™ be the
standard triangular decomposition. Bearing in mind that p = 0 for q(n), we call

br=0:Z(g) — S(by)
the Harish-Chandra homomorphism for q(n).

Recall the elements H;,H;, E;;,E;; in q(n) etc. from Sections 1.1.4 and 1.2.6.
A singular vector in the Verma module A(A) of q(n) is a nonzero vector v such
that E;jy=E;jv=0,for1 <i< j<n.

Lemma 2.39. Let g = q(n). Let A € by be such that ; —Aiy1 = k € N for some
1<i<n-—1. Then

u:= Ei,iHEﬁ]lex
is a singular vector in the Verma module A(N) of weight s;(L) = A —k(€; — €;4+1).
Proof. We have the following identities in A(}), for A € bz and m > 0:
(2.29) (I_{, — HH—] )'Evir:t—uvl = Ef&—l,i(ﬁi — HH—] )V;L - ZmF,-H,,-Eﬁ_[‘liv;\,
(230) F,‘J.;.]E{Tl_}iv;\‘ = (m + I)EZfl—l,iU_{i — I_{H—l )v;\' — m(m + I)Fi+l,igﬁ—17]jvk'
Indeed, (2.29) can be directly verified by induction on m, and then (2.30) follows
by induction on m using (2.29).
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It follows by (2.30) for m = k that u # 0. Now note that
Eiiu= (Ein ) EL v =0,
Ei,i+1 U= Ei,i+lgi,i+1gff1],,-vx =0,

by a standard sl(2)-calculation. By weight considerations in A(}), we must have

Ejjpu=Ejju=0,  j#i
Thus, we conclude that u is a singular vector in A(A), and the weight of u is clearly
equal to s;(A) = A — k(& —€i41). O

Recall that the Weyl group W for g = q(n) is the symmetric group &,,.

Proposition 2.40. Let g = q(n). We have Y3 = Xw(n), for allw € W and A€ b
Also, we have t(Z(g)) C S(hg)".

Proof. By Lemma 2.39, we have a nonzero homomorphism A(s;(A)) — A(%), for
A € b with A; — Ai+1 € N, which implies by Lemma 2.21 that 3, = Xs,)- Hence,
A = Kow(n)» for all w € W and for all integral weights A =31, g satisfying Ay >
... > A,. Since the set of such weights is Zariski dense in b, it follows that X =
%w() for all w € W and A € b7 Thatis, (A, be(2)) = (w(L), B (z)), for all z € Z(g),
we W and A € h;. Hence, we conclude that te(Z(g)) € S(hg)7, thanks to the
W-invariance of (-,-). O

Remark 2.41. One can imitate the proof of Proposition 2.22 to give an alternative
proof of Proposition 2.40, bypassing Lemma 2.39. On the other hand, a second
proof of Proposition 2.22 can be given in the spirit of the proof of Proposition 2.40
with some extra work involving odd reflections, as the Weyl group W is not gener-
ated by the even simple reflections.

The odd non-degenerate invariant bilinear form (-,-) on b induces an (even)
isomorphism by = [Th*, where IT denotes the parity reversing functor from Sec-
tion 1.1.1. This in turn induces (even) isomorphisms 8 : S(hg) — S(ITh}) and
0:5(hg)" — S(Ih1)". We further define tr, = 6l : Z(g) — S(T1p3)" and M, =
on : S(g)® — S(I1h7).

Let €;,8,...,€, € [1h] be determined by
That is, O(H;) = &, for each i. Let (%, V) be the natural representation of g = q(n)
on the vector superspace C"I", We recall the odd trace operator otr : g — C from
(1.32). A straightforward super generalization of the arguments for Lie algebras as
given in Carter [18, pp. 212-213] shows that x — otr(n(x)*~"), for k € N, defines a

g-invariant homogeneous polynomial on g of degree k (note that otr(n(x)”‘) =0by
definition of the odd trace). Restricting to h; we obtain a homogeneous polynomial
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on ITh; of degree 2k — 1. Then a direct calculation shows that, for x € hrandk > 1,
otr( m(x) 2 1) equals the value at x of the polynomial

n
pu-1(8) = Y&, keN,

Recall that a ring I',, of symmetric functions in n variables & €1,8,...,&, is de-
fined in Appendix A.3. By (A.53), T, has a basis that consists of Schur Q-functions
Ov(€1,8,...,&,), for L € 8P, such that ¢ (A) < n (where 8P denotes the set of strict
partitions). By (A.45), the algebra I'yc := C®z T, is generated by the odd degree
power sums po;_1(€) for k > 1.

Summarizing the above discussions, we have established the following.

Proposition 2.42. Let g = q(n). We have T,,c C Im(n,).
We define
(2.31) P:= T (&+g)) es(m).

1<i< j<n
The following lemma is a reformulation of (A.59) in Appendix A.
Lemma 2.43. Let f € S(T1h%)Y. Then we have fP € Im(n. ).

Lemma 2.44. Assume that a weight ). € b satisfies that A = —\; 1y = k € C, for
somel<i<n-1.

(1) If k=0, then u := E,+1 V), for any highest weight vector vy_is a singular
vector in A(A) of weight . —¢; + ¢ .
(2) Ifk # 0, then there exists a highest weight vector vy, in the Verma module
A(A) such that (H; — Hiy1)vy, # 0 and (H; +Hiy )v;, = 0. Moreover,
wi=Ery(Hi—Hip1)vy — 2kEiy1,v),

is a singular vector in A(A) of weight . —¢€; + ¢, .

Proof. (1) Assume that k = 0. Note that H; and Hi.y act trivially on the highest
weight space Wy, of A(A), and hence H;vy = H;.v; = 0 for any highest weight
vector v). Then, E; i1 = (Hi—Hiy1)vy, = 0, and Eijyiu=(H;— —Hii)vy, =0.
Also it follows from weight consideration that E; ji+iu =E;jjyu=0 for j+#i.
Hence, u is a singular vector.

(2) Assume that k # 0. We again identify the highest weight space of the Verma
module A(A) as the h-module W, (see Section 2.1.6 and also see Lemma 1.42). We
compute that

MH;i £ Hip 1, Hi £ Hip 1)) = 2M(H;i+ Hiy ) = A+ Aipg = 0
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Hence, by Lemma 1.42, there exists a highest weight vector v, € W), such that
wy, := (H; —Hiy1)vy #0and (H; + Hiy1)vy, = 0. It follows that

(Hi+His1)wy, = MH; — Hiy1)va = 2kwy,,

(Hi—Hiy1)wy, =0.
We compute that

Eiii1Eip1wy = MH; — Hip1)wy, = 2kwy,,

iit1Ei1,wy = (Hi—Hiz1)wy, =0,

S|

Ez‘,i+1ii+1,ivx = (Hi —ﬁi+1)vx =W,
Eii1Eisiva=(Hi+Hiy1)v), =0.

It follows that I::i,,urlu = F,-J-Hu = 0. Also we have by weight consideration that
E;js1iu=Ej jyju=0for j #i. Hence, u s a singular vector in A(A) whose weight
is clearly equal to A — €; + €;+1. O

Lemma 245, Let A=Y} A€ € by Assume that Ai=—M\jforsome 1 <i# j<n.
Then, () = Yp_so for o =¢€;—€jand anyt € C.

Proof. We first claim that X3 = Xx-g;+e;- BY Proposition 2.40 we are reduced
to proving the claim when j =i+ 1, and the claim in this case follows by Lem-
mas 2.38 and 2.44. By a repeated application of the claim, we have () = X for
any t € Z, . Since Z. is Zariski dense in C, the lemma follows. O

The following theorem is the q(#)-counterpart of Theorem 2.26.

Theorem 2.46. Let g = q(n). Then ¥x,(Z(g)) = Im(n,) =T, c.

Proof. Let A = 3, A;&; be an integral weight. Let z € Z(g). By Proposition 2.40,
we know that Ix,(z) € § (Hb?)w. By unraveling the definition of ), we obtain by
Lemma 2.45 that fx, (z)|g,=—g,= is independent of 7. Then by the characterization

of I, given in (A.60), we have I, (z) € I, c. Together with Proposition 2.42, we
have shown that fx, (Z(g)) C I'c C Im(n.).

It remains to show that fr, (Z(g)) = Im(n,). This follows by the corresponding
identity on the associated graded and then a standard filtered algebra argument,
exactly as in the proof of Theorem 2.26. We leave the details to the interested
reader. g

We summarize various maps for the q(n) case in the following diagram, which
only becomes commutative when we pass from Z(g) to its associated graded (note
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that the other algebras are graded).

232) 2(5) —=— 8(g)"

| gl ]

S(1165)" —— S(b)"

Remark 2.47. Actually Ix and fx, are injective (see Sergeev [111]), and so we have
an isomorphism of algebras bx, : Z(g) — I, c. The injectivity of f, does not play
any role in the representation theory of q(#n) in the book.

2.3.3. Linkage for q(n). For a root o of the form &; — € j» define
G’ :=H;+Hj € by.
We define a relation on b
A~pu, for hu€ b,

if there exist a collection of roots o;, complex numbers c;, for 1 < i </, and an
element w € W such that

(2.33) ,u:w(l—éca(xa), (@) =0, (ra))=01<ij<¢
a=1

If A ~ pu, we say that A and u are linked. The following theorem is a q(n)-
counterpart of Theorem 2.30. It also implies that linkage for q(n) is an equivalence
relation.

Theorem 2.48. Let b = b5+ by be a Cartan subalgebra of q(n), and let L,y € b3,
Then M\ is linked to p if and only if ), = Y-

Proof. Assume first that A ~ u. By a repeated application of Lemma 2.45, the
second and third conditions in (2.33) for A ~ u imply that

Xl = X)\.—Cl(l] = XK—-CIOL]—CzOCz == XL—Zfl:l CqOlg*

Since = w(h— X:_; catty) by (2.33) again, it follows by Proposition 2.40 that
XAt cacta = Xirs whence X = Xu.

Now assume that x5 = . Write A = 37 A;€; and = Y7, pi€;. Let 20541 €
Z(g) such that & (z2k11) = pak+1, the (2k + 1)st power sum in Hj,...,H,. From
X (22k+1) = Xu(22¢+1) we obtain that (A, be(z2¢+1)) = (4, b (z2k+1)). Hence we have

n n
z;\/?k-l—] — zlu?k+1’ VkeZy,
i=1 Jj=1
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which is equivalent to the following generating function identity in an indetermi-
nate ¢:

Y sinh(At) = Y sinh(u;t).
i=1 j=1

Here we recall that the function

) e —e! t2k+1
sinh(r) = —5 :kzz;) 2k+1)!
satisfies sinh(—at) = — sinh(at) for any scalar a € C.
Pick a maximal number of pairs (is, j;) such that A;, = —A;,, with 1 < i; <

ja < nand all iy, j, are distinct, for 1 <a < ¢. Denote

hL={1<i<nl|i#isi# ja,Va}.
Similarly, pick a maximal number of pairs (i, j;,) such that gy = —pjr, with 1 <
il < j, < nand all i}, jj are distinct, for 1 < b < r, and define I, accordingly. It
follows by definition that
(2.34) Y sinh(A;t) = Y, sinh(u;f).

i€l jEIy

Let ¢ be the maximum of the set {|A, |u;] | i € I, j € I,}. Furthermore, as-
sume without loss of generality that for some s we have ¢ = |A,| and A appears in
the set {A;|i € I, } with multiplicity £. The identity (2.34) which is valid for all ¢
implies that there exists u, with r € I, such that g, = A, and also u, must appear
in {u;|j € I,} with multiplicity £ as well. Canceling the corresponding hyperbolic
sine functions from both sides of (2.34) we can proceed similarly as before and
conclude that there is a bijection between I, and I, such that the corresponding A;
and u; coincide. Now we can find a permutation w € &, that extends the bijection
between I, and I, such that w™!y— A is a linear combination of the roots €;, — €, .
Thus, A ~ p. |

Theorem 2.48 has the following implications. For a composition factor L(u)
in a Verma module A(A) of q(n), u must satisfy the following conditions: A —u €
Z,®", and u ~ \. This will be referred to as the linkage principle for q(n).

Definition 2.49. Let g = q(n) and let b be its standard Cartan subalgebra. The
degree of atypicality of a weight A € b7, denoted by #A, is the maximum number
of pairs (iq, ja) With all i, j, distinct such that (A, H;, +H;,) = 0. A weight A € b
is called typical if #A = 0, and is atypical otherwise.

We have the following corollary from the proof of Theorem 2.48.

Corollary 2.50. If x), = X, for A, u € b}, then the degrees of atypicality for A and
U coincide.
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2.3.4. Typical finite-dimensional characters of q(n). Note that A € b} is typical
(cf. Definition 2.49) if and only if

[I \H-+H;)#0.

1<i<j<n

Recall that the finite-dimensional irreducible q(n)-modules are classified in
terms of highest weights in Theorem 2.18. The following is the q(n)-counterpart
of Lemma 2.34.

Lemma 2.51. Let g = q(n) and A,u € by with A typical. Suppose that X = Xy
Then, there exists w € W such that u = w(\), and p is typical.

Proof. Recalling P from (2.31), we have €;+€; = 0(H; + H;), and
P=o( T (Hi+H)).
1<i<j<n

Clearly P is W-invariant. By Lemma 2.43 and Theorem 2.46, we have 0(f)P
b, (Z(g)), for f € S(hg)". Also recall p = 0.

With these ingredients in place, the argument in the proof of Lemma 2.34 goes
through in this case as well. We leave the details to the interested reader. O

The following is a q(n)-analogue of Theorem 2.35.

Theorem 2.52. Let g = q(n) and let A € by be a typical weight such that the irre-
ducible q(n)-module L(A) is finite dimensional. Then

5 €0)150) H[seq>+(1+e ﬁ)

1)) e
Haeég (I—e) wew

chL(\) =

Proof. We follow the strategy of the proof of Theorem 2.35.
The character of the Verma module A(A) is given by

2e(x)+a(x H[seq>+ (1+e B)
e .
HU.ECDS' ( 1- e—oc)
Observe that the highest weight spaces of L(u) and A(u), for every u € WA, have
. . (A)+5(\)
dimension 2™ 2z , thanks to £(u) = £(A).
Imitating the proof of Proposition 2.22, we obtain that

Moco; (1 - a) ) o),
Hﬁe¢+ e peX weW

chA(A) =

(2.35)

where X consists of CD(—) -dominant integral weights such that a,; # 0.
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Since A is typical and yy =y, for all 4 € X, it follows by Lemma 2.51 that
X = {A}. Recalling that a; = 2 , we can rewrite (2.35) as

1 _
Haecbg( € )chL ) = ()50 2 (_1)e(w) eW(Hp),
HB@D?(I +e‘B) weWw
from which the theorem follows. |

Remark 2.53. The assumption on A in Theorem 2.52 forces A; > A;; for all i, and
sol(A)=norl(A)=n—1.

2.4. Extremal weights of finite-dimensional simple modules

In this section, we study the extremal weights of a finite-dimensional irreducible
module over a Lie superalgebra of type gl and osp. A main complication arises
from the existence of non-conjugate Borel subalgebras for Lie superalgebras. For
the Lie superalgebra of type gl the extremal weights for irreducible polynomial
representations are determined. For the Lie superalgebras of type osp the extremal
weights of finite-dimensional irreducible representations of integer weights are de-
termined. In all cases, the answers are given in terms of the hook diagrams.

2.4.1. Extremal weights for gl(m|n). We start with some general remarks for any
basic Lie superalgebra g. Let L be a finite-dimensional g-module. Then given any
Borel subalgebra b of g associated to a positive system ®*, there exists a unique
weight A? for L such that A’ 4- o is not a weight for L for any o. € @, and the weight
space Lys is one-dimensional (cf. Proposition 1.39). The weight A? is called the
b-extremal weight for the g-module L. Two Borel subalgebras b and b’ of g are in
general not conjugate. Thus, the b-extremal weight and the b’-extremal weight of L
may in general not be conjugate by the Weyl group W, in contrast to the semisimple
Lie algebra setting.

In this subsection we let g = gl(m|n). Let b be its standard Cartan subalgebra
with standard Borel subalgebra b*'. For an (m|n)-hook partition A, we may regard
A! as an element in h* as in (2.4). We shall determine the b-extremal weight of
L(g,b%,A%) for any Borel subalgebra b. The class of gl(m|n)-modules L(g, b%,A%),
for all (m|n)-hook partitions A, are called the polynomial modules of gl(m|n), and
they will feature significantly in Chapter 3 on Schur duality.

Recall the weights 6; and €; from Section 1.2.3. Let b be a Borel subalgebra of
g and let @ be its positive system. Assume that the £8-sequence from Section 1.3
associated to b is 8g¢18%¢¢2 . .. §%¢* where the exponents denote the correspond-
ing multiplicities (all d;,e; are positive except possibly d; = 0 or e, = 0). There
exist a permutation s of {1,...,m} and a permutation ¢ of {1,...,n} such that the
&’s and €’s appearing in the £3-sequence from left to right are 8;(y),8,(2), - - -, O5(m)
and €,(1),&(2), - - -, &(n)» r€SPeCtively.
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Define
u u
(2.36) d,:= z d, and e,:= Z e,
a=1 a=1
foru=1,...,r,and let dg = eg = 0. Note d, = m, e, = n. Define the b-Frobenius

coordinates (p;|g;) of an (m|n)-hook partition A as follows. For 1 <i<m,1 <
Jj<n,let

537 pi = max{\; —e,,0}, ifd, <i<d,y forsome0<u<r-—1,
2.37) q; = max{?»&—duH,O}, ife, < j<e, forsomeO<u<r—1.

Associated to an (m|n)-hook Young diagram A and a Borel subalgebra b, we define
a weight A’ € b* in terms of the b-Frobenius coordinates (p;|q;) to be

AP = Z Pidy(i) + 2 qj&(j)-
i=1 Jj=1

It is elementary to read off the b-Frobenius coordinates of A from the Young dia-
gram of A in general, as illustrated by the next example.

Example 2.54. Let b be the Borel subalgebra of gl(5]4) associated to the following
fundamental system:

8 — 83 & —€ 8 — 8 €4 — €

O—&®—C0O0—"00—0O0——08—0——=0

83783 82781 64784 El—ﬁs

Consider the (5|4)-hook diagram A = (14,11,8,8,7,4,3,2). The b-Frobenius
coordinates for A are:
pi=1, pp=11,p3=ps=6,ps=3;, q=q=6,q3=3,q4=2.

These are read off from the Young diagram of A by following the €6 sequence
56e£86eed (with 6 for rows and € for columns of A) as follows:

n=4
] — p1—

— p2—

— p3—

— P4 —

DO O I
m=5Tq1 q|qs ‘If
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Then we obtain that
A® = P18, + 283+ p3di + pads + psds + q1€3 + q2€2 + q3€4 + g€
=68 + 148, + 1133 4+ 684 + 305 + 2€;1 + 6€2 + 6€3 + 3€4.

Theorem 2.55. Let A be an (m|n)-hook partition. Let b be an arbitrary Borel
subalgebra of gl(m|n). Then, the b-extremal weight of the simple gl(m|n)-module
L(g,b" A% is AL,

Proof. Set V = L(g,b*,A?). One distinguished feature for V is that all weights v
of V are polynomial in the sense that V(E;) € Z.. for all i € I(m|n); see Chapter 3,
Theorem 3.11.

The theorem holds for the standard Borel subalgebra b*', which corresponds to
the sequence of m &’s followed by n €’s, thanks to AP = Al By Corollary 1.32,
bt can be converted to b by a finite number of real and odd reflections. Thus, we
are led to consider two Borel subalgebras b; and by, where b, is obtained from
by by applying a simple reflection corresponding to a simple root c.. Let u be the
b,-extremal weight for V. To complete the proof of the theorem, we will show that
u = A2, assuming the theorem holds for b;.

If o is an even root, then ro(A%) = AP by definition, and the validity of the
theorem for b implies its validity for b;.

Now assume that o, = +(8; — €;) is an odd simple root. The corresponding
coroot is hy = £(E;; +Ejj).

If A%t (hg) = O, then we must have A% (E;;) = A% (Ej;) = O (as each has to be
nonnegative), and A" = A%, Then by Lemma 1.40 we have u = A% = A%

Suppose that A*! (hg) # 0 and o = §; — €. Diagrammatically we can represent
A% (E;;) = a and A" (Ej;) = b by Diagram (ii) below, and this forces that a > 0.
By Lemma 1.40, we have u = A*" — §; +¢;, and hence u(Ej;) = b+ 1 and p(Ej;) =
a — 1, which are represented by Diagram (i) below. The remaining parts of u are
the same as those for A?! and hence we conclude that p = A%, as claimed.

Suppose that A (k) # 0 and o = g; — §;. Diagrammatically we can represent
AY1(Ej;) = b+ 1 and A% (E;;) = a— 1 by Diagram (i) below, and this forces that
b>0anda> 1. Lemma 1.40 implies that u = A® —g; + §; and hence u(E;;) = a
and p(E;;) = b can be represented by Diagram (ii) below. Hence u = Ab2,

a—1 a

b+1

) (i)
This completes the proof of the theorem. 4
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Example 2.56. Let us describe the highest weights in Theorem 2.55 with respect
to the three Borel subalgebras of special interest.

(1) As seen above, A" = AL
(2) If we take the opposite Borel subalgebra b° corresponding to a sequence
of n €’s followed by m &’s, then

A" =Ner +. .+ Mg+ max{h —n,0}8; +... + max{d, —n,0}3,.

(3) In the case when |m —n| < 1, we may take a Borel subalgebra b° whose
simple roots are all odd (or equivalently, the corresponding £8-sequence
is alternating between € and 8):

In this case, Theorem 2.55 states that the coefficients of & and € in A%
are given by the modified Frobenius coordinates (p;|g;);>; of the par-
tition A (respectively, A’), when the first simple root is of the form & — ¢
(respectively, € — ). Here by modified Frobenius coordinates we mean

pi=max{A; —i+1,0}, ¢;=max{A;—i,0}

so that ¥;(p; +¢g;) = |A|. “Modified” here refers to a shift by 1 from the
pi coordinates defined in [83, Chapter 1, Page 3].

The modified Frobenius coordinates in this case can be read off from
the Young diagram by alternatively reading off (and deleting thereafter)
the number of boxes in rows and columns. As an illustration, if A =
(7,5,4,3, 1), then we have (pl ,pz,p3|g1 ,qz,qj,) = (7,4,2|4,2, 1)

7
4
2
1

2.4.2. Extremal weights for spo(2m[2n+ 1). Let us denote the weights of the
natural spo(2m|2n + 1)-module C>"2"+1 by 48,0, +¢, for 1 <i<m,1< j < n.
Recall that the standard Borel subalgebra b* of spo(2m|2n + 1) is associated to
the fundamental system (1.39) which we recall:

3y —€l

O—0— +—0—@—0— —0=0

8 -8 8 -8 Su-1 =B £ —€ €1 — &g €,



2.4. Extremal weights of finite-dimensional simple modules 81

Let b be a Borel subalgebra. As explained in Section 1.3.3, a Dynkin diagram for
spo(2m|2n+ 1) always has a type A end while the other end is a short (even or
odd) root. For example, the above Dynkin diagram has its type A end labeled by
the simple root 8; — §,. Starting from the type A end, the simple roots for b of
spo(2m|2n+ 1) give rise to an £8-sequence ¥ €1 §%¢% - - - §% ¢ and sequences of
+1’s: (&)1<i<m U (Mj)1<j<n (all the d; and e; are positive except possibly di =0
or e, = 0). Furthermore, the Dynkin diagram contains a short odd root if and only
ife, =0.

Recall the definitions of d, and e, from (2.36) and those of p; and g; from
(2.37). Similar to the type A case there exist a permutation s of {1,...,m} and a
permutation ¢ of {1,...,n}, so that the simple roots for b are given by

&ias(i) "§i+16s(i+1)a 1<i<m,ig {du|u =1,... ,r};
N&() —Njs1€rt), 1<J<n, jE{efu=1,...,r}
€a,05(a,) —Mite, 1 &1+, ), forl <u<rife, >0 (or1 <u<rife,=0);
MNe,E1(e,) —§1+du85(1+du)a u=1,...,r— L;
Ne, Et(e,)> ife, >0 (OI' &drss(dr) ife, = 0).

By Theorem 2.11, a complete list of finite-dimensional irreducible modules of
spo(2m|2n+ 1) of integer weights are the highest weight g-modules L(g, b*, Af) of
b*t-highest weights Al in (2.4), for some (m|n)-hook partition A.

Example 2.57. Consider the following Dynkin diagram of spo(10|9) with simple
roots attached:

& + 83 —&—& 3 — 34 € —¢€

O—@ 10— @00 —&—0®

—83 +€;3 € —08; 8y —e4 €1+ 85 -85

We read off a signed sequence with indices 8,(—83)(—€3)€28104€4€1(—0s). In par-
ticular, we obtain a sequence 8de£dde€ed by ignoring the signs and indices. In this
case, d] =dy =2,d3 = 1, and e; = e, = 2. Furthermore, the sequences (&;)1<i<s
and (1;)1<j<4 are (1,—1,1,1,—1) and (—1,1,1,1), respectively.

Theorem 2.58. Let A be an (m|n)-hook partition. Let b be a Borel subalgebra of
spo(2m|2n + 1) and retain the above notation. Then, the b-highest weight of the
simple spo(2m|2n+ 1)-module L(g, b*,A") is

n

A= Eipiysy + D, MjdjE)-
i=1 j=1

Proof. The arguments here are similar to the ones given in the proof of Theorem
2.55 for gl(m|n), and so we will be sketchy.
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We first note that the theorem holds for the standard Borel subalgebra b,
which corresponds to the sequence of m &’s followed by n €’s with all signs &;
and 1, being positive, i.e., A" = Al

All Borels are linked to the standard Borel by a sequence of even and odd
simple reflections. Let b and b’ be two Borel subalgebras related by a simple
reflection with respect to a simple root o, and assume the theorem holds for b’. If
o.is even, then clearly ro(A?) = A?, and the theorem holds for b. In the case when
o is odd, we have four cases to consider, by setting o = £6; == €;. Each case is
verified by the same type of argument as in the proof of Theorem 2.55. O

Example 2.59. With respect to the Borel b of spo(10|9) as in Example 2.57, the
b-extremal weight of L(g, b, A!) for A as given in Example 2.54 equals

AY = 182 — p283 + P31 + pads — psds — q1€3 + q2€2 + g3€4 + u
=606; + 148, — 1185 + 684 — 305 + 2€; + 68, — 6€3 + 3¢4.

Corollary 2.60. Every finite-dimensional irreducible spo(2m|2n + 1)-module of
integer highest weight is self-dual.

Proof. By a standard fact in highest weight theory, the dual module L(g, b*t, Af)*
has b*-highest weight equal to the opposite of the b*-lowest weight of L(g, b*, A?).
Denote by b°P the opposite Borel to the standard one b%. It follows by Theo-
rem 2.58 that the b°-extremal weight (i.e., the b*-lowest weight) of the module
L(g, b, A") is —A". This proves the corollary. O

Consider the following Dynkin diagram of spo(2m|2n + 1) with simple roots
attached, and let us denote its associated Borel subalgebra by b%¢:

O=0—0——8—0—0—"—0

-€ £ -& £-& € —8n Oy —0u -3

We have the following immediate corollary of Theorem 2.11 and Theorem 2.58.

Corollary 2.61. An irreducible spo(2m|2n + 1)-module of integer highest weight
with respect to the Borel subalgebra b*? is finite dimensional if and only if the
b*-highest weight is of the form

(2.38) R W max{\; — m,0} &,_ 1,

i=1 Jj=1
where A = (M, 2, ...) is an (m|n)-hook partition.

2.4.3. Extremal weights for spo(2m|2n). Let n > 2. Let us denote the weights of
the natural spo(2m|2n)-module C>"?" by +§;, +¢; for | <i<m,1 < j < n. The
standard Borel subalgebra b* of spo(2m|2n) is the one associated to the Dynkin
diagram (1.41), which we recall for the reader’s convenience:
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€r1 —En

d, —€

8, -8 85 St — O € —& €4-2 = €yt

€r-1 &

According to Section 1.3.4, there are two types of Dynkin diagrams and corre-
sponding Borel subalgebras for spo(2m|2n):

(i) Diagrams of |-shape, i.e., Dynkin diagrams with a long simple root +23;.
(ii) Diagrams of Y-shape, i.e., Dynkin diagrams with no long simple root.

We will follow the notation for spo(2m|2n + 1) in Section 2.4.2 for fundamen-
tal systems in terms of signed €d-sequences, so we have permutations s, 7, and signs
&i,m;. We fix the ambiguity on the choice of the last sign 1, associated to a Borel b
of YY-shape by demanding the total number of negative signs among 1;(1 < j < n)
to be always even.

Let A be an (m|n)-hook partition, and let the b-Frobenius coordinates (pj|q;)
be as defined in Section 2.4.1. Introduce the following weights:

m n
A= 2 &ipidyy + X Mj4E (),
i=1 j=1
. m n—1
A= Y EpiSsn + XM E) — Mndni(n)-
i=1 j=1

The weight A° will only be used for Borel b of Y-shape. Note that A" = A% and
we shall denote A% := A"

Given a Borel b of |-shape, we define s(b) to be the sign of [Tj_; 1;.

Recall from Theorem 2.14 that a finite-dimensional irreducible spo(2m|2n)-

module of integer highest weight with respect to the standard Borel subalgebra is
of the form L(g, b*,A!) or L(g, b*, A% ), where A is an (m|n)-hook partition.

Theorem 2.62. Let n > 2, and let A be an (m|n)-hook partition.

(1) Assume b is of Y -shape. Then,
(i) AY is the b-extremal weight for the module L(g, b, A%).
(i) AY is the b-extremal weight for the module L(g, b*, Xh_)
(2) Assume b is of |-shape. Then,
(i) AP is the b-extremal weight for L(g, 6", M) if s(b) = +.
(ii) A is the b-extremal weight for L(g, bs’,?uu_) ifs(b) =—.

Proof. Let b and b’ be Borel subalgebras. Suppose that they are related by b’ =
w(b), for some Weyl group element w. Note that the set of weights for L(g, b*t, A%
is W-invariant. By definition we observe that AY = w(A?) and A = w(A%), and
hence the validity of the theorem for b implies its validity for b’. Thus it suffices to
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prove the theorem for a Borel subalgebra b with even roots {6; £6,]i < j} U {gx £
€1k < I}. We shall make this assumption for the remainder of the proof.

Suppose that the Dynkin diagram of b is of Y-shape. Thus the corresponding
€d-sequence ends with an €, i.e., it is of the form

Qg EL

The fundamental system of b can be brought to the fundamental system corre-
sponding to b* by applying a sequence of odd reflections corresponding to odd
isotropic root of the form €; — 6; or §; —¢;. As Part (1) of the theorem is true for
the standard Borel b™, exactly the same argument as in the proof of Theorem 2.55
proves (1).

Now suppose that b is of |-shape. We first consider the Borel subalgebras b,
and b, corresponding to the two fundamental systems below, respectively:

€ —8 -8 8 -3 St —=8m 20,
€q—1 + &

O O @O+ —O=0

g —& —€, -8 8 ~8 St =8y 284

Note the sign sequence (11,...,N,) associated to the &;’s is (1,...,1,1) for b; and
(1,...,1,=1) for by. So we have s(b;) = + and s(b2) = —.

First, using sequences of odd reflections, we can transform the standard fun-
damental system to the fundamental systems associated with b; and b,. We list
below two such sequences consisting of mn odd reflections that will take 6% to b,
and b, respectively.

{5,,,——81,...,81—81;8m—£2,...,81—82;...;8,,,——8,,,...,81—8,,},
{0m —¢1,...,01 —€1;0m —€2,...,01 —€2,...;0m +€n,..., 01 +&,}.

We note that the above two sequences are identical except for the last n reflections
(where + signs replace — signs). Starting from 7»5’: for the standard Borel b and
repeatedly using Lemma 1.30 at each step, it is straightforward to show that Part
(2) of the theorem is true for b; and by. Now if s(b) = + (respectively, s(b) = —)
then b can be brought to b; (respectively by) by a sequence of odd reflections
corresponding to odd isotropic roots of the form §; —¢; or €; — 8;. Now the same
type of argument as in the proof of Theorem 2.55 proves (2). U

Corollary 2.63. Let n > 0 be even. Then every finite-dimensional irreducible
spo(2m|2n)-module of integral highest weight is self-dual.

Proof. The argument here is similar to the proof of Corollary 2.60. For n = 0, the
corollary follows by the well-known fact that the longest element in the Weyl group
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for sp(2m) is —1. Now assume n > 2 is even. Denote by b°P the opposite Borel
to the standard one b*. It follows by Theorem 2.62 that the b°P-extremal weight
of the module L(g, b*,A!) (and respectively, L(g, b*, A" )) is —A" (and respectively,
—A%). The corollary follows. O

Remark 2.64. The remaining b-extremal weights for the modules L(g,b*,Af)
when s(b) = — or for the modules L(g, b, A" ) when s(b) = -+ do not seem to
afford a uniform simple answer.

Consider the following Dynkin diagram of spo(2m|2n) whose Borel subalge-
bra is denoted by b%.

€ —&
€ — Oy

& —&3 L R By~ -1 8 — 8
—€ —&

We record the following corollary of Theorems 2.14 and 2.62.

Corollary 2.65. Let n > 2. An irreducible spo(2m|2n)-module of integral highest
weight with respect to the Borel subalgebra b*! is finite dimensional if and only if
the highest weight is of the form

m n—1

(2.39) — Y A8 — Y max{\; —m,0}&,_ ;-1 max{\, —m,0}e,
i~ j=1

where = (A1,Az,...) is an (m|n)-hook partition.

2.5. Exercises

Exercise 2.1. Let m > 2. Prove:
(1) A highest weight irreducible representation L(A) of gl(m|m) remains an
irreducible representation when restricted to sl(m|m).
(2) Every highest weight irreducible representation of sl(m|m) extends to a
representation of gl(m|m).

Hints: For (1) if v were an s{(m|m)-singular weight vector in L(A) and we can write
v = 3;v;, where the v;’s are gl(m|m)-weight vectors of distinct weights. But then
each v; would be gl(m|m)-singular. Use (1) to prove (2).

Exercise 2.2. We use the notation for osp(1|2) from Example 1.25. Prove:

(1) The identities [E,F?'] = —nF?*~! and [E,F?"*!] = F?*(h —n) hold in
U(osp(1]2)), foralln € Z,.

(2) A complete list of inequivalent irreducible finite-dimensional representa-
tions of 0sp(1|2) is given by {L(nd;) | n € Z, }.
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(3) The character of L(nd;) is given by
(il+%)51 _e~(n+%)6[

1 1
e2% — 2%

4

ChL(n6|) =

Exercise 2.3. Let g be a finite-dimensional simple Lie superalgebra equipped with
an even supersymmetric invariant bilinear form (-,-). Let {u;|1 <i < k} be a ho-
mogeneous basis for g and let {u'|1 <i <k} be its dual basis with respect to (-,-)
so that (u;,u’) = §;;. Prove:
(1) The Casimir operator Q := Y* ,(—1)"lu € U(g) is independent of
the choice of the basis {u;|1 <i <k},
(2) Q € Z(g) and Q acts on a highest weight g-module of highest weight A
as the scalar (A +2p,A).

Exercise 2.4. Let g = osp(1/|2). Prove that the Casimir operator Q acts as differ-
ent scalars on inequivalent finite-dimensional irreducible g-modules and that every
finite-dimensional g-module is completely reducible.

Exercise 2.5. Let g = gl(1|1). Prove:
(1) The Verma g-module A(ad; + be; ) is reducible if and only if a = —b.

(2) There exists a non-split short exact sequence of g-modules:
00— L((a~ 1)51 - (a— ])81) — A(a51 —aEl) —)L(GSI —a£1) — 0.

(Hence the infinitely many simple g-modules L(ad; —ag, ) for all a in a congruence
class C/Z belong to one block.)

Exercise 2.6. Let g = sl(1)2). Prove that the Casimir operator acts trivially on the
polynomial module L(A), for A= (k+1)8; + (k— 1)1, k € N.

Exercise 2.7. Let g be a basic Lie superalgebra and let b be a Borel subalgebra
with Weyl vector py. Let b’ be a Borel subalgebra with by = bj. Suppose that b’
is obtained from b by a sequence of odd reflections with respect to the odd roots
01,002,...,04. Set Ay = A" and define inductively fori =1,...,k

Ao— }\ri—l’ if (}\'i—h(xi) :07
U Mier—a, i (Mg, 04) £0.

Set AY = A;. Prove:

(1) AY s well-defined, i.e., it is independent of the sequence of odd reflec-
tions.

(2) (A*+pp, @) # 0, Vo € By, if and only if (AY + py, ) # 0, Vou € ; (here
we recall the notation ®; from (1.18)).
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Exercise 2.8. Let g = gl(m|n) and let b be its standard Borel subalgebra with
positive system @ . Let b’ be another Borel subalgebra of g with positive system
'®™. Assume that by = by and —<IJ¥r =' CD}L. Give explicitly a sequence of mn odd
reflections that transforms b to b’

Exercise 2.9. Suppose that two positive systems of a basic Lie superalgebra are
related by an odd reflection o and they contain identical even positive roots. Prove
that the respective Harish-Chandra homomorphisms are identical.

(Hints: It suffices to prove that the images of the Harish-Chandra homomor-
phisms evaluated at typical weights coincide, and note that the Weyl vectors corre-
sponding to the two positive systems differ by o.)

Exercise 2.10. Let g be a finite-dimensional reductive Lie algebra. Let V()) be a
highest weight module of g of highest weight A, and let E be a finite-dimensional
representation of g. Denote the set of weights of E by Pz. Show that if L(u) is a
composition factor of V(L) Q E then u+p € W(A+p + Pg).

Exercise 2.11. Let g = gl(m|n) or osp(2]2m). Let g =g_1 g g; be the Z-
gradation as in (2.1). For an integral weight A let K(A) denote the (not necessarily
finite-dimensional) Kac module. Prove:

(1) If there exists a singular vector of weight y in K(A), then u+p is of the
form w(A — Y ko0t +p), w € W, kg € Zy, and 0. € " Ng;. (Hint: Use
Exercise 2.10.)

(2) If there exists a singular vector of weight u in K(A) and A is typical, then
u+p=w(k+p), forsomew € W.

(3) K(M) is irreducible, for A typical.
Exercise 2.12. Let g = 0sp(2[2m) with m > 0 and g5 = s0(2) @ sp(2m). Prove:

(1) The map ey — & and fo — fa, fora €11, given in Example 2.15, defines
a representation of 0sp(2|2m) on C[g, &, x, x].

(2) As a gg-module, we have C?" = I.0(g;) & L°(—&1) ©L°(31), with high-
est weight vectors &, &, and x;, respectively.

(3) For k > 2, the gg-module A¥(C??™) decomposes as
LO((k—1)8, +&1) @ L°((k— 1)8; — 1) & LO(k8;) ® L ((k—2)1),
with highest weight vectors £, Ex4~1, i, and £} 2EE, respectively.

(4) The osp(2|2m)-module A¥(C??") is irreducible for all k > 1. (Hint: Use
(4) and the formulas for &, _5, and fel_sl )

In Exercises 2.13-2.16 below, g = osp(2|2m) with m > 0 and g5 = 50(2) ®
sp(2m), and we follow the notation of Example 2.16.

Exercise 2.13. Prove:
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(1) The map eq — é4 and fo, — fa, for o € I, given in Example 2.16, defines
a representation of osp(2|2n).

(2) The Laplace operator
=2 gk () _y gk2(g2iam
- o za@,ag, E) = &E
is surjective and commutes with the action of osp(2|2m), for k > 2.

Exercise 2.14. Let k > 2m+ 1. Prove that dim8¥(C??") — dim$*~2(C2/2m) =
2bn+1'

Exercise 2.15. Let E:=3Y" 1&&, and k > 2m. Set
= 2 ( )#m XTI ¢ gk(CEIm.

Prove:

(1) A(x*) = 0 and é4x* =0, for o € TI.

(2) T'#0,A(I') =0, and é,I" = 0, for o € IT.
Exercise 2.16. Let kK > 2m+ 1. Prove:

(1) key and (2m —k)e; are typical weights for osp(2]2m).

(2) We have an isomorphism of 0sp(2|2m)-modules:

kerA= L(ke;) ®L((2m—k)ey).
What are the highest weights of these two irreducible modules with re-

spect to the following new fundamental system?
8,,, — &

3-8 8-8 Syt~ 8
8 +€

Exercise 2.17. Let A = A &) + A€, with A > Ap, A # —A,, and M, Ay € Z. Write
o =¢€; —¢&;. Prove:

(1) There is a short exact sequence of q(2)-modules:

0 —> A(A2e1 +A182) — A(R) — L(A) — 0.
(2) We have the following decomposition of L(A) as gl(2)-modules:
Ly = 2L0(A), ifA;—Ap =1,
2L\ @20 — ),  if A —Ap > 1.

Exercise 2.18. Let L(u) be a finite-dimensional irreducible g(n)-module of highest
weight =37, ;e;. Prove that L(u*) & L(u)*, where y* := — i1 Mn+1-i€;. (Hint:
Ifvisa CI)(E)L -dominant integral weight of L(u), then wov —wou € Zaecp(_-;' Z.. o, where
wo is the longest element in W.)
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Notes

Section 2.1. A systematic study of the representation theory of finite-dimensional
(simple) Lie superalgebras was initiated by Kac [62]. The classification of finite-
dimensional irreducible representations of the Lie superalgebras of types gl and
spo (Propositions 2.2 and 2.2; Theorems 2.11 and 2.14) appeared first in Kac [60],
where the finite dimensionality condition was formulated in terms of Dynkin labels
instead of hook partitions used in this book. The proof using odd reflections in the
most challenging spo type given here follows Shu-Wang [115] for the cases of
integer weights, and the proof using odd reflections and the Bernstein functor (see
Santos [104]) for the cases of half-integer weights here is new. Yet another closely
related approach to the classification is provided in Azam-Yamane-Yousofzadeh
[4] by means of Weyl groupoids. Theorem 2.18 on the classification of finite-
dimensional irreducible modules of q(n) was formulated by Penkov [93, Theorem
4], who proved the “only if” direction. We are not aware of a written proof for the
“if” direction in the literature. Our proof uses the Bernstein functor again.

Section 2.2. The Harish-Chandra homomorphisms for Lie superalgebras were
first studied by Kac [62], who formulated results in terms of fractional fields.
Proposition 2.22 and Lemma 2.24 (and their proofs) are taken from [61] and [62],
respectively. The analogue of Chevalley theorem on invariant polynomials for sim-
ple Lie superalgebras has been established by Sergeev [111], which can be recov-
ered as a part of Theorem 2.26 for type gl and osp. Our approach to calculating the
images of the Harish-Chandra homomorphisms in this book is different and new,
and it uses the connection to the theory of supersymmetric functions for types gl
and spo and the theory of Schur Q-functions for type q. There is another approach
developed by Gorelik [48] following Kac [63] on the centers of the universal en-
veloping algebras (also see Alldridge [1]). A variant of Theorem 2.30 on linkage
principle for gl and osp was originally stated as a conjecture in Kac [62, §6].

The notion of typicality for basic Lie superalgebras is due to Kac [62]. Corol-
lary 2.28 (which is due to Kac [62, Theorem 2] by different arguments) was used
by Kac to derive the irreducible character formula for finite-dimensional typical
modules of basic classical Lie superalgebas (see Theorem 2.35). Also see Gorelik
(47].

Section 2.3. This section is the counterpart to Section 2.2 for the queer Lie
superalgebra ¢(n). Theorem 2.46 on the image of the Harish-Chandra homomor-
phism for the queer Lie superalgebra was formulated without proof in a short an-
nouncement of Sergeev [109]. We fill in the details of a proof by presenting several
explicit formulas of singular vectors in Verma modules. The notion of typicality
for q(n) was formulated by Penkov [93]. Theorem 2.52 on the typical character
formula for q(n) is due to Penkov [93, Theorem 2]. Theorem 2.48 on linkage
principle for q(r) or its variant has been regarded as folklore after [109].
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Section 2.4. As we shall see in Chapter 3, the irreducible polynomial repre-
sentations of gl(m|n) were classified by Sergeev [110] (and independently later by
Berele and Regev [7]). The results on extremal weights of the irreducible polyno-
mial representations for gl and finite-dimensional irreducible integer weight mod-
ules for spo were due to Ngau Lam and the authors (for the spo case see [24] and
for the gl case see [32]). The special case for type gl when a fundamental system
consists of only odd simple roots goes back to [30].

The irreducible character problem for finite-dimensional modules over Lie su-
peralgebras has been a challenging one. For gl(m|n), there have been complete
solutions by completely different approaches due to Serganova [107], Brundan
[11], Brundan-Stroppel [15], and Cheng-Lam [23] (also see Cheng-Wang-Zhang
[34]). There is also a combinatorial dimension formula by Su-Zhang [120]. For
q(n), there has been complete solutions due to Penkov-Serganova [96] and Brun-
dan [12]. There were numerous partial results in the literature over the years; see
for example (8, 33, 123, 124, 96, 104, 110, 133]. Chapter 6 of this book offers
a complete solution for a wider class of modules (including all finite-dimensional
ones) of gl(m|n) and osp(k|2m).

Exercise 2.12 implies that the exterior powers of the natural 0sp(2|2m)-module
are irreducible. For general osp(k|2m) a similar argument as outlined there can be
used to show the irreducibility of every exterior power of the natural module. As in
the orthogonal Lie algebra case, (super)symmetric tensors are not irreducible. In
contrast to the orthogonal Lie algebra, the determination of the composition factors
in the symmetric powers is significantly more involved as seen in Exercises 2.13—
2.16, which are taken from [33]. In [33] it is shown that the kernel of the Laplacian
in the case of 0sp(2|2m) can either have one, two, or three composition factors. The
proof outlined in Exercise 2.11 for the irreducibility of Kac modules of a typical
highest weight is taken from [80]. A different argument of this fact can be found
in [62].



Chapter 3

Schur duality

Schur duality, which was popularized in Weyl’s book The Classical Groups, is
an interplay between representations of the general linear Lie group/algebra and
representations of the symmetric group. On the combinatorial level, it explains
their mutual connections to Schur functions and Young tableaux.

In this chapter, we describe Sergeev’s superalgebra generalization of Schur du-
ality. The first generalization is a duality between the general linear Lie superalge-
bra and the symmetric group. This allows us to classify the irreducible polynomial
representations of the general linear Lie superalgebra and obtain their character
formula in terms of supertableaux and also in terms of super Schur functions. The
second generalization is a duality between the queer Lie superalgebra and a twisted
(or spin) group algebra JH, of the hyperoctahedral group. The representation theory
of the algebra H, is systematically developed, and its connection with symmetric
functions such as Schur Q-functions is explained in detail. The irreducible polyno-
mial representations of the queer Lie superalgebra are classified in terms of strict
partitions, and their characters are shown to be the Schur O-functions up to some
2-powers.

3.1. Generalities for associative superalgebras

In this section, we classify the finite-dimensional simple associative superalgebras
over C. We also formulate the superalgebra generalizations of Schur’s Lemma, the
double centralizer property, and Wedderburn’s Theorem. By studying the center of
a finite group superalgebra, we obtain a numerical identity relating the number of
simple supermodules to the number of split conjugacy classes.
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In this section, a superalgebra is always understood to be a finite-dimensional
associative superalgebra with unity 1, and a module is always understood to be
finite-dimensional.

3.1.1. Classification of simple superalgebras. Let V be a vector superspace with
even and odd subspaces of equal dimension. Given an odd automorphism P of V
of order 2, we define the following subalgebra of the endomorphism superalgebra
End(V):

Q(V) ={x € End(V) | [x,P] = 0}.
In the case when V = C"!" and P is the linear transformation in the block matrix
form (1.10), we write Q(V) as Q(n), which consists of 2n x 2n matrices of the

form:
a b
b a)’

where a and b are arbitrary n x n matrices, for n > 1. Note that we have a superal-
gebra isomorphism Q(V') = Q(n) by properly choosing coordinates in V, whenever
dimV = (n|n).

The matrix superalgebra M(m|n) is the algebra of matrices in the m|n-block

form
a b
c d)’
whose even subspace consists of the matrices with b = 0 and ¢ = 0, and whose odd

subspace consists of the matrices with a = 0 and d = 0. The matrix superalgebra
M (m|n) is isomorphic to the endomorphism superalgebra of C™I",

Recall that by an ideal I and a module M of a superalgebra A, we always mean
that / and M are Z,-graded, i.e., I = (INAg) @ (INA;j), and M = My ® M; such
that A;M; C M, ;, for i, j € Z,. For a superalgebra A and an A-module M, we
shall denote by |A| and [M| the underlying (i.e., ungraded) algebra and module.
Ideals and modules of |A| are understood in the usual (i.e., ungraded) sense.

We shall denote by A-mod the category of (finite-dimensional) modules of the
superalgebra A (with morphisms of degree one allowed). The underlying even
subcategory A-modg, which consists of the same objects and only even morphisms
of A-mod, is an abelian category. Recall the parity reversing functor IT from Sec-
tion 1.1.1. We define the Grothendieck group [A-mod] of the category A-mod to
be the Z-module generated by all objects in .A-mod subject to the following two
relations: (i) [M] = [L] 4 [N]; (ii) [[IM] = —[M], for all L, M, N in A-mod satisfying
a short exact sequence 0 — L —+ M — N — 0 with even morphisms.

Denote by Z(|.A[) the center of |A|. Clearly, Z(]A|) = Z(|A|)5® Z(JA|)1
where Z(|Al); = Z(]A|) N A; for i € Z,. Recall a superalgebra A is simple if A has
no nontrivial ideal.

Theorem 3.1. Let A be a finite-dimensional simple associative superalgebra.
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(1) If Z(|A|)7 = O, then A is isomorphic to the matrix superalgebra M (m|n)
for some m and n.

(2) If Z(|A|)7 # O, then A is isomorphic to Q(n) for some n.

We shall need the following lemma. Let p; : A — A; be the projection for
i €7Zy.

Lemma 3.2. Let A be a simple superalgebra. If J is a proper ideal of |A|, then
the induced maps pj|; : J — A; are isomorphisms of vector spaces and, moreover,
JNA; =0foric€ Zs.

Proof. We claim that if / is a nonzero ideal of A, then

3.1) I+ Al A7 = Ag,

and A;l +IA; = Aj. Indeed, the Z,-graded subspace (I + AjIAj) + (Al +IAj)
of A is closed under left and right multiplications by elements of Ag and Aj; hence
it is an ideal of A. Now the claim follows from the simplicity of .A.

For a proper ideal J of |A|, JN.Ag and pg(J) are ideals of Ag, and JNAg C
ps(J). Actually, we must have JNAg S py(J), for otherwise J would be an ideal
of A, contradicting the simplicity of A. By inspection, A;(JNAj)A; CJNAgand
Aips(J)A; C pg(J). It follows by (3.1) that
(3.2) JNAG =0, po(J) = Ap.

We have A2 = Ag, for otherwise A2 +.A; would be a proper ideal of A, which
contradicts with the simplicity of A. Hence, we have

(3.3) JNA;=0,  pi(J) = Ay,
by the following computations (which use (3.2) and that 1 € Ag):
JNAT = Ag(JNAg) = A3(INA;g) CA(JNAg) =0,
pilJ) 2 Aips(J) = AjAg = Ar.
Now the lemma follows from (3.2) and (3.3). O

Proof of Theorem 3.1. We claim that Z(|A|)g = C. To see this, let z € Z(|A|)g.
The map £, : A — A defined by left multiplication by z has an eigenvalue ¢ € C, and
the kernel of #, — ¢ is a nonzero 2-sided ideal of A. The simplicity of A implies
that £, —c =0, and hence z=c- 1.

(1) Assume Z(|A|)y = 0. We claim that |A| is a simple algebra (and so |A|
is a matrix algebra by a classical structure theorem of simple algebras). Indeed,
assume |A| is a non-simple algebra with a proper ideal J. Denote w = Py Myes
and u = pj(w) € Aj, where u # 0 by Lemma 3.2. Then, w = 1 +u. For any
homogeneous element x € A; for some i € Z,, we have xw = x +xu and wx = x +ux,
and so p;(xw) = x = p;(wx). By Lemma 3.2, xw = wx and so xu = ux; that is,
u € Z(|A|)7. It follows by assumption that u = 0, which is a contradiction.
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Consider the automorphism 6 : |A| — |A| given by 6(a;) = (—1)'a; for a; € A;
and i € Z,. There exists u € |A| such that 6(a) = uau™" for all a € |A|, since every
automorphism of a matrix algebra is inner. We have u € A because o(u) = u. It
follows from 62 = 1 that u? € Z(]A|)5 = C. We can choose u such that u? = 1 and
then, by a change of basis, take u to be a diagonal matrix with m 1’s followed by n
(—1)’s in the main diagonal. Hence, we conclude that A = M(m|n).

(2) For a nonzero element w € Z(|A|)5, we have w? € Z(]A|)5 = C. We must
have w? # 0, for otherwise the annihilator of w is a proper ideal of the superalgebra
A, contradicting the simplicity of A. Then we may assume w? = 1. We have
Z(|ANT = (Z(JA])pw)w C Z(JA|)gw = Cw C Z(|A|)7, and hence, Z(|A|) = C +
Cw. Moreover, Aj = (Ajw)w C Agw C Ay, ie., A7 = Agw. The algebra Ag must
be simple, for otherwise a proper ideal I of Ag would give rise to a proper ideal
[+ Iw of A (which is again a contradiction). Then Aj is a matrix algebra M (n) for
some n, and the superalgebra A = M(n) ® M(n)w is isomorphic to Q(n). [

3.1.2. Wedderburn Theorem and Schur’s Lemma. The basic results of finite-
dimensional semisimple (unital associative) algebras over C admit natural super
generalizations.

A module M of a superalgebra A is called semisimple if every A-submodule
of M is a direct summand of M. The following are straightforward generalizations
of the classical structure results on semisimple modules and algebras, and they can
be proved in the same way as in the non-super setting.

Theorem 3.3 (Super Wedderburn Theorem). The following statements are equiv-
alent for a superalgebra A:

(1) Every A-module is semisimple.
(2) The left regular module A is a direct sum of minimal left ideals.

(3) A is a direct sum of simple superalgebras.

A superalgebra A is called semisimple if it satisfies one of the three equivalent
conditions (1)—(3) in Theorem 3.3.
By Theorems 3.1 and 3.3, a finite-dimensional semisimple superalgebra A is
isomorphic to a direct sum of simple superalgebras as follows:
m

q
(3.4) A= PM(rils) P Q(n)),

i=1 j=1

where m = m(A) and g = g(A) are invariants of A. Observe that C'! is a simple
module (unique up to isomorphism) of the simple superalgebra M(r|s), and C*" is
a simple module (unique up to isomorphism) of the simple superalgebra Q(n). A
simple A-module V is annihilated by all but one of the summands in (3.4). We say
V is of type Mif this summand is of the form M(r;|s;) and of type Q if this summand
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is of the form Q(n;). These two types of simple modules are distinguished by a
super analogue of Schur’s Lemma.

Lemma 3.4 (Super Schur’s Lemma). If M and L are simple modules over a super-
algebra A, then
1 ifM=Lisoftype N,
dimHomy(M,L) =< 2 ifM=LisoftypeQq,
0 ifM#*L.

Proof. In the case when M =2 L is of type M, we can assume that A = M(r|s) for
some r,s, and that M = L = C". Then it is straightforward to check (as in the
non-super case) that Homy(, s (C'ls, ") = CI.

In the case when M = L is of type Q, we can assume that A = Q(n) for some
n, and that M = L = C"". Then one checks that Homyy,) (Crln Criny = CI+ CR,
where ‘B is the linear transformation in the block matrix form (1.14).

The case where M 2 L is clear. O

3.1.3. Double centralizer property for superalgebras. Given two associative
superalgebras A and B, the tensor product A ® B is naturally a superalgebra, with
multiplication defined by

(35  (aob)(dob)= (-1 a2 b))  (a,d €A, bb €B).
Note that we have a superalgebra isomorphism (see Exercise 3.10)
Q(m) ® Q(n) = M(mn|mn).

Hence, as a Q(m) ® Q(n)-module, the tensor product C"" © C"" is a direct sum
of two isomorphic copies of a simple module (which is = Cmnmmy - and we have
Homg,, (Crin Crmnlmny o2 Cmim a5 a Q(m)-module.

Let A and B be semisimple superalgebras. Let M be a simple A-module of
type Q and let N be a simple B-module of type Q. Then, the A ® B-module M @ N
is a direct sum of two isomorphic copies of a simple module of type M, denoted
by 27'M ® N. Moreover, Homg (N,2~!M ® N) is naturally an A-module, which is
isomorphic to the A-module M.

Proposition 3.5. Suppose that W is a finite-dimensional vector superspace, and ‘B
is a semisimple subalgebra of End(W). Let A = Endg(W). Then, Endq (W) = B.

As an A ® B-module, W is multiplicity-free, i.e.,
W=y 27V,
i
where &; € {0,1}, {U;} are pairwise non-isomorphic simple A-modules, and {V;}

are pairwise non-isomorphic simple B-modules. Moreover, U; and V; for a given i
are of the same type, and they are of type Mif and only if §; = 0.
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Proof. Assume that V, are all the pairwise non-isomorphic simple B-modules of
type M, and V), are all the pairwise non-isomorphic simple B-modules of type Q.
Then the hom-spaces U, := Homg(V,,W) and U, := Homg(V;,, W) are naturally
A-modules. By the super Schur’s Lemma, we know dimUj, = (kp|k;) for some k.
By the semisimplicity assumption on B, we have an isomorphism of B-modules

W=Pu,eV.e@P27'U,®V,.
a b

By applying the super Schur’s Lemma, we obtain the following superalgebra iso-
morphisms:

A =Endg(W) = @Endg Ua®Va)€B@End¢B(2‘1Ub®Vb)
~ @End )@y, @@ (End(2™'0p) ® Q(1)) ®1,
= @End )L, @@Q (Up) ®1Iy,.

Hence, A is a semisimple superalgebra, U, are all the pairwise non-isomorphic
simple \A-modules of type M, and Uy, are all the pairwise non-isomorphic simple
A-modules of type Q.

Since A is now a semisimple superalgebra, we can reverse the roles of A and
B in the above computation and obtain the following superalgebra isomorphisms:

End4 (W) = @1y, ® End(V,) & P Iy, @ (V) = B
a b
The proposition is proved. g

3.1.4. Split conjugacy classes in a finite supergroup. For a finite group G, the
group algebra CG is a semisimple algebra. It follows by using the Wedderburn
Theorem and comparing two different bases for the center of CG that the number
of simple G-modules coincides with the number of conjugacy classes of G.

Now assume that the finite group G contains a subgroup Gy of index 2. We
call elements in Gy even and elements in G\ Gy odd. Then the group algebra of G
is naturally a superalgebra and we shall denote it by C[G, Go] = CGy @ C[G\Go)
to make clear its Z,-grading and its dependence on Gy. Just as for the usual group
algebras, it is standard to show that C[G, Gy| is a semisimple superalgebra.

Since elements in a given conjugacy class of G share the same parity (i.e.,
Z»-grading), it makes sense to talk about even and odd conjugacy classes.

Proposition 3.6. (1) The number of simple C[G, Gy|-modules coincides with
the number of even conjugacy classes of G.
(2) The number of simple C|G, Go|-modules of type Q coincides with the num-
ber of odd conjugacy classes of G.
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Proof. Set A = C[G, Gy|. By (3.4), A can be decomposed as a direct sum of simple
superalgebras:

m q
A @M(l’j|si) D EBQ(n])
i=1 j
The center of the algebra |(M(r|s)| is = CI, and the center of the algebra |Q(n)|

is of dimension (1|1), spanned by I, and <O " ) . Hence, dimZ(|A|); =m+¢

I, O
and dimZ(|A|); = ¢.
On the other hand, note that |A| is the usual group algebra CG. Hence the
class sums for the even (respectively, odd) conjugacy classes of G form a basis of
Z(]A)g (respectively, Z(]A])1). The proposition is proved. O

For a finite group G that contains a subgroup Go of index 2, let us further
assume that G contains a central element z that is even and of order 2. Setting
G = G/{1,z}, we have a short exact sequence of groups

(3.6) 1—{l,z} —-6-56—1

Let C be a conjugacy class of G. Depending on whether an element X in 87! (€)
is conjugate to zx, 8~ !(@) is either a single conjugacy class of G or it splits into
two conjugacy classes of G (see Exercise 3.2). In the latter case, C is called a split
conjugacy class, and either conjugacy class in 671(C) will also be called split.
An element x € G is called split if the conjugacy class of x is split. If we denote
8~!(x) = {#,z¥}, then x is split if and only if ¥ is not conjugate to z%.

Denote by CG™ the quotient superalgebra of (C[é, éo] by the ideal generated
by z+ 1. Now z acts as £/ on any simple G-module by Schur’s Lemma. Thus, we
have an isomorphism of left C[G, Go]-modules

(3.7) C[G, Go] = C[G,Go) PTG,

according to the eigenvalues of z. Since z is central, (3.7) is an isomorphism of
superalgebras as well. Hence, CG™ is naturally a semisimple superalgebra. A spin
(C[G Go]-module M means a Z,-graded module over the superalgebra (C[G Go] on
which z acts by —1, and we will sometimes simply refer to it as a spin G-module
(with Z,-grading implicitly assumed). A spin C[é, 50]-module is then naturally
identified as a CG™-module.

Example 3.7. A double cover é,, (nontrivial for n > 4) of the symmetric group &,
was constructed by Schur (see [57]). The subgroup of G,, of index 2 in this case is
the alternating group A,. The quotient algebra CS; = CS,/(z+ 1) by the ideal
generated by (z+ 1) is call the spin symmetric group algebra. The algebra CS,;
is an algebra generated by #,,1,,...,#,—1 subject to the relations:

2 ..
ti=1, ttiati =tigititipr, tit;=—tjt;, |i—j|>1
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(A presentation for é,, can be obtained from the above formulas by keeping the
first two relations and replacing the third one by #;t; = z¢;t;.) The algebra CS is a
superalgebra with each #; being odd, for 1 <i<n—1.

Another major example of a double cover G will be presented in Section 3.3.1.

Proposition 3.8. (1) The number of simple spin C[é, 50] -modules equals the
number of even split conjugacy classes of G.

(2) The number of simple spin (C[é, éd-modules of type ) equals the number
of odd split conjugacy classes of G.

Proof. Let us denote by A = (C[C~}, 60], and further denote by m (respectively, §)
the number of simple spin A-modules of type M (respectively, type Q). The central
element z acts on Z(]A|) by multiplication with eigenvalues +1, and the (—1)-
eigenspace 2~ (JA|) can be naturally identified with Z(|CG™|); see (3.7). Hence,
using (3.7) and a decomposition of C[G, Gy as a direct sum of simples, we can
show by a similar argument as for Proposition 3.6 that

(3.8) dimZ~(|A[)g =m+q, dimZ (|A[); =4

List all conjugacy classes of G as follows: Dy,zD1,...,Dy,2Dy,Dyy1,. .., Dy,
where D;NzD; =0 for 1 <i < {and zD; = D; for {+ 1 < i < k. The corresponding
class sums, di,zd1, . ..,dg,zdg,doyy, - . . ,dy, form a basis for Z(|A]). It follows that
a basis for Z7(|A|) is {di —zd; | 1 <i < ¢}, and thus, dimZ~ (|A|) = ¢, which is
the number of split conjugacy classes of G. The proposition follows by a division
of the split conjugacy classes by parity and a comparison with (3.8). O

3.2. Schur-Sergeev duality of type A

In this section, we formulate the Schur-Sergeev duality as a double centralizer
property for the commuting actions of the Lie superalgebra gl(V') and the symmet-
ric group G, on the tensor space V¢, where V = C"I". We obtain a multiplicity-
free decomposition of V& as a U(gl(V)) ® C&4-module. The character formula
for the irreducible gl(V)-modules arising this way is given in terms of super Schur
polynomials. We then provide a Young diagrammatic interpretation of the degree
of atypicality of the weight A%. We further show that the category of polynomial
gl(m|n)-modules is semisimple.

3.2.1. Schur-Sergeev duality, I. Let g = gl(m|n) and let V = C™/" be the natural
g-module. Then V® is naturally a g-module by letting
Di(g) (Vi®VL®...QVy) =gV ®...QVvg+ (-—1)|g\'|v’|v1 REgV2®...Qvy
+...+ <_1)'g|'(|vl|+~-+|vd-l|)vl O ®...08.v4,

where g € g and v; € V is assumed to be Z;-homogeneous for all i.
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On the other hand, let
WYi((i,i4+1)vi®...Qvi®vii®...Qvy
(3.9) = (=)Mthnly @ @uiaoue.. Qv 1<i<d-1,
where (i, j) denotes a transposition in &, and v;, v;4| are Z;-homogeneous.

Lemma 3.9. The formula (3.9) defines a left action of the symmetric group S, on
V&4, The actions of (gl(m|n),®,) and (&4,¥4) on VE commute with each other.

Proof. It is straightforward to check that the formula (3.9) satisfies the Coxeter
relations for &, (see Exercise 3.5), and hence it defines a left action of &,.

The verification of the commuting action boils down to the case below when
d=2andi=1 (where welets=(1,2) € S, g € gl(m|n), and vi,v; € V):

Y (s)Pa(g)(vi ®V2)
=Wi(s)(gvi @va+ (=)l @ g.vy)
— (_1)(Igl+lwl)lvzlv2 Qg+ (_1)}gl-|w v I(}gl+IV2|)g_v2 v,
Dy (g)Wals)(vi @v2) = (—1)M 2 (gvy @ vy + (1)l @ gvy).
Clearly, W(s)®4(g) = ®u(g)Wals). O

We are going to formulate a superalgebra analogue of Schur duality.

Theorem 3.10 (Schur-Sergeev duality, Part I). Let g = gl(m|n). The images of ®,
and ¥4, ®4(U(g)) and ¥ 4(CS,), satisfy the double centralizer property, i.e.,
©4(U(g)) =Ends, (V°),
Endy () (V®Y) = ¥4(C&y).

Proof. By Lemma 3.9, we have ®,(U(g)) C Endg, (V®9).
We shall proceed to prove that ®;(U(g)) 2 Endg, (V®9).

We have a natural isomorphism of vector superspaces End(V)®¢ = End(V®4),
which is then made & ;-equivariant, as both superspaces admit natural G -actions.
This isomorphism allows us to identify Endg,(V®?) = Sym?(End(V)), the space
of Gg4-invariants in End(V)®?.

Denote by Y, 1 <k < d, the C-span of the super-symmetrization

O(x,...,x) 1= Z C.(X1®...0x ®I®d_k),
eSSy
for all x; € End(V). Note that ¥; = Sym“(End(V)) = Endg, (V&9).

Let ¥ = @y(x) = X4, I® ' @x @94, for x € g = End(V), and denote by X;,
1 <k <d, the C-span of %; ...%; for all x; € End(V).

Claim. We have Y, C X for 1 <k <d.
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Assuming the claim is true (in particular for k = d), then the theorem follows
thanks to

Ended(V‘g’d) = Yd C_: Xd g q)d(U(g))
We will prove the claim by induction on k. The case k = 1 holds, thanks to
O(x)=(d-1)x
Assuming that ¥;_; C X;_1, we have
(3.10) ®(x1,. .., Xk—1) - X € Xg.
On the other hand, we have
O(x1,...,Xe—1) - Xy
= 2 6.(x1 XR...Qxr_1 ®I®d_k+l) - X
[JJSGH]
d . .
=Y Y o ((xl ®...Qxp1 QI (18" g ®I®d—1)> ,
j=loe6,

which can be written as a sum A; +A,, where
k—1
Al = 2 m(xl, ey XjXfey o ,xk_l) €Y1,
j=1

and

d
Ay = z z G.(x1®...®Xk~1 ®I®]_k®xk®1®d_1)
Jj=koeG,

= (d—k+ 1)(6(X1,. . .,xk_l,xk).

Note that A; € Xp, since Y31 C Xi1 C X;. Hence (3.10) implies that A; € X,
and so, Yy C X;. This proves the claim.
Hence, ®;(U(g)) = Endg;, (V®¢) = Endg (V®9), for B := ¥4(CS,).

Note that B is a semisimple algebra, and so the assumption of Proposition 3.5
is satisfied. Therefore, we have Endy () (V®?) = ¥4(CS&y). O

3.2.2. Schur-Sergeev duality, II. Recall from Definition 2.10 that an (m|n)-hook
partition g = (u1, 142, . ..) is a partition with g, < n. Given an (m|n)-hook parti-
tion u, we denote by u+ = (tpm+1,Mm+2, - - .) and write its conjugate partition, which
is necessarily of length < n, as v = (ut) = (v1,...,V,). We recall the weight
defined in (2.4):

p“ =01 +...+Om + Vi€ + ...+ V€.
Denote by P;(m|n) the set of all (m|n)-hook partitions of size d and let
P(m|n) = Ug>oPg(m|n) = {A | A is a partition with A1 < n}.



3.2. Schur-Sergeev duality of type A 101

In particular, P;(m) = P,(m|0) is the set of partitions of d of length at most m.
Accordingly, we let
P4 ={M\|Ais a partition of d}.

We denote by L(A%) for A € P(m|n) the simple g-module of highest weight A? with
respect to the standard Borel subalgebra. For a partition A of d, we denote by
S* the Specht module of &4. It is well known that {S* | A € P4} is a complete
list of simple &;-modules. For example, S@ is the trivial representation 14, and
S04 = sgn, is the sign representation.

Theorem 3.11 (Schur-Sergeev duality, Part IT). As a U(gl(m|n)) @ CS4-module,
we have

(Crim® =~ P LA oSt
AEP (m|n)

We will refer to a U(gl(m|n)) ® C&4-module as a (gl(m|n), S )-module. Sim-
ilar conventions also apply to similar setups later on.

Proof. The proof of this theorem will occupy most of Section 3.2.2. Let V = C”I
with standard basis {e;|i € I(m|n)}, and let W = V& Note that ¥4(CS,) is a
semisimple algebra and all its simple modules are of type M. By Proposition 3.5
and Theorem 3.10, we have a multiplicity-free decomposition of the (gl(m|n),S4)-
module W of the following form:

w=v= @ Mes
APy (mln)

where L™ is some simple gl(m|n)-module associated to A, whose highest weight
(with respect to the standard Borel) is to be determined. Also to be determined is
the index set P (m|n) = {A+d | LM £0}.

First we need to prepare some notation.

Let CP(m|n) be the set of pairs v|u of compositions v = (vy,...,Vy) and y =
(M1, - .- 1n), and let

CPq(m|n) = {v|u € CP(m|n) | zvi+2#j =d}.
i J

We have the following weight space decomposition with respect to the Cartan sub-
algebra of diagonal matrices ) C gl(m|n):

(3.11) W= P W
V|ueCPy(m|n)
where W, has a linear basis ¢;, ®...®e;,, with the indices satisfying the following
equality of multisets:
{i, .. igy={1,...,1,....m,....m;1,....1,....n,...,n}.
S—— —— N

Vi Vm Hy Hn
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Introduce the following Young subgroup of S :
Gy =6y, X... X6y, X Gy X... xG,,.

The span of the vector ey, := et M. e®v’" ®e?” '®...®e," " can be identi-

fied with the one-dimensional GW—module 1, ®sgn,,. Here 1, is the trivial &,,-
module and sgn,, is the &,-module sgn, ®---@sgn, . Since the orbit Syey, spans

SHin

Wy |u» we have a surjective &4-homomorphism from Indg:" (1y ®sgn,,) onto Wy, by
I
Frobenius reciprocity. By counting the dimensions we have an & -isomorphism:

(3.12) W, = Indg! (1, @sgn,).

Let us denote the decomposition of the &,-module W, |, into irreducibles by

Wyl = @KN# , for Ky, € Zs.

Let A be a partition that is identified with its Young diagram. Recall I(m|n)
is totally ordered by (1.3). A supertableau T of shape A, or a super A-tableau
T, is an assignment of an element in /(m|n) to each box of the Young diagram A
satisfying the following conditions:

(HT1) The numbers are weakly increasing along each row and column.
(HT2) The numbers from {1,...,m} are strictly increasing along each column.

(HT3) The numbers from {1,...,n} are strictly increasing along each row.

Such a supertableau 7 is said to have content v|u € CP(m|n) if i (1 < i< m)
appears v; times and j (1 < j < n) appears y; times. Denote by HT(A,v|u) the
set of super A-tableaux of content v|u. In the case n = 0, a supertableau becomes a
usual (semistandard) tableau.

Lemma 3.12. We have K y|, = #HT(A, v|u).

Proof. Recall that Indg;‘lp (1y®@sgn,) = @, K?\.,V[yS}‘

First assume that 4 = 0, and we prove the formula by induction on the length
r={(v). A (semistandard) tableau T of shape A and content v gives rise to a
sequence of partitions 0 =A% CA! C ... C A" = A such that A’ has the shape given
by the parts of T with entries < i, and N /A1 has v; boxes for each i. This sets up

a bijection between HT(A, V) and the set of such sequences of partitions. Denote
di=d—-v,and V= (vq,...,v,_1). We have Indg‘f’ 14, = @pra, K, 7P, where
K,5 = #HT(p,Vv) by the induction hypothesis. Now the induction step is simply

P:
the following representation theoretic version of Pieri’s formula (A.22) (which can

be seen using the Frobenius characteristic map and (A.26)): for a partition p - dj,

ndg! e, (S ®1y,) @Sx
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where A is such that A/p is a horizontal strip of v, boxes (that is, A/p is a skew
diagram of size v, whose columns all have length at most one).

Then using the above special case (for u = 0) as the initial step, we complete
the proof in the general case by induction on the length of g, in which the induction
step is exactly the conjugated Pieri’s formula. O

Lemma 3.13. Let A € P, and v|u € CP4(m|n). Then Ky, ), = O unless A € Pa(m|n).

Proof. By the identity K ), = #HT(A,v|u), it suffices to prove that if a super
A-tableau T of content v|u exists, then Ayt < 1.

By applying the supertableau condition (HT2) to the first column of 7', we
see that the first entry k € I(m|n) in row (m + 1) satisfies k > 0. Applying the
supertableau condition (HT3) to the (m+-1)st row, we conclude that A1 <n. O

Recall that Ba(m|n) = {A+d | LM 5 0}. It follows by Lemma 3.13 that
PBa(mln) C Pa(m|n). On the other hand, given A € Py(m|n), clearly a super A-
tableau exists; e.g., we can fill in the numbers 1,...,7 on the first m rows of A
row-by-row downward, and then for the remaining subdiagram of A, we fill in the
numbers 1,...,n column-by-column from left to right. This distinguished super
A-tableau will be denoted by T;,. Hence, we have proved that

PBa(m|n) = Py(mn).

For a given A € Py(m|n), we have LM = Djucers(mpn) LE/}ILL Among all the
contents of super A-tableaux, the one for 7, corresponds to a highest weight rela-
tive to the standard Borel subalgebra of g by the supertableau conditions (HT1-3).
Hence we conclude that LM = L(AY), the simple g-module of highest weight AL
This completes the proof of Theorem 3.11. O

Remark 3.14. (1) For n = 0, the Schur-Sergeev duality reduces to the usual
Schur duality. If in addition d = 2, then (C™)®? = §2(C™) & A*(C™). This
fits well with the well-known fact that, as gl(m)-modules, S?(C™) and
AZ(C™) are, respectively, irreducible of highest weights 28, and &; + &.

(2) If d < mn+m+n, then P;(m|n) is the set of all partitions of d, and every
simple &4-module appears in the Schur-Sergeev duality decomposition.

(3) For d = 2, the Schur-Sergeev duality reads that (C"")®? = $H(Cmm @
A%(C™"), where we recall that 8% and A? are understood in the super
sense. In particular, as an ordinary vector space,

S2(C™m) = S2(C™) @ (C" @ C") ® AX(CT).



104 3. Schur duality

3.2.3. The character formula. Let x = {xi,...,x,} and y = {y1,---,yn} be two
sets of independent variables. We shall compute the character of the gl(m|n)-
module L(A!):

chL(A) :=tr IL(M) coxEmy By z dimL(kb)vlny}"’y;".

VIUECP(m]n)

Recall that my denotes the monomial symmetric function associated to a parti-
tion v (cf. Appendix A), and that hs, denotes the super Schur function (A.37).

Theorem 3.15. Let ) be an (m|n)-hook partition, i.e., a partition with hpy; < n.
Let x = {x1,...,xn} and y = {y1,...,y,}. Then the following character formula
holds:

chL(A") = hsy (x; ).

Proof. It follows from Theorem 3.11 and (3.1 1) that

D W= @ LpHhest
V|ueCPy(mln) AEPy(m|n)
Let us apply simultaneously the trace operator tr | L) x1 cxEpnyEI L yEm and

the Frobenius characteristic map ch® (see Appendix A.1.4) to both sides of the
above isomorphism. Then, summing over all d > 0 and using (3.12) and (A.26),
we have that

Y mEmOh(e) = Y chL(A)sy(2),
V|u€CP(min) AeP(m|n)
where z = {z1,2,,...} is infinite. By the identities in (A.11), we have

g () (3 (2 ew)—HHH””Z"— Y sy ).

V|ueCP(m|n) =li=1 j=1 Xilk AEP(m|n)
Now the theorem follows by comparing the above two equations and noting the
linear independence of s, (z). g

Given a super A-tableau T of content v|u € CP(m|n), we denote by
(ely) " s= oy o
We have the following alternative character formula.

Theorem 3.16. Let A be an (m|n)-hook partition. Then,
(3.13) chL(A%) = ¥ (xly)",
T

where the summation is taken over all super A-tableaux T. Also, we have
(3.14) ChL(AT) = 3 #3CT (A, v|u) my (x)my(y),

v,u
where the summation is over pamtzons Vv and p of length at most m and n, respec-
tively, such that |v|+ |u| =



3.2. Schur-Sergeev duality of type A 105

Proof. The formula (3.13) is simply a reformulation of Theorem 3.15 by the defi-
nition of super Schur functions in (A.37) and the combinatorial formula for (skew)
Schur functions (A.19).

Let us collect the same monomials together in the sum (3.13). Regarding LAY
as a module over gl(m) x gl(n), we observe that chL(AY) is symmetric with respect
to x1,...,X, and symmetric with respect to y1,...,y,. Hence, we must have

#HT (A, V) = #HT (L, V)

if V and 1 are compositions obtained by rearranging the parts from v and g, respec-
tively. Now (3.14) follows from this observation and (3.13). O

Corollary 3.17. The following weight multiplicity formula for the module LA
holds:

dim L(A")yy, = #HT(A, v|).

Example 3.18. The standard basis vectors for 8>(C"1") are ¢; ® e + (—1)l/le; ®
e;, where i, j € I(m|n) satisfy i < j < 0,i <0< j,or 0 <i < j(cf. Remark 3.14 (4)).
They are in bijection with the supertableaux of shape A = (2):

iJ

This is compatible with the isomorphism §2(Cmn) =2 L(gl(m|n),28y).

3.2.4. The classical Schur duality. We sketch below a more standard argument
for the standard Schur duality on W = (C")®¢, which emphasizes the decomposi-
tion of W as a gl(n)-module instead of as an &;-module.

Given a composition (or a partition) u of d of length < n, we denote by W, the
p-weight space of the gl(n)-module. Clearly W, has a basis
(3.15) e, ®...Qe,, where{i1,....ig} ={1,...,1,...,n,...,n}.

——
H Hn

As a (gl(n),84)-module,
W= PLM) U,
A

where U := Homg,) (L(A),W) = Wf (the space of highest weight vectors in W
of weight A). Only A € P,(n) can be highest weights of gl(n)-modules that appear
in the decomposition of (C")®¢, and every such A indeed appears as L(2) is clearly
a summand of the submodule AM (C*) @ A2(C") ®--- of W.

Note that CP,(n) has two interpretations: one as the polynomial weights for
gl(n) and the other as compositions of d in at most n parts. A remarkable fact is
that the partial order on weights induced by the positive roots of gi(n) coincides
with the dominance partial order > on compositions.
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Since W =P, W, =B, 5.,5,L(A), U, we conclude that, as an S 4-module,
(TRAd AA>p u

(3.16) W, = P dimL(A), U™

A>u
On the other hand, G, acts on the basis (3.15) of W, transitively, and the stabilizer
of the basis element e @ ... ® g™ is the Young subgroup &,,. Therefore we
have
(3.17) W, 2 Indg?1, = D Ky,S",

A>u

where K;,, is the Kostka number that satisfies K = 1. It is well known that Ky, is
equal to the number of semistandard A-tableaux of content .

By the double centralizer property (see Proposition 3.5 and Theorem 3.10),
U has to be an irreducible G,4-module for each A. We compare the interpreta-
tions (3.16) and (3.17) of W, in the special case when u is dominant (i.e., a par-
tition). One by one downward along the dominance order starting with u = (d),
this provides the identification U# = S* for every u, and moreover, we obtain the
well-known equality dim L(A),, = Kj,,.

3.2.5. Degree of atypicality of A%. In this section, we provide a Young diagram-
matic interpretation of the degree of atypicality of the weight A%, for an (m|n)-hook
partition A.

Up to a shift by —%(m +n+ 1)1m|,, (which is irrelevant in all applications), the
Weyl vector p for the standard positive system of gl(m|n) from Lemma 1.22 can

be written as
n

m
(3.18) p=D(m—i+1)§;- Y je;.
i=1 j=1
We introduce an integer iy, with 0 < i) < min{m,n}, to stand for the smallest
nonnegative integer i such that the (m — i,n — i)-th box belongs to the diagram A.

Example 3.19. Let A = (7,4,2,2,1,1) withm =4 and n = 5. Then i, is the number
of (m—i,n—i) boxes that do not lie in the diagram of A, for i = 0,1,...,min{m,n}.
Such boxes are marked with crosses in this example. So i) = 2.

n—i n

m—i,
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Lemma 3.20. For 0 < j<i,—1, we have Ap—j <n—ip <Ay

Proof. The lemma is clearly equivalent to the claim that A, _;, 41 <n—ij < Am—iy.-
The latter is evident from the diagram in Example 3.19, as i) is equal to the number
of boxes of coordinates (m — i,n —i) that do not lie in the diagram of A, for i =
0,1,...,min{m,n}. O

Recall the degree of atypicality #u for a weight u € b* from Definition 2.29.
Proposition 3.21. Let A be an (m|n)-hook partition. Then we have i) = #AL
Proof. We compute by (3.18) that
(3.19) M+p= 2x+m—z+1 i (J—Vj)e

i=1 =1

We observe that the sequence {A; +m, Ay +m—1,..., A, + 1} is strictly decreasing,
while the sequence {1 —V;,2—Vy,...,n—V,} is strictly increasing.

Suppose that i = 0. This is equivalent to saying that A,, > n, by Lemma 3.20.
Thus

Aitm—i+1>Ay+1>j—vj, Vi<j<ml<i<m.
It follows by Definition 2.29 that #Af =0

Now suppose that i > 0. Then, we have A,, =n— jo < n for some 0 < jo <n.
This implies that v, = - -+ =V, jo+1 = 0, and thus

{n—j0+1—V,,_jOH,...,n—V,,}:{n—jo+1,...,n}.
It follows by Lemma 3.20 that, for 0 < j < i) — 1,
n—jot+l1=An+1<Apj+j+1<n—i+j+1<n

Thus, in the set {n— jo+1—Vp—jo+1,...,n—Va} = {n—jo+1,...,n}, there is a
unique element that is equal to A, ; + j + 1,for0<j<ip—1. Hence A > 0y

Finally, fori = 1,...,m — i, Lemma 3.20 implies that
Ni+m—i+1>hy iy +ir+12>(n—ip)+ir+1=n+1

Thus any such A; + m—i+1, fori =1,...,m —ij, cannot be equal to an element
oftheformj—vj,forj:1,...,n,whence#7th=i;\. O

In light of (3.19), we define
Hy={A+m—i+1|1<i<m},
TM:{j_lelSan}, Im=HmﬂT;"u.

The following corollary can be read off from the proof of Proposition 3.21.
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Corollary 3.22. Let A be an (m|n)-hook partition. Then L consists of precisely
the smallest #\! numbers in Hy;, and also, Iy consists of precisely the largest #\!
numbers in {1,2,...,n} that are not in Ty; \ L.

Example 3.23. Let A = (7,4,2,2,1,1) with m =4 and n = 5 as in Example 3.19.
Then Hy, = {11,7,4,3},Ty; = {—1,2,3,4,5}, and I;; = {3,4}. This agrees with
Corollary 3.22.

3.2.6. Category of polynomial modules. In this subsection g = gl(m|n) and L(V)
is the irreducible highest weight g-module of highest weight v € h* with respect
to the standard Borel subalgebra. Recall from Section 2.2.2 the notion of central
characters y : Z(g) — C.

Recall that, given a Lie (super)algebra G and G-modules M and N, the vector
space Exté (M,N) classifies (up to equivalence) the short exact sequences of G-
modules of the form

(3.20) 0—N—E—M-—0.
Proposition 3.24. Let A, u be (m|n)-hook diagrams. Then,
(1) xas = Xy tf and only if L = p.
(2) Extyyy (L), L(gh)) = 0.
Proof. (1) Suppose that y(;; = X,s- Then by Theorem 2.30 we have
H:\IL; = H, \IHQ, Tu\Ly = Iy \I#u.

Thus, it suffices to show that A can be reconstructed from the sets Hy; \ Iy and
Th: \ ls. To that end, note that A’ + p and A! can be recovered from the sets H,; and
T, which in turn are determined by the three sets Iz, Hy: \ I; and Ty; \ Iz But by
Corollary 3.22 the set I,; is determined from the set 7;; \ I;;. This proves (1).

(2) Consider a short exact sequence of the form (3.20) with M = L(?»h) and
N = L(i*). First assume A # . It follows by (1) that there exists a central element
z such that X3:(z) # %, (2)- Then, ker(z — ¥y:(z)) is a nonzero proper submodule
of E, which must be isomorphic to M as it cannot be isomorphic to N. Hence the
short exact sequence splits. Now assume A = u. Then by weight considerations, the
two-dimensional pf-weight subspace of E has to be the highest weight space. Thus
E contains two simple highest weight submodules of highest weight ! that must
intersect trivially. Hence the short exact sequence splits in this case as well. g

Definition 3.25. A weighty=73Y", a;5;+ 2_1 bjg; is called a polynomial weight
for gl(m|n) if all a;,b; are nonnegative integers. A gl(m|n)-module M is called a
polynomial module if M is h-semisimple and every weight of M is a polynomial
weight.

Proposition 3.26. An irreducible highest weight gl(m|n)-module M is a polyno-
mial module if and only if M = L(1") for some (m|n)-hook partition p.
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Proof. Assume that M 2 L(u?), for some (m|n)-hook partition u. Denote by d =
lu|. Then, by Theorem 3.11, L(i) is a direct summand of (C™"")®¢, which is
clearly a polynomial module.

Now assume that M is an irreducible polynomial gl(m|n)-module, which by
Definition 3.25(3) is isomorphic to L(A) for some A = 32| A;d; + X bj€;, with
all A, bj € Z. Since L(gl(m) @ gl(n),A) is a polynomial module, we must have
Ai > Ait1 and bj > bjyq, for all possible i, j.

We shall proceed to complete the proof by contradiction. Suppose that A # i,
for any (m|n)-hook partition u. Then we have A,, = k— 1 and by > 0, for some
1 <k <n. We apply the sequence of odd reflections corresponding to the odd
roots 8, —€1,...,0,, — € to obtain a new Borel subalgebra b from the standard
one. By applying Lemma 1.40 repeatedly, we compute the b- -highest weight of M
tobe h=A— (k—1)0p+&1+.. e Observe by a repeated use of Lemma 1.30
that §,, — & is a simple root of b. Let w; ; be a nonzero b- hlghest weight vector of

M. Then the vector e_g, ¢, w; is nonzero in M, and its weight A— O + € has —1
as the coefficient for J,,, thanks to A,, = k— 1 and by > 0. This contradicts the
assumption that M is a polynomial module. (|

Theorem 3.27. The category of polynomial gl(m|n)-modules is a semisimple ten-
sor category.

Proof. Let M be a polynomial gl(m|n)-module. For v € M note that U (gl(m|n)5)v
is finite-dimensional. Thus, U{(g{(m|n))v is also finite-dimensional, and hence it is
a direct sum of irreducible polynomial modules by Propositions 3.24 and 3.26. It
follows that M is a sum of irreducible polynomial modules, and hence it is a direct
sum of irreducible polynomial modules.

It remains to show that the tensor product of any two irreducible polynomial
gl(m|n)-modules is a direct sum of irreducible polynomial gl(rm|n)-modules. To
that end, note that by Theorem 3.11 any irreducible polynomial module is a direct
summand of (C"")#4_ for some d > 0, and furthermore any such tensor power is
a direct sum of irreducible polynomial modules. Now take L(A?) C (C™")®? and
L(ut) C (C™")®! for (m|n)-hook partitions A and . Then

LAY @ L(iF) C (Cim)®k @ (Ciny®! o< (Cminy@d+,
Since (C™")@4+! is a direct sum of irreducible polynomial modules, so is the sub-

module L(A") ® L(u?). O

3.3. Representation theory of the algebra J{,

In this section, we develop systematically the representation theory of an algebra
Hp, which is equivalent to the spin representation theory of a distinguished double
cover B, of the hyperoctahedral group B,. We classify the split conjugacy classes in
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B,,. We then define a characteristic map using the character table for the simple spin
modules of B, analogous to the Frobenius characteristic map for the symmetric
groups. The images of the irreducible spin characters of B, under the characteristic
map are shown to be Schur Q-functions (up to some 2-powers).

3.3.1. A double cover. Let IT,, be the finite group generated by a; (i = 1,...,n)
and the central element z subject to the relations

(321) a,-2:1, ZZ‘—‘I, a,-aj:zajai (l#])

The symmetric group &, acts on IT, by o(a;) = ag(i)s © € S,. The semidirect
product §n :=1I1, ¥ &,, admits a natural finite group structure and will be called
the twisted hyperoctahedral group. Explicitly, the multiplication in B, is given
by

(a,0)(d',0') = (ac(d),60"), a,d €1,,0,06 € &,.

Since IT,/{1,z} ~ Z3, the group B, is a double cover of the hyperoctahedral
group By, := Zj x &, and the order |B,| is 2"*!n!. That is, we have a short exact
sequence of groups

1 —{l,2} — B, 2B, — 1,

where 8, sends each g; to the generator b; of the ith copy of Z; in B,,.

We define a Z,-grading on the group B, by setting the degree of each q; to
be 1 and the degree of elements in S, to be 0. Hence the group B, fits into the
general setting of G in Section 3.1.4. The group B, inherits a Z-grading from B,
via the homomorphism 8,. This induces parity epimorphisms p : B, — Z, and
D B, — Zz.

The conjugacy classes of the group B, (a special case of a wreath product)
can be described as follows, cf. Macdonald [83, I, Appendix B]. It is conve-
nient to identify Z; as {+, —} with + being the identity element. Given a cycle
t={(i1,...,im), we call the set {i1,. .., iy, } the support of ¢, denoted by supp(z). The
subgroup Zj of By, consists of elements of the form by := [];.; b, for I C {1,...,n}.
Each element b;6 € B, can be written as a product of the form (unique up to re-
ordering)

b]G = (b[lcl)(bIZO'?_) v (b[ka),

where 6 € &, is a product of disjoint cycles 6 = 6;...6, and I, C supp(o,) for
each 1 <a <k; b;,0, is called a signed cycle of ;6. The cycle-product of each
signed cycle by, 6, is defined to be the element Ilics, bi € Z, (which can be con-
veniently thought of as a sign + or —). Let mi+ (respectively, m; ) be the number
of i-cycles of b; with associated cycle-product being + (respectively, —). Then
pt = (i’"i+),-21 and p~ = (i" );>1 are partitions such that |p*|+ |p~| = n. The pair
of partitions (p*,p~) will be called the type of the element b;G.
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The following is the basic fact on the conjugacy classes of By, cf. [83, I,
Appendix B]. We leave the proof to the reader (Exercise 3.9).

Lemma 3.28. Two elements of B, are conjugate if and only if their types are the
same.

We shall denote by Cy+ o the conjugacy class of type (p*,p™). Note that if
bi6 € Cy+ p-, then Cp+ - is even (respectively, odd) if 1| is even (respectively,
odd).

Example 3.29. Let T = (1,2,3,4)(5,6,7)(8,9),0 = (1,3,8,6)(2,7,9)(4,5) € Go.
It is straightforward to check that both x = ((+,+,+, =+ +,+,—+, —),7) and
y=((+,-,—,—+,—,—,—,+,—),0) in By have the same type

(P+,p”) = ((3)3(4’271))'

Thus, x is conjugate to y in Bjo.

3.3.2. Split conjugacy classes in B,. A partition A = (Aq,...,A¢) of length £ is
called strict if A; > A2 > ... > Ay, and it is called odd if each part A; is odd. We
denote by SP, the set of all strict partitions of n, and by O, the set of all odd
partitions of n. Moreover, we denote

sP=J8P,  OP=[JOP.

n>0 n>0

Recall P, denotes the set of all partitions of n. Let
Pt = {AeP,|L(A)iseven},
P = {reP,|L(A)is odd}.
Given ¢ € &, of cycle type u, we denote by
d(c) =n—L(u).
For an (ordered) subset I = {iy,i2,...,in} of {1,...,n}, we denote
ar = Qiiy...ip, = iy Qiy - - - Qi -

It follows that p(a;) = |I| mod 2. If INJ =0, then aja; = 2"WVlaza;. Also we can
easily show by induction that

(3.22) Giriyeoim = 27 0)5(02) . 5(i)

for a permutation s such that s fixes the letters other than iy, 2,.. ., Im-

We can write a general element of B, as
k
Fars = (aps). . (ar,sq),

where 5 = 51 ...5, is a cycle decomposition of s and I; C supp(s;) for each j. We
denote by J¢ the complement of a subset J C {1,...,n}.
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Lemma 3.30. Let ars = (ays1)... (a]qsq) be an element of B, in its cycle decom-
position. Let J C supp(s\) NI. Then

)-1 _ Zd(s;)+fju1\

(ass1)(ars)(ays ajs.

Proof. Observe that a7 = ZWI=DH/2 for any subset /. For £ > 1 we have

(azs1)(agsi)(aysy) ™! :zwl"lalksk.
Therefore it remains to see that
(azs1)(ans1)(ags))™! = z(m_l)U'/zaJasl(1]U1)sl
— Z(UI—1)\Jl/2+d(m)aja(]]w)sl
— Z(\JI—I)IJJ/2+d(s1)+Il\lll|a3a1|sl
— z“”I‘Hd(“)ahs],
where we have used the fact that supp(s;) 2 I; UJ and (3.22). O

Theorem 3.31. The conjugacy class C +,p- in By splits if and only if
(1) for even Cy+ -, we have p™ € OP, and p~ =0,
(2) for odd Cyy+ -, we have p* =0 and p~ € 8P,

Proof. Assume that C,+ - is an even conjugacy class such that p™ ¢ OP. Then

0,! (Cp+ p-) contains an element azs with a signed cycle decomposition of the form

ars = 8 (GIZSQ) e (aIFsp),

where 51 = (1,2,...,r) for r =2k even, I; = 0 and |I| is even. Consider the element
x=aj. (1,2,...,r) € B,. By Lemma 3.30 we have

x(ags)x ! = D2k

s = zays.
Therefore, if an even conjugacy class Co+ p- splits, then p* € OP.
Assume that Cy+ - is an even conjugacy class such that p~ # 0. Then p~
contains at least two parts, and 6, ' (Cy+ ,- ) contains an element of the form
ars = (a; s1)(ai,s2)(ars3) ... (alps,,),
where i| € supp(s1),iz € supp(sz). Then
(ai,s1) ' ars(a, s1)
= (ais1)”" (ai s1a1,82) (@i, s1)(ans3) - .. (a1,5p)
ai,s2(ais1)(ans3) .. (ag,sp)
2(ai s1)(ai,s2)(ans3) . .. (ar,sp)

= Z24ajSs.

Hence, if an even conjugacy class Cy: ,- splits, then p~ = 0. Together with the
above, we have shown that an even split conjugacy class should satisfy (1).
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Now assume that Cy+ - is an odd conjugacy class such that pT # 0. Then,
9, (Cp+p-) contains an element a;s with signed cycle decomposition of the form

ars = (s1)(aps2) ... (a1,5q),
where I; = 0 and |1| is odd. Let J = supp(s1). Then, by Lemma 3.30,

I A(WI=D+IV]

(ays1)(ars)(azs1)” ars = zaps,

since |1| is odd. Hence if Cy+ - is an odd split conjugacy class then pT =0.

Next, assume that C,+ - is an odd conjugacy class such that p~ contains two
identical parts. Then 9, ! (Cp+ p-) contains an element of the form

ars = (a,‘l (i] ) i2, “eny ik))(ajl (jl,jz, e ,jk)) Ce (alqsq).
Consider the element t = (i1, ji) ... (i, jk). We have

-1

t(a1s)t =auns =aj (j],...,jk)ail(il,. ..,ik) ... =2Zajs.

Hence, if an odd conjugacy class Cy+ - splits then p~ € SP. Together with the
above, we have shown that an odd split conjugacy class satisfies (2).

Assume that (1) holds. Then 6;;! (Cp+ ) contains an element s = s1...55 € &,
with each s; being an odd cycle. Suppose on the contrary the conjugacy class Cy+ g
does not split, that is, (ast)s(ast)~! = zs for some element a;z. Then (ast)s =
zs(ayt), and so zag(yy = a;, which implies that supp(s) € J. On the other hand,
ag(yy = #9a; = ay by (3.22), since s is a product of disjoint odd cycles. This
contradiction implies that the conjugacy class Cy+ g splits.

Now assume that we are given an odd conjugacy class Cg - with p— strict
as specified in (2). Thus 8, '(Cp,-) contains an element azs = (a;,;51) ... (ai,5q),
where ¢ is odd and i; € supp(si). Suppose on the contrary that the conjugacy class
Copp- does not split, that is, (at)(ars) (ast)~! = z(ays) for some element ayr. It
follows that # commutes with s and hence t = s7' .. .57 for 0 < r; < order(s;), since
the cycle type of s is a strict partition. Write a;t = (at1)...(az,ty) With t,, = s7.
As in the proof of Lemma 3.30 we have

(ast)(aisi)(agt) ™

= (anti)(ann) - (ag,te)(ais1)((ant) - (agty)) " (ann) ™!

= ZVHJI|(ajltl)(a,'lﬁ)(dhfl)_l’

which must equal a;, 51 up to a power of z. Set (ayt1)(ais1)(ant) ™ = 2*ai s
where * is 0 or 1. We claim that * is always 0. Note that aj a, ;) = 27 @i, dg, (1)
and so J; differs from s1(J;) by one element. Without loss of generality, we let
ih=1,5=(1,2,...,k), 1 ={1,2,...,r} with 0 < r < k. Then we have

* *
ay...ay ar+1 :ajla,l(,-l) =2 a,-lasl(Jl) =7 ay-ay...ar41,
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which implies that r; = r and * = 0. Therefore, (ast)(ai,s))(agt) ! = zm"jl‘a,-ls],
and similarly we have

(aJt)(a[s)(ajt)‘l = (ayt)(aysy)... (a;qsq)(ajt)"
— bt i) gy a W —

since q is odd. This is a contradiction. U

For oo € OP, we let C be the split conjugacy class in B, which lies in 0, (Co0)
and contains a permutation in &, of cycle type o Then zC is the other conjugacy
class in 0, 1(Cy,p), which will be denoted by Cg. Recall from Appendix A that z,
denotes the order of the centralizer of an element of type ot in &,,. The order of the
centralizer of an element of a given cycle type is known explicitly for B, (and actu-
ally for any wreath product, cf. Macdonald [83, I, Appendix B]). The next lemma
follows from this classical fact.

Lemma 3.32. Let 0. € OP,. The order of the centralizer of an element in the
conjugacy class C} of B, is?2! (@) 2. Thus, the order of the conjugacy class € is
ie-f—‘ = plon—E(o ) 1

3.3.3. Aringstructureon R™. Let us introduce a basic example of superalgebras.

Definition 3.33. The Clifford algebra C, is the C-algebra generated by ¢;, for
1 <i <n, subject to relations

(3.23) =1,  cici=—cjc; (i#)).

Letting |¢;| = 1, Vi, C, becomes a superalgebra also called the Clifford superalge-
bra.

The symmetric group &, acts as automorphisms on the algebra G, naturally.
We will refer to the semi-direct product 3, := €, x CS,, as the Hecke-Clifford
algebra, where

(3.24) O¢; = Cq(;)O, Yo € G,.
Note that the algebra J{, is naturally a superalgebra by letting each ¢ € G,, be even
and each ¢; be odd.

Recall the group I1, from (3.21). The quotient algebra CI1,/(z+ 1) of the
group algebra CI1, by the ideal generated by z + 1 is isomorphic to the Clifford
superalgebra C, with the identification &; = ¢;,1 < i < n. Hence, we have an iso-
morphism of superalgebras

(3.25) CB,/(z+1) 2 H,.
Recall our convention from Section 3.1.1 that a module of a superalgebra is

always understood to be Z;-graded. We shall denote by H,-mod the category of
modules of the superalgebra H, (with morphisms of degree one allowed). Thanks
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to the superalgebra isomorphism (3.25), H,-mod is equivalent to the category of
spin En-modules. (Recall from Section 3.1.4 that a spin En-module means a Z;-
graded B,-module M on which z € B, acts as —1.) We shall not distinguish these
two isomorphic categories below, and the latter one has the advantage that one can
apply the standard arguments from the theory of finite groups directly.

Denote by R, = [H,-mod] the Grothendieck group of H,-mod (cf. Sec-
tion 3.1.1). As in the usual (ungraded) case, we may replace the isomorphism
classes of modules by their characters and then regard R, as the free abelian group
with a basis consisting of the characters of the simple spin B,-modules. Let

R :=PR,, Ry:=PQezR,,
n=0 n=0

where it is understood that R; = Z. We shall define a ring structure on R~ as
follows.

Denote by gmm the subgroup of E,,,Jrn generated by G,, X &, and I1,,,,,. Then
B, can be identified with the quotient group By x By/{(1,1),(z,2)}, where B,, x
B, denotes the product group in the super sense, i.e., elements from B,, and B,
supercommute with each other.

Given ¢ € R, and y € R, we define the spin character eXy of Em,n by letting

oxy(x,y) = 0(x)v(y),

where (x,y) is the image of (x,y) in By, , = (B x B,)/{(1,1),(z,2)}. We define a
product on R~ by

¢~y =Indy" " (%),

where ¢ € R,,, W € R, for all m,n, and Ind denotes the induced character. It
follows from the properties of the induced characters that the multiplication on R~
is commutative and associative.

Remark 3.34. Equivalently, the multiplication in R~ can be described as follows.
Let H,,, be the subalgebra of H,,,, generated by Cmin and 6, x S,. For M €
H,,-mod and N € H,-mod, M ® N is naturally an 3, ,-module, and we define the
product

[M] - [N] = [Honsn @31, (M @N)],
and then extend it by Z-bilinearity.
For ¢ € R, , we shall write 9o, = @(x) for x € €, o € OP,; hence @(y) = —@q

for y € C. Given two partitions o, B, we let o.U denote the partition obtained by
collecting the parts of o and {} together and rearranging them in descending order.
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Lemma 3.35. Let 9 €R;,, y €R;,, andy € OP,,1,,. Then
z
@wvhy= ¥ —Louyp

ACOPy BcOPy Zalp
ouUp=y

Proof. It can be checked directly that
¢ NBun= U cgxef.
o,BeOP,aUB=y

It follows from this, Lemma 3.32, and the standard induced character formula for
finite groups that

‘§m+n’ A
@ W)y = =""— 3 (oXy)(w)
|Bm7n |e¢|wee¢
21+Z(Y)ZY

= oo z (Pa\lfﬁ|€+|'|e+|
2t imin! o,BeOP,aUB=y * P

_ Ly 2 Am—=L(0) 1, j5n—E(B) 1
e rarrr—" vy Zo M2 Z n!(pa\yﬁ
mln12mn=t(1) o,Be0P, U=y * P

%y
= 2 _(pOCWBa
o,BeOP,oaUB=y <O<P
where we have used £(y) = ¢(a) + £(B). O

3.3.4. The characteristic map. Recall from (A.45) in Appendix A that the ring
I'g := Q®zT has a basis given by the power-sum symmetric functions py for
p € OP. Moreover, I'g is equipped with a bilinear form (-, -) given in (A.55).

We define the (spin) characteristic map
ch: R@ — Iy
to be the linear map given by

ch(p) = Z 2 Qabos, foro €eR,,n>0.
ac0P,

Proposition 3.36. The characteristic map ch : R@ — I'g is an algebra homomor-
phism.
Proof. For ¢ € R, y € R, we have by Lemma 3.35 that

chio-y) = 3 z,'(¢-¥)ypy
veOP

_1 Z
= Y Y ' eawspy = ch(e)ch(y),
Y ope0Pop=y S0

where we have used py = popp. O
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Denote by
([M],[N]) = dimHomg (M,N)

for spin B,-modules M, N. This defines a bilinear form (-, ) on R;, by Z- bilinearity.
The Homy here can be either understood as in the category of B,-modules (with
degree one morphisms allowed) or in the category of (non-graded) B,-modules,
and they give the same dimension. In light of super Schur’s Lemma 3.4, this is
reduced to a straightforward verification in the case when M = N is simple of type
Q.

Then R™, and hence also Rg, carry a symmetric bilinear form, still denoted by
(,-), which is induced from the ones on R, for all n, such that R, and R, are
orthogonal whenever n # m.

Lemma 3.37. For ¢,y € R, we have

2 27 Zoc "oV
o€OP,

Proof. Note that x € CF implies that x~! € Cf. Also note that ¢(x) = 0 unless x is
even and split. By Lemma 3.32 and applying the standard formula for the bilinear
form on characters of a finite group, we have

(oy) = > o0 ()
lB leB
1 -
= omip Z (ICg1PaWo + Cq |PaWa)
Coe0P,
1 - _
T Z 215 9oV
toe0P,
= Z 2%(0‘)2&1@&\1’&-
ac0P,

O

Proposition 3.38. The characteristic map ch : Rg — I'g is an isometry, i.e., it
preserves the bilinear forms (-,-) on Ry and Tg.

Proof. This follows from a direct computation using Lemma 3.37 and (A.55) from
Appendix A: for ¢,y € R/,

(ch(),ch(w)) = X 2z (PosPp)@aVp
o,Be0?P,
= Y 22 Dz0uva = (0,¥).
acO0P,
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3.3.5. The basic spin module. The algebra 3, acts on the Clifford superalgebra
G, by the formulas

ci.(ciciy...) =cicijciy..., 0©.(cici,...) = Co(iy)Co(ia) - -+ »

for 0 € 6,. The H,-module C, is called the basic spin module of En. Let o =
O1...0¢ € G, be a product of disjoint cycles with the cycle length of o; being u;,
fori=1,...,£. If I is a union of some of the supp(c;)’s, say I = supp(c;, ) U...U
supp(0;, ), then o(cy) = (—1)*1 =3¢, If I is not such a union, then o(c;) is
not a scalar multiple of ¢;.

Lemma 3.39. The value of the character E" of the basic spin By-module at the
conjugacy class Cf, is given by

(3.26) & =24%" qeop,

Proof. Let o= (01, 0,...) € OP, and {(0) = /. Let 6 = G ...0, be an element in
&, of cycle type o The elements ¢; := [];; ¢; (which are defined up to a nonessen-
tial sign) for / C {1,...,n} form a basis of the basic spin module C,. Observe that
Gc¢y = ¢y if I is a union of a subset of the supports supp(c,) for 1 < p < £(a);
otherwise Gc; is equal to ¢y for some J # I. Hence the character value £, which
is the trace of 6 on G, is equal to 2¢(®). O

Below we will freely use the statements in Appendix A.3 on Schur Q-functions
Q- Recall the symmetric function g, defined by the generating function (A.42),

which is
14 x;t
gnt" = :
’g(’) " g 1 —X;t
Lemma 3.40. Letn > 1. We have
(1) ch(&") = gy,

2 €8 =2
(3) the basic spin B,-module C,, is simple of rype §.

Proof. (1) It follows by the definition of ch, Lemma 3.39, and (A.47) that

= 3 2% po = g
acOP,

(2) Note that p(1,0,0,...) =1 for each k > 1, and hence Pa(1,0,0,...) =1.
Also, it follows by definition that ¢,(1,0,0,...) =2, for n > 1. Thus, specializ-
ing the identity ¥qcoqp, ZZ(a)z&]pa = gn at (x1,x2,x3,...) = (1,0,0,...), we obtain
Sacop, 21®z51 = 2. We compute, by Lemmas 3.37 and 3.39, that

<€n’§n _ z 2= 1409 —1 2£ z 21’ oc)

ac0?P, ac0P,
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(3) As the En—module G, is semisimple, to prove (3) it suffices to exhibit an
odd automorphism of the §n-module G, by (2) and super Schur’s Lemma 3.4. In-
deed, the right multiplication with the element ﬁ(q + ...+ ¢y) provides such an
automorphism of order 2. O

Proposition 3.41. The characteristic map ch : Rg — Ig is an isomorphism of
graded vector spaces.

Proof. Since I'g is generated by g, for r > 1 and ch is an algebra homomorphism
by Proposition 3.36, ch is surjective by Lemma 3.40. By Proposition 3.8 and Theo-
rem 3.31, the dimension of Q ® R;; is |SP,|, which is the same as dim I, for each
n. Hence ch is an isomorphism. 0

3.3.6. The irreducible characters. Using the algebra structure on R™, we define
the elements & for a strict partition A by the following recursive relations:

A2 ] . .
(327) EMr) — gl oY (pyightigh
i=1

k A

(3.28) g = Y (—1)JehMgaied) - for k= £(A) even,
j=2
k A

(3.29) = Y (—1)tghgtebe-R) - for k= £()) odd.

~.
Il
—_

We emphasize that these are precisely the same recursive relations for the Schur
Q-functions O (see (A.51)).

Lemma 3.42. We have ch(E*) = Q) and (EMEF) = 2/ Oy for h,u € SP.

Proof. By Lemma 3.40, we have ch(§") = g, = Q(,)- The general case of the first
identity follows since ch is a ring homomorphism, and, in addition, E* and Q) are
obtained from &,’s and g,’s, respectively, by the same recursive relations.

The second identity follows from the fact that ch is an isometry and the formula

(01, Qu) = 2Ny, from (A.57). O
Recalling the notation 8(A) from (1.52) we define
c;\‘ — 2_ i()»);ﬁ()\) i)\’ for 7\’ c Sﬂ)n

Lemma 3.43. The element {* lies in R, for A € 8P,

Proof. We proceed by induction on £(A). For £(A) = 1, it is clear. Since C, is a
simple spin B,-module of type Q by Lemma 3.40, the induced module with char-
acter £™E" is a sum of two isomorphic copies of a genuine module (the two odd
automorphisms of £™ and &" give rise to an even automorphism of order 2); that is,
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%émé” € R™ . Hence, for ¢(A) =2, %i(kl *2) lies in R~ by (3.27). The general case
follows easily by induction using the recursive relations (3.28) and (3.29). ]

Corollary 3.44. For strict partitions )y, we have

_ 1 for¢(L) even
(ISR { 2 for{()) odd,

<C7L’Cfu> = 0, fork # u.
Corollary 3.45. For each A € 8P, we have

£ -8(M)

D=2 7 3 z,'Cpa.
acOP,
Also, for each o € OP,, we have
_ A8y
Pao = 2 2 2 E(Q)CQQX-

AESP,

Proof. The first identity follows from Lemma 3.42 and the definitions of ¢* and
ch.

Write py = 2Aes?, aé‘LQ;L for some scalars aé}. Recall from (A.55) and (A.57)
that (Q1, Qu) = 2M8),, and (pa, pp) = 27“¥)z4845. Then

_ _ €30y _ _ )8
aﬁ =2t <Paa Qk> =2 f(’»)z 2 za1C§<pa,pa> =2 2 Z(a)Cﬁ,

where the second equality above uses the first identity of the corollary. O

Theorem 3.46. Let A € 8P, and £(A) = £. Then {* is the character of a simple
spin By-module (which is to be denoted by D*). Moreover, the degree of Ck is equal
to

-3 n! H?u,-—?»j.
7\,1!...7%! 7\,,'4-7\,]'

i<j

Proof. Since {* € R~ by Lemma 3.43 and (MM =1 for ¢(A) even by Corol-
lary 3.44, {* or —C*, for £(A) even, is a simple character of type M. By Corol-
lary 3.44, these simple characters are distinct. A simple count using Proposition 3.8
and Theorem 3.31 implies that these are all simple characters of type M. Now since
(MM =2 for ¢ (A) odd by Corollary 3.44, we have two possibilities: (a) either ¢
or —{* is simple of type Q, or (b) ¢* is of the form +8 £ ¥ with both {# and ¢
being simple of type M, which means both ¢(u) and ¢ (v) are even. Case (b) cannot
occur; otherwise, it would contradict the linear independence of ¢ forall A e 8P,
Hence these must be all type Q simple characters by a counting argument using
Proposition 3.8 and Theorem 3.31 again.
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To show that {* rather than —(* for each A € 8P, is a character of a simple
module, it suffices to know that C%ln) or i%ln) is positive. To that end, we claim that

n! Ai—A;
oA 7\4—1-7\,]"

A __~An
S(m =2"7

i<j
which is equivalent to the degree formula in the theorem.

The claim can be proved by induction on #(1) using the relations (3.27)—(3.29).
The initial case with £(A) = 1 is taken care of by Lemma 3.39, and the case with
¢(A) = 2 can be checked directly by using (3.27). As the induction is elementary
though lengthy (see [57]), we will simply remark here that the sought-for identity
by using (3.28) and (3.29) precisely corresponds to the Laplacian-type expansion
of the classical Pfaffian identity (cf. Macdonald [83, IIL.8, Ex. 5]):

<t, t,) _ ti—t;
it/ <ij<on  1<icj<onlitli

We refer to [57, proof of Proposition 4.13] for detail. J

3.4. Schur-Sergeev duality for q(n)

In this section, we formulate a double centralizer property for the actions of the
Lie superalgebra q(n) and the algebra H4 on the tensor space (C"")®?. We obtain
a multiplicity-free decomposition of (C™")®4 as a U(q(n)) ® Hz-module. The
characters of the simple g(n)-modules arising this way are shown to be Schur Q-
functions (up to some 2-powers).

3.4.1. A double centralizer property. Recall from Section 3.2 (by setting m = n)
that we have a representation (®4,V®%) of gl(n|n), and hence of its subalgebra
q(n); and we also have a representation (¥4, V®9) of the symmetric group &,.
Moreover, the actions of gl(n|n) and the symmetric group G4 on V®¢ commute
with each other.

Note in addition that the Clifford superalgebra C; acts on V&9, and we denote
this action also by W¥,:

Yi(c) (M ®...0vg) = (=) Hhieiy o @ @Pyi®... @y,

where P is given in (1.10), each v; € V is assumed to be Z;-homogeneous, and
1<i<n.

Lemma 3.47. Let V = C"". The actions of &4 and Cy4 above give rise to a repre-
sentation (W 4,V®?) of Hy. Moreover, the actions of q(n) and Hz on V¥4 commute
with each other.
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Proof. To see that (3.24) holds, it suffices to check for6 = (i,i+1),1 <i<d—1.
We compute that
\Pd((i, i+ 1))‘Pd(c,-).(v1 &... ®vd)
= "I’d((l',i—{— 1))(_1)(|v1|+...+]vi,1|)vl X..OPVQVi+1R...Qvy
= (_1)(|Vi|+1)fvi+1|(_1)(|Vll+-~+|vi—1|)vl ®...QVi 1 QPVi®...Q vy,
\I’d(ci+1)‘{’d((i,i+ 1)).(\/‘1 K...&® vd)
=Wy(cip) (P @ L @viy @vie.. @
= (_1)(|Vi|'|vi+ll)(_1)('V1|+~-+VV:—1|+|Vt+1|)vl ®...QVir 1 QPV®...Qv,.
Hence, we have W ((i,i+1))W4(c;) = Wa(civ1)¥a((i,i+1)). This further implies
that W, ((i,i+1))¥g(cip1) = Wa(ci)¥a((i,i+1)). A similar calculation shows that
Wa((,j+ D)) ¥alci) = Ya(ci)Wa((j,j+1)) for j #i,i— 1.
By the definitions of q(n) and of W,(c;) via P, the action of q(n) commutes
with the action of ¢; for 1 <i <d. Since gl(n|n) commutes with G, so does the

subalgebra q(n) of gl(n|n). Hence, the action of q(n) commutes with the action of
H, on V&, O

Theorem 3.48. The images ®,;(U(q(n))) and ¥ 4(H,) satisfy the double central-
izer property, i.e.,
©4(U(a(n))) =Ends, (V)
Endg(,) (V¥) = Wa(Ha).

Proof. Let g = q(n). We denote by Q(V) the associative subalgebra of endomor-
phisms on V which (super)commute with the linear operator P. By Lemma 3.47,
we have

(3.30) @,(U(g)) C Endg, (V&Y.

We shall proceed to prove that ®,(U(g)) 2 Endy, (V).

By examining the action of €; on V®4, we see that the natural isomorphism
End(V)®? = End(V®?) allows us to identify Ende,(V®?) = Q(V)®?. As Hy =
Ca x &, this further leads to the identification Endg, (V®¢) = Sym?(Q(V)), the
space of G -invariants in Q(V )4,

Denote by Y, 1 < k < d, the C-span of the super-symmetrization

O(x1,...,x) = 2 0.(Xx1®...0x 1%k,
ceBy
for all x; € Q(V). Note that ¥; = Sym?(Q(V)) = Endy, (V¥9).

Let ¥ = ®y(x) = 34, 191 @x® 1?47, for x € Q(V), and denote by X;, 1 <
k <d, the C-span of %; ...% for all x; € Q(V).
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By the same argument as in the proof of Theorem 3.10 (Schur-Sergeev duality
for gl(m|n)), we have ¥; C X; for 1 < k < d. This implies that

(3.31) Endg, (V¥Y) =¥, C X; C ®g(U(g)).

Combining (3.31) with (3.30), we conclude that ®,4(U(g)) = Endg, (V®?) =
Endg (V®9), for B := ¥4(H,).
Note that the spin group algebra H4, and hence also B, are semisimple super-

algebras, and so the assumption of Proposition 3.5 is satisfied. Therefore, we have
Endu(g)(V‘X’d) = "I’d(g'fd). ]

3.4.2. The Sergeev duality. Recall from (1.52) that, for a partition A of d with
length 4(A),
_ [ 0, if£(A)iseven,
O(A) = { 1, if () is odd.
Recall further that D* stands for the simple Hy-module with character C" (see

Theorem 3.46), and L(A) for the simple q(n)-module with highest weight A (see
Section 2.1.6).

Theorem 3.49. Let V = C"". As a U(q(n)) ® Hy-module, we have

(3.32) vl 2Ly e DM
AESP LN <n

Here, 27! has the same meaning as in Proposition 3.5.

Proof. Let W = V¥4, Recall D" is of type M if and only if (1) = 0. It follows
from Proposition 3.5, Theorem 3.48, and the semisimplicity of the superalgebra
Hq that we have a multiplicity-free decomposition of the (q(n), Hy)-module W:

wx @ 27WLMgph,
AeQy(n)

where LM is some simple q(n)-module associated to A whose highest weight (with
respect to the standard Borel) is to be determined. Also to be determined is the
index set Qu(n) = {A € 8P, | LM #£ 0}.

We shall identify a weight 4 = Y, ;€; occuring in W with a composition
p=(ui,...,un) € CP4(n). We have the following weight space decomposition:

(3.33) W= & W,
HECDP,(n)

where W), has a linear basis ¢;; ® ... ®e;,, with the indices satisfying the following
equality of multisets:

{il,...,id}={3,...,1,,T,...,I,...,g,...,n,ﬁ,...,ﬁ}.

-~ ~

H Hn




124 3. Schur duality

We have an H ;-module isomorphism:

(3.34) /= Indgfgy L, = H;®ce, Lu-

Recall the integers Eku for a composition u and a strict partition A defined via
the following symmetric function identity in (A.53) :

(3.35) w= Y KO,
AESPA>u

where fm = 1. To complete the proof of the theorem, we shall need the following.

Lemma 3.50. Let u= (ui,...,u,) be a composition of d. We have the following
decomposition of W, as an H z-module:

~ L) ~8(A) ~ A
w2 @ 2 7 KD
AESPA>u

In particular, I?;w €Z,.

Proof. Decompose the H;-module W), into irreducibles:

(3.36) W, = @ KD forky, €Z,.
AE8Py

Recall the characteristic map ch : R~ — I'g from Section 3.3.4, where we have
denoted R~ = @,,5¢[H,-mod|. By Lemmas 3.42 and 3.43, for A € 8P,

—3(A)
(3.37) ch([DY) =27 0,
It follows by the ring structure on R~ and Remark 3.34 that, for any composition
= (u,2,...) of d, Ind?cfgy 1, is equal to the product of the basic spin characters
g &2 .. and, hence by Lemma 3.40,

(3.38) ch(W,) = ch(Indzg 1,) = g

Applying the characteristic map to both sides of (3.36), and using (3.37),
(3.38), and (3.34), we obtain that

{A)-8(A) o

qu=32"" 17 K,Q.
7y

£0)-8(2) ~
2

It follows by a comparison of this identity with (3.35) that KM =2 Ky O

We return to the proof of Theorem 3.49. Since the simple q(n)-module L, for
A € Q4(n), has a weight space decomposition LM = Dcer d(n),ugkLW’ we must
have £(A) < n and so A € 8P;(n). Now let A € 8P, with £(A) < n. Clearly A is a
weight of LM and, moreover, corresponds to a highest weight. Hence, we conclude
that L™ = L()), the simple g-module of highest weight A, and that 9,(n) = {re
8P4 | £(A) < n}. This completes the proof of Theorem 3.49. O
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3.4.3. The irreducible character formula. A character of a gq(n)-module with
weight space decomposition M = @,M,, is by definition

chM = tr [y X1 X = Y, dimM, o

n

= sty
Theorem 3.51. Let A be a strict partition of length < n. The character of the
A)—-8(A
simple q(n)-module L()) is given by chL(\) = P )Qk(xl yoeeyXn)-
Proof. By (3.33) and (3.34), we have V& 2 Dueery(n )Indgdl Using (3.38) and
applying the characteristic map ch and the trace operator trx ...xHn simultane-

ously, which we will denote by ch?, we obtain that
Chz(V®d) = z qu(z)my(x),
HEDP 4 l(u)<n
which can be written using (A.54) and (A.57) as

(v = ] LS 00, (. x)0a()

1<i<n,1<j rESP

where z = {z1,22,...} is infinite. On the other hand, by applying ch? to (3.32) and
using (3.37), we obtain that

(VE) = ¥ 27Menr(n). 27 gy (2).
AESP,L(M)<n
Now the theorem follows by comparing the above two identities and noting the
linear independence of the Q) (z)’s. O

3.5. Exercises

Exercise 3.1. (1) Show that the ungraded algebra |Q(n)| for the superalgebra
Q(n) is isomorphic to M(n) ® M(n).

(2) Assume that a semisimple superalgebra A has m (respectively, ¢) non-
isomorphic simple modules of type M (respectively, of type Q). Show
that the algebra [A| is semisimple and that the number of non-isomorphic
simple [A|-modules is equal to m + 24.

Exercise 3.2. Let G be a double cover of a finite group G with the projection
68:G — G see (3.6). Let Cbe a conjugacy class of G. Show that 6~ (C) is either
a single conjugacy class of G or splits into two conjugacy classes of G.

Exercise 3.3. Define an involution o on a superalgebra A by letting o/(a;) =
(— 1) ay, for ay € Ay, k=0, 1. Given an A-module N, we define another A-module
N’ with the same underlying vector superspace as N but with the action of A twisted
by o. Show that N = N’ as A-modules.
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Exercise 3.4. Let A be a superalgebra and N an |A|-module. Regarding o in
Exercise 3.3 as an involution on |A|, we have an |A|-module N’ obtained from N
by a twisted action via 0. Prove:

(1) If M is a simple A-module of type M, then |M| = |M|" as |A|-modules and
IM| is a simple |A|-module.

(2) If Q is a simple A-module of type Q, then there exists a simple |A|-module
N such that Q =N @ N’ and N % N’ as |A|-modules.

Exercise 3.5. Prove that the formula (3.9) satisfies the Coxeter relations for the

symmetric group &,.

Exercise 3.6. (1) Let A be an (m|n)-hook partition with m = 0. Show that
A=A/, ¢(N) < n, and hsy (0;y) = s (), fory = {y1,...,¥u}

(2) Show that the Schur-Sergeev duality (Theorem 3.11) for m = 0 reduces

to a version of (gl(n),&,4)-Schur duality twisted by the sign representa-
tion of Gy, i.e., as a (gl(n), S 4)-module, (CO")®4 = Dep,(n) LK) R,
(Note here the well-known fact that $¥ ® sgn =2 SH )

Exercise 3.7. For an (m|n)-hook partition A, show that the weight A! is typical
(i.e., the degree of atypicality #A" = 0) if and only if A,, > n.

Exercise 3.8. Let A be an (m|n)-hook partition such that A,, > n, and let the Young
diagram A be depicted below as a union of 3 regions: an m X n rectangle diagram
and two subdiagrams u, v

(1) Prove that the Kac gl(m|n)-module K(A?) is irreducible.

(2) Letx = {x},...,xn} and y = {y1,...,yn}. Prove the following factoriza-
tion identity:
hsxxy) HH x,+y, S/.l Sv’(y)'
i=1 j=

Exercise 3.9. Prove Lemma 3.28 which states that two elements of the hyperocta-
hedral group B, are conjugate if and only if their types are the same.

Exercise 3.10. Prove the following isomorphisms of superalgebras (see (3.5)):
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(1) Q(m)® Q(n) = M(mn|mn).

(2) Q(m) ®M(r|s) = Q(m(r +s)).

(3) M(m|n) @M(r|s) =2 M(mr+ nsims+nr).
Exercise 3.11. Prove the following isomorphisms for Clifford superalgebras (see
Definition 3.33):

(1) Gm & Gn = em+n-

(2) Cr=Q(1), Cr=M(1).

(3) e2m+l = Q(Zm)’ C‘f2m = M(zm—l‘zm—l).
Hence, €, is a simple superalgebra, and it is of type M if and only if 7 is even.
Exercise 3.12. Recall the spin symmetric group algebra from Example 3.7. Prove
that sending

e 1<i<n 1= v=2 sicj—cjp), 1< j<n—1
defines a superalgebra isomorphism C&,; ® C, — H,.
Exercise 3.13. Recall a homomorphism ¢ : A — I' from (A.62) in Appendlx A.
For n > 0, we define functors €, : &,-mod — H,-mod, Q, (M) = Ind(CG M. This
induces a functor Q = &,Q,,, which gives rise to a Z-linear map £ : R — R~
by letting Q([M]) = [Q,(M)] for M € &,-mod. Prove that Q : Rg — Ry and ¢
Ag — I'g are homomorphisms of (Hopf) algebras. Moreover, the following is a
commutative diagram of (Hopf) algebras:
Ry —— Ryg
(3.39) ChFlg Chlg
AQ —(';> I“Q

Exercise 3.14. Show that the J{d module W, defined in (3.33) and (3. 34) is isomor-
phic to Q(M*), where M¥ = Indg S *1, is the permutation module of &4. (This way,

Lemma 3.50 fits well with (3. 35) dnd the diagram (3.39) as well as Exercise 3.15
below.)

Exercise 3.15. (1) Prove using (A.53), (A.54), and (A.57) that, for A €8P,
Y 2Rm,
HEP uZ

(2) Prove that the u-weight multiplicity of the simple q(n)-module L(}), for
A € 8P4(n) and u € CPy(n), is given by
46 +5()\

dimL(A), =2 B,
Exercise 3.16. For A € 8P4, write Q3 (x) = X, 2L g;b,,s,, (x), for gy, € Q. Prove:
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(A)+8(h)
2

(1) dimHomg, (D* Q(S#)) =2 G-
(2) As a gl(n)-module, the q(n)-module L(}) decomposes into
f{A)+48(X)
L= P 2 g0,

HEP LA (u)<n

Here L%(u) denotes the gl(n)-module of highest weight .

(3) &w =0unless A > u; g = 1.

4 gy €7y
Exercise 3.17. The Jucys-Murphy elements J (1 <k <n)inH, are defined to be
Ji =Zi<jerx(1+cjcr)(j. k). Prove:

(D) Sk =0, for1 <i#k<n.

(2) ciJi = ~Jici, ciJy = Jrei, forl <i#k<n.

(3) sii = Jip1si— (1 +cicipr), for1<i<n—1.

(4) siJi = Jpsi, fork+#£ii+1.

Exercise 3.18. Let A be a partition of d. Derive the following branching rule (e.g.
using Pieri’s formula (A.22) in Appendix A):

Rese, S'= @ s~
HEP | u—A

Here 1 < A denotes that y is obtained from A by deleting a removable box in the
Young diagram of A, and equivalently, A is obtained from u by inserting an addable
box in the diagram of .

Exercise 3.19. Let u € P;(m|n) be an (m|n)-hook partition of d. Prove the follow-
ing isomorphism of gl(m|n)-modules using Schur-Sergeev duality:

CMeLw)= @ LY.

AEPy iy (mjn) 2

Notes

Section 3.1. The classification of finite-dimensional simple associative superalge-
bras was due to Wall [126] over a general field, and it is somewhat simplified over
C in J6zefiak [56]. The basics on representation theory of superalgebras and finite
supergroups, including Wedderburn’s Theorem, Schur’s Lemma, and the role of
split conjugacy classes, have been developed in [56]. Our exposition follows [56]
closely.

Section 3.2. The superalgebra generalization of Schur duality between the

general linear Lie superalgebra gl(m|n) and the symmetric group &, was due to
Sergeev [110] and Berele-Regev [7] independently, and the character of irreducible
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polynomial representations of gl{m|n) was given in terms of super Schur polynomi-
als. This generalization is intimately related to the combinatorics of supertableaux.
Proposition 3.21 on the diagrammatic interpretation of the degree of atypicality
of a polynomial dominant weight of gl(m|n) was announced in Cheng-Wang [32],
and Corollary 3.22 appeared in Moens and van der Jeugt [88, Proposition 2.1]. The
semisimplicity of the category of polynomial modules of gl(m|n) was expected by
experts. Our proof here, which is based on a comparison of central characters, is
adapted from Cheng-Kwon [19].

Section 3.3. The algebra H, is a twisted group algebra for a double cover
By of the hyperoctahedral group. The classification of the split conjugacy classes
for By (Theorem 3.31) was due to Read [99]. We follow Jozefiak [58] to develop
systematically a superalgebra approach toward the characteristic map and spin rep-
resentation theory for B,.

Section 3.4. The Sergeev duality is a version of Schur duality between the
queer Lie superalgebra q(n) and an algebra 34, and it was outlined in [110]. This
leads to a character formula in terms of Schur Q-functions for the irreducible poly-
nomial q(n)-modules [110]. Here we present complete proofs which use exten-
sively the results from Sections 3.1 and 3.3.

Various results on symmetric functions including super Schur functions and
Schur Q-functions relevant to Chapter 3 are collected in Appendix A.

Exercises 3.1, 3.3, and 3.4 are taken from J6zefiak [56]. Exercise 3.12 is a
theorem of Sergeev [112] and Yamaguchi [132]. Exercises 3.7 and 3.8(2) are due
to Berele-Regev [7]. Exercises 3.13 and 3.16 are taken from Wan-Wang [127, 128],
while Exercise 3.16(3) and (4) go back to Stembridge [118]. The Jucys-Murphy
elements of J{,, in Exercise 3.17 were introduced by Nazarov [92].






Chapter 4

Classical invariant theory

In this chapter, we give an introduction to the invariant theory for a group G,
which is one of the classical groups GL(V),Sp(V), or O(V), where V is a finite-
dimensional vector space. Traditionally, the G-invariants of a polynomial (or sym-
metric) algebra on U are more widely studied, where U is a direct sum of copies
of V or its dual. It has gradually become clear that the algebra of G-invariants in
an exterior algebra of U can be developed in a parallel fashion to a large extent.
In our presentation, we treat the polynomial and exterior algebras in the united
framework of supersymmetric algebras. We formulate and establish the First Fun-
damental Theorem (FFT) in a supersymmetric algebra setting, which states that the
subalgebra of G-invariants is generated by a finite set of basic invariants of degree
two. We also develop a tensor version of FFT for each of the classical groups,
which is used in the proof of the FFT for supersymmetric algebras. In the case of
type A, the tensor FFT is derived from Schur duality, and it is indeed equivalent to
Schur duality.

The FFT for supersymmetric algebras of classical groups, Theorem 4.19, will
be used in the development of Howe duality in Chapter 5. A reader can also choose
to accept Theorem 4.19 and then skip this chapter.

4.1. FFT for the general linear Lie group

In this section, we shall formulate and prove both the tensor and the polynomial
versions of the First Fundamental Theorem (FFT) of classical invariant theory for
the general linear Lie group. For a vector space U we shall denote the polynomial
algebra on U by P(U).

131
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4.1.1. General invariant theory. Let U and V be finite-dimensional modules of
a classical (or more generally a reductive) Lie group G. Then, as G-modules, U4
and P(U) with induced G-actions are completely reducible. The basic question of
classical invariant theory is to describe

(1) the space of tensor G-invariants (U%%)¢;
(2) the algebra of polynomial G-invariants P(U)?;
(3) the algebra of G-invariants in the tensor algebra P(U) @ A(V).

These different versions of G-invariants turn out to be closely related to one an-
other.

Theorem 4.1. Let G be a classical (or reductive) group, and let U ,V be finite-
dimensional rational G-modules. Then, the algebra of G-invariants in PU)Y®
A(V) is finitely generated as a C-algebra.

Proof. Set R := P(U) ® A(V). Under the assumptions of the theorem, the G-
module R is completely reducible, and hence the subalgebra J := (P(U Y A(V)C
is a direct summand of the G-module R. Let us denote by @ : R — J the natural
projection that is G-equivariant.

The algebra R is naturally Z -graded by the total degree, denoted by deg, on
the polynomial subalgebra and the exterior subalgebra. Denote by d the subspace
of J consisting of G-invariant elements in R with zero constant terms, and denote
by (J+) the (two-sided) ideal of R generated by J... Then (3+), when viewed as
a submodule of the finitely generated P(U)-module R = P(U) @ A(V), is finitely
generated over P(U) by the Hilbert basis theorem. In particular, () as an ideal
of R is finitely generated. We can further take a set of generators ?1,...,09, of the
ideal (J) to be homogeneous elements, say deg®; =d; > 1 for each i.

To complete the proof of the theorem, we shall show that @, ... ., ¢, generate J
as a C-algebra. Indeed, let ¢ € g, be a homogeneous element. Write ¢ = Y fioi
for some f; € R. Then,

¢ =0(9) =B} fig:) = X B(f)9i,

where deg®(fi) < deg f; < deg¢. By induction on the degree, we can assume that
®(f;) lies in the C-subalgebra generated by ;. .., @,. O

For a general G-module U, it remains an open problem to describe a reasonable
set of generators for the algebra P(U). However, in the case when G is one of
the classical groups acting on the natural representation V, and U is a direct sum
of copies of V and copies of V*, the problem turns out to have an elegant solution,
known as the First Fundamental Theorem (FFT) of classical invariant theory.
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4.1.2. Tensor and multilinear FFT for GL(V). Now let V be a finite-dimensional
vector space, and let G = GL(V) be the general linear Lie group on V. Let U =
V® & (V*)* the space of mixed tensors of type (d,k). Denote the representation
of GonsuchalU by py.

First observe that Ml € G, L # 0, acts on V4 @ (V*)® by py (M) = A471.
Hence, (V4 @ (V*)¥¥)¢ = 0 unless k = d.

Assume now that k = d, and we consider the G-representation pg 4. For any
finite-dimensional G-module W, we have a canonical identification as G-modules:

W oW* = End(W).

Set W = V4. We have (V&4)* = (V*)*? as G-modules. Then we have a canonical
identification as G-modules:

VC’»?d ® (v*>®d ~ End(v@d)
It follows that

(4.1) (VM ® (V*)M)G = Endg(V®).

Recall the following commuting actions from Lemma 3.9 in Section 3.2 where
we replace the action of g{(V) by G = GL(V):

Dy @d Yd
G~ v A G,

By Schur duality (Theorem 3.10), we have
(4.2) Endg(V®) = W4(CS,).

Via (4.1) and (4.2), ¥,(0) for each permutation 6 € &, transfers to a G-
invariant O € (V¥4 ® (V*)®d)G, which can be written down explicitly in terms

of dual bases. Let ey,...,ey be a basis for V, and let e], ..., e}, be the dual basis of
V*. We have
(4.3) Os= D € Q.. .Qe, Qe D...De],.

1<iy,.., iy <N

For example, O4 for 6 = 1 corresponds to the identity Iz« via (4.1).

Summarizing, we have proved the following.

Theorem 4.2 (Tensor FFT for GL(V)). Let G = GL(V'). There are no non-zero G-
invariants in the tensor space VE? @ (V*)®X, for k # d. The space of G-invariants
in V@ (V*)® is spanned by the O for 6 € &g.

For future applications, it will be convenient to formulate a multilinear version
of FFT, which is simply a dual version to the tensor FFT for GL(V') above. We first
recall a standard fact from multilinear algebra, which follows from the universal
property of tensor product.
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Lemma 4.3. Let Vy,...,V, be finite-dimensional vector spaces. Then, the dual
space (V1 @ ---®V,)* can be naturally identified with the space of multilinear
Junctions on Vi @ --- @V,

By Lemma 4.3, we shall regard the dual space (V¢ ® (V*)®*)" as the space of
multilinear functions f : V¢ @ V* — C. There is no nonzero G-invariant multilin-
ear function for k # d, since M € G with L 5 0 sends (v, ) = (Vs Va, @1y @)
to (Avi,...,Avg,A71y,...,A"1@;); hence, if f is a G-invariant multilinear func-
tion, then f(AL.(v,0)) = A Ff (v, ).

Let k = d. Define the contraction (j|i*), for 1 <i,j <d, by
(44) <j|i*>(v1,.‘.,vd,(p1,...,(pk) ::(p,-(vj).

Given ¢ € G, we let
fo:=(1lo(1))(2[0(2)) -+ (d|o(d)").
The tensor FFT for GL(V), Theorem 4.2, can now be reformulated as follows.

Theorem 4.4 (Multilinear FFT for GL(V)). Let G = GL(V). Then there are no
nonzero G-invariant multilinear functions on V¢ ®V**, for k + d. The space of
G-invariant multilinear functions on V¢ & V* is spanned by the functions fs for
c e 6,

Proof. Thanks to V™" =V, we identify ((V*)®/ @ V®) = (V&4 ® (V*)®)". Thus,
we have by (4.1) and (4.2) that

((V*)®d ®V®d)G o <V®d ® (V*)®d>G =Y, (CSy).

By Lemma 4.3, ( (Vv )ed V®d)G can be identified with the space of G-invariant
multilinear functions on V¢ & V*¢. Hence, the theorem follows as a dual version of
the tensor FFT for GL(V) (see Theorem 4.2), where fo 1s the counterpart of G4 in
4.3). ]

4.1.3. Formulation of the polynomial FFT for GL(V). Again let G = GL(V).
Then G acts naturally on the dual space V* and also on the direct sums V* and
V*™ for k,m > 0. We have natural identifications of G-modules:

V¥ = Hom(C*, V), V" = Hom(V,C™).
This leads to a G-equivariant isomorphism between polynomial al gebras
PVEDV™) 5 P(Vis),
where we have denoted

Vink := Hom(C*, V) @ Hom(V,C™).
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We identify the hom-space Hom(C¥, C™) with the space M,,; of m x k matrices
over C and define the composition map

T Vi = My, T(x,y) = yx.

Note that T is G-equivariant, where we let G act on M, trivially. Hence, it induces
an algebra homomorphism

T P(Mg) — P(Vur)%, T(f) = for.

The image of T* consists of G-invariants, since by the G-equivariance of T we have
T (f)(gx) = f(1(gx)) = f(1(x)) = T°(f) (x), for g € G, x € V.

Denote by x;; the (i, j)th matrix coefficient on M,,x, where 1 <i<m,1 < j <k.
It follows by a direct computation that t*(x;;) coincides with the contraction (j|i*)
(which is defined as in (4.4) with obvious modifications of indices), or equivalently,

T (X)) (Vise o Vi VT, oo Vi) = Vi (V).

Theorem 4.5 (Polynomial FFT for GL(V)). The algebra of GL(V )-invariants in
P(VE@V*™) is generated by the contractions {j|i*), for 1 <i<m,1< j<k.

The proof of Theorem 4.5 will be given in Section 4.1.4 below.

Remark 4.6. The above theorem can be equivalently reformulated as the surjec-
tivity of the homomorphism 1*. One shows that the image of T consists of all
the matrices Z € M, such that rank(Z) < min{m, k,dimV } (Exercise 4.1). Under
the assumption that dimV > min{m,k}, the map 71 is surjective. Therefore T* is
injective, and so T* is actually an isomorphism. Equivalently, the algebra of poly-
nomial G-invariants in P(V*¥ @ V*™) is a polynomial algebra generated by the mk
contractions {j|i*).

4.1.4. Polarization and restitution. Let P?(W) be the set of degree p homoge-
neous polynomials on a finite-dimensional vector space W, and let f € PP(W). We
define a family of polynomials frl...r,, € P(WP), which are multi-homogeneous of
degree (ry,...,rp), by the following formula:
(4.5) flwi+. ot tpwp) = Y frow, Wiy wplt] 1)

Flyeedp
where 1; € C,w; € W, and the sum is over r; > 0 with r +...+4r, = p. In particular,
f11...1 is multilinear.

Definition 4.7. The multilinear function f1;._; € P(WP) is called the polarization
of the polynomial function f € PP(W). We shall denote Bf = fi;..;. On the
other hand, given a multilinear function F : WP — C, the polynomial function
RF € P(W), defined by RF (w) := F(w,...,w) for w € W, is called the restitution
of F.

Let us denote by TP(WP)(H’.__J) the space of multilinear functions on W2,
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Proposition 4.8. The polarization map 3 : PP (W) — PWP)aa,..1y f—=Bf, and
the restitution map R : P(WP), 1y = PP(W), F — RF, satisfy the following
properties:

yooey

(1) Both ‘B and ‘R are GL(W )-equivariant linear maps.
(2) Bf is Gp-invariant, for f € PP(W).
(3) RB(f) = p!f, for f € PP(W). In particular, R is surjective.

Proof. Parts (1) and (2) follow directly from the definitions.
Settingwy = ... = wp, = w in (4.5), we obtain that

(et )20 = S Fopy (0wl 1]
Flyeerstp

Comparing the coefficients of ¢ - - -tp, we conclude that

pifw) = fia..a(w,...,w) = RPf(w),
whence (3). O

Corollary 4.9. Let G C GL(W) be a classical group. Then, by restriction of the
restitution map to the subspace of G-invariants, we have a surjective linear map

Proof. Since G is a classical group, all the representations of G involved are com-
pletely reducible. By Proposition 4.8, R : PWP) 11,1y = PP(W) is surjective
and G-equivariant, and so & sends a given G-isotypic component of P(W? IR )
onto the corresponding isotypic component of PP(W). The corollary follows by

considering the isotypic component of the trivial module. U

Now we are ready to derive the polynomial FFT for GL(V) from the multilin-
ear FFT for GL(V).

Proof of Theorem 4.5. Set G = GL(V). It suffices to prove the following.

Claim. P? (V¥ @ V*")6 =0, for p odd. The space P (vk @ v*m)G is spanned
by (jili)(j2li5) - - (jali}), where 1 <i, <m,1< j, <kforeacha=1,...,d.

Letus setW =V*¥@V*" and let p be any positive integer to start with. Keeping
Lemma 4.3 in mind, we observe that fP(W”)(GHM b is a direct sum of spaces of
G-invariant multilinear functions on direct sums of p copies among V and V* in
various order. By Theorem 4.4, we have ’.P(Wf’)g Loty = 0, for p odd; moreover,
iP(WZd)(GHMI) is spanned by the functions of the form (I lis) - (alih).
Now the claim follows by applying Corollary 4.9. g
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4.2. Polynomial FFT for classical groups

In this section, we formulate and establish the polynomial FFT for the orthogonal
and symplectic Lie groups in a uniform manner (see Theorem 4.13). A theorem of
Weyl allows us to reduce the polynomial FFT to a special basic case. This basic
case 1s then proved directly by induction.

4.2.1. A reduction theorem of Weyl. Given 0 < s < k, we have a natural inclu-
sion V* C V* by identifying (vi,...,v,) with (v{,...,vs,0,...,0). We also have
the natural projection from V* to V¥ which sends (v,...,vs,...,v) to (vi,...,v),
which allows us to view P(V*) as a subalgebra of P(V*). Note that V¥ is naturally
a left GL(k)-module, with the action T given by the multiplication by g~! on the
right: (g)(v1,...,v&) = (v1,...,v)g~". The induced left GL(k)-action, denoted
by 7', on P(V¥) is given by (7' () f)(vi,..., ) = f((Vi,...,v)g)-

Though the goal of this subsection is Theorem 4.11 (due to Hermann Weyl), it
is natural to work in a more general setting first. Given a subset S of a module M
over a group G, we denote by (S)¢ the G-submodule of M generated by S.

Theorem 4.10. Let N = dimV. For k > N, let L be a GL(k)-submodule of P(V¥).
Then, as a GL(k)-module, L is generated by the intersection LN P(VN), ie., L =
(LOPVN))GLik)-

Proof. We will assume k& > N, since the case k = N is trivial.

Since P(V*) is a complete reducible GL(k)-module, we may assume with-
out loss of generality that L is an irreducible GL(k)-module. Denote by U(k) the
subgroup of GL(k) consisting of upper triangular k x k-matrices with all diagonal
entries being 1. Then P(V¥)U(*) is the space of highest weight vectors in PVH).

Claim. We have P(V¥)U(K) C p(vM).

Note by the standard highest weight theory that LV®) = 0. Granting the claim,
we have LV®) € P(V¥)U(K) C P(VV), and hence, LNP(VY) # 0. Then, it follows
by the irreducibility of L that L = (LNP(VY)) gL

So it remains to prove the claim. Recall dimV = N, and introduce the following
Zariski-open subset in V*:
Z={(v=1,...,m) € V¥|vy,...,vy are linearly independent in V' }.

Given v = (v1,...,w) € Z, we can find oy, ...,04_1 € C such that

v+ ...+ 0 Ve +vi = 0.
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Hence, there exists u € U(k) such that w(u)(vi,...,vi—1,v) = (v1,...,%_1,0). For
example, the following element
1 0 0 o\
0 1 0 (0/)
u= :
T Ok
0 0 1
will do the job.

Let f € P(V¥)"®). Then, f(v) = f(v1,...,v_1,0), for v € Z. By induction on
k> N, we see that f(v) = f(v1,...,vy,0,...,0), for v € Z. Since the polynomial
function f is determined by its restriction to the Zariski-open subset Z, f(v) =
f(v1,...,vn,0,...,0), for all v € V. This completes the proof of the claim and
hence of the theorem. U

Theorem 4.11 (Weyl). Let G be an arbitrary subgroup of GL(V). Let N =dimV
and assume k > N. Then, P(V*)C is generated by (fP(VN)G)GL(k). In particular, if
a subspace S generates the algebra P(VN)S, then (S)oLwk) generates the algebra
PVHO,

Proof. Thanks to the commuting actions of G C GL(V) and of GL(k) on P(V*),
we see that P(V¥)C is a GL(k)-module. The first part of the theorem follows
by specializing Theorem 4.10 to the case L = P(V*)Y and noting that P(VV)G =
PVHT NPV,

Denote by A the subalgebra of P(V*) generated by {S)L(k)- Then, A is con-
tained in the algebra P(V¥)Y, thanks to (S)gr) € P(VX)C. On the other hand,
A 2 S, and so the algebra A contains the algebra (V) that S generates. Since it
follows by definition that A is GL(k)-stable, A contains (P(VV )%) 6Lk, and so we
can apply the first part of the theorem to conclude that A contains P(VF)G. Hence,
A =PVEC, O

The following proposition will be useful later on.

Proposition 4.12. Let G be a subgroup of GL(V), and let N = dimV. Assume that
S is a subspace of P(VN)Y that generates the algebra P(VNYC. Then, for k <N,
the algebra of invariants P(VX)C is generated by the subset Sy, that consists of the
restrictions to V¥ of elements in S. Moreover, S, = SNP(V*) if S is GL(N)-stable.

Proof. The inclusion V¥ — V¥ and the projection V¥ — V* induce the restriction
map res : P(VY) — P(V*) and the inclusion P(VF) < P(VN), respectively. Since
either of the compositions

PVE) — P(VN) B pvhy, PVKYY — PG p(yh)G
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is the identity map, res : P(VY)C — P(V¥)C is surjective. Hence, P(V¥)C is gener-
ated by the restrictions S;.

Now assume that S is GL(N)-stable. In particular, 7y acts on S semisimply,
where T; denotes the diagonal subgroup of GL(k), for k < N. Note that Ty =
T X Ty_. Both §; and SN P(V¥) can easily be seen to be equal to the subspace of
S where Ty_ acts trivially, and hence they must be equal. O

4.2.2. The symplectic and orthogonal groups. Let V be a vector space equipped
with a non-degenerate symmetric or skew-symmetric bilinear form ®:V xV — C.
We denote by G(V, ) the subgroup of GL(V) that preserves the form o, that is,

G(V,m) = {g € GL(V) | w(gv1,8v2) = o(v1,v2),Vvi,v2 € V}.

The group G(V, ®) is called an orthogonal group and is denoted by O(V) if ® is
symmetric, and it is called a symplectic group and is denoted by Sp(V) if ® is
skew-symmetric. The Lie algebra of the group G(V, ®), called the orthogonal and
symplectic Lie algebras respectively, is

g(V.o) = {x e gl(V) | ®(xvi,v2) = —0(vy,xv2),Vvi, vy €V}

Let V = CV, which will mostly be viewed as the space of column vectors. A
non-degenerate symmetric (respectively, skew-symmetric) bilinear form relative to
the standard basis {ey,...,ey} in CV is determined by its associated non-singular
symmetric (respectively, skew-symmetric) matrix J. That is, @(vy,v;) = v’lJ va, for
v1,v2 € CV. Note that N is necessarily even in the skew-symmetric case. When a
form @ on V = CV has its associated matrix J, we have

G(V,w) = {X € GL(N) | X'JX =J}.

Different choices of non-singular symmetric (respectively, skew-symmetric)
N x N matrices J lead to isomorphic orthogonal (respectively, symplectic) groups
in different matrix forms. Some useful choices for the non-singular symmetric
matrices are the identity matrix Iy, the following anti-diagonal matrix

(4.6) In=1. .
1 00
and
0 1 0 L 0
Y) (forN=2¢), (I, 0 O (forN=2¢+1).
le 0 0 0 1

When we choose ® to be the standard symmetric form on V = C¥ corresponding
to the identity matrix Iy, O(V) is simply the group O(N) of all N x N orthogonal
matrices X, i.e., X'X = Iy.
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On the other hand, some common choices for non-singular skew-symmetric
matrices with N = 2/ used to define the symplectic Lie group and al gebra are

0 I 0 Q .- 0
<—Ie 0) R R
00 - O

where Q = < _01 é) - Another common choice of a non-singular skew-symmetric

matrix is
0 J
4.7 < 70 ) .

The choices of (4.6) and (4.7) play prominent roles in the later Sections 5.3.2
and 5.3.1, respectively.

4.2.3. Formulation of the polynomial FFT. Let V = CV be equipped with a
symmetric (respectively, skew-symmetric) form w" (respectively, @) whose as-
sociated matrix is J,. (respectively, J_). It will be convenient to write G*(V) for
G(V,0*), as this allows us to treat the + and — cases uniformly.

Given k € N, we denote by
SM; = {k x k complex symmetric matrices},

SM; = {k x k complex skew-symmetric matrices}.

We have a natural identification of G*(V)-modules between V* and the space
My of N x k complex matrices (on which G* (V) acts by left multiplication). De-
fine maps

T VE=EMy — SM, Tt (X)=X'T.X,
T VE=My — SM,,  1_(X)=X"J_X.
It can be checked that 1+ (X )" = £14 (X), so T4 are well-defined.

The map .. is G*(V)-equivariant, where we let G*(V) act on SM trivially.
Indeed, for g € G*(V),X € Myy, we have

T (gX) = (8X) V1 (eX) = X'gJogX = X'V X = 14 (X),
Hence, the pullback via 1. gives rise to an algebra homomorphism
T PSME) — PO 1 (f) = for,

where P(V¥)5*(V) denotes the algebra of G*(V)-invariant polynomials on V¥, In-
deed, it follows from the G*(V)-equivariance of 7. that the image of T}, lies in the
G*(V)-invariant subalgebra of P(V¥).



4.2. Polynomial FFT for classical groups 141

Write X = (v1,...,v) with each v; € V = CV, Tt follows by definition that
(X[JiX),'j = (Di(vi,vj).

Denote by the same notation the restriction to SM,:(t the matrix coefficients x;; on
My, for 1 <i,j < k. Introduce the G*(V)-invariant functions (i|j) on V*, for
1 <i, j <k, by letting

(i{j)(vl ey Vk) = O)i(vl‘, Vj).
Note that these functions are not independent in general, and
(il7) = (1)
in the =+ case, respectively. It follows by definitions that

T (i) (v, = (il).

Theorem 4.13 (Polynomial FFT for G=(V)). The homomorphism t*. : P(SM) —
PVKYG V) is surjective. Equivalently, iP(Vk)Gi(V) is generated by the functions
(ilj), where 1 <i< j<kinthe+ case and 1 <i< j<kinthe — case.

The proof of Theorem 4.13 will be given in the subsequent subsections.

Remark 4.14. One can show that the image of T, consists of all the matrices
Zc SM,j(t such that rank(Z) < min{k,dimV}. In particular, if dimV > k, then 7.
is surjective. Thus, under the assumption that dimV > k, 1% is injective and so T
is actually an isomorphism. Equivalently, the algebra of G*(V)-invariant polyno-
mials in V¥ is a free polynomial algebra generated by the k(k+ 1) /2 polynomials
as listed in Theorem 4.13.

Remark 4.15. The non-degenerate form ®* induces a canonical isomorphism of
G*(V)-modules: V* 2 V. Via this isomorphism, we can obtain from Theorem 4.13
a (seemingly more general) polynomial FFT for the algebra of G*(V )-invariant
polynomials in (V*)" @ V¥,

4.2.4. From basic to general polynomial FFT. Let us now refer to the statement
in the polynomial FFT for G* (V) as formulated in Theorem 4.13 as FFT(k), for
k> 1. Set N =dimV as before.

Assuming a basic case FFT(N) holds for now, let us complete the proof of
FFT(k) for all k. Denote by Sy the subspace spanned by the functions (i|j), where
1 <i,j<k.

FFT(N) = FFT(k) for k < N. (Indeed, the same argument below shows
that FFT({) == FFT(k) for all £ > k > 1.) The subspace Sy is GL(N)-stable.
Moreover, Sy N P(V*) is simply Sy. Now FFT (k) follows by applying FFT(N) and
Proposition 4.12 for G = G*(V) and § = Sy.
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FFT(N) = FFT(k) for k > N. According to FFT(N), Sy generates the alge-
bra P(VN)C. Observe that {Sn)GL(k) = Sk- Hence, by Weyl’s Theorem 4.11, the
algebra P(V*)Y is generated by Sy, whence FFT (k).

This completes the proof of Theorem 4.13, modulo the proof of the basic case
FFT(N). We shall prove the basic case FFT(N) as Theorem 4.16 in the next sub-
section.

4.2.5. The basic case. In this subsection, we shall prove the following basic case
of the polynomial FFT for G (V') (that is, Theorem 4.13 for k = dim V).

Theorem 4.16. Let N = dimV. Then, the algebra P(VN)C"V) is generated by the
functions (i|j), for 1 <i,j <N.

Proof. We proceed by induction on N. We treat the cases of orthogonal and sym-
plectic groups separately, though the overall strategy of the proof is the same.

The orthogonal group case. Let {¢|,...,ey} be the standard basis of V =
CN. Take (x,y) = IV, xyi, where x = (x1,...,xy),y = (1,--.,yn) in C¥, and

i=1

so O(V) = O(N). Denote

Vi=CVIx{0o}cvVv
and denote by (-, -) the bilinear form on V; obtained by restriction from (-,-) on V.
For N =1, O; = {1}, Theorem 4.16 is clear.

Assume now that N > 1. We have an orthogonal decomposition V = V| ¢ Cey
with respect to (-, -).

Let f € P(VY)OW)_ Since —Iy € O(N), f(X) = f(~Iy-X) = f(—X), f cannot
contain a nonzero odd degree term. Without loss of generality, let us assume that
f is homogeneous of even degree 2d. Below, we will consider the restriction of f
to the Zariski open subset of vectors v = (vy,...,vy) of V¥ given by the inequality

(VN, VN) 75 0

Let k € C such that x* = (v, vn). Since (vy,vy) = (Ken, Key), there exists an
orthogonal matrix g € O(N) such that gvy = xey. Set

(4.8) Vi=xTlgvw, (i=1,...,N—1).

Then,
FO) = Flgv) = f (0, Viorsew) = (n,vw) F (0 Vv en)
Let

4.9) vi=vi+tiey (i=1,....,N—1),

be the orthogonal decomposition in V = V| @ Cey for v/ € V. Using (4.8), we
compute that

(4.10) ti=(Vi,en) = (K'lgv,-,K_lng) = (vi,vn)/(vN,vN).
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Writing ¢/ = t’,“ ---tl’yj‘l for multi-indices I = (i1,...,iy—1) and regarding #; as inde-
pendent variables, we have a decomposition of the following form:
(4.11) f(vlla"‘vv;\lflveN Zfl(v VN 1)1

where f; are polynomial functions uniquely determined by f. Noting from (4.9)
and (4.10) that #; is invariant under the transformation v; — hv; for h € O(N —1),
we conclude from (4.11) that fI is O(N — 1)-invariant for each I.

By induction hypothesis there exist polynomials ¢; in the functions (i|j), 1 <

i < j < N—1, such that f; = ¢; when evaluated on (v{,...,vy_;). Using (4.8),
(4.9), and (4.10), we compute that

(vi,vj) (vas viv) — (vis v) (v, VN)

(VN » VN )2 .
Let us recall that we have been considering the restriction of f to the open subset
defined by (vy,vy) # 0. Plugging (4.12) into fi = @7, we have f(v) = (vy,vv) P Fi
for some polynomial Fj in (v;,v;),i < j < N, and some positive integer p whenever
(VN, VN) 75 0.

We will be done if we can show that the polynomial function (vy,vw)? di-
vides F;. Indeed, the same type of argument above allows us to conclude that
£(v) = (v,v1)"9F; for some polynomial F; in (v;,v;),i < j < N, and some posi-
tive integer ¢ whenever (v, v;) # 0. In this way, we obtain a polynomial equation

(vi,v1)7F = (vv, )P P2,

which holds on a Zariski open subset of V¥ given by the inequalities (vi,v1) # 0
and (vw,vy) # 0, and hence the polynomial equation must hold on VN. This im-
plies (vy, vy )? divides Fy, since the polynomials (vw,vy) and (v1,v1) are relatively
prime.

(4.12) (vgl,v'j' = (v:»,v’j) — (tien,tjen) =

The symplectic group case. Let V = CN be equipped with the standard basis
{e1,...,en}, where N = 2{ is even. For definiteness, let us take the symplectic
group Sp(N) = Sp(V) defined via the symplectic form ®w on V'

4

o(x,y) = Y (x2i-1y2i — X¥2iy2i-1),
i-1

where x = (xy,...,xn),y = (¥1,...,yN) in CN. We have an orthogonal decomposi-
tion V =V, ®W with respect to the symplectic form ®, where
Vi:i=CV2x{0}CV, W:=Cey_1®Cey.
We shall denote by ®; the bilinear form on V; induced from ® on V and regard
Sp(N —2) = Sp(V}) as a natural subgroup of Sp(N) in this way.
Let f € P(VN)SPWV)  Since —Iy € Sp(N), we may assume without loss of
generality that f is homogeneous of even degree 2d, just as for the O(N) case
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above. Below, we will consider the restriction of J to the Zariski open subset of
vectors v = (vy,...,vy) of V¥ given by the inequality ®(vy_;,vy) # 0.

Choose ¥ € C such that k2 = ®(vn—1,vy). Since o(eny_i,eny) = 1 and so
(vn-1,vy) = @(Key_1,Key), it is standard to show that there exists g € Sp(N)
such that

8VN-1 = Ken_j, 8VN = Kep.
Set
(4.13) vi=x"lgw, (i=1,...,N-2).
Then,

f(V) =f(gv) = K2df(vlla""V;V—276N~laeN)
:O)(VN—I;VN)df(V’]:---a"}/v_zaeN-laeN)-

When N = 2, we obtain a polynomial equation flviyn) = fler,e)w(vy, )4,
which holds on a Zariski open set o(vi,v2) # 0 and hence holds everywhere. This
proves the theorem for N = 2.

Now assume N > 2. Let
4.14) v;:vl'-/+sieN_1—f—tieN (i= L...,N=2),

be the orthogonal decomposition in V = V; & W for v/ € Vi. It follows by (4.13)
that

(4.15) {Si = o(v,en) = ok gvi, Kk guy) = 0(v;, vy) /o(vy_y, ),

L, = —(&)(Vl,-,eN‘[) = —(l)(V,',VNﬁ])/O)(VN,] R VN).
Write s/t = s{' . -s]{ﬁvjtf‘ - -t}@’j associated to the multi-indices [ = (i1, yin_2)
and J = (ji,..., jn_2). Regarding s; and # as independent variables, we have a
decomposition of the following form:
7 1
(4.16) FOl Wy asen 1 en) = O ),
1J

where f;; are polynomial functions uniquely determined by f. Noting from (4.15)
that s;,; are invariant under the transformation vi + gv; for g € Sp(N —2), we
conclude from (4.16) that f;; is Sp(N — 2)-invariant for every I,J.

By inductive assumption, there exist polynomials ¢;; in the functions (ilp,1<
{ < J <N -2, such that f;; = @;; when evaluated at (Vs V_,). Using (4.13),
(4.14), and (4.15), we compute that

;.’) = (v}, v;) +1is; —sit;
(4.17) . (D(V,', Vj)(D(VN_] , VN) - (1)(11,', VN_1 )(D(Vj, VN) + (D(V,', VN)(J\)(VJ', VN—])

B O(vy_1,vy)?2 .
Recall that we have been considering the restriction of f to the open subset defined
by @(vy—1,vn) #0. Plugging (4.17) into fi1 =017, we have fv)=o(vy_1,vy)PF

o(v/,v
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for some polynomial F in ®(v;,v;)i<j<ny and some positive integer p whenever
o(vy_1,vy) # 0. Repeating the same trick used in the orthogonal group case, we
see that the polynomial function ®(vy_1,vy)? divides F.

This completes the proof of the theorem. O

4.3. Tensor and supersymmetric FFT for classical groups

In this section, we will use the polynomial FFT for classical groups to derive the
corresponding tensor FFT. Finally, the supersymmetric algebra version of FFT is
derived from the tensor FFT.

4.3.1. Tensor FFT for classical groups. Let G = G(V,®), where V is a vector
space equipped with a non-degenerate symmetric or skew-symmetric bilinear form
®. Since V =2 V* as a G-module, it suffices to consider the G-invariants on the
tensor space V& rather than a mixed tensor space V®" @ (V*)®", for m,n > 0.
Observe that —Iy € G acts by the scalar multiple by (—1)" on V®™. Hence,
(V™G = 0 unless m = 2k is even.

Via the canonical identification of G-modules:
VeV 2V @V = End(V),
we obtain a natural G-module isomorphism:
T : V% =5 End(VEH),
which maps u = vi @ vy ® ... ® vy to T (u) defined as follows:
T(u)(x ®...0x) = 0x1,v2)0(x2,v4) ... 00X, V2 )V1 V3R ... @ Vo—1-

Clearly the identity Jye« is G-invariant, and hence so is T~ ! (fyet). We describe
T~ (Iyw) explicitly as follows. Take a basis {f;} for V and its dual basis { /*} for
V with respect to ®, i.e., ®(f;, f/) = &;;. Define

N
0= fi®f, H=01®...06.
;ﬁ of, 6=0® k ®
Then 7! (Iyex) = Ok.
Recall from Section 3.2 the following commuting actions:

o P
GL(V) A vo% A &y.

Since G is a subgroup of GL(V) that commutes with &y,
B := W2k (0)(6k)

is G-invariant for any ¢ € Gy.
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Theorem 4.17 (Tensor FFT for G(V,®)). Ler G = G(V, ®), where ® is a non-
degenerate symmetric or skew-symmetric bilinear form on V. Then (VvEmMG =
for m odd. Moreover, (V®*)C has a spanning set {05 | 0 € Gy}

The tensor FFT for G(V, ) affords an equivalent dual reformulation on the
G-invariants of (V*®™) = (V®™)* We let (i| ) be the function such that

(4.18) D15 vm) = 0(viyv)).
Denote by
0r = (112)(3[4)...(2k — 1|2k)

the G-invariant function on (V™) that corresponds to the identity under the iso-
morphism 77 : V*®2% =, End(V®*). Denote by V3, the natural action of Gy on
(V*©2%), which clearly commutes with the natural action of G.

Theorem 4.18 (Tensor FFT for G(V,®), dual version). Let G = G(V, ), where
O is non-degenerate symmetric or skew-symmetric. Then (V**m)G =0 for m odd.
Moreover, (V*¥2)C has a spanning set {W5.(0)(8;) | 0 € Gy ).

Theorems 4.17 and 4.18 are equivalent, and we shall only present a detailed
proof of the tensor FFT as formulated in Theorem 4.18. The strategy of the proof
can be outlined as follows. First, we introduce an auxiliary polarization variable
X € End V to reformulate this tensor FFT problem as one involving the basic case
of the polynomial FFT as in Theorem 4.16 (note End V & V¥ for N = dim V). Then,
by applying Theorem 4.16, we transfer the problem at hand to an FFT problem for
GL(V), for which Theorem 4.2 applies.

Proof of Theorem 4.18. Since —Iy € G acts on V®™ by a multiple of (—1)", we
have (V®™)Y = 0, for m odd.

Now let m = 2k be even. We shall define an injective linear map
Q:VE — PMENd V)R V*E" L Dy,

where @, is defined as a function on End V x V®"_ which is of polynomial de-
gree m on End V' and linear on V®™, by letting @, (X, w) = (A, X ®my, for X €
End V,w € V®™, The injectivity follows since A is recovered as D) (Iy,—).

The space P™(End V) ® V*®™ carries commuting actions of the groups G and
GL(V) as follows: g.f(X,w) = f(g~'X,w) for g € G; h.f(X,w) = f(Xh,h™'w)
for h € GL(V). Note that @ is a G-equivariant map, i.e., 8.0y = D, ), forg € G.
Also note that @, is GL(V )-invariant, i.e., h.®) = ®,, for 4 € GL(V). Hence, we
obtain by restriction of @ the following injective linear map (which can actually be
shown to be an isomorphism, though this stronger statement is not needed below)

©: (VMG (P"(End V)¢ @ vem) oY),
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For notational convenience below, let us fix V = CV (regarded as a space of
column vectors), and ®(x,y) = x'Jy, for x,y € V. In this way, we identify End V as
the space Myy of N x N matrices.

The action of G on End V relevant to ® above gives rise to a G-equivariant
isomorphism End V 22 V¥, When applying the basic case of the polynomial FFT
(Theorem 4.16), we obtain, for A € (V*®")C that

D) (X,w) = B (X'JX,w),

where Fj is a polynomial function on SMﬁ x V&% which is of polynomial degree
k on SMy and linear on V&% (here we recall m = 2k).

We have a natural isomorphism SMy, = 52(V*) in the case of symmetric ®, and
SMy, =2 A?(V*) in the case of skew-symmetric ®. Recall that the action of GL(V)
on End V = Myy relevant to @ above is given by left multiplication on Myy.
This action induces an action of GL(V) on SMj, which corresponds precisely
to the GL(V)-action on S?(V*) (respectively, A>(V*)) coming from the GL(V)-
module structure on V*. Hence, we have a GL(V)-invariant polynomial function
B, : $2(V*) x V&% _, C in the case of symmetric @ (or Fy : A2(V*) x V¥ — C in
the case of skew-symmetric ®), which is linear on V®% and of polynomial degree
k on S2(V*) (or A2(V*)). Thus, by the tensor FFT for GL(V) (see Theorem 4.2),
F,, can be written as a linear combination of the functions

(M,w) = (X iMiv]) - (X ulMipvl),
i,j ij

where w is the tensor product of uy,vy,... U, vk € CV in some order, ui1 ’s are the
coordinates of uy, and so on. Evaluating P, at M = J, we deduce that A = F (J, —)
is a linear combination of the (i|j)’s. O

4.3.2. From tensor FFT to supersymmetric FFT. Let W = W; © Wj be a finite-
dimensional vector superspace. Recall the supersymmetric algebra of W:

S(W) = S(W5) @ A(Wr).
Let G = GL(V). We set
(4.19) Wy=V"aVv™  Wy=Viev*

As a GL(V)-module, we have a decomposition (W) = @,>08" (W) by the total
degree, where 8" (W) as a GL(V)-module is a direct sum of the following tensor
spaces (which are also GL(V )-submodules)

SR 5% (V) ®... @8 (V)@SP (V) ... 08P (V)
SAT(V)®... N (V)QA (V) ®... 0 A (V*),

where the summation is taken over all nonnegative integers o, Bp, Y, and 8, such
that |ot| + |B| + |y] + |8] = r. Here we have denoted ot = (1, ..., 0y), |0 = X, Olg,
similarly for B, |B|, and so on.

(4.20)
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We now fix o, ,v,8, and want to describe a spanning set for (S*#)CL() To
that end, we regard the space (or the GL(V)-module) SB35 a subspace of the
following mixed tensor space (or GL(V)-module)

T =y g @V g (V) .. o (V)&

4.21) 5 5
®V®’Yl ®...®V®Yk ® (V*)® 1 ®®(v*)® ¢

(which is isomorphic to V&(e+¥) @ (v*)@(BI+)) Hence, the space ($*P¥8)GLV)
can be viewed as a subspace of (T%¥)GL(V) By the tensor FFT for GL(V) (The-
orem 4.2), we will assume below that || + |y = |B| + |8] = N for some N, for
otherwise (T*F¥)CL(V) — 0. By the same tensor FFT again, the GL(V )-invariants
of TP are spanned by Og for ¢ € Sy, and each Og as defined in (4.3) is a suitable
tensor product of N degree-two invariants that arise from various pairings between
V and V* such that each copy of V and V* in TP is used exactly in one such
pairing.

The subspace (S*#®)CL(V) is obtained from the space (T*FY¥)GLYV) py a (par-
tial) supersymmetrization. Applying the &4 x &g x &, x G5 -supersymmetrization
operator W, to the Og’s gives us a spanning set {Wup,5(Os)} for (SHBYCL(V)
where Gy = Gy, X ... X &y, and by supersymmetrization we mean the sym-
metrization over the subgroup &y x Sp and the anti-symmetrization (denoted by
the minus sign superscripts above) over the subgroup &, x &;. Denote the degree-
two GL(V)-invariants of §(W) = S(V" @ V*") @ A(V¥ @ V**), which are straight-
forward variants of the contractions (j|i*) introduced in (4.4), by

(4.22) (@b™l), Aalll@®), (Ib"lel),  (lleld™),

where 1 <a<m,1<b<n,1<c<k,1<d</{ Herein the notation of (4.22)
and similar ones below, we have used a vertical line | to indicate the location of
the chosen pairs of V and V* in §(V” @ V*" ® V¥ & V*¢). From the tensor product
form of O we derive that Wyp,5(Os) € (S*¥1®)CL(Y) i the corresponding product
of N invariants among (4.22).

The cases for G = O(V) or Sp(V) can be pursued in an analogous manner. Set
(4.23) Wy=v", W=Vt

We do not need V* here thanks to V* =2V as a G-module. We have a similar de-
composition of the G-module 8§(W) = ®g,yS*, where S is modified from (4.20)
with B and J being zero. The space S™ is a subspace (and also a G-submodule) of
the tensor space 7%, where 7% is modified from (4.21) with B and & being zero.
Hence, the space (S*Y)C can be viewed as a subspace of (T®)C. By the tensor
FFT (Theorem 4.17), we may assume below that |ct| + |y| is even, say, equal to
2N. Then by the same FFT again, the G-invariants of 7% are spanned by 64 for
G € Gay, and each O is a suitable tensor product of N degree two invariants that
arise from pairings V ®V so that each V in T™ is used exactly in one such pairing.
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The subspace (S*Y)¢ is obtained from the space (T)“ by a (partial) supersym-
metrization. Hence, applying the &, x &, -supersymmetrization operator Dy to
the 85’s gives us a spanning set {Tay(8s)} for (S*V)C. Denote the degree-two G-
invariants in S*¥, which are straightforward variants of (i|j) introduced in (4.18),
by

(4.24) (ale), (a:d]), (le:c),

where 1 <a<a <mand 1 <c<c <k Note in addition that (a;a|) = 0 for

G =Sp(V) and (|c;¢) =0 for G = O(V'). Hence, we derive from the tensor product
form of 8 that @y () is a product of N invariants among (alc), (a;d'), (|e; ).

Summarizing, we have established the following.
Theorem 4.19 (Supersymmetric FFT). Let G = GL(V),0(V), or Sp(V). Let W
be as given in (4.19) for GL(V) and in (4.23) for O(V) or Sp(V), respectively. The
algebra of G-invariants in the supersymmetric algebra S(W) is generated by its
quadratic invariants given in (4.22) for GL(V) and in (4.24) for O(V) or Sp(V),
respectively.
Remark 4.20. Theorem 4.19 has two most important specializations:

(1) When W = 0, the supersymmetric algebra on W reduces to the symmetric
algebra S(W;). The corresponding FFT admits an equivalent reformulation as a
polynomial FFT that describes the G-invariants in a polynomial algebra on a direct
sum of copies of V (and V*).

(2) When Wy = 0, the supersymmetric algebra on W reduces to the exterior
algebra A(Wg). The G-invariants in this case are known as skew invariants.

4.4. Exercises

Exercise 4.1. Prove that the image of
7: Hom(CK,V) @ Hom(V,C") — My, T(x,y) = yx,
consists of all the matrices Z € M, such that rank(Z) < min{m,k,dimV }.

Exercise 4.2. Consider the cyclic diagonal subgroup C, = {diag (§,§7') |£" =1}
of SL(2) and identify the symmetric algebra S(C?) with Clx, y]. Find a presentation
in terms of generators and relations for the algebra of invariants C[x,y|“".

Exercise 4.3. Let V be a complex vector space of dimension n. For A € End(V),
consider its characteristic polynomial

det(t]—A)=1"+ i(—l)"ei(A)r”“'.
i=1

Also introduce the polynomial function tr; : End(V) — C, A + tr A', for i > 1.
Prove that:
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(1) The e; and tr;, for 1 <i < n, are invariant polynomials on End(V).

(2) The algebra of invariants for the conjugation action of GL(V') on End(V)
is isomorphic to a polynomial algebra generated by ey, ..., e,.

(3) The algebra of invariants for the conjugation action of GL(V') on End(V')
is isomorphic to a polynomial algebra generated by try,.. ., tr,.

(Hint: Establish connection to symmetric polynomials in n variables and note that
the set of diagonalizable n x n matrices is Zariski dense in M,,.)

Exercise 4.4. Let U and V be two finite-dimensional simple GL(n)-modules, and
assume that U =V as SL(n)-modules. Then U =V @ det” for some r € Z as
GL(n)-modules, where det : GL(n) — C is the determinant GL(n)-module.

Notes

Section 4.1. The materials here are mostly classical and standard. Weyl’s book
[131] on invariant theory was influential, where the terminology of First Funda-
mental Theorem (FFT) for invariants was introduced. See Howe [51, 52]; also
see the notes of Kraft-Procesi [74]. Theorem 4.1 on finite generation of an invari-
ant subalgebra of the supersymmetric algebra is somewhat novel, as it is usually
formulated for a polynomial algebra only.

Section 4.2. The results here are classical. Our proof of Weyl’s theorem follows
Kraft-Procesi [74]. Weyl’s theorem allows us to reduce the proof of the polynomial
FFT for classical groups in general to a basic case. The basic case is then proved
by induction on dimensions, and our presentation here does not differ much from
Goodman-Wallach [46]. In [46], the general polynomial FFT was derived using the
tensor FFT instead of Weyl’s theorem, while in Weyl [131], the Cappelli identity
was used essentially in the proof of the polynomial FFT.

Section 4.3. The tensor FFT for classical groups can be found in Weyl [131].
The quick proof of the tensor FFT for the orthogonal groups here is due to Atiyah-
Bott-Patodi [3], and it works for the symplectic groups similarly (also see a presen-
tation in Goodman-Wallach [46]). The supersymmetric FFT for classical groups,
which is a common generalization of the polynomial FFT and skew FFT, is taken
from Howe [51]. The supersymmetric FFT will be used in the next chapter on
Howe duality for Lie superalgebras.

The exercises are pretty standard.



Chapter 5

Howe duality

The goal of this chapter is to explain Howe duality for classical Lie groups, Lie
algebras, and Lie superalgebras, and applications to irreducible character formulas
for Lie superalgebras. Like Schur duality, Howe duality involves commuting ac-
tions of a pair of Lie group G and Lie superalgebra g’ on a supersymmetric algebra
8(U), and 8(U) is naturally an irreducible module over a Weyl-Clifford algebra
90¢. In the main examples, G is one of the three classical groups GL(V),Sp(V),
or O(V), ¢ is a classical Lie algebra or superalgebra, and U is a direct sum of
copies of the natural G-module and its dual. According to the FFT for classical in-
variant theory in Chapter 4, when applied to the G-action on the associated graded
gr ¢, the basic invariants generating (gr 20¢)° turn out to form the associated
graded space for a Lie (super)algebra g’. From this it follows that the algebra of
G-invariants 20¢C is generated by g

The most important cases of §(U) are the two cases of a symmetric algebra
and of an exterior algebra, corresponding respectively to U; = 0 and U = 0. In
these two cases, the Howe dualities only involve Lie groups and Lie algebras, and
they may be regarded as Lie theoretic reformulations of the classical polynomial
invariant and skew invariant theories, respectively, treated in Chapter 4.

Howe duality provides a realization of an important class of irreducible mod-
ules, called oscillator modules, of the Lie (super)algebra g'. The irreducible G-
modules and irreducible oscillator g’-modules appearing in the decomposition of
8(U) are paired in “duality”, which is much stronger than a simple bijection. Char-
acter formulas for the irreducible oscillator g’-modules are then obtained via a com-
parison with Howe duality involving classical groups G and infinite-dimensional
Lie algebras, which we develop in detail.

151
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5.1. Weyl-Clifford algebra and classical Lie superalgebras

In this section, we introduce a mixture of Weyl algebra and Clifford algebra uni-
formly in the framework of superalgebras. We formulate the basic properties of
this Weyl-Clifford algebra and its connections to classical Lie algebras and super-
algebras. We then establish a general duality theorem that works particularly well
in the setting of Weyl-Clifford algebra.

5.1.1. Weyl-Clifford algebra. Recall that for a superspace U = Uy ® Ui, we de-
note the supersymmetric algebra by

S(U) =S(Up) @ AN(Uy).

In a first round of reading of the constructions below, the reader is advised to un-
derstand first the two special cases with Uy = 0 and then U = 0, respectively.

The superspace §(U) is spanned by monomials of the form u; . . ApWT .. Wy,
for uy,...,u, € U and Wi,...,wg € Up. Note that wju; = uju;, u;w; = wiu;, and
wiwy = —wyewy. The space 8(U) is Z x Z,-graded by letting the degree of a nonzero
element uy ...upwy...wy be (p+g,g), where g denotes ¢ modulo 2.

For x € Up (respectively, x € U;), we define the left multiplication operator of
degree (1,0) (respectively, (1,1))

M, :8(U) — 8(U), y+xy.

We regard Uy C U* by extending u* € Uy to an element in U* by setting
(u*,w) =0 for all w € Uj. Similarly we have Ui CU". In this way, we identify
U* = U; @ Uy as a vector superspace. For u* € UZ, we define the even derivation
D, of degree (—1,0), and for w* € U{, we define the odd derivation D,,- of degree
(—1,1) as follows:

Dy : S(U) —8(U), Dy : 8(U) —s 8(U),

M

D . .
Up . UpWi.. . We—=> > (u SUDUT < D UpW] . Wy,

—

1

<

D _ .
Up .. UpWy . Wy 2 z(—l)k 1<w*,wk>u1...u,,w1 W wy,
k=1

where u; € Uy and w; € Uj. Here and below #; means the omittance of u;, and so
on.

The linear operators M, and Dy, for u € Uy,u* € Uy, in the superalgebra
End(S(U)) defined above are even, while M,,,D,,- € End(S(U)), for w € Ui, w* €
Uf, are odd. We shall denote by [-, -] the supercommutator among linear operators.

Lemma 5.1. Forx*,y* € U* and x,y € U, we have
[Dy-, Dy] = [My,M,] =0, (D, My] = (x",y)1.
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Let us reformulate. Set

U=UaU".
Then U is a superspace U = U5 @ U1 with
(5.1) Us=U;aUs, UTZUI@UT*'

Let {-,-)’ be the even skew-supersymmetric bilinear form on the superspace U

defined as follows: for uy,u; € Uy, uj,u; € U(—;‘, wi,wp € Ug, and wi,wj € UT*, set
(1 +uf,up +us) = (], up) — (u3,ur),

<W1 +WT’W2 +W;>/ = <WT7W2> + (WS?W1>,

<u1 +MY,W1 +WT>/ =0.

Define a linear map
1: U — End(8(V))
by letting
Ux) =My, \(x*) =Dy, forxeU,x*eU".
It is straightforward to check that Lemma 5.1 affords the following equivalent re-
formulation.

Lemma 5.2. We have
(5.2) [W(a),\(b)] = (a,b)'1, fora,bcU.

The subalgebra in End(S(U)) generated by 1(U) will be denoted by 20&(U)
and referred to as the Weyl-Clifford (super)algebra. When U; = 0, 20€(U) re-
duces to the usual Weyl algebra 20(Uj). Choose a basis xi,...,x, for the m-
dimensional space Up, with dual basis xJ,...,x;,, so that S(Up) is identified with
C[x1,...,%m). The operators M,, can then be identified with the multiplication op-
erators x;, while the derivations D,: are identified with the differential operators
a%_ = 0;. Hence, 20(U ) is identified with the algebra of polynomial differential op-
erators on Clxy, ..., X,). When Uy =0 and dimU; = n, 20€(U) is isomorphic to the
Clifford superalgebra C,, (see Definition 3.33), which we also denote by €(U7).

In the same spirit as above, let ny,...,Mn, be a basis for Uz, and let },...,m, be
its dual basis, so that A(U;) = A(M1,...,Mx), the exterior superalgebra generated
by M1,...,Ms. The multiplication operators My, correspond to left multiplications

by m; and shall be denoted accordingly by n;. The derivations Dy correspond
to the odd differential operators 5% = 0;. Hence, €(U7) can be regarded as the
superalgebra of differential operators on A(N1,...,My)-
For general U, there is an algebra isomorphism 20€(U) = W(U;) @ €(Uj)
and an identification
S(U) =Clx,n] :=Clx1,....xu| @AM1,...,Mn)-

The superalgebra 20¢(U) is then identified with the superalgebra of polynomial
differential operators on the superspace U, that is, the subalgebra of End(S(U))
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generated by the multiplication operators x;,m j and the (super)derivations 0;, 9,
for1 <i<m,1<j<n.

5.1.2. A filtration on Weyl-Clifford algebra. The linear map |y : U — 20¢(U)
induces an injective algebra homomorphism « : S(U) — 20€(U), and similarly,
Yy+ : U* — WEU) induces an injective algebra homomorphism x* : §(U*) —
WEU).

Proposition 5.3. The map m: 8(U) @8 (U*) — 2E(U) given by x®y + 1(x)K*(y)
is a linear isomorphism. Moreover, the algebra 2€(U) is isomorphic to the alge-
bra generated by \(U) subject to the relation (5.2).

Proof. The two statements in the proposition are equivalent. It follows by def-
inition and (5.2) that the map m is surjective. The injectivity of m is equivalent
to the claim that the “monomials” of an ordered basis for U and U* form a basis
of 2W&(U ), and the claim can then be established by a straightforward inductive
argument.

Alternatively, the proposition for 20€(U) reduces to the well-known coun-
terparts for 25(Up) and €(U7), thanks to WE(U) = W(Uy) @ €(U5) (note that
2(Ug) and €(U;) commute). O

We continue to identify 20¢€(U) with the superalgebra of polynomial dif-
ferential operators generated by the multiplication operators x;, 1 j and the (su-
per)derivations d;, d;, for 1 <i <m,1 < j < n. By Proposition 5.3, We(U)
has a linear basis {x*nP7d% | o,y € 77,8, € Z5}, where x* = xJ' .- x% for
o= (0iy,...,0,) and NP, 9Y, 3 are defined similarly. Define the degree

degx*nPa"a® = |a) + |B| + [v] + 9],
where |ot| = 0t + ...+, and |B|, |y],]8| are similarly defined.

The Weyl-Clifford algebra 20€(U) carries a natural filtration {20¢(U ); }x>0
by letting 2C(U ) be spanned by the elements x*nP373® of degree no greater
than k. Clearly, WE(U ) WE(U ), C WE(U )44, and so WE(Y) is a filtered al-
gebra. Actually, 203(Ug) and €(U7) are filtered subalgebras of the filtered algebra
WE(U), and WE(U) = W(U;5) ® €(U;) as a tensor product of filtered algebras.
As usual, the associated graded algebra for 20¢(U) is defined to be

oo

grWE(U) = DWE(U )/ WEW s+
k=0

For T =¥y p5 caBYf;xO‘nBaYﬁs with cegys € C of filtered degree j, ie., T €
WU ) ;\WE(U) 1, we define the symbol or the Weyl symbol of T to be

o(T) = 2 Capy®nPyE e 8/(),
Ja+[B1-+ Y4181
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where we denote by y; and &; the generators in S(U') that correspond to d; and @;,
respectively. We define a symbol map, for k > 0,
k
(5.3) c: W) — PSS’ (U)
j=0

by sending T to (7).

Proposition 5.4. Let G be a classical subgroup of GL(Uy) x GL(Uj). The symbol
map © is a G-module isomorphism from EU )y, to @’1?:0 8/(U) for each k. As
a G-module, the associated graded algebra gr Q€ (U) is isomorphic to the super-
symmetric algebra S(U).

Proof. The G-module 20¢(U ) is semisimple and hence isomorphic to the asso-
ciated graded EBIJ‘-ZO WE(U);/WE(U ). For a fixed j, the linear span of

{x*nPa"e® | ||+ Bl + 1Y + 18] = j}

as a G-module is isomorphic to WE(U) ;/AWE(U ) j—1, which in turn is isomorphic
to 8/(U). The proposition follows. O

5.1.3. Relation to classical Lie superalgebras. There is an intimate relation be-
tween the Weyl-Clifford algebra and classical Lie algebras/superalgebras, which
we will now formulate. Introduce § = G5 @ G1, where

S5 =5((Up))® N> (W(UY),  G1=uUs)@UU7).

Proposition 5.5. (1) The subspace G of WE(U) is closed under the super-
commutator and as Lie superalgebras G = spo(U). In particular, S is a
Lie algebra isomorphic to sp(Ug) so(U1).

(2) Under the adjoint action, \(U) is isomorphic to the natural representation

of § = spo(U).

Proof. We identify S?(1(Uj)) with the space of anti-commutators [L(Ug),1(Up)]+,
that is, the linear span of [a,b]; = ab + ba, for a,b € 1(Ujy); note by (5.2) that
[a,b] = ab—ba € C. Similarly, we identify A2(1(U;)) with [(U7),1(U7)], the
linear span of [¢,d] = cd —dc, for c,d € 1(U7); note by (5.2) that [c,d], € C.

We claim that $>(L(Uj)) is closed under the commutator, and moreover, we
have S?(1(Ug)) =2 sp(Uyp) as Lie algebras. To see this, let xy, ..., X, be a basis for
Us. Regard x; and 9; as elements in 20€(U) as before. We may identify S?(1(Uj))
with the space spanned by elements of the form

(5.4) xi0j+0d;xi, xixj, 0id;, 1<i,j<m.

By a direct computation via this spanning set, one checks that S?(1(Uyp)) is closed
under the commutator. Using that [b,a;] = (b,a;)’ by (5.2), one further computes
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that, for a,b,a; € (Ujy),

(5.5) [la,b]+,a1] = a[b,a] + [b,ai}a+ [a,a;]b+ bla,ai]
=2(b,a1)a+2{a,a)'b.

Hence, (Uj) is a representation of the Lie algebra S?(1(Up)) under the adjoint
action. With respect to the ordered basis {xi,...,Xy,01,...,dn} for (Up), we
can write down the matrices of (5.4), the span of which is precisely given by the
2m x 2m matrices of the m|m-block form

A B _ A _ t
<c _A,>, B=B.C=C.
This shows that $>(1(Up)) = sp(Ujp) and that 1(U}) is its natural representation.

Similarly, A?((U7y)) is closed under the Lie bracket, A2(1(U7)) = so(U7) as
Lie algebras, and 1(U7) under the adjoint action of A2(1(U7)) is its natural rep-
resentation. Since the case for A2(1(Uy)) is completely parallel to the case for
S%(1(Uyp)) above, we shall omit the details except recording the following identity
analogous to (5.5):

(5.6) [[e,d],c1] =2(d,c1) c—2(c,e1)'d, Ve,d,c; er(Us).

On the other hand, by a direct computation, we have that, for a,b € Uy and
c,decUj,

a®c,bod); = %([a,b] @ [cd] + a, b, ® el ).

Here we recall [a,b] € C and [c,d], € C. This implies that [G1, G1]+ C Gp. Hence
G is closed under the super-commutator and so is a Lie subalgebra of 20¢(U).

We further observe that § preserves the bilinear form {-,-)’ on U and hence is a
subalgebra of spo(U). Indeed, it follows by using (5.5) twice that, for a,b,ay,b; €
YUys),

(57) <[[aab]+7al])bl>,:_<ala [[a7b]+abl]>/-
Similarly, it follows by (5.6) that, for ¢,d,c1,d; € (Uj),
(58) <“C,d],C1],d[>/: _<C17 [[Cad]7d1]>/-

The remaining identity for the G-invariance of (-,-)’ can be verified similarly (see
Exercise 5.1). Since G5 = sp(Ug) @ s0(U7) and G; = Uy @ Uy, it follows that
G = spo(U). Now (5.5) and (5.6) together with [[a,b],c] = [[c,d],a] = O show
that 1(U) is indeed the natural representation of G under the adjoint action. O

Proposition 5.6. The adjoint action of the Lie superalgebra G on 23€(U) pre-
serves the filtration on 2E(U). The action of G5 can be lifted to an action by
automorphisms of the group Sp(Ug) x O(U7) on WE(U).
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Proof. The first statement follows from Proposition 5.5(2) and the definition of
the filtration on 20C(U). Clearly the adjoint action of G5 on L(U) lifts to an ac-
tion of the group Sp(Uj) x O(Uj). As each finite-dimensional filtered subspace
WE(U ), for k > 1 is preserved by the adjoint action of Gg, the G5-module WE (V)
is semisimple and hence isomorphic to S(U) by a standard induction argument.
The second statement follows. |

5.1.4. A general duality theorem. In this subsection, we establish a duality the-
orem in a general setting, which will be used subsequently.

Let G be one of the classical Lie groups GL(V), Sp(V), or O(V). Assume
(p,L) is a rational representation of G of countable dimension, which in particular
means that it is a direct sum of finite-dimensional simple G-modules. Assume that
a subalgebra R C End(L) satisfies:

(1) R acts irreducibly on L.
(ii) For g € G,T € R, we have p(g)Tp(g) ' € R. That is, R is a G-module
by conjugation.

(iii) As a G-module, R is a direct sum of finite-dimensional irreducible G-

modules.

As we shall see, in the main applications developed in this chapter, the algebra R is
taken to be the Weyl-Clifford algebra on a sum of copies of the natural G-module
V, and Conditions (i)-(iii) are easily verified.

Define the algebra of G-invariants in R to be
RO ={T € R|p(g)T =Tp(g),g € G}.
We write the G-module L as a direct sum of finite-dimensional simple G-modules
L()) of the isomorphism class A as L & @xeé(p) L(\) @ M*, where G(p) denotes
the set of isomorphism classes of simple G-modules appearing in (p, L), and
M" := Homg(L(A),L)

denotes the multiplicity space of A.

Then M is naturally a left RS-module by left multiplication. Indeed, for T €
RO, f € M* = Homg(L()A),L),v € L(A),g € G, we have

Tf(gv) =Tp(g)f(v) =p(&)Tf(v),
that is, Tf € M, Hence, we have a decomposition of the CG @ R®-module L
(which we shall simply refer to as a (G, R€)-module):
(5.9) L= P L) oM.
AeG(p)

We shall need the following variant of the Jacobson density theorem, a proof
of which can be found in [46, Corollary 4.1.6].
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Proposition 5.7. Let L be a vector space of countable dimension. Assume that a
subalgebra R of End(L) acts on L irreducibly. Then, for any finite-dimensional
subspace X of L, we have R|x = Hom(X ,L).

Theorem 5.8. Assume that (p,L) is a representation of a classical group G of
countable dimension, which is a direct sum of finite-dimensional simple G-modules.
Further assume that G, R, L satisfy Conditions (i)-(iii). Then the M’s, for A €

G(p), are pairwise non-isomorphic irreducible RY-modules.

Proof. We shall need the following G-invariant version of Proposition 5.7.

Claim. Let X C L be a finite-dimensional G-invariant subspace. Then RC|y =
HOITIG (X ,L).

Indeed, by G-invariance of X, Hom(X,L) is a G-module, and the restriction
map R — Hom(X ,L) given by r — rly is a G-homomorphism. Since R and
Hom(X, L) are completely reducible G-modules, they contain R¢ and Homg (X, L)
as direct summands of trivial submodules. We shall denote by T the respective G-
equivariant projection maps. Hence we have the following commutative diagram:

(5.10) R—T . RG

I'CSJV I'CSJ(

Hom(X,L) —" Homg(X ,L)

Now, suppose that T € Homg (X ,L). Regarding T € Hom(X ,L), we may apply
Proposition 5.7 to find an element » € R such that r|x = T. Then we have

T =n(T) =n(rlx) = n(r)|x,
proving the claim, since nt(r) € RC.

Recall M* = Homg(L(A),L) by definition, for A € G(p). Take two nonzero
elements S, T € Homg(L(A),L). Then y = ST! ; T(L(X)) — S(L(L)) is an iso-
morphism of irreducible G-modules. It follows by the claim above that there exists
u € R that restricts to \ : T(L(A)) — L. Hence, uT : L(A) — § (L(A)) is an isomor-

phism of irreducible G-modules. By Schur’s Lemma, we must have S = ¢uT for
some scalar ¢, and this proves the irreducibility of the RG-module Homg(L(ML),L).

It remains to show that, for distinct A, u € @(p), an RC-module homomorphism
¢ : Homg(L(A),L) — Homg(L(u),L) must be zero. To this end, we take an arbi-
trary element 7 € Homg(L(A),L). Set S := o(T), U := T(L(A)) ® S(L(u)), and
let p: U — S(L(u)) C L be the natural projection, which is clearly G-equivariant.
By the above claim, there exists r € RC such that p = r|y. Then, it follows from
pT =0 that rT = 0 and then,

0=¢(rT)=ro(T)=rS=pS=S.

Hence we conclude that @ = 0 as desired. d
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We will call a decomposition of the (G,R¢)-module L as in (5.9) strongly
multiplicity-free, in light of Theorem 5.8.

5.1.5. A duality for Weyl-Clifford algebras. Let U = Uy ® U; be a vector su-
perspace, and let G be a classical Lie subgroup of GL(Up) x GL(U;). In all the
examples that give rise to concrete Howe dualities in the next sections, Uy and Uy
are actually direct sums of the natural G-module. The induced G-module (p, S$(U))
is semisimple. Also, the G-module 20¢(U) € End(8(U)), with G-action given by
conjugation g.T = p(g)Tp(g~"), for g € G and T € WE(U), is semisimple.

Lemma 5.9. As a module over the Weyl-Clifford algebra 2€(U), 8(U) is irre-
ducible.

Proof. Identify S$(U) with C[x,n], and identify 20€(U) with the superalgebra of
polynomial differential operators on U as in Section 5.1.2. Then, given any nonzero
element f in C|x,n], we can find a suitable constant-coefficient differential operator
D € 20¢(U) such that D.f = 1. Now applying suitable multiplication operators in
0C(U) to 1, we obtain all the monomials x*nP that span C[x,n]. The lemma
follows. g

Letting L = 8(U) and R = WE(U), the triple (G, L, R) satisfies Conditions (i)-
(iii) of Section 5.1.4. Hence Theorem 5.8 is applicable in light of Lemma 5.9 and
gives us the following.

Theorem 5.10. Retain the notations above. As a (G,20€(U)%)-module, $(U) is
strongly multiplicity-free, i.e.,
sU)= @ L) eoM*
AEG(p)

Here the M*’s are pairwise non-isomorphic irreducible ¢ (U)C-modules, while
the L(\)’s are pairwise non-isomorphic irreducible finite-dimensional G-modules.

Recall by Theorem 4.1 that the algebra S(U )G is finitely generated. Also recall
from (5.3) the symbol map ¢ : 20C(U) — 8(U).

Proposition 5.11. Let {Sy,...,S,} be a set of generators of the algebra $(U)C,
where G is a classical subgroup of GL(Uy) x GL(Ut). Suppose T € WE(U)C is
chosen so that 6(T;) = S}, for j=1,...,r. Then {Th,..., T,} generate the algebra
We(U)C.

Proof. It follows from Proposition 5.4 that the symbol map © restricts to an iso-
morphism from 25¢(U)¢ to @F_ 8/ (U)Y, for each k > 0.

Let a € WE(U)P. We shall show that a is generated by Ty,...,T, by in-
duction on k. For k = 0, the claim is trivial. Suppose that kK > 1. By assump-
tion 6(a) = f(81,52,...,S,), for some polynomial f. Now consider the element
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[, D,....T,) € WE(U){. Wenote that 6(a— f(Ty,...,T;)) € @\, 8/(U), and
hence a — f(T1,...,T,) € WE(U)E . By induction hypothesis, a—-f(Th,...,T,) is
generated by T1,...,7,, and hence so is a. ]

Proposition 5.12. Suppose that the generators Ty, ..., T, for the algebra WE(U)°
can be chosen such that g’ := @j_, CT; is a Lie subalgebra of WE(U)© under the
super commutator. Then the 20€ (U )°-modules M*’s (see Theorem 5.1 0) are pair-
wise non-isomorphic irreducible g'-modules, and we have the following (G,¢')-
module decomposition:

S(U)= P L) oM.

reG(p)

Proof. By assumption, the action of g’ on §(U) extends to an action of the uni-
versal enveloping superalgebra U(g’), so we obtain an algebra homomorphism p’ :
U(g') — End(8(U)). The assumption that 7, ..., T, generate the algebra 20¢(U)¢
implies that p'(U(g')) = WE(U)C. The proposition now follows from Theo-
rem 5.10. td

We shall refer to (G,g’) in Proposition 5.12 as a Howe dual pair. In the
next sections, by specializing to the case when G is a classical group and U and
U; are direct sums of the natural G-module, we shall be able to make an explicit
choice of the generators Tj,...,7, so that Proposition 5.12 can be applied. Note
that S(U) = S(Us) when U; = 0, and that $(U) = A(U;) when Uy = 0. In either
special case, the g’ appearing in Proposition 5.12 will be a Lie algebra.

5.2. Howe duality for type A and type Q

In this section, we first formulate Howe duality for the classical group GL(V) and
give a precise multiplicity-free decomposition as predicted by Proposition 5.12. We
find explicit formulas for the joint highest weight vectors in the above decompo-
sition, which will also be useful in Section 5.3. In addition, we formulate another
Howe duality between a pair of queer Lie superalgebras and provide an explicit
multiplicity-free decomposition.

3.2.1. Howe dual pair (GL(k), gl(m|n)). Take V = C*, and hence identify GL(V)
with GL(k) and gl(V) with gl(k). Given m,n > 0, we consider the superspace
U = U@ Ui with Uy = V" and Uy = V", and identify naturally U = V @ C"I", We
lete',...,e* denote the standard basis for the natural gl(k)-module C¥, and we let
ei,i € I(m|n), denote the standard basis for the natural module C"" of the general
linear Lie superalgebra gl(m|n). We denote, for 1 <r <k, 1<a <m,1<bhb<n,

(5.11) Xrq =€ Qeg, N :=e Qep.
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Then the set {x,4,M,»} is a basis for U. We will denote by C[x,n] the polynomial
superalgebra generated by the elements in (5.11), and from now on further identify

(5.12) S(U) = 8(VeC™") = Clx,n].

We introduce the following first-order differential operators

1O a n a
5.13 EPL =N x,i— + —, 1<p,g<k.
( ) ; pj axqj lnps aT]qs Pyq

§=

We also introduce the following first-order differential operators

k 0 k 0
8[]': zxpiax K Efs: z-xpian )

p=1 pJ p=1 ps
(5.14)

k o) k 9
8 - W 87: EYEE lgi7'sm71§s7t§n'
st ;nps anpt si pz::]nps axpi J

The natural commuting actions of gl(k) and gl(m|n) on V @ C™" induce com-
muting actions on C[x,n}]. The following lemma is standard and can be verified by
a direct computation (see Exercise 5.2(1)).

Lemma 5.13. The commuting actions of gl(k) and gl(m|n) on 8(CF® C"n) =
Clx,n| are realized by the formulas (5.13) and (5.14), respectively.

We shall denote by g’ the linear span of the elements in (5.14). Indeed, the
elements in (5.14) form a linear basis for g’. Let U = U @ U™ as before. In light
of (5.12), we identify 20¢(U) with the superalgebra of polynomial differential
operators on C[x,1)], and so the elements in (5.14) may be regarded as elements in
WE(U).

Theorem 5.14. The g, which forms an isomorphic copy of gl(m|n), generates the
algebra of GL(V)-invariants in & (U ). Moreover, as a (GL(k), gl(m|n))-module,
$(Ck @ C™") is strongly multiplicity-free.

Proof. Set G = GL(k). Recall from Proposition 5.4 that the associated graded
of the filtered algebra ¢ (U) is $(U), and that the action of gl(k) on §(U) lifts
to an action of G. Let {y,} denote the basis in U dual to the basis {xp;} for
Us, and let {€,} denote the basis in U; dual to the basis {n,} for Uj. By the
supersymmetric First Fundamental Theorem for GL(V) (see Theorem 4.19), the

algebra S(U)° = (S(Uy ®UZ) @ AN(Ur & UT*))G is generated by

k k
Zj5 = 2 Xpi¥pjs  Zs = 2 MprGps,
(5.15) i "

k k
i = prigpta L= antyph 1 S la.] S ma] ..<.. st Sl’l.
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Observe that the symbol map 6 in Section 5.1.2 sends each &, in (5.14) to z, for
a,b € I(m|n), and hence by Proposition 5.11, the &,,’s form a set of generators
for WE(U)®. Now the theorem follows from Proposition 5.12, since the Eap’s
generate the Lie superalgebra gl(m|n) by Lemma 5.13. g

Remark 5.15. When n = 0, 8(U) = S(Us) becomes the symmetric algebra on
Us =C*®@C™. Whenm =0, 8(U) = A(U;) is the exterior algebraon U; = Ck@C",
In these two important specializations of Theorem 5.14, g’ becomes a Lie algebra,
namely gl(m) and gl(n), respectively.

5.2.2. (GL(k),gl(m|n))-Howe duality. We will first find the multiplicity-free de-
composition of the (GL(V), gl(m))-module S(CF @ C™) explicitly. To do that, we
will take advantage of Schur duality which was established in Chapter 3. As the
formulation below will involve Lie algebra gl(k) for various k, we will add the
index k to denote by Li(A) the irreducible gl(k)-module of highest weight A. For
dominant integral weight A, the gl(k)-module L, (1) lifts to a GL(k)-module, which
will be denoted by the same notation.

Let us consider the natural action of gl(k) x gl(m) on C* ® C™ and its induced
action on the dth symmetric tensor $?(C*¥ @ C™), for d > 0. As usual, we identify a
polynomial weight for gl(k) with a partition of length at most k. Recall P, denotes
the set of partitions of d.

Theorem 5.16 ((GL(k), gl(m))-Howe duality). As a (GL(k), gl(m))-module, we
have
sfCtoCm = @ L)L)
rePy
£(A)<min{k,m}

Proof. We shall show that Schur duality implies Howe duality. By Schur duality
(see Theorem 3.11), we have

(5.16) (CH*= P LMWest, (= P Lo
AEPy HEP,
€0)<k ) <m

Using (5.16) and denoting by AG,, the diagonal subgroup in &, x &, we have
&
s(Crecm = ((Ctecm™) ™

o (((Ck)®d ® (Cm)®d) A4

A&
= @ umeLwe(ses)
}»,,UG?,;
LN <k () <m
= P L)L)
>\,E':Pd

£(A)<min{k,m}
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In the last step, we have used the well-known fact that S* = (S*)*, and hence by
Schur’s lemma

(s ® §#)2%¢ =~ Homg, ($*,8*) = §, ,C.
This completes the proof of the theorem. U

Remark 5.17. It is possible to derive Schur duality from the (GL(k), gl(m))-Howe
duality by making use of the well-known fact that the zero-weight subspace of the
GL(d)-module Ly()) for a partition A of d is naturally an &,4-module, which is
isomorphic to the Specht module S*. Also, it is possible to derive the FFT for
GL(k) from Howe duality. Hence the FFT for the general linear group, Schur
duality, and Howe duality of type A are essentially all equivalent.

Now let us consider the induced action of gl(k) x gl(m) on the dth exterior
tensor space A4(CK @ C™), for 0 < d < km. Recall that 1’ denotes the conjugate
partition of a partition A. We have the following skew version of Howe duality.

Theorem 5.18 (Skew (GL(k), gl(m))-Howe duality). As a (GL(k), gl(m))-module,
we have

NM(CreCtm = P LA SLa(N).

AP,
EN) <k LN )<m

Proof. We shall use Schur duality to derive the skew Howe duality. For an &4-
module M, let us denote by MS458" the submodule of M that transforms by the
sign character. Using (5.16), we have

S4,58n
Mctecm 2 (@ ocm®)

(12

((Ck)®d ® (Cm)®d) AGq,sgn

1%

" AG,4.sgn
P LMNL.(u)® (S ®S")

AuePy
L)<k ()<m

> P LML)
AP,
L)<k LN )<m

In the last step, we have used the isomorphism $* @ sgn = S from (A.29), and
hence

AG
(S} @ §H)AGasen =~ (Sx RS ® sgn) = Homgd(Sx,S“ ®@sgn) = § ,C.

The theorem is proved. O
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The natural action of gl(k) x gl(m|n) on C¥ ® C™" induces a natural action on
the supersymmetric algebra §(C* ® C™"). Recall from (2.4) the weight A! asso-
ciated to an (m|n)-hook partition A. The following theorem, which is a general-
ization of both Theorems 5.16 and 5.18, provides an explicit form of the strongly
multiplicity-free decomposition in Theorem 5.14.

Theorem 5.19 ((GL(k), gl(m|n))-Howe duality). As a (GL(k),gl(m|n))-module,
we have
$SCtoCm = @ L) QLM

kEde
LM<k Ay 1 <n

The proof of Theorem 5.19 is completely analogous to the one for Theo-
rem 5.16, now using the Schur-Sergeev duality (Theorem 3.11) which we recall:
as (gl(m|n), &4)-modules, (C"")@d =~ Drep, dpy <nL (M) ® S*. We leave this as an
exercise (see Exercise 5.3).

Recall that the character of the irreducible gi(k)-module Z;()) is given by the
Schur function s;, while the character of the irreducible gl(m|n)-module Lyn (A7) is
given by the super Schur function hsy (x; y) (see Theorem 3.15). Now by computing
the characters of both sides of the isomorphism in Theorem 5.19 and summing over
alld > 0, we immediately recover the super Cauchy identity (A.41) in Appendix A:

T (1 + yjze)
—>————— = ) hs)(x; .
Tl —x20) ga) su(xy)s(z)

By setting the variables y; (respectively, x;) to zero and noting that hs;, (x,0) =5 (x)
(respectively, hsy (0;y) = s/ (), we further recover the classical Cauchy identities
as given in (A.11), which correspond to the Howe duality in Theorem 5.16 and the
skew-Howe duality in Theorem 5.18.

Remark 5.20. When we derive the (GL(k), g/(m|n))-Howe duality from the Schur-
Sergeev duality, we could have replaced GL(k) by the Lie algebra gl(k) without any
change. Moreover, using Schur-Sergeev duality in the same fashion, one can derive
a more general (gl(k|€), gl(m|n))-Howe duality on 8(CH’ & C™In),

5.2.3. Formulas for highest weight vectors. In this subsection, we shall find ex-
plicit formulas for the joint highest weight vectors in the (GL(k), gl(m|n))-Howe
duality decomposition of Theorem 5.19. These formulas will play a key role in the
subsequent section on Howe duality for symplectic and orthogonal groups.

Recalling the notation from (5.13) and (5.14) that the simple root vectors of the
standard fundamental systems for gl(k) and gl(m|n) are respectively (1 <i < k— 1,
I1<s<m—-1,1<t<n—-1)

. m 0
517 8l,l+1 — Xjj——— -+ o ————
( ) le Ejaxl'_,_[’j s;nua"]iﬂ,s
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=, &1 = Z Nyt ——

k
anp H—] g i anpl

Let A be an (m|n)-hook partition of length at most k. We are looking for
the joint highest weight vector with respect to the standard Borel subalgebra of
gl(k) x gl(m|n), or equivalently the vector annihilated by (5.17) and (5.18), in
the summand Ly(A) ® Ly, (A%) in the decomposition of Cx,n]. Such a vector is
unique up to a scalar multiple, thanks to the multiplicity-free decomposition in
Theorem 5.19.

For 1 < ¢ < min{k,m}, define

X1 X2t X

Xy X2 v X
(5.19) Oy = det

X1 Xe2o o Xee

Note that >, is annihilated by all the operators in (5.17) and (5.18), and hence is a
joint highest weight vector (see Exercise 5.4(1)).

The column determinant of an ¢ x ¢ matrix A = (a;;) with possibly non-
commuting entries is defined to be

cdetA =Y (—1)"Dagy1a502 - ao(eyr-

ceS;

In the case when m < k, we introduce the following determinant:

X1t X120 Xtm M <o M

X21 X220 v Xom M2 o Mo
(5.20) Qrpi=cdet | | . ) ) ) s

Xp1 Xe2 o Xem Mee o0 Ma

form < £ <kand 1 <t <n, where the last (¢ —m) columns are filled with the same
vector. For notational convenience, we set ;s := {y, forallf and 1 < £ <m.

Remark 5.21. The element ;¢ is always nonzero (Exercise 5.4). It reduces to
(5.19) when ¢ < m, and, up to a scalar multiple, reduces to My, ---1N¢ when m = 0.

For a partition u with ¢} <k and 1 <1,1,...,t, < n, we define
(5.21) <>tl 2oty = <>t[,y’l <>12,p’2 T <>’“1 ,y,/” .

Now let r be fixed by the conditions A;. > m and A\, ; < m for an (m|n)-hook
partition A. Note that we must have 0 < r < n. Denote by A<, the subdiagram of
the Young diagram A which consists of the first 7 columns of A, i.e., the columns
of length greater than m.



166 5. Howe duality

Lemma 5.22. The vector 2....r\., IS @ joint highest weight vector for the gl(k) x
gl(m|n)-module Ly(A<,) ® Lm’n(Kb'Sr) in the decomposition of Clx,n).

Proof. Setyy=A-, and $ = $1.2,...r in this proof. By Remark 5.21 and a direct
computation using (5.13), (5.14), and (5.17), we can verify the following:

(1) < is nonzero.
(2) < has weight (u,4*) with respect to the action of gl(k) x gl(m|n).
(3) Each factor <>f7/4’- in <) is annihilated by the operators in (5.17).

By the strongly multiplicity-free decomposition of Theorem 5.19 (recalling
$(Ck C"") = C[x,n)), we may identify L, , (u?) = Clx,n]}', the space of highest
weight vectors in the gl(k)-module Clx,m] of highest weight u (here n; denotes the
nilradical of the standard Borel for gl(k)). It follows by (3) that ¢> is annihilated
by the operators in (5.17), and hence ¢ € (C[x,n]l'}' by (1)—(3). Since <) has weight
p* with respect to the action of gl(m|n) by (2) again, it must be the unique (up to
a scalar multiple) joint highest weight vector in C[x, 1] of weight (u,4") under the
action of gl(k) x gl(m|n). O

Theorem 5.23. Let A be a partition such that (A) <k and Ay < n. Then, a
Joint highest weight vector of weight (A, M) in the gl(k) x gl(m|n)-module C[x,n]
is given by Gy, p w0 = Q1,02 Qhp, -

Proof. We have
Pl = C12m, On

a0

Thus, it is a product of a nonzero element in C[x,n] and a nonzero element in Clx],
and so it is nonzero. Also we see that it is a product of the joint highest weight
vectors o ra, (by Lemma 5.22) and <y, £ = Mitres 7\,3Ll , and hence is also a
joint highest weight vector. Also it is straightforward to verify by (5.13) and (5.14)

that G o has the correct weight (A, A7). O

Remark 5.24. When n = 0, the highest wei ght vector in Theorem 5.23 does not in-
volve the odd generators 11;;. When m = 0, the vector becomes simply a monomial
in the anti-commuting variables 7; e

5.2.4. (q(m),q(n))-Howe duality. In this subsection, we obtain a (q(m),q(n))-
Howe duality using the (q(n), H,)-Sergeev duality in Theorem 3.49, in a similar
fashion as in Section 5.2.2.

Recall that, by definition, q(m) consists of X € gl(m|m) super-commuting
with P given in (1.10), i.e., q(m) consists of the m|m-block matrices of the form

(?3 ﬁ) - Recall from Remark 1.11 that we have another nonstandard realization
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of the Lie superalgebra q(m) as q(m) = {X € gl(m|m) | XP — PX = 0}, which con-
A
-B A
as the nonstandard isomorphic copy q(m), while we let q(n) act on C"I" by linear
maps in the standard way, i.e. linear maps super-commuting with P. This induces
an action of q(m) x q(n) on C"" @ C"".

Define the linear map P* : C"" @ C"I" — C™* @ C"" by

PA(vew):=Pv®Pw, Yve€ crim v e Crin,

sists of the m|m-block matrices of the form B) . We let q(m) act on C"I"™

Lemma 5.25. The actions of P* and q(m) x q(n) on C""™ @ C"" commute with
each other.
Proof. For Z,-homogeneous X € q(m),Y € q(n),v € C™lm and w e C"I", we have
XPA(vow) = X(Pv® Pw) = (XPv) ® (Pw)
= PXv®@Pw=P*X(v®w),
YPA(v@w) =Y (Pv@ Pw) = (-1)"+Vpy o y Py
= (=DMPMpyg PYw = (—1)YMPA L@ YW)
=PY(vow).
The lemma follows. O
Recall that the finite group Iy is generated by a;, .. ., aq4,z with relations (3.21),
and this gives rise to the group B; = I1; X &,. The natural action of I1; (respec-
tively, By) on (C”\")®d factors through an action of the Clifford superalgebra C; by
Lemma 3.47 (respectively, the superalgebra }z), where a; acts as I¥'~! @ P@ ¥4~

v~vith li given in (1.10). Hence the diagonal subgroups All; C Iy x I1; and AB; C
By x By act on the tensor product

((lem)®d ® ((Cn|n)®d ~ ((Cmfm ® (Cn|n)®d‘

In this subsection, it is more convenient to talk about the groups I1; and B, than
about the algebras C; and Hy.

Lemma 5.26. We have a natural identification:
<((Cm|m ® (Cn}n)@d) A(By) ~ Sd((cmnlmn),
where (-)A(Ed) denotes the subspace of A(By)-invariants.

Proof. Consider first the case when d = 1. We observe that (C"m @ C"")P* con-
sists of elements of the form v,, ® vy, + P(vyy) ® P(v) and vy, @ P(vy) + P(vin) @ vy,
where v,, € C"° and v, € C". Hence (C™™ @ C""YP* is isomorphic to C™mn,
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Since AlIly is an even subgroup of A(gd) generated by the d copies of P*’s, we
have

A(By) ) AG
((ijm)@)d ® ((Cn|n)®d> a4 ~ <((Cm’m)®d ® (Cn}n)ébd)Aﬂd) d
A 2By
o ((((Cm‘m@(cn{n)P )®d>
o (((Cmnlmn)@)d)Gd o Sd((cmnlmn).
This proves the lemma. O

By Sergeev duality in Theorem 3.49, there is a commuting action of q(n)
and B, on (C”’”)‘X’d. Hence there is a natural q(m) X ¢(n)-action on ((C""
Crim)@d)AlBa) | and by the identification in Lemma 5.26, on 84(Cmmmny ag well.
We shall write down this action on §7(C™""™") explicitly in terms of differential
operators.

Let x,; and E_,p,-, for 1 < p<mand 1 <i<n, denote the standard even and
odd coordinates of C™"lmn_ respectively. We may then identify 8(C""1") with the
polynomial superalgebra generated by the x,; and Epiforl <p<mand1<i<n.
We introduce the following first-order differential operators:

z 0 d

Ert = Z, (*pj5— ox, + Srise— 3, ),
(5.22) ™ a :
e = Xpisg— —GCpji=—), 1< p,g<m.
jgl( pJ a&q_] Ev'PJ axqj)
1= 3 g+ ez
pal pl pta&.pj >
(5.23) - X
<i, j<n.
g‘ xp,agp} +§p,axpj), 1<i,j<n

The following lemma is proved by a direct computation (see Exercise 5.2(2)).

Lemma 5.27. The operators &P and €% in (5.22), for 1 < p,q <m, form a copy of
q(m), while 8” and &;;in (5.23), for 1 <i,j<n, forma copy of q(n). Furthermore,
they define commuting actions of q(m) and q(n) on §(C™mn),

Recall from (1.52) that, for a partition A of d with length £(1),
_J 0, if £(A)iseven,
O(A) = { I, if () is odd.
Furthermore, recall that 8P, denotes the set of strict partitions of d, and L, ())

stands for the simple q(1)-module with highest weight A, for A € 8P of length not
exceeding n (see Section 2.1.6).
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Theorem 5.28 ((q(m),q(n))-Howe duality). As a (q(m),q(n))-module, 8 (C™mn)
admits the following strongly multiplicity-free decomposition:

sicmimy = @y 2L, @ L))

AES8P,
(M) <min{mn}

Proof. By Sergeev duality (Theorem 3.49), we have as q(m) x B, modules

((cm\m)®d o @ 2—5(7»)Lm(}\’) ®D7”,
XGS{Pd
) <m
where we recall that D* denotes an irreducible Ed-module (or equivalently, an ir-
reducible H;-module). Therefore, combined with Lemma 5.26, this gives us

(5.24) 8°(C™H) = (T @ (€7 B

~ P 2L, ® D@L, (u) ® DH)ABa)
?u,,uGSJ’d
L) <mb(p)<n
> @ 272, () @ Ly(u) ® (D* @ D*)AB),
AUESP,
L) <mf(p)<n
The Bg-module D* is self-dual, ie., (D*)* = D*, since by Theorem 3.46 and
(3.27)—(3.29) all the character values of D* are real. Recalling D* is of type M
if and only if 8(A) = 0, we conclude by super Schur’s Lemma 3.4 that

dim(D* © D*)*®4) = dimHomj, (D*, D) = 22M3,,,
This together with (5.24) completes the proof of the theorem. U

Recall that the character of the irreducible q(n)-module L,(A) is given by the
Schur Q-function @5, up to a 2-power by Theorem 3.51. Now by calculating the
characters of both sides of the isomorphism in Theorem 5.28 and summing over all
d > 0, we recover the following Cauchy identity (A.57) in Appendix A:

T[22 5 200, (00,().

i L=%i 55y

5.3. Howe duality for symplectic and orthogonal groups

In this section, we use the First Fundamental Theorem (FFT) for classical Lie
groups in Chapter 4 to construct the Howe dual pairs (Sp(V),0sp(2m|2n)) and
(O(V),spo(2m|2n)). We also obtain precise multiplicity-free decompositions of
these Howe dualities for symplectic and orthogonal groups. The case of orthogo-
nal groups, which are not connected, requires some extra work.
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5.3.1. Howe dual pair (Sp(V),o0sp(2m|2n)). We take V = C*, where k = 2/ is
assumed to be even in this subsection. We consider the superspace U = Uy ® Uy
with Uy = V™ and U; = V", and identify naturally U = V @ C"" as before. We
continue to identify the supersymmetric algebra of U with C[x,n] as in (5.12).

Recall the skew-symmetric matrix (4.7). We let Sp(k) = G(V,®™) be the sym-
plectic subgroup of GL(k), consisting of elements preserving the non-degenerate
skew-symmetric bilinear form ®~ on V = CF corresponding to the matrix (4.7),
and let sp(k) C gl(k) be its Lie algebra. In order to write down explicitly the Lie
algebra sp(k), we introduce the following notation. For an ¢ x ¢ matrix A = (a;;),
we denote by A” = J,A"J, the transpose of A with respect to the “opposite” diago-
nal:

ape (/7728 WA ap apye

Q-1 Q—10-1 -+ Are—1 4141

(5.25) Ab Qee—2 Qe—146-2 - Ap-2 Q14-2
a2 ag-12 0 a3 an
ag a—1,1 az, ai,l

It is then straightforward to check that sp(k) consists precisely of the following
k x k matrices in £|{-block form:

(5.26) sp(k) = { (‘é g) |D=-A"B"=B,C’ = c}.

The standard Borel of sp(k) consists of the k x k upper triangular matrices of the
form (5.26) and so is compatible with the standard Borel of gl(k). Furthermore,
the Cartan subalgebra of sp(k) is spanned by the basis vectors Ej; — Er1—ikr1-is
for 1 <i<k/2.

The action of the Lie algebra sp(k) as the subalgebra of gl(k) on C[x,n] given
in (5.13) lifts to an action of the Lie group Sp(V) = Sp(k). On the other hand,
the action p of gl(m|n) on Clx,m] with p(Ez) = €, for a,b € I(m|n), is modified
from (5.14) by a shift of scalars on the diagonal matrices:

k p) k k
8,7: pr,-—— +—6,'j, (Qﬁs = ZXP,'——
p=1 E)x,,j 2
(5.27)

k 0 k
8 = E ———8, 8{= SN ) lss?tgn'
. p=1n‘”anpz 27 2 npgaxpi
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Introduce the following additional operators:

k
2

Jij= 2 (xpixk+1—p,j —ka,p,ix,,j),
p=1

jfs = z (xpink+l—p,s _xk+1~p,inps>7

Jg 2 (npmk+1 —pit — Mk+1— psnpt)

(528) -
Z /0 0 0 0
Arr = _— ,
Y 1)2:"‘1 (8 axk+1 —p.J aka“p,i axpj>
k
L/ d 0 0 0
Az_v = , 1<i<j<m,
p;] (a aT1k+1 —p,s axk~’rl~p,i anps> =/

) 0 0 d
anps ank+l —pit ank+1~p,s aTlpt

k

:
As,zz( ), 1<s<i<n
Let us denote by g’ the linear span of the elements in (5.27) and (5.28). Clearly,
the elements in (5.27) and (5.28) form a linear basis for g’.

Lemma 5.29. (1) Under the super-commutator, g’ forms a Lie superalgebra,
which is isomorphic to osp(2m|2n).

(2) The actions of Sp(k) and osp(2m|2n) on 8(CF ® C™") commute.

Proof. (1) With U = C¥®@ C"l" and U = U § U*, we identify 20¢(U) with the
superalgebra of differential operators on 8(U). The operators £;7 and £ from
(5.27) can be written as

1 & 0 0 1¢ 0

=35 o s =15 )
i 7 pgl Xpiz—— axpj axpjxpi 2 g Nps5— anpt anpt S Nps
so that g’ can be regarded as a subspace inside § = spo(U) as in Proposition 5.5.
A direct computation using elements in (5.27) and (5.28) shows that g’ forms a Lie
superalgebra under the super-commutator. Moreover, a further direct computation
shows that g’ = 0sp(2m|2n), with identification of root vectors eq, for a root o, as
follows:

€55, =Eijy  €5¢, = iy
ee,—¢, = Cyr, €e,—5 = Ei, 1<i#j<ml1<s#t<n.
5,48, =Jify €84, = iy

e£s+£f = jSt? 3—8,'«8, = Al—jvv
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€g—g = Agt, €_5i—e, — Ay,

I<i<j<ml1<s<t<n.
We omit the details.

(2) Recall that e!, ... e denote the standard basis for C*. It follows by defini-
tion of @™ that
(x)_(ep,ekH_”) = —(D*(ekH_”,ep) =1,
for 1 < p <k/2, and hence Zl;/zzl (P @t H17P — k=P @ ¢P) ¢ CF @ Ck is Sp(k)-
invariant. Thus, J;7,75,Js defined above are Sp(k)-invariant in 20¢€(U), where

we recall the definition of the basis (5.11) for U and we have regarded %f and

%ﬁs as elements in U*. Similarly, Aj7, Az, Ay defined above are Sp(k)-invariant in
2E(U). On the other hand, the elements in (5.27) are GL(k)-invariant (and hence
Sp(k)-invariant) in 20€(U ).

Hence, for g € G, x € ¢’ and z € C|x,n], we have gx.z = xg.z, whence (2). O

Theorem 5.30 ((Sp(k), 0sp(2m|2n))-Howe duality, I). Sp(k) and osp(2m|2n) form
a Howe dual pair on 8(Ck @ C™"), and the (Sp(k), 0sp(2m|2n))-module $(CF
C™InY is strongly multiplicity-free.

Proof. Set G = Sp(k). The action of sp(k) on §(C¥ ® C™I") clearly lifts to an action
of G. By Lemma 5.29, the actions of G and 0sp(2m|2n) on $(U) = 8§(C* @ C™I")
commute.

Let U = U @ U"*. The associated graded for 20¢(U) is S(U), and the action
of sp(k) on S(U) clearly lifts to an action of G. Let {y);} denote the basis in U}
dual to the basis {x,;} for Uy, and let {€, } denote the basis in Uy dual to the basis
{np: } for Us. By the supersymmetric First Fundamental Theorem (FFT) for G (see
Theorem 4.19), a generating set T for the algebra S(U)¢ = (S(U & Us) @nNUr &

G . :
U?))” consists of 277, Zsr, Zjy, 27 in (5.15), 935,955, Ist» and

k k
2 2
Z (ypiyk+1—p,j _yk-‘rl——p,iypj) ) Z (ypiék-HAp,s "yk+1—p,i§ps> )
p=1 p=1

pé (&Psék-l-]—p,t - &k—pr,sE_;pt)g

for 1 <i,j <m,1 <s,t <n. Observe that the symbol map ¢ sends the basis
elements (5.27) and (5.28) for g’ to the above elements in T for §(U)°. Now the
theorem follows from Proposition 5.12 and Lemma 5.29. O

5.3.2. (Sp(V),0sp(2m|2n))-Howe duality. Denote by u™ (respectively, u~) the
subalgebra of osp(2m|2n) spanned by the A (respectively, J) operators in (5.28).
The irreducible highest weight module L(osp(2m|2n),u) below is understood to be
relative to the Borel subalgebra of osp(2m|2n) corresponding to the fundamental
system specified in the following Dynkin diagram:
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8 -8

6, — € Ep-1 —Ep

-3, -8

The root vectors associated to the simple roots —8; — 8,,6; — 81 (1 <i <
m—1),8,, —€1,& — &4 (1 <t <n—1), in the notations of (5.27) and (5.28) are,
respectively,

(5.29) A, Emm(1<i<m—1), &m, &y (1<r<n—1).

Then gl(m|n) is a Levi subalgebra of 0sp(2m|2n) corresponding to the removal of
the simple root —8; — 8. We have a triangular decomposition

(5.30) 0sp(2m|2n) = u” D gl(mln) dut.

In particular, the Lie superalgebras gl(m|n) and osp(2m|2n) share the same Cartan
subalgebra. An element f € C[x,n] is called harmonic if f is annihilated by the
subalgebra u™. The space of harmonics C[x,1]*" will be denoted by SPH.

Recall that P(m|n) denotes the set of all (m|n)-hook partitions A (i.e., Ay <
n), and also recall from (2.4) that, for an (m|n)-hook partition A, A? is a weight
for gl(m|n). Then Af + ¢1,,), can be regarded as a weight for the Lie superalgebras
gl(m|n) and osp(2m|2n), where we recall the definition of 1,,,, from (1.36).

Theorem 5.31 ((Sp(k),0sp(2m|2n))-Howe duality, II). Let k = 2¢. We have the
Jollowing decomposition as a (Sp(k), 0sp(2m|2n))-module:

S(C*eC™ = @  L(Sp(k),\) ®L(osp(2m|2n), A} +£1,,,).
AEP(m|n),L(A) <t

Proof. Observing that M¥" is a gl(m|n)-module for any 0sp(2m|2n)-module M
by the triangular decomposition (5.30), we may regard the space of harmonics
SPH as an (Sp(k),gl(m|n))-module. Furthermore, since each graded subspace
of 8§(Ck® C™") as a gl(m|n)-module is a submodule of a tensor power of C™/"
and hence is completely reducible by Theorem 3.11, L(osp(2m|2n),u)"" is also
a completely reducible gl(m|n)-module for any irreducible osp(2m|2n)-module
L(osp(2m|2n),u) appearing in 8(C* @ C™""). Tt follows by the irreducibility of
L(osp(2m|2n),u) that L(asp(2m|2n),u)*" is an irreducible gl(m|n)-module, and a
highest weight vector of highest weight u in L(osp(2m|2n),u) remains a highest
weight vector in L(osp(2m|2n),u)"" . Therefore, we must have

(5.31) L(osp(2m|2n),1)"" 2 Ly, (u).

By Theorem 5.30, the (Sp(k),0sp(2m|2n))-module §(C* @ C™") is strongly
multiplicity-free, and hence by (5.31), the (Sp(k), gl(m|n))-module SPH is also
strongly multiplicity-free. To establish the explicit form of decomposition as stated
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in the theorem, it suffices (and is indeed equivalent) to establish the following
explicit decomposition of SPH as an (Sp(k), gl(m|n))-module:

(5.32) PH= P L(SP(K),A) @ Ly (A + £1,,,).
AEP(mn),L(M)<L

We first consider the limit case n = o with the space of harmonics denoted
by SPH*, where the condition A € P(m|n) reduces to A € P. Set = 1o N
Observe by Theorem 5.23 that the vector > associated to any partition A with
£(A) < ¢ is a joint sp(k) x gl(m|n)-highest weight vector and <) is a polynomial
independent of the variables x,,; and n, for p > £+ 1. Each A-operator in (5.28) is a
second-order differential operator whose summands always involve differentiation
with respect to one of these variables for p > ¢+ 1. Thus, <) is annihilated by u™*,
and hence we have > € SPH{*. One also easily checks that the vector < has weight
(AT + £1,,),,) under the transformations of sp (k) x 0sp(2m|2n). Therefore, all the
summands on the right-hand side of (5.32) indeed occur in SPH* (with multiplicity
one), and all irreducible representations of Sp(k) occur. We conclude that (5.32)
must hold (when n = o0),

Now consider the finite n case. We may regard §(C? @ C"l") C §(C¢ @ C™I=)
with compatible actions of osp(2m|2n) C osp(2m|2e). We claim the following
equality for spaces of joint highest weight vectors holds:

(Spg_f)m xn(n) _ (Spg{oo)mxn(oo) QC[X,T]].

Here n; (respectively, n(n)) denotes the nilradical of the standard Borel for sp(k)
(respectively, the nilradical generated by (5.29) for 0sp(2m|2n)). Note by definition
that (SPF()m ) O (SPg=)mxn(=) N C[x,m]. Since each summand of the operators
in (5.27) and the A-operators in (5.28) that lie in 0sp(2m|200)\ 0sp(2m|2n) must in-
volve %ps for s > n, we conclude that (SPFH)™ ") C (SPF{=)m*n(=) \C|x,n], and
hence the claim is proved. Observe from the explicit formulas of the joint highest
vectors in SPHH> (see Theorem 5.23) that precisely those vectors corresponding to
(m|n)-hook partitions will not involve the variables 1, for s > n, and hence they
lie in (SP3{=)™>™*) N C[x,n]. This together with the claim above completes the
proof of the theorem. u

The irreducible osp(2m|2n)-modules appearing in the (Sp(k),osp(2m|2n))-
Howe duality decomposition above (for varied k) are called the oscillator mod-
ules of osp(2m|2n). In general the osp(2m|2n)-oscillator modules are infinite
dimensional, as their highest weights evaluated at the simple root —8; — §, is
—A— 7»2 —k<O0.

Specializing n = 0 in Theorem 5.31 gives us the following.
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Corollary 5.32 ((Sp(k),50(2m))-Howe duality). Let k = 2{. We have the following
decomposition of (Sp(k),s0(2m))-modules:
sCtocm= @ LSpk)h ®L<5o 2m), ¥ (A +1z)5,-).
AEP L(AN)<min{{,m} i=1

We now specialize m = 0 in Theorem 5.31. The irreducible highest weight
sp(2n)-modules in Corollary 5.33 below are relative to the Borel subalgebra of
sp(2n) corresponding to the fundamental system specified in the following Dynkin
diagram:

O=:>O—O— —O0—0

—2¢, g — €1 — €y

Corollary 5.33 ((Sp(k), sp(2n))-Howe duality). Let k = 2¢. We have the following
decomposition of (Sp(k),sp(2n))-modules:

ACFeC 2 @ LSp(k),A) ®L<5p (2n), . (X~ O)e;).
i=1
(0 <E b <n

5.3.3. Irreducible modules of O(V). Take V = C*. Let O(k) = G(V,0") be the
orthogonal subgroup of GL(k) consisting of elements preserving the non-degenerate
symmetric bilinear form ot on V = C¥ associated to the k x k matrix Ji in (4.6),
and let s0(k) C gl(k) be its Lie algebra. Let SO(V) = O(V)NSL(V) denote the
special orthogonal group. The Lie algebras so(k), for k = 2¢ and k = 2¢+ 1 with
¢ € 7., consist precisely of the following k x k matrices in £|¢- and ¢£|1|¢-block
forms, respectively (recall A’ from (5.25)):

_J(A B AR _Rh—
(5.33) 50(212)_{<C D) |ID=-A"B =-B,C’ = c},
A x B
(5.34) s02t+1)={ |y 0 z||D=-A"B=-BC=-Cy,
C w D
where, in addition, the ¢ x 1 matrices x = (x;) and w = (w;1) and the 1 x £ matrices
y = (y;) and z = (zy;) are related by z1; = —x¢11-,1 and y1; = —weq1-i,1, for all

1 < i< {. The standard Borel of so(k), for k even and odd, is the subalgebra
of upper triangular matrices in so(k), and hence is compatible with the standard
Borel of gl(k). The Cartan subalgebra of so(k) is spanned by the basis vectors
Eii— Ejt1-ig+1-i» for 1 <i < 4, where k = 2¢ or 2¢ + 1. The following fact is well
known (cf. [46]).

Lemma 5.34. A finite-dimensional simple so(k)-module L(so(k),\) of highest
weight . = X¢_, Mi&; lifts to an SO(k)-module if and only if
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(1) (M,..., ) is a partition, for odd k = 20 + 1,
(2) (M-, M1, M) is a partition, foreven k = 2¢.

Next we will describe the classification of simple O(k)-modules and give a
parametrization in terms of partitions. Let det denote the one-dimensional deter-
minant module of O(k).

First consider the case when k = 2/ + 1 is odd. In this case, —1 € O(k)\SO(k)
and O(k) is the direct product SO(k) x Z,. Associated to a partition A with (1) < ¢,
we let L(O(k), 1) stand for the irreducible O(k)-module that restricts to the irre-
ducible SO(k)-module L(SO(k),A) and on which the element —7 acts trivially. We
shall denote the irreducible O(k)-module L(O(k),A) ® det by L(O(k) ,7\,), where the
Young diagram of the partition A s obtained from A by replacing the first column
A} by k—A{. This way we have obtained a complete parametrization of the simple
O(k)-modules L(O(k), ) in terms of partitions u with M+ <k=20+41.

Now consider the case when k = 2/ is even.

Proposition 5.35. Let k = 2/ be even. A simple O(k)-module L is exactly one of
the following (where all \; € Z... ):

(1) L is a direct sum of two irreducible SO(k)-modules of highest weights
(M, A 1,A¢) and (A, A1, —Ag), where Ay > 0. In this case,
L= L®det.

(2) For A= (A1, ,A-1,0), there are exactly two inequivalent irreducible
O(k)-modules that restrict to the irreducible SO(k)-module of highest
weight A. If one of these modules is L, then the other one is L®det.

We shall denote the simple O(k)-module in Proposition 5.35( 1) by L(O(k), 7).
Let T € O(k) \ SO(k) denote the element that switches the basis vector ¢’ with
e’"! and fixes all other standard basis vectors e'’s of C*. We declare L(O(k),A)
to be the O(k)-module in Proposition 5.35(2) on which T acts on an SO(k)-highest
weight vector trivially. Note that T transforms an SO(k)-highest weight vector in
the O(k)-module L(O(k), 1) @ det by — 1. We shall denote the simple O(k)-module
L(O(k), ) @ det by L(O(k), 1), where as before the Young diagram of the partition
A is obtained from A by replacing the first column A} by k — Aj. In this way, we
have obtained a complete parametrization of the simple O(k)-modules L(O(k), u)
in terms of partitions i with g/} +u < k = 2¢.

Summarizing the above discussion for k odd and even, we have obtained the
following uniform description.

Proposition 5.36. A complete set of pairwise non-isomorphic simple O(k)-modules
consists of L(O(k),u), where u runs over all partitions of length no greater than k
with ) + 1, < k.
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5.3.4. Howe dual pair (O(k),spo(2m|2n)). We consider the superspace U = Uy ®
Ui with Uy = V™ and Uy = V", and identify naturally U =V ® C™I" as before. We
continue the identification §(U) = Clx,n] as in (5.12).

The action of the Lie algebra so(k) as a subalgebra of gl(k) on C[x,n] given
in (5.13) lifts to an action of Lie group O(V) = O(k). On the other hand, recall
the action of gl(m|n) on C[x,n] given by (5.27). Introduce the following additional
operators on C[x,n]:

k k p) d
%= Zsomeips Vi= 2 3—5——
k 0
5.35 = XpiMk+1-p.s» = 1<i<j<m
( ) ts pz:‘,] pillk+1—p,s g axpt ank—H ps
k k )
dst = 2, MpsNk+1-py = —, 1<s<t<n.
! pgll prlrioet St 2 anps aT]k+1 pt

Let us denote by g’ the linear span of the elements in (5.27) and (5.35). Note that
the elements in (5.27) and (5.35) form a linear basis for g'.

Lemma 5.37. (1) Under the super-commutator, g forms a Lie superalgebra,
which is isomorphic to spo(2m|2n).
(2) The actions of O(k) and spo(2m|2n) on 8(C*® C™iny commute.

Proof. (1) Letting U = CF@ C™I" and U = U & U*, we identify 20€(U) with the
superalgebra of differential operators on 8(U). We can then regard g’ as a subspace
inside G = spo(U) as in Proposition 5.5. In a completely analogous fashion as
in the proof of Lemma 5.29, we can show that g’ = spo(2m|2n) with an explicit
identification of root vectors with elements in (5.27) and (5.35). We leave it to the
reader to fill in the details (Exercise 5.9).

(2) Recall the standard basis e!,.. ., ek for CX. By definition of @*, we have
(R)+ (ep7ek+1—p) — 1’

for 1 < p <k, and hence Zlfa:l eP @ &t1-P ¢ Ck @ C* is O(k)-invariant. It follows
that J;7,d;,ds defined above are O(k)-invariant in 2E(U). Dually, the elements
Vi7, Vi, Vi are also O(k)-invariant in 2E(U). On the other hand, the elements in

(5.27) are clearly O(k)-invariant in 20€(U ). Hence (2) follows. O

Theorem 5.38 ((O(k), spo(2m|2n))-Howe duality, I). O(k) and spo(2m|2n) forma
Howe dual pair on $(Ck®C™"), and the (O(k),spo(2m|2n))-module $(CkaCmim)
is strongly multiplicity-free.

Proof. Set G = O(k). The action of so(k) on §(C* ® C™I") lifts to an action of
G. By Lemma 5.37, the actions of G and spo(2m|2n) on 8(U) = $(Ck @ Crin)
commute.
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LetU = U @ U*. The associated graded for WE(U) is S(U). Thus, the action
of s0(k) on 20€(U) lifts to an action of G. Let {ypi} denote the basis in U; dual to
the basis {x;} for Us, and let {§,,} denote the basis in Uy dual to the basis {1, }
for U;. By the supersymmetric First Fundamental Theorem for G (Theorem 4.19),
a generating set J for the algebra §(U)¢ = (S(Up Us) @ \N(U; & UT*))G consists
of z;7, Zsr, 255, 27 in (5.15), di7: 55,5, and

k

k k
Z YpiYk+1-p,js Z )’piE_.k-H——p,sa Z &px&k-{-l-p,ta
p=1 p=1 p=1

for 1 <i,j<m,1<s,t<n. The symbol map o sends the basis elements (5.27)
and (5.35) for g’ to the above elements in 7, and hence the theorem follows from
Proposition 5.12 and Lemma 5.37. O

5.3.5. (O(V),spo(2m|2n))-Howe duality. Denote by u™ (respectively, u~) the
subalgebra of spo(2m|2n) spanned by the V (respectively, J) operators in (5.35).
The irreducible highest weight module L(spo(2m|2n),u) below is understood to be
relative to the Borel subalgebra of spo(2m|2n) corresponding to the fundamental
system specified in the following Dynkin diagram:

O=0—0— —@—0O——0

-26, 8 — 52 82 -8 3 — € & —-& €1 — €,

The root vectors associated to the simple roots —28;,8; — &, (1<i<m-
1),8, —€1,8 — €44 (1 <t <n-1), in the notations of (5.27) and (5.35), are
respectively

(5.36) Vi, & (<i<m—1), &a, vt (1<t <n—1).

Then gl(m|n) is a Levi subalgebra of 5po(2m|2n) corresponding to the removal of
the simple root —28;. We have a triangular decomposition

(5.37) spo(2m|2n) = u” @ gl(mln) Hu’.

In particular, the Lie superalgebras gl(m|n) and spo(2m|2n) share the same Cartan
subalgebra. For A € P(m|n), Al + glm,n is a weight for gl(m|n), and hence can be
regarded as a weight for spo(2m|2n) as well.

Theorem 5.39 ((O(k), spo(2m|2n))-Howe duality, I1). We have the following de-
composition of (O(k),spo(2m|2n))-modules:

k
§(Ck g Cminy = L(O(k),A) ® L(spo(2m|2n), A+ =1,,, ).
( )= D LOW L (spo(2ni2n 24 31,,)
A, <k

Proof. Denote the space of harmonics Clx,n]*" by O©H. Then M is a gl(m|n)-
module for any spo(2m|2n)-module M by the triangular decomposition (5.37), so
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that ©3 is an (O(k), gl(m|n))-module. Similar to the proof of Theorem 5.31, it
is enough to establish the following decomposition of ®H as an (O(k), gl(m|n))-
module:

k
(5.38) Og¢ o L(O(K),\ ®Lm,(x”+—1 )
xe@ﬂ) ( () ) |n 2m|
MM <k
The validity of (5.38) for finite n follows from the case when n = e in a completely
parallel way as in the proof of Theorem 5.31. Hence it remains to establish (5.38)
in the limit case n = oo, where the condition A € P(m|n) reduces to A € P.

Assume now n = o in the remainder of the proof. Set & = {5 3, u, for
A € P with A} + A} < k. We claim that > € OH, i.e, { is annihilated by u*. By
Theorem 5.23 $ is a joint so(k) x gl(m|n)-highest weight vector. To establish the
claim, it suffices to show that <> is annihilated by the simple root vector Vjyj, since
¢ is annihilated by the remaining simple root vectors in (5.36) that lie in gl(m|n).

To show that V;7({) = 0, we recall that Vi3 = ';:1 %ﬁ and recall

from (5.21) that ) = n O X, We observe that each summand in the expan-

90 905

sion of the double differentiation V7(<) is either of the form (i)

Oxpl OXgyi—p1

R0,
for i # j, or of the form (ii) W
P

7+ Since A} + 4 < k by assumption, we
have A} + A, <k for i # j. Note by definitions (5.19) and (5.20) that the x,,’s ap-
pearing in <>,-’;4 satisfy the constraints p < A} and the x,’s appearing in $» v satisfy
r <X, and hence p+r < A{+ A; < k. Thus, the derivative in (i) must be zero. Ex-
panding the determinant <>,-7;»; along the first column, we obtain <>i~,7v§ =2 pXp1Ap,
where A, is an expression not containing any x,;. Therefore, the derivative in (ii)
must also be zero, and hence Vi; () = 0.

When k = 2/, recall the element © € O(k) \ SO(k) defined in Section 5.3.3.
When k = 2+ 1, we let T be the linear map on C* that fixes e, for all p # ¢+ 1,
and that sends e*! to —e‘*!. By examining how T transforms the so(k)-highest
weight vector $, for A +A} <k, one concludes that the O(k)-module generated by
¢ is L(O(k),L). Another direct computation implies that <> has spo(2m|2n)-weight
AR+ §1m|n. Thus, all irreducible representations of O(k) occur in ©H, and all the
summands on the right-hand side of (5.38) occur in the space of harmonics .
Therefore, (5.38) holds in the case when 7 = oo, and the theorem is proved. O

The simple spo(2m|2n)-modules appearing in the above (O(k),spo(2m|2n))-
Howe duality decomposition (for varied k) will be called the oscillator modules
of spo(2m|2n). The spo(2m|2n)-oscillator modules are, in general, infinite dimen-
sional, as their highest weights evaluated at the simple root —28; is —2A; —k < 0.

Specializing n = 0 in Theorem 5.39 gives us the following.
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Corollary 5.40 ((O(k),sp(2m))-Howe duality). We have the following decompo-
sition of (O(k),sp(2m))-modules:

U k
S(CreCm) ~ P L(O(k),k)®L<5p(2m),2:(7L,~+~)8,~).
= 2
E)<mM; 42 <k i=1

We now specialize m = 0 in Theorem 5.39. The irreducible highest weight
s0(2n)-modules in Corollary 5.41 below are relative to the Borel subalgebra of
50(2n) corresponding to the fundamental system specified in the following Dynkin
diagram:

g —&

-—0—0

€ —& En-1 — &
—€| — &
Corollary 5.41 ((O(k),s0(2n))-Howe duality). We have the following decomposi-
tion of (O(k),s0(2n))-modules:

AMCreC)x @ L(O(k),?»)@L(so(Zn),Z(M—g)ei).
0O)<n K 2y <k i=1

5.4. Howe duality for infinite-dimensional Lie algebras

In this section, we formulate Howe dualities between classical Lie groups and
infinite-dimensional Lie algebras in fermionic Fock spaces. The results of this
section will be applied in Section 5.5 to derive character formulas for the irre-
ducible oscillator modules of the Lie superalgebras arising in the Howe duality
decompositions in Section 5.3.

5.4.1. Lie algebras a.., c.., and 0... We define the infinite-dimensional Lie alge-
bras a.. = gl., and its Lie subalgebras ¢.. and .. of type C and D.

The Lie algebra a.. = gA[w. Denote by gl., the Lie algebra of all matrices
(aij)ijez with a;; = 0O for all but finitely many i’s and j’s. Let the degree of the
elementary matrix E;; be j—i. This defines the Z-principal gradation on gl,, =

@Drez 9l - Denote by a.. = gALx, = gl., & CK the central extension associated to
the following 2-cocycle 1:

(5.39) ©(A,B) = Tr ([J,A]B),

where J = ¥ ;<o E;;. Denoting by [-,-]' the Lie bracket on gl_., we introduce a
bracket [-, -] on the central extension a.. = gl,. & CK by

[A+aK,B+bK]:=[A,B]'+1(A,B)K, A,Begl., abeC.
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By definition, a 2-cocycle T satisfies the following conditions: for A, B,C € gl..,
(i) t(A,B) = —1(B,A); (i) 1(4,[B,C]) +1(B,[C,A]) +t(C,[A,B]) = 0.

The 2-cocyle conditions on 7T ensure that the bracket [-,-] is skew-symmetric and
satisfies the Jacobi identity. More explicitly, we have the following commutation
relation on a..: for i, j,m,n € Z,

[E,"/‘,Emn] = Sij,-n — 8,‘,,Emj +5]’m6,‘n (e{i < 0} — 9{] < 0})K,

where the Boolean characteristic function is defined to be
(5.40) 0{P} = {

1, if the statement P is true,
0, if the statement P is false.

Remark 5.42. The Lie algebra a.. can be “completed” in the following sense (see
[37)). Denote by gl.. the completed Lie algebra of matrices (a;;); jez with a;; =0
for |i — j| > 0. The formula for T in (5.39) also makes sense for gl., and thus we
obtain a central extension of 5 [, (cf. [65, 87]). While T is a 2-coboundary on gl.,
leading to a trivial central extension da.. as we have defined in this book, T on 5 [, is
no longer a 2-coboundary, and it gives a nontrivial central extension of 5 loo- Similar
remarks apply to the classical subalgebras of gl., and 5[00 below in this section.
The completed Lie algebras and their central extensions are important because of
their relations to various subalgebras such as Heisenberg, Virasoro, and affine Lie
algebras, but they play no particular role in this book. Actually in Chapter 6, the
“uncompleted” variants are preferred as we need to compare these with finite rank
Lie algebras. The main results in this section make sense when formulated for
these completed Lie algebras.

We extend the Z-gradation of the Lie algebra g, to a. by putting the degree
of K to be 0. In particular, we have a triangular decomposition

Uoo = Oooy D oo D Ao,

where
Qoo = @g[wvij, 0o = Gloo o D CK.
jeN

Denote by €; for i € Z the element in (a.()* determined by €;(E;;) = 8;; and
&(K) = 0, for j € Z. Then the root system of a.. is {&; —¢&; | i,j € Z,i # j} with
a fundamental system {€; — €, | i € Z}. The corresponding set of simple coroots
is given by {H := Ejj — E;;1,41+ 80K | i € Z}. Let AS, for j € Z, be the jth
fundamental weight for a., i.e., A}(Hf') = §;j, for all i € Z, and A}(K) = 1. A
direct computation shows that

(5.41) a_ AS—Z;?:J;HEk, for j <0,
| T AR+ &, forj> 1
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Let L(a.,A) denote the irreducible highest weight a..-module of highest weight
A € (a.0)* with respect to the standard Borel subalgebra d.; & dwg. The level of
A is given by the scalar A(K) = 3,7 A(HP).

The Lie algebra c... Now consider the natural gl.-module Vy with basis {v; |
i € Z} such that E;jv, = 8 jkvi. Let C be the following skew-symmetric bilinear
form on Vj:

C(V,’, Vj) = (—-1)15,'71_]', Vi,j € 7.
Denote by ¢.. the Lie subalgebra of gl_, that preserves the bilinear form C:
¢ ={a € gl | Cla(u),v) +C(u,a(v)) = 0,Yu,v € Vp}
= {(aij)ijez € gle | aij = ~(—=1)"ay_ ;1 4}
Denote by ¢.. = ¢.. & CK the central extension of T.. associated to the 2-cocycle
(5.39) restricted to ¢... Then ¢.. inherits from a.. a natural triangular decomposition:
Coo == Coo+ @ coo() @ Coo,

WRETE oot = Coo N Buot, Coo = Coo N luog. Let {€; | i € N} be the basis in (c.q)* dual
to the basis {Ej; ~ E ;11 it | i € N} in c.g. The Dynkin diagram for c.. with a
standard simple system is given as follows:

(5.42) o=0—"_0 - —0O—0O—0O— --.

ﬁx =2 € —& & —¢&; & — &1

A set of simple coroots {Hf,i > 0} for c.. is
Hi = Ei+E_ i—Ei141—Ei_jj-;, i€N,

H6 = E(),o—El,I +K.

Then we denote by Aj € (€wp)*, for j € Z, the jth fundamental weight of ¢.., i.e.,
AS(H) = §&;; for all i € Z. Note that A%(K) =1 forall j. A direct computation
shows that

J
(5.43) AS=Y g +Af, forj>1.
k=1
Denote by L(¢c.,A) the irreducible highest weight module of c.. of highest weight
A € (cm0)”, whose level is given by A(K) = Y5 A(HY).

The Lie algebra d... We denote by .. the Lie subalgebra of gl.. preserving
the following symmetric bilinear form D on Vj:

D(V,’,Vj) = 6,',1_1', Vi,j € 7.
Namely, we have
% = {a € gl | D(a(u),v) + D(u,a(v)) = 0,Yu,v € Vy}

= {(aij)ijez € 9l | aij = —ai_j 1 i}
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Denote by 9.. = .. & CK the central extension associated to the 2-cocycle (5.39)
restricted to d.. Then .. has a triangular decomposition induced from gl..:

Voo = Dm+ EBDMO@DOO_,

where Do = 0o Moot AN Voo = Voo M Aecp-

The Cartan subalgebra d..q of d.. is the same as t.( (both as subalgebras of
0..), and we let €; € (Dwp)* be defined in the same way as in the case of ¢.. The
Dynkin diagram with a standard fundamental system for 0., is given as follows:

By =& —&

£ —€ E3—& € — &

(5.44)

€ — €2

A set of simple coroots {H? | i > 0} for d., is given by

H® = E;+E_i-i—Eiy1im1—Eiji (i€N),

1

Hg = E070+E_1’_1—E272—E1,1+2K.

Denote by AS € (9.g), for j € Z, the jth fundamental weight of 0., i.e, AS(HY) =
8;j for i € Z... Denote by L(?..,A) the irreducible highest weight d..-module of
highest weight A, whose level is A(K) = YA(HY) + $A(HY) + Zis0 A(HY).

5.4.2. The fermionic Fock space. Recall from (A.68) that F denotes the fermionic
Fock space generated by a pair of fermions y*(z), whose components Y, re
1 +Z, satisfy the Clifford commutation relation (A.66).

We shall denote by F* the fermionic Fock space of £ pairs of fermions

V()= Y wEreTI, 1<p<L.
r€%+Z

~¢
More precisely, we let € be the Clifford algebra generated by \pit’p , where 1 <
p<fandre % + 7Z, with anti-commutation relations given by

WP oWy = 8p8r—s, WP Wy = WP vy =0,

~f
for all r,s € %+ Z, 1< p,q < £. Then F* is the simple € -module generated by

the vacuum vector |0), which satisfies the condition v;?|0) = 0 for all » > 0 and
1 < p < ¢. Here I is identified with the identity operator on F¢.

Introduce a neutral fermionic field

0@)= 3 ozt

rez+Z
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whose components satisfy the following anti-commutation relation:

1
[¢r’¢s]+ = 8r,—sI, hse 5 +Z.

b+ L
We denote by C Tz the Clifford algebra generated by ¢, and \y,i’p subject to the
additional anti-commutation relation [6,, \Vsi’p |+ =0, where 1 < p < ¢. By the Fock
1

~+1
space F%+2 we mean the simple C i -module generated by the vacuum vector |0),
which satisfies the condition ¢,|0) = y;"7|0) = 0 forall r > 0 and 1 < p < £,

1

~f L

The algebras € and C 2 are naturally filtered algebras by letting the degree

of each er;p and ¢, be 1 and the degree of I be 0. The associated graded algebras
are exterior algebras. We introduce natural %Z+—gradations (called the principal

gradation) on 5 and F¢+7 by the eigenvalues of the degree operator d on F¢ and
F+1 defined by

di0) =0, [d 3P| =rE, (4o ]=ro,, Wrp.

Every graded subspace of 5 and F+% with respect to the principal gradation is
finite dimensional.

Introduce the normal ordered product (denoted by ::)

'\Ij+7pw_:q- — _w;,qw;lh7p, ifs=—-r«< 0’
(5.45) AR v Py, otherwise,

+a . 1
_w—,pw-hq, _ —Ys q\Vr p’ ifs=—r« 0,
s v, Py otherwise.

Also let WPy =y Py, g Py = Py o8 = P,
forall p,q,r,s.

5.4.3. (GL(¢), a..)-Howe duality. Let
¢
2 & Tw T = Y P )y P (w)..
i,JEZ p=1

Equivalently, we have

P

4
(5.46) &= > Py he
p=1

Consider the following generating functions

2 I m)z " =y PR T, pg=1,.., L.
nez
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Such generating functions are “vertex operators” in the theory of vertex algebras,
but we will avoid such terminology in this book. We will only need €£?(0) below,
and hence introduce a short-hand notation €7 = ¢£7(0). It follows that

(5.47) eri= % wyilyrt, pg=1,..,L
rEl+Z
Lemma 5.43. (1) Sending E;j to £, for i, j € Z, defines a representation of

the Lie algebra a.. on F* of level {.

(2) Sending EP1 to EX% in (5.47), for 1 < p,q < £, defines an action of the Lie
algebra gl(£), which lifts to an action of GL(£) on F*.

(3) GL(¥) and a.. form a Howe dual pair on ¥t
Proof. (1) We need to check that
[8:}, E:nn} 8,-,,,8,’-‘,, — Sin‘g;j + Sjméiin (9{1 < 0} - 9{_] < O})gl

Let us check in detail the case when m = j and n = i. Since clearly [E};,E}] =0,
we can assume that i ## j. It follows from (5.46) that

585 = X [ Tu v ,‘v,-”f]

p=1
4 +p +
p=1

_ +,p P

—pgtl(‘v%—th é Wl NIj_%)
4

= 3 (W hw i — v v ) + (80 < 0} —0(i < 0})
p=1

=¢&;—-&5+(8{i<0}—e6{j<0})u
The remaining cases are similar.
(2) We need to check that [E27,€%] = §,,EL" — §,,&4 for 1 < p,q,u,v < L.
Indeed, it follows by (5.47) that
erer]= 3, [whiwr o iy
re % +Z
= Y Gyl yr = 8yt ) = 8, €0 — 8,84,
re%-{-Z
As the operators 27 have degree zero in the principal gradation, the action of gl(¢)

preserves each (principally) graded subspace of F¢, which is finite dimensional

and of integral weight. Hence the action of gl(#) lifts to an action of the Lie group
GL(¢) on F°.
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(3) It follows by (5.46) and (5.47) that

ez, e5) = | 2 Z i j__']

res +Z
[‘If;f,-\l’- "W' -V J [ i 1—- W' iwhp-}
=y 7 ' — Py =0

__, 3—i ],...

Hence the actions of GL(¢) and a.. on F¢ commute.

The statement on the Howe dual pair can be proved by a similar argument
as for Theorem 5.14, and we rephrase briefly the argument as follows. Set G =
GL(Z) U=C'®C”®C*®C=, where C* is a vector space w1th a basis {w, |
r € —3 —Zy}. The dual basis in C** is denoted by {w_, | r e —1 — Z,}. We
take a bas1s {vFP]1 < p < ¢} for C*, and a dual basis {v 7 |1 < p < < ¢} for C**.

The Clifford algebra GZ can be naturally identified with 20€(U) for the purely odd
space U =U @ U* by setting w,j-t’p =vHP @w,, so that its associated graded can be
identified with A(U). Observe that the images under the symbol map o (defined in
5.1.2) of €}; in (5.46) form a set of generators for A(U)C by the supersymmetric
First Fundamental Theorem of invariant theory for GL(V) (see Theorem 4.19).
Now the claim on the Howe dual pair follows from Proposition 5.12. O

Recall the well-known fact that a simple gI(¢)-module L(gl(¢),A) of highest
weight L= Y_, A;8; (with respect to the standard Borel subalgebra spanned by EP4
for p < g) lifts to a simple GL(/)-module L(GL(¢),A) if and only if (A4,..., Ag) is
a generalized partition in the sense thatall A; € Z and A, > ... > A,. By abuse of

notation, we shall identify a weight A for gl(¢) with a generalized partition of the
form A = (7\,1,...,7\,[).

For a generalized partition A = (Ay,...,A;) we define, for i € Z,

T —-{JjIAj<i}], fori<o.

Theorem 5.44 ((GL(¥), a..)-Howe duality). As a (GL(¢), a..)-module, we have
(5.48) F' = (PL(GL(4),\) ® L(a., A°(L)),

A
where the summation is over all generalized partitions of the form .= (Ay,..., Ae),
and A*(A) :=A§, +...+ A;, = AG+ Sicz M.

Proof. By Lemma 5.43 and Proposition 5.12, we have a strongly multiplicity-free
decomposition of the (GL(#), a..)-module F¢. To obtain the explicit decomposi-
tion as given in the theorem, we will exhibit an explicit formula for a joint highest
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weight vector associated to each A; see Proposition 5.45 below. The theorem fol-
lows as we observe by Proposition 5.45 that every simple GL(¢)-module appears
in the decomposition (5.48) of F, O

For1 < p </fandm > 1, we denote

=+P e TP +30y 0P
—'mp-—‘l’_m+1"‘\|’_g‘lf_;a
373

u vP — . Py P
w-—m+l w—% W—% ’
We make the convention that Eé‘ P =1.
Proposition 5.45. Given a generalized partition of the form A = (Ay,...,As), let
i, j be such that
M Z"'Z}\'i>7\1i+l :"‘:}\«jfl :0>}\j2...27\%

Then the joint highest weight vector in F associated to A with respect to the stan-
dard Borel for gl({) X .. is

v — mhlat? =i s imtl =t
(549) 7\. - '_‘7\, '_'7\.2 =\ H—)\.ju—kj—u ] |O>

whose weights with respect to gl(¢) and a.. are h and A°(M), respectively.

Proof. The vector v} in (5.49) is indeed a highest weight vector for gi(¢) and d..,
respectively, since applying any positive root vector in either gl({) or a.. to v§ is
either manifestly zero or gives rise to two identical y}* in the resulting monomial,
whence also zero (see Exercise 5.10). Another direct calculation shows that the
highest weight of v§ for gl(£) is (Ay,...,As).

We recall that €, = 25,:1 : \|I+’p v P ;. When m > 1 and n > 1, one easily
2

% -m "m—3
computes

[E:nm’w n+1] - mnw +1’ [efnmvw:f_,_%] =0.
Form <0 and n > 1 we have
* * +,
[Emm:\l/ n+1] 8Aerl,n\If n+l [emm7\l"nq+%] =0.
This implies that the weight of the vector v§ with respect to the action of a.. equals

¢A§+ X Ajg;, which is also equal to A3 +...+Af, by (5.41). O

5.4.4. (Sp(k),c..)-Howe duality. Let k = 2£. It follows by (5.46) that
P CHEC 1y*tier j,l—i)Zi“IW_j
i,jJEZ
= Zpet (WP @Y P (W) 2y P (—w)y P (=2):).
Equivalently, we have
¢
(550)  Ef—(=1)YEl =3, (wu”w.”’ — (=) g,

o i-itj-4 J—3 T3
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Let p,q=1,...,£. Consider the following generating functions
2 ()" =y TPy (2

nezZ

3 &t (m)z ! = oyt )y ()

neZ

We introduce the following short-hand notation:
g =gr1(0), E2¢=224(0).
It follows that

D S IR s
rE%+Z

= 3 (—1)T gty

rei+z

Note that P4 = &4P and EP — §9P

(5.51)

Lemma 5.46. Let k = 2¢.

(1) The formula (5.50) defines an action of Lie algebra c.. on F of level ¢.

(2) The operators &rd and &rt in (5.51) together with EL? in (5.47), for1l<
P,q <, define an action of the Lie algebra sp(k) on F, which lifts to an
action of Sp(k).

(3) Sp(k) and c.. form a Howe dual pair on F°.

Proof. (1) This follows from Lemma 5.43(1), (5.50), and the definition of c...

(2) Let us denote a standard basis for V = C* @ C* by v&?, for p=1,... 4,
and denote a standard basis for C* by w, with r € ( —% ~Zy). LettingU =V ®@C™,
we naturally identify F¢ with A(U) by setting \yit’P = vE” ®@w,. Note that V is a
symplectic space with a natural pairing, and so is U. Hence, we have a natural
action of sp(V) = sp(k) on F*. The formula (5.51) is simply a precise way of
writing down this action in terms of coordinates. Indeed, comparing these formulas
with (5.26) we can see that the matrices there with B=C =0 correspond to the
&L%s, while the ones with A = C = 0 correspond to the &?%’s, and the ones with
A = B = 0 correspond to the EP?’s. Alternatively, it can be verified by a direct
computation that the operators in (5.51) generate sp(k). Note that the action of
sp(k) preserves the principal gradation of F¢ and every graded subspace of F* is
finite dimensional. Thus, the action of sp(k) lifts to that of Sp(k).

(3) As part of the proof of Lemma 5.43, we see that ££7 commutes with the
action of ¢... We will now check that [E*", ¢..] = 0, and leave the similar verification
that [€}Y, c..] = 0 to the reader. Indeed, we have that

[éuvv‘g?j —(-1y*er ;]
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4
-1 X (D)7 RS Y (w T = (1) Ty Ans]

rei+z p=1
:[(—l)iwi’_v,-\lf,li DWW+ DI (D) e
2 2 2 2 2 2
wfﬁwjﬁ-+wfﬂw;ﬂ (= )HUW ““ ~“( y+“V IWli}
2 2 2 2
:(—' ) Wl—iwj—l + (_l)lWl_iw‘j_l - <— ) Wl—iwj—— ( )l‘pl iw]‘_l = O
2 2 2 2 2 2 2 2

Hence the actions of Sp(k) and .. on ¥ commute.
The Howe dual pair claim follows by the same type of argument as the one

given in the proof of Lemma 5.43(3) using now the First Fundamental Theorem of
invariant theory for Sp(k) (see Theorem 4.19). O

Theorem 5.47 ((Sp(k ) cw)-Howe duality) As an (Sp(k), ¢ )-module, we have

EB L(Sp(k),\) ® L(¢e, A°(A)),

AeP(L
where A°(X) := (Aj+ Y51 Mg = .-+ A;,. The joint highest weight vector
in F* associated to \ with respect to the standard Borel for sp(k) X ¢ is V§ :=
=hlot2 | o é|0>
"'kl vy S :
Proof. We observe that v§ has weights A and ¢A§+ 3~ Aje; with respect to the
actions of sp(k) and c.., respectively, the latter of which equals A+ +A;, by
(5.43). Also &2 annihilates v;, since in both expressions only ’p ’s are 1nvolved
and £22/0) = 0. Since v;, is known to be a joint (gl(£), a..)-highest weight vector by
Proposition 5.45, we conclude that v5 is a joint (sp(k), ¢..)-highest weight vector.

By Lemma 5.46 and Proposition 5.12, ¢ is strongly multiplicity-free as an

(Sp(k), c.)-module. Since 1§ is a nonzero vector in § of weight A under the action
of sp(k), for every A € P(£), we also observe that all finite-dimensional Sp(k)-
modules appear in the decomposition of F¢. So the multiplicity-free (Sp(k), ¢..)-
module decomposition of F¢ follows. O

Let z1,...,24,y1,2,. .. be indeterminates. The character of the Sp(k)-module
F¢ is the trace of the operator I'[e -1 zp &’ on F¢, while the character of the c..-

E5—&
module F* is the trace of the operator [Tieny,” ' "'~ on F¢. Computing the trace

&~
of [Lieny;," ™" 'Hf,zl zp* on both sides of the isomorphism in Theorem 5.47,
we obtam the following character identity:

oo/
652 JITIO+y2)(1+yiz;")y = 3 chL(Sp(k),A) chL(c, A°(A)),
i=1p=1 AeP(0)

where by definition ch L(cw, A“(A)) = Tr|1(c. ac(a)) [Tien ,8" Biiis
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5.4.5. (O(k),0..)-Howe duality. Let k = 2/. It follows by (5.46) that
¢

2 (&= &)W = X (WP @Y (w): =y TP (w)w P (2):).

i,jEZ p=1
Equivalently, we have the following operators on F:

4
(5.53) 8;:]— T—j,l—i = z (\Vl i‘lf]__- 'W%’pl‘lll p} )

oy J=3 Ta
Let p,g=1,...,£. We introduce the following generating functions

Spez P (n)z7" " =y P2y (2):,
Snezerd(n)z" =yt P () yta(z):.

We will adopt the following short-hand notation:
&Pl = ¢P(0), EP9 = ¢P9(0).
It follows that

(554 = X Tyt E= Y gl
r€l+Z r€%+Z

Note that P4 = — &P and EP4 = _&aw,

Lemma 5.48. (1) The formula (5.53) defines an action of the Lie algebra ?..
on F¢ of level ¢.

(2) The operators 81"1 &Pt ip (5.54) together with X% in (5.47), for 1 < P,9<
¢, define an action of 50(2¢) on F*, which lifts to an action of O(2¢).

(3) O(2¢) and .. form a Howe dual pair on F°.

Proof. The proof is completely analogous to that of Lemma 5.46 for type C. For
example, (2) can be easily obtained by comparing the formulas in (5.54) and (5.47)
with the one in (5.33), similar to the type C case. We leave the details to the reader
(Exercise 5.13). U

Let k = 2¢+ 1. We introduce the following operators on F¢* 2, for i ,J € Z:

4
R EED N (A AR A B A

oy 27 J 3

Equivalently, we have
i—1
2 (&) w
i,jEZ

= Tt (WHP Y P(w): =y TP (W)Y P (2):) +:0(2)d(w):.
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We introduce the following additional generating functions:

> eP(n)z " =y P (2)0(2):,

nez

Yl =P (o), p=1,.0L

nez

Introducing the short-hand notation £ = 2(0) and £7 = ¢”(0), we have the fol-
lowing formulas:

(5.56) Er=3% wles &= % wlfo.

re+7 rei+z
The following is a counterpart for k = 2¢+ 1 of Lemma 5.48.

Lemma 5.49. (1) The formula (5.55) defines an action of the Lie algebra ..
on F+1.
(2) The operators €7, EP9 in (5.54), €L, &P in (5.56), together with €T in
(5.47), for 1 < p,q < £, define an action of the Lie algebra 50(2{+1) on
FH3 | which lifts to an action of O(20+1).

(3) O(2¢+ 1) and d.. form a Howe dual pair when acting on Fets,

Proof. The proof is analogous to that of Lemma 5.46 in type C and will be left to
the reader (Exercise 5.13). O

Recall the partition parametrization of simple O(k)-modules from Proposi-
tion 5.36. The next theorem treats even and odd k uniformly.

Theorem 5.50 ((O(k),?..)-Howe duality). As an (O(k),0.)-module we have
P LK), SL(0-,A° (1)),

AEP N+, <k

where A’(A) := kA + Y51 Mg

(12

F

Proof. By Lemmas 5.48 and 5.49, we have a strongly multiplicity-free decompo-
sition of the (O(k),d..)-module F 3. The proof is completed by finding explicit
joint highest weight vectors with prescribed weights and noting that every simple
O(k)-module appears in the decomposition of F 5, analogous to the proofs of The-
orems 5.44 and 5.47. We will refer the reader to [129, Theorem 3.2(2)] and [129,
Theorem 4.1(2)] for the precise forms of these joint highest weight vectors for &
even and odd, respectively. [l
Computing the trace of [];en }’fﬁ_s'_i‘l_i I'[f,zl zf;l*w on both sides of the identity
in Theorem 5.50, we obtain the following character identity (recall the Boolean
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characteristic function (5.40)):
oo ) o f
[I(1y;)Ptsodd JTTI +yiz) (L 4z, ")
(557) i=1 i=1p=1
= > chL(O(k),A) chL(d.., A°(1)),
AEP N+ <k

IR
where chL(de, A°(A)) = Tr| o, a2y Thierwy;

5.5. Character formula for Lie superalgebras

In this section, we obtain character formulas for the irreducible oscillator mod-
ules of the Lie superalgebras of type osp constructed in Section 5.3 as a simple
application of the Howe dualities established in Section 5.4.

5.5.1. Characters for modules of Lie algebras c.. and d... For ¢ € {c,0}, let
Y0 be the Cartan subalgebra, and let W be the Weyl group of the Lie algebras
I defined in Section 5.4. Let [ be the Levi subalgebra of c.. (respectively of 0..)
corresponding to the removal of the simple root B in the Dynkin diagram (5.42)
(respectively in the Dynkin diagram (5.44)), and let W, denote the Weyl group of
[. Also, let @ and @, denote the sets of positive roots of r.. and I, respectively,
corresponding to the respective Dynkin diagrams. Let ut and u™ be, respectively,
the nilradical and opposite nilradical associated to [ so that we have 1. = u~ @
[@ut. Let W0 be the set of the minimal length representatives of the right cosets
Wo\W of length r for r... It is well known that the Weyl group W can be written as
W =WoW? with W0 = | |-, W?, and we have

(5.58) Wo={weW|w-0")not Cot\d/}.
For p1 € (re0)* and w € W, we set
woui=w(u+p) —py,
where p; € (r.0)* is determined by (p,, H!) = 1, for every simple coroot H.

Let A be as in Theorem 5.47 in the case of ., and as in Theorem 5.50 in the
case of d... Since <AF(7L),H;> € Zy, for every j, it follows by (5.58) that

(woA¥(A),H}) € Z, forw e W% and Hf € [.

In our setting, noting that W is the group of permutations of N that fix all but
finitely many numbers, we may find explicitly a partition

Ay =R = (M1, M)z, )

such that w o A*(X) can be written as

woAF(A) = kAf)"‘zpo()\tw)ij, ifr=0,
%A(x)+zj>0<7\'w)j£j, ifr=c.
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Recall that s, denotes the Schur function associated to a partition u (see, e.g., A.1).
Let

DF Mi<ic;(1—yiy;), forr=c,
[Mi<ic;(1—=yiy;), forg=2
Note that D* = [[gcqo+\o; (1—e™%), where we recall that @ is the set of the
positive roots in [.
Proposition 5.51. Let A be as in Theorem 5.47 in the case of ¢.. and as in Theo-
rem 5.50 in the case of V... We have the following character formula:
1 (=]
ﬁ (_1)?‘ 2 515,()’1,)’27---)7 fOVFZC,a.
r= wew?

chL(re, A*(X)) =

Proof. For any such A, set A = A¥(A). The module L(r.., A) is integrable and hence
affords the Weyl-Kac character formula (see e.g. [64])

eO(A+Pe)—Pr

(5.59) chL(ta,A) = Y (—1)1° —,
()';)V HGE¢+(1 —€ OL)

where we recall that @' denotes the set of positive roots. Let p; € (r..0)* be the

element determined by p;(H;) = 1, forall j € N, and p((H}) = 0. Then t(p; — p1) =

pr — 1, for T € Wy. We now rewrite (5.59) as follows:

b A)= 3 T (—1) Oy 0
chL(te,A) = -
weWo €Wy [Noco: (1 —€7%)
_y Y —1)t) (1) e (A+Pr)—1(pe)+T(pr) Py
weWoTEW, Dt Haed)f(l —e%)
5y ¥ (_1)£(w>(_nger(w<A+p;)—p;)+r(po—p[
weWO TEW Dt Hoce(bf(l —e™%)
_ 2 (—1)f) (1)) £t woA+p)—pi
wewo D <&, Hocop (1—€%)
| =
= - —lr svyl,yz,....
D 2 (-1) WEZW,O o )

In the last identity we have used the fact that [ is of type A .., and so the irreducible
[-character of integrable highest weight w o A is simply the Schur function s ,. [

5.5.2. Characters of oscillator osp(2m|2n)-modules. Recall that hs; denotes the
super Schur function defined in Appendix (A.37). By the character of a module of
Sp(k) or of osp(2m|2n) we mean the trace of the operator [T <)<,z &g

or [Ti<i<mIli< j<n xl y i 7, respectively. We have the following character formula
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for the irreducible oscillator 0sp(2m|2n)-modules appearing in the Howe duality
decomposition in Theorem 5.31.

Theorem 5.52. Let x = {x1,...,xn} and y = {yi,...,y,}. For A € P({) with
Am+1 < n, we have the following character formula:

chL(osp(2m|2n), A} + £1,,,)
¢ Thi<icm(1+xiys) - T2 o(=1)" Zpewo hsye (v:x)
_ (xl'”xm> . 1<s<n
Y

Y1 Yn n]§i<jSmHl§s§t5n(1 —X,’Xj)(l _ysyl)

k+1-pk+1—p [T
Proof. Computing the trace of the operator Hp~ zf,p I § (4 T x,~8”yj ii

on both sides of the isomorphism in Theorem 5.31, we obtain that

< ) HHH (T4+y;5, ) (1 +y;2p)

p=1i=1j= I(l_xlzp )(1—)(,{,,)

= Y, chL(Sp(2¢),}) chL(osp(2m|2n), A" + (1,,,).
reP(0)
)\'m+lgn

(5.60)

Next, by formal algebraic manipulations starting from (5.52), we shall obtain
a new identity with the same left-hand side as (5.60). Replacing chL(c.., A(A)) in
(5.52) by the expression in Proposition 5.51, we obtain an identity of symmetric
functions in variables yi,y,,.... We replace y,.; by x;, for all i > 1, and get the
following identity:

HHH (1+yizp) (1+yiz, )(1+szp)(1+sz;1): z chL(Sp(k), )

j=li=1p= reP(0)

1
She )’la Y ;)C],...)-
—xix; ) (1 —yyr) 5 Wg‘vo " !

< 1L I a0

1<s<r<n 1<i<j

Now we apply the standard involution ®, (see (A.7)) to both sides of this new
identity on the ring of symmetric functions in the variables x;,x», . ... In the process
we use the identities (A.7), (A.24), and (A.38):

wx(H(l _ysxi)q) = H(l + ysxi),

i>1 iz1
(Dx< I (l_xixj);l) = [T (0 —xix) !,
1<i<) 1<i<j

@x (5,(%,%)) = hsy (y:x).
Finally, in the resulting identity we set x; = 0 for j > m+ 1 and multiply both sides

¢
by ( e ’;“) . In this way we obtain the following identity which shares the same
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left-hand side as (5.60):

<y. )HH TURaJCI) 5 aspann

petint joi (1=xizp" ) (1 —xizp) AeP(0)
;\'m'l<”
{ H1<1<m(1 +xlys) Z ( l)rZWEW,O hS}»ﬁ. (y;x)
% <X1---Xm> <s<n
Y1 Yn H]§z<j§mHI§s§t§n(] —xix;) (1 —ysyr)

The theorem follows by comparing this identity with (5.60) and noting the linear
independence of the characters chL(Sp(2¢),A). O

5.5.3. Characters for oscillator spo(2m|2n)-modules. The goal of this subsec-
tion is to find a character formula for the irreducible oscillator spo(2m|2n)-modules,
which appear in the (O(k),spo(2m|2n))-Howe duality (Theorem 5.39).

First, let k = 2¢+ 1 be odd and let A be a partition with A} + 1), < k. Following
the notations of Section 5.3.3 we denote by A the partition obtained from A by
replacing the first column by k — A|. Since the restrictions to SO(k) of the modules
L(O(k),A) and L(O(k),i) are isomorphic, the usual character will not distinguish
them. Recall —1 € O(k)\SO(k). So we define the (enhanced) character ch M of an
O(k)-module M to be the trace of the operator e’ Hp 12 f,pp ghrimpheizr
is an additional formal variable such that €2 = 1. The character of an spo(2m|2n)-

, where €

. =&
module is defined as usual to be the trace of the operator [T, [T, x;g"y i

Theorem 5.53. Let k =20+ 1. Let x ={x1,...,xn} and y = {y1,...,yn}. For
A € P(m|n) with A| + X, <k, we have the following character formula:

chL(spo(ZnﬂZn%Aﬁ%—Elmm)

1<s<n
ITi<i<jem Mi<scr<n (1 —xix;) (L= ysyr)

<X1---x ) [i<i<m(1+xi05) - T (= 1) Zuewp Asrz (vix)

Y1 Yn

Proof. From the formula of the highest weight vector of L(O(k),A) in the proof of
Theorem 5.39, we observe that

IMch L(so(k),A), Mm<
eMchL(so(k),A), i
chL(O(k), ) =1 " 2
eMchL(so(k),A), if €(A) > £.
Since el = g+ , we conclude that the (enhanced) characters ch L(O(k), L), where
M|+, <k, are linearly independent.

_ krl=ph+l— &
Computing the trace of the operator £~/ Hp 128"” ETTPTIL i “y ]”

both sides of the isomorphism in Theorem 5.39, we obtain the following character
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identity:
k
( )fnﬁ o (1+eyz, ') (1 +eyz,) (1 +¢y))
Y- p=li=1j=I (1—'8le17 )(1—8x,zp)(1—€x,)
(5.61) k
> chL(O(k),x)chL(spo(zmyzn),M+—1m|n>.
M +AG <k 2
}Vm-HSn

Analogous to the proof of Theorem 5.52, by means of algebraic manipulations
starting from (5.57), we shall obtain a new identity with the same left-hand side as
(5.61). Replacing chL(d..,A%(X)) in (5.57) by the expression in Proposition 5.51
and taking into account the eigenvalue of the element —/, we obtain an identity
of symmetric functions in the variables y;,y,,.... We replace y,4; by x;, for all
i > 1, and then apply the involution ®, on the ring of symmetric functions in the

variables x1,x2, ... Finally, we set x; = 0 for j > m+ 1 and multiply both sides of
k

the resulting identity by ( ’ﬁ) *. In this way we obtain

(yl > HH 1+5yjzp )(1+ey;zp)(1+ey;)

=1 i,j —&XiZp )(l_aizp)(l*gxi)
_ chL(O(k),k)
N +A) <k
7¥m+1§n
l_Il<t<m(1 +xlys) 2 ( l)rZWGWO hsyo (y;x)
X <x1"'xm> <s<n i "
Y1 Yn I<i<jem Mi<sci<a(l —xix) (1 = ygyr)

The theorem follows by comparing this identity with (5.61) and noting that the
(enhanced) characters chL(O(k),A) are linearly independent. O

We now turn to the case when k = 2/ is even. In this case, the trick of intro-
ducing the extra variable € does not work, and we obtain the following.

Theorem 5.54. Let k = 2{. Let x = {x1,...,x,} and y = {y1,...,y,}. For A€
P(m|n) with M} + A, < k, we have the following character identity:

chL(spo(2m|2n),\* + £1,,) +chL(spo(2m|2n), A + €1,,,)
() Mg 0 Bl S ) )

Y1 Yn HISiSjSmHISKISn(l —xix; ) (1 = ysyr)

Under the additional assumption that A, = 0, A= A, the theorem becomes

chL(spo(2m|2n), A+ (1,,,)
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1<s<n

¢ Th<icm(1+xy5) - Zio(—=1)" Zwewo hspa (v:x)
o xl---xm ) r
)

Y1 Yn ngiSjSmH1§s<t§n(1—xij)(l_ysyt)

: &7 &)
Proof. Computing the trace of the operator zgw —gr ik IT;jx"y;"” on both
sides of the isomorphism in Theorem 5.39, we obtain

<y] n) ﬁl_m[ﬁ 1+y,z,, 1+yjzp)

(5.62) p=li=1j=1 (I =Xizp )(1—3‘111))
' = Y chL(O(k),?») chL(spo(2m|2n), A"+ 1,,,).
AN <k
}‘vm-HSn

In the same way as in the proof of Theorem 5.53, using a formal algebraic
manipulation based on (5.57), we obtain the following identity that shares the same
left-hand side as (5.62):

() i

(14y;5, ) (1 +yjzp) B

—xizp ') (1= xizp) A+, <k

chL(O(k), 1)

krn—o 1<n
¢ Theigm(1+x95) - Z7o(=1)" Zpewo hsag (v:x)
% (xl"'xm> . 1<s<n
Y1 Yn ngigjgmHl§s<r§n(1 —x,-xj)(l — YsVr)

The theorem follows by comparing this identity with (5.62) and noting that the
characters of L(O(k),A) and L(O(k),A) coincide. O

5.6. Exercises
Exercise 5.1. (1) Verify (5.7) and (5.8).
(2) Leta,a; € Uy, c,c1 € Uj. Prove the following identity in WeE(U):
{lac,ai],c1) + (ay,[ac,ci]4) = 0.
Exercise 5.2. Prove:

(1) The formulas in (5.13) and (5.14) define commuting actions of gl(k) and
gl(m|n) on C[x,m].

(2) The formulas in (5.22) and (5.23) define commuting actions of q(m) and
q(n) on C[x,&].

Exercise 5.3. Prove Theorem 5.19 using the Schur-Sergeev duality. In particular,
the gl(m|n)-modules 8¥(C™") and A*(C™!") are irreducible, for all k € N.

Exercise 5.4. Recall {; and ;¢ from (5.19) and (5.20), respectively. Prove:
(1) <y is annihilated by the operators in (5.17) and (5.18).
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(2) 1. is anonzero in Clx,m]. (Hint: Apply a sequence of differential oper-
ators to it to obtain {>;.)

Exercise 5.5. Verify (1)—(3) in the proof of Lemma 5.22.

Exercise 5.6. Verify directly that the operators in (5.18) annihilate the vector $in
the proof of Lemma 5.22.

Exercise 5.7. Let g = q(m) and let C"” be its natural module. Prove that the
g-module 8*(C™/") is irreducible, for all k € N.

Exercise 5.8. Suppose that k = 2¢ and m,n, p,q € Z.,. We have a natural embed-
ding osp(2m|2n) @ 0sp(2p|2g) C osp(2m+2p|2n+ 24). Prove:

(1) For y € P(m+ p,n+q) N P(¢), we have the following isomorphism of
0sp(2m|2n) @ 0sp(2p|2g)-modules:

L(osp(2m+2p|2n+2q),v + glm+p|n+q)

HY
o D (Llosp(2m|2n), 1"+ (1,),) @ L(osp(2p|2g), 4 +(1,,)) ™,
AeP(m|n),ueP(plq)

where L(Sp(k), %) @ L(Sp(k), 1) = @, L(Sp(k), 7). for Ay € P(6).
(2) We have a tensor product decomposition of 0sp(2m|2n)-modules:
L(osp(2m|2n), A"+ (1,1, ) RL(08p (2m|2n), 4 + (1)

o @ L(osp(2m|2n), ¥ + k1m|n)”1u,
YEP(m|n),E(y) <k

where A, u € P(m|n)NP(¥), and b}w are determined by the Sp(k)-module
isomorphism L(Sp(2k),7) = @y, (L(Sp(k), 1) & L(Sp(k), ).

(Hint: Use Theorem 5.31.)

Exercise 5.9. Prove Lemma 5.37(1).

Exercise 5.10. Let A be a generalized partition and let vy be the vector defined in
(5.49). Recall £7; from (5.46) and €27 from (5.47). Prove:

(1) &

l,

() ELPThe =0, forall 1 <p</(—1.

i+1V§L:O’ forallie Z.

Exercise 5.11. Consider the gl(k) x gl(1]1)-Howe duality on the space C[x,n]. We
write x1; = x; and Ny; = dx;, for i = 1,...,k so that C[x,n] gets identified with the
polynomial differential forms on C*, and the operator & 17 with the total differential
d= Zle dxié%' Let Q' denote the space of i-forms, fori=1,... k,and set Q= =
0. Put d; = d|qi. Prove:

(1) d is a differential, i.e., d* = 0.
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(2) Every representation of gl(1|1) that appears in the Howe duality decom-
position is typical, except for the trivial representation.

C,ifi=0,

(3) Poincaré’s lemma, i.e., kerd;/imd;_| = ]
0, otherwise.

Exercise 5.12. The natural action of O(k) on C* given by (5.33) or (5.34) in-
duces an action of O(k) on C[x] = Clxy,...,x]. Let J = Z’;z,xpxp_kﬂ, A=
a

vk - 3?(— oo and let H = kerA be the space of spherical harmonics. Prove:
14 -

(1) H is equal to the O(k)-module generated by the polynomials xT', for all
me Z+.
(2) Every polynomial in C[x] can be written in the form ¥, f;(J)h;, where
fi(J) is a polynomial in J and k; € H.
(Hint: Use Theorem 5.39.)
Exercise 5.13. Prove Lemma 5.48 and Lemma 5.49.

Exercise 5.14. We identify the action of gl(k) on the symmetric square S?(C¥)
of its natural module C¥ via that of the differential operators EP*4 given in (5.13)
with m =1 and n = 0. Set y;; := x;1x;1, for 1 <i,j <k, so that y;; = yj;;, and
identify S(S?(CK)) with the polynomial algebra C[y]. Let T be the symmetric ma-
trix (y; f)lgi, j<k» and let T, be the determinant of the rth principal minor of T", for
1 <r<k. Prove:

(1) The polynomial I, € Cly] is annihilated by the operators in (5.17) and
has gl(k)-weight corresponding to the partition (2").
(2) We have the following isomorphism of gl(k)-modules:
SS*CN= P L.
2(A)<k;A even
Here A even means that every part of A is even. (Hint: Compute their

characters and use the first identity in (A.23).)

Exercise 5.15. We identify the action of gl(k) on the exterior square A?(C¥) of its
natural module via that of the differential operators £7+4 as in (5.13) withm =0 and
n=1.Set z;; :=MuM;1, for | <i,j <k, so that z;; = —zj;, and identify S(A?(CF))
with the polynomial algebra C[z]. Let Y be the skew-symmetric matrix (z; j) 1<, j<ks
and let Y5, be the Pfaffian (see (A.49)) of the 2¢ x 2¢ matrix obtained by taking the
first 2¢ rows and columns of Y, for 1 < 2¢ < k. Prove:

(1) The polynomial Y,; € C|z] is annihilated by the operators in (5.17) and
has gl(k)-weight corresponding to the partition (1%).
(2) We have the following gl(k)-module isomorphism:
S(N(C) = D L)

A <k:A even
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(Hint: Use the second identity in (A.23).)

Exercise 5.16. Recall the Littlewood-Richardson coefficients c‘)iv, for AL,u,v € P,
from (A.17). Let A,u € P(m|n), and let x = (X1,.++,%m) and y = (y1,...,y,) be
indeterminates. Prove:

hsy(x;y) -hsp (x;y) = z hhsu(x;y).
HEDP(m|n)

Exercise 5.17. For A € P(¢) recall the oscillator module L(g,?wr f1,) of g =
50(200) (see Corollary 5.32 with m = o). For A € P(¢) and y € P(r), prove:

(1) We have a tensor product decomposition of the form

L(g’}\'—‘_el”)@l’(g,“_’_rlm) = @ L(g»v_f_(g_f—r)l“‘)ax”)
veP(l+r)
where a}w € Z denote the respective multiplicities.
(2) If, in addition, A, u € P(m), then we have
L(so(2m), A+ £1,,)®L(s0(2m),u+rl,,)
= @@ L(so(2m),v+ (£+7r)1,,)%.
veP(m)
(3) If, in addition, A, < n, then we have
L(sp(2n),\ — 01,)QL(sp(2n), 4 — rl,)

=P L(sp(2n),V' — (£+1)1,,)%.
vi<n
(4) If, in addition, A, u € P(m|n), then we have
L(osp(2m|2n), A"+ £1,,1,) ® L(0sp(2m|2n) 4 + 1)
= EB L(osp(Zm]Zn),vb +(+ r)1m|,,)axﬂ.
veP(mln)

Exercise 5.18. For A € P with A} + A} < k, recall the oscillator module L(g, A +
£1..) of g = sp(200) (see Corollary 5.40 with m = o). For A, u € P with A] +A} <k
and p1} +, < r, prove:

(1) We have a tensor product decomposition of the form

k r k+r v
L(g)}\'—'— EIN)®L(Q7#+ 51“’) = @ L(97V+Tl°°)b7\'“a
Vi+Vh<k+r
where bxu € Z denote the respective multiplicities.

(2) If, in addition, A, u € P(m), then we have

L(sp(2m), A+ glm)®L(sp(2m),y + glm)
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k v
= @ Lisp(m),v+ 5 1),
2
veP(m)
(3) If, in addition, Aj,u; < n, then we have
L(so(2n),N — §1,1)®L(50(2n),,u’ - %1,,)
k v
= @ L(so(2n),V — “EL1,)%.

vi<n

(4) If, in addition, A, u € P(m|n), then we have
k
L(spo(2m[2n), 15+ S1,) @ L(spo(2m[2n) 4 + %1,,1,,1)

k v
= @ L(spo(Zm]Zn),vh—i—%1,"]”)%.

veP(mln)

Notes

Section 5.1. The materials on Weyl-Clifford algebra and connections to classi-
cal Lie algebras/superalgebras are standard. The general duality theorem, Theo-
rem 5.8, is taken from Goodman-Wallach [46, 4.2.1], and it can be regarded as an
abstract generalization of the original formulation (see Theorem 5.10 and Proposi-
tion 5.12) of Howe duality [51] (Howe’s paper as a preprint dates back to 1976).

Section 5.2. The (GL(k), gl(m))-Howe duality of Theorem 5.16 (respectively,
its skew version of Theorem 5.18), due to Howe [51, 52], offers a representation
theoretical interpretation of the classical Cauchy identity (respectively, its dual ver-
sion). It is equivalent to Schur duality as well as the First Fundamental Theorem
of invariant theory for general linear groups.

The Howe dual pair (GL(k),gl(m|n)) (Theorem 5.14) already appeared in
Howe’s classical paper [51], and the precise multiplicity-free (GL(k),gl(m|n))-
Howe duality decomposition (Theorem 5.19) was obtained independently by Brini-
Palareti-Teolis [10], Sergeev [113], and Cheng-Wang [29]. The formula for the
joint highest weight vectors in the (GL(k), gl(m|n))-Howe duality (Theorem 5.23)
was due to Cheng-Wang [29], and it unifies the formulas of Howe [52] in two (non-
super) special cases of m = 0 and n = 0. We note that a formula of highest weight
vectors for the more general (gl(k|¢), gl(m|n))-Howe duality was also obtained in
loc. cit.. The (q(m),q(n))-Howe duality was due to Sergeev [113] and Cheng-
Wang [28] independently, and it gives a representation-theoretic interpretation of
the Cauchy identity for Schur Q-functions.

Section 5.3. The Howe dual pairs (Sp(k), 0sp(2m|2n)) and (O(k),spo(2m|2n))

on 8(Ck @ C™") (Theorems 5.30 and 5.38) were formulated in Howe [51]; they
were based on, and in turn can be regarded as a Lie theoretical reformulation of, the



202 5. Howe duality

First Fundamental Theorem of invariant theory for classical groups. The orthogo-
nal group O(k) is disconnected. We follow Howe [52] to present a parametrization
of the simple O(k)-modules in terms of partitions. The strongly multiplicity-free
decompositions in (Sp(k), 0sp(2m|2n))- and (O(k),spo(2m|2n))-Howe dualities
(Theorems 5.31 and 5.39) were obtained in Cheng-Zhang [36], where the highest
weight vector formula in Section 5.2 plays a key role in the proofs. The shorter
proofs presented in this book follow Cheng-Kwon-Wang [21]. We easily recover
the Howe duality decompositions in the non-super setting, which were due to Howe
[52] with somewhat different arguments, by setting either m or n to zero.

There are additional Howe dualities involving the spin groups (see Howe [52])
as well as spo(2m|2n + 1) (see Cheng-Kwon-Wang [21, Appendix A]). There is
also a type A Howe duality involving infinite-dimensional irreducible modules
of gl(n) or more generally gl(m|n) (see Kashiwara-Vergne [69] and Cheng-Lam-
Zhang [27]). We do not treat these cases in the book and refer the reader to the
original papers for details.

Section 5.4. Howe duality between classical groups and infinite-dimensional
Lie algebras was systematically developed by Wang [129], and it has been used in
Kac-Wang-Yan [67] for the study of representation theory of classical Lie subalge-
bras of Wy ... The (GL(¢), a..)-Howe duality (Theorem 5.44) can also be recovered
as a limit case of a duality for affine Lie algebras of type gl given earlier by Igor
Frenkel [44], and the proof here follows [129]. The (Sp(k), ¢..)-Howe duality and
(O(k),v..)-Howe duality (Theorems 5.47 and 5.50) are due to Wang [129], where
one can find several more Howe dualities in bosonic and fermionic Fock spaces not
covered in the book.

Section 5.5. Irreducible characters for the oscillator modules of Lie superalge-
bras were computed in Cheng-Zhang [36] following the approach of Cheng-Lam
[22]. A character formula of Enright [41] played an essential role there. The sim-
pler and more elementary approach presented in this book follows Cheng-Kwon-
Wang [21] and bypasses Enright’s formula via a comparison with Howe duality
involving infinite-dimensional Lie algebras in Section 5.4.

The reader is referred to Cheng-Kwon-Wang [21], where the calculation of
the characters via a comparison of two Howe dualities has been refined to compute
the corresponding u™-homology groups with coefficients in the oscillator modules.
The approach there follows the strategy of Aribaud [2] and Cheng-Kwon [19].

Exercise 5.8 is an example of Kudla’s seesaw pair [75, 52], while Exercises
5.11 and 5.12 were taken from [51]. The formulas for the highest weight vectors
in Exercises 5.14 and 5.15 already appeared in [52]. More general formulas for the
highest weight vectors in the supersymmetric tensor of the supersymmetric square
of the natural representation of the general linear Lie superalgebra can be found in
[29]. We remark that Exercises 5.17 and 5.18 make direct connections between the
tensor product decompositions of infinite-dimensional oscillator representations of
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type D and C Lie algebras and those of finite-dimensional representations of type
C and D Lie algebras, respectively. This observation was made in [35], and indeed
they also follow from super duality in the next chapter.






Chapter 6

Super duality

In this chapter, we develop a super duality approach to obtain a complete and con-
ceptual solution of the irreducible character problem in certain parabolic Bernstein-
Gelfand-Gelfand (BGG) categories for general linear and ortho-symplectic Lie
superalgebras. These parabolic categories contain all the finite-dimensional irre-
ducible modules of these Lie superalgebras.

Super duality is an equivalence of categories between parabolic BGG cate-
gories for Lie superalgebras O and their Lie algebra counterparts Oy at an infinite-
rank limit, which can be concisely summarized in the following diagram:

-~ T R te, try—1
61 0g—150,: 0, Og, —5 0y | —— -
>\‘J
- te, tey—1
Oﬁ : o - OﬁnJrl ’ Oﬁn O§n~1 —

A weak version on the Grothendieck group level of the equivalence 65 = Oy, which
is established first in an elementary way, already implies a solution of the irre-
ducible character problem of these Lie superalgebras. It is further shown that the
corresponding Kostant u-homology groups, or equivalently the Kazhdan-Lusztig-
Vogan polynomials, are matched under super duality. These results are established
by introducing an auxiliary Lie superalgebra g, its parabolic BGG category 65, and
two functors T and T. The equivalence 65 = Oy follows by establishing the two
category equivalences T and T.

The category Oy is the inverse limit of a sequence of categories {Og, }n>o0,
where tt, are the truncation functors. The Kazhdan-Lusztig solutions for the cat-
egories Oy, for all n > 0 of the finite-rank Lie algebras g, are shown to amount to
the Kazhdan-Lusztig solution for the category Og4. Similarly, the Kazhdan-Lusztig

205
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solutions for the categories Gﬁn for all n > 0 of the finite-rank Lie superalgebras
g, amount to the Kazhdan-Lusztig solution for the category 65. By chasing the
diagram (6.1), we solve the irreducible character problem in the parabolic BGG
categories —(‘jgn for the finite-rank basic Lie superalgebras g, of type gl or osp via
the classical parabolic Kazhdan-Lusztig polynomials.

6.1. Lie superalgebras of classical types

This section starts with a discussion of the infinite-rank Lie superalgebras g, g, and
g, whose representation theories we will investigate in later sections. Here, gisa
classical Lie algebra, g is the corresponding Lie superalgebra of classical type, and
g is an auxiliary Lie superalgebra that contains both g and g as subalgebras and
that plays the role of an intermediary between them. We present explicit matrix
realizations of these Lie superalgebras together with their finite-dimensional coun-
terparts, gr, g5, and g}, for n € N. All of these superalgebras implicitly depend on
afixed typer = a,b,b%, ¢, 0.

6.1.1. Head, tail, and master diagrams. For m € Z., consider a vector space
with basis {€_,,...,e_1}U{e,|r € 1N} and a symmetric bilinear form (-|-) given
by

|
(g/]es) = (=1)% 8,5, r,sE{-m,...,—l}UEN.

We introduce the following notation for roots which we shall need shortly:

Ox :=€_1—€pp, Oj:=¢ —¢€11, —-m<j<-=2,

(6.2)
By =g 1—¢g, O =8 —&41/2, PBri=g& —€4, reEN'

We define the tail diagrams to be the following three Dynkin diagrams @,

@, and with prescribed fundamental systems denoted by I1(%,,), I1(%,),
and I1(%,), forn € N:

O—0—0—+—0—0

Bl BZ Bn—Z Brl 1
®—O0—0——0—0
Ox B B3 Bi-sp B3
O Oy /2 o Olp—y Oy /2

Corresponding to these three diagrams we have the Lie superalgebras gl(1+ n),
gl(1|n), and g{(1 +n|n). For n = o, we have analogous diagrams that are the
Dynkin diagrams of the corresponding infinite-rank Lie superalgebras.
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We shall choose another Dynkin diagram (€ ), with fundamental system IT(¢),
called a head diagram, to connect with one of the three tail diagrams to produce
the following three new Dynkin diagrams, which will be called the master dia-
grams (n € NU {oo}):

6.3)

The three master diagrams will be denoted by , , and ( gn) respectively,
and the associated Lie superalgebras g, §,, and g, will be introduced subsequently.

We denote the fundamental systems corresponding to the three master diagrams by
64) T, :=TE)UI(T,), =EUNE,), I,:=E)uI(E,).

When n = , we shall make it a convention to drop the subscript n, and denote these
master diagrams, fundamental systems, and Lie superalgebras by , , and
, I, TT, and I1, g, §, and g, respectively.

The head diagram (_£) used in this book is always chosen to be one of the
Dynkin diagrams defined below. Accordingly, we will add the superscript ¢
to the general notations in Section 6.1.1 to write I, , gn, and so on, when
it is needed to specify the type r. For r = a.b,b%,¢,0 and m > 1, introduce the
Lie (super)algebras € with Dynkin diagrams and prescribed fundamental
systems [T(E*) as follows (see (6.2) for notation of a;):

O—0—0——0—0—0

- —O—0—

- —0—0—0
- —0—0—0
—0—0—0

—€.m—€ mil

We have the following identifications of Lie algebras: £* = gl(m), ' =s0(2m+1),
%" = osp(1]2m), € = sp(2m), and € = s0(2m).

Remark 6.1. The Lie superalgebra osp(1|2m) behaves like a finite-dimensional
simple Lie algebra in the sense that every finite-dimensional osp(1 |2m)-module is
completely reducible by Corollary 2.33. Furthermore, according to Section 2.2.6,
the linkage is controlled entirely by the Weyl group, just like for finite-dimensional
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simple Lie algebras. Thus, we shall slightly abuse the terminology and refer to
0sp(1{2m) also as a classical Lie algebra in this chapter.

6.1.2. The index sets. Let us introduce some notation and conventions for index
sets, which will be needed for defining the Lie superalgebras g¥, g*, and g* associ-
ated to the master diagrams (6.3).

For m € Z., we introduce the following totally ordered set fm:

<§<T<T< 1 < <—<6< < < ]<l<1<3<
2 > " N 2 2

m m

We further introduce the following subsets of ﬁm:

Hm:z{—_1,...,——m,6,—m,...,—1}u{T,i,i...}u{1,2,3,...},
m m
- - 135 135
Hn :{*a y T 50* ~~~~ *]} {_a_>_ﬂ } {_a_a_ }
’ RN AU A S T
m m
~ 1.3
Hjn— ::{_mv ’ 175517572a }

For X =1,,,L,, or I,,, define
X :=X\{0}, X*:=XnI!.

6.1.3. Infinite-rank Lie superalgebras. We shall provide explicit matrix realiza-
tions of infinite-rank Lie superalgebras g*, §*, and g%, for ¢ = a, b, b°, ¢,0. Actually
g'. forr =a,b,¢,0, is a Lie algebra.

Lie superalgebras of type a. For m ¢ Ly, let V,,, be the infinite-dimensional
superspace over C with ordered basis {v;]i € I,,}, whose Zo-grading is specified as
follows:

=l =0 (reZ\{O)),  Ini=lul=T (seliz,)

The parity of the vector Vg 1s to be specified. With respect to this basis, a linear
map on V,, may be identified with a complex matrix (ar), . - Let gl(V,,) denote
the Lie superalgebra consisting of (am)” i, With a,; = 0 for all but finitely many

a,s’s. Denote as usual by E,, € g[(‘~/,,,) the elementary matrix with 1 at the rth row
and sth column and zero elsewhere.

The superspaces V,, and V,, are defined to be the subspaces of ‘7,,, with ordergd
basis {v;} indexed by I,, and T,,, respectively. The subspaces of V,,, V,,, and Viu

with basis vectors v;, with i indexed b Ix, ﬁx, and fx, are denoted by V., V" and
- y m 13 m y m m

V.. » respectively. Similarly, the subspaces with basis vectors v;, for i indexed by
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L, I and I}, are denoted by V!, V! and V;F, respectively. We summarize these
vector superspaces together with the index sets for their bases in Table 1 below:

Table 1
Superspaces || Vi | Van | Vi | VX Vi [ VXV [V, |V
Index sets || Ln | Tno | I | L% | Do | T | I | T, | I

Let W be one of the superspaces Vi, V.S, V¥ Vi V.5 V,iE Vo, Vo or V., regarded
as a subspace of V,,. Then W gives rise to the Lie superalgebra gl(W) as a sub-
algebra of gl(V,,). The standard Cartan subalgebra of gl{(W) is spanned by the
basis {E,}, with corresponding dual basis {€,}, where r runs over the index set
corresponding to W. The standard Borel subalgebra of gl(W) is spanned by E;,
with r <.

The fundamental systems corresponding to the standard Borel subalgebras of
the Lie superalgebras gl(V:"), gl(V,}), and gl(V,)) are precisely [1°, I1%, and T, re-
spectively, and the corresponding Dynkin diagrams are the master diagrams ,
and , respectively. Therefore, gl(V,), gl(V;"), and gl(V) are matrix
realizations of the Lie superalgebras g°, g%, and g°, respectively. We summarize
this in Table 2 below.

Table 2. Matrix forms for Lie superalgebras of type a

a =a

Lie superalgebras g° g g
Matrix forms || gl(V:H) | gt(v:h) | al(V,))

Associated to the fundamental systems I1°, T°, and I1°, we have the following
positive systems:

Ot ={e,—g,r<s(nseli)},
O = {g—¢gjli<j(i,jel})},
"D = {g,—esr<s(rse ﬁ,:)}

Lie superalgebras of types b*,c. We set |v5| = 1. For m € Z, define a non-
degenerate skew-supersymmetric bilinear form (-|-) on the superspace V;, by

(vy|vs) = (vslvs) = 0, (vy|vs) = &y = — (= )M Ml (velv,), rs e,

(6.5) _
(vglvg) =1, (vglvr) = (vglve) =0, re L.
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We obtain non-degenerate skew-supersymmetric bilinear forms by restriction, which

are again denoted by (-|-), to the subspaces V * Vi, VXV, and V,;.
Let W be one of the superspaces V,,, V.X, V,,, VX, V,, or V., tespectively.

m» m >
m?

Recall from Section 1.1.3 that the Lie superalgebra spo(W) is the subalgebra of
gl(W) preserving the form defined in (6.5). That is, for € € Z,,

5po(W)e = {T € gl(W)e | (Tviw) = — (= )M (v]Tw), Yo, w € W}.
The standard Cartan subalgebra of spo(W) has a basis given by
Er =Ly _EF,Fa

where r runs over the index sets I}, [, kA KA I respectively. We denote the
corresponding dual basis by {¢,}. The standard Borel subalgebra of spo(W) is
obtained by taking the intersection of spo(W) with the standard Borel subalgebra
of gl(W). One checks in a straightforward fashion that the fundamental systems
associated to these standard Borel subalgebras are precisely v, 1, ", 11, ﬁb.,
I, respectively. Thus, we have obtained matrix realizations of the Lie superalge-

bras, for m > 1, in Table 3 below.

Table 3. Matrix forms for Lie superalgebras of types b*, ¢

@peral gebras v g g g g g

lMatrinormS spo(Vin) spo (Vi) ﬁpo(vm) spo(\N/,,f) sp(V,) SPO(V:,)

Associated to the fundamental systems TT¢, ﬁx, and ﬁ‘, for r = b*, ¢, we have the
following positive systems:

YOF = {te ~e,lr<s (s} U{-2¢ (i€ INYU{~e (relh)},

‘DF = (e, —glr <s(ns€H)}U{-2¢ (i€ L1},

T = {dei )i < j (i,j € L)} U {—er, —2e; (i€Thy,

D ={xe;i—ejli < j(i,j €Ly U{-2¢ (i€ L})},

YO = {te, —elr<s(nsell)}U{-2e (—m<i< ~D}Uu{-g (rel))},

D = {te,—elr<s(nsel)IU{—2¢ (-m<i< ~1)}.

Lie superalgebras of types b,d. Now we set |vg| = 0. Define a supersymmet-
ric bilinear form (-|-) on the superspace V,, by
(rlvs) = (velvs) =0, (volvg) = 8y = (= 1)MMMl(wgjv,), 15 €T,

(6.6) -
(volvg) =1, (vglve) = (vslvr) =0, re L.
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By restriction, we obtain non-degenerate supersymmetric bilinear forms, which
will also be denoted by (-|-) on the subspaces V., V., V., V,, and V.

Let W be one of the spaces V., V.5, V,,, V.5, V,, and V:l, respectively. Recall
from Section 1.1.3 that the Lie superalgebra osp(W) is the subalgebra of gl(W)
preserving the form given by (6.6). The standard Cartan subalgebra of osp(W)
has the basis { E, }, with corresponding dual basis {€,}, where r runs over the index
sets T, T+ I+ It T T respectively. As before, the standard Borel subalgebra
of 0sp(W) is obtained by intersecting osp(W ) with the standard Borel subalgebra
of gl(W). One computes that the associated fundamental systems are precisely I,

I, T1°, I, TT°, TT°, respectively. Thus, we have obtained the following matrix
realizations of Lie superalgebras, for m > 1, in Table 4.

Table 4. Matrix forms for Lie superalgebras of types b, 0

Superalgebras g° g° g° ° g° g

Matrix forms | 0sp(V,,) | 50(V,) | 0sp(V,) | 0sp(V) | so(V.) | 0sp(V,)

Associated to the fundamental systems If[?, IT*, and ﬁx, for r = b,0, we have the
following positive systems:

6F — (e, —elr <5 (ns € T} U {26 (s 1))} U =&, (re T},
2Pt = {de, —g5r<s(nselh)}U{—2e (s Eg)}’

bt = {te;—¢gjli< j(i,je L) U{—¢ (i€ L))},

OF = (L& —gjli< j (i,j€ L)},

S = (e, —glr <s (s € ﬂ,T,)}U{_zes (se ﬁg)}u{_gr (reL)},

(
T = {te, —g5lr <s (nsel) u{—2e (seI})}.

6.1.4. The case of m = 0. Let 1 = a,b,b*,¢,0. The sets *®T, fFd*, and *® " for
m = 0 still make sense, and they are the positive systems for the Lie superalgebras
g%, g%, and @', whose Dynkin diagrams and fundamental systems are as follows.
Some of the Dynkin diagrams in the case of m = 0 differ somewhat from the coun-
terparts in the case when m > 1, and this is why we treat the two cases separately.
For m = 0, the corresponding Lie superalgebras are realized similarly as in Sec-
tion 6.1.3, and we shall use the same notation as before.

03,2 [ Oyry2 Clyy g
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O:}O__O_...—O__O__?__

-2€1 1 B Bs2 B B,

We have the following identifications of Dynkin diagrams when m = 0:
(89 =@).() =@ =@, (89 = @)D= @)

6.1.5. Finite-dimensional Lie superalgebras. Fix m € Z.. Let W be one of the
superspaces Vi, Vi, Vi Vi Voo, VE VX Vo or V5. For n € N, let W, stand for
the subspace of W spanned by the vectors v, € W with 71 < r < n. We consider the
Lie superalgebras gl{(W,), for W = \7,;;,72, V", and the Lie superalgebras spo(W,,)
and osp(W,), for W = V.,V \V,,, VX . V,,,V)". As in the case of n = oo, these
provide matrix realizations of Lie superalgebras gn, g%, and 9%, whose associated

Dynkin diagrams , , and are given in (6.3) (see Table 5 below).

Note that gj, is actually a Lie algebra, for r = a, b, c,?.

Table 5. Identifications for finite-dimensional Lie (super)algebras

[ Typer || o \ 7 | o |
a gl(m+n) gl(m|n) gl(m+n|n)

b s0(2(m+n)+1) | osp(2m+1|2n) | osp(2(m+n)+1|2n)
b* osp(1]2(m+n)) | spo(2m|2n+1) | spo(2(m+n)|2n+1)
¢ sp(2(m+n)) spo(2m|2n) spo(2(m+n)|2n)

0 s0(2(m+n)) osp(2m|2n) osp(2(m+n)|2n)

6.1.6. Central extensions. We assume that y = b, b®,¢,0 in this subsection. We
shall replace the Lie superalgebras g, g*, and g* and their finite-dimensional ana-
logues by their central extensions, and study the representations of their central
extensions instead. As these central extensions are trivial, we can easily recover
the representations of g, g, and g* from those of their central extensions. The use
of central extensions will be more conceptual and convenient for formulations of
truncation functors and super duality in later sections.

Let m € Z, . The supertrace Str defined in Section 1.1 makes sense for g[(\N/m).
For X,Y € gl(V,,), we have

(6.7) Sir(XY) = (=X ISt (rx).
Let J:= Egp +z,<IErr- This allows us to define T : g[(\7m) X g[(~,,,) — Cby
=2

(A, B) := Str([J,A|B) = Str((JAB— AJB), A,B € gl(V,,).
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Itis easy to show that T s a (trivial) 2-cocycle (see Section 5.4.1), and hence defines
a central extension gl(V,,) of gl(V,,) by the one-dimensional center CK. That is,
we have gl(V,,) = gl(V},) & CK as a vector superspace with Lie bracket

X,¥] = X.Y]+t(X.V)K.

where we have used X to denote the element in 5[(‘7,”) that corresponds to the
element X € g[(Vm). This central extension is trivial, since it is straightforward to
check that an isomorphism ¢ from the Lie superalgebra gA [ \7,,,) to the direct sum of
Lie superalgebras gl(V,,) & CK is given by

~

(6.8) ¢(X) =X —-Su(IX)K,  ¢(K)=K.

Now for W being one of the spaces V.V, VX Vm, V., the restriction of T to
the subalgebras gl(W) gives rise to respective central extensions, which in turn in-
duce central extensions of the ortho-symplectic subal gebras. The central extension
of g*, g, and g* arising this way will also be denoted by g', §*, and g¥, respectively,
by abuse of notation. We trust that this will not cause confusion, as only these
central extensions will be used in the remainder of this chapter. For r = q, the Lie
superalgebras g%, g°, and g° are already suitable for super duality later on, and so
their central extensions will not be needed.

We note that g* and g are naturally subalgebras of g'. The standard Cartan
subalgebras of g*, g*, and g¥ will be denoted by b, EI, and 6’ , respectively. Then
b, B, or E‘ has a basis {K,Er} with dual basis {Ag,¢€,}, where r runs over the
index sets I, ﬁ;, or ﬁ;, respectively. Here A is determined by

Mo(K)=1, Ag(E,) =0,
for all admissible r in each case. The C-span of Ay and the €,’s in the dual of h*
(respectively, EI and EF) will be denoted by h** (respectively, EI* and H‘*), where r
lies in I} (respectively, T, and T").

In the case when 1 = a it will also be advantageous to set E, =E,,, forr > 0.
For notational convenience later on, we shall declare Ag to be 0.

From now on, we shall adopt a convention of dropping the superscript .
So for example, we shall write g, g, and g for g, g, and g*, with associated Dynkin

diagrams , , and , respectively, where ¢ denotes a fixed type among

a,b,b% ¢,0.

6.2. The module categories

In this section, we define the parabolic Bernstein-Gelfand-Gelfand (BGG) cate-
gories of modules for the Lie superalgebras g, g, and g, and also their finite-rank
counterparts. We introduce the truncation functors to relate the module categories
of the infinite-rank Lie superalgebras to their finite-rank counterparts. It is shown
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that the truncation functors send irreducible and parabolic Verma modules to irre-
ducible and parabolic Verma modules, respectively, or to zero.

6.2.1. Category of polynomial modules revisited. Recall from Section 6.1.5 that
Vy'x is the (k|k)-dimensional superspace spanned by v,, for r =1/2, 1,3/2,...,k—
1/2,k, for k € N, and ‘70+ = \701. We introduce the short-hand notation

T =gl(Vy), [ =gl(Vj), keN.

In this subsection, which is an infinite-rank counterpart of Section 3.2.6, we shall
show that the category of polynomial *-modules is semisimple. This will be
needed in Section 6.2.2, where ™ appears as a direct summand of a Levi subal-
gebra for g.

Let A = (Aq,Az,...) be a partition. For j € N, we denote
(6.9) 8(A); = max{A; — j,0}, O(N);_y/, = max{\;—j+1,0}.
One recognizes (0(A)/2,0(A)3/2,.-- | 8(A)1,8(A)2,...) as the modified Frobenius
coordinates of A’ of Example 2.56(3). Define
A=Y o),

re%N
(For a definition of A® in a general setting, see (6.16) below.)

The standard Borel subalgebra of ~[;’ corresponds to the fundamental system
consisting of (all odd) simple roots €, — €./, for r = 1/2,1,3/2,... .k - 1/2.
By Theorem 2.55, the irreducible polynomial representations of I[” = gl(k|k) are
parameterized by the set P(k|k) of (k|k)-hook partitions, and that the set of highest

weights of these representations is precisely {A® | A € P(k|k)}. We have natural
inclusions of Lie superalgebras:

Fcpc--cli_cic -,
compatible with their respective standard Borel subalgebras.
Let k € NU {eo}. Suppose that V =, V,, is an T,j—module that is semisimple
with respect to the action of its standard Cartan subalgebra such that V,, = O unless
u satisfies the following polynomial weight conditions: (~1)*(u,e,) € Zy, for

re %N, and (u,g,) =0, for r > 0. Let n € N with n < k. We form the following
subspace of V:

teiV == PWw,
v

where the summation is over v satisfying (v,&,) = 0, for r > n. (t% as a functor
will be defined and studied systematically in a general setting in Section 6.2.5.)

Let A € P(k|k). The character of the irreducible T,;"-module L(T;L,ke) is given
by hsy (X1, ., Xk3Y1/2,¥3/25- - - Yk—1/2) according to Theorem 3.15, where x; = al
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andy;._;/, = €12 for j € N. Hence the character of the I, -module ttX (L(T,29))
is equal to hs (xp,... s%n3Y1/2:¥3/2, - > Yn—1/2) OF zero, depending on whether A is
an (n|n)-hook partition. Hence, for n < k, we have

v ~ J L(LF,A®), if A is an (n|n)-hook artition,
6.1 ten (L1 19)) :{ 0( ) otherwiseF " ’

From now on, the natural inclusions L(L}", 1%) C L(T,j’,?\e) for any A € P(n|n) will
be understood in the sense of the above isomorphism, for n < k. One checks that
Usksn L(T,'f,ke) is an irreducible highest weight I*-module of highest weight A°.
Hence,
LI A% = | JL(T; ,A9),
k>n

and L(I",A%), for A € P, has character given by the super Schur function hs;.
Lemma 6.2. Let A, € P. Then Extrlr (L(TJ”, 7\.6)7L(T+,,ue)) =0.

Proof. Consider a short exact sequence of T*-modules
(6.11) 0— L(I"A%) — E — L 1°) —s 0.

First suppose that A = u. Then by weight consideration, the two-dimensional zf-
weight subspace of E is a highest weight space, and thus £ contains two proper
submodules and the short exact sequence must split.

Now suppose that A # u. Choose n > max{[A|, |u|}. Applying tr;” to every term
in (6.11), we obtain by (6.10) the following short exact sequence of polynomial -
modules:

(6.12) 0— L(I7 A% — &™E — LI 1) —s 0.

By Theorem 3.27, (6.12) splits. Hence, we can find a singular vector w in the T,;L—

module tr7E so that U([} )w = L(T,‘f, 1®). Since there are no weight vectors in E

of weight u® 4+¢; — €iy1/2, for i > n, w is a singular vector in E with respect to the
standard Borel subalgebra of I, too.

Now we consider the I*-submodule L generated by w in E. We claim that
L= L((* 1), and so (6.11) splits. For otherwise L contains L(I*,A%), and in
particular L contains a highest weight vector v of weight A®. This implies that
=A% is a positive integral combination of positive roots of [+ By the choice
of n, u® —A® has to be a positive integral combination of positive roots of T;,L and

hence v € U(L})w and U(tHw 2 L(L;,A%). This contradicts U (I, )w = L(LF10).

n

So (6.11) splits, and the lemma is proved. O

Lemma 6.3. As an [*-module ( \70+)®d is completely reducible and we have

(Voo = P L(*,2%%,
rEP,
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where d,, denotes the multiplicity of L(T*, A% in (‘70+)®d. Furthermore, d), equals
the dimension of the Specht module of S, corresponding to .

Proof. Set W = (\70+)®d. Fix an integer n > d. By Theorem 3.11, we have an
isomorphism of ;' -modules
W = (V)% = @D L(I7 A% %
AP,

Now let w be a singular vector in the T,T-module te°W of weight A%, for a fixed
A € Py. Observe, as in the proof of Lemma 6.2, that w is also a singular vector
with respect to the standard Borel subalgebra of " in W. This implies that for each
A € Py, the module L([Jr A9 appears in W as a composition factor with multiplicity
at least dj. A comparison of [*-characters shows that each L([* A%) appears in W

with multiplicity exactly dj, and they are all the composition factors of W. Now
the lemma follows from Lemma 6.2. O

The notions of polynomial weights and polynomial modules for T* can be de-
fined just as in Definition 3.25. As in Proposition 3.26, the irreducible polynomial
T*-modules are precisely L(T*, A9), for A € P. The following theorem is an infinite-
rank analogue of Theorem 3.27, and it follows easily from Lemmas 6.2 and 6.3.

Theorem 6.4. The category of polynomial modules of [+ = g[(‘~/0+) is a semisimple
tensor category.

In the extreme case when € = 0, we have g = g[(%ﬂ, and the category of

polynomial modules of g[(\70+) is simply the category O defined below in Section
6.2.3.

6.2.2. Parabolic subalgebras and dominant weights. Recall the Lie superalge-
bras g, g, and g from Section 6.1.6, which implicitly depend on a fixed m € Z.. We
shall in addition fix an arbitrary subset Yy of [1(£). Let Y, Y, and Y be the following
subsets of IT, TT, and IT, respectively:
Y = YoUII(T)\ {Bx},

(6.13) ~

Y =Y UII(T)\{ox}, Y=YUI(T )\{ch}
As fixing Yy also fixes the sets Y, Y, and Y, we will make the convention of sup-
pressing them from notation below.

Letl, [, and [ be the standard Levi subalgebras of g, §, and g corresponding
to the subsets ¥, ¥, and Y, respectively. The standard Borel subalgebras of g, g, and
g, spanned by the central element K and upper trlangular matrices, are denoted by
b, b, and b, respectively. Letp = [+b, p = [+ b, and p 1+ be the corresponding
parabolic subalgebras with nilradicals v, &, and 1 and opposite nilradicals u™,
i, and u~, respectively.
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Let "A = (A_p,...,A_1) € C" and let "\ be a partition. Recall also that Ay
denotes the coroot of a root a.. Associated to a given d € C and a tuple (“A;*})
such that (2,;1_," Aigi,ho) € Z, for all o € Yy C T1(k), we define the weights

~J
(6.14) Ai=dAo+ Y, hei+ Y The b
i=-m jeN
(6.15) A= dAg + Z Nei+ Y, Thieeh,
i=—m seltz, ’
(6.16) A% = dAg + 2 hei+ Y B(TA)e € b,
i=—m G%N

These welghts A, 7»“ A® will be referred to as dominant weights. We denote by
Pt Ch*, P C h and P+ - f)* the sets of dominant weights of the forms (6.14),
(6.15), and (6.16), for all d € C, respectively. We will also identify an element
A € P of the form (6.14) with the tuple (dAg, “A,*tA). The next lemma follows
by definition.

Lemma 6.5. We have the following bijective maps:
h:PT— P, A= A
9: Pt — Pt A A8
For L € P*, let L({,A) denote the irreducible highest weight [-module of highest

weight A. We extend L(I,A) to a p-module by letting u act trivially. Define the
parabolic Verma g-module A(A) as

A(A) :=IndJL(I,A) = U(g) ®yp) L(L, 1),
and denote its unique irreducible quotient g-module by L(}).

Similarly, for A € P*, we define the irreducible [-module L(I,A%), the para-
bolic Verma g-module A(A%), and its unique irreducible quotient g-module LA,
We also similarly define the irreducible T-module L( [,A9), the parabolic Verma g-
module A(ke) and its unique irreducible quotient g-module L(A%).

6.2.3. The categories O, O, and O. We now introduce a version of parabolic BGG
category O of g-modules.

Definition 6.6. Let O be the category of g-modules M such that M is a semisimple
f-module with finite-dimensional weight subspaces My, y € h*, satisfying

(i) M decomposes over | as a direct sum of L([,u) for u € P*.

(ii) There exist finitely many weights A',A%,... A% € P* (depending on M)
such that if yis a weight in M, then Y€ X — ¥, .11 Z . ., for some i. (Recall
that IT is the fundamental system for g.)
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Analogously we define the category O of §-modules using h P LTI, , and the
category O of g-modules using f)* P*,1I1. The morphisms in O, O, and O are all
(not necessarily even) g-, g-, and g-homomorphisms, respectively.

Proposition 6.7. Let u € P*. The following statements hold.

(1) The restrictions to | of the g-modules A(u) and L(u) decompose as direct
sums of L(I,v), forv € P,

(2) The restrictions to [ of the §-modules A(u*) and L(1#) decompose as direct
sums of L(I,VY), for v € P*.

(3) The restrictions toTof the g-modules Z(ye) and Z(,ue) decompose as di-
rect sums of L(1,v®), for v € P*.

Proof. (1) As a Lie (super)algebra we have [ = ¢y & g[(VO“L), where & is a Levi
subalgebra of £ corresponding to Yy (our convention is that K € €j), and V(;r was
defined in Section 6.1.3. Hence an irreducible [-module of highest weight v € P
is isomorphic to a tensor product of a finite-dimensional irreducible ¥;-module and
a polynomial g[(VO+ )-module. Note that the opposite nilradical 1~ as an I-module
is a direct sum of irreducible modules with highest weights lying in P™. More
explicitly, we have the following isomorphisms of I-modules:

cm™ (X)VO+ Dug, for t=a
CloVitean?(Vy )ouy, forr=>b
il @V, @S2 (Vs )duy, for =0
CMme Vs oS82 (Vy ) ey, for r=c¢
Cr V) e N (V) ey, for x =0.

:l
It

Here VO+ = C* is a purely even space and it is isomorphic to the natural module of
gl(Vy") = gl(e°), ug is the opposite nilradical of £ corresponding to the Levi sub-
algebra &, and furthermore C", C¥m C2m+1 and 2! are the natural &-modules
on which & acts semisimply by restriction. It is evident that the tensor product
of two irreducible [-modules with highest weights in P™ decomposes into a direct
sum of irreducibles with highest weights in P™. Recall that §(U) stands for the
supersymmetric algebra of a superspace U. Since, as [-modules, we have

Alp) = 8(u™) @ L(Lp),
it follows that A(u) is a direct sum of irreducible [-modules with highest weights in

P*. Since L(u) is a quotient of A(u), the same holds for L(u). This proves (1).

(2) The Levi subalgebra of g is [ = £y ® g[(VaL ), which is isomorphic to I. The
opposite nilradical ii~ is a direct sum of irreducible {-modules with highest weights
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of the form V¥, where v € P*. Explicitly, we have

C™ @V, Guy, for r=a
C 1 @V @S2 (Vy ) dug, for r=b
= (CZ”‘“®V8L€B/\2(V§)€BL(5, for r=15°
C2m®VgEBA2(V(}L)®u6, for r=c¢
C"@Vy @82(Vy)duy,  for r=0.

=]

A main difference from (1) is that Vg = C* here is a purely odd space, yet the
notation for the exterior and the symmetric squares of Var here are understood in
the non-super sense. Now we have A(AM) = §(&i™) ® L(I,A?), and so a verbatim
argument as in (1) establishes (2).

(3) The Levi subalgebra [ of § is isomorphic to £y @ g[(\70+). As an [-module, i~
is isomorphic to a direct sum of irreducible modules, each of which is a tensor prod-
uct of a finite-dimensional irreducible £-module and an irreducible polynomial
module of g[(VO ). Recall the polynomial modules of g[(V0+) form a semisimple
tensor category by Theorem 6.4. We have

C™ RV, ®uy, for r=a
CH V" @A (V) Gu,, forr==>
C*' @V @ 8* (V) @uy,  for r=0b
C RV, @82 (Vy) dug, for r=c¢
%C2m®‘70+69A2(‘70+)@u5, for r =0.

=|
I

Here the exterior squares are understood in the super sense for the superspace V0

So each irreducible I-submodule of i~ has highest weight lying in P*. Thus, by
Theorem 6.4, A(ke) for L € P*, is also a direct sum of irreducible I-modules with
highest weights in PT, and so is its quotient Z(Xe). This proves (3). ]

As an immediate consequence of Proposition 6.7, we have the following.

Corollary 6.8. Let A c PT.

(1) The modules A(L) and L(\) lie in O.
(2) The modules A(M) and L(\!) lie in O,
(3) The modules A(A®) and L(\®) lie in O.

6.2.4. The categories O, O,, and O,. For n € N, recall the sets I,,T1,,I1, of
simple roots for the Dynkin diagrams (6.3) and the associated finite-dimensional
Lie superalgebras g,, §,, and g, from Section 6.1.5. These Lie superalgebras g,,,
@y» and g, can be identified naturally with the subalgebras of g, §, and § generated
by the central element K and the root vectors associated to the fundamental systems
in (6.3). Moreover, we have natural inclusions g, C g1, 8, C 8nt1-and gn C Gny 1,
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with g = U, gy, § = Us8,,, and g = U, g,. The standard Cartan and Borel subalgebras
of g, are

hn:bmgnw bn:bmgna

respectively. Similarly, we write b, and 6,, ( by, and E,,) for the standard Cartan
(Borel) subalgebras of g, and g,, respectively.

Recall the notation A € P+, A%, and A® from (6.14), (6.15), and (6.16). Given
A € P with *A; = 0 for j > n, we may regard A as a weight in b}, in a natural
way. Similarly, for A € P* with +7»i,~ =0 for j > n, we regard A" as a weight in
h... Finally, for A € P* with 0(*A); =0for je %N with j > n, we regard A® as a
weight in E; These weights A, A" A% in %, b, and E,*l, respectively, with the above
constraints, will be called dominant weights. The subsets of dominant weights in
b, b, and b will be denoted by Pt P, and P}, respectively.

Corresponding to a fixed ¥y C I1(¥), the Levi and parabolic subalgebras of the
finite-rank Lie superalgebra g, are

[n:[mgn) Pn =P gn,

respectively. This allows us to define the corresponding parabolic Verma and irre-
ducible g,-modules A, (1) and L, (1) with highest weight u € P;". The correspond-
ing category of g,-modules is denoted by O,,, which is defined as in Definition 6.6,
now with by, [, P*, and I therein replaced by b,,, I,,, P;", and IT,, respectively.

The statements in the previous paragraph admit obvious counterparts for the
Lie supcralgebras g, and g, as well. We 1ntroduce the self-explanatory notatlon
Ay(0), Ly(v), Oy, 1, P for §,, and A, (V), Ly(v), O, L, § for §,, where v € P, and
veP;.

6.2.5. Truncation functors. Let n < k < oo. For M € Oy, we write M = EB«{MY,
where vy € Zl, _mC&i+ o< j<i Z1 €+ CAo, according to its weight space decom-
position. The truncation functor tt{j 1 O — O, is defined by

= @MVa
v

where the summation isoverv e Y| Ce;+ Y. j<nZiy€j+CAg. Whenit is clear
from the context we shall also write tr, instead of ttX. Analogously, truncation
functors tt’,‘l 10— O, and tt]‘n : 6k — 6,, are defined. These functors are obviously
exact. (The notation trX used earlier in Section 6.2.1 corresponds to the extreme
case here when £ =0.)

Recall from Sections 6.1.3 and 6.1.6 the notation E; and E ; for basis elements
of the Cartan subalgebras.

Proposition 6.9. Letn < k <o and X = L,A.
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Xo(w), if (u,Ej) =0, > n,
0, otherwise.

Y’l(l"')’ l‘f<lu?Ej> :O,VJ >l’l,
0, otherwise.

Xn(:u)a lf</J,E’,> = O,Vj > n,
0, otherwise.

(1) For ue P! we have tx, (Xk(,u)) = {
(2) Foru e P} we have tx, (Xi(u) = {
(3) Forue 1’3,:r we have tr, ()?k(,u)) = {

Proof. We shall only show (1), as similar arguments prove (2) and (3). Since
teh o teh = te! it suffices to show (1) for k = oo,

First suppose that (u,E,,;) > 0. Then every weight v of L([,u) also satisfies
(V,En+1> > 0 by the choice of fundamental systems of g and hence of [. Recall
from the proof of Proposition 6.7 that as an I-module 1~ decomposes into a direct
sum of irreducibles with highest weights in P+ Thus, every weight v in A(u) =
S(u™) ® L(l,u) must also satisfy (0,Ens1) > 0. Therefore, tr, (A(u)) = 0, and
hence tr, (L(u)) = 0.

Now suppose that (y,En+1> = 0. Since y € P, this implies that (WE;) =0
for all j > n. Let I' and p’ denote the standard Levi and parabolic subalgebras
of g corresponding to the removal of the vertex B, of the Dynkin diagram of g.
Then ' = g, & gl(W), where W is the subspace of V" spanned by the vectors Vi,
i > n. Consider the parabolic Verma module Indg/L,, (1), where L, (u) extends to
an ['-module by the trivial action of gl(W) and is then extended to a p’-module in
a trivial way. Clearly, L(u) is the unique irreducible quotient of Indg,Ln (1). Since
tt,,(Indﬁ,L,,(,u)) = L,(u) and t,(L(y)) is a nonzero g,-module (as it contains a
nonzero vector of weight u), we conclude that tr,, (L(y)) = L, (u).

To complete the proof, we observe that A(y) 2 § (u™) ® L(I,u), and that the
gn-module tr, (A(u)) has highest weight u with character equal to chA, (u). From
these we conclude that tr, (A(u)) = A, (u). U

6.3. The irreducible character formulas

In this section, two functors 7 : © —s Oand T:0 — O are introduced, and they
are shown to send irreducible and parabolic Verma modules to irreducible and
parabolic Verma modules, respectively. The main ingredients for studying these
functors are two sequences of odd reflections on the standard Borel subalgebra of
g, leading to new Borel subalgebras which are “approximately compatible” with
the standard Borel subalgebras of g and g. As a consequence, the solution of the
irreducible character problem in O via the classical Kazhdan-Lusztig theory also
provides a complete solution to the irreducible character problem for O and O.
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6.3.1. Two sequences of Borel subalgebras of g. Let us recall briefly the basics
of odd reflections from Chapter 1, Sections 1.3 and 1.5, which are applied now to
the Lie superalgebra g. Under the odd reflection with respect to an isotropic odd
simple root o in a fundamental system I, the resulting new fundamental system
[1% is given by (1.44) as follows:

= {Bell'|(B,0)=0p#atU{p+alpell (B.a)#0}U{-al}

Let us denote the Borel subalgebra corresponding to T by b’ and the resulting new
Borel subalgebra by b%. According to Lemma 1.40, an irreducible g-module of b’-
highest weight A is also a b%-highest weight module with b®-highest weight equal
to either A or A — o, depending on whether (A, o) = 0. It is instructive to review
Examples 1.35 and 1.41 to see how the highest weights change under a sequence
of odd reflections, as they offer in a simpler setting a similar pattern to what we
shall see below.

Recall from (6.2) the odd roots o, and the even roots B, for r € %N . Recall
from Section 6.1 that the standard Dynkin diagram associated to g is given by

(6.17) (@@ 08—

Fix n € N. We shall specify a sequence of ﬂg_l) odd reflections, which will trans-
form the standard diagram (6.17) into a new diagram with a new fundamental sys-

tem of the form (6.19) below. The ordered sequence of ult "+1) odd roots we use
are:
€12 — &1,
€08, &p—&2
(6.18) €5, —€3, €328, €283,
e
€12~ €, €302 —&, ..., &€&, €12 &

Let us go into the details. First, applying the odd reflection corresponding to o) /> =
€12 — €1, we obtain the following diagram:

@—©—®—ow®—®—®—®——

& —€,n Pin

Next, applying to it consecutively the two odd reflections corresponding to 03/, =
€3/, — €2 and oy 5 + 0| + 03/, = €12 — €2, We obtain the following two diagrams:

(—0—088 808

By €I —E€2€pn—8 —03pn Ep2—E&p Usp
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.—%O—@—O—O ®—8

B e-&x2 Bin B3 s

Now, to the last diagram above we apply consecutively the three odd reflections
corresponding to 05> = €5/, — €3, 0372 + 0 +0ls/y = €37 — €3, and 0Ly /o + 04 +
03,2 02 + Os 2 = €1 /2 — €3 and obtain the following three diagrams:

00 808800

Bio &o-& —0sn Bs:2

B0 0 @08 000 -

\ € —& 2 € ,0—€ €3 —£3n g:

(H—0—0—0—8—0—0—0-—®—

&—&n  Pin Bz Bs: ®7.2

We continue this way until we finally apply the n odd reflections corresponding to
Oy—1/2: Oy —3/2 + Oy 1 + 0y /2, ..., X777 " 02, Which equal €, 12~ €ns€y3/2 —
N Y T respectlvely The resulting new Borel subalgebra for g in the end
will be denoted by b‘( ), and the corresponding positive system will be denoted
by ¢ (n). The corresponding fundamental system, denoted by fl"(n), is listed in
the following Dynkin diagram (recall the tail diagram (%) from Section 6.1.1):

5 (O ()-8 O @ & -

€, — €y,

The crucial point here is that the subdiagram to the left of the first & in (6.19) is
the Dynkin diagram of g,,, and the precise detail of the remaining part of (6.19) is
not needed.

On the other hand, starting with the standard Dynkin diagram (6.17) of g , we

n(n+l

may apply a different sequence of =~ odd reflections associated to the following

n(n+

ordered sequence of ) 0dd roots:

€1 — €37,
€2 =85, &€ —&5,
(6.20) €3—€7/2, €28, & —&,
ey e
€n = Ent1/2s €1 —E€ny1j2, oy E27€up1, &1~ Eupqp.

Since the procedure here is completely parallel to the previous one for the sequence
(6.18), we skip the details. The resulting new Borel subalgebra for g in the end
will be denoted by b*(n), and the corresponding positive system will be denoted by
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®*(n). The corresponding fundamental system, denoted by I1%(n), is listed in the
following Dynkin diagram (recall the tail diagram from Section 6.1.1):

(6.21) @O —O—®@
B oyg.372

=& By i1

Again the crucial fact here is that the subdiagram to the left of the odd simple root
€,41/2 — €1 in (6.21) is the Dynkin diagram of g, ;.

Recall that @ and_‘aJr denote the standard positive systems of g and g, re-
spectively. Also, b and b denote the corresponding standard Borel subalgebras of
g and g, respectively. By definition, g and § are naturally subalgebras of g.

Proposition 6.10. We have @ C @< (n), and b = b¢(n) N g. Also, &' C D*(n),
and b = b*(n)Ng.

Proof. It suffices to check that IT C ®¢(n) and TT C ®*(n), where IT and T are the
standard fundamental systems of g and g, respectively. These inclusions can then
be observed directly from (6.19) and (6.21). O

6.3.2. Odd reflections and highest weight modules. Recall the standard Levi
subalgebra [ of § with nilradical & and opposite nilradical 1~ from Section 6.2.2.

Lemma 6.11. The sequences of odd reflections (6.18) and (6.20) leave the set of
roots of U and the set of roots of W~ invariant.

Proof. The isotropic odd roots used in the sequences of odd reflections (6.18) and
(6.20) are of the form o; + 04 /2 + ... +0; for 0 < i < j; hence, they are all roots
of I. Since & and 1~ are both invariant under the action of [, the lemma follows by
applying Lemma 1.30. 0

We denote by Ab%(n) and E%(n) the Borel subalgebras of the Levi subalgebra [

ey 2o and I (n) N Yoey Za,

respectively (here we recall Y from (6.13)). By Lemma 6.11 we have, forall n € N,

corresponding to the fundamental systems [1°(n) 1Y,

(6.22) b(n) =b(n) +4,  bY(n) = bi(n) +1.
Below we will regard P C E* and P' C E*, via h* C E* andh C E*

Proposition 6.12. Let A = (dAg, A, "A) € P*, where YA = (TA, Aa,...) is a
partition. Let n € N.

(1) Suppose that £(*L) < n. Then the highest weight of L(T, A% with respect
to the Borel subalgebra b%(n) is A.
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(2) Suppose that *\i < n. Then the highest weight of L(T, A9 with respect to
the Borel subalgebra b%(n) is A2,

Proof. The proof of (2) using the sequence (6.20) is completely parallel to the
proof of (1) which uses (6.18). We shall only prove (1).

We observe that the odd reflections (6.18) only affect the tail diagram and
leave the head diagram @ unchanged, and the summand

—1
(6.23) Me:=dAo+ Y, hig

I=—m
of A% in (6.16) is unchanged by these odd reflections.

We will show more generally by induction on k that, after applying the first
k(k+1)/2 odd reflections of the sequence (6.18), the highest weight of L(f,1°)
with respect to the Borel subalgebra b%(k) becomes

k k
(6.24) Mg =he+ D Thie; + (" — ke
i=1 i-1
+ X (M=t e+ Y (A - e,
jZk+1 Jj=k+1

where (g) := max{q,0} for g € Z. Part (1) follows as a special case of (6.24) for
k=n. Note that Aoy =A% = Ale+ 3o (V= j+ 1)g; 1+ o1 (A — e,

Suppose that k = 1. If /(L) < 1, then *A = 0 and A® = AJ¢. So in particular
<XQ,EI/2 +E;) =0, and thus by Lemma 1.40, the E%(l )-highest weight is A = A8
If (TA) > 1, then (ke,gl/z +E;) >0, as we recall that

A =Ale+AjE n+ (FA — g+ -

Hence, by Lemma 1.40, the E%(l)-highest weight after the odd reflection with re-
spectto €, — g is
Ay =Me+ A+ (A = Deyjp+--

proving (6.24) in the case k = 1.

Now by the induction hypothesis, suppose that Ay is the new highest weight
after applying the first k(k + 1) /2 odd reflections of the sequence (6.18).

If ¢(*A) <k, then Mg =Ale + 3%, *Aje;. Therefore, for 1 <i < k-+ 1, we have
(?»[k],g,-_l/z + Egy1) =0, and by Lemma 1.40, the odd reflections with respect to

€;-1/2 — &+1 leave Ay unchanged. Thus we have Mk41) = Ay and in this case we
are done.

Now assume that ¢(*A) > k+ 1. Let s = *A;, . We further separate this into
two cases (i) and (ii) below.
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(i) Suppose that * A1 > k+ 1. Then *A;, | > k+ 1, and hence we can rewrite

k k
Mg =Me+ Y, Thigi+ X (P —K)gis o+ (T —K)gkra )
i=1

i=1
+ (M1 —k =g + Y, <+}“/j_j+1>8j71/2+ > (A= ey

j>kt2 k2

Now we apply the next (k+ 1) odd reflections in the sequence (6.18) consecutively.
As (k[k], Eit1/2+ Exy1) > 0, by Lemma 1.40 we calculate the new weight after the
odd reflection with respect to €41, — &1 to be

k k
My =Met+ Y g+ 3 (A —K)gimy jo+ (Thgy —k— 1ersr /o
i=1

i=1
+ (M1 =& + Y, (+7~/j—j+1>€j4/2+ > ("hi— ey
jokr2 k2

Now (k[k,]],fk_]/z + Ek+1> > 0, so by Lemma 1.40 we calculate the new weight
after the odd reflection with respect to &;_/, — & to be

k k—1
A k2] :}\'}? + z +7\«i8i + 2 (+7L: — k)Ei_]/z + (+7b;< —k— 1)8](_]/2
i=1 i=1

+ (et =k = Deggrya + (Thgerr —k+ 1)£k+1
+ Z +7V —jt+hei i+ 2 — J)E;.

k+2 k42

Continuing this way, after a total of (k+ 1) odd reflections we end up with the
weight

k+1 k+1 ,
7\.[/(‘/(_5_1] =M\l + z g+ z (+7\,,' —k— 1)81‘71/2
i=1

i=1
+ ) <+7“;_j+1>8j—1/2+ > (Th— e,
k2 jok+2

which is exactly Aj;.17. The induction step is completed in this case.

(ii) Now suppose that TA;,; =5 < k+ 1. Since tA' is a partition, the weight
(6.24) becomes

k §
Mg =Me+ Y, Thigi+ X (TN — kg2,
i=1

i=1

where +k; —k >0, for i <s. It follows by Lemma 1.40 that odd reflections with
respect to €y 1/2 — €k+1," "+ ,€41/2 — k41 leave X[k] unchanged, while odd reflec-
tions with respect t0 &1/, —€k11,*,€1 /2 — &1 do affect }“[k}' In a similar way,
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the new weight after these (k+ 1) odd reflections is calculated to be

k+1

Miks1) = MH’Z 7\'81+2+}\' —k—=1)g ),

i=

which is again equal to }\/[k+1]. The induction step is completed. U

Proposition 6.13. Let n € N and X = (dAg, L, tA) € P*. Let V(A®) € O be a
highest weight g-module of highest weight \® with respect to the standard Borel
subalgebra b. The following statements hold.

(1) Suppose that £(*}) < n. Then V(A®) is a highest weight module of highest
weight \ with respect to the Borel subalgebra b¢(n).

(2) Suppose that *h < n. Then V(A®) is a highest  weight module of highest
weight \! with respect to the Borel subalgebra b° (n).

Proof. By definition, A(A®) = U(g)® (T 2%), and hence its g-quotient V (A9)
contains a umque copy of L([ A9) that is anmhllated by u. By Proposition 6. 12(1)
L([ A9) has b~( )-highest weight A, and let us denote by v a corresponding bf( n)-
highest weight vector. Thus, by (6.22), v is also a E"(n)—singglar vector in V (A9)
of weight L. The vector v clearly generates the [-module L(I,A?) and hence the
g-module V(A®), proving (1).

The proof of (2) based on Proposition 6.12(2) is similar and hence omitted. O

6.3.3. The functors 7 and 7. By definition, g and g are naturally subalgebras of
9, land [ are subalgebras of [ while f) and b are subalgebra% of h. Also, we have
inclusions of the restricted duals h* C h* and h C b*

Given a semisimple b—module M = & MY, we form the following sub-

N yeh
spaces of M:

(6.25) T(M):=PM, ad TM):=PM,

yeb* veh”
Note that T([l7[) is an h-submodule of M, and T( M) is an h-submodule of M. One
checks that if M is also an [-module, then T(M ) is an [-submodule of M and T (M)

is an I-submodule of M. Furthermore, if M is a g-module, then T(M) is a g-
submodule of M and T (M) is a §-submodule of M.

The direct sum decompositions in M give rise to the natural projections
T; M —— T(M) and T;:M —— T(M)
that are h- and h-module homomorphisms, respectively. If f: M - N is an 6-
homomorphism, then the following maps induced by restrictions of f,

T[f]: T(M) —— T(N) and  T[f]: T(M) — T(N),
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are also h- and h-module homomorphisms, respectively. Also if f M —Nisa
g-module homomorphism, then 7}; and T[f] (respectively, T;; and T[f)) are g-
module (respectively, g-module) homomorphisms. It follows that T and T define
exact functors from the category of H-semisimple g-modules to the category of b-
semisimple g-modules and the category of h-semisimple g-modules, respectively.
Also, we have the following commutative diagrams:

f M f N

M —— N
(6.26) 7, lzh 7, 7,
ST N
T(M) —= T(N) T(M) —= T(N)

Lemma 6.14. For L € PT, we have
T(LOLAY)) =L(LA),  T(L(LA%)) = L(LAS).

Proof. We prove the first formula using a comparison of the characters. The proof
of the second formula is similar and will be omitted.

Let A = (dAg, A, TA) € PT. To be consistent with the notation of Al¢ in (6.23),
it is cgnvenient to make the conventign that £ contains the central element K, and
let L(INE€,Al¢) denote the irreducible [N €-module of highest weight Ale. It follows
from the discussion in Section 6.2.1 that

(6.27) chL(1,A%) = chL(IN & Me) hsyr (%12, X372, 361, X250,
where x, 1= €* for r € %N.

Note that [N = [NE. Now L(T, A8) is completely reducible as an [-module,
since a polynomial module of gl(V,") = gl(eo|eo) is completely reducible when
restricted to gl(V,") = gl(c). On the character level, applying T to L([,A°) corre-
sponds to setting Xy /3,%3/2,X5/2,-- - in the character formula (6.27) to zero. Thus,

by (A.37), T(L(T, A?)) is an [-module with character chL({N &, Ale) sen (x1,x2,...),
which is precisely the character of L([,A). This proves the first formula. g

Proposition 6.15. T is an exact functor from O to O, and T is an exact functor
Sfrom O to O.

Proof. In light of Proposition 6.14, it suffices to show that if M € O, then T(M) € O
and T(M) € O. We shall only show that T(M) € O, as the argument for T (M) € O
is analogous.

First consider the case when the head diagram is non-degenerate, i.e., m > 0
(see Section 6.1.1). Let M € O. Then there exists ?,Cg,..., 8, with {j,...,¢, €

P*, such that any weight of M is bounded by some (. Ignoring dAy recall that we
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have §; = (7{;,"(;), where *{; is a partition with ["C)l = k;. For each {;, let P;
be the following finite subset of h*:

Py = {(Gtt) L € P with [ = k).
SetM :=T (M) and P(M) := | J/._, P;.
Claim. Given any weight v of M, there exists ¥ € P(M) such thaty—v € Z_TI.

It suffices to prove the claim for v € P*. Since v is also a weight of M, we
have {? —v € Z_II, for some i. Thus

& —v=po+Kk+ ",

where p € Z,, "x € Ygene) Z+0t, and Tx € 28en(%)\a, Z+P- This implies that *v
is a partition of size k; + p, and hence there exists y € P(M) such that *v is obtained
from the partition Ty by adding p boxes to it. For every such a box, we record the
row number in which it was added in the multiset J with |J| = p. Then we have
V=y-TKk- Y (e —¢)),
et
and hence y—v € Z_I1. Thus, we conclude that M € ©.

The limit case m = 0 now can be proved case-by-case by slight modification
of the argument above (see Exercise 6.1). 0

Proposition 6.16. Let A € P*. [f V(\®) € O is a highest weight g-module of highest
weight A%, then T(V(A)) and T(V(A®)) are highest weight g- and §-modules of
highest weights A and A, respectively.

Proof. We will only prove the statement for 7'(V (A?)), as the case of T(V(A®)) is
analogous.

By Proposition 6.13, for n > ¢(*1), V(A®) is a b¢(n)-highest weight module of
highest weight A, and thus a nonzero vector v in V(A®) of weight A (unique up to
a scalar multiple and independent of ) is a b¢ (n)-highest weight vector of V(A9).
Evidently we have v ¢ T(V(ke)), and by Proposition 6.10, v is a b-singular vector
in T (V(A9)).

The g-module T(V(ke)), regarded as an [-module, is completely reducible by
Proposition 6.7 and Lemma 6.14. To complete the proof, it suffices to show that
every vector w € T(V (A®)) of weight y = (dAo, ", ") € P" liesin U(n™)v, where
n~ denotes the opposite nilradical of b.

To that end, we choose n such that n > max{¢(*A),¢(*u)}. Then we have
w € U(n“(n)~ )v, where 7n°(n)~ denotes the opposite nilradical of g"(n). Now the
condition n > max{¢(*A),¢(*u)} implies that

—1 n—1
(6.28) 7\,-—/.1 = 2 a;g; + Z bij, a,-,bj € 7.
) ]

i=—m J
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(We emphasize that only €; with integer indices j appear in (6.28).) But A—pis
also a Z_ -linear combination of simple roots from I1¢(n), i.e.,
A—u= z agd,
oell“(n)
with all ao, € Z, and finitely many aq > 0. We have the following.
Claim. A — y is a Z -linear combination of T1,, = IT(¢) L {B_1,B1....,Bn-1}
The claim then implies that w € U(n™ )v, and the proposition follows.

It remains to prove the claim. Assume on the contrary that there were some

o€ T \ Ty = {€4 — €1/2,B1/2s- s Buc1/2: Oug 12, A1, -} With ag # 0. I
de, ¢, # 0, then we must also have ag # 0, for ot = By /2,...,Bu—1/2,0+1/2 by the
2

constraint (6.28). Similarly, if ag_, , # 0 for some 1 < i < n, then we must also

have ag # 0, for 00=B,11/2,...,Bn—1/2, Ot 1/2 as well. In all cases, (A—u,E,) #0,
for some r > n, contradicting (6.28). il

6.3.4. Character formulas. The following theorem is the first main result of this
chapter.
Theorem 6.17. Let A € Pt. We have
T(AQ®%)) =AM), T(L(®)) =LM);
T(AM®%)) =AM), T(LA®))=LA\).

l
h

Proof. We will prove only the statements involving 7. The statements involving
T can be proved in an analogous way.

Let us write A(A) = U(u™) ®¢ L(I,A) and A(A?) = U (5~ @c L(1,A°). We ob-
serve that all the weights in U(u™), L([,A), U(u~), and L(1,19) are of the form
Y j<0aj€j + X,n0b,€r with b, € Zy (possibly modulo dAg). Since T(U(u")) =
U(u™), it follows by Lemma 6.14 that chT(Z(Ke)) = chA(A). Since T(K(?\.e))
is a highest weight module of highest weight A by Proposition 6.16, we have
T(A(A®)) = A(A).

Set M = L(A%). Suppose that M := T(M) is reducible. Since by Proposi-
tion 6.16 the module M is a highest weight g-module, it must have a b-singular
vector, say w of weight u € P*, inside M that is not a highest weight vector. We
choose n > max{¢(*X),¢(Tu)}. By Proposition 6.13, the g-module M is a b¢(n)-
highest weight module of highest weight A, say with a highest weight vector vy.
By Proposition 6.16, v, is a b-highest weight vector of M, and hence w € U(a)vy,
where a is the subalgebra of n~ generated by the root vectors corresponding to the
roots in —IT = —T1(&) U{—B_1,—B1,...,—PB«}. for some k.

Now choose g > max{n,k+ 1}. Note that v, is also a b¢(g)-highest weight
vector of the g-module M of weight A. Since w is b-singular, it is annihilated by
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the root vectors corresponding to the roots in I(E) U{B_1,B1,B2,...}. But wis
also annihilated by the root vectors corresponding to the roots in ﬁ"(q) comple-
mentary to the subset IT = IT(¢) LU {B_,B;,B,, ..., By—1}, since these root vectors
commute with a and w € U(a)vy. It follows that w is a E"(q)—singular vector in M,

contradicting the irreducibility of M. U

It is standard to write

(6.29) chL(A) = Y a,achA(u),
HEP?

for A € P* and @, € Z. For ¢ = a,b,c,0, the triangular transition matrix (a,0.)
in Theorem 6.18 or its inverse is known in the Kazhdan-Lusztig theory, since the
Kazhdan-Lusztig polynomials determine the composition multiplicities of para-
bolic Verma modules in the parabolic BGG category O of g-modules; see, e.g.,
Soergel [116, p. 455]. The infinite rank of g here does not cause any difficulty in
light of Proposition 6.9. We have the following character formulas for g and g.

Theorem 6.18. Let ) € P*. Then
(1) ¢hL(A") = cp- apchA(us),
(2) ¢chL(A®) =¥,cp. aypchA(ud).

Proof. This follows immediately from Theorem 6.17 and (6.29). O

Remark 6.19. Theorem 6.18 together with Proposition 6.9 provide a complete
solution a la Kazhdan-Lusztig to the irreducible character problem in the category

O, for the finite-rank basic Lie superalgebras of type gl and osp.

6.4. Kostant homology and KLV polynomials

In this section, we formulate and study the Kostant homology groups of the Lie
superalgebras u™, u~, and ii~, with coefficients in modules belonging to the re-
spective categories 0, O, and . We show that the functors T : O — O and
T:0 — O match perfectly the corresponding Kostant homology groups (and also
Kostant cohomology groups). Such matchings are then interpreted as equalities of
the Kazhdan-Lusztig-Vogan polynomials for the categories O, O, and O.

Some basic facts on Lie algebra homology and cohomology needed in this
section can be found in the book of Kumar [76].

6.4.1. Homology and cohomology of Lie superalgebras. Let L = Ly® L be a
vector superspace, and let T(L) be the tensor superalgebra of L. Then T(L) =
Do L?" is a Z-graded associative superalgebra. Recall that the exterior super-
algebra of L is the quotient superalgebra A(L) := T(L)/J, where J is the ho-
mogeneous two-sided ideal of T(L) generated by elements of the form X y+4
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(= 1)y & x, where x and y are Z,-homogeneous elements of L. Then A(L) =
P, —oA"L is also a Z-graded associative superalgebra. For elements x;,xp,...,x;
in L, the image of the element x; ®x; @ - - - ® x; under the canonical quotient map
from L“* to AK(L) will be denoted by x|x;---x;. We emphasize that the exterior
algebra defined and used in this subsection is always understood in the super sense.

Now let L = Ly @ L7 be a Lie superalgebra of countable dimension. For an
L-module V we define

Ca(L,V)=AN"(L)®V,  CJLV)=EPCi(L,V).

n>0
Define the boundary operator d := @, d, : Co(L,V) — Co(L,V) by

dy (X122 xy @ V)

. (—1 ).V+!+‘~X,\v| S0 il b | 5 b | Ix.
(6-30) |<s<t<n

Y"xr]xl...xx...xl...x"®v

n
! n . ~
+ 2 (_1)“"’"‘8“2! s+1 ‘-xl‘xl S Xgt Xy ®xsv’
s=1

for x; € L homogeneous and v € V. Here [x,, x| € L denotes the supercommutator
and y indicates that the term y is omitted as usual. It is standard to check that d> = 0
(for Lie algebras see, e.g., Kumar [76] and for Lie superalgebras see, e.g., [68] for
a proof).

The kth Lie superalgebra homology group of L with coefficient in V, de-
noted by Hy(L,V), is defined to be the kth homology group of the following chain
complex:

S CLV) S (L) = B Lev D v D0,

that is, Hy(L,V) = Ker d/Im dy1, for k > 0.

Let us be more precise about the dual of a possibly infinite-dimensional space,
as it is relevant to the Lie (super)algebra cohomology to be defined below.

Now suppose that L is a Lie superalgebra (or simply a vector superspace) that
contains a sequence of finite-dimensional subalgebras (or subspaces) Ly, for k € N,
such that Ly C Ly for each k and L = UyLy. Furthermore, suppose that L contains
a natural basis B such that BN L is a basis for Ly, for all k. Then with respect to the
basis B, we may extend by zero and regard Ly C L, | for each k. In this way, the
restricted dual of L, denoted by L*, is given by L* := U;L;. All the examples of
Lie superalgebras in this book satisty these assumptions, and there is such a basis

for L consisting of root or weight vectors.

Fix n € Z,, and let V be a vector superspace of countable dimension. Then,
AN'L;, C ALy, and the basis B of L induces a natural basis, denoted formally
by A"B, of A"L that is compatible with A"L; for all k. Regard Hom(A"L,V) C
Hom(A"L;. 1,V by an extension by zero with respect to the basis A" B, for each k.
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In this way, we define the (restricted) Hom-space

(6.31) Hom(A"L,V) := [ JHom(A"Ly, V).
k

In the same sense, a (restricted) C-multilinear map f:Lx---x L —V means the
extension by zero of a C-multilinear map f: L; x - -- x Ly — V for some k.

The Lie superalgebra cohomology is defined as follows. Let L be a Lie su-
peralgebra satisfying the assumptions above. Take an L-module V. For nei,,
let

(6.32) C'(L,V) =Hom(A"L,V),  C*(L,V)=DC"(L,V),
n>0
(see (6.31)). An element f € C"(L,V) is identified with a restricted C-multilinear

map f:Lx---xL—V, whichis skew-supersymmetric in the following sense: for
1<i<n-—1,

f(XI,- s Xy Xig 1y ... 7xn) = _(_1>rXir4‘x"+l’.f(-xla‘ . "xf+l,xia'-')xll>'
Define the coboundary operator 9 = @00, : C*(L,V) — C*(L,V) by

(6.33)
(8n ) x1,...,xn+1)
n+l

y s—1y —
= Z (_1).¥+1+fo"[(!‘)€[+2,:1 !M)xsf(xl sy Xg 1y Xy Xy 1y o oo Xg 1)
s=

1
+ Z(_l )s+r+lxs12‘f;]l bl 1xe [ 202 'xflJ“jx‘r”x"f([xs,Xz],xl NSO Xnit)-
s<t

It is straightforward to verify that 9> = 0. The kth (restricted) Lie superalgebra
cohomology group of L with coefficient in the L-module V, denoted by H*(L,V),
is by definition the kth cohomology group of the complex

634 05V 2oL y) 2y o ) B oy
that is, H*(L,V) := Ker 9y /Im 9y_,.

Remark 6.20. If we use the cochain complex (6.34) above by interpreting the
Hom-space in the non-restricted sense to be the space of all linear maps from A"L
to V, the resulting nth Lie superalgebra cohomology group will be denoted by
H"(L,V). This version of cohomology will only appear once in this book, as
it is used mildly in the proof of Theorem 6.34. Of course, the two versions of
cohomology coincide when L is finite dimensional.
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6.4.2. Kostant u™-homology and u-cohomology. Recall the Lie algebra g with
parabolic subalgebra p, Levi subalgebra [, nilradical u, and opposite nilradical u~
from Section 6.2.2. Let M € O. Then we have M = @, M,, with dimM,, < oo,
In this case, the restricted dual M* of M is given by M* = @,c- M;. Lett: g — g
be the Chevalley automorphism of g from Section 1.1.2 in Chapter 1. We denote
M* with a t-twisted g-action by MV, i.e.,

M= P M;,
HED*

where the action of g is now given by (x- f)(v) = (—~ )R+ £(1(x)-v). Then
MY lies in O, for M € Q. We shall refer to MV as the dual of M in O. Sending
each M € O to MY defines an exact functor, called the duality functor, on ©. The
following is a summary of some standard properties of the duality functor on O;
cf. Humphreys [54, Theorem 3.2].

Proposition 6.21. The duality functor is an exact contravariant functor, inducing
a self-equivalence on the category Q. For each M € O, M and M" have the same
character, and hence they have the same composition factor multiplicities. In par-
ticular, we have L(A)" 2 L(A), for .. € P,

Let M € O. We note that u and u™ are I-modules so that the chain and cochain
complexes of the Lie superalgebra u or u™ with coefficients in M are semisimple
[-modules. It is a standard fact that the boundary and coboundary operators are
[-invariant, so the homology and cohomology groups of u and u~ are naturally
semisimple [-modules.

Lemma 6.22. Let M € O and n € Z.. As semisimple l-modules, we have
H"(u,M) = H,(u,M")".

Proof. We have the following isomorphism of [-modules for each n > 0:
Hom(A"u,M) = Hom(A"u®@ M*,C).

The Hom’s here are understood as usual in the restricted sense as in (6.31). Fur-
thermore, these isomorphisms are compatible with the coboundary operator d of
the complex C*(u,M) and the coboundary operator Hom(d,C) of the complex
Hom (C, (u,M*),C). Since the operators are also [-module homomorphisms, the
corresponding isomorphisms of the cohomology groups are also isomorphisms of
[-modules. U

Lemma 6.23. Let M € O and n € Z... As semisimple l-modules, we have
H,(u,M*)* = H,(u" ,M").
In particular, we have H,(u,L(A)*)* = H,(u™,L(A)).
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Proof. We use the superscript 7 to indicate the [-action obtained by twisting the
usual [-action by the Chevalley automorphism t. Since u® = u~ and (M*)" =M,
we see that

(NueaM* ) = A oM.
Furthermore, these isomorphisms of chain complexes commute with the respective
boundary operators as well. Thus, for each 1 we obtain an [-module isomorphism:

H,(u,M")* = H, (1", M").

Now since the [-modules H,(u,M*)® and H,(u,M*)* are direct sums of simple [-
modules with highest weights in P* and they have the same character, we have an
[-module isomorphism H,, (u, M*)® = H, (u,M*)*. The lemma follows. O

Clearly the counterparts for categories O and O of Proposition 6.21 and Lem-
mas 6.22 and 6.23 hold with verbatim arguments.

Theorem 6.24. Let M € O, M € O, M€ O, and n € Z,. We have
H, (u”, M) 2 H" (u,M), as l-modules;
=H"(u,M), as-modules;

M) =H" (w,L(\)), H, (0, L(A")) = H" (w,L(A5)),
)) forhe P,

In particular, we have H, (u~

)
H, (ﬁ_,MV) =7k (ﬁ,ﬂ) . as -modules.
L(
and H, (ﬁ—,z(xe)) =~ g ('ﬁ LM

Proof. We only prove the statements for O, while those for O and © are analogous.
Combining Lemma 6.22 and Lemma 6.23, we obtain an I-module isomorphism

H, (u™,M") = H" (u,M) . This implies that H, (u~,L(X)) = H" (u,L(A)), thanks to
L(A)Y = L(A) by Proposition 6.21. O

6.4.3. Comparison of Kostant homology groups. We start by settmg up nota-
tion. Recall the functors 7T : O —Oand T : O — O from (6. 25). For M € O set
M=TM)cOand M = T(M) € O. Denote by

d: AUT)RM — AT ®M,
d:Nu )OM — AW )OM,  d:AB)OM —AG" )M
the boundary operators of the three chain complexes C. (i, M), Cy(u™,M ), and

C.(ii", M), respectively. Note that d, d, and d are homomorphisms of L, I-, and
[-modules, respectively.

The [-module A(u~) is a direct sum of L(I,u), u € P*, each appearing with
finite multiplicity. As an [-module, A(ii") is a direct sum of L(I,i"), u € P*, each
appearing with finite multiplicity. By Theorem 6.4, the I-module A(u) is also a
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direct sum of L(T 1), ue P* . each appearing with finite multiplicity. The [-module
A(u™)®M , the I-module A (i~ ) © M, and the I-module A(T~) ® M are completely
reducible by Theorem 6.4.

Lemma 6.25. For M € O and A € P*, set M = T(M) e O and M =T(M) € 0.
Then,

() T(AW) M) = Au")&M, and T(A@) @L(A®)) = A(u™) @ L(A).
Moreover, T[cf] =d.

@) T(A@ ) ©M) =A@ )®M, and T (AT ) 9 L)) = A(i~) @ L(AY).
Movreover, T[cﬂ =d.

Proof. We will only prove (1), as the argument for (2) is parallel.

It follows from u™ Mg = u~ and the definition of 7 that T (A (U )) =A).
Now, since all modules involved have weights of the form ¥, a;e; + 2r>0br€;
(possibly modulo dAg) with b, € Z, we see that T (A(u~) @ M) and A(u~) @M
have the same character. Hence, it follows from T(/\( ) QZ)]VI) O A(u”) ®M that
T(A@u) (X)M) A(u”)®M. By Theorem 6.17, T(Z(ke)) = L(A), and so we
have T (A(u~ GOL(?LO)) A(u™)®L(A).

From the definitions of d, d, and d in (6.30), we have d(v) = d(v) for all
vE AU ) @M and d(w) = d(w) for all w € A(")® M. Thus, T[c?] =d and
T ﬂ = d. This completes the proof of (1). 0J

Proposition 6.26. For M € O, set M = T(M V) € O and M = T(M) € O. Suppose
that A(U™) & M = Dcp+ L(Lu®)" ™, as T-modules. Then

(1) Au™) @M = @,cpi L(Lp)" ™, as l-modules.
Q) A7) OM = @,epr L{1,15)™ W), as T-modules.

Proof. We only prove (1), as (2) is similar. By Lemma 6.25, we have a surjec-
tive [-module homomorphism T : A(i") @ M — A(u") ® M. By Lemma 6.14,
T(L(L,u®)) = L(L,u), for all r € P*. Now (1) follows. O

By Lemma 6.25 and (6.26) we have the following commutative diagram:

s M oM D A ) oM s A i YeoMm -4 ...
(6'35) J/T/\” = yam lTA"(\r oM J,TAFI (U~ yoM
— A )M L A eM S Al yem —
Thus T induces an I-homomorphism from H,, (1~ ]\7) to H,(u™,M). Similarly, T

induces an [-homomorphism from H, (%™, M) to H,(i",M). We have the following
more precise result.
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Theorem 6.27. For M € O, set M =T (M) € O and M = T(M)€O. Letne Z,.
Then,

() T(H,(uw,M)) = H,(u" M), as l-modules.

(2) T(H,(u~,M)) = H,(i~,M), as I-modules.
Proof. We shall only prove (1), as the argument for (2) is similar.

We regard A(u") ® M C A(li") ® M. By Lemma 6.25 and (6.35), we have
T(Kerd) = Kerdn (A(u~) ©M) =Kerd,
and
T(Imd) =ImdN (A(u")®@M) =Imd.

Since T is an exact functor, we have

T (@Hn(’a—,ﬂ)> = T(Kerd)/T(Imd) = Kerd/Imd = EDH,(u",M).

n>0 n>0

This completes the proof. il

Corollary 6.28. Let M € O, L € P+, andn € Z.. Furthermore, set T(M) = M and
T(M) =M. We have:

(1) T(H"(4,M)) = H"(w,M), and thus T (H"(3,L(A%))) = H"(u,L())), as
l-modules.

(2) T(H"(1,M)) = H"(u,M), and thus T(H" (i, L(A%))) = H"(W,L(AY)), as
I-modules.

(3) Moreover, we have
Hom (L(L 1), H" () = Hony (L(,4), " (i,01)
= Hom; (L(Lif), H" (5, M) ),
and so in particular
Hom (L(L 1), H" (. L(1))) = Hom (L(L4®), " (8.20:%))
> Homy (L(Le), H" (i, T(1)) ).
Proof. We shall prove (1). We have the following isomorphisms:
T (H"(,M)) =T (Fai-,41)) = H, (w731
= H, (u_,T(M)" ) = H" (4,7 (M) .

The first and the last isomorphisms follow from Theorem 6.24. The second iso-
morphism is due to Theorem 6.27(1), while the third isomorphism is due to the
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compatibility of the functors T and -". This proves the first statement of (1). Set-
ting M = L(A®) and using Theorem 6.17, we get the second statement of (1). The
first “22” in (3) follows from (1) and T (L(f,u®)) = L(L, ) (see Lemma 6.14).

The argument for (2) is similar to (1), and the second “=" in (3) follows from
(2) and Lemma 6.14. |

6.4.4. Kazhdan-Lusztig-Vogan (KLV) polynomials. For a basic Lie superalge-
bra, the Wey! group of its even subalgebra does not completely control the linkage,
as we have seen in Section 2.2 in Chapter 2. So we cannot expect its associated
Hecke algebra and corresponding Kazhdan-Lusztig polynomials to play fundamen-
tal roles for the category O. We instead adopt an approach via homological algebra.

Definition 6.29. The (parabolic) Kazhdan-Lusztig-Vogan polynomials (KLV
polynomials, for short) in the categories O, O, and O are defined as follows: for
wh € P,

oo

(alq) =Y (—g)~"dimHomq (L(Lu), H,(uw™,L(X))) s
n=0

() == Y (—a) " dimHom; (L(Li) (5, LOS)))
n=0

oo

Guno(q) = Y (~q) " dimHom; (L(Lu®), Hy (5 L)) ).
n=0

Recall from (6.29) that chL(A) = ¥, p+ a,achA(u), for L € P*. By definition,
1

(o), (q), zyexe(q) are power series in g~ .
Proposition 6.30. The £,,(q), (q),@ele(q) are polynomials in g~'. Moreover,
we have {5 (1) = a,.

1

Proof. We will only show that £, (¢) is a polynomial in g~ ', and similar arguments

can be applied to F‘uc)\’: (q)j“e;he (q).

Take A € P, and recall that C,, (u™,L(A)) = A(u™) ® L(A). Since C,(u™,L(A))
has finite-dimensional weight spaces, the module L(I,u) appears with finite multi-
plicity in G,(u™,L(X)), for each n. Also observe that, for a given weight u € P,
p cannot be a weight of C,(u™,L(A)), for n > 0. This proves that ¢, (q) is a
polynomial in g~

We can now evaluate the polynomial £, (q) at ¢ = 1. Applying the Euler-
Poincaré principle to the chain complex Co(1~,L(A)) of h-modules, we have
ch L(A) 2 (=1)"chA™(u™)
n>0

= 3 (~1)"ch Hy(u™,L(A))

n>0
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=.(-1)" Y dimHom, (L, p), Hy(u™,L(X))) ch L(1, )

n>0 HeP
= > La(ch L(Ly).
ueP*

The above identity can be rewritten as
(6.36) chZ(A) = £, (1)ch Au),
M

using the following character formula of Alu):
ch L({,p)
hA(u) = .
P S Teh AT )
The equality ¢,; (1) = a5, now follows by a comparison of (6.36) with (6.29) and
the linear independence of ch Alu). O

The following reformulation of Theorem 6.27 is a generalization of the char-
acter formulas in Theorem 6.18.

Theorem 6.31. For u,\ € P* we have Lalg) = [ye;ﬁ () = ().

6.4.5. Stability of KLV polynomials. For n € N recall the category O, of mod-
ules over the finite-dimensional Lie algebra g, from Section 6.2.3. We have de-
noted the corresponding finite-dimensional Levi subalgebra by [, and we shall
denote the corresponding finite-dimensional nilradical and opposite nilradical by
U, and u,, respectively. Recall also that the set {\ ¢ PTE(*L) < n} is denoted by
B}, while L,(A) € O, denotes the irreducible g,-module of highest weight A € P
We shall also write L..(A) = L(A), P = P*, etc. Fork € N oo with k > n, re-
call from Section 6.2.5 that the truncation functor ttﬁ 10k = 0, is a g,-module
homomorphism.
Comparing the characters, we obtain, for A € P,j ,

. "

(637) tt;’; (Ll\<[k~7\r)) _ {(l)‘n([m)\r)a ifA e Pﬂ )

otherwise.

The following lemma is easy.

Lemma 6.32. For n,k € NUoo with k > n, we have the following 1,-module iso-
morphisms.

(1) 45 (A0)) = Ay ).

(2) tr, (A ) O Le(A)) = A(u;) @ L (A).

We now employ the same method as in Section 6.4.3 to study the effect of the
truncation functors tr¥ on the corresponding w; -homology groups with coefficients
in the module L (A), for A € P/ Letd"™ : A(u;) @Ly(A) — A(uy ) @ L, (L) denote
the corresponding boundary operator of the chains of the finite-dimensional Lie
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superalgebra u, with coefficients in L,(A). It is evident that d®| A V2L () = am,
and furthermore we have d X = ttﬁd<k). The proof of Theorem 6.27 can be
adapted to prove the following.

Theorem 6.33. Let A € P, and i € Z,.. We have
H;(u, ,L,(N)), ifreP;,

0, otherwise.

tef (Hi(u ,Li(D))) = {
For A, u € P, the expression

O §<—q>—"dimﬂomu (LCtnop0) Hiltt Ln ()

equals the parabolic Kazhdan-Lusztig polynomial of the Lie algebra g, via Vogan’s
homological interpretation. Theorem 6.33 and (6.37) imply that the Kazhdan-
Lusztig polynomials for finite-rank semisimple or reductive Lie algebras of classi-
cal type admit a remarkable stability, i.e., we have

(6.38) (q)=tala). AuePR],

A similar argument leads to analogous stability of the KLV polynomials in
categories O, and O, which coincide for n > 0 with l 00(q) and £,45:(q), re-
spectively. Theorem 6.31 then further allows us to suitably identify these KLV
polynomials for finite-rank Lie (super)algebras g,, g, and g,.

6.5. Super duality as an equivalence of categories

In this section, we establish super duality, which is formulated as an equivalence
of the two module categories O and ©. More precisely, we shall show that the
functors T: O — @ and T : O — O are equivalences of categories. In the case
when 1 = a,b,¢,0, the category O, as a variant of the BGG category for classical
Lie algebras, is well understood, and super duality leads to new insight on the
module category O for Lie superalgebras.

Some basic facts on category theory and homological algebra needed in this
section can be found in the book of Mitchell [86].

6.5.1. Extensions a la Baer-Yoneda. In this subsection, we shall review the Baer-
Yoneda extension Ext' in a general abelian category €. This is needed later on for
the categories O, O, 6, since there may not be enough projective objects in these
categories. A reader can also take for granted the exact sequence (6.42) and safely
skip this subsection. We shall omit most of the proofs, and refer to Mitchell [86,
Chapter VII] for details.

For two objects A,C € C, let E, E’ be short exact sequences of the form

(6.39) E: 0—A-sB-1sc—0,
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E: 0—A-Sp .0 0

We say that E ~ E’ if there exists f: B— B’ such that i — Joiand j'o f = j By the
5-lemma f is an isomorphism, and so ~ is indeed an equivalence relation. The set
of extensions of degree 1 of C by A is by definition the set of equivalence classes
of exact sequences of the form (6.39) with respect to the relation ~, and will be
denoted by Exté(C,A). We shall write £ ¢ Exté((’,/&) for the class represented by
the exact sequence E by abuse of notation.

Denote by £y the equivalence class corresponding to the short exact sequence

Ey: 0-—=A—ADC—C —30.

Given an object C" € €, a morphism y: ' — €, und an element £ ¢ Exth(C,A),
we have the following diagram:
'
|

E: 0 A B - C 0

Then, there exists a unique element E’ ¢ Exté(C’,A) such that the following dia-
gram is commutative:

E': 00— A > B c 0
R TR
E: 0 —s A —5 B — s (C — 49

Indeed, B’ is simply the pullback of vy and the morphism B — C. The morphism
A — B’ is then uniquely determined by the commutativity of the left square and
the exactness of the first row of the diagram. We denote £’  Ext! (C',A) by Ey.
Letting y vary, we obtain a map E- : Home(C', C) — Exty(C',A) defined by y 5 Ey.
On the other hand, letting E vary, one shows that a morphism y: ¢’ — C induces a
well-defined map -y, : Ext},(C,A) — Exty(C’,A). That is, for a fixed object A in C,
Ext'e(-,A) is a contravariant functor. With this notation Ya = Extb(Y,A) we shall
write Y4 = -y when A is clear from the context.

Dually, suppose we are given an object A" € €, a morphism o : A — A’, and an
element E € Ext}(C,A), so that we have the following diagram:

E: 0 A B C 0

E

A/
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We obtain uniquely an element £/ € Exté(C,A) such that the following diagram is
commutative:

E: 0 . A B c » 0
CE
E': 0 » Al B . C 0

The resulting element £’ is denoted by oE. Fixing E we thus obtain a map -E :
Home(A,A’) — Exth(C,A’) given by o & oE. On the other hand, by letting E
vary, we can show that a fixed morphism o : A -- A’ induces a well-defined map
co Exté(C,A) - Extle(C,A/) so that Ext('g(C, -) is a covariant functor. With this
notation we have co.- = Exth(C,«). Thus, Ext}(-,) gives a bi-functor on €. We
shall write co- = o-, when C is clear from the context.

For an extension E, with morphisms ¢ and y as above, we have (0.E )y= «(EY).

We define an abelian group structure on Exth(C,A). For A € €, we define a
morphismA=A,:A - ADA, Ala) := (a,a),and a morphism V=V, : ADA — A
by V(a,d') := a+d'. Given two elements E,E" € Ext{(C,A) we let E® E’ be the
obvious element in Exté(C@C,A D A). To define the group operation we consider

(6.40) VA(E&®E)Ac,

which is an exact sequence of the form (6.39). Define E + E’ to be the ele-
ment in Exté(C ,A) corresponding to (6.40). It can be shown that the operation
+ : Extb(C,A) x Extb(C,A) — Extp(C,A) is well-defined, abelian, and associa-
tive. Furthermore, it can be shown that the equivalence class of the split exact
sequence Ey is an additive identity and that (—14)F is the additive inverse of E.

For A,C € C, it is convenient to set Ex()(C,A) := Home(C,A).

Let X be an object in C. Applying the functor Home (X, -) to the exact sequence
(6.39) gives us an exact sequence

(6.41) 0 — Home(X,A) — Home(X, B) — Home(X,C).

Now for each y € Home(X,C), we obtain Ey € Ext(X,A). It can be shown that
the map E- extends (6.41) to the following exact sequence:

(6.42) 0 —Home(X,A) — Home(X.B) — Home(X,C)

ESExth(X,4) - Exth (X, B) L5 Exth(X.C).

6.5.2~. Relating extensions in O, O, and O. Now we return to the categories O 0,
and O, of g-, g-, and g-modules, respectively. Let A,C € O and let E € Ext%(C,A).
Then we have by Section 6.5.1 an exact sequence in O of the form

E: 0—A—B—C—0.
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Applying the exact functors 7 and 7, we obtain exact sequences in O and O, re-
spectively. It can be easily seen that, in this way, the functors T and T define
natural homomorphisms of abelian groups from Exté(f A) to Ext}, (T(f ) T(Av))
and Extla <T(5 ),T(g)) . respectively. The respective elements are denoted by T|E]

and T[E].

Recall the Lie superalgebra g with parabolic subalgebra p, Levi subalgebra [
and nilradical u from Section 6.2.2. We have the following relative Koszul resolu-
tion for the trivial p-module (see Knapp-Vogan [72, 11.7]):

(6.43) G G s M G —s 0

Here Gy := U(p) @y A*(p/1) is a p-module with p acting on the left of the first
factor, and € is the augmentation map from U (p) to C. The p-homomorphism &, is
given by

~ ~

S(a@xiX %)= ¥ (1) Ta@lxl® X5
1<s<r<k

(6.44)

k
+ 2(—1)‘”+Jaxs®)_q c Xy Xy
s=1

Here a € U(p) and x; are homogeneous elements in p, and X; denotes x; + L in p /L.

For A € P*, we extend the irreducible [-module L(I, ) trivially to a p-module.
For k > 0, D := G, © L(I,A) is a p-module by the diagonal p-action. Tensoring
(6.43) with L([,A) gives us the following exact sequence of p-modules, where §; ©
1 is simply denoted by & again for k > 0, and d:=exI:

(6.45) o D D Dy By o,

The above construction admits straightforward generalizations for the Lie su-

peralgebras g and g.

Theorem 6.34. Let A c PT, Ve, Ve (5, andV € O. We have, fori=0.1,
Homg (L(LA), H'(u,V)) = Extily (A(R), V),
Hom; (L(T, A®), Hi(x, V)) = Exil (A(A°), V),
Hom; (L(I, %), Hi(T, V)) = Exth (A(V), V).
Proof. We shall only prove the first isomorphism for [ for i = 0, 1, and the remain-

ing two isomorphisms can be proved in an analogous fashion.

Let V € O. Recall the (unrestricted) cohomology group H'(u,V) from Re-
mark 6.20 in contrast to the (restricted) cohomology group H'(u,V) used mostly in
this chapter. Let H'(u,V)*s be the maximal h-semisimple submodule of 3'(u, V).
We have the following
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Claim. H'(u, V)™ = H'(u,V).

To see this, observe by definition that we have a natural injective map from
Hi(u,V) - Hi(u,V)*. Since the coboundary operator d; is an h-homomorphism
and Hom(A'(u),V) is a direct product of finite-dimensional h-weight spaces, Ker 0;
and Im 0; are also direct products of finite-dimensional h-weight spaces. Now given
x € Ker 0; representing a cohomology class in H'(u,V)*, there exists an element
y € Im9;_ such that x— y € C'(u,V) N Ker d;. We have then t(x—y) € x+Im0d;_,
and hence 1 is also a surjection. This proves the claim.

Now since L(I,X) is h-semisimple and H'(u,V) is a direct product of finite-
dimensional h-weight spaces, it follows by the claim that

(6.46) Homy (L(1,A), 3 (u,V)) = Hom (L(I,A), H'(w,V)) .

This allows us to freely switch between H' and ' below.

Unraveling the definition, we have H(u, V) = V*, the u-invariants of V. Thus,

Homy(L(I,A),H%(u,V)) = Hom(L(I,A), V")
>~ Homy (L(I,A),V) = Homg(A(R),V),

where the last “=” is due to Frobenius reciprocity. This proves the isomorphism
for [ with i = 0 in the theorem.

It remains to show that Hom; (L(I,A),H'(u,V)) & Ext},(A(X),V). We shall
construct the isomorphism explicitly.

First, take f € Hom (L([,?»),H' (u,V)). Recall H'(u,V) = Ker d; /Im dy, with
Ker d; € Hom(u,V). Let f € Hom((L(I,A),Hom(u,V)) = Hom(u@L(L,A),V)
be a representative that, by Frobenius reciprocity, is regarded as an element in
Hom, (Indf (u® L(L,A)), V).

Applying the exact functor U(g) @y p) - to (6.45), we obtain an exact sequence

U(g) @y (N (p/1) @ L(1,L)) a—,2>U(Ql) @y (p/TQ L1 L)) N
U(g) 0 LILA) 25 A) — 0,

where d. denotes the differentials induced from the differentials 6;. This gives rise
to the following diagram

U(g) Su (p/1OLILN) —2 U(g) @ug LK) —— AQR) —— 0

I

%
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Taking the pushout E; of f and o', we obtain the following commutative diagram
g p ! 1 g g

Indy® (p/1OL(LA)) — Indy,(8'L(LA) —— A(R) —— 0

I l II

1 —2 Ef — AL) —— 0

Since f represents a cocycle, we have fod,=0. This implies that o is an injection.
Now since V and A(A) lie in O, so does Ef, and hence we obtain an element in
Ext,(A(R), V). One verifies in a straightforward manner that if J is a coboundary,
then Ey =V @& A(A), and hence the map f — E} is well-defined.

Conversely, suppose that we have an extension of the form
00—V —FE-—AA) — 0.

Note that E € O, and hence there exists an [-submodule of E that is mapped iso-
morphically to L(I,A) C A(X). We denote this I-module also by L(I,A) and note
that uL(I,A) C V. This allows us to define an element fz € Hom(u L(I, ), V)
Hom((L([,1),Hom(u,V)) by f£(u@w) = uw. Now f corresponds to a cocycle in
Hom(L(I,A),Hom(u,V)), because V is a submodule of the u-module . Also, one
sees that if £ is the trivial extension, then f¢ must be a coboundary. Thus, sending
E to fr gives us a well-defined map Ext,(A(A), V) — Hom(L(I,A ), HI(u, V) =
Hom(L(I,A),H'(u,V)); see (6.46).

It can be checked that these two maps are inverses to each other. Hence, we
have Hom, (L(I,A), H' (u,V)) = Exth(AQ), V). O

It makes sense to apply T and T to the short exact sequences (i.e., Ext(%) in O.
Corollary 6.35. Let A,u € P*. We have, fori=0,1,
T (Extf (AA), (%)) ) = Exthy (A(h), L (1)),
T(Ex% (Z(xe),z(ye))) = Ext (A),L()).
Proof. We shall only prove the identity for T, as the proof for T is analogous.
By Theorem 6.34, for i = 0, 1, we have

Extly (A(X), L()) 2 Homy(L(LA), H'(u, L(u))).,

(6.47) O - o
Extt (A(R®), L)) = Homy (L(LA), (3, L(1))).

Recall that T(L(I,A%)) = L(I,\) by Lemma 6.14, and that T(H" (%, L(\%))) =

H"(u,L(A)) by Corollary 6.28. Now the identity for 7 in the corollary follows

by applying the functor 7 to (6.47) and the naturality of 7. U]
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6.5.3. Categories 0/, 0, and O/. The following proposition is standard and well
known. For a proof the reader may consult Kumar [76, Lemma 2.1.10]. Recall IT
denotes the standard fundamental system of g.

Proposition 6.36. Let M € O. Then there exists a (possibly infinite) increasing
filtration of g-modules

(6.48) O=MyCM CM C---CM CM; C -

such that

(2) M;/M;_\ is a highest weight module of highest weight v; with v; € P*,
‘f()riz 1;

(3) the condition vi —V; € ¥ ycm Zyo implies that i < j;
(4) for any weight yu of M, there exists an r € N such that (M /M,), = 0.

Similar statements hold for M € O and Meo.

Let O/ denote the full subcategory of O consisting of finitely generated U(g)-
modules. The categories ®’ and O/ are defined in a similar fashion.

Corollary 6.37. Let M € O. Then M € O/ if and only if there exists a finite increas-
ing filtration 0 = My C M} C M, C --- C My = M of g-modules such that M; /M;_,
is a highest weight module of highest weight v; with v; € PT, for | <i <k. Similar
statements hold for M € O and Meo.

Proof. If M is a g-module with a finite filtration of the form (6.48), then clearly
M is finitely generated. Conversely, suppose that u;,uz,. .., u, are vectors in M of
weights Vi,Vz,...,V, generating M over U(g). By Proposition 6.36(4), M has a
(possibly infinite) filtration of the form (6.48) such that there exists » € N with M,
containing all vectors in M of weights vi,va,...,V,. Thus u; € M,, for 1 <i <mn,
and hence M, = M. The proofs for g and g are analogous and omitted. O

6.5.4. Lifting highest weight modules. The following proposition is the converse
of Proposition 6.16.

Proposition 6.38. (1) Suppose that V(L) is a highest weight g-module of
highest weight A € P*. Then there is a highest weight G-module V (\?) of
highest weight \® such that T(V(A9)) =V ().

(2) Suppose that U(A) is a highest weight g-module of highest weight \*
with A € PT. Then there is a highest weight g-module E’(?Le) of highest
weight \® such that T(U (M%) = U(M).
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Proof. We shall only prove (1), as (2) is similar.

Let W be the kernel of the surjective g-homomorphism from A(A) to V(L)
Now Theorem 6.17 says that T(A(A?)) = A(A). By the exactness of the functor T,
it suffices to prove that W lifts to a submodule W of A(A?) such that T(W)=W.

We recall the standard Borel subalgebra b and standard fundamental system
IT for g. Recall the sequence of Borel subalgebras E"(n) and corresponding fun-
damental systems T1¢(n) from Section 6.3.1, and that IT, = I1(¢) UT1(T,) from
Section 6.1.1. We make the following.

Claim. Let v, be a b-singular vector of weight 4 € P* in a g-subquotient of

A(\?). Then vy is a b¢ (n)-singular vector, for 1 > 0.

This claim can be seen as follows. There exists n >> 0 such that A — y is a

non-negative sum of even simple roots lying in IT,, and such that every weight in

A(A®) is of the form A — v, where V is a non- -negative sum of simple roots in I1°(n).
Therefore, if o is a simple root in H‘( )\ II,, then g+ o cannot be a weight in
A(A®). This proves the claim.

There is an increasing filtration of g-modules for W, 0 =W, C W, CW, C
satisfying the properties of Proposition 6.36. For each i > 0, let w; be a weight
vector of weight v; in W; such that w; + W,_, is a nonzero b-highest weight vector
of Wi/Wi—i. Now by Theorem 6.17, A(A®) = @,p L(L,u®)"®) if and only if
AX) = D ep- L([ p)"™#)_ Then, regarding A(A) C A(A®), there is a highest weight
vector w; of the I-module U (Dw; = L(, v?) with respect to the Borel subalgebra
b1, for each i. Let W; be the §-submodule of A(Ke) generated by wy,wy, ..., w;
fori> 1, and setWo =0.

We will prove by induction on i that T(W;) = W, for all i. The case i = 0 is
trivial. Assume that i > 1 and T( —1) = W,_;. By construction, Wi + W ) is a b-
singular vector in W/W 1. It follows by the claim above that w; + Wl pisa b’ ( )-
smgular vector of weight v; for n > 0. By (6.22), we have b —b ﬂ[+ ucC bN [+
b¢ (n) Thus, by the construction of w; above, w; + W,_; is a b- hlghest welght vector
otW/W, 1- Now U(u™)L(L,v;) =W;/W;_y and U (u" )L ([,Vi ) =W, /W;_, and thus

(W/W, 1) W;/W,_1. This together with the inductive assumption implies that
T(W) =
Finally, setting W = Uis1 W;, we obtain that T(W)=W. O

6.5.5. Super duality and strategy of proof. Recall the functors 7 and 7 from
Section 6.3.3. The following is a main result of this chapter.

Theorem 6.39. (1) T:0— Oisan equivalence of categories.
Q) T: O — Oisan equivalence of categories.

(3) The categories O and O are equivalent.
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The equivalence of categories in Theorem 6.39(3) is called super duality.

Define an equivalence relation ~ on E* by letting u ~ v if and only if £ — v lies
in the root lattice ZIT of g. For each such equivalence class [u], fix a representative
[u]? € b* and declare [u] to have Z,-grading 0. For e = 0, 1, set

b= {yeﬁ* Y (u—[W°E)=¢(mod 2)}, fory =a,b,c,0,
rel /247,

bt = {,UEE* \ §<,u— W E-)+ Y (u— [k, E,) = & (mod 2)}, forr =b°.

reN

Recall that V € O is a semisimple h-module with V = & Vy. Then V gives rise

~ Yeh*
to a Z,-graded g-module V'

(6.49) V=V, PV, =PV, (e=0,1),
peb;
which is compatible with the Z;-grading on g.

We define ©% and 079 to be the full subcategories of O and O/, respectively,
consisting of objects equipped with Z,-gradation given by (6.49). Note that the
morphisms in 09 and 0/ are of degree ( 0. It is clear that for a given Veo,V
defined in (6.49) is isomorphic to V in O. It then follows by definition that the

two categories O and O° are equivalent. Similarly, O/ and 010 are equivalent
categories.

We can now analogously define O() 079, O , and 0" to be the respective
full subcategories of O, ©f, O, and O consisting of objects equipped with Z;-
gradation (6.49). Slmllarly, 00 ~0, O >~ 0, and also 00 = Of, Oj O =9

Since 09 = 0, O ~ 0, and 00 =~ O, it suffices to prove Theorem 6.39(1) for
7:00 5 00 and T: 0% - 0. In order to keep notation simple, we will from
now on drop the superscript 0 and use O, 6, 6f, and O/ to denote the respective
categories 60, o9, 6‘](.'0, and O/, Henceforth, when we write Z(?Lg),Z(Ke) c0of \
A € P, we will mean the corresponding modules equipped with the Z,-gradation
(6.49). Similar convention applies to A(A?) and L(A?).

In the remainder of this subsection, we outline the strategy of the proof of
Theorem 6.39. The detailed proof will be carried out in the next subsection. We
shall restrict our proof for T entirely, since the arguments for the functors 7' and
T are completely parallel. First, we study the relation between the morphisms
in the categories O and O under T. In particular, we show in Proposition 6.44
that T induces an isomorphism between morphisms of the two categories. In con-
junction with Theorem 6.34 that relates extensions with homology groups, this
isomorphism is then used to show that 7" induces an isomorphism between the first
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extension groups of the two categories. These, together with well-known facts
from homological algebra, imply that T is an equivalence of categories.

6.5.6. The proof of super duality. We shall freely use the following short-hand
notation below. Set M = T(M) and M = T(M), for M € ©. Similar conventions
apply to the images of T and T of M’,M” N € O. In addition, set V(L) =T(V(A))
and V(A*) = T(V(A®)), for a highest weight g-module V(1°) of highest weight A?
with A € P* (see Proposition 6.16 for a justification of notation).

Lemma 6.40. Let N € O, and let

ay i

(6.50) E: 0-—M-"5M—M -—0
be an exact sequence of g-modules in 0.
(1) The exact sequence (6.50) induces the following commutative diagram

with exact rows. (We will use subscripts to distinguish various maps in-

duced by T.)

0 — Homé(ﬁl”,ﬁ) — HOI‘[I@(M,N) — Hom(5(ﬁ7l’,ﬁ)

l Tin & l v l T

0 — Homg(M",N) — Homg(M,N) — Homg(M',N)

j—) Ex%(ﬁ”,]\?) — Exté(ﬁ,ﬁ) — EX%(leﬁ)

| s |7 |7
T, Bxt) (M".N) — Bxt,(M,N) — Ext!,(M'.N).
(2) The analogous statement holds replacing T by T in (1), M by M, etc.

Proof. By (6.42), the rows are exact, and it remains to show that the following
diagram is commutative:

Homg (W',N) —"— Ext! (41" .N)

6.51) lTM’.N [T
' ‘T(E) | 11
Homg (M',N) —— Ext},(M ,N).
Let f € Homg (M’,]V). Then fgf € Ext,(]5 (M”,N) is the bottom exact row of
the following commutative diagram:

i

|

M" 0.

0 M
(6.52) jr
N

0 I\

s
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Here we identity fE with the module F, which is the pushout of fand I Applying
the functor T to (6.52) gives us a commutative diagram with exact rows:

0 o By M” 0
o ||
0 N s T(F) M 0.
We conclude that T(F) = TA%,/ N[fi::] is the pushout of T~,J;,[f] and T, M[ i]. There-

fore, we obtain that

Ty JVE) = T(F) =Ty 5 ITIE],
i.e., the diagram (6.51) is commutative. O
Lemma 6.41. Let M,N € O. Then
(1) T: Homg (M N) — Homg (M ,N) is an injection.
) T: Homé(M,N) — Homg(M,N) is an injection.

Proof. By Lemma 6.14, any [-isomorphism @ : L([,z®) — l:( ), with y ¢ P+
induces isomorphisms T[@] : L(I,u) — L(L,u) and T[Q] : L([,1*) — L(1,1%). The
lemma follows. O

Lemma 6.42. Ler V()ﬁ) be a highest weight g-module of highest weight \® with
Ae Pt andlet N € O. Then

(1) T :Homg(V V(A®),N) —s Homg (V(A),N) is an isomorphism.
(2) T : Homg(V V(A®),N) —s Homg 5(V(AM),N) is an isomorphism.

Proof. Consider the commutative diagram with exact rows

0 M A®) —— V(1) >y 0
lTM lTMﬁ) lTV(Lej
0 M » AL) —— V(A) — 0.

This gives rise to the following commutative diagram with exact rows:

0 — Homg(V(A®),N) —— Homg(A(A®),N) —— Homg(M,N)

J(TV(AG).N lTA(}ﬁ)N lTMf
0 — Homo(V(k),N) — Homo(A(k),N) ey Homo(M,N).
Corollary 6.28(3) and Theorem 6.34 imply that TZ&(N’) 5 1S an isomorphism. By

Lemma 6.41, Ty; 5 is an injection. Now a standard diagram chasing implies that
Ty e i 18 an isomorphism. 0
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Lemma 6.43. Ler V(?Le) be a highest weight g-module of highest weight % with
A€ P, and let N € O. Then

(1) T : Ext} (V(A%),N) — Ext},(V(X),N) is an injection.
Q) T: Ext(% (V(A®),N) — Ex%(V(?xu),N) is an injection.

Proof. Let

(6.53) 0—N—E -5V 50

be an exact sequence of g-modules. Suppose that (6.53) gives rise to a split ex-

act sequence of g-modules 0 - N — E gt V(L) — 0. Thus there exists y €

Homg(V()),E) such that T[f] oy = ly(a). By Lemma 6.42, there exists y €
Homg (V(AP),E) such that TN[\T/] = V. Thus T[foy] =T[f]oT[y] = ly,. By
Lemma 6.42 again, we have foy = IV(K")’ and hence (6.53) splits. |

Proposition 6.44. Let M,N € O. Then

() T Homg(ﬂz,ﬁ) — Homy (M, N) is an isomorphism.
(2) T : Homg(M,N) — Homg(M,N) is an isomorphism.

Proof. First we assume that M € Of. We proceed by induction on the length of
a filtration of M. If M is a hlghest weight module, then it is true by Lemma 6.42.
Let 0 = Mo C M1 C Mz C---C Mk M be an increasing filtration of g-modules
such that M,/M,_1 isa hlghest weight module of highest weight V? with v; € PT,
for1 <i<k LetZ := A7Ii/1\2,~,1 and Z; := T(Z).

Consider the following commutative diagram with an exact top row of g-
modules and an exact bottom row of g-modules, for i > 1.

1% oy ~

0 —— 1\7[,‘,1 M,' Zl' 0
(6.54) irﬁih] lTMI_ lrz_
0 —— M;_ kil M; Z; > 0.

The sequence (6.54) induces the following commutative diagram with exact rows.
0 —— Homg (Z“N) —— Hom;
lTi,-.iv le‘/

0 —— Homo(Zi,N) B HOI’]’IO(M,',N)
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SN Homg) (Mi_],ﬁ) —_— Ext(% (Zﬁ)
J{ T’;Irf I N l TYII N
—— Homg (M;-;,N) —— Ext},(Z,N).
The map Ty; _,.&v 18 an isomorphism by induction. The map TZ]'N is an injection

by Lemma 6.43. Also T;  1s an isomorphism by Lemma 6.42. Now a standard

diagram chasing implies that T; & 1s an isomorphism.

Now we consider the general case of M€ 0. By Proposition 6.36, we may
choose an mcredsmg filtration of g-modules 0 = Mo C M] C Mz C --- such that
U,z(,M M and M, /M,_1 is a highest weight module of highest welght V? with
v; € Pt, fori > 1. Then the direct limit of {1\71,-}i is Li]g[g,' >~ M and the inverse
limit is limHomg (M;,N) = Hom (M N). Similarly we have limM; = M and
mHom@(Mi,N) Homg (M,N). Furthermore, we have the following commu-
tative diagram (where ¢ = limTM__ )

Homo (M N) =, I#Hom (M,,N)
le l(p
Homg (M,N) =, 1<iLnH0mo (M,-,N).
Since ¢ is an isomorphism, so is Tj; 5. O
Lemma 6.45. Let M ,N € O. Then
(H T Ex%(l\z,ﬁ) — Ext},(M,N) is an injection.
2) T: Ext(l5 (M,N) — Ex%(_ﬂ,ﬁ) is an injection.
Proof. The proof is virtually identical to the proof of Lemma 6.43, where we use
Proposition 6.44 in place of Lemma 6.42. U

Proposition 6.46. Ler V(?»e) be a highest weight g-module of highest weight \°
with h € P*, and let N € O. Then

() T: Ex%(V(x"),N) — Exty,(V(X),N) is an isomorphism.
) T: Exté(V(ke),N) — Ex%(V(M),N) is an isomorphism.
Proof. Consider the following commutative diagram with exact rows:
0 M AN — "5 V(%) —— 0

(6.55) lrM lee) lee)

0 M AL —— V(L) —— 0.
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The sequence (6.55) induces the following commutative diagram with exact rows:

Homj (A(M),N) —— Homg(M,N) —— Ext} (V(2%),N)

lT[\w}ﬁ).N JTM.N JvTx'/Iqu;.N

Homg (A(A).N) —— Homg(M.N) —— Exty(V(A),N)
—% Ext! (AQA%).N) — Ext! (4.N)

L Tﬁ(ke ).N l TLII.N
—— Exth(A(L),N) ——— Exth(M,N).

The map T1 1s an injection by Lemma 6.45. The map T1 o is an isomorphism
by Corolldry 6 35. Also T} RN and Ty VN are 1som0rph1sms by Proposition 6.44.

Now a standard diagram chasing implies that 71

~ is an isomorphism. O
V(A®).N P

Proof of Theorem 6.39. Let C, €’ be abelian categories. Recall from Mitchell [86,
11.4] that by definition a full and faithful functor F : € +— €’ is an equivalence of
categories if it satisfies the representative property that for every M’ € €' there
exists M € C with F(M) = M'.

Proposition 6.44 implies that the functor T is full and faithful. Now for every
M € O, there is a filtration of g-modules for M, 0 = My C M, C M, C ---, with
M; € O satistying the properties of Proposition 6.36. The filtration {M;}; of M
lifts to a filtration {M;}; with M; € O/ such that T (M;) = M, by induction using
Propositions 6.38 and 6.46. Set M := U;»oM;. It follows that T (M) = M.

We need to prove that M € 0. To do that we proceed as in the proof of the
claim in Proposition 6.15. Suppose that ;,...,{, € P* such that every weight
of M is bounded by {;, for some i. For j =1,...,r, define P; and P(M) as in
Proposition 6.15. Now since T(M) = M, it suffices to prove that if v € Pt and
i — v € Z. I for some i, then there exists y € P(M) such that ¥? —v® € Z,TI. Let
|*Ci| = ki. We write

Gi—v="x+ple.1—e)+ K

where p € Zy, "X € Xoen) Z+ 0, and Tk € Ygepygyp, Z+B. Then v is a par-
tition of size k; + p. Hence, there exists Y € P(M) such that the partition *v is
obtained from "y by adding p boxes. We record the sub indices of the boxes in
8(*y)\ 8(V) in the multiset J®. Then we have ¥ — v® = K+ Xeple-r — &),
and hence y? —v% € Z+H This implies that all the welghts of M are bounded above
by the finite set {Y?|y & P(M)}, and hence M € O.

We conclude that the functor 7 satisfies the representative property. Hence,
T : O — O is an equivalence of categories. This proves (1).
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The proof of (2) is entirely parallel to (1), while (3) follows from (1) and (2)
(see, e.g., [86, 11.10]). O

Remark 6.47. Super duality helps to provide a categorical explanation and new
proofs for results obtained in earlier chapters by other means: the irreducible poly-
nomial character formula for gl(m|n) in terms of super Schur functions via Schur-
Sergeev duality in Chapter 3, and also the irreducible character formulas for the
oscillator modules of Lie superalgebras via Howe duality in Chapter 5.

6.6. Exercises

Exercise 6.1. Prove Proposition 6.15 in the limiting case m = 0.
Exercise 6.2. Prove the following identities of symmetric functions:
(D (O(l_llgigj(l _xixj)q) =i <ic; (1 —xix;)~".
(2) m(ngigj(l +xixj)> = Hl§é<j(1 +xix;).
(Hint: Use T(&™ ) =u"and T(u™) =1u.)
In_Exercises 6.3 and 6.4 we shall use the following notation: Let A (respec-
tively A) denote the ring of symmetric functions in the variables x;,x2,... (respec-

tively x;/2,X3/2,...). Identifying A with A, the involution of symmetric functions
is identified with

o (ﬁ(wx,-t)) :ﬁ'—‘_a _i_ -

for an indeterminate ¢.

Exercise 6.3. Let Q¢ be the character ring of the BGG category of (¢4 CK)-
modules. For an indeterminate e we let x, = *r, for r € %ZJW and let Qg@/\ denote
the topological completion of Q:®A with respect to the degree filtration of A. Let
MeO,Me0,andM € O. Prove:

(1) chM € Q@A and chM € Q:RA.
2) <chT(1\7I)> — chT(M).
3) ® (chH,»(u‘,T([VI))) — chH,(T,T(M)), foralli € Z,.

Exercise 6.4. Let M and N be two objects in O, and let A,u,v € Pt. Prove:
(1) The tensor product M®N is an object in o.
2) TM®N)=T(M)RT(N),and T(M@N) =T(M)®T(N).
3) o (ohT(M@f\i)) — chT(M ®N).
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(4) L(A) appears as a composition factor in L(u) ® L(v) with the same multi-
plicity as L()A*) appears as a composition factor in L(u*) @ L(vY).

Exercises 6.5 and 6.6 show that a finite-dimensional simple module over the
general linear Lie superalgebra may not have a BGG resolution in terms of Verma
modules, but may have a resolution in terms of Kac modules. In the notation of
this chapter we setm = 1 and ; = a. Let b, be the standard Borel subalgebra of the
Lie superalgebra g, = g{(1]2) with Cartan subalgebra h,. By highest weight we
always mean with respect to b,.

Exercise 6.5. Let M(e_) be the Verma module of highest weight €_; € b, with
highest weight vector v, - Let Ly(e_1) beits unique irreducible quotient. Prove:

(1) IfNC M(E_ 1) is the g2-submodule generated by E» 1ve_,, then N contains
all nontrivial singular weight vectors of M (e_1).

(2) The g,-module M(e_1)/N is reducible.

(3) There is no exact sequence of g>-modules of the form

@A—/I(,u,-) —M(e ) —D(e ) —0, ye hs.

!

Exercise 6.6. Let w) denote a highest weight vector in the g,-Kac module Ar(M),
for A € P; . Prove:

(1) The only nontrivial singular vectors of A, (e-1) are scalar multiples of
E\ 1B _jwe .

(2) For k € N the unique maximal submodule of Kz( —ke_| + ke + €) is
generated by the singular vector E I~ 1W_ke_| +4e, +&,- Furthermore, it is
isomorphic to L (—(k+ 1)e_; + (k+ le) +¢,).

(3) For every k € N we have an exact sequence of g,-modules of the form

Do (—(k+1)e_; + (k+1)e, &) — Ag(~ke_; +key+e5) —s -
= Mo(—e g +85) — Ay(e_y) — Lr(e_)) — 0.
Conclude that L,(e_1) can be resolved in terms of Kac modules.

(4) Recalling D from Section 2.2.3 and W = S, we have the following iden-
tity:

_ 1 ¢ow) e?H—p
ChLz(E_]):Bwezu/(—l) w m .
Exercise 6.7. Let g = g*. Define
(6.56) P = {Ae PT|dimL,(A) < o, forn > 0}.

(1) Let y = a. Prove that A = 3! A€ +37 "hg; € P if and only if

I=—m

(VP S TRy Yy P .) is a partition.
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(2) Letd € Zandy = c. Prove that A=dAo+ ¥, , Aigi+ X7, Thje; € PTF
ifandonlyifd € —Z,,0>A_,, and (A_py—d,...,A_1—d, A1, Ths,...)
is a partition (see (6.14)).
(3) Forr=b,b*,0andd € %Z, determine the set P™" as in (2).
Exercise 6.8. Let g = g¥, where r = a,b,¢,0. Let [ and u_ denote the Levi subal-

gebra and opposite nilradical, respectively. For A in P** as in (6.56) we have the
following parabolic BGG resolution [6, 79, 100] (recall W9 from Section 5.5):

(i) There exists an exact sequence of g-modules of the form
ce— EB A(wod) — @ A(wod) —---
wew? wew? |
o — P Awod) — A(L) — L(A) — 0.
wew)

(i) As [-modules we have H;(u™,L(A)) = @, cwo L(I,wol), foralli € Z..
Prove:

(1) The KLV polynomials ¢,y (g) are monomials, for u € PT.

(2) Every g-module Z(A?) has a BGG resolution in terms of A(uf), u € P+.

(3) The irreducible gl{m|n)-tensor modules have resolutions in terms of Kac
modules. Furthermore, if v is such a highest weight and u € P, then the
KLV polynomial £, (g), if nonzero, is a monomial of g.

(4) Let d € Z, and assume that /(A) < min{n,d}. The irreducible highest
weight 0sp(1]|2n)-module of highest weight 37, (A; 4+ d)g; with respect
to the fundamental system {—¢€;,&; —€2,...,€,—1 — €, } has a resolution
in terms of parabolic Verma modules with Levi obtained by removing
—g1. Also, similarly to (2), the corresponding nonzero KLV polynomials
are monomials of q.

Exercise 6.9. Let g = g® with ¥y = I1(£). Let A € P™ with A; € Z. Suppose that
for any A; — j with j < O there exists an i > 0 such that A; — j = A; —i. Prove that
A(M) is irreducible. (Hint: Use Exercise 2.11 and super duality.)

Exercise 6.10. Let g = g® and let A, € P*. Prove:
(1) There exists k € N such that for n > k the multiplicity with which L, (,uh)
appears in a composition series of A, (M) is independent of n.
(2) The parabolic Verma module A(A?) has a finite composition series.
(3) The parabolic Verma module A(A) has a finite composition series.
Exercise 6.11. Let L be a finite-dimensional irreducible osp(k|2n)-module, for

k =2m or k = 2m+ 1. Prove that there exist g* withr = b,0 and A € P* such that
the §,-module L, (A?) is isomorphic to L.
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Exercise 6.12. Recall a.. from Section 5.4.1 and let [ be its Levi subalgebra ob-
tained by removing the simple root €0 — &; with opposite nilradical u~. Then [ 2
a<o®aso® CK, where a< (respectively a~q) consists of those matrices (aij) € .,
with a;; = O unless i, j € —Zy (respectively i, j € N). Ford € 7, let Cy be the par-
abolic BGG category of a..-modules on which K acts as the scalar d and that,
as [-modules, decompose into direct sums of irreducibles of the form L(a<o,Vv) ®
L{a~g,u), where v = Yj<oVigjand u =73 ;.\ pse;, with (—vo, ~V_1,...) € Pand
(41,12, ...) € P. Denote the set of such weights v+ u by P*. Prove:

(1) The categories C; and ©_, are equivalent.

(2) For a generalized partition of length d of the form
}\,:(7\,1 27\,22...27\.,‘>0:...:0>7\,j+1 ZZ}\.,/),

let A(A) := —dAy +Z};:, Ai€; +2,‘f_:j+] AM€k—q € PT. Then the KLV poly-
nomial £, is a monomial for every u € P*.

Exercise 6.13. Let g = g° with ¥, — II(¢). Let d,m.n € N and v,u € P with
£0V) <, ) < . and €) +£u) < d. Set &= T (~d—vi)e 4+ 57 e,
Prove:

(1) For any n € P the KLV polynomial £y for the finite-dimensional Lie
algebra g, is a monomial.

(2) The g,-module L, (E) has a resolution in terms of Ay(M) withn € P*.
(Hint: Use Exercise 6.12.)

Notes

This chapter is an exposition on the formulation and proof of super duality, which
Is an equivalence of the categories © and 0, in Cheng-Lam-Wang [24], which in
turn was built on Cheng-Lam [23] for type A. The super duality conjecture for
type A in the maximal parabolic case was first formulated in Cheng-Wang-Zhang
[34] and more generally in Cheng-Wang [31], motivated by and partially based
on Brundan [11]. There is a different approach by Brundan-Stroppel [15] in the
special case of the super duality conjecture formulated in [34).

Section 6.1. The presentation of the materials in this section follows closely
Cheng-Lam-Wang [24].

Section 6.2. The truncation functors and their basic properties regarding Verma
and irreducible modules (Proposition 6.9) have counterparts in the algebraic group
setting, which was developed by Donkin [40]. In the super duality context, the
truncation functors first appeared in Cheng-Wang-Zhang [34], and then were gen-
eralized in [31, 23, 24].
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Section 6.3. The odd reflection approach leading to Theorems 6.17 and 6.18
was developed in [23, 24]. It is remarkable that, when combined with Proposi-
tion 6.9, this solves completely the irreducible character problem for modules in
the category O,,, which include all finite-dimensional simple modules of type gl
and osp.

Totally different approaches and solutions for the finite-dimensional irreducible
character problem have been developed in Serganova [107], Brundan [11], and
Brundan-Stroppel [15] for gl(m|n), and in Gruson-Serganova [49] for osp. For
recent works, see also [17, 82, 120, 121].

Section 6.4. We follow Tanaka [122] for a formula of the (co)boundary oper-
ator for Lie superalgebras (see also lohara-Koga [55]). The results on the identi-
fication of Kazhdan-Lusztig-Vogan polynomials in the categories O, O, and O are
due to [23, 24]. The study of u-cohomology groups was initiated in the fundamen-
tal paper of Kostant [73]. We have followed Vogan’s homological interpretation
of the Kazhdan-Lusztig polynomials [125, Conjecture 3.4] (also see Serganova
[107] in the setting of the finite-dimensional module category for gl(m|n)), as the
usual approach via Hecke algebras is not applicable for Lie superalgebras. The
Kazhdan-Lusztig conjectures [70, 71] for the BGG category of a semisimple Lie
algebra were proved in Beilinson-Bernstein [S] and Brylinski-Kashiwara [16]. The
polynomials £, (¢) for the category O coincide with the usual parabolic Kazhdan-
Lusztig polynomials [39]. Theorem 6.24, which describes an explicit connection
between 1~ -homology and u-cohomology groups, is based on [81, Section 4]. The
stability of Kazhdan-Lusztig polynomials (6.38) even for classical Lie algebras has
not been formulated in the literature until we needed it in the super duality frame-
work.

Section 6.5. The formulation of super duality (Theorem 6.39) tollows Cheng-
Lam-Wang [24] (also see [34, 31, 23] for earlier formulation). The proof here
using Ext! only is somewhat different from the original one, and it is based on
Theorem 6.34, which is adapted from Rocha-Caridi and Wallach [101, §7, Theorem
2]. The definition of the module subcategory ©0 and its variants for type A was first
given in [23, Section 2.5], and in general in [24, Section 5.2].

The tilting modules, formulated earlier by Ringel and Donkin in different con-
texts, can be shown to exist in the categories O, O, O, (cf. Brundan [11], Cheng-
Wang-Zhang [34] and Cheng-Wang [28] for type A). The functors T : O — O and
T : O — O can be shown to respect tilting modules (see Cheng-Lam-Wang [25]).
We do not treat tilting modules in the book, and refer the reader to the original pa-
pers for details. We also refer to [26] for a proof of the Brundan-Kazhdan-Lusztig
conjecture for the full BGG category O of gl(m|n)-modules.

The results in Exercises 6.3(3) and 6.4(4) were taken from [24] (various spe-
cial cases appeared earlier in [34, 23]), while Exercise 6.5 is taken from [20]. An
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analogous character formula as in Exercise 6.6(4) holds for finite-dimensional ir-
reducible modules over the Lie superalgebras gl(m|n) and 0sp(2|2n) in the case
when the highest weights have atypicality degree equal to 1, and it appeared for
the first time in [8] (see also [123, 124]). The resolutions in Exercise 6.8(2) were
first constructed in [20], while the KLV polynomials in this particular setting were
first computed in [35], both without using super duality. The observation in Exer-
cise 6.9 was first made in [34], while Exercise 6.10 is taken from [23] (a special
case of (2) goes back to [34]). We are not aware of a direct proof for Exercise
6.10(3) without using super duality. The KLV polynomials in Exercise 6.12 were
computed in [19] for the first time. Exercise 6.13(1) and (2) are classical results
that appeared already in [41] and [42], respectively, stated in a different form (see
[53]). They may now be regarded as direct applications of super duality.



Appendix A

Symmetric functions

A.1. The ring A and Schur functions

A.1.1. The ring A. A partition A = (A;,A,,...,A¢) is a sequence of decreasing
nonnegative integers Ay > A> > ... > Ay > 0. Each A; is called a part of A, and the
number of nonzero parts of A is called the length of A, which is denoted by ¢(A).
The sum of all its nonzero parts is called the size of A, and is denoted by |A|. We
sometimes use the notation A = (1”122 to denote a partition A, where m; is
the number of parts of A that are equal to i for i > 1. We often identify a partition
A with its associated Young diagram, and denote by A’ the conjugate partition
whose Young diagram is the transpose of the Young diagram of A.

Let P denote the set of all partitions and let P,, denote the set of all partitions
of n, forn > 0. For A, u € P, we write A D uif A; > u; for all i > 1. The dominance
order on P, denoted by >, is the partial order defined by

A>p © A|=gland+...+ N>+ 4, foralli > 1.
Consider the Z-module of formal power series Z[[x]] in the infinite set of inde-
terminates x := {x,x2,x3,...}. Fora = (a,00,...,04) € Z’i, we write

x% = a2t e Z[]).

The symmetric group &, acts on Z[[x]] by permuting the indeterminates, i.e.,
if 6 € &, and f € C[[x]], then

Gf()q , X2, ) = f(xc(l),xc(z), .. .),
where by definition (i) = i, for all i > n. Since the action of &,,4; is compatible
with that of &, we obtain an action of the direct limit, denoted by S.., on Z[[x]].

261
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The monomial symmetric function associated to a partition A is

myx)=m = Y ox* ez,
0€6../Gy,

where &;, is the stabilizer subgroup of the monomial x* in G...

Definition A.1. The ring of symmetric functions A is the Z-span of the elements
{my, | A € P} in Z][[x]].

We remark that A is closed under multiplication and hence is indeed a ring.
Also note that A is naturally graded by degree. We denote the Z-submodule of
degree n by A" so that A = @, A". Note that A" is a free Z-module of rank
equal to the number of partitions of n. For a field F (which is often taken to be Q
or C), we denote the base change by A = F @7 A and AL = F &7 A”.

There are several other bases for A that we use freely in this book.

Definition A.2. Let n € N. We define

Pri=mgy = X,
i>1
ey, = m(l") = Z xilxiz .. 'Xi,,7
I <ip<--<iy
hn = z m, = Z XiyXip =~ Xy
AEP, 1< <<y

that are called the nth power-sum, elementary, and complete symmetric func-
tions, respectively. Furthermore, we set eg = hg = 1 and e, = h, = 0 for r < 0.

Let 1 be a formal indeterminate. The generating series of the power, elemen-
tary, and complete symmetric functions are as follows:

d 1
P(t) = =2
()= 2 pn dt nHl—x,-t’

n>1 i>1
E(t) := 2 ent” = [ (1 +xit),
n>0 izl
1
H(t) = "= .
() g{)hnt I} e
n-> [ e
It follows that
E(-t)H(t) =1,
ypit
E(r)=exp| X (-1)"! ,
(A.1) (% 4
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Definition A.3. For a partition A = (A, A2,...,A¢), we define

/ ¢ ¢
o=[1rn. e:=Ilen, =[]
i~ i=1 i=1
(A.2) The set {p;, | At n} forms a linear basis for Ap,, for n € N. Moreover,

Ag =Qlp1,p2,-- )
The sets {e; | A= n} and {hy | M- n} are Z-bases for A", for n € N. Moreover,
A=Z[€],ez,...} =Z[h1,h2,...].

Proof. For a partition A, a monomial appearing in p;, is of the form

(A3) xMh M

i Via i
for some iy, i,...,ir € N. Write x% = x?l' ---xi" for the expression (A.3) such that
o > oy > - > oy and all the j;’s are distinct. Then clearly o0 > A. Hence, we
have
Pr= z CoMys
u>A
with ¢, € Z; and ¢;, > 0. This implies that the matrix (¢hu)> With sub-indices or-

dered compatibly with the dominance order, is an invertible upper triangular matrix
with coefficients in Z. Since {my, | A n} is a basis for A}, sois {py | A Fn}.

For a partition A, every summand in ey, is of the form
(A'4) 'xi]."xi}"/‘x‘il."xjké..'xk('..xkxi’

where i < i) <--- < iM, J1 < j2 <. < j,etc. Letus write the expression in
(A4)asx* = x(;‘l‘ X5 ~x§f‘", such that o} > 0 > - - - > o and all the j;’s are distinct.
Note that A > o.. Hence we conclude that

ey = 2 a;wm,l,
HEA
with ay, € Z4 and a3, = 1. This implies that the set {e), | A n} is a Z-basis for
A",
It follows by (A.1) that, for alln € N,

n

(A.5) S (=1)erhy, =0.

r=0
Thus we can express e, as a polynomial of /,’s and e,_;’s, for » < n. By induction
on n it follows that every e, is a polynomial of {Ay, ..., h,} with integer coefficients.
Therefore, the Z-module Z[hy, . . ., hy) VA" = 35+, Zh;,_ contains the Z-span of {e), |
A+ n}. Hence Y3, Zhy = A", and so {hy | A+ n} is a Z-basis for A". O

We note the following immediate consequence of (A.2).
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(A.6) The sets {p1,p,,...}, {ei1,e2,...}, and {hi,ha, ...} are algebraically inde-
pendent in A.

By (A.6), we can define a ring homomorphism ®: A — A by letting
o(e,) =h,, VneN.

(A7) We have o(hy,) = e, and O(pn) = (=1)""p,. Thus, ® is an involution of the
ring A.

Proof. We prove the first statement by induction on n. From (A.5) we obtain

n n—1
h, = — Z(*])rerhn—ra ey = — Z (_l)n_rerhn—r-
r=0

r=1
This implies by the induction hypothesis that

/]

o) == ¥ (<1) hyen_, = e,

r=1

Also, it follows by (A.1) that

o (P(r)) = %(z)(lnH(t)) - %lnE(z) — _p(—),

from which we conclude that w(p,) = (— D" p,. O

For a partition A = (1™12" ) of n, we let

=[] m,

i>1

which is the order of the centralizer of a permutation in &, of cycle type A. We
compute

(A.8) H(t) = []exp (prt’) =3

7

r1 AcP
Equivalently, for each n > 1, we have
hn = Z Z}tlpk-
Abn
Applying ® to (A.8), we obtain
(A.9) E(t) = z (_1)Ml~€(k)z7tlpxtlk|.

AEP
Equivalently, for each n > 1, we have

en= (=)W tp,.
Abn
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A.1.2. Schur functions. We first suppose that x = {x},x,,...,x,}, and denote the
ring of symmetric polynomials in n variables by A,,. There is a natural ring homo-
morphism T, , : Ay — Ay, for m > n, given by sending each x; for j > n to 0, and
A is the inverse limit of A,,.

For a partition A of length no greater than n, we let

. — }\1 }VZ }‘vn
ay = Y sgn(c)xc(l)xc(z) IR AR
ceS,
where sgn(c) denotes the sign of the permutation 6. Then ay, is skew-symmetric
in the sense that

Tay =sgn(t)ay, V1€ G,.

Letp=(n—1,n-2,...,1,0), so that we have

aip= Y, Sgn(o)xom Xs2) " Xoln) i

A+n—1_Ao+n—2 An — det (xlj-&—n—j
ceS,

> 1<i,j<n

In particular, a, is the Vandermonde determinant. Since a;4, = 0 when x; = x;
for i # j, it follows that ay_, is divisible by x; — x;, for all i # j. Therefore the
expression

a
§) = __7»+p
ap
is a symmetric polynomial in x},x3, ..., x,, called the Schur polynomial associated
to A. Since sy (x1,...,%,,0) = s3.(x1,...,X,), the inverse limit, denoted by s; € A,

exists and is called the Schur function associated to A.

Let A, denote the Z-module of skew-symmetric polynomials in x,x2, ..., X,.
Then the ay ;,’s, as A runs over partitions with £(A) < n, form a Z-basis of A,,. Since
every element in A, is divisible by a,, the map A, — A, given by multiplication
by ap is a Z-module isomorphism. Thus, the s;’s, as A runs over all partitions
with £(A) < n, form a Z-basis for A,,. Therefore, we conclude that the set of Schur
functions associated with partitions of size k is a basis for A, for each k > 0.

(A.10) For a partition A we have
53, = det (hxi—m) 1<i,j<n? () <n,

sy, = det (eM,,-+ ,) (V) <

¥
1<i,j<n

In particular, we have ®(s)) = sy.
Proof. Let eﬁk) denote the rth elementary symmetric polynomial in the variables
X13X2y o3 Xy« 0 X, 1.€., With x; deleted. Set

M= <(—1)"‘ie(k)

”“’) 1<ik<n
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Leta= (a,...,0,) € Z. Let

Aa = (X;x i) I<ij<n’ Hoi:= (haynv i)y jens
and let
n—1
E’(k) ([) — Z e’(,k)fr = H(I +X[t).
r=0 i7#k
Then

I
H(EW (—1) = —

This implies that
n . (/\) )
z ha,--n+j<_ 1 )rhjenr—j = xl?l‘
J=1

This equation can be recast in a matrix form as Ay = H,M. Taking the determinant
of both sides with o. = A+ p, we obtain

prp = dCtH;H_p detM.

Setting A = 0 and noting detH, = 1, we obtain that ap = detM, and so @), =
detH, , pa,, which is an equivalent form of the first identity in (A.10) we wish to

prove.
Now the matrices H = (h;- )y, ;y and E = ((—1 )i_jei_-i)0<i.j<N are inverses
of each other by (A.5), each with determinant equal to 1. This gives a relationship

between the minors of H and the cofactors of E’. Exploiting this relationship, one
can prove the following identity:

det (I, ) 1<i,j<n = det (en,—i+s) 1<ij<n’
for n > max{¢(X),£(A')}. The second identity in (A.10) now follows by the first
identity in (A.10) and the identity above.

The formula o(s;,) = sy follows by applying ® to the first identity and using
the second identity with A and A’ switched. O

Take two sets of independent variables x = {x;,x2,...} and y = {y;,y,,.. 3.
Applying (A.8) to the set of variables {x;y;} and setting ¢ = 1, we obtain that

I =S mm.
A

i (L—xy))
(A.11) The following identities hold:
1

= Y (x)my(y),

i 1Ty

[T +xy) =Y ex(x)mu(y),

i.j reDP
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Hl = 2 )

ij L TP ep

H(l+‘1}’1)— zsk x)sy (v

ij rep
(The last two are known as Cauchy identities. )

Proof. We compute

- ~Tlren =TT () - Shtontt

j r>0

where the last sum is over all compositions & = (01, 0p,...). Hence it equals
Yol (x)my (y), proving the first identity in (A.11). The second identity follows
by applying o in the x variables to the first identity and using (A.10).

Assume that the number of variables in x and y are both equal to n. The gen-
eral case is proved by letting n go to infinity, as usual. Consider the n x n matrix
(1=xiy;))™Y) 1<i.j<n 1T we multiply the ith row of this matrix by ITj_; (1 —xiy;),
then we obtain a matrix whose (i,k)th entry is equal to

n

H 1 —xy,) = Z )i Jen ;0 )x'.'*j.

r#k j=1
That is, it is the (i, k)th entry of the matrix A, (x)’M(y), where A, and M are as in
the proof of (A.10). This implies that

_ 1
(A.12) det((l —Xiy;) l) 1< j<n = ap(x)ap(y)H oy
i i¥j

Next, we compute that

oo n
det ((1 _xiyj)il) 1<i, j<n = det(zx;cylj‘)léi,jﬁn = Z z sgn(c) HX?iyg(,)
k=0 i=1

o o6,

where the first summation is over compositions o.. Thus, we can write

det (1 -2xy,)”") )1<ijen Zx aa(y) =Y, 3, (=1 O Pay o (3)
A 1ES,
(A.13) wZaw X)arip(¥),

where the summation over A is over partitions of length no greater than n.

The first Cauchy identity follows now by combining (A.12) and (A.13). The
second Cauchy identity follows by applying ® in the y variables to the first Cauchy
identity and using (A.10). O

We define a Z-valued bilinear form (-, -) on A by declaring

(A.14) (k;wm#) = 8)41.
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This extends to a Q-valued bilinear form on Ag.
(A.15) Let {uy, | A € P} and {vy | . € P} be two bases for Ag. Then the following
conditions are equivalent.

(D) (up,v) = Sy

@) Tom () =11 oy

Proof. We write

u;»=2a;whv, V;,=memn, a;w,b,mEQ.
v n

Then (1) is equivalent to 3 ayybyv = 8y, which is equivalent to 3 ayybyn = dyn.
Now (2) is equivalent to 33 ¥, @by nhv (x)mn(y) = Xp ko (x)my (y) by using

(A.11). This is equivalent to ¥ ay,byn = vn. a
It follows from (A.15) and (A.11) that

(A.16) (S1y54) = Oy

A.1.3. Skew Schur functions. For partitions x and v, we write the product s,sy
as

(A.17) SuSv = . Chusy,  ch € L.
A

The cﬁv associated with a triple of partitions are the Littlewood-Richardson coeffi-
cients, and they allow us to define the skew Schur function associated to partitions
A, u by the formula

Shju = Zcﬁvsv.
v
This definition is equivalent to the following identity:

(A.18) (S,Ufa Sl) = (fa Sk/,u)a Vi €A.

This can be seen by checking for f = sy. It follows from the definitions that 5 o =
53, and by (A.10) that

o(sy) = sy
Since ® is a ring isomorphism, we obtain by the definition of the Littlewood-

Richardson coefficients above that cz‘,/v, = cfjv. It now follows from the definition
of the skew Schur functions that

Q)(Sk/y) = SN/‘u/ .

Let 4 C A be partitions which we may regard as Young diagrams. The skew
diagram A/u is obtained from A by removing the sub-diagram u. A tableau of
shape A/u is a filling of the boxes of A /u with elements from the set N. A tableau T
of A/u is called semistandard if the entries in T are strictly increasing from top to
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bottom along each column and weakly increasing from left to right along each row.
Given such a semistandard tableau T with entries r € T, we define x7 := Ilicr X

The skew Schur function s, ,, admits the following combinatorial description,
a proof of which can be found in [83, (5.12)].

(A.19) For partitions uy C A, we have
S = ZxT’
T
where the summation is over all semistandard tableaux of shape \/pu.

The following is an easy consequence of (A.19).

(A.20) Let x = {x1,x2,...} and y = {y1,y2,...} be two independent sets of vari-
ables. We have
= 2 sul)sn/uly

HCA

Let 1 C A be partitions. Recall that the weight of a semistandard tableau 7" of
shape A /uis (1712™2...), where m; is the number of times i appears in T. Denote
by Kj_,.y the number of semistandard tableaux of shape A/u and weight v. Then
(A.19) implies that

(A21) Sfu= 2, Ko_puvmy.

veP
It follows from (A.18) and (A.21) that

Syhv = sz_y’vsk.
A

Taking v = (r) to be the one-part partition, we obtain Pieri’s formula:

(A.22) suhr =Y 53,
A

where the summation is over partitions A such that A/u is a skew diagram of size r
whose columns all have length at most one.

Recall that a partition is called even if all of its parts are even. We have the
following two symmetric function identities ([83, 1.5, Example 5]):

2 su= J] (—xxy)™",

peven 1<i<j

(A.23) 1
2 Sy = H (1—xix;)"".
v even 1<i<y

Since the involution ® interchanges s; with s/, we conclude from these identities
that (see also Exercise 6.2)

(A.24) 0)( H (l—x,'xj)“[> = H (1 —x,-xj)_l‘

1<i< 1<i<j
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A.1.4. The Frobenius characteristic map. We shall freely use the notations from
Section 3.2.2. Let R, denote the Grothendieck group of the category of G,,-modules,
which has [$*] for A € P, as a Z-basis. Let

R =R,
n=(0
Then R is a graded algebra with multiplication given by

fe=Indg"s (f@g), for f€Ru,g€ERy.

The Frobenius characteristic map ch™ : R — A is the Z-linear map such that, for
n>0,
(A.25) ch"(0) = Y 7 XuPu» X E Ry,

UEP,

where 7, denotes the character value of ) at a permutation of cycle type u. De-
note by 1, and sgn, the trivial and sign representations or characters of the Young
subgroup &y, respectively. The following basic properties of ch® are well known.

(A.26) The characteristic map ch® is an isomorphism of graded rings. Moreover,
forn>Qand\ € P, we have that
ch"([Indg'15]) = I,
ch® ([lndg; sgnk]) = e,

chf([$*) = sy..

Proof. One can use the induced character formula to prove that ch® is a ring
homomorphism. By (A.8) and (A.9) we have, respectively, chf (1,) = h, and
chf (sgn,) = e,. This immediately implies the first two identities since chf is a
homomorphism.

It is known (e.g., as a special case of Lemma 3.12) that
(A27) Indgr 1, = P Ky, S™,

A>p

where the Kostka number Kj,, is equal to the number of semistandard A-tableaux
of content u. Note that K, = 1.

Also from (A.21) we conclude that
5= z Kyymy,.
u<h

Using the relations of dual bases (A.14) and (A.16), this identity admits the fol-
lowing dual version:

(A.28) hy=Y K.
A>u
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It follows by comparing (A.27) and (A.28) and using the first identity in (A.26) that
chF([$*]) = sy. Since [$*] and s;, for A € P form Z-bases for R and A respectively,
we conclude that ch® is an isomorphism. U

(A.29) For u € Py, we have an Sy-module isomorphism: $¥ @ sgn, = SH.
Proof. Let y denote the character of S*. By (A.7) and (A.25), we have that
chf([$*@sgn,]) = Y, (=1)""" Yz, 'wpy

velP,

= (0( z Z\TI\VVPV)

veP,
= O(su) = s = chf([s]).

Now the isomorphism follows from (A.26) that chf is an isomorphism. (]

A.2. Supersymmetric polynomials

A.2.1. The ring of supersymmetric polynomials. Let x = {x,x2,... ,Xm} and
y={y1,¥2,,...,¥n} be independent indeterminates. A polynomial f in Z[x,y] is
called supersymmetric if the following conditions are satisfied:
(1) fis symmetric in xj,...,Xp.
(2) fis symmetric in y1,...,¥n.
(3) The polynomial obtained from f by setting x,, = y, = is independent of
f.

Denote by A, the ring of supersymmetric polynomials in Z[x,y]. For a field F,
we denote the base change by A () r = F @7 A(y|n)- We call an element f € Zlx,y]
satisfying (1) and (2) above doubly symmetric.

For r > 1 set
G:n,n = Zx;— zy;

Then o, ,, is supersymmetric. Let

n

|:]m,n ::H (xi_yj)'

i=1 j=1

Note that O, , is supersymmetric. Also, if g is doubly symmetric, then gllmn 18
supersymmetric.

(A.30) Let g be doubly symmetric. Then g0, , is a polynomial in {Gy, , | r > 1}.

Proof. We proceed by induction on n (for arbitrary m), with the case n = 0 being
clear.
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Let n > 1. We may assume, without loss of generality, that ¢ is homogeneous
of degree k > 0, and we proceed by induction on k. Consider

qu.nlyn:O - 6]|y,,:0X1 e 'xmljm,n— I

By the induction hypothesis on n, there exists a polynomial gin {G} , ..., oM
such that
] .
ql:]m,n |)’n=0 = g(om.n—] Yo >G;n,n—1>'
Note that

1
g(GmJH e >G:n~n)|xm=)’n=l = quJl ’Xm=Yn=0 = O’

Thus x,, — y, divides g(c}, ,,,-..,0%,,). Since g(G} s --.,00,,) is doubly symmet-
ric, it follows that

(A3 1) g(cr]n,nv fe 7Girn,n) = q*Dma"’

for some doubly symmetric polynomial ¢*. Now

4" Dnnly,=0 = g(or]n,n—l s 1Omn1) = q0mnly,=0-
Hence y, divides ¢* — q. Since ¢* — ¢ is symmetric in y1,...,y,, we conclude that
there exists a doubly symmetric polynomial f such that
(A-32) qu,n = q*Dm,n +yi- 'ynfDm,n‘

Note that f has degree k —nifk >nand f =0if k < n.
In the case when k < n we have f = 0. Hence we are done by (A.31).

Suppose that kK > n. Write f as a polynomial in terms of G, and oy ,, for
u,v > 1. Replace every o, , in this very polynomial by 6* +1pand denote by f* the
resulting homogeneous doubly symmetric polynomialin Z[xi,..., Xpui1, Y1, Vu)-
Since f* has degree k —n < k, we have by the induction hypothesis on k that there
exists some polynomial % such that

f*Dm-t-l.n = h(G}nJr],na s 7G;Yn+lqn)‘
This implies that
yio o YufUmn = (_1)nf*l:|m+l,n{xm+1:0 - (_l)nh(crln.nv e ’an.n)’
and hence (A.30) follows from (A.32). [

r

(A.33) The algebra A, q of supersymmetric polynomials is generated by Gon
forallr > 1.

Proof. We proceed by induction on  to show that every supersymmetric polyno-
mial p € Q[x,y] is a polynomial in {c/,,, | » > 1}. The case when n = 0 is clear.
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Let n > 1 and p € Q[x,y] be a supersymmetric polynomial. Then, the polyno-
mial p|y,—y,—0 INX1,. .., Xm—1 a0d Y1,...,Yn—1 is supersymmetric. By the induction
hypothesis on n, there exists a polynomial f such that

1
p’xm:ynzo = f(om—l,n—l 1ty G;’l‘l,l’l—l)'
Set f* := f(Gpyps---+Omy)- Then (p— f*)|x,=y,= = 0, and hence x,, — y, divides

2 Vmn

p — f*. By double symmetry [J,, , divides p — f*, and hence there exists a doubly
symmetric polynomial g such that

p=f"+qnn
By (A.30), g0y, is generated by {c}, , | 7 > 1}, and hence so is p. O

We similarly define the ring of supersymmetric functions A .. and prove the
following n = e version of (A.33).

(A.34) The algebra A .., o of supersymmetric functions is generated by G, ., for
p | (ml=),Q m,
allr > 1.

Proof. Let f € A(y.), - Assume that f is homogeneous of degree k. Then f,) 1=
Slyne1=yn 2=-—0 is supersymmetric and hence, by (A.33),

f(n) = g(crln,m st G:n,n)‘

Consider the element
f— g(G}",m, ey (5;1790) S A(m‘w),@.

The expression f — g(o}nﬁm, ...,0, ) is homogeneous of degree k and contains no
monomials made up of only x1, ..., X, V1,-.., Vs It follows by the symmetry of the
y variables that f — (G ee; -+, Opycc) = 0. O

A.2.2. Super Schur functions. Define K(m‘ n) to be the subring of the ring of dou-
bly symmetric polynomials over Z in the two sets of variables {xi,...,x,} and
{y1,---,Yn} consisting of polynomials f such that f|,—=—,, is independent of ¢.
Evidently f(x,y) € /~\m‘n if and only if f(x, —y) is supersymmetric; hence, we have
an isomorphism of rings

(A.35) Py Ay — Agmjn)»
given by p,(f(x,y)) = f(x,~y). We define the ring /~\(m|m) accordingly, and it is
isomorphic to A (yfe)-

Regard A as the ring of symmetric functions in xy,x2, ..., and identify the vari-
ables x,,+; = y;, for i > 1. By applying the involution ® on the y variables, denoted
by oy, to the set of infinite variables {y|,y2, ...}, we obtain a ring homomorphism
Oy : A — Ay Indeed, by (A.7), we have

(A.36) Oy (pr) =)+ A X+ (1) OV H ) € Appgen)-
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Since the p,’s, for r > 1, are algebraically independent generators of Ag by (A.2)
and (A.6), we conclude that wy(Ag) C A(m)oo),@> and 50 @y (A) C A(mjeo) 0N ZJx,y] =
Anjes)- Now (A.34) and the fact that Py ' (@y(pr)) = Oy 7> 1, imply that p; ! o
Oy : AQ = A(ppes), IS a ring isomorphism. This implies that Oy 1 AQ = Apjer) ©
is an isomorphism. The inverse isomorphism On L /~\(m|m)yQ — Ag, which is again
given by the involution o on the y variables, clearly satisfies that o, ! (/N\(,,llw)) CA.
Hence, o, : A — A(mj) 18 a ring isomorphism.
Define the super Schur function hs)_associated to a partition A by

(A.37) hsy (x;y) = Z $u(X) S/ ()-
uCA

The definition of hs) (x;y) makes sense for x and y being finite and infinite. By
(A.20), we have for y infinite

(A.38) oy (s2(x.y)) = hsp(x:).
(A.39) The map w, : A — K(m,w) is an isomorphism of rings. In addition, the set
{hsp (xt, .. xmsy1,¥2,.. ) A EPYisa Z-basis for K(m|w).

The map K(m,m) — K(m[n) obtained by setting the variables y; = 0, for i > n, is
a ring epimorphism. Furthermore, it sends the super Schur function corresponding
to an (m|n)-hook partition to the respective super Schur polynomial corresponding
to the same (m|n)-hook partition. The other super Schur functions are sent to zero.
Evidently, the super Schur polynomials corresponding to (m|n)-hook partitions are
linearly independent. Thus we have the following.
(A.40) The set {hsy}, as A runs over all (m|n)-hook partitions, forms a Z-basis for
Agin.

The Cauchy identities in (A.11) admit the following super generalization.

(A41) Let x = {x1,x2,...},y = {v1,32,... },2 = {z1,22, .. .} be three sets of (possi-
bly infinite) indeterminates. The following identity holds:

I (1 4yjzi) . .
Hik(l —XiZk) - xezj)hs}»(x’y)s}»(z)'

Proof. It suffices to prove the claim in the case when all three sets of indetermi-
nates are infinite. A variant of the Cauchy identity in (A.11) can be written as

1— L — Y ne)n).

ik (1 —xizx) ik (1—yjz) AeP

Now the claim follows by applying the involution ®, on the y variables to both
sides of the above equation and using (A.38). O
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A.3. The ring I" and Schur Q-functions

A.3.1. Thering I'. Let x = {x,x,...}. Define a family of symmetric functions
qr = qr(x), r > 0, via the generating function

(A42) 0() = ¥ (0" = []

>0 i l=tx

Note that go(x) = 1, and that Q(¢) satisfies the relation
(A43) 0()Q(—1) =1,

which is equivalent to the identities:
2 (-1)"q,gs=0, n>1.

r+s=n
These identities are vacuous for n odd. When n = 2m is even, we have
m—1 | 1 5
(A.44) Gm =2, (=1 4rqom—r = 5(=1)"4y
r=1
Let I" be the Z-subring of A generated by the g, ’s:

r:Z[QI,QL%a---]-

The ring I is graded by the degree of functions: I' = ,5( I, where " =T'NA".
We set

Fg=Q®zI, Tc=C®zI.
For a partition g = (uy, . ..,1¢), we denote

14
Qu = I-Il‘lui-
i=

We shall denote by OP and §P the sets of odd and strict partitions, respectively.
(A.45) The ring I'g enjoys the following remarkable properties:
(1) T'g is a polynomial algebra with polynomial generators pa, 1 forr > 1.
(2) Tg is a polynomial algebra with polynomial generators qa, 1 for r > 1.
(1) {py | u € OP} forms a linear basis for I'g.
(2) {qu | u € OP} forms a linear basis for T'g.

Proof. Recall the generating function for the power-sums: P(t) =Y, prtl We

have ,( ) y
Q t _ _ ) 2r
Q(t) dt an(t) P(t) P( t) - 2;20, Par117 .

It follows that Q' (1) = 2Q(t) 3,0 p2r+11*", from which we deduce that

rqr =2(p1gr-1 + P3gr-3+...),
with the last term on the right-hand side being p,_ g1 for r even and p, for r odd.
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By using induction on r, we conclude that (i) each g, is expressible as a poly-
nomial in terms of p;’s with odd s; (ii) each p, with odd r is expressible as a
polynomial in terms of g,’s, which can be further restricted to odd s (note that each
¢r can be written as a polynomial of ¢; with odd s by applying (A.44) and induction
on r). So

F@ = Q[Pl»PL-w] :Q[CI],Q?,,...].

Since the p,’s (for r odd) are algebraically independent by (A.6), we have proved
(1). (2) follows from (1) by the above equation and dimension counting.

Clearly, (1') is equivalent to (1), while (2') is equivalent to (2). g
(A.46) {qu | u € 8P} forms a Z-basis for I. Moreover, for any partition A, we have

qr = 2 aQndu,
UESP =)

for some ap, € 7.

Proof. We claim that g, lies in the Z-span of {g, | 4 € 8P,,u > A}, for each par-
tition A of a given n. This can be seen by induction downward on the dominance
order on A as follows. The initial step for A = (n) is clear, as (n) is strict. For non-
strict A, we have A; = A; = m for some i < j and some m > 0. Applying (A.44) to
rewrite g), easily provides the inductive step.

According to a formula of Euler, |8P,| = |OP,|. Now (A.46) follows from Part
(2) of (A.45) and the above claim. We record here a short proof of Euler’s formula:

2. 18Pulg" = H(1+qr):Hr21(1+Q’)(l—q’)

n>0 r>1 HVZl(l - qr)
Hr>1(1_q2r> 1
= = 0P,
M>1(1-q")  Ir>1,0aa(1— ngf)l 7"

(A.4T7) We have g, = Yyco?, ZZ(OL)Z&IPOL-

Proof. As seen in the proof of (A.45) above, we have

r>1

Q(t) =exp (22 5P Ve 1>,

Now (A.47) follows by comparing the coefficients of " on both sides. U
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A.3.2. Schur Q-functions. We shall define the Schur Q-functions Q;, for A € 8P.
Let
Q(n):qnv n>1.
Consider the generating function
Hn—n
1,ly) = t n)—1 .
Q(t1,12) == (Q(t1)Q(12) )fl T

By (A.43), Q(11,t2) is a power series in #; and f2, and we write

Q(t]>t2> = Z Q(r,s)ti‘tg'

rs>0

The following can be checked easily from the definition by noting Q(t1,f2) =
—Q(t2,11).
(A.48) We have Q) = —Q(s.1)> Q(0) = qr- In addition,

s

Q(r,s) =qrqs + 2 2(_ 1 )iqi‘JriqS‘ia r>s.
i=1

We recall the following classical facts (see Wikipedia). Any 2n x 2n skew-
symmetric matrix A = (a;;) satisfies det(A) = Pf(A)?, where Pf(A) is the Pfaffian
of A given by
(A.49) PE(A) = sgn(0)as(1)6(2) - - - Ao(2n—1)o(2n)s

G

summed over 6 € Gy, such that 6(2i — 1) < 6(2i) and 6(2i — 1) < 6(2i+ 1) for all
admissible i. Equivalently, Pf(A) can be defined as the above sum over the whole
group &,,, divided by 2"n!.

Definition A.4. The Schur Q-function Q;, for A € 8P with {(A) < 2n, is defined
to be the Pfaffian of the 21 x 2n skew-symmetric matrix (Q, 1)) 1<i,j<2n-

Example A.5. For indeterminates ?i,...,t,, let A = (a;;) be the 2n x 2n skew-

. . . ti—t;
symmetric matrix with a;; = 7. Then,
Ly

l,'—l‘j

Pf(A) = P
I<i<j<an i Tt

Remark A.6. Equivalently, QO is the coefficient of ti“ .. .t%;" in

Q(tl yoee ,{2,,) = Pf (Q(ti,l‘j)).
It can be shown that Q(ry,...,1,) is alternating in the sense that

Olts(1)s- - +sto(an)) = sgn(6)Q(t1,. . . tan), VO € Gop.

It follows that Q; = 0 unless all parts of A are distinct.
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(A.50) For . € 8P with £(A) < n, Oy, is equal to the coefficient ofti”t;" ... in
i —1j
o(n)...Q(t) ,
151-1191 ti+tj

r=t; Z1.
where it is understood that ;= = 1 +23, s (1) )"

The statement of (A.50) can be found in [83, (8.8), pp. 253]. The following
recursive relations for Q; are obtained directly by the Pfaffian definition of Q) and
the Laplacian expansion of Pfaffians (see Wikipedia).

(A.51) Fora strictpartition A=(A1,..., A\m),

O = ( 1)/Q0u ) Oty JOT MEVER,

AMS Ti M:

0, = QMHQQWXWM,MmMi _____

Jj=1
(A.52) For A € 8P, we have

=g+ Y Gyl
HESP, L>A

It follows from the recursive relation (A.51) that O is equal to g; plus a linear
combination of gy for v > A (not necessarily strict). Now (A.52) follows since each
gy is expressible as a linear combination of g, with strict partitions y > v by (A.44)
(this fact has been used in the induction step in the proof of (A.46)).

As an immediately corollary of (A.46) and (A.52), we have
(A.53) {Qy | A € 8P} is a Z-basis for T. Moreover, for any partition u, we have

qu = 2 E)u/JQ?\.?

AESP AU

where Ky, € 7 and K, = 1. (Clearly, one can further assume that p is a composi-
tion instead of a partition in the statement.)

Indeed from representation-theoretical consideration it can be seen that I?;w >0
(cf. Chapter 3, Lemma 3.50) .

A.3.3. Inner productonT. Letx= {x,xz,...} andy = {y,y2,...} be two inde-
pendent sets of variables.

(A.54) We have

14+xv;
12 = Y 2192, () paly)
i,j 1 —XiYj acOP

=Y mu(x)qu(y)

peP
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Proof. Let xy = {x;y;|i,j=1,2,...}. It follows by (A.42) that

1+ xiy;
H Xzyj' _ an(xy) — z 2€(a)z(;1pa(xy).

n>0 acOP

Now the first identity follows since po(xy) = po(x)pa(y). We further compute that
1+x;y; < ri
= ar(y)x;
li,—jI 1- Xi¥j U rgo " l

= 2 m,u(x>qll()’>'

HeP

The second identity is proved. O

We define an inner product (-,-) on I'g by letting

(A.55) (P> Pp) =27 @280,

(A.56) Let {uy},{vy} be dual bases for T'q with respect to (-, -). The following are
equivalent:

(l) <u7w vﬁl> = Sl,u V)Va.U;
@) Tt =1 Lt

ij 1 =Xy

Such an equivalence can be established by the same standard argument as
(A.15), now based on (A.54).
(A.57) We have
(01, Q) =28y, A ueSP.

Equivalently, we have

H1+Xiyj _ z 7—(A) 0,(xX)0L().

ij L=xiyj  esy

A rather nontrivial direct proof of (A.57) can be found in Jézefiak [S7]. Alter-
natively, one first works on the generality of Hall-Littlewood symmetric functions
0, (x;1) for all partitions A, and then (A.57) can be obtained as a specialization at
t = —1. For details we refer to [83].

From the Hall-Littlewood approach, the Schur Q-function, for a strict partition
A with £(A) = £ and m > £, is equal to

A o Xi+x;
(A5 Q) =2 ¥ w(dtod T TT 27),
wES,/Spm—¢ 1<i<bi<j<m ™1 J

where the symmetric group &,, acts by permuting the variables xi,...,x, and
GS,,—¢ is the subgroup acting on xy41,. - -, Xm-
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A.3.4. A characterization of I". Denote by I, the counterpart of I' in m variables,
which consists of symmetric polynomials obtained by setting all but the first m
variables to be zero in the functions in I". We define

O:= J] Gi+x)).
1<i<j<m

(A.59) Let f be any symmetric polynomial in m variables. Then fO lies in T,

Proof. Let A be a partition with £(A) < m and let p = (m— 1,m—2,...,1,0) so
that A+ p is a strict partition. Then Onip(X1,...,Xm) € T Now by (A.58) we see
that the Schur Q-polynomial Q) ., (x1,...,x,), up to a 2-power, is equal to
z w<x§u1+m—1 oo H Xf—f-xj)
weB,, 1<i<j<m X —Xj

1_[ (xi+Xj) z Sgn(W)W(X?]H"‘Al"'X?;{")

1<i<j<m (xi —x;) weS),

ap
= - H (Xf“i-X‘/) :sk(’xlw"axm)[:]-
B 1<icij<m

Since the Schur polynomials sy (x1,...,x,) form a basis for the space A,,, this
proves the lemma. UJ

We have the following characterization of T".

(A.60) Let g € A. Then g € T if and only if it satisfies the cancelation property that
8lxi=—x;=1 Is independent of t for some i # j.

Proof. Clearly, the power sums p, for r odd satisfy the above cancelation property,
and so does any element in I,

To prove the converse, it suffices to do so in the setting T, of m variables.
We shall show that if g € A, is a symmetric polynomial in xi,...,x, such that
8ly——x =+ 1s independent of ¢, then g can be written as a polynomial in the odd
power sums {py+1 | k € Z.}. Observe that 8lx=—x;= is independent of ¢ for
some particular choice of i, j with i # j if and only if it is independent of ¢ for all
(nonidentical) pairs i, j.

We first note by (A.59) that glJ € T',, for any symmetric polynomial g. We
proceed by induction on m. If m = 0, 1, then the cancelation property is vacuous.

Assume thatm > 2. Let p,, | denote the (2k+ 1)st power-sum in the variables
X1,...,%u—2. Then the polynomial g, ,—_,, =0 is symmetric in xi,...,X,_», and
it satisfies the cancelation property. By the induction hypothesis on m, there exists
a polynomial f such that

g|xm—l=“xm=0 :f(p/]7"‘7p/27+1)‘
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Set f*:= f(p1,---,p2r+1). Then (g — f*)|x, ,=—x,=r = 0, and hence X, + X
divides g — f*. Since g — f* is symmetric in x1, ..., Xp, (] divides g — f*, and thus
there exists a symmetric polynomial g such that

g=f"+4q0.
By (A.59), g(1 is generated by the odd power sums in the variables xi, ..., x;, and

hence so is g. O

A.3.5. Relating A and T'. There is an intimate connection between the rings A
and I. Recall a homomorphism ¢ (cf. [83, III, §8, Example 10]) defined by

¢:A—T,
[ 2p,, for r odd,
(A.61) ¢(pr) = { 0, otherwise,

where p, denotes the rth power sum. One checks by definition that

@(H(1)) = 0(t).
This can be reformulated as follows.
(A.62) We have

O(hn) = gn (Vn>0),  @(hy) =qu, (FHED).

The homomorphism ¢ admits a categorification involving representations of
the symmetric group; see Exercise 3.13.

Suppose that A is a strict partition of n. Let A* be the associated shifted diagram
that is obtained from the ordinary Young diagram by shifting the kth row to the right
by k — 1 squares, for each k. Denoting ¢(A) = £, we define the double partition A
to be A = (M, A)A1 — 1,42 — 1,...,A¢ — 1) in Frobenius notation.

Example A.7. Let A = (4,3,1). The corresponding shifted diagram A" and double
diagram A are

L -
A= 3

(—

We have the following basic property that relates Schur and Q-Schur functions.
(see [83, 111, §8, 10]).

(A.63) o(s;) =2""MQ5, VAESP,.
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A.4. The Boson-Fermion correspondence

A.4.1. The Maya diagrams. The Maya diagrams are by definition the functions
f:3+Z— {+£} such that f(n) = + and f(—=n) = —, for n>> 0. In other words,
a Maya diagram is an assignment of the signs + to the unit intervals on the real
line associated to the lattice Z with fixed asymptotic values % at infinity. These
intervals are naturally labeled by 1/2 + Z, and we shall identify them.

A Maya diagram f can be reconstructed by knowing the subset m of % +7Z
which is the preimage of + for f, which is simply an increasing sequence m =
{m;};>1in { +Z, such that

my <my<m3<..,andmj=mj_;+1for j>0.
In this appendix, we shall identify Maya diagrams with such sequences m.
Example A.8. Consider the following Maya diagrams:
- - - - 4+ + + + + +

m-: v T 1 f f t t f f t
-3 -2 -1 0 1 2 3 4
- -+ o+ + + o+ o+ o+ 4
mb: t f f t t t f f t t .
-3 -2 -1 0 1 2 3 4
i -+ - + 4+ - 4+ - 4+ 4+
me : o t f t t f t f f t
-3 -2 —1 0 1 2 3 4

The Maya diagram m? is obtained from m? by changing signs from — to + at inter-
vals —% and —%. The diagram m® is obtained from m“ by changing signs from —
to + at intervals —3 —% and from + to — at 2, 7. In terms of infinite sequences, we

20 217
_ 1 b _. 3 11335 p __ 5 115911
havema—§+Z+,m _(_i’_i’f’i’i"“)"mdmc—(_5’_5’5’575’7"")'

A.4.2. Partitions. To each Maya diagram m = {m,};>;, we assign an integer,
called the charge of m,

. 1
bm = lim (j—m; — 5)
and a partition
(A.64) M= (1/2—my —lm,3/2—my — ln,5/2 —m3 — by, ....).

Recall that P denotes the set of all partitions. The following can be viewed as the
Boson-Fermion correspondence at the combinatorial level.

(A.65) The map m — ({m, ) is a bijection between the set of Maya diagrams and
the set Z x P of “charged partitions” .
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Proof. We will use primarily the example of m® in Example A.8 to illustrate how
to visualize the Young diagram associated to Apc. Let us draw a new diagram
following the signs on a Maya diagram from far left to far right as follows. We
move to the southeast direction by one unit for each unit interval with a minus
sign on the Maya diagram of m¢, and move to the northeast by one unit for each
unit interval with a plus sign on. As a result, we obtain the zigzag path in the first
diagram below. The path is labeled by the unit intervals on the Maya diagram.
Extending the two line segments coming from minus infinity and going to plus
infinity, respectively, a finite bounded region emerges. This region can be further
partitioned by solid lines as in the second diagram, and from which we read off the
partition Ame = (3,2,2, 1) starting from the southwest row. It is easy to identify the
partition obtained in this way for a Maya diagram m with the partition Ay defined in
(A.64). The vertical dashed line on the first diagram indicates that the intersection
of the two infinite line segments corresponds to the coordinate O separating the two
unit intervals —% and % From this we read off the charge {mc = 0.

Observe that uniformly shifting every sign on a Maya diagram m one unit in-
terval to the left gives rise to a Maya diagram whose charge is £y, + 1. For example,
the m® can be obtained from m?® by such a uniform shift to the left twice, and so
£mb = fma + 2. Such a shift clearly corresponds to a uniform shift of the labels on
the corresponding zigzag path in the first diagram. Hence, it suffices to show that
the set of Maya diagrams with charge 0 is in bijection with the set of partitions via
m — Ap. This bijection follows since we can easily reconstruct the labeled zigzag
path (and hence the Maya diagram) from a given partition A by first using a dashed
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diagonal line on the upside-down Young diagram for A (whose first southwest row
has A boxes) to locate the coordinate 0 point. a

A.4.3. Fermions and fermionic Fock space. Let F be the vector space with a
linear basis given by the symbols |m) parameterized by the Maya diagrams m. We
will call F the fermionic Fock space.

Note that different Maya diagrams are related by changing signs at finitely
many intervals, and let us consider changing signs to a Maya diagram one interval
at a time. Accordingly, we define the linear operators ",y on F, forn € % +7Z,
as follows:

Yy, jm) = (=D miy, Ay migy, L), if mg = —n for some i,
! 0, otherwise,

wim) = (—1)i]...,mi,n,mi+1,...>, if mj <n < m;, for some i,
! 0, otherwise,

where, as usual, m; denotes omission of the term ;. That is, y, corresponds to
the sign change at —n if the initial sign at —n is 4, and ;" corresponds to the sign
change at n if the initial sign at n is —.

Remark A.9. Let V be a vector space with a standard basis v;,i € % + 7Z, and let
{v{} denote its dual basis. It is instructive to regard each vector |m) as a semi-
infinite wedge vm := Vi, A Vi, AVy A+ -. The signs in the above definition of ;-
can be explained naturally by identifying vy, as the contraction operator v* , and
y;" as taking the exterior product with v,. In this way, the Maya diagram model
is canonically identified with a semi-infinite wedge model of the fermionic Fock
space F.

It is possible to use the subset m := f~!(—) of % + Z, which is the comple-
mentary subset of m = f~!(+), to identify with a Maya diagram f. Then m would
be naturally identified with a semi-infinite wedge that goes to —oo (instead of oo).
We will not adopt this convention in this book.

We shall refer to |%, %, %,) as the vacuum vector of F and denote it by
|0). Let us quote Dirac from his book “The Theory of Quantum Mechanics”: The
perfect vacuum is a region where all the states of positive energy are unoccupied
and all those of negative energy are occupied. We took the liberty in switching
“positive” with “negative” in this exposition.

Our convention is to consider the operators W as odd operators and the com-
mutators among them to be anti-commutators: [A,B], = AB+ BA.

(A.66) The following anti-commutation relations hold for all m,n € % +Z:
[W:vw;z}-i- = Bn,_ml, [W:’W;]+ =0, [W;'W;z]+ =0.
In particular, (y,)? = (y;))? =0.
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Proof. This follows by a direct verification using the definitions of yE, It corre-
sponds to the fact that the processes of changing signs at two (possibly identical)
intervals are interchangeable. g

One also verifies directly the following.
(A.67) We have W, |0) =y, |0) =0, for n > 0.

Denote by @ the Clifford (super)algebra generated by =, forn € % +7Z, subject
to the relations in (A.66).

(A.68) A linear basis for F can be given by

(A.69) (VAR VAFSPRS VAN VAT A (O

forpp >py>...>p,>0and g, > q2 > ... > qs > 0 with r,s > 0. The basis
element (A.69) is equal to m (up to a sign), where m is obtained from the set
% +7Z.y by deleting q,,...,qs and adding —p1,...,—p;.

The Fock space F is an irreducible module of the Clifford algebra ¢ generated
by the vacuum vector |0).

Proof. The identification of the vector (A.69) with m up to a sign follows from the
definitions of y:F, which correspond to the additions and removals of the + signs.
The irreducibility follows from the fact that one Maya diagram can be transformed
into another by changing the signs one interval at a time. O

Example A.10. We have jm®) = —y ™ /2\|1f1 2V 72V 3210), for m¢ from Exam-
ple A.8.

We define the half-integral Frobenius coordinates for a partition A as fol-
lows. Draw the Young diagram for A in the English convention, and draw a diago-
nal line from the vertex (0,0) that divides the Young diagram into two halves. We
then record the lengths of rows of the upper half and the columns of the lower half
as (p1,p2,---,Prlq1,92, - - -,qr), Where each p;, g; lie in % + 74, and

p1>p2>...>pr> 0 qg>qp>...>q->0.

The sequence (p| — %,pz — %, e Pr— %’(II — %,...,qr— %) is Frobenius’ original
notation for the partition A (see Macdonald [83, p. 3]). For example, the modified
Frobenius coordinates for the partition (3,2,2, 1) are (%, % %, %)

It turns out that the indices p;,q; in (A.69) (at least when r = s) have natural
interpretations in terms of partitions.

(A.70) Let m be a Maya diagram of charge 0. Write (p1,p2,....Prlq91,92,---,9r)
for the modified Frobenius coordinates for the partition hym. Then, up to a sign,

im) is equal toy* , W ot wT WDy, [0).

2
The sign in (A.70) can be computed to be (—1)91+-F4~ 7,
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Proof. The proof follows from two observations that work for any general Maya

diagram of charge 0, and we will illustrate below using our running example m°

from Example A.8: (i) In the diagrams appearing in the prootf of (A.65), the two 2
5

corresponding to the + sign to the left of the dashed vertical line are —3, —%, and

the opposites of the 2 labels corresponding to the — sign to the right of the dashed
vertical line are —%, —%; they are exactly the indices of the y*s in the formula
|m¢) = —‘l’f5/2\lff1/2\lf:7/2‘lf:3/z|0> by (A.68). (ii) The modified Frobenius coor-
dinates for the partition (3,2,2,1) are (3, 3|1, 3), and they precisely correspond to
the 2 + 2 labels specified in (i). O

We form generating functions (called fermionic vertex operators) y*(z) in a
formal variable z by letting

(A7) Ve = X vt v= X v

ne3+Z ney+7

A.4.4. Charge and energy. We define the energy operator Lg as a linear oper-
ator on J that diagonalizes the basis elements (A.69) with eigenvalues p; 4 ...+
pr+q1+...4+qs. In addition, we define a charge operator 0y as a linear operator
on J that diagonalizes the basis elements (A.69) with eigenvalues » —s. The ele-
ment (A.69) will be said to have energy pi +...+p,+4¢i1 +...+¢; and charge
r — 5. We have the following charge decomposition:

F=p7",
leZ
where F) is spanned by the basis vectors (A.69) of charge ¢. We shall see that the
notion of charge here matches the notion of charge ¢y, for a Maya diagram m.

(A.72) For each ¢ € Z, F has a basis |m) parameterized by the Maya diagrams
m = {m;} j>1 that satisfy by = {.

Proof. By definition, Y, of charge —1 corresponds to the removal of a term from a
Maya diagram m = (m;,my, .. .), which decreases the integer /r, by 1. On the other
hand, the operator ;" of charge 1 corresponds to the creation of a new sequence
(i.e. Maya diagram) by the insertion of a term into a sequence m, which increases
the integer ¢, by 1. This means that the two notions of charge are identical up to a
possible constant shift. This constant must be zero once we observe that |0) = |m“)
is clearly in F(© and also ¢ = 0 by definition. ad

For ¢ € Z, we let

v, vy 0), if >0
2 5 3
AT 6= 0), if£=0
Ve WL 0), i £<0.
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In particular, [1) = y*|0) and |-1) =y, |0). The following is easily verified.
2 ~3

(A.74) For each { € Z, the element |£) € T has the minimal energy, which is
€22, among all vectors (A.69) of charge (.

A.4.5. From Bosons to Fermions. The Heisenberg algebra $jeis is the Lie alge-
bra generated by a; (k € Z) and a cental element ¢ with the commutation relation:

(A.75) [am,an] = mdy, _nc, m,n € 7.

In particular, ag is central. The Heisenberg algebra $eis acts irreducibly on a
polynomial algebra BO .= Clp1,p2, ...} in infinitely many variables py, pa, . .., by
letting a_j (k > 0) act as the multiplication operator by kpi, a; (k > 0) act as
the differential operator 3%, ¢ act as the identity 7, and ag act as /I, for £ € C.

The $eis-module B is irreducible, since any nonzero polynomial in B can be
transformed to a nonzero constant polynomial by a suitable sequence of differential
operators and then produce arbitrary monomials by the multiplication operators.
The $eis-module B is a highest weight module in the sense that a,.1 = 0 for
n > 0, and any highest weight feis-module generated by a highest weight vector v
such that c.v = v and ag.v = #v is isomorphic to B,

Similarly to (5.45), we introduce the normal ordered product

it _ | WAV, ifn=-m <O,
WmWn s = { yiw,,  otherwise.

Define the bosonic vertex operator 0l(z) = Yyez 0z < ' by letting

(A.76) oz) =Y oz =yt (v (o)

keZ
which is equivalent to defining componentwise
(A.77) = Wiy, keZ

nei+Z
Note that

oo = Y, WoW, — 2 Wi,

n>0 n<0
is a well-defined linear operator on .

The following is (one half of) the Boson-Fermion correspondence.

(A.78) Let ¢ € Z. The Heisenberg algebra $eis acts on F (©) by letting c — 1,09 —
(-1, and ay — 0Oy, for k € Z. That is, the following commutation relation holds:

(A.79) (O, O] = MOy, 1, m,n € 7.

Moreover, the $eis-module FY) is irreducible and it is isomorphic to ;108
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Proof. We shall be free to use the following (anti-)commutator identities:
[AB,C] = A[B,C]+ — [A,C]+B = A[B,C] + [A,C]B.

By a direct computation using the anti-commutator identity, we have
1
[(xkv\ﬁ]:i\l’;in, kEZ,n€5+Z.

The identity (A.79) follows by another computation using the commutator identity.

By definition, the operators o have charge 0. Hence, oy (F(9) C F); that is,
F is a Heis-module.

For p,q > 0 and m of charge £, wZ,y~,lm) = £|m') if it is nonzero, where m'
is obtained from m by replacing a term ¢ appearing in m by a new term —p, and
the charge of m’ remains ¢. Recalling the definition (A.64) of the partition Amy, we
see that [Am| = [Am|+ p +¢. This implies that the energy of m is equal to |Am| up
to a constant shift that depends on the charge £. The constant is determined to be
¢2/2 by recalling (A.74) and noting A, = 0. Hence, the energy of the element |m)
is [Am| + €2, /2. From this it follows that the g-dimension (or graded dimension) of
F® is given by

2
g —__ 47
tr|gq T (=g
On the other hand, note that the energy operator Ly satisfies (and is indeed
characterized by) the following properties: (i) Lo|0) = 0; (ii) [Lo, y=,] = nyt,, for
all n € 1+ Z. It follows from (A.77) that

(A.80) [L(),Ot_k] = ko_p, k € 7.

Note that o |¢) = 0, for k > 0, and 0,|¢) = ¢|¢). Hence, the irreducible $eis-
submodule of F generated by |¢) is isomorphic to B() and has g-dimension
2
equal to ﬁ’ the same as the graded dimension of F. It follows that the
k=1
HHeis-module F is irreducible. O

Remark A.11. From the proof, we have [0, yE] = +y for n € % +Z. This
together with 0,p|0) = O implies that o here can be identified with the charge
operator defined earlier.

The other half of the Boson-Fermion correspondence allows one to reconstruct
the fermions y*(z) in terms of the boson o(z). We will formulate the statement
but skip its proof. Denote by S : F(©) — F+1) the ghift operator that sends |¢) to
|¢+ 1) and commutes with the action of oy for all k # 0. Then

vEE) = SHep( [ o))

i i
_ S:I:]Zi(xoe:FEj<:o ~—,—ocje¥2,>n 5o
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A.4.6. Fermions and Schur functions. By the Boson-Fermion correspondence
(A.78), we have an isomorphism F (0) 2 BO), On the other hand, we can naturally
identify B(® with the ring of symmetric functions A by identifying a_y, ... 0t_»,|0)
with the power-sum symmetric functions py, for all partitions A = (A1,...,A). Let
us denote by © : F (0) —5 A the composition of the above two isomorphisms. Recall
that the Schur functions s) form a linear basis for A, and recall from (A.64) that a
partition Ay, is associated to a Maya diagram m.

(A.81) The linear isomorphism © : FO) — A sends a Maya diagram m of charge O
to the Schur function ).

A proof of this can be found in [65]. The following supporting examples can be
verified via a direct computation by repeatedly using (A.77); the elements in terms
of y*’s can be converted to the elements in terms of Maya diagrams via (A.70).

Example A.12. We have

(0‘%—1 +0.2)|0) = ‘Iﬁ_—%‘lf:% |0)

= N =

(0‘2—1 —0_2)[0) = —\I’J_r%\l’:%|0>-

In addition, we have

1 1 1 _
(goﬁ_l + Ea_za_l + 505—3> |0) = \Vi%w_% 0)

1, 1 1 e
(5001 gos0mr-+ 50 ) 0) =7 v )

1 —
5(0(3_1 —0.3)[0) = —y' 5y, 0).
2 2

A.4.7. Jacobi triple product identity.
(A.82) Let q,y be formal variables. The Jacobi triple product identity holds:

d 1 1 &
[T -+ ) (1+47 ) =Y g7y
k=1 leZ

Proof. We compute the trace of the operator g"y® on F in two ways.

First, by the linear basis (A.68) of F and knowing each fermionic operator yE .,
contributes £ to the energy and +1 to the charge, we have

wlggy® = [ (1+gv)(1+4"y").
n€%+Z+
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On the other hand, ) for each ¢ € Z is identified with the bosonic Fock space
B by (A.78). Using (A.74), we compute that

2

L
qzy
trlzq 0y™ = Y trlgogy® =y —F .
ieZi ? éez‘zt',nkzl(l"qk)
The Jacobi triple product identity follows now by equating the two formulas for
the trace and clearing the denominator. 0

Notes

Section A.1. The materials on symmetric functions and the Frobenius characteris-
tic map are fairly standard, and they can be found in Macdonald [83] in possibly
different order.

Section A.2. The characterization of supersymmetric polynomials in A.2.1
appeared in Stembridge [117]. The results on super Schur functions and super
Cauchy identity in A.2.2 can be found in [7, 110].

Section A.3. The materials can be found in Macdonald [83] and in Jézefiak
[57]. The characterization of the ring I" in A.3.4 appeared in Pragacz [98, Theo-
rem 2.11], and is used in Section 2.3.2.

Section A.4. The materials on Boson-Fermion correspondence are standard.
The use of Maya diagrams follows Miwa-Jimbo-Date [87]. Additional applications
of Boson-Fermion correspondence, most notably to soliton equations, can be found
in Kac-Raina [65] and Miwa-Jimbo-Date [87].
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