

FIGURE 1. Polytopes Q and lattices for the toric surfaces Y and W

does not contain any of the four torus-fixed points. Let $P \subset \mathbb{R}^3$ be the pyramid over $Q \subset 0 \times \mathbb{R}^2$ with the vertex (2,2,2), to which we associate the monomial z^2 . Then the K3 surface X is a hypersurface defined by the equation $z^2 + f(x,y)$ in the projective toric variety V_P associated with P. The polynomials f(x,y) invariant under τ are linear combinations of 13 monomials marked by gray dots. Thus, f defines a point in an open subset $U \subset \mathbb{P}^{12}$ and in its quotient $U/D_4 \ltimes (\mathbb{C}^*)^2$, of dimension 10. There are three commuting involutions on X:

del Pezzo
$$\iota_{\text{dP}} \colon (x,y,z) \to (x,y,-z)$$

Enriques $\iota_{\text{En}} \colon (x,y,z) \to (-x,-y,-z)$
Nikulin $\iota_{\text{Nik}} \colon (x,y,z) \to (-x,-y,z)$

which together with the identity form a Klein-four group. Both ι_{En} and ι_{Nik} are lifts of τ . On an affine subset of X a nonvanishing 2-form is given by

$$\omega = \mathrm{Res}_X \, \frac{dx \wedge dy \wedge dz}{z^2 + f}.$$

One has $\iota_{\mathrm{dP}}^*\omega = \iota_{\mathrm{En}}^*\omega = -\omega$ and $\iota_{\mathrm{Nik}}^*\omega = \omega$. So ι_{dP} and ι_{En} are nonsymplectic and ι_{Nik} is symplectic. The Enriques surface Z is then a hypersurface in the toric variety for the polytope P but for the even sublattice $\mathbb{Z}_{\mathrm{ev}}^3 = \{(a,b,c) \mid a+b+c \in 2\mathbb{Z}\}$. It is defined by the same polynomial $z^2 + f(x,y)$ whose monomials lie in $\mathbb{Z}_{\mathrm{ev}}^3$.

Let R be the ramification divisor of π . The involution ι_{dP} on X descends to an involution τ_{dP} on Z, and $W=Z/\tau_{dP}$. Let R_Z and B_W be the ramification and branch divisors of ρ . Then $R=\psi^*(R_Z)$ and $R_Z=\frac{1}{2}\psi_*(R)$. Since $R=\frac{1}{2}\pi^*(B)$ is an ample divisor, R_Z is ample as well. One has $\mathcal{O}(R_Z)=\mathcal{L}_Z^{\otimes 2}\in \operatorname{Pic} Z$.

Horikawa [Hor78b] analyzed in some detail the sets of possible equations f(x,y) and the maps from various opens subsets of \mathbb{P}^{12} to the period domain \mathbb{D}/Γ and its Baily-Borel compactification, introduced in the next section. In particular, he showed that certain mildly singular f(x,y) vanishing at a torus-fixed point correspond to Coble surfaces, which are S_2 -quotients of nodal K3 surfaces.

The GIT compactification $\mathbb{P}^{12}/\!/D_4 \ltimes (\mathbb{C}^*)^2$ was described by Shah [Sha81], who gave normal forms for polystable orbits. As usual for the moduli of K3 surfaces with a projective construction, the relation between the GIT and the Baily-Borel compactifications is not straightforward, cf. [Loo86] for K3 surfaces of degree 2 and [LO21] for degree 4 K3 surfaces which are double covers of $\mathbb{P}^1 \times \mathbb{P}^1$.

2.2. The main diagram, special case. The previous section describes the general case, when the K3 cover X is non-unigonal. The special case corresponds to a Heegner divisor in $F_{\text{En},2}$ for which $(Y,L)=(\mathbb{P}(1,1,2),\mathcal{O}(4))$ is a singular quadric. The toric surfaces Y and W correspond to the same polytope Q shown in the right

$$A^{4}_{u,v,w,2} \begin{cases} z^{2} + f = 0 \\ z^{2} + (u^{2} + v^{2} + w^{2}) = 0 \end{cases}$$

$$A^{4}_{u,v,w,2} \begin{cases} u^{2} + (u^{2} + v^{2} + w^{2}) = 0 \\ u^{2} + (u^{2} + v^{2} + w^{2}) = 0 \end{cases}$$

$$(4, 4, 4, 2) \rightarrow (-x, -4, -2)$$

$$(4, 4, 4, 2) \rightarrow (4, 4, 4) \rightarrow (4, 4, 4)$$

$$n = x_5 \lambda_4$$

$$n = x_4$$

$$n = x_5$$

(15 ant1) (1, 24+1) guz 16 d===2