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FIGURE 1. Polytopes @ and lattices for the toric surfaces Y and W

does not contain any of the four torus-fixed points. Let P € R3 be the pyramid
over Q C 0 x R? with the vertex (2,2,2), to which we associate the monomial 22.
Then the K3 surface X is a hypersurface defined by the equation 22 + f(z,y) in the
projective toric variety Vp associated with P. The polynomials f(z,y) invariant
under 7 are linear combinations of 13 monomials marked by gray dots. Thus, f
defines a point in an open subset U C P'? and in its quotient U/Dyg x (C*)2, of
dimension 10. There are three commuting involutions on X:

del Pezzo tap: (z,9,2) = (Z,y, —2)
Enriques ¢y (z,9,2) = (-2, -y, —2)
Nikulin  Nik: (2,9, 2) = (-2, -y, 2)

which together with the identity form a Klein-four group. Both (g, and tnix are
lifts of 7. On an affine subset of X a nonvanishing 2-form is given by

dz ANdyNdz
w=Resx —5——F— Y
224+ f
One has (jpw = 1, w = —w and ;W = w. So tgp and tg, are nonsymplectic and

nik is symplectic. The Enriques surface Z is then a hypersurface in the toric variety
for the polytope P but for the even sublattice Z3, = {(a,b,c) | a + b+ c € 2Z}. It
is defined by the same polynomial z2 + f(z,y) whose monomials lie in Z3,.

Let R be the ramification divisor of w. The involution ¢tgp on X descends to an
involution 74p on Z, and W = Z/74p. Let Rz and By be the ramification and
branch divisors of p. Then R = ¢*(Rz) and Rz = 14.(R). Since R = §7*(B) is
an ample divisor, Rz is ample as well. One has O(Rz) = L3? € Pic Z.

Horikawa [Hor78b] analyzed in some detail the sets of possible equations f(z,y)
and the maps from various opens subsets of P!? to the period domain D/T" and
its Baily-Borel compactification, introduced in the next section. In particular, he
showed that certain mildly singular f(z,y) vanishing at a torus-fixed point corre-
spond to Coble surfaces, which are Sa-quotients of nodal K3 surfaces.

The GIT compactification P*2//Dy x (C*)? was described by Shah [Sha81], who
gave normal forms for polystable orbits. As usual for the moduli of K3 surfaces
with a projective construction, the relation between the GIT and the Baily-Borel
compactifications is not straightforward, cf. [Loo86] for K3 surfaces of degree 2 and
[LO21] for degree 4 K3 surfaces which are double covers of P! x P!

2.2, The main diagram, special case, The previous section describes the gen-
eral case, when the K3 cover X is non-unigonal, The special case corresponds to a
Heegner divisor in Fi, 2 for which (Y, L) = (IP(1,1,2),0(4)) is a singular quadric.
The toric surfaces Y and W correspond to the same polytope @ shown in the right
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