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1. Introduction (attempt)

Enriques surfaces Y are minimal algebraic surfaces of Kodaira dimension zero
satisfying h1(OY ) = h2(OY ) = 0 and KY ̸= 0 but 2KY = 0. A fundamental
property of an Enriques surfaces Y is that its universal cover X is isomorphic to a
K3 surface1. For both K3 and Enriques surfaces, the theory of compactifications is
very rich: once a polarization L is fixed, there is a Hodge-theoretic period domain
parametrizing isomorphism classes of polarized K3 or Enriques surfaces. These are
bounded Hermitian symmetric domains, and thus for appropriate choices of arith-
metic subgroups, the resulting arithmetic quotients admit Baily–Borel [?], toroidal
[?], and Looijenga semitoroidal compactifications [?].

It is then natural to ask about geometric compactifications such as stable pair
compactifications and how they relate to these Hodge theoretic compactifications.
In a series of recent papers, Alexeev–Engel–Thompson have made breakthroughs
for K3 surfaces (see [?, ?, ?, ?, ?]). In particular, there are explicit and effective
answers to this question for K3 surfaces equipped with a non-symplectic involution
whose fixed locus is a curve.

Stable pair compactifications of the moduli space of Enriques surfaces are less
well-studied. In [?] the second author studied the stable pair compactification

1A K3 surface is a smooth projective surface X with KX = 0 and h1(OX) = 0
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of the moduli space of Enriques surfaces with a degree 6 polarization (Enriques’
original construction) and give a full description for a 4−dimensional subfamily
of the moduli space. One of the obstructions to extending similar results to the
entire 10−dimensional family is the high degree d of the polarization needed. It is
thus natural to consider instead the lowest value possible, which is d = 2. In this
situation, X is naturally equipped with a non-symplectic involution, the Enriques
involution, whose fixed locus is a curve, and thus the theory developed in [?] is
applicable.

However, the theory in [?] does not immediately apply in this situation – one
must account for the fact that there are certain natural geometric automorphisms.
Horikawa gives a construction of a K3 surface X as a degree 2 cover ρ : X → (P1)2

branched over a divisor D ∈ −2K(P1)2 of bidegree (4, 4). It can be shown that ρ is
symplectic and that ρ commutes with the Enriques involution, and thus the theory
in [?] must be modified to keep track of this extra symmetry.

2. Preliminaries

We follow closely the exposition in [?, § 2].

2A. Lattices. By a lattice we mean a finitely generated free abelian group L of
finite rank equipped with a nondegenerate symmetric bilinear form b : L× L→ Z.
In particular, two lattices are isometric there exists an isomorphism of the under-
lying abelian groups which preserves the bilinear forms. Given a set of generators
e1, . . . , er of L, we can associate a Gram matrix given by (b(ei, ej))i,j . The lattice
L is called unimodular provided the determinant of a Gram matrix is ±1. The
lattice L is called even provided b(v, v) ∈ 2Z for all v ∈ L. Given a lattice L we
denote by L∗ its dual HomZ(L,Z). As the bilinear form is nondegenerate, we have
an inclusion L ↪→ L∗ and the quotient AL = L∗/L is a finite abelian group called
the discriminant group of L. The discriminant group AL comes equipped with a
quadratic form qL : AL → Q/Z by sending v +L 7→ b(v, v) mod Z. The lattices for
which AL ∼= Za2 for some positive integer a are called 2−elementary.

2B. K3 surfaces, and nonsymplectic involutions. A lot of the geometry and
moduli theory of K3 surfaces is regulated by lattice theory. For a K3 surface X it is
well-known that H2(X,Z), endowed with the cup product, is an even, unimodular
lattice of signature (3, 19). It follows that H2(X,Z) is isometric to the so-called K3
lattice II3,19 := U⊕3 ⊕E⊕2

8 , where II1,1 is the hyperbolic plane ( 0 1
1 0 ) and E8 is the

negative definite root lattice associated to the corresponding Dynkin diagram. In
particular, symmetries of the surface X translate into symmetries of the K3 lattice
II3,19.

A particularly rich setting is provided by nonsymplectic involutions, i.e. order
2 automorphisms ι : X → X such that the induced map ι∗ : H2,0(X) → H2,0(X)
satisfies ι∗ωX = −ωX . Then we can look at the action of ι∗ on H2(X,Z) and we
denote by S its (+1)−eigenspace. It turns out that S is a hyperbolic 2−elementary
lattice, and all the possibilities for S up to isometries were classified by Nikuln. More
precisely, there are 75 cases which correspond bijectively to the triples of invariants
(r, a, δ), where r is the rank of S, AS ∼= Za2 , and δ is the so-called coparity of L:
δ = 0 provided qL(v) ≡ 0 mod Z, and δ = 1 otherwise.
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3. Moduli via period domains

3A. A general construction.

Remark 3.1. We describe here a construction common to the construction of many
Hodge-theoretic moduli spaces. Let Λ be an ambient lattice, S ≤ Λ a primitive
sublattice, and T := S⊥Λ its orthogonal complement in Λ. Define the period domain
associated to SS to be

Ω±
S :=

{
[v] ∈ P(S ⊗Z C) | v2 = 0 and vv = 0

}
.

As a matter of notation, we also set

ΩS := ΩS⊥ := ΩT .

In cases of interest, we have a decomposition Ω±
S = Ω+

S ⨿ Ω−
S into irreducible

components, both of which are type IV bounded Hermitian symmetric domains
which are permuted by Gal(C/R). We fix a choice of component Ω+

S , and let
O(S)+ ≤ O(S) be the subgroup fixing this component. We then form a locally
symmetric space and a corresponding Baily-Borel compactification

F (S) := O+(S)\Ω
+
S F (S)

bb
:= O+(S)\Ω

+
S

bb

.

More generally, one can let Γ be any neat arithmetic group that acts properly
discontinuously on SΩ+

S . One can then similarly form

F (S,Γ) := Γ\Ω
+
S , F (S,Γ)

bb
:= Γ\Ω

+
S

bb

.

Specific choices of S are used throughout our work to construct various coarse
moduli spaces. In some instances, we must remove a hyperplane arrangement to
form the correct moduli space. Let

H−2 :=

 ⋃
δ∈Φ2(N)

δ⊥

 ∩ Ω+
N =

⋃
δ∈N,
δ2=−2

{
[v] ∈ Ω+

N | v · δ = 0
}
.

and define

F (S,Γ,H−2) := Γ\(Ω
+
S \H−2), F (S,Γ,H−2)

bb
:= Γ\(Ω

+
S \H−2)

bb

3B. Generally finding cusps.

Remark 3.2. We now discuss how ∂F (S,Γ,H−2) can be described lattice-theoretically.

Let Griso(S) be the isotropic Grassmannian of the lattice S, and write ∂F (S,Γ,H−2) =⋃
i≥0 ∂F (S,Γ,H−2)i for a stratification of the boundary by i−dimensional compo-

nents. One can show that there are bijections

Griso1 (L)/Γ ∼= ∂F (S,Γ,H−2)0, Griso2 (L)/Γ ∼= ∂F (S,Γ,H−2)1,

and so 0-cusps correspond to Γ−orbits of primitive isotropic lines and 1-cusps to
orbits of isotropic planes.
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3C. Moduli of K3 surfaces with nonsymplectic involution.

Remark 3.3 (Constructing moduli of quasi-polarized K3 surfaces lattice-theoreti-
cally). The coarse moduli space F2d of polarized K3 surfaces (X,L) can be realized
using the construction described in subsection 3A. Recall that H2(X;Z) ∼= II3,19.
Fix a marking φ : H2(X;Z) → II3,19 and a polarization L of degree 2d, and let
h := φ([L]) ∈ II3,19. One can then show that h⊥ ∼= II3,19⟨2d⟩. Let

StabO(II3,19)(h) := {γ ∈ O(II3,19) | γ(h) = h}
be the stabilizer of h in II3,19 and define

Γh := StabO(II3,19)(h)
+

to be the finite index subgroup fixing Ω+
Λ2d

. Letting Fqp
2d be the moduli stack of

quasi-polarized K3 surfaces of degree 2d, there is an analytic isomorphism at the
level of coarse spaces

F qp
2d

∼= Γh
\Ω

+
Λ2d .

However, Fqp
2d is generally not a separated stack. We can instead use the stack FADE

2d

of polarized K3s with ADE singularities, since there is an isomorphism FADE
2d

∼= F qp
2d

at the level of coarse spaces.

Definition 3.4 (Constructing moduli of marked K3s). The theory of moduli of
pairs (X, ι) withX a K3 surface and ι a nonsymplectic involution can be approached
using the construction in subsection 3A as well. Let S ⊆ II3,19 be a primitive
hyperbolic 2−elementary sublattice which is the (+1)−eigenspace of an involution
ρ of II3,19. A ρ−marking of (X, ι) is an isometry φ : H2(X,Z) → II3,19 such that
ι∗ = φ−1 ◦ ρ ◦φ. Fix such a marking ρ. We have a period domain Ω+

S associated to
S, and we define the change-of-marking group associated to ρ to be

Γρ = {γ ∈ O(II3,19) | γ ◦ ρ = ρ ◦ γ} .
One can then show that the coarse moduli space of ρ−markable K3 surfaces is
analytically isomorphic to the locally symmetric space

FS := F (S⊥,Γρ,H−2) := Γρ
\(ΩS⊥\H−2).

In particular, the point corresponding to (X, ι) is [φ(CωX)].

3D. Hodge theoretic compactifications. Hodge theory provides different ways
to compactify ΩS⊥/Γ for any finite index subgroup Γ ⊆ O(S⊥). A standard way

that involves no choices is provided by the Baily–Borel compactification ΩS⊥/Γ
bb
.

This is a projective normal compactification whose boundary is stratified into
0−cusps and 1−cusps which correspond to Γ−orbits of isotropic vectors I ⊆ T

and isotropic planes J ⊆ T . Toroidal compactifications ΩS⊥/Γ
F
are blow-ups of

ΩS⊥/Γ
bb

which depend on the choice of a compatible system of admissible fans
F = {FK} for each isotropic vector I or plane J . The fan FK is a rational polyhedral
decomposition of the rational closure CK,Q of the positive cone CK ⊆ K⊥/K ⊗ R.
It is required to satisfy the usual fan axioms, and additionally be Γ−invariant with
only finitely many orbits of cones. As this datum is trivial for isotropic planes, it is
sufficient to provide the fan only for the isotropic vectors I, hence F = {FI}. Lastly,
Semitoroidal compactifications are due to Looijenga and simultaneously generalize
the Baily–Borel and toroidal compactifications by allowing the fans FI to be not
necessarily finitely generated.
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4. Hyperelliptic K3s

Definition 4.1 (Hyperelliptic K3 surfaces). Let X be a K3 surface and let L ∈
Pic(X) be a line bundle with L2 > 0 where the linear system |L| has no fixed
components. We say that |L| is a hyperelliptic linear system on X and X is a
hyperelliptic K3 surface if |L| contains a hyperelliptic curve.

Remark 4.2. The induced morphism φ|L| : X → Pg where L2 = 2g − 2 in this
case is a generally 2-to-1 morphism onto a surface F of degree g − 1 in Pg. By the
classification of surfaces, either F ∼= P2 or Fn2 with n ∈ {0, 1, 2, 3, 4} ramified over
a curve C ∈ |−2KF |.

Remark 4.3. The open locus of F4,h.e.
bb

can be realized using the standard con-

struction of L−polarized K3 surfaces, taking L = II1,1
⊕2 ⊕ D16. More generally,

degree n hyperelliptic K3 surfaces can be constructed by taking L = II1,1
⊕2⊕Dn−2.

4A. Hyperelliptic quartic K3s.

Remark 4.4. We now focus back on our main case of interest: hyperelliptic quar-
tic K3s, i.e. hyperelliptic K3 surfaces of degree 4. In this case, the hyperbolic
2−elementary even lattice S is given by II1,1(2), which corresponds to the invari-
ants (r, a, δ) = (2, 2, 0).

The Baily–Borel compactification ΩS⊥/Γ
bb

... for which Γ? Was studied by
Laza–O’Grady.

Now relate Kh with ΩS⊥/Γ and an appropriate Looijenga semitoroidal. Where
is this in Valery and Phil’s work? Give appropriate references.

Remark 4.5. Following [?], consider the period domain construction described in

subsection 3A using the lattice ΛN := II1,1
⊕2 ⊕DN−2 and Γ = O(ΛN )+.3 We then

obtain a sequence of locally symmetric spaces

F(N) := F (ΛN ,O(ΛN )+) := O(ΛN )+\
Ω+

ΛN .

In particular, taking N = 19 yields the F4, the coarse moduli space of standard
polarized K3 surfaces of degree 4, and taking N = 18 yields a coarse moduli space
F4,h.e. of quartic (i.e. degree 4) hyperelliptic K3 surfaces. The lattice embedding
Λ18 ↪→ Λ19 induced by D16 ↪→ D17 produces an inclusion F4,h.e. ⊆ F4 realiz-
ing F4,h.e. as a normal Heegner divisor in F4. This in turn induces a morphism

F4,h.e.
bb → F4

bb
. The Baily-Borel compactification F4,h.e.

bb
was studied in LO16

and [?], where in the latter they show

F4,h.e.
bb ∼= Chow2,4 //SL4,

a GIT quotient of the Chow variety of (2, 4) curves in P3.

Theorem 4.6 ([?, Theorem 2.3]). The Baily–Borel compactification

F4,h.e.
bb ∼= O(Λ18)+\

Ω+
Λ18

bb

2A Hirzebruch surface Fn := ProjP1 (OP1 (−n)⊕OP1 ).
3For moduli-theoretic purposes, if N ≡ 6 mod 8, one then instead passes to a finite index

subgroup as detailed in [?].
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has two 0−cusps (type III boundary components) and eight 1−cusps (type II bound-
ary components). The incidences between 0−cusps and 1−cusps are represented in
Figure 2.

r1 : U ⊕ E8
⊕2 Z1

12 : E8
⊕2

Z2
12 : D16∗

r2 : U(2)⊕ E8
⊕2

Z1
2 : D2

8∗

Z2
2 : E7

⊕2 ⊕A1
⊕2∗

Z3
2 : E8 ⊕D8

Z4
2 : D12 ⊕D4∗

Z5
2 : D16

Z6
2 : A15 ⊕A1(2)∗

F4,h.e.
bb

Figure 2. Cusp diagram for degree 4 hyperelliptic K3 surfaces

F4,h.e.
bb

.

Remark 4.7. If C ⊆ (P1)2 is a smooth curve of bidegree (4, 4) and π : XC :→
(P1)2 is the double cover branched along C, then XC is a smooth hyperellip-

tic polarized K3 surface of degree 4 and thus XC ∈ F4,h.e.
bb
. Letting M :=∣∣O(P1)2(4, 4)

∣∣//Aut((P1)2) be the GIT quotient, LO21 describes a birational period

map M 99K F4,h.e.
bb
.

The K3 surfaces parameterized by K are double covers of P1×P1 branched along
curves of class (4, 4) in the monomials listed in (1). More in general, the double
covers of P1×P1 branched along general curves of class (4, 4) give rise to K3 surfaces
known as hyperelliptic K3 surfaces. Let us construct their family and the KSBA
compactification.

Let P24 be the space of coefficients, up to scaling, for a bidegree (4, 4) polynomial

in P1 × P1. In this case, a monomial Xi
0X

j
1Y

k
0 Y

ℓ
1 is indexed by

Mh := {(i, j, k, ℓ) ∈ Z4
≥0 | i+ j = k + ℓ = 4}.

Let Uh ⊆ P24 be the dense open subset of coefficients [. . . : cijkℓ : . . .] such that the
corresponding (4, 4) curve is smooth. We can define a KSBA-stable family(

Xh := Uh × (P1 × P1),
1 + ϵ

2
Bhyp

)
→ Uhyp,

where Bh is the relative divisor given by∑
(i,j,k,ℓ)∈Mh

cijkℓX
i
0X

j
1Y

k
0 Y

ℓ
1 = 0.

We can consider the fiberwise double cover (Th, ϵRh) →
(
Xh,

1+ϵ
2 Bh

)
, which gives

rise to the family of hyperelliptic K3 surfaces. The automorphism group of P1 ×
P1 acts on Uh identifying isomorphic fibers. In particular, Uh/Aut(P1 × P1) is
the moduli space of smooth hyperelliptic K3 surfaces. To compactify it, we can
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consider the stack P ′
h given by the closure of the image of the morphism Uh →

SP
(
1+ϵ
2 , 2, 8ϵ2

)
. Let P

′
h be the corresponding coarse moduli space and denote by

Ph its normalization, which gives rise to a compactification of the 18−dimensional
moduli space Uh/Aut(P1×P1). Alternatively, by using the family (Th, ϵRh) → Uh

and the moduli functor SP
(
ϵ, 2, 16ϵ2

)
instead, we obtain the compactifications Kh,

which instead parameterize generically the hyperelliptic K3 surfaces. We have that
Kh

∼= Uh.

Remark 4.8. The inclusion U ↪→ Uh induces an inclusion of the stacks P ′
↪→

P ′
h, and hence an inclusion of the corresponding coarse moduli spaces P

′
↪→ P

′
h.

Therefore, we have an induced morphism P → Ph which is finite and birational
onto its image. Luca: The reason why this morphism exists is nontrivial! The
normalization is not functorial, so one has to really prove this. The above is also
missing the following. Do we have an embedding of U/G into Uh/Aut(P1 × P1)?
Recall G = G2

m ⋊ (Z/2Z).

The compactification Ph should be fully understood from the work in [?]. More-
over, the GIT and Baily–Borel should be understood by [?].

5. Enriques surfaces

5A. The unpolarized case. If Y is an Enriques surface, it is well known that
the universal cover π : X → Y is a µ2 Galois cover where X is a K3 surface and
Y ∼= X/ι for ι the basepoint-free involution swapping the sheets of the cover. We
write V+1(ι

∗), V−1(ι
∗) ⊆ H2(X;Z) for the (+1) and (−1)−eigenspaces respectively

of the induced involution in cohomology ι∗ : H2(X;Z) → H2(X;Z). It is well-

known that V+1(ι)
⊥H2(X;Z) = V−1(ι). The covering map π induces an embedding

of lattices

π∗ : H2(Y ;Z) ↪→ H2(X;Z),
whose image is V+1(ι

∗). It is well known that

(1) H2(X;Z) ∼= II3,19 ∼= U⊕3 ⊕ E⊕2
8 is the K3 lattice;

(2) M := H2(Y,Z)/tors ∼= II1,9 ∼= U ⊕ E8 is the Enriques lattice;
(3) V+1(ι

∗) ∼= II1,1(2)⊕ E8(2) ∼= II1,9(2);
(4) V−1(ι

∗) ∼= II1,1 ⊕ II1,1(2)⊕ E8(2) = U ⊕ II1,9(2).

We will use the decomposition of the K3 lattice into summands involving the En-
riques lattice

II3,19 = II1,9 ⊕ II1,9 ⊕ II1,1,

and describe a vector in the K3 lattice II3,19 with three coordinates (x, y, z) ac-
cordingly. Let II1,1 = Ze⊕ Zf with {e, f} the standard hyperbolic basis satisfying
e2 = f2 = e · f − 1 = 0.

Remark 5.1 (Period domain for unpolarized Enriques surfaces). Again following
the period domain construction described subsection 3A, now with the lattice

N := U ⊕ II1,9(2).

The period domain for unpolarized Enriques surfaces is Ω+
N , and the correct asso-

ciated locally symmetric space is

E∅ := F (N,O(N)+,H−2) := O(N)+\(Ω
+
N\H−2).
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Lemma 5.2 (Torelli for Enriques surfaces, Horikawa). Points in E∅ correspond to
isomorphism classes of unpolarized Enriques surfaces.

Theorem 5.3 ([?, Propositions 4.5 and 4.6]). The Baily–Borel compactification

E∅
bb

:= O+(N)\(Ω
+
N\H−2)

bb

has two 0−cusps and two 1−cusps. The incidences between 0−cusps and 1−cusps
are represented in Figure 3.

q1 Y12 q2 Y2

E∅
bb

Figure 3. Cusp diagram for the moduli space of unpolarized En-

riques surfaces E∅
bb
.

5B. Degree 2 polarized Enriques surfaces. For degree 2 polarized Enriques
surfaces, we consider the same period domain, but we change the arithmetic group
acting on it.

Definition 5.4. A polarization on an Enriques surface Y is a pseudo-ample (i.e.
big and nef) line bundle L on Y ; we call this an ample polarization if L is ample. A
numerical (resp. ample numerical) polarization on Y is a choice L of a numerical
equivalence class of pseudo-ample (resp. ample) line bundle L. A numerically
polarized Enriques surface is a pair (Y,L) where L is a numerical polarization on
Y .4

Remark 5.5. Let L := U ⊕ II1,9
⊕2

, noting that N ≤ L, and define the following
involution:

I : L→ L,

(x, y, z) 7→ (y, x,−z).

A result of Horikawa shows that there is an isometry µ : H2(X;Z) → L such
that I ◦ µ = µ ◦ I∗ and produces an embedding

M → L

m 7→ (m,m, 0).

Define

Γ′ := {g ∈ O(L) | g ◦ I = I ◦ g and g(e+ f, e+ f, 0) = (e+ f, e+ f, 0)},
automorphisms in the centralizer of I in O(L) fixing the point (e + f, e + f, 0). If
g ∈ Γ′ then g|N ∈ O(N). So define

Γ := {g|N | g ∈ Γ′} ≤ O(N),

4Why introduce numerical polarizations? Recall that A is a polarized abelian variety if it is

equipped with an isogeny λ : A → A∨. If L is a numerical polarization on A, it induces a unique
isogeny λL, and every such isogeny comes from such an L, so numerical polarization strictly

generalizes this notion to other varieties.
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which is the image of Γ′ in O(L−). Again using the construction in subsection 3A,
the moduli space for Enriques surfaces with a polarization of degree 2 is given by
the locally symmetric space

E2 ∼= F (N,Γ) = Γ\Ω
+
N .

Theorem 5.6 ([?, § 4.3]). The Baily–Borel compactification

E2
bb

:= Γ\Ω
+
N

bb

has five 0−cusps and nine 1−cusps. The incidences between 0−cusps and 1−cusps
are represented in Figure 4.

p1

X12

X13

X14

X15

p2

p3

p4

p5

X3

X34

X45

X5

X245

M

Figure 4. Cusp diagram for degree 2 polarized Enriques surfaces

E2
bb
.

5C. Numerically polarized. [?]

5D. The family of degree 2 polarized Enriques surfaces. We review the
construction of degree 2 polarized Enriques surfaces following [?, Chapter V, § 23].
Let us consider the involution on P1 × P1 given by

ι : ([X0 : X1], [Y0 : Y1]) 7→ ([X0 : −X1], [Y0 : −Y1]).
We have that ι has precisely four isolated fixed points, namely

([0 : 1], [0 : 1]), ([0 : 1], [1 : 0]), ([1 : 0], [0 : 1]), ([1 : 0], [1 : 0]).

Let B ⊆ P1 × P1 be a general ι−invariant curve of class (4, 4) not passing through
the fixed points of ι. Then, the bi-homogeneous polynomial giving B consists of
the following monomials:

(1)
X4

0Y
4
0 , X

4
0Y

2
0 Y

2
1 , X

4
0Y

4
1 , X

3
0X1Y

3
0 Y1, X

3
0X1Y0Y

3
1 , X

2
0X

2
1Y

4
0 ,

X2
0X

2
1Y

2
0 Y

2
1 , X

2
0X

2
1Y

4
0 , X0X

3
1Y

3
0 Y1, X0X

3
1Y0Y

3
1 , X

4
1Y

4
0 , X

4
1Y

2
0 Y

2
1 , X

4
1Y

4
1 .

The coefficients of X4
0Y

4
0 , X

4
0Y

4
1 , X

4
1Y

4
0 , X

4
1Y

4
1 must be nonzero to guarantee that

B does not pass through the torus fixed points of ι.
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The double cover π : T → P1 × P1 branched along B is a well known to be a
K3 surface: T is smooth and minimal, KT ∼ π∗ (KP1×P1 + 1

2B
)
∼ 0, and π∗OT =

OP1×P1 ⊕OP1×P1

(
− 1

2B
)
, which gives h1(OT ) = 0.

Let L⊗2 = OP1×P1(4, 4) and let p : L → P1 × P1 be the total space of the line
bundle L. Then the double cover T of P1 × P1 branched along B can be viewed
inside L as the vanishing locus of t2 − p∗s = 0, where B = V (s) and t ∈ Γ(L, p∗L)
is the tautological section. We have that then ι lifts to an involution ι̃ of T with
exactly eight fixed points: two over each fixed point of ι. If τ denotes the deck
transformation of the cover, i.e. t 7→ −t, then we have that ι̃ commutes with τ
and the composition σ = τ ◦ ι̃ is a fixed-point free involution of T . The quotient
q : T → T/σ = S is then an Enriques surface called Horikawa model, and comes
equipped with a degree 2 polarization induced by OP1×P1(1, 1).

Let R ⊆ T be the ramification locus, so that 2R = π∗B, define R = q(R), and
let 0 < ϵ≪ 1 rational. Then we have the two following covering equalities:

KT + ϵR ∼Q π
∗
(
KP1×P1 +

1 + ϵ

2
B

)
,

KT + ϵR ∼Q q
∗
(
KS +

ϵ

2
R
)
.

The next lemma is straightforward.

Lemma 5.7. With the notation introduced above, we have the following self-intersection
numbers:

(1)
(
KP1×P1 + 1+ϵ

2 B
)2

= 8ϵ2;

(2) (KT + ϵR)2 = 16ϵ2;

(3)
(
KS + ϵ

2R
)2

= 8ϵ2.

We now relativize the above construction. Let P12 be the space of coefficients,
up to scaling, for a bidegree (4, 4) polynomial in the monomials in (1). So, if cijkℓ
denotes the coefficient of Xi

0X
j
1Y

k
0 Y

ℓ
1 , then [. . . : cijkℓ : . . .] ∈ P12 with (i, j, k, ℓ)

within the following set:

M := {(i, j, k, ℓ) ∈ Z4
≥0 | i+ j = k + ℓ = 4, i+ k ≡ j + ℓ ≡ 0 mod 2}.

Let U ⊆ P12 be the dense open subset of coefficients such that the corresponding
ι−invariant (4, 4) curve B ⊆ P1×P1 is smooth and does not pass through the torus
fixed points of P1×P1. Define X := U×(P1×P1) and let X → U be the projection.
Let

B := V

 ∑
(i,j,k,ℓ)∈M

cijkℓX
i
0X

j
1Y

k
0 Y

ℓ
1

 ⊆ X .

Then
(
X , 1+ϵ2 B

)
→ U is a family of stable pairs with fibers given by

(
P1 × P1, 1+ϵ2 B

)
as described above. Additionally, we observe that

(
X , 1+ϵ2 B

)
→ U is a KSBA-stable

as defined in [?, 8.7].
The family

(
X , 1+ϵ2 B

)
→ U has isomorphic fibers. To eliminate this redundancy,

we consider the action of Aut(P1 × P1) ∼= (PGL2 × PGL2) ⋊ Z/2Z (see [?]) on
H0(O(4, 4)). More precisely, we want to look at the subgroup G which preserves
ι−invariant (4, 4)−curves not passing through the torus fixed points. Note that
the Z2−action preserves the set of monomials M as (i, j, k, ℓ) ∈ M if and only if
(k, ℓ, i, j) ∈M . Now consider a generic

[
a b
c d

]
∈ PGL2 acting on [X0 : X1]. One can
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check directly that the action of this matrix preserves the monomials in M if and
only if b = c = 0, and the same holds if we consider the action of the second copy
of PGL2 which acts on [Y0 : Y1]. In particular, we have that G ∼= G2

m ⋊ (Z/2Z).
Therefore, we have an action G ↷ U which identifies the isomorphic fibers of(
X , 1+ϵ2 B

)
→ U.

Over U, we can also consider the cover (T , ϵR) →
(
X , 1+ϵ2 B

)
which gives the

family of isomorphism classes of pairs (T, ϵR) and the fiberwise quotient by the En-
riques involution (T , ϵR) →

(
S, ϵ2R

)
which gives the family of isomorphism classes

of Enriques surfaces
(
S, ϵ2R

)
. Summarizing, we have the following commutative

diagram:

(T , ϵR)
(
X , 1+ϵ2 B

)
(
S, ϵ2R

)
U

Definition 5.8. Following the notation in [?, Theorem 8.1], consider the moduli
functors SP(a, d, ν) for

(a, d, ν) =

(
1 + ϵ

2
, 2, 8ϵ2

)
,
(
ϵ, 2, 16ϵ2

)
,
( ϵ
2
, 2, 8ϵ2

)
.

and the corresponding coarse moduli spaces SP(a, d, ν). We now define the following
stacks:

Consider the KSBA-stable family
(
X , 1+ϵ2 B

)
→ U. Therefore there is an induced

morphism U → SP
(
1+ϵ
2 , 2, 8ϵ2

)
and denote by P ′ the closure of its image. Let P

′

be the coarse moduli space corresponding to P ′
, and denote by P its normalization.

We have that P provides a projective compactification of U/G. By using the
families (T , ϵR) → U and

(
S, ϵ2R

)
→ U instead, we obtain the compactifications

K and E of U/G respectively, which instead parameterize generically the K3 and
Enriques surfaces.

It is a standard observation that the compactifications P,K,E are isomorphic
to each other (see [?, § 3] for an analogous situation). We will mostly focus on P
as it parameterized the simplest objects.

6. Morphisms of moduli and cusps

6A. Mapping the boundaries: matching cusp diagrams. Let F2d be the
moduli space of polarized K3 surfaces of degree 2d. How do we match the cusp
diagram for the Baily–Borel compactification for the moduli of degree 2 Enriques
surfaces with the Baily–Borel compactification for degree 4 hyperelliptic K3 sur-
faces? This is actually quite subtle, and it works as follows:

• [?, § 5] matches cusps for degree 2 Enriques surfaces and degree 4 K3 sur-
faces,

E2
bb
⇌ F4

bb
.

• Using Scattone’s method in [?, § 6], we can match the cusps for degree 4
hyperelliptic K3 surfaces and degree 4 K3 surfaces,

F4,h.e.
bb
⇌ F4

bb
.
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• The above two points imply the matching we need.

What is Scattone’s method uses the following observations:

• 1−cusps of F4
bb

are in one-to-one correspondence with the orthogonal com-
plements of D8 in the Niemeier lattices, and

• The 1−cusps of F4,h.e.
bb

are in one-to-one correspondence with the orthog-
onal complements of D7 in the Niemeier lattices.

.

E2
bb

E∅
bb

F4,h.e.
bb

Finite Finite-to-one

As a result, there are two cusp incidence diagrams to match:

(1) Polarized {Xi, pi} to unpolarized {Yi, qi}:

p1

X12

X13

X14

X15

p2

p3

p4

p5

X3

X34

X45

X5

X245

q1 q2 Y2Y12

E2
bb

E∅
bb

(2) Polarized {Xi, pi} to hyperelliptic {Zi, ri}:
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p1

X12

X13

X14

X15

p2

p3

p4

p5

X3

X34

X45

X5

X245
E2

bb

F4,h.e.
bb

r1 r2

Z1
12

Z2
12

Z1
2

Z2
2

Z3
2

Z4
2

Z5
2

Z6
2

6B. Type III KPP model at the (18,2,0) odd 0-cusp. At the (18, 2, 0) odd
0-cusp the Type III stable models are of pumpkin type

Stable models vs KPP models, write down the definition and the differences.
Let X be a K3 surface with a nonsymplectic involution ι with induced involution

i∗ on H2(X;Z). We define S to be the (+1)−eigenspace ι∗; it is a hyperbolic
lattice 2-elementary lattice, and all the possibilities for such lattices were classified
by Nikulin. We denote by T the orthogonal complement of S in H2(X;Z).
Definition 6.1. What makes an odd 0−cusp different from an even 0−cusp?

Definition 6.2. We define two types of stable models X0 = ∪V i:
(1) Pumpkin. Each surface V i has two sides Di = Di,left + Di,right, they are

glued in a circle, all of Di meeting at the north and south poles.
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(2) Smashed pumpkins. Starting with a surface of the pumpkin type, one short
side is contracted to a point, so that the north and south poles are identified.

If the surface Vi, say to the left, is (F1, D1+D2), where D1 ∼ f is the short side
being contracted, D2 ∼ 2s+ 2f is the other side, and Cg ∼ f on V contract Vi by
the P1−fibration Vi → P1. Then on the next surface Vi−1 to the left the long side
will fold 2 : 1 to itself, creating a non-normal singularity along that side.

If on Vi the divisor Cg has degree C2
g ≥ 2, then only the short side is contracted

and the resulting surface V i is normal in codimension 1, with only two points in
the normalization glued together (the poles).

Theorem 6.3 ([?, Theorem 9.9]). Let (X0,∪V i, ϵCg) be the stable model of a
pair (X0 = ∪Vi, ϵCg), where X0 is the KPP model of a Type III Kulikov surface
and Cg is the component of genus g ≥ 2 in the ramification divisor R. Then the

normalization of each V i is an ADE surface with an involution from [?, Table 2].
Moreover,

(1) If T is an odd 0−cusp of FS, then X0 is of pumpkin type.
(2) If T is an even 0−cusp of FS, then X0 is of smashed pumpkin type. The

surfaces Vi of the last type in definition Definition 9.8, on which Vi → V i
contracts one side are surfaces of [?, Table 2] for which one of the sides has
length 0, i.e. those with a double prime or a “+”.

6C. ADE surfaces.

Definition 6.4 (ADE surfaces). An ADE surface is a pair (Y,C), where Y is a
normal surface. (Y,C) has log canonical singularities and the divisor −2(KY + C)
is Cartier and ample. L := −2(KY + C) is referred to as the polarization of the
ADE surface (Y,C).

Let B ∈ |L| effective divisor such that (Y,C+ 1+ϵ
2 B) is log canonical for 0 < ϵ≪

1, then (Y,C + 1+ϵ
2 ) is called an ADE pair. We can take the double cover X → Y

branched along B and I guess possibly along C. It can happen that Y is toric and
C is part of the toric boundary.

ADE surfaces admit a combinatorial classification. The classes of ADE surfaces
are called shapes. A shape can be pure or primed. Surfaces of pure shape are
fundamental. Surfaces of primed shape are secondary and can be obtained from
surfaces of pure shape using an operation called priming.

The ADE surfaces of pure shape are all toric. To construct these we start from
a polarized toric surface (Y,L), where L = −2(KY + C). This corresponds to a
lattice polytope P in M ⊗ Z Given a surface (Y,C) of pure shape, the irreducible
components of C are called sides. There are two sides with a point in common
called left or right. They decompose C = C1 + C2. A side can be long or short
depending on whether a side C ′ satisfies C ′ · L = 2, 4 or C ′ · L = 1, 3 respectively.
The ADE surfaces of pure shape are listed in [?, Table 1] (see Figures 1, 2, 3
therein). Here are some basic examples

• The ADE surface (Y,C) corresponding to D4 is Y = P1 × P1 and C is the
sum of two incident torus fixed curves.

• The ADE surface (Y,C) corresponding to A1 is Y = P2 and C is the sum
of two torus fixed curves. The polarization is O(2).

The superscripts minus signs on the left or right denote the location of the short
side. Note both sides can be long or short. Do they correspond to the visible
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length? Not at all! The ADE surface A3 has two long sides, but one edge is shorter
than the other. By the way, in this case, Y = F0

2. A
−
2 has a long side on the left

and a short side on the right.
Primed shapes. Priming is an operation that produces a new del Pezzo surface

(Y
′
, C

′
) from an old one (Y,C). The priming operation is basically a weighted

blow-up given by the composition of two ordinary blow-ups and the contraction
of a (−2)−curve making an A1 singularity. Weighted blow-ups of this form are
the basis of the priming operation. Weighted blow-up with respect to the idea
(y, x2). Priming has the meaning of disconnecting a curve from another. Given
an ADE pair (Y,C + 1+ϵ

2 ), then the priming operation is performed on the points
of intersection between C and B, which intersect transversely by [?, Remark 3.3].
Priming may not exist, and there are some necessary and sufficient conditions for
priming to exist.

For an ADE shape, we add a prime symbol when priming on a long side. When
priming a short side, we change the minus into a plus. All the ADE surfaces, pure
or primed are in [?, Table 2].

7. Our new results

7A. Enriques strategy.

Remark 7.1. This story suggests the following approach to Enriques surfaces:

(1) Fully understand the cusps of the Enriques moduli space, possibly in terms
of what has been done for K3s already.

(2) For each cusp, find the Coxeter diagram.
(3) For each Coxeter diagram, cook up the right IAS pair of a manifold and a

divisor RIAS. For us, instead of an IAS2 it may be an IARP2, and may come
from some fusion of known IAS2s for K3s, maybe as simple as quotienting
the IAS2 by the antipodal map.

(4) Reverse-engineer the IARP2 so that it carries two commuting involutions,
and probably take RIAS to be the intersection of the two ramification divi-
sors on the IARP2.

(5) Describe all of the ways the IARP2 can degenerate, a la Valery’s pumpkin-
type models.

7B. Lemmas/theorems.

Lemma 7.2. If sgn(L) = (p, q) and e ∈ L is isotropic, then sgn(Ze) = (?, ?) and
sgn(Ze⊥) = (?, ?).

Lemma 7.3. Let L be a lattice of signature (p, q) and let e ∈ L be an isotropic
vector. Then

sgn(e⊥/e) = (p− 1, q − 1).

Proof. □

Proposition 7.4. Let II3,19 be the K3 lattice and let h be an ample class of degree
d. Then

h⊥II3,19 ∼= II3,19⟨d⟩ := II1,1
⊕2

⊕ E8
⊕2

⊕ ⟨−2d⟩
and sgnh⊥II3,19⟨d⟩ = (2, 19). Thus F2d arises as the Hodge-theoretic moduli space
associated with the period domain DL for the lattice L := II3,19⟨d⟩.
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Proof. todo □

The theorem below needs the following notations and conventions (these will all
be introduced before as needed).
LK3 = U⊕3 ⊕ E⊕2

8 = (U ⊕ E8)
⊕2 ⊕ U and

I(m,m′, h) = (m,m′,−h).

L− = U ⊕ U(2)⊕ E8(2)

Ω− = {[v] ∈ P(L− ⊗ C) | v2 = 0, v · v > 0}

Definition 7.5. Consider the following subgroup of O(LK3):

Γ′ = {g ∈ O(LK3) | g ◦ I = I ◦ g, g(e+ f, e+ f, 0) = (e+ f, e+ f, 0)}
Note that we have a natural group homomorphism Γ′ → O(L−) given by g 7→ g|L− .
To prove that g|L− ∈ O(L−) it is enough to observe that g(L−) = L−. Let x ∈ L−.
We have that g(x) ∈ L− if I(g(x)) = −g(x). This holds because

I(g(x)) = g(I(x)) = g(−x) = −g(x).
We denote by Γ the image of Γ′ → O(L−).

E2 = Ω−/Γ

Ω4,h = {[v] ∈ P(Λ18 ⊗ C) | v2 = 0, v · v > 0}
Λ18 = U⊕2 ⊕D16, Γ4,h = O(Λ18).

α2

α1 α3 α4 α5 α6 α7 α8

Figure 5. The E8 lattice (Sterk’s convention).

Theorem 7.6. There exists an injective morphism

E2 → F4,h

which extends to a morphism of the Baily–Borel compactifications

E
bb

2 → F
bb

4,h.

Proof. Consider the inclusion of U(2) into U(2) ⊕ E8(2) as direct summand. By
considering the orthogonal complements in LK3 we obtain that

L− ⊆ Λ18.

From this follows from the definitions of Ω− and Ω4,h that we have an inclusion

Ω− ↪→ Ω4,h.

Let us show that this descends to a morphism

Ω−/Γ2 → Ω4,h/Γ4,h.
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Let [v], [w] ∈ Ω2 and assume there exists g ∈ Γ such that g([v]) = [w]. We show
that there exists h ∈ Γ4,h such that h([v]) = [w]. By the definition of Γ, g = g̃|L− ,
there exists g̃ ∈ O(LK3) such that g̃◦I = I ◦ g̃ and f(e+f, e+f, 0) = (e+f, e+f, 0).
Then, by the proof of [?, Proposition 2.7], we have that g̃ preserves e+ f and e− f
in L+ = U(2)⊕E8(2). In particular, g̃ preserves the summand U(2) ⊆ U(2)⊕E8.
This implies that g̃ preserves U(2)⊥ = Λ18. In particular, by setting h = g̃|Λ18

we
obtain what we needed.

We now prove that the morphism φ : Ω−/Γ → Ω4,h/Γ4,h is injective. Let
x1, x2 ∈ Ω−/Γ and assume that φ(x1) = φ(x2). Let Si be the Enriques sur-
face corresponding to xi. Then Si is the quotient of a K3 surface Ti which is the
double cover πi : Ti → P1 × P1 branched along a (4, 4) curve Bi which is invariant
with respect to the involution ι : (x, y) 7→ (−x,−y). Because of the assumption
that φ(x1) = φ(x2), we must have that

T1 T2

P1 × P1 P1 × P1

∼=

π1
∼=

π2

where the bottom isomorphism commutes with ι and the top map commutes with ι̃.
Let τi be the deck transformation of the cover πi, so that we have the two Enriques
involutions σi = τi◦ ι̃. Then we have an isomorphism between S1 = T1/σ1 ∼= T2/σ2,
which implies that the period points x1, x2 are equal.

The morphism Ω−/Γ → Ω4,h/Γ4,h extends to a morphism of the Baily–Borel
compactifications by [?, Theorem 2], and sends boundary components to boundary
components.

Next, we describe the cusp correspondence. Recall, E
bb

2 has five 0-cusps p1, . . . , p5
corresponding to the following isotropic vectors in

L− = U ⊕ U(2)⊕ E8(2) = ⟨e, f⟩ ⊕ ⟨e′, f ′⟩ ⊕ ⟨α1, . . . , α8⟩.

(1) δ1 = e;
(2) δ2 = e′;
(3) δ3 = e′ + f ′ + α8;
(4) δ4 = 2e′ + f ′ + α1;
(5) δ5 = 2e+ 2f + α1.

Note that e′ · f ′ = 2 and αi · αj = δij . We have that δ⊥1 /δ1
∼= U(2)⊕ E8(2) and

δ⊥i /δi
∼= U ⊕ E8(2) for i = 2, . . . , 5.

On the other hand, F
bb

4,h has two 0-cusps q1, q2 for which the corresponding

isotropic vectors η1, η2 ∈ Λ18 satisfy η⊥1 /η1
∼= U ⊕ E⊕2

8 and η⊥2 /η2
∼= U(2)⊕ E⊕2

8 .
To understand whether p1 7→ q1 or p1 7→ q2, it is enough to compute

δ⊥Λ18
1 /δ1.

But this is clear after realizing that Λ18
∼= U ⊕U(2)⊕E⊕2

8 , and there is the explicit
embedding

L− = U ⊕ U(2)⊕ E8(2) ⊆ U ⊕ U(2)⊕ E⊕2
8

(u, v, w) 7→ (u, v, w,w).
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So that it is clear that

δ⊥Λ18
1 /δ1 = U(2)⊕ E8(2).

□

Lemma 7.7 (Cusp correspondence 1). We have a cusp correspondence from po-

larized {Xi, pi} in ∂E2
bb

to hyperelliptic {Zi, ri} in ∂F4,h.e.
bb
:

p1

X12

X13

X14

X15

p2

p3

p4

p5

X3

X34

X45

X5

X245
E2

bb

F4,h.e.
bb

r1 r2

Z1
12

Z2
12

Z1
2

Z2
2

Z3
2

Z4
2

Z5
2

Z6
2

Proof. □

8. Period Domains and Baily-Borel Compactifications

Remark 8.1. The Baily-Borel and toroidal compactifications are defined for quo-
tients of Hermitian symmetric spaces by actions of arithmetic subgroups of their



20 Glossary

automorphism groups, i.e. those that can be written as Γ\Ω. BB compactifica-

tions are generally small, e.g. dimF2 = 19 but codim ∂F2
bb

= 18, and this often
precludes having a satisfactory modular interpretation of its boundary points. In
particular, given an arc in this compactification with endpoint in the boundary,
one can not generally construct a birationally unique limit. Toroidal compactifi-

cations Γ\Ω
tor

are obtained as certain blowups of Γ\Ω
bb
, and e.g. for F2 some

boundary components become divisors (codimension 1). However these are highly
non-unique and depend on choices of fans. One might hope there are canonical such

choices. The semitoric compactifications of Looijenga interpolate between Γ\Ω
bb

and Γ\Ω
tor

.

8A. The Baily-Borel compactification.

Definition 8.2. The group G acts transitively on the set of boundary components

F ⊆ ∂DL := D̃L \DL, and StabG(F ) ≤ G is a maximal parabolic subgroup. Taking
stabilizers establishes a bijection

{Boundary components F ⊆ ∂DL} → {Maximal parabolic subgroups P ≤ G}
F 7→ P := StabG(F )

ForG := SO(V ), parabolic subgroups P are stabilizers of flags of isotropic subspaces
in V , and since sgn(V ) = (2, n), a flag has length at most 3 and a maximal flag
is of the form p ⊆ I ⊆ J where p is a point, I is an isotropic line, and J is an
isotropic plane. The only flags that define maximal parabolic subgroups of SO(V )
are of length 1, consisting of either a single line or a single plane. Thus we have
bijections

{Rational boundary components of (SO2,n(R),SO2(R)× SOn(R))}

⇌
{Maximal parabolic subgroups of SO(V )}

⇌
{Isotropic lines I ⊂ V } ∪ {Isotropic planes J ⊂ V }

where a boundary component F is rational if StabG(F ) is defined over Q. For an
arithmetic subgroup Γ ≤ G, letting ∂(DL)Q be the set of all rational boundary

components of DL ⊂ D̃L, we produce a compactification

Γ\DL = Γ\DL
⋃

F∈∂DL,Q
(GF (Q) ∩ Γ)\F .

Definition 8.3. Let L be a lattice of signature (2, n) for n ≥ 1, let ΩL be the
associated period domain, let O+(L) ≤ O(L) be the subgroup preserving ΩL and

let Ω̃L be the affine cone over ΩL. Let n ≥ 3, let k ∈ Z, and let Γ ≤ O+(L) be
a finite-index subgroup with χ : Γ → C∗ a character. A holomorphic functional
f : ΩL → C is called a modular form of weight k and character χ for Γ if

(1) Factor of automorphy: f(λz) = λ−kf(z) for any λ ∈ C∗.
(2) Equivariance: f(γz) = χ(γ)f(z) for all γ ∈ Γ.
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Definition 8.4. Let ΩL as above and let Mk(Γ, χ) be the C−vector space of such
modular forms of weight k for Γ with character χ. The Baily-Borel compactifi-
cation can be defined as

Γ\ΩL
bb

:= Proj
⊕
k≥1

Mk(Γ, χtriv)

where χtriv is the trivial character.

Remark 8.5. ∂Γ\ΩL
bb

decomposes into points pi and curves Cj , which are in
bijection with Γ−orbits of isotropic lines i and isotropic planes j in LQ. Moreover

pi ∈ Cj ⇐⇒ one can choose representatives lines i and planes j such that i ⊆ j.

Remark 8.6. A theorem of Baily-Borel gives the existence of an ample automor-
phic line bundle L on DL giving it the structure of a normal projective variety
isomorphic to a canonical model Proj

⊕
k≥0H

0(Lk)??. We denote this compactifi- I don’t quite remember
what this graded ring is.

cation Γ\DL
bb
.

8B. Toroidal and semitoroidal compactifications.

Remark 8.7. A toroidal compactification Γ\DL
tor

is a certain blowup of

Γ\DL
bb
, so there is a birational map Γ\DL

tor
99K Γ\DL

bb
. It is defined by a

collection of admissible fans {Fi}i∈I where I ranges over an index set for all cusps.
A semitoroidal compactification is a generalization due to Looijenga for

which the cones of Fi are not required to be finitely generated, and [?] shows that
semitoroidal compactifications are characterized as exactly the normal compactifi-

cations M
semitor

fitting into a tower

M
tor

M
semitor

M
bb

where M
tor

is some toroidal compactification of M .

Remark 8.8. On the toroidal compactification associated with Γ\ΩL: for a cusp
Ci of the BB compactification, let F ⊂ LQ be the corresponding Γ−orbit of an
isotropic line or plane. Consider its stabilizer S(F ) := StabO+(LR), and its unipo-
tent radical U(F ). Then U(F ) is a vector space containing a lattice U(F ) ∩ Γ and

an open convex cone C(F ). Let C(F )
rc

be the rational closure of the cone, so
the union of C(F ) and rational rays in its closure. We then choose a fan Σ(F )

with supp(Σ(F )) = C(F )
rc

which is invariant under StabO+(LR)(F ) ∩ Γ and pro-
duce an associated toric variety XΣ(F ). If one does this for every F to produce
a Γ−admissible collection of polyhedra Σ, their quotients by Γ glue to give a
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toroidal compactification Γ\ΩL
tor

, which has the structure of a (complex) alge-

braic space. There is a surjection Γ\ΩL
tor
↠ Γ\ΩL

bb
. Why e⊥/e shows up: if e is

an isotropic line in L corresponding to a cusp F , there is an isomorphism of lattices

U(F ) ∩ Õ
+
(L) ∼= e⊥/e where Õ

+
:= ker

(
O+(L) → O(AL)

)
.

8C. Misc.

Definition 8.9 (Log CY pairs). A log Calabi-Yau (CY) pair is a pair (X,D)
with X a proper variety and D an effective Q−Cartier divisor such that the pair is
log canonical and KX +D ∼Q 0.

A degeneration π : X → ∆ is a CY degeneration if π is proper, KX ∼Q 0, and
(X ,X0) is dlt. This implies that Xt is a Calabi-Yau variety for t ̸= 0 and X0 is a
union of log CY pairs (Vi, Di). If Xt is a strict CY of dimension n, so π1Xt = 0 and
hi(Xt,OXt) = 0 for 1 ≤ i ≤ n− 1, and dimΓ(X0) = n, we say X is a large complex
structure limit or equivalently a maximal unipotent or MUM degeneration.

If n = 2, Kulikov shows that Γ(X0) is always isomorphic to a 2-sphere S2.
Whether Γ(X0) ∼= Sn or a quotient thereof for n ≥ 3 more generally is an open
question, posed by Kontsevich-Soibelman. It has recently been shown by Kollár-Xu
that in the case of degenerations of Calabi-Yau or hyperkähler manifolds, the dual
complex is always a rational homology sphere.

Remark 8.10. Why this is useful to us: one formulation of mirror symmetry is
the formulation due to Strominger-Yau-Zaslow, aptly called SYZ mirror symmetry.
Conjecturally, the general fiber Xt of a punctured family of CYs X ◦ → ∆◦ can
be given the structure of a special Lagrangian torus fibration Xt → B, one can

”dualize” the fibration to obtain a mirror CY X̂t → B over the same base. TheThis might have some-
thing to do with the dis-
crete Legendre transform
Phil mentions.

common base B of these two fibrations is conjecturally of the form Γ(X0), the dual
complex of a degeneration X → ∆ extending X ◦.

8D. Baily-Borel cusps and incidence diagrams.

8E. Other compactifications.

Remark 8.11. Write F2d := Γ2d\D2d. A cusp pi of F2d
bb

determines a cone Ci.
Toroidal and semitoroidal compactifications are then determined by a collection of
Γ2d−invariant fans supported on Ci for i ranging over an index set for all cusps. If
d = 1 (or more generally if 2d is squarefree), there is a single 0-cusp p2d whose cone
C2d has a description as the positive light cone in the rational closure of C2d with
respect to a certain latticeM2d. This can be written Crc

2d := Conv(C2d∩M2d⊗ZR).
A semitoroidal compactification of F2d is then determined by a semitoric fan in
M2d,R supported on Crc

2d which is invariant for a particular subgroup Γ+
2d ≤ O(M2d).

In this case, one can make a canonical choice for such a semitoric fan: the CoxeterTodo: can spell out what

M2d,Γ,Γ+ are. fan ΣCox
2d whose cones are precisely the fundamental domains for a Weyl group

action on Crc
2d, see AET19.

9. Vinberg-Coxeter boundary theory

Goal for this section: describe how Coxeter-Vinberg diagrams are used to get
models at BB cusps.
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9A. The case of abelian varieties. Let us consider the setup first for moduli of
principally polarized abelian varieties. We have the following:

Theorem 9.1 (Alexeev). There is an isomorphism

η : Ag
tor(F ) ∼−→ (Ag

KSBA
)ν

for F the second Voronoi fan. Is there always a nat-
ural morphism from
toric compactifications
to KSBA? Not in gen-
eral! We can talk about
it when we meet.

Corollary 9.2. As a result, any punctured 1-parameter family X ◦ → ∆◦ has a
unique limit X0 which can combinatorially be described as a tropically polarized
abelian variety (Xtrop,Θtrop) with a tropical Θ divisor Θtrop.

More is true: the fan F is itself a moduli space for such tropical abelian varieties.

Remark 9.3 (Motivation from abelian varieties). To see how this works, consider
a 1-parameter family of abelian varieties. These are tori of the form

Xt := coker(ϕt : Zg ↪→ (C∗)g),

where ϕt are embeddings that vary in the family. Write this embedding as a matrix
M ; this is a matrix of periods. Then for t ≈ 0 one exponentiates Mij to get a
symmetric positive-definite g × g matrix B. There is a cone C ⊆ {B = Bt > 0} in

GLg(Z) and a Coxeter fan F supported on its rational closure C
rc
which corresponds

to affine Dynkin diagram Ã2:

Ã2 :

This corresponds to a triangular fundamental domain for a reflection group that acts
on C. For a cartoon picture, think of a hyperbolic disc D and let the fundamental
domain be a triangle with ideal vertices:

Figure 6. Tessellating a hyperbolic disc by triangles

Note that the straight lines forming the edges should ”really” be curved hy-
perbolic geodesics. One continues reflecting in order to tessellate the hyperbolic
disc, then puts this disc in R3 at height one and cones it to the origin to get an
infinite-type fan F :
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Figure 7. Coning off the hyperbolic disc to form a fan.

Note that the entire fan F admits an SL2(Z) action. Now if one rewrites B as
a form B(x, y) = ax2 + by2 + c(x + y)2 with a, b, c ∈ Z≥0, the coordinate vector

v⃗ := (a, b, c) defines a point in some chamber of C
rc
. In turn, v⃗ defines a 1-

parameter degeneration of abelian varieties, and thus a pair (Xtrop,Θtrop). When
B is integral it defines an embedding B : Λ ↪→ Λ∨ and thus one can construct aWhat is Λ?

torus T := Λ∨
R/Λ

∼= R2/Z2 which has finitely many integral points defined by Λ.
Recall that for any lattice L there is an associated Voronoi tessellation by poly-

topes Pi, one such Pi centered around each lattice point ℓi. Let VorB be the Voronoi
tessellation of Λ; this can be identified with a hexagonal honeycomb tessellation of
R2:
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Figure 8. The Voronoi tesselation associated to Ã2, the triangu-
lar lattice.

One then defines Θtrop := B(VorB)/Λ, a quotient of the image of the hexagonal
tessellation. Although the blue vertices in VorB generally have vertices with frac-
tional coordinates, the vertices in the image have integral coordinate vertices with
respect to Λ∨. The image of a regular hexagon is now a hexagon with side lengths
a, b, c, and since we’ve quotiented by Λ, Θtrop is determined by two hexagons with
side lengths determined by v⃗ = (a, b, c) which are glued together:
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Figure 9. A picture of two relevant polytopes in the image of the
Voronoi tessellation, which tessellates the entire dual lattice. After
quotienting, these will be the only two relevant polygons.

The claim is that this picture describes an entire degeneration X of abelian
varieties. To see the central fiber: every vertex wi in this new tessellation defines
an honest fan via Star(wi); here there are 2 vertices of valence 3 and 3 edges in the
quotient, so the central fiber X0 is two copies of P2 corresponding to w1, w2 glued
together along three curves corresponding to a, b, c. To see the entire family: put
this entire picture at height 1, cone to the origin to get a fan, and quotient that fan
by a Z2 action to get X .

Note that in the K3 case, things are harder because the combinatorics only
describes X0 and not the entire family X , so one has to appeal to abstract smoothing
results to obtain the existence of a family X extending X0.

Moreover, the original fan F is a moduli of these polyhedral pictures. One can
degenerate Θtrop by sending some coordinates a, b, c to zero. This degenerates the
honeycomb 6-gons into 4-gons if just one side goes to zero. For example, if a→ 0,
this corresponds to being on a wall in Figure 7. If two coordinates degenerate,
say a, b → 0, this corresponds to being on a ray. This can be read off by recalling
B(x, y) = ax2 + by2 + c(x + y)2 and labeling the ideal vertices with monomials
x2, y2, (x+ y)2 as in Figure 6. Thus varying v⃗ = (a, b, c) corresponds to varying the

side lengths of hexagons and correspondingly moving through C
rc
. Staying in the

fundamental chamber doesn’t change the overall combinatorial type of Figure 9,
but passing through a wall will flip the hexagonal tiling in various ways.
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9B. To the K3 case. The claim is that a similar story more or less goes through
for K3s: the Coxeter diagram is much more complicated, and the relevant combi-
natorial device is an IAS2 with 24 singularities instead of a tropical variety. We
have the following:

Theorem 9.4. There is a morphism

η : F2
tor(F ) → (F2

KSBA
)ν

where F is fan of a Coxeter diagram associated to a cusp of F2, and the Stein
factorization of η is through a semitoroidal compactification.

Corollary 9.5. Any punctured 1-parameter family X ◦ → ∆◦ has a unique limit
X0 which can be combinatorially described as a singular integral-affine sphere with
an integral-affine divisor (IAS2, RIAS).

Remark 9.6. This is a much harder theorem than the Ag case: periods of K3
surfaces are highly transcendental, and the period map is not well-understood.
Also note that the relevant Coxeter diagram for Ag was relatively simple, while the
diagram for F2 is the following:

1

2

3

4

5

6

7

8

9

10

11

12

131415161718

19

20

21

22 23

24

Figure 10. The Coxeter diagram for type (19, 1, 1).

Nodes in Figure 10 correspond to roots spanning a hyperbolic lattice

N := U ⊕ E8(−1)⊕
2

⊕A1(−1), sgn(N) = (1, 18)

which is the Picard lattice of the Dolgachev-Nikulin mirror K3. Decorated nodes
vi record self-intersection numbers v2i , and edges between vi and vj record the
intersection numbers vi.vj . Note that the Coxeter diagram also captures the data
of all (−2) curves on the mirror K3 surface and their intersections.
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This diagram again describes the fundamental chamber of a reflection group, and
the cone in this case C =

{
v2 > 0

}
. Toroidal compactifications of F2 correspond

to fans whose support is C
rc

(i.e. the interior, plus rational rays on the boundary).
There is a natural fundamental chamber defined by {v | v.ri ≥ 0} where {ri} are
roots, the difference is that now some vertices of the fundamental chamber may be
ideal vertices:

Figure 11. A fundamental chamber F for a reflection group. Re-
flecting over walls of F successively generates a tiling of the hyper-
bolic disc by copies of F . Note that one vertex is an ideal vertex,
i.e. it is in ∂Hn.

Proceeding similarly to take the cone over this picture and allow rational bound-
ary points yields the cone C

rc
and a corresponding infinite-type fan F – this is a fan

since the faces are rationally generated, F is a fundamental chamber for the reflec-
tion group W (N), the fan is W−invariant by construction and moreover invariant
under O(N). Since there is a short exact sequence

0 →W (N) → O(N) → S3 → 0

the index of W (N) is finite and thus F is finite volume.
Points in this fan can naturally be interpreted as period points, so a choice of a

point in the fan yields a degenerating family of K3 surfaces by the Torelli theorem.
Let v ∈ F be a point in the fundamental chamber, we will next consider how this
corresponds to a combinatorial object, the same way v⃗ = (a, b, c) did in the case of
Ag.

First consider a fan with 18 rays, corresponding to a toric surface Σ with 18
curves. Note that the rays alternative between long and short vectors:



Glossary 29

Figure 12. The starting point: a toric surface with 18 rays.

This corresponds to a polytope PΣ which is an 18-gon (not necessarily regular)
which is the moment polytope for XΣ where Σ is the fan in Figure 12 and has edge
lengths ℓ0, · · · , ℓ17 ∈ R, which determines a polarization L for XΣ. Although not
shown in the picture here, we can call each edge ”long” if it was dual to a long
vector, and similarly ”short” if dual to a short vector.

Note also that each edge can be written as ℓivi for vi some unit vectors, and

it is a nontrivial condition on ℓ⃗ that this polygon closes. In particular, one needs∑17
i=0 ℓivi = 0.
Now cut triangles out of sides 0, 6, 12 and call the resulting polygon non-convex

polygon P . Each triangle cut corresponds to a non-toric blowup of XΣ, i.e. a
blowup at a point p which is not T−invariant. This introduces three new length
parameters ℓ18, ℓ20, ℓ20 corresponding to the heights of these three triangles. Each
will introduce an I1 singularity to the moment polytope.
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Figure 13. The Symington polytope: an 18-gon, before and after
a nontoric blowup corresponding to cutting out triangles.

Regarding such polytopes as the Symington polytopes, which are bases of La-
grangian torus fibrations, these are in particular elliptic fibrations and these sin-
gularities precisely correspond to introducing singular type I1 fibers in Kodaira’s
classification.

Take two copies of P , say P and P op, and glue them together along the outer
edges and call the result B. This is topolologically the gluing of two discs, and thus
B is homeomorphic to S2. Each gluing along the outer edges introduces a new I1
singularity, yielding 3 + 3 = 6 singularities in the hemispheres and 18 singularities
along the equator for a total of 24 singularities of type I1 and thus an IAS2 with
charge 24.

Note that there are now 24 length parameters: ℓ0, · · · , ℓ17 along the equator,
ℓ18, ℓ19, ℓ20 in the northern hemisphere, and ℓ21, ℓ22, ℓ23 in the southern hemisphere.

The tuple ℓ⃗ = (ℓ1, · · · , ℓ23) turns out to correspond to 24 vectors in a 19 dimensional
space, and there are enough conditions to ensure the polygons actually close.

This produces the tropical sphere IAS2, so one also needs to describe its tropical
divisor RIAS. The above construction works for any K3 with a nonsymplectic
involution, e.g. an elliptic K3, and the IAS2 is naturally equipped with an involution
ι that swaps P and P op. The ramification divisor of ι is the equator, highlighted
in blue in the following cartoon picture of B, and one takes RIAS to be the sum of
the blue edges with coefficient 2 for even (short?) sides and coefficient 1 for odd
(long?) sides:
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Figure 14. Caption

We now describe how one obtains a degeneration X of K3 surfaces from this
combinatorial picture. One must first extend this IAS2 to a complete triangulation
by basis triangles. This triangulation should be done on P first, before the doubling
construction, so that the vertices and edges in the northern hemisphere are perfectly
matched with those in the southern. Here is a cartoon of what this might look like
on one copy of P , before gluing:
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Figure 15. The IAS on P extended to a complete triangulation
by basis triangles.

This is again a cartoon picture, meant to show how vertices and triangles in the
hemispheres should match in pairs exchanged by the involution ι. Here e.g. the
blue triangles are meant to match, as well as Star(w̃1) and Star(w̃op

1 ):
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Figure 16. A completely triangulated IAS2 defined by B := P ∪
P op.

This final picture describes the central fiber X0 of a Kulikov degeneration of K3
surfaces in the following way: there are many non-singular vertices pi, and exactly
24 singular vertices wi and w̃i, w̃

op
i . For the pi, there is a fan defined by Star(pi)

which defines a toric surface Vi. For the 24 singular vertices, there is a modified
recipe to cook up a semi-toric surface – since the singularity is type I1, this will
be a charge 1 surface, and thus realizable as a toric surface with a single non-toric
blowup, a semitoric surface. How to make this blowup is uniquely determined by
an additional omitted decoration called the monodromy ray at the singular vertex.
Roughly, this is a preferred ray cooked up from the Picard-Lefschetz monodromy
operator around the singular vertex. One can think of this as a ”singular fan”.
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Figure 17. Star(w̃2) in Figure 15 with the extra data of a mon-
odromy vector.

So

X0 =
⋃
i

Vi ∪
24⋃
j=1

Wj

where the Vi are all toric surfaces and the Wj are all semitoric surfaces of charge 1,
and the triangulation determines how they are all glued together. To see how this
gluing is done, consider the following local picture in the triangulation:
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Figure 18. Local gluing in the IAS2 of two toric surfaces Σ7 and
P2

At the orange vertex, taking the star we see three rays and thus a copy of P2. At
the green vertex, we see 7 rays, and thus some toric surface Σ7 which is probably
something like a Hirzebruch surface Fn with 3 toric blowups. Since the orange and
green vertices are adjacent by exactly one edge, this means we glue P2 to Σ7 along
the the curves determined by rays pointing along that edge. Moreover, whenever
there is a triangle, this corresponds to three surfaces glued together along a triple
point.

The general case is that the IAS2 has 24 copies of I1 singularities; these singu-
larities can collide to produce semitoric surfaces with multiple nontoric blowups.

Remark 9.7. Note that this only describes X0 and not an entire family X . Fried-
man solved this problem: there is a technical condition called d−semistability,
and if this is satisfied then X0 is smoothable. Moreover the smoothing will have
the correct period and/or monodromy vector λ. Haven’t discussed λ here

yet!To obtain all degenerations, one considers all of the ways this combinatorial
object can degenerate. Sending some ℓi → 0 causes the 18-gon to collapse into
a small polygon, or causes some hemispherical singularities to descend into the
equator. This corresponds to moving an interior point of original fundamental
chamber F onto a wall, and wall-crossing mutates the IAS2 in some other ways.

Remark 9.8. Some miscellaneous remarks:

• The Kulikov models are highly non-unique, differing by flops. Adding the
divisor RIAS fixes this and pins down X uniquely.

• It seems one can read off the stable model from the IAS2. For the honey-
combs in the Ag case, everything was contracted down to two P2s glued
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along their 3 boundary curves in a Θ−graph. In the F2 case, one contracts
everything in the IAS2 except for the equator, i.e. the interiors of the hemi-
spheres are contracted. The most general degeneration is 18 copies of P2

glued in a cycle; one can then send some ℓi → 0 to collide the vertices and
get fewer than 18 surfaces.

• It seems one can also read off Type II degenerations from the IAS2. Here
there are 4 Type II cusps, 3 correspond to collapsing the 18-gon in the
IAS2 in the equatorial plane to an interval. The 4th involves collapsing the
18-gon to a point with bits sticking out. Type I degenerations correspond
to collapsing everything to a point.

• Why everything works simply here: there is only one relevant cusp in F2,
and the involution propagates to everything including the IAS2. The Cox-
eter diagram is also highly symmetric, hinting at how to make the right
toric and IAS construction.

9C. Notes from Phil’s talk.

Remark 9.9. For Σg a compact complex curve of genus g, choose a symplectic
basis {αi, βi}i≤g of H1(ΣG;Z), then there is a unique basis (ω1, · · · , ωg) of H0(ΩΣg )

such that
∫
αi
ωj = δij . In this basis, form the period matrix τ = (

∫
βi
ωj)

g
i,j=1.

This satisfies τ t = τ and ℑ(τ) > 0 is positive-definite, and is thus an element in
The Siegel upper half-space

Hg :=
{
τ ∈ Symg×g(C) | ℑ(τ) > 0

}
.

The Jacobian of Σ is defined as Jac(Σ) := Cg/(Zg ⊕ τZg). Note that we made a
choice of ”marking” by choosing the symplectic basis {αi, βi}, and any two such

choices are related by

[
A B
C D

]
∈ Sp2g(Z), the isometry group of Z2g with the stan-

dard symplectic form, where the action is

[
A B
C D

][
Ig
τ

]
=

[
A+Bτ
C +Dτ

]
, the analogue

of a linear fractional transformation. To renormalize the 1-forms, we change ba-

sis to get a similar matrix

[
Ig

(A+Bτ)−1(C +Dτ)

]
. Thus to get an invariant, we

consider

[τ ] ∈ Sp2g(Z)\Hg := Ag,

the moduli space of PPAVs. Here one can realize the polarization on A as a symplec-
tic form on H1(A;Z) which is represented by a holomorphic line bundle L ∈ Pic(A),
i.e. identifying a symplectic form on H1(A;Z) as an element of H2(A;Z) which we
want to be a (1, 1) form.

Remark 9.10. Now Ag is not compact, so we consider degenerations over X ◦ →
∆◦ and let ∆◦ → Ag be the associated period mapping – how does the period map
degenerate as t→ 0? The answer is that a certain isotropic subspace I ≤ (Z2g, ωstd)
becomes distinguished by the fact that periods against I⊥ remain finite.

Example 9.11. Let y2 = x3 + x2 + t be a family of elliptic curves over Å1 \ 0.
At t = 0 this degenerates to a nodal cubic. There is a vanishing cycle α, and
the distinguished isotropic subspace is precisely I := Zα. One shows I⊥ = Zα as
well. In this case, to be in I⊥ means to be a curve that does not pass through
the thinning neck of the torus that degenerates; any curve that does pass through
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should intuitively have a period that blows up. We normalize by picking a ct such
that

∫
α
ct
dx
y = 1, then

∫
β
ωt = τt ∈ C. However, this isn’t well-defined: one can

parallel-transport β around t = 0 and the monodromy action will be a Dehn twist,
so integrals against β are only well-defined up to Zp where p are periods against α,
here p is normalized to 1. So

∫
β
ωt ∈ τh + Z ∈ C/Z. As t → 0, one was τt → +i∞

if α, β are oriented properly. We can fix this ambiguity by exponentiation, getting
a well-defined invariant exp(2πi

∫
β
ωt) ∈ C∗.

Remark 9.12. How this works for g ≥ 1: assume I is Lagrangian, so I⊥ = I,
corresponding to a maximally unipotent degeneration. If this were a genus g curve,
we could pinch ≤ g disjoint cycles simultaneously, and a maximal degeneration
will pinch exactly g. Since Sp2g(Z) acts transitively on Lagrangian subspaces in
LGr(V ), we can assume I =

⊕
i Zαi is generated by the α curves. Generalizing the

C∗ embedding in the previous case, we obtain a torus embedding

E : Hg ↪→ (C∗)(
g
2)

τ 7→

exp(2πiτ11) · · ·
...

. . .
...

· · · exp(2πiτgg)


Since τ is symmetric, the image E(τ) is again symmetric. Note that the βi cycles
are well-defined up to translation in I, but because the 1-form was normalized so
that integrals of αj along βi were 1 or 0, the entries in this matrix are well-defined
up to integers. Thus we can exponentiate every entry in the period matrix to get
a well-defined symmetric matrix. The unipotent orbit theorem of Schmid gives an
asymptotic estimate

E(τt) ∼t→0

c11t
n11 c12t

n12 · · ·
...

. . .
...

· · · cggt
ngg

 ∈ Matn×n(C∗)

which is a cocharacter of (C∗)(
g
2), i.e. an inclusion C∗ ↪→ (C∗)(

g
2) which is a compo-

sition of a group morphism and a translation. Here the cij are the translation parts,
and if cij = 1 for all i, j this yields an honest group morphism. Such a cocharacter
is called a unipotent orbit. This asymptotic estimate is quantified, so there is a
precise speed at which the period matrix approaches the cocharacter.

Setting N := (nij), we have N ∈ Symg×g(Z) and N > 0. These entries capture
the relative speeds at which the various cycles are collapsing. Since the cij are
ultimately just translations, we’ll omit them from here onward.

Remark 9.13. Define a cone

Pg :=
{
N ∈ Symg×g(Z) | N > 0

}
⊆ Z(

g
2)

and consider the family

(C∗)g

⟨(tn11 , tn12 , · · · , tn1g ), (tn21 , tn22 , · · · , tn2g ), · · · , (tng1 , tng2 , · · · , tngg )⟩
over ∆◦. How does one extend this family over t = 0? If N has full rank, this entire
expression is isomorphic to (Cg/Zg)/τZg. There are two answers, one by fans and
one by polytopes.
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Remark 9.14. The following is the fan construction due to Mumford, which most
easily generalizes to K3 surfaces.

Consider the example

N =

[
2 1
1 3

]
⇝

(C∗)2

⟨(t2, t), (t, t3)⟩
Note N > 0, since detN > 0,TraceN > 0, and N(Zg) is generated by the vector

(2, 1) and (1, 3). First quotient R2 by this lattice to get a flat real 2-torus, then
take a polyhedral tiling whose vertices are integer points. Here we take a tiling of
the fundamental domain and translate it everywhere. This gives a tiling F0 on the

universal cover Rg. Now put this picture at height 1 in Rg+1 to get a tiling F̃0 of

Rg × {1} ⊆ Rg+1, and let F̃ := Cone(F̃0) ⊂ Rg+1 be its cone. Taking the toric

variety X(F̃), and define X(F) := X(F̃)/N(Zg), where the quotient makes sense
precisely because N(Zg) acts on Rg × {1} by translation, and this extends to a

linear action on Rg, which moreover preserves F̃ and thus acts on the toric variety.
There is a morphism ϕ : X(F) → Å1 induced by the morphism of fans given by
the height function: projection in Rg+1 onto the last coordinate, whose image is in
R≥0. This map descends to the quotient since the linear action preserves the height
function.

This produces a degenerating fan of abelian varieties. A fiber ϕ−1(t) of X(F̃ )
for t ̸= 0 yields (C∗)g, and the action N(Zg) acts by translations of the form
(tni1 , tni2 , · · · , tnig ) in the original family. Thus we recover the original family as
an infinite quotient of a toric variety. But the toric variety has a toric boundary,
encoded in the tiling. The fiber ϕ−1(0) has dual complex Γ(X0(F)) = F0 equal to
the original tiling, and X0(F) is a union of toric varieties.

In the original lattice, in the quotient there are precisely 3 0-cells, and we inter-
pret the star of each 0-cell as the fan of a toric surface. They are glued according
to the tiling.

Remark 9.15. The polytope construction, which builds the projective coordinate
ring instead. One defines Q to be the hull of certain points, constructs a theta
function, and takes Proj of a certain graded algebra generated by such functions
with an explicit multiplication rule and structure constants. These define a certain
PL function with a ”bending locus” which gives a polyhedral decomposition of
Rg/Zg. For any N ∈ Pg one can define the Delaunay decomposition Del(N), and
the central fiber X0 of the family will have intersection complex Del(N) – the loci
where the PL function is linear will be polytopes which are the cells of the Delaunay
decomposition. The second Voronoi fan FVor is a decomposition of Pg into loci

where Del(N) is constant. One then takes Symg×g(Z)\Hg ↪→ (C∗)(
g
2) → X(FVor).

One the quotients by conjugation in GLg(Z) to get X(FVor)/GLg(Z) ↪→ Ag
Vor

.
Correspondingly, for any X ◦ in Ag, tracing through this construction gives a proper

family X in Ag
Vor

– note that we’ve only described what toric compactification to
take for the maximally unipotent degenerations, but one can carry out similar

constructions for the other cusps of Ag
bb
.

Remark 9.16. One should ask if Ag
Vor

actually solves a moduli problem, and the
answer is yes (up to normalization) by a theorem of Alexeev. The moduli problem

is the moduli of semi-abelic pairs. Define Ag
Θ

to be the closure of pairs (X, εR)
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where R is their theta divisors, then Alexeev shows

Ag
Vor

= (Ag
Θ
)ν

Remark 9.17. How do we do something similar for K3 surfaces? Fix v ∈ II3,19
primitive with v2 = 2d and define

ΩL :=
{
Cx ∈ Gr1(II3,19C) | (x, x) = 0, (x, x̄) > 0

}
Ω2d := v⊥ΩII3,19 =

{
x ∈ II3,19C | (x, v) = 0

}
Γ2d := StabO(II3,19)(v) = {γ ∈ O(II3,19) | γ(v) = v}
F2d := Γ2d\Ω2d

Here Ω2d plays the role of Hg in the abelian variety case, and is a Hermitian
symmetric domain of type IV or SO2,n, and F2d is an arithmetic quotient. Fixing
a marking ϕ : H2(X;Z) → II3,19, the period map for a family X ◦ → ∆◦ is given
by taking H2,0(X) = Cω and looking at [ω] := ϕ(ω) ∈ F2d, since [ω] ∈ Ω2d but is
ambiguous up to change of marking (elements of Γ). This is a map ∆◦ → Γ2d\Ω2d.

Given a degenerating family, there is a distinguished isotropic lattice I ≤ v⊥

where sgn v⊥ = (2, 19). Note I can only have rank 1 or 2. The rank 1 case (Type
III degenerations) is a maximally unipotent degeneration; the central fiber is as
singular as possible, and X0 will always have 0-strata. In contrast, in the rank 2
case (Type II degenerations) there are models of the degeneration with no 0-strata.

In the rank 1/Type III case, there is a vanishing cycle δ associated to a 0-stratum
in X0 which is topologically a 2-torus. It turns out that δ is an isotropic vector that
spans the isotropic lattice, so we can write I = Zδ ⊆ v⊥. In the degeneration, the
2-torus collapses to a point.

In the rank 2/Type II case, there are two linearly independent isotropic vectors δ
and λ in v⊥ corresponding to 2-tori collapsing simultaneously not to isolated points
as in the previous case, but rather to circles in X0. They are in the singular locus
of X0, which is an elliptic curve.

Remark 9.18. We henceforth assume rankZ I = 1 and write I = Zδ for δ the
isotropic vanishing cycle. Normalize ωt so that

∫
δ
ωt = 1 for t ̸= 0. Let {γi}19i=1 be a

basis of δ⊥/δ. Since δ ∈ v⊥ was isotropic of signature (2, 19), we have sgn(δ⊥/δ) =
(1, 18) and this gives us a hyperbolic lattice of rank 19. Consider the integral∫
γi
ωt ∈ C. For this to make sense, one needs to lift the δi from δ⊥/δ to δ⊥, and

the choice of lift is ambiguous up to a multiple of δ. By the normalization of the
integral, we get a well-defined period∫

γi

ωt ∈ C/Z

As in the PPAV case, we use the exponential to get rid of the quotient by Z.
Letting Uδ ≤ Γ2d be the unipotent subgroup stabilizing δ, we get the following
torus embedding

Uδ\Ω2d
ψ−→ (C∗)19

C[ωt] 7→
(
exp

(
2πi

∫
γ1

ωt

)
, · · · , exp

(
2πi

∫
γ19

ωt

))
and a nilpotent orbit theory yielding an asymptotic estimate

ψt ∼ (c1t
λ1 , · · · , c19tλ19)
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with ci ∈ C∗, so the periods are approximated by a cocharacter where the λi
measure how fast the periods degenerate.

Remark 9.19. Degenerations: a theorem of KPP shows that after a finite base
change and birational modifications, any degeneration of K3s has a model where

• X is smooth
• X0 is RNC
• KX = OX

The most famous degeneration of K3s is the Fermat degeneration is a non-
example, since smoothness fails:

V (x0x1x2x3 = t(x40 + x41 + x42 + x43))

This threefold has precisely 24 conifold singular points. The central fiber at t = 0
is a tetrahedron, 4 planes P2 in P3, and the singular points come from intersecting
each edge of the tetrahedron with the residual quartic. One can get a smooth
threefold by taking a small resolution of the singular points. There are choices for
the resolutions, differing by flops, so here is a heuristic of a symmetric choice where
along each edge there are two resolutions extending into each component:

image
The result has four components Vi which are isomorphic to Bl6 P2, 2 points on

each of 3 lines in P2.
An observation originally due to GHK: there is an IAS on Γ(X0), i.e. there are

charts to R2 up to post-composition with SL2(Z)⋊R2.
Here is an example of X0 = ∪Vi for a Kulikov degeneration (written as a decom-

position into irreducible components). Each unlabeled edge has an implicit label of
−1:

image
This forms a tiling of the sphere. Each tile corresponds to an irreducible com-

ponent Vi of X0. The edges correspond to components Vi, Vj glued along an anti-
canonical cycle of rational curves Vij . The edge numbers record the self-intersection
numbers of the cycles Vij regarded as a cycle in Vi and Vji = Vij regarded as a
cycle in j.

A general fact about degenerations of CYs: X0 is generally a union of log CY
varieties, i.e. there are meromorphic 2-forms on components and they are glued
along their poles so that the residues agree. The red lines in the image denotes the
pole locus of these forms. Each triple point is where 3 surfaces are glued. Since the
overall variety is a SNC surface, there are only double curves and triple points. Note
that this picture is the intersection complex of X0, and not the dual complex
Γ(X0). To obtain the dual complex, take the dual tiling, regard each integral 0-cell
in the result as a fan, and glue the fans.

Here are the fans:
image
Here is how this interacts with the original diagram:
image
This works fine at most vertices, but at most 24 components are non-toric. Note

that from toric geometry, if (V,D) is a toric pair then −D2
i vi = vi−1 + vi+1 and so

one can enforce this formula on such components. For example, the following pair
has all −1 curves since v2 = v1 + v3:

image
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Enforcing this formula locally, non-toric points force some SL2(Z) monodromy
in the IAS.

Remark 9.20. This is the analogue of the Mumford fan construction. Note that
in the PPAV case, the lattice didn’t specify a Kulikov degeneration since it was
not a complete triangulation. But completing this to a complete triangulation of
the corresponding real 2-torus does yield a Kulikov model. For K3s, instead of a
complete triangulation on T 2, we’re taking a complete triangulation of an IAS2.
Note that unlike the PPAV case, a triangulated IAS2 only gives X0 (glued from
ACPs) and not the entire family X . An abstract theorem of Friedman says it
smooth to a K3, but one does not get an explicit construction of the smoothing Xt.

There is also no polytope construction here whatsoever, only the fan construction
for the central fiber. GHK and Siebert have been working on the polytope side.
It’s hard: it’s not clear what the multiplication rule for theta functions should be.
We represent an IAS2 with the following data: Missing, see video.

This recovers X0 by taking fans at vertices.

Remark 9.21. Joint work with Valery: a polarizing divisor is a divisor R in the
generic K3 surface in F2d(C). This corresponds to a choice of ample divisor on a

Zariski open subset of F2d(C). For such a choice, we define F2d
R
to be the closure

of K3 pairs (X, εR) in the space of KSBA stable pairs. A generic K3 has Picard
rank 1, and it’s in the ample class, so any divisor on the generic K3 is automatically
ample. Thus KX + εR > 0 since KX = 0. The pair also has slc singularities. Note
that we’ve allowed all K3s to have ADE singularities, these are examples of slc, and
taking ε small enough resolves any problems. One needs R not to pass through
log canonical centers, and there are no log canonical centers on an ADE K3. Their
theorem gives an explicit description of such a moduli space.

Remark 9.22. We say R is recognizable if it extends to a unique divisor R0 on
any Kulikov surface. Idea: for X0 there are many different smoothing families Xi
and choices of divisors Ri. For any 1-parameter family, taking the Zariski closure
of Ri yields a flat limit Ri,0 on X0. If R is recognizable, these flat limits do not
vary, so the choice of divisor can be made on any K3, even a smooth K3. If R is a
recognizable polarizing divisor, there is a unique semifan FR such that

F2d
FR

= (F2d
R
)ν

This relates a Hodge-theoretic compactification on the left with a geometric com-
pactification on the right.

Remark 9.23. A semitoroidal compactification simultaneously generalizes toroidal
and BB compactifications.

Recall that assocaited to a degeneration of K3s we had λ⃗ := (λ1, · · · , λ19) ∈ δ⊥/δ,

a signature (1, 18) lattice. Friedman-Scattone show that λ⃗2 is the number of triple
points in X0. The semifan FR is a locally polyhedral Γδ := StabΓ(δ) invariant
decomposition of the positive cone C+ ⊂ δ⊥/δ. This is the future light cone in the

corresponding hyperbolic space. Roughly F2d
FR

is X(FR)/Γδ.
Why this? We had a torus embedding of the first partial quotient Uδ\D → (C∗)19

and the latter is canonically identified with δ⊥/δ ⊗ C∗. The monodromy invariant

λ⃗ was approximated by the cocharacter λ ⊗ C∗. We extend that torus by a toric
variety whose fan has support in δ⊥/δ.
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Note that here semitoroidal corresponds to locally polyhedral. A globally poly-
hedral tiling condition would just yield a usual fan. For instance, the cones here
might have infinitely many rational polyhedral walls. On the other hand, the BB
compactification corresponds to the trivial compactification of C+ which is just the
entirety of C+.

Remark 9.24. AE prove that recognizable divisors R
rc

:=
∑
C∈|L|,Cν∼=P1 C exist.

The rational curve divisor is always recognizable for any degree 2d, so this exhibits
some semitoroidal compactifications with geometric meaning.

AET give some explicit examples for F2. Degree 2 K3s are generically 2-to-1
covers π : X → P1 branched over a sextic, take L := π∗OP1(1). One takes the R to
be the ramification divisor R ∈ |3L|; it is a recognizable divisor. They construct a
semifan FR which is a coarsening of the Coxeter fan for the root system in δ⊥/δ;
one takes a subset of the root mirrors.

The construction of the singular K3 surface: start with the heart IAS2, trian-
gulate completely, double this construction, replace each vertex with the surface
defined by the star. Note the cuts introducing shears along the boundary. The cuts
introduce 3 singularities in each hemisphere, and angular defects of the polygonal
gluing introduce 18 singularities along the equator. This IAS2 has an involution,
and this X0 naturally has an involution. The ramification divisor of the IAS2 is
in blue, it’s a tropical ramification divisor. It is the dual complex of the limit of
ramification divisors.

Why is this recognizable? X0 admits an involution ι0. From this we can deter-
mine the limit of Fix(ι). Note that X0 alone determines R0, the limit of Rt, and
R0 = Fix(ι0). This implies recognizability since the choice of divisor R can be made
on any Kulikov surface.

Remark 9.25. On joint work with ABE for elliptic K3s. Take X → P1 an elliptic
fibration with fiber f and section s. This is not of the form F2d, since here one
takes H = Zs ⊕ Zf for the polarization. Generically the fibration has 24 singular
fibers. They show R := s + m

∑
fi for fi the singular fibers is recognizable for

any multiple m. The lattice II1,17 is reflective, and FR here refines the Coxeter
chamber into 9 subchambers. This is a fan which is strictly not a semifan. There
is a corresponding tropical elliptic K3 given by the following IAS2.

image
Here one glues the top too the bottom, identifying the segments by a vertical

shear. Note it has an S1 fibration which tropicalizes the elliptic fibration. The
blue vertical lines are limits of singular fibers, the blue horizontal is the limit of the
section.

10. Coxeter and Dynkin diagrams

10A. Coxeter groups and diagrams.

Remark 10.1. Main ideas:

• Elliptic subdiagrams of rank r correspond to codimension r faces of a poly-
tope P

• Parabolic subdiagrams (of rank n− 1) correspond to cusps of P

Remark 10.2 (A summary of hyperbolic Coxeter diagram conventions). Regarding
this as a group of reflections in hyperplanes, we have the following interpretations:
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Description Diagram Notation mij ∠(Hi, Hj) wij

Labeled simple edge
mijH1 H2

Hi ⋔ Hj mij π/mij cos
(

π
mij

)
No Edge

H1 H2

Hi ⊥ Hj 2 π/2 0

Simple Edge
H1 H2

Hi ⋔ Hj 3 π/3 1
2

Double Edge
H1 H2

Hi ⋔ Hj 4 π/4
√
2
2

Triple Edge
H1 H2

Hi ⋔ Hj 5 π/5 1+
√
5

4

Thick/bold edge
H1 H2

Hi ∥ Hj ∞ 0 1

Dotted Edge
wijH1 H2

Hi Hj 0 ∞ cosh(ρ(Hi, Hj))

Simple vertex h2i = −1 1
Black vertex h2i = −2 2
Double-circled vertex h2i = −4 4

Table 2. A summary of conventions for Coxeter-Vinberg dia-
grams

Definition 10.3 (Coxeter groups). A group W is a Coxeter group if it has a
presentation of the following form:

W = ⟨r1, · · · , rn | (rirj)mij ∀1 ≤ i, j ≤ n⟩ mij ∈ Z≥1 ∪ {∞}
where

• mii = 1 for all i,
• mij ≥ 2 for i ̸= j, and
• mi,j = ∞ means there is no relation imposed.

If S = {r1, · · · , rn} is a fixed generating set, we call the pair (W,S) a Coxeter
system.

Definition 10.4 (Coxeter diagrams). Given a Coxeter system (W,S), the the
pre-Coxeter diagram of (W,S) is weighted undirected graph with a single vertex
vi for each ri ∈ S, and for each pair i ̸= j, an edge eij of weight wij := mij

connecting vi to vj . Note that this yields a complete5 graph on |S| vertices. The
Coxeter diagram D(W ) of (W,S) is the partially weighted graph obtained from
the pre-Coxeter diagram by the following modifications:

• Edges eij of weight wij = 2 are deleted.
• Edges eij of weight wij ≥ 7 are labeled with their weights.
• Edges eij of wij = 3, 4, 5, 6 follow one of two conventions: they are either
replaced with an (wij − 2)−fold multi-edge, or are unmodified and retain
their label of wij .

• Edges eij of weight wij = ∞ are replaced by bold/thick edges.

Remark 10.5 (Facts about Coxeter diagrams). We summarize several facts about
the full Coxeter diagram:

5Recall that a graph is complete if every vertex is adjacent to every other vertex.
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• Vertices vi and vj are non-adjacent if and only if wij = 2,
• Vertices vi and vj are adjacent if and only if wij ≥ 3,
• Edge weights are suppressed for small weights wij ≤ 6, and explicitly in-
cluded for every wij ≥ 7.

Remark 10.6 (How to read a group presentation from a Coxeter diagram). One
can recover the presentation of a Coxeter group from any Coxeter diagram. Ex-
plicitly, given a diagram D, one constructs a group W such that D = D(W ) in
the following way: first one transforms the Coxeter diagram into a pre-Coxeter
diagram by adding weight 2 edges between every pair of non-adjacent vertices,
forming a complete graph. One then replaces double/triple/quadruple edges with
weight 4/5/6 edges respectively. Finally, reads the group presentation off of the
weighted adjacency matrix of the resulting graph. Explicitly, the group W will
have a generator for every vertex and a relation (rirj)

wij for each edge eij of weight
wij .d

Example 10.7 (Passing between Coxeter diagrams and Coxeter groups). Every
Coxeter diagram is naturally associated with a weighted graph whose edge weights
are all integers mij ≥ 2, and from this presentation, one can immediately read
off the group presentation. For example, consider the following diagram and the
associated weighted graph:

7

⇝

3

3

4
7

2

2

r1

r2 r3

r4

Reading generators and relations off of this graph, we obtain a group freely
generated by r1, r2, r3, r4 subject to the following relations:

W :=

〈
r1, r2, r3, r4

∣∣∣∣∣∣
r21 = r22 = r23 = r24 = 1
(r1r2)

3 = (r2r3)
7 = (r1r4)

4 = (r2r4)
3 = 1

(r1r3)
2 = (r3r4)

2 = 1

〉
.

Letting A be the weighted adjacency matrix of this weighted graph, we can read
this group presentation directly off of the following symmetric matrix:

A =


1 3 2 4
3 1 7 3
2 7 1 2
4 3 2 1


This matrix defines an exact sequence of Z−modules

0 → Z4 A−→ Z4 →W → 0,

realizing W ∼= cokerA as a presentation of W by generators and relations.
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10B. Coxeter polytopes.

Remark 10.8. Recall the cosine formula for Euclidean inner product spaces: in
En, the norm is ∥x∥ :=

√
x2 :=

√
x.x, and we have

vw = ∥v∥∥w∥ cos(∠(v, w)) =
√
v2
√
w2 cos(∠(v, w)) =

√
v2w2 cos(∠(v, w))

For a general bilinear form, we can define

∠(v, w) := cos−1

(
vw√
v2w2

)
.

We can thus interpret the pairing as measuring angles in the following way:

vw =
cos(∠(v, w)√

v2w2
,

which moreover allows one to compute intersections vw from knowledge of v2, w2,
and angles ∠(v, w), which is precisely the data that is encoded in a Coxeter diagram.

Definition 10.9 (Dihedral angles between hyperplanes). If Hi, Hj are intersecting
hyperplanes in En, we write Hi ⋔ Hj . We write hi := H⊥

i and hj := H⊥
j for unit

normal vectors spanning their orthogonal complements, and define the dihedral
angle between Hi and Hj as

∠(Hi, Hj) := ∠(hi, hj).

If Hi is parallel to Hj , we write Hi ∥ Hj and define ∠(Hi, Hj) = 0. We similarly
write Hi ⊥ Hj if ∠(Hi, Hj) = π/2.

Remark 10.10. Note that there is a common trick to get rid of the square root
in these formulas: one writes

(vw)2 = v2w2 cos2(∠(v, w))

For ∠(v, w) = π/mij , this gives a way to recover mij from the bilinear form.

Definition 10.11 (Coxeter polytopes). LetX := En,Sn,Hn be a Euclidean, spher-
ical, or hyperbolic geometry. A polytope P ⊆ X is Coxeter polytope if all dihe-
dral angles between pairs of intersecting facets Hi and Hj are of the form π/mij

for mij ∈ Z≥2, and any two non-intersecting facets are parallel.

Remark 10.12 (Coxeter group GP of a Coxeter polytope P ). Every Coxeter
polytope P defines a Coxeter group GP ≤ Isom(X) generated by reflections through
the supporting hyperplanes Hi of facets of P and a corresponding Coxeter diagram
DP . For X = En, one constructs GP in the following way:

• A generator ri for each facet Hi of P with relation r2i = 1, representing
reflection through the hyperplane Hi,

• For any facets Hi, Hj where Hi ⋔ Hj , there is a relation (rirj)
mij = 1

where mij is defined by ∠(Hi, Hj) = π/mij .
• For non-intersecting facets Hi ∥ Hj , we set mij = ∞ and take a relation
(rirj)

∞ = 1, i.e. no relation is imposed at all.

Remark 10.13. Note that P is a fundamental domain for the action of GP on
X. Moreover, if G ≤ Isom(X) is any discrete finitely generated reflection group,
then its fundamental domain is always a Coxeter polytope. If X = Sn or En,
Coxeterpolytopes are classified and are either simplies or products of simplices
respectively, and full lists can be found. For X = Hn, the general classification is
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an open problem. Poincaré classified them in H2. Vinberg showed that no compact
Coxeter polytopes exist in Hn for n ≥ 30, and no non-compact but finite volume
polytopes exist for n ≥ 996. These bounds are not sharp. Finding explicit examples
of high-dimensional compact Coxeter polytopes is interesting because these can be
used to explicitly construct high-dimensional hyperbolic manifolds.

Definition 10.14 (Volumes and covolumes of Coxeter groups/polytopes/diagrams).
We define the covolume of GP as the volume of P ∼= X/GP , where the metric on
the quotient is induced from the metric defining the geometry on X.

Remark 10.15. We collect some facts about the corresponding Coxeter diagram
D(P ):

• D(P ) has vertices vi corresponding to Hi, where vi, vj are non-adjacent if
and only if Hi ⊥ Hj

6,
• Edges eij are plain if mij <∞ and mij ̸= 0, so Hi ⋔ Hj ,
• Edges eij are bold if mij = ∞, so Hi ∥ Hj and ∠(Hi, Hj) = π/∞ = 0.

Example 10.16 (Euclidean Coxeter polytopes). Consider the following Coxeter
diagram:

m

This corresponds to a non-compact polytope in E2 bounded by two hyperplanes
H1, H2 through the origin (i.e. lines), one corresponding to each node, intersecting
at an angle of π/m. Without loss of generality, we can take H1 to be the x−axis
and H2 to be a line of slope π/m:

6Recalling that edges with mij = 2 are deleted by convention.
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Figure 19. Caption

One can note that if m = 2, then one deletes the edge by convention to get the
Coxeter diagram

This is the Dynkin diagram of A1 × A1, which indeed has fundamental chamber
the first quadrant. Similarly, if one takes m = 3 on recovers the standard Dynkin
diagram for A2:

We get a fundamental chamber with two walls at a dihedral angle of π/3, corre-
sponding to the dual hyperplanes of the two standard short rootsα and β with
∠(α, β) = 2π/3 in Lie theory:
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Figure 20. Caption

Example 10.17 (Affine examples).Todo: weighted Ã2 as a
simplex.

Remark 10.18. Note that taking reflections of the fundamental domain C by the
Weyl group generates a tiling of the hyperbolic disc in these cases.

Remark 10.19 (Importance of tilings!). Why this is important: given any tiling
of E2 or H the hyperbolic disc, we can place it at height one and take a cone to
get an infinite-type toric variety. Alternatively, given any tiling we can construct a
surface that is a union of toric pairs by interpreting every vertex of the tiling as a
fan and the edges of tiles as gluing instructions.

Finally, we can interpret an IAS2 has an irregular spherical tiling, i.e. a tiling S2
which is not necessarily generated by reflections, but one which has finitely many
tiles. We then regard the tiling as a union of toric surfaces as described above.

Definition 10.20 (The Gram matrix of a Euclidean Coxeter polytope). Let P ⊂
En be a Euclidean Coxeter polytope, not necessarily compact. One defines the
Gram matrix G(P ) of P as

G(P )ij =


1 i = j

− cos
(

π
mij

)
Hi ⋔ Hj , ∠(Hi, Hj) = π/mij

−1 Hi ∥ Hj , ∠(Hi, Hj) = π/∞ = 0

.

10C. Hyperbolic Coxeter polytopes.

Remark 10.21. See the section on hyperbolic geometry for a description of Hn :={
x ∈ En,1 | x2 = −1, x0 > 0

}
and terminology (space/time/light-like vectors). As

a convention, Hn means the interior of Hn := Hn∪∂Hn where ∂Hn is the boundary
at infinity consisting of ideal points.

Some unsorted notes:
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• The distance ρ on Hn is defined such that ρ(v, w) := arccosh(vw).
• In Hn Vinberg defines the dihedral angle as ∠(fi, fj) := π − ∠(f⊥i , f⊥i ).
• The diagram E10 describes a polytope in H9.

Remark 10.22 (Hyperplane incidence relations in hyperbolic spaces). In hyper-
bolic geometry (H2 to simplify), there are two types of parallelism: asymptotically
parallel (converging) lines, or ultraparallel (diverging) lines. Both are characterized
by sharing a common orthogonal line, however, asymptotically parallel lines have a
common perpendicular in ∂H2 going through their ideal point of intersection, while
ultraparallel lines share a common perpendicular at a point in the interior H2. By
the ultraparallel theorem, Hi, Hj are ultraparallel if and only if Hi ∩Hj = ∅ in H2.

Figure 21. The two types of parallelism in hyperbolic space, vi-
sualized in the ball model and half-plane model respectively.

Thus given a pair of hyperplanes Hi and Hj , there are thus three possibilities
for their incidence relations:

(1) Hi, Hj are not parallel and thus intersect in Hn. We write Hi ⋔ Hj and
define ∠(Hi, Hj) as the usual dihedral angle.

(2) Hi, Hj are asymptotically parallel/converging and thus intersect in an ideal
point in ∂Hn. We write Hi ∥ Hj and define ∠(Hi, Hj) =

π
∞ = 0.

(3) Hi, Hj are ultraparallel/diverging and do not intersect in Hn. We write

Hi Hj .

Remark 10.23 (Hyperbolic distance between hyperplanes). Note that in the last
case above, ∠(Hi, Hj) is undefined but there is a minimal distance ρ(Hi, Hj) be-
tween the two hyperplanes. By geometric axioms, if Hi ∩ Hj = ∅ then there is a
unique geodesic Lij that is simultaneously orthogonal to both Hi and Hj , inter-
secting them at points pi and pj . One then defines ρ(Hi, Hj) as the length of a
geodesic segment along Lij with endpoints at pi and pj .
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Remark 10.24 (Extending Coxeter diagrams for hyperbolic polytopes). Following
Vinberg, one can extend the notion of a Coxeter diagram to a weighted graph
with positive weights wij > 0 where all wij ∈ (0, 1) can be written in the form

wij = cos
(

π
mij

)
for somemij ∈ Z≥2 and wij ∈ [1,∞] can be arbitrary real (possibly

infinite) numbers. In this convention,

• wij = cos
(

π
mij

)
∈ (0, 1) get simple edges of labeled weight mij (or multi-

edges) corresponding to Hi ⋔ Hj and ∠(Hi, Hj) =
(

π
mij

)
• wij = 1 get bold unlabeled edges of weight 1 corresponding to Hi ∥ Hj

and ∠(Hi, Hj) =
π
∞ = 0.

• wij ∈ (1,∞) get dotted labeled edges of weight wij (or unlabeled) corre-

sponding to Hi Hj and wij corresponds to ρ(Hi, Hj)

More generally, given a Coxeter-Vinberg diagram set

gij =
hihj√
h2ih

2
j

,

then one interprets

• gij < 1 =⇒ gij = cos (∠(hi, hj)) and Hi ⋔ Hj with ∠(hi, hj) = π/mij ,
• gij = 1 =⇒ Hi ∥ Hj with ∠(hi, hj) = 0,

• gij > 1 =⇒ Hi Hj .

Example 10.25 (Hyperbolic examples).Todo: (∞,∞,∞).

Remark 10.26. As in the Euclidean case that taking reflections of the fundamental
domain C by the corresponding Weyl group naturally constructs a tiling of E2 in
all of these cases:

• A1 ×A1 tiles E2 with 4 non-compact quadrants,
• A2 tiles E2 with 6 non-compact sectors of angle π/3,
• In general, taking ◦ →m ◦ with m ∈ Z≥1 tiles E2 with 2m non-compact
sectors of angle π/m,

• Ã2 tiles E2 with infinitely many compact equilateral triangles of with in-
ternal angles π/3.

Definition 10.27 (The Gram matrix of a hyperbolic polytope). Let P ⊆ Hn be
a Coxeter polytope, possibly with ideal points. The Gram matrix of P is the
matrix

G(P )ij =


1 i = j

− cos
(

π
mij

)
Hi ⋔ Hj , ∠(Hi, Hj) = π/mij ,

−1 Hi ∥ Hj , ∠(Hi, Hj) = π/∞ = 0,

− cosh(ρ(Hi, Hj)) Hi Hj , ∠(Hi, Hj) = π/0 = ∞,

.

Remark 10.28. When labeling the Coxeter graph, one often putsmij or cosh(ρ(Hi, Hj))
as the labels, mixing conventions slightly. Edges of weight 2 are deleted, edges of
weight 3 are unlabeled simple edges.

Remark 10.29. If P ⊆ Hn is a compact hyperbolic Coxeter polytope, the quotients
Hn/GP are hyperbolic orbifolds. The simplest examples of such polytopes are the
hyperbolic n−gons defined by integers p1, · · · , pk ≥ 2 satisfying

∑
p−1
i < k − 2.
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Definition 10.30 (Simple systems). We say ∆ = {ri} is a simple system of
generators for a polytope P if rirj ≥ 0 for all i and j, and P has a facet presentation
by the mirrors Hri . This allows one to write

P =
{
v ∈ LR | v2 = 0, riv ≥ 0

}
.

We call P a Weyl chamber7. The closure P is a fundamental domain for the
action ofW (L) and the Weyl group acts simply transitively on the set of chambers.

Remark 10.31 (Decomposing the future orthogonal group into a Weyl and sym-
metry group). Let W (L) be the reflections in all negative norm vectors. There is
an identification

O+(L) ∼=W (L)⋊ S(C), S(C) := StabO+(L)(C)

where C ⊂ Bn be a fundamental chamber of W (L) with respect to some choice of The semidirect might be
in the wrong direction
here, which one is nor-
mal?

a simple set of generators.

Definition 10.32 (Reflective lattices). We say L is reflective if W (L) ≤ O+(L)
is finite-index. More generally, if we define O+(L)k as the subgroup generated by
all k−reflections, i.e. reflections in roots v with v2 = k, we say L is k−reflective if
W () is finite index in O+(L).

Remark 10.33. If L as above is reflective, it is well-known C is a hyperbolic
Coxeter polytope of finite volume.

Definition 10.34 (Vinberg-Coxeter diagrams). A Vinberg-Coxeter diagram is
an extension of a Coxeter diagram with adds the following decorations:

• Black edges
• Double-circled edges
• Dotted edges
• Thick edges

It is a weighted graph with positive edge weights wij > 0 where we require that any

wij ∈ (0, 1) is of form wij = cos
(

π
mij

)
for some mij ∈ Z≥2, but we explicitly allow

some wij ∈ [1,∞] to be real (possibly infinite) numbers. We additionally specify
vertex weights ri for each vertex vi. In this convention,

• wij = cos
(

π
mij

)
∈ (0, 1) get simple edges of labeled weight mij (or

unlabeled multi-edges of multiplicity mij − 2 for mij = 3, 4, 5, 6),
• wij = 1 get bold unlabeled edges of weight 1
• wij ∈ (1,∞) get dotted labeled edges of weight wij .

10D. Elliptic and Parabolic subdiagrams.

Remark 10.35. Given these weights, one can construct the weighted adjacency
matrix A with aij = wij if vi, vj are adjacent and zero otherwise.

A matrix A is a direct sum of matrices Ai if A is similar via permutations of
rows and columns to the block diagonal matrix whose blocks are the Ai. If A can not
be written as a direct sum of two matrices, we say A is indecomposable. Every
matrix has a unique representation as a sum of indecomposable components. We say
a Coxeter polytope is indecomposable if its Gram matrix GP is indecomposable.

7This is also sometimes notated C.
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Any matrix GP arising from an irreducible Coxeter polytope is either positive-
definite, positive-semidefinite, or indefinite. We say a diagram DP is elliptic if GP
is PD, parabolic if every subdiagram is elliptic and it has at least one degenerate
irreducible component.

Connected components of the diagram correspond to indecomposable sub-block
matrices of A. A diagram is elliptic of A is positive-definite, and is parabolic if any
indecomposable component of A is degenerate and positive-semidefinite. There are
finitely many indecomposable elliptic and parabolic diagrams. If a Coxeter diagram
describes a Coxeter polytope P , elliptic subdiagrams of codimension 1 correspond
to facets of P . Moreover, P has finite volume iff every such elliptic subdiagram
can be extended in exactly 2 ways to either an elliptic subdiagram of rank n or a
parabolic subdiagram of rank n − 1, corresponding to every facet of the polytope
meeting each of its adjacent facets at either an interior point or an ideal point of
Hn respectively.

Remark 10.36. Idea: a subdiagram is elliptic if the Gram matrix is negative
definite of full rank, and parabolic if negative semidefinite of corank equal to the
number of components of the diagram. Elliptic diagrams of rank r biject with
codimension r faces of C. Parabolic diagrams of corank 1 correspond to ideal points
of C. Vinberg’s algorithm produces a simple system ∆ of generators forW (L) which
determines a hyperbolic polytope C via the corresponding Weyl chamber. If the
algorithm terminates, C is of finite volume.

Definition 10.37 (Ranks of subdiagrams). The rank of a subdiagram is its num-
ber of vertices minus its number of connected components.

Definition 10.38 (Elliptic and parabolic Coxeter subdiagrams). A Coxeter dia-
gram G is called elliptic (resp. parabolic) if every connected component of G
is a Coxeter diagram underlying classical (resp. affine) Dynkin diagram. This is
summarized in the following table; note that the classical diagrams Bn and Cn
become identified when the arrow is omitted:
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Elliptic Parabolic

An
1 2 n− 1 n

Ã1 = I∞ ∞
0 1

Ãn

0

1 2 n− 1 n

Bn = Cn
1 2 n− 1 n

B̃n

0

1

2 3 n− 2 n− 1 n

C̃n
0 1 n− 1 n

Dn
1 2

n− 1

n

D̃n

0

1

2 3

n− 1

n

E6
1

2

3 4 5 6
Ẽ6

1

2

3 4 5 6

0

E7
1

2

3 4 5 6 7
Ẽ7

1

2

3 4 5 6 70

E8
1

2

3 4 5 6 7 8
Ẽ8

1

2

3 4 5 6 7 8 0

F4
1 2 3 4

= 4

1 2 3 4
F̃4

1 2 3 40
= 4

1 2 3 40

G2
1 2

= 6

1 2
G̃2

0 1 2
= 6

1 20

H3
1 2 3

= 5

1 2 3

H4
1 2 3 4

= 5

1 2 3 4

Table 3. Classification of elliptic and parabolic subdiagrams of a
Coxeter diagram

10E. Some discrepancies. Note the following discrepancies when comparing the
classification of diagrams of Coxeter diagrams to the usual notions of Dynkin dia-
grams:

• These are not Dynkin diagrams: we forget the arrows on double, triple, etc
edges.
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• Warning: in a Coxeter diagram, an edge of label m always corresponds
to an (m − 2)−fold edge. In a Dynkin diagram, a 3-fold edge cor-
responds to m = 6. We do not use this convention in the table

above! Compare G2, G̃2 in the table, which have 4-fold edges correspond-

ing to m = 6 to the following classical diagrams for G2 and G̃2 which still
correspond to m = 6:

G2 :
1 2

G̃2 :
1 20

The reason for this discrepancy: in a Dynkin diagram, the edge labels
m must satisfy a crystallographic condition and thus m = 2, 3, 4, 6. Since
m = 5 is not possible, this makes the interpretation in that special case
unambiguous.

• This discrepancy also occurs for Hi; here a triple edge truly corresponds to
m = 5.

• In the affine case, we do not distinguish the “new” node, usually denoted

by a white dot labeled 0. Compare to the usual diagram e.g. for Ãn:

1 2 3 4

0

Remark 10.39. Elliptic subdiagrams are a disjoint union of classical Dynkin dia-
grams, while parabolic subdiagrams are a disjoint union of affine Dynkin diagrams.

Why these matter: we are working with Coxeter polytopes P in a hyperbolic
space, i.e. hyperbolic Coxeter polytopes. Vinberg has a general theory which says
the Coxeter diagram D records the combinatorics of P :

• Facets of P ⇌ nodes of D,
• Dihedral angles between two facets of P ⇌ edges of D,
• k−faces of P ⇌ elliptic subdiagrams of P of co-rank k,
• Ideal vertices of P ⇌ parabolic subdiagrams of rank k.

Idea: in F2, Type II strata are classified by maximal parabolic subdiagrams of the
single Coxeter diagram, and Type III strata by elliptic subdiagrams. Dimensions
of strata correspond to number of vertices in these subdiagrams, and inclusion
of diagrams corresponds to degenerations (smaller diagrams correspond to “more
degenerate”).

10F. Edge conventions for Coxeter diagrams. The interpretation of these
Coxeter diagrams in terms of root systems:

Needs some notation from [?]:
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V (M) the light cone V (M) =
{
x ∈M ⊗ R | x2 > 0

}
of a hyperbolic lattice M

V +(X) the half containing polarization of the light cone V (SX)
L(S) = V + (SX) /R+ the hyperbolic space of a surface S
W (2)(M) the group generated by reflections in all f ∈M with f2 = −2
W (4)(M) the group generated by reflections in all (−4) roots of M
W (2,4)(M) the group generated by reflections in all (−2) and (−4) roots of M
M(2) a fundamental chamber of W (2)(S) in L(S)
M(2,4) a fundamental chamber of W (2,4)(S) in L(S)
P (2)

(
M(2,4)

)
all (−2)-roots orthogonal to M(2,4)

P (4)
(
M(2,4)

)
all (−4)-roots orthogonal to M(2,4)

(X, θ) a K3 with involution θ
Xθ the fixed locus of an involution
P (X)+I the subset of exceptional classes of (X, θ) of type I

Description Symbol

Black vertices: f ∈ P (4)
(
M(2,4)

)
, i.e. f2 = −4

f

White vertices: f ∈ P (2)
(
M(2,4)

)
, i.e. f2 = −2

f

Double-circled vertices: f ∈ P (X)+I , i.e. the class of a rational component of Xθ.
f

No edge: f1 ̸= f2 ∈ P
(
M(2,4)

)
with f1 · f2 = 0, so ∠(f1f2) = π/2

f1 f2

Simple edges of weight m, or m− 2 simple edges when m is small: 2f1f2√
f2
1 f

2
2

= 2 cos π
m , so ∠(f1f2) = π/m

mf1 f2

Thick edges: 2f1·f2√
f2
1 f

2
2

= 2
f1 f2

Broken edges of weight t: ?
tf1 f2

Table 4. Edge conventions for Coxeter diagrams

Edge conventions for Coxeter polytopes: nodes correspond to facets fi, fj of P
and edges record relations in GP .



56 Glossary

Description Diagram

∠(fifj) = π/2
f1 f2

∠(fifj) = π/m
mf1 f2

∠(fifj) = π/3
f1 f2

∠(fifj) = π/4
f1 f2

∠(fifj) = π/5
f1 f2

fi, fj do not intersect
f1 f2

fi, fj intersect in ∂Hn
f1 f2

Table 5

10G. Surfaces associated with Coxeter diagrams.

Remark 10.40. As described in [?, Prop. 4.6], for the Halphen case S := (10, 10, 1),
there exists a K3 surface with S+

X = S with π : X → Y := X/ι where Nef(Y ) can
be identified with the Coxeter chamber for the full reflection group Wr.

Moreover, [?, Cor. 4.8] shows that the Coxeter diagram of S can be used to
write the dual graph of exceptional curves on Y under the following modifications:
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Description Symbol Description

A single-circled white vertex
F

F ∼= P1 with F 2 = −1

A double-circled white vertex
F

F ∼= P1 with F 2 = −4

A black vertex
F

F ∼= P1 with F 2 = −2.

Any single, plain edge
Fi Fj

Fi, Fj ∼= P1 with FiFj = 1

Any bold edge
Fi Fj

Fi, Fj ∼= P1 with FiFj = 2

Any double edge
Fi Fj

??

Table 6. How to read a surface off of a Coxeter diagram

Unclear what double
edges are, need to read
further.10H. Incidence diagrams/dual complexes.

10I. Dual complexes.

Definition 10.41 (Dual complex). LetD be an RSNC divisor. The dual complex
Γ(D) of D is the PL-homeomorphism type of the simplicial complex whose d−cells
correspond with codimension d strata in D, i.e. irreducible components of d−fold
intersections Vi0 ∩ · · · ∩ Vid .

Example 10.42. Let X → ∆ be a semistable degeneration and let X0 = V1∪· · ·∪Vn
be the smooth surfaces forming the irreducible components of the central fiber.
Writing Cij := Vi ∩ Vj and pijk := Vi ∩ Vj ∩ Vk for their intersections along curves
and points, we call each irreducible component of Cij a double curve and the
points pijk triple points.

Semistability ensures that the dual complex has dimension at most 3, i.e. there
are at worst triple points. Thus concretely the dual complex has

• a vertex for each component Vi,
• an edge from Vi to Vj for each double curve Cij , and
• a 2-simplex spanning Vi, Vj , Vk for each triple point pijk.

Remark 10.43. For a double curve C = Cij = Cji regarded as a curve in Vi and
Vj respectively, Persson’s triple point formula holds:

C2
ij + C2

ji = −TC
where TC is the number of triple points on C.
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Example 10.44. Let Hi ⊂ P3 for 0 ≤ i ≤ 3 be the four standard coordinate
hyperplanes, i.e. Hi = {[z1 : z2 : z3 : z4] | zi = 0} and let D =

∑
Hi. Any 2 planes

intersect in a line and any 3 planes intersect in a point, so there are
(
4
2

)
= 6 double

curves Cij := Hi ∩ Hj and
(
4
3

)
= 4 triple points pijk := Hi ∩ Hj ∩ Hk. The dual

complex is the standard tetrahedron:

Definition 10.45 (Incidence complex). Let (X,D) be a RNC compactification.
The incidence complex I(D) of D is the simplicial complex built in the following
way: let D =

∑
iDi be a decomposition into prime divisors, and take a complex

I(D) whose k−dimensional cells are in bijection with irreducible components of
k−fold intersections of the Di. The colored incidence complex is I(D) with an
integer weight (or a coloring) attached to each 0-cell indicating the dimension of
the corresponding stratum.

Remark 10.46. In our case of interest, (X,D) will be a Baily-Borel compactifi-
cation of a moduli space where D := ∂X̄ is a union of boundary strata of various
dimensions. Because we primarily work with hyperbolic lattices, D will only con-
tain strata of dimensions 0 and 1, i.e. points and curves. Thus I(D) will reduce
to a graph whose vertices are in bijection with points and curves in D and whose
edges record when a point pj is contained in the closure of a curve Ci. We can thus
form the colored incidence complex I(D) with two colors, taking points to be black
and curves to be white.

Definition 10.47 (Cusp incidence diagrams). Let ΩN be the period domain associ-
ated with a lattice N and let Γ ⊆ O(N) be a finite-index subgroup. The Baily-Borel

compactification ΩS/Γ
bb

is a projective variety with a boundary stratification

ΩS/Γ
bb

= (ΩS/Γ) ∪ I ∪ J , ∂ΩS/Γ
bb

= I ∪ J

where
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• I is a set of points referred to as 0-cusps, which are in bijective correspon-
dence with Γ-orbits of primitive isotropic 2-dimensional sublattices of N ,
and

• J is a set of modular curves referred to as 1-cusps, which are in bijective
correspondence with Γ-orbits of primitive isotropic 1-dimensional sublat-
tices of N .

We summarize below what information the colored incidence complex I(∂ΩS/Γ
bb
)

captures:

Cusp Type Type II, J Type III, I
Boundary Strata 1-cusps/curves Ci 0-cusps/points pj
Vertex type Ci pj

Sublattice Type Isotropic lines [Ze] ∈ Griso1 (L)/Γ Isotropic planes [Ze⊕ Zf ] ∈ Griso2 (L)/Γ
Subdiagram Type Maximal parabolic Elliptic

Table 7. Cusp types

Moreover, we draw an edge between a black and white node to denote a point
pi contained in the closure of a curve Cj :

Cj pi

Example 10.48. Consider the following colored incidence diagram:

C12

p2

C2

p1

Figure 22. A colored incidence diagram I(D) for D = I ∪ J .

This represents the boundary stratification of a Baily-Borel compactification for
which I = {p1, p2} consists of two points, J = {C12, C2} is two curves, where
p1, p2 ∈ C12, p2 ∈ C2, and p1 ̸∈ C2. This can be represented by the following
configuration of curves and points:
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C12

C2

p2

p1

Figure 23. A configuration of curves and points representing
I(D) in Figure 23.

Remark 10.49. Each 0-cusp pi has an associated Vinberg diagram D(pi) whoseSpell out which root
system this is attached
to? Yes, that would be a
good idea.

maximal parabolic subdiagrams enumerate the 1-cusps Cij adjacent to pi in the
incidence diagram.

Example 10.50. The following figure shows the Vinberg diagram for the 0-cusp
???? associated to the lattice N := (18, 0, 0):

This has the following two maximal parabolic subdiagrams:

Vinberg1Parabolic1 Vinberg1Parabolic2

That there are exactly 2 such subdiagrams is reflected in the fact that the vertex
??? in the incidence diagram has valence 2.

11. Diagrams to surfaces

4 =
1 2 3 4

The interpretation of these Coxeter diagrams in terms of root systems:
Needs some notation from [?]:

V (M) the light cone V (M) =
{
x ∈M ⊗ R | x2 > 0

}
of a hyperbolic lattice M

V +(X) the half containing polarization of the light cone V (SX)
L(S) = V + (SX) /R+ the hyperbolic space of a surface S
W (2)(M) the group generated by reflections in all f ∈M with f2 = −2
W (4)(M) the group generated by reflections in all (−4) roots of M
W (2,4)(M) the group generated by reflections in all (−2) and (−4) roots of M
M(2) a fundamental chamber of W (2)(S) in L(S)
M(2,4) a fundamental chamber of W (2,4)(S) in L(S)
P (2)

(
M(2,4)

)
all (−2)-roots orthogonal to M(2,4)

P (4)
(
M(2,4)

)
all (−4)-roots orthogonal to M(2,4)

(X, θ) a K3 with involution θ
Xθ the fixed locus of an involution
P (X)+I the subset of exceptional classes of (X, θ) of type I
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Figure 24. Coxeter-Vinberg diagram

11A. Edge notation.

• Vertices corresponding to different elements f1, f2 ∈ P
(
M(2,4)

)
are not

connected by any edge if f1 · f2 = 0.
• Simple edges of weight m (equivalently, by m− 2 simple edges if m > 2 is
small):

f1 f2m
=⇒ 2f1 · f2√

f21 f
2
2

= 2 cos
π

m
, m ∈ N

• Thick edges:

f1 f2
=⇒ 2f1 · f2√

f21 f
2
2

= 2

• Broken edges of weight t:

f1 f2t
=⇒ 2f1 · f2√

f21 f
2
2

= t > 2
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Figure 25. Caption

• A vertex corresponding to f ∈ P (4)
(
M(2,4)

)
is black:

f
=⇒ f2 = −4?

• It is white if f ∈ P (2)
(
M(2,4)

)
:

f
=⇒ f2 = −2?

• It is double-circled white if f ∈ P (X)+I (i.e. it corresponds to the class of
a rational component of Xθ

)
.

f
=⇒ ??

Interpreting this geometrically: consider the cycle of 2k̄ white vertices cycling
between plain and double-circled:

• See [?]



Glossary 63

• Each edge on the outer cycle corresponds to P2

• Single circle vertices (with odd i) corresponds to a line in P2

• Double-circled vertices (with even i) correspond to conics on the P2

• Explicit example worked out in [?, §5].
• It seems like that from the Coxeter diagram, you draw the fan of a toric
surface, you compute the charge, and then, if this is not 24, you fix it by
blowing up some non-torus fixed points along the toric boundary.

12. Hermitian symmetric domains

12A. Cusp correspondence for Hermitian symmetric domains.

Definition 12.1 (Symmetric spaces). A locally symmetric space is a connected
Riemannian manifold such that every x ∈ M is the fixed point of some involution
γx ∈ Isom(Ux), the real algebraic Lie group of holomorphic automorphisms of an
open subset Ux ⊆M , which acts by −1 on TxM . Equivalently, the covariant deriv-
ative of the curvature tensor vanishes, which is analogous to a constant curvature
condition. It is a symmetric space if γx extends from Isom(U) to Isom(M).

If M is a symmetric space, then M ∼= G/K where G = Isom(M) is its group
of isometries and K := StabG(x) is the stabilizer of any point x ∈ M . We say a
manifold M is homogeneous if M ∼= G/K for some G and K.

Remark 12.2. Idea: Hermitian symmetric manifolds are manifolds that are ho-
mogeneous spaces such that every point has an involution preserving the Hermit-
ian structure. These were first studied by Cartan in the context of Riemannian
symmetric manifolds. They show up often as orbifold covers of moduli spaces,
e.g. polarized abelian varieties (with or without level structure), polarized K3
surfaces, polarized irreducible holomorphic symplectic manifolds, etc. There is a
structure theorem: any Hermitian symmetric manifold M decomposes as a prod-
uct M ∼= Cn/Λ ×Mc ×Mnc where Λ is some lattice, Mc is an HSM of compact
type, and Mnc is an HSM of non-compact type. Every HSM of compact type is
a flag manifold G/P for G a semisimple complex Lie group and P is a parabolic
subgroup. Every HSM of non-compact type admits a canonical so-called Harish-
Chandra embedding whose image is a bounded symmetric domain D ⊆ CN for
some N . Moreover, every HSM of non-compact type admits an associated Borel
embedding into an associated HSM of compact type called its compact dual. More-
over, there is a Lie-theoretic classification of HSMs of compact and non-compact
type – they are all of the form G/K for G a simple compact (resp. non-compact)
Lie group and K ≤ G is a maximal compact subgroup with center isomorphic to
S1 ∼= U1(C).

By the Harish-Chandra embedding, non-compact HSMs can be realized as bounded
domains D ⊆ CN and admit a compactification by taking the closure D̄ ⊇ D in
CN . There is a partition of D̄ by an equivalence relation related to being connected
through chains of holomorphic discs, and each equivalence class is called a bound-
ary component of D. Boundary components are in bijection with their normalizer
subgroups, which are precisely maximal parabolic subgroups of G := Aut(D).

A Hermitian symmetric domain is a Hermitian symmetric space of non-
compact type.

Example 12.3. Some very basic examples of Hermitian symmetric manifolds:
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• Tori C/Λ with Hermitian structure g = dxdx + dydy induced from R2

(constant zero curvature).
• The upper half space H1 with Hermitian structure the hyperbolic metric
g = y−2dxdy (constant negative curvature)

• P1(C) with the Fubini-Study metric (constant positive curvature).

More advanced examples of symmetric spaces:

• En, Euclidean space Rn.
• Sn, the spherical geometry,
• Hn, hyperbolic space,
• Sym>0

n×n(R) ≤ SLn(R) the Riemannian manifold of positive-definite sym-
metric matrices with real entries

• X defined in the following way: let V be a Hermitian C−module with Her-
mitian form h of signature (p, q) and let X ⊆ Grp(V ) be the Grassmannian
of p−dimensional subspaces W such that h|W is positive definite.

We first record their isometry groups:

• Isom(En) = Rn ⋊On(R).
• Isom(Sn) = On+1(R)
• Isom(Hn) = O+

n+1(R) the index 2 subgroup of On+1(R) which preserves

the upper sheet (Hn)+.8
• Isom(Sym>0

n×n(R)) = SLn(R).
• Isom(X) = SUp,q(C)?

Computing stabilizers of points, one can show

Rn ∼=
Rn ⋊On(R)

On(R)

Sn ∼=
On+1(R)
On(R)

Hn ∼=
O+
n+1(R)
On(R)

Sym>0
n×n(R) ∼=

SLn(R)
SOn(R)

X ∼=
SUp,q(C)

SUp(C)× SUq(C)

Note that taking (p, q) = (1, 1) yields H2.

Definition 12.4.In retrospect, maybe we
don’t need all of this
background! A Hermitian symmetric space is a locally symmetric space M which is addi-

tionally equipped with an integrable almost-complex structure whose Riemannian
metric is Hermitian.

We say M is irreducible if it is not the cartesian product of two symmetric
Hermitian spaces; every irreducible such space is either Rn for some n or a homo-
geneous space G/K for G a real Lie group and K a maximal subgroup. We say M
is of compact type if G is compact and K is a maximal proper subgroup, and of

8Note that for n = 1, we can take the upper half-plane model which has isometry group

PSL2(R) or the disc model which has isometry group PSU1,1(C). These are actually isomorphic

as Lie groups.
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non-compact type if G is non-compact. If M is an irreducible Hermitian sym-
metric domain of non-compact type, there is an open embedding M ↪→ DL ⊆ Cn
onto a bounded subset D of complex n−space, in which case we call D a bounded
Hermitian symmetric domain.

The simplest example is the upper half plane H := G/K for G = SL2(R) and
K = SO2(R), which is biholomorphic to the bounded domain ∆ via the Cayley
transformation, which is a homogeneous space for (G,K) = (SU1,1, B) where B is
the subgroup of diagonal matrices. Note that H ∼= H1 is the Siegel upper half space
of genus 1.

If (V, q) is a real quadratic space where V := LR for L a lattice, we can define a
corresponding domain

D±
L :=

{
Cz ∈ P(VC) | z2 = 0, |z| > 0

}
,

the set of lines spanned by isotropic vectors of positive Hermitian norm |z| := zz̄
in VC. If sgn(L) = (2, n), so L is hyperbolic, this has an irreducible component
decomposition into two parts D±

L = D+
L

∐
D−
L interchanged by conjugation z 7→ z.

Each component is an irreducible Hermitian symmetric domain of type

(G,K) = (SO(V ) := SO2,n(R),SO2(R)× SOn(R)).,

i.e. a Type IV domain for SO2,n. We let DL := D+
L be a choice of one component

and write O+(L) ≤ O(L) for the subgroup which preserves DL setwise. There is a
distinguished divisor attached to DL, the discriminant divisor:

HL :=
⋃

v∈R2(L)

Hv ∩ DL,

the hyperplane configuration defined by mirrors of roots. When Global Torelli is
satisfied, there is a period map ϕ whose image is typically the complement of some
hyperplane arrangement H. In good cases, the relevant arrangement is precisely
HL.

Note that DL is isomorphic to a flag variety GC/P for P some parabolic sub-

group, and thus the compact form D̃L is a projective algebraic variety containing
DL.

We say DL as above is a Hermitian symmetric domain of orthogonal
type or a type IV Hermitian symmetric domain in Cartan’s classification.
The period domains of K3 and Enriques surfaces are examples of such Type IV
domains for 1 ≤ n ≤ 19.

Definition 12.5. Let G be a simple linear algebraic group defined over Q. We
define

G(Z) := GLn(Z) ∩G(Q)

where we use the natural embedding of algebraic groups G ↪→ GLn over Q. A
subgroup Γ ≤ G(Q) is arithmetic if Γ∩G(Z) has finite index in both Γ and G(Z).

Definition 12.6 (Parabolic subgroups). Let G be a linear algebraic group over Q.
We say P ≤ G is a parabolic subgroup if G/P is a projective variety.

Remark 12.7. As the notation suggests, there are other types of irreducible Her-
mitian symmetric domains. The following are some typical examples of the form
Γ\Ω for various definitions of Ω:
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• Type III: Siegel modular varieties corresponding to Γ ≤ Sp(Λ), the isome-
try group of a symplectic lattice, of rank n ≥ 3.

• Type IV: Orthogonal modular varieties corresponding to Γ ≤ O+(Λ), a
connected component of the isometry group of a lattice of signature (2, n)
for n ≥ 3,

• Type In,n: Hermitian modular varieties/Hermitian upper half spaces. These
are attached to Γ ≤ U(Λ) for Λ a Hermitian form q of signature (n, n) with
n ≥ 2. The compact dual is the Grassmannian Grn,2n.

• Type II2n: Quaternionic modular varieties/quaternionic upper half spaces.
These are attached to Γ ≤ Sp2n(H) for H Hamilton’s quaternions, attached
to a skew-Hermitian space of dimension 2n with n ≥ 2. The compact dual
is the orthogonal Grassmannian OGr2n,4nWhere do Hg and Γ\Hn

fit in?

Remark 12.8. For Λ a lattice of signature (2, n), the Hermitian symmetric domain
attached to Λ is the following: define Q ⊆ P(ΛC) be the quadric cut out by (ω, ω) =
0, then ΩΛ is a choice of one of the two connected components of the open set Q
defined by (ω, ω̄) > 0. Letting O+(Λ) ≤ O(Λ) be the subgroup preserving the
component ΩΛ and Γ ≤ O+(Λ) be any finite index subgroup, we obtain

XΛ(Γ) := Γ\ΩΛ.

Embedding ΩΛ in its compact dual, it has 0 and 1-dimensional boundary strata,
corresponding to 1 and 2-dimensional isotropic subspaces of ΛQ. The BB com-

pactification XΛ(Γ)
bb

is the union of ΩΛ and these rational boundary components,
quotiented by the action of Γ, equipped with the Satake topology.

A toroidal compactificationXΛ(Γ)
tor

is specificed by a finite collection of suitable
fans {FI}, one for each 0-cusp (i.e. each Γ−orbit of isotropic lines I in ΛQ).

For each I there is a tube domain realization given by taking the linear projection
from the boundary point, which defines an isomorphism

ΩΛ/U(I)Z ∼= U ⊆ TI := U(I)C/U(I)Z

an open subset of an algebraic torus, where U(I)Z := Γ ∩ U(I)Q and U(I)Q is
the unipotent part of StabO+(ΛQ)(I). There is a canonical isomorphism U(I)Q ∼=
(I⊥/I)⊗ I, and FI gives a polyhedral decomposition of the extended positive cone

of U(I)R. Each FI defines a partial compactification (ΩΛ/U(I)Z)
FI inside the torus

embedding TI ↪→ TFI

I . The boundary points of this compactification which lie over
the cusp corresponding to I are comprised of a union of torus orbits TI ·σ for σ ∈ FI
a cone which is not an isotropic ray.

The partial compactifications for the 1-cusps are completely canonical, so the
overall compactification is defined by gluing onto the boundary of XΛ(Γ) certain

natural quotients of all of these partial compactifications to obtain XΛ(Γ)
tor

. This
yields a compact algebraic space which is proper over SpecC, and there is a natural

morphism XΛ(Γ)
tor

→ XΛ(Γ)
bb
.

Example 12.9. Let G := SL2 defined over Q and let Γ ≤ SL2(Q) be an arithmetic
subgroup. The (noncompact) modular curve attached to Γ is

Y (Γ) := Γ\H1.

In this case, rational boundary components are given by P1(Q) = Q∪{∞} ⊆ P1(C),
and a cusp of Y (Γ) is a Γ−orbit in Γ\P1(Q), of which there are finitely many.
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Adding them yields a compactification

X(Γ) := Y (Γ) := Y (Γ) ∪ {cusps}

topologized appropriately, where e.g. {∞} is one such cusp.
Note that one typically takes the following groups for moduli of elliptic curves

with level structure:

• Y (N) := Y (Γ(N)) where

Γ(N) := ker (ϕN : SL2(Z) → SL2(Z/NZ)) .

The level structure is a basis for E[n].

• Y0(N) := Y (Γ0(N)) where Γ0(N) ⊇ Γ(N) is the pullback ϕ−1
N

([
a b
0 d

])
.

The level structure is an identification µN ↪→ Etors.
• Y1(N) := Y (Γ1(N)) where Γ1(N) is the pullback ϕ−1

N (1b01). The level
structure is a point p ∈ E of order N in the group structure.

How parabolic subgroups appear here: for G := SL2, parabolic subgroups are all
conjugate to the subgroup P of upper-triangular matrices, andG(Q)/P (Q) ∼= P1(Q)
parameterizes all such parabolic subgroups.

Why automorphic forms matter: consider Γ := SL2(Z). The graded ring of
modular forms

⊕
kMk is graded-isomorphic to C[x, y] where |x| = 4, |y| = 6, and

ProjC[x, y] ∼= P1(C). Letting {f0, · · · , fN} be a basis of Mk, we can write down a
map

ϕk : Y (SL2(Z)) → Pn(C)
z 7→ [f0(z) : · · · : fN (z)]

For k = 12 this separates points and tangent directions, giving a projective embed-
ding. Explicitly, the morphism is

ϕ12(z) = [E4(z) : E4(z)
3 − E6(z)

2] ≈ j(z)

modulo some missing constants. In general, finding enough automorphic forms
yields a projective embedding. Would like to spell this

out in terms of line bun-
dles and linear systems
too, in this easy case.12B. Misc.

Remark 12.10. Let L be a lattice of signature (2, n) and the associated period
domain Ω±

L = Ω+
L ⨿ Ω−

L . Let O(L)+ ≤ O(L) be the finite index subgroup fixing

Ω+
L , equivalently the subgroup of elements of spinor norm one. A modular variety

of orthogonal type is a homogeneous space of the form FL(Γ) := Γ\Ω+
L for an

arithmetic subgroup Γ ≤ O(LQ)
+.

By general theory, such spaces admit BB compactifications FL(Γ)
bb

where ra-
tional maximal parabolic subgroups correspond to stabilizers of isotropic subspaces
of LQ; since sgn(L) = (2, n) these are always isotropic lines or planes.

For period spaces of K3 surfaces, one takes Γ := O(L2d) ∩ ker (O(L) → O(AL)).
Boundary strata correspond to central fibers of KPP models of Type II and Type
III.

Remark 12.11. Let L be a symplectic lattice of rank 2g, ie.e. a free Z−module
with a nondegenerate alternating form (−,−). Define the associated period space

DL :=
{
V ∈ Grg(LC) | (V, V ) = 0, i(V, V̄ ) > 0

} ∼= Sp2g(R)/Ug(C) ∼= Hg
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which is a Hermitian symmetric domain of type III that can be identified with the
Siegel upper half-space of dimension g. We can form the moduli space of PPAV as

Ag := Sp2g(Z)\Hg ∼= Sp2g(Z)\ Sp2g(R)/Ug(C)

Rational boundary components of Ag
bb

correspond to Γ := Sp2g(Z) orbits of totally
isotropic subspaces in LQ. Since Γ acts transitively, such spaces are indexed by their
dimension i = 0, 1, · · · , g and there is a stratification

Ag
bb

= ⨿gk=0Ak =⇒ ∂Ag
bb

= ⨿g−1
k=0Ak

Remark 12.12. The BB compactification of a locally symmetric domain D: write
D = H/K as a homogeneous space where H := Hol(D)+ and K ≤ H is a maximal

compact subgroup. Then cusps in ∂Γ\D
bb

correspond to rational maximal para-
bolic subgroups of H. To get boundary components: apply the Harish-Chandra
embedding to D to embed HC : D ↪→ Dcd and let FP ∈ HC(D) be a boundary
component. Its normalizer N(FP ) := {g ∈ H | g(FP ) = FP } ≤ H is a maximal
parabolic in H. We say FP is rational if N(FP ) can be defined over Q. Since Γ
preserves such rational FP , we can set ∂D := the disjoint union of all rational FP

and set Γ\D
bb

= D⨿∂D
Γ .

12B.1. Explicit realizations of symmetric spaces.

Remark 12.13. The symmetric space associated with a Lie group G is in some
sense the most natural space G acts on. For G = Op,q(R), the symmetric space

is Gr+(Rp,q), the Grassmannian of maximal positive-definite subspaces of Rp,q.
The right choice of maximal compact subgroup here is K := Op(R) × Oq(R), the
subgroup fixing Rm,0. When (p, q) = (2, n), these symmetric spaces admit specialTypo maybe.

descriptions. Note that On+1(R) is the group of isometries of Sn, so its projectiviza-
tion POn+1(R) is the isometry group of an elliptic geometry. One can similarly
obtain isometries of hyperbolic geometry:

• Start with R1,n

• Take the norm 1 vectors H± :=
{
v ∈ R1,n | v2 = 1

}
= H+ ⨿H− to get a

2-sheeted hyperboloid; the pseudo-Riemannian metric on R1,n restricts to
a Riemannian metric on H.

• Take one sheet H+; this is a model of HnIndexing might be off
here

The group of isometries of H+ is now PO1,n(R). Note that in O1,n(R) there is an
index 2 subgroup9

O1,n(R)± =
{
γ ∈ O1,n(R) | γ(H+) = H+, γ(H−) = H−} .

Remark 12.14. Forming the symmetric spaces for O2,n(R): the maximal compact
is K = O2(R)×On(R) and O2(R) is similar enough to U1(C) that we should expect
the associated symmetric space to be Hermitian. It will be an open subset of a
certain quadric:

• Start with P(C2,n).
• Take the quadric of isotropic vectors Y =

{
z ∈ P(C2,n) | z2 = 0

}
.

• Take the open subset U := {z ∈ Y | (z, z̄) > 0}.

9Apparently, these are elements whose spinor norm equals their determinant.
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Why this matches the previous description: write z = x + iy, then x2 = y2 > 0
and (x, y) = 0, so V := Rx ⊕ Ry are an orthogonal basis for a positive definite
subspace of R2,n. Multiplying by a scalar only changes basis, so we essentially get
a map P(U) → Gr+(R2,n) naturally. This symmetric space can also be identified
with points z ∈ C1,n−1 with ℑ(z) ∈ C+, one of two cones of R1,n−1, realizing this
as a tube domain generalizing H.

13. Hyperbolic geometry

13A. Hyperbolic lattices. Note: some of this mixes
conventions, need to fix
later.Warning 13.1. There is a significant gap in the AG literature vs the physics liter-

ature for the terminology for hyperbolic spaces, and the traditional AG terminology
can be ”wrong” in some senses. For example, the AG literature will typically call{
v ∈ LR | v2 > 0

}
a ”light cone”, but this is not quite correct: the actual light

cone in general relativity is
{
v ∈ LR | v2 = 0

}
. The following picture is the usual

mnemonic:

Figure 26.
{
v2 = 0

}
is the light cone, its interior is timelike and

exterior spacelike.

Definition 13.2 (Hyperbolic lattices). An indefinite lattice L is a hyperbolic
lattice10 if sgn(L) = (1, n−) or (n+, 1) for some n−, n+ ≥ 1. By convention, by
twisting L to L(−1) if necessary, we assume hyperbolic lattices have signature (1, n).
In this convention, the single positive-definite direction is referred to as timelike,
and the remaining directions are spacelike.

Definition 13.3 (Time/light/spacelike vectors). Let L be a hyperbolic lattice of
signature (1, n). We say a vector v ∈ LR is

• timelike if v2 < 0,
• lightlike or isotropic if v2 = 0.
• spacelike if v2 > 0,

More generally, a subspace W ⊆ E1,n with the restricted form (−,−)W is

10Also called a Lorentzian lattice.
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• timelike if (−,−)W is negative-definite, or is indefinite and non-degenerate,
• lightlike or isotropic if (−,−)W is degenerate, or
• spacelike if (−,−)W is positive-definite.

Define

L<0 :=
{
v ∈ LR | v2 < 0

}
The timelike regime

L=0 :=
{
v ∈ LR | v2 = 0

}
The lightlike regime

L>0 :=
{
v ∈ LR | v2 > 0

}
The spacelike regime

Remark 13.4. [?] refers to the non-spacelike regime L≥0 :=
{
v ∈ LR | v2 ≥ 0

}
as

the round cone; this is used for a model over Hn with ideal points included, and
is often used as the support of a semifan for a semitoroidal compactification.

Definition 13.5 (Past and future light cones). Let L be a hyperbolic lattice of
signature (1, n). The spacelike regime L>0 of L has an irreducible component
decomposition

L>0 :=
{
v ∈ LR | v2 > 0

}
= C+

L ⨿ C−
L ,

whose components we refer to as the future light cone and past light cone
of L respectively, and can be distinguished by the sign of the coordinate in the
negative-definite direction:

C+
L :=

{
v ∈ L>0 | v0 > 0

}
, C−

L :=
{
v ∈ L>0 | v0 < 0

}
.

We write their closures in LR as C+
L and C−

L respectively, and write CL := C+
L for

a fixed choice of a future light cone and CL for its closure.

13B. Models of hyperbolic space.

Definition 13.6 (Euclidean upper-half space). The upper-half space in En is

En+ := {(x1, · · · , xn) ∈ En | x1 > 0} .

Definition 13.7 (Minkowski space). The n−dimensional Minkowski space
E1,n is the real vector space Rn+1 equipped with a bilinear form of signature (1, n)
which can be explicitly written as

vw := −v0w0 +

n∑
i=1

viwi

with the associated quadratic form

v2 := Q(v) := −v20 +
n∑
i=1

v2i .

This induces a metric

ρ(v, w) := arccosh(−vw).

Remark 13.8. If L is hyperbolic of signature (1, n) then LR ∼= E1,n is a Minkowski
space of dimension n+ 1 = rankZ L.
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13B.1. Half-plane models.

Definition 13.9 (de Sitter space and light cone of a lattice). Let L be a hyperbolic
lattice and consider the squaring functional

fL : LR → R
v 7→ v2.

One can show that ±1 are regular values of fL and thus define two canonical
”hyperbolic unit spheres“ which are regular surfaces. We define the de Sitter
space of L as

dSL := f−1
L (1) =

{
v ∈ LR | v2 = 1

}
⊆ L>0

in the spacelike regime and the unit hyperboloid of L as the two-sheeted hyper-
boloid

HL := f−1
L (−1) =

{
v ∈ LR | v2 = −1

}
⊆ L<0

in the timelike regime.

Example 13.10. Figure 27 shows the de Sitter space and unit hyperboloid for a
lattice L of signature (2, 1) in E2,1, visualized in R3.

Figure 27. The hyperbolic unit spheres: the de Sitter space and
light cone for E2,1.

Definition 13.11 (Half-plane model/Lobachevsky space of a lattice). Let L be a
hyperbolic lattice. The half-plane model of Hn associated to L or Lobachevsky
space of L is the unit hyperboloid of L intersected with its future light cone,

LnL := HL ∩ CL :=
{
v ∈ LR | v2 = −1, v0 > 0

}
,

given the metric restricted from LR ∼= En,1. This more simply be described as the
future sheet of the unit hyperboloid HL, using the irreducible component decom-
position

HL = H+
L ⨿H−

L = {v ∈ HL | v0 > 0} ⨿ {v ∈ HL | v0 < 0}

and setting LnL := H+
L .
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Remark 13.12. Note that H+
L is in the timelike regime. This gives a model of

the hyperbolic space Hn which we often denote HL when we do not fix a specific
choice of model, or simply by Hn when the dependence on L is not important.

Remark 13.13 (The isometry group of hyperbolic spaces). It can be shown that
the isometries of the timelike regime L<0 are restrictions of isometries of the ambient
Minkowski space E1,n, and thus

Isom(L<0) ∼= Isom(E1,n) ∼= O1,n(R).

Using the half-plane model, we can thus naturally identify

Isom(Ln) ∼= O+
1,n(R) := StabO1,n(R)(CL),

the index 2 subgroup which stabilizes the future light cone C+
L of L. These are

precisely the isometries of E1,n of positive spinor norm.

13B.2. Ball models.

Definition 13.14 (The Poincaré ball model). Let L be a hyperbolic lattice. The
Poincaré ball model of Hn associated to L is defined as

BnL := P(L<0),

the projectivization of the timelike regime of L, where

P(−) : E1,n \ {xn ̸= 0} → En

(x0, · · · , xn−1, xn) 7→
(
x0
xn
, · · · , xn−1

xn

)
.

In this model, there is a natural compactification Hn in P(Sn) such that the interior
is given by BnL as above and the boundary by ∂Hn = P(L=0), i.e. ideal points
correspond to (the projectivization of) the lightlike regime.

Remark 13.15 (An alternative construction). It can be explicitly constructed by
considering the future light cone CL described in Theorem 13.5. Letting R>0 act
on LR ∼= E1,n by scaling along the timelike direction (i.e. in the coordinate v0), the
ball model can be formed as the quotient

BnL ∼= CL/R>0 ⊂ P(Sn).

Remark 13.16. The advantage of BnL over LnL is that the former provides a natural
compactification in P(Sn). Moreover, it can be easier to work with hyperplanes
in the ball model: let π : E1,n → P(Sn) be the natural projection, then every
hyperplane Hv := v⊥ for v ∈ BnL is of the form

Hv = {π(x) | x ∈ CL, xv = 0}
One can also concretely interpret the bilinear form geometrically in the ball model
in the following way:

Hv ⋔ Hw =⇒ |vw| < 1 =⇒ −vw = cos(∠(Hv, Hw))

Hv ∥ Hw =⇒ |vw| = 1 =⇒ −vw = cos(∠(Hv, Hw))

Hv Hw =⇒ |vw| > 1 =⇒ −vw = cosh(ρ(Hv, Hw)),

where ρ is the hyperbolic metric described in Definition 13.7.

Remark 13.17. Isom(Bn) = PO1,n(R).
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13B.3. Ideal points.

Remark 13.18. Let HL
∼= Hn be a model of hyperbolic space associated to a

hyperbolic lattice L of signature (1, n). Boundary points ∂HL correspond to ideal
points in Hn, i.e. points ”at infinity”, which in turn correspond to 1-dimensional
isotropic subspaces of L.

In this model, points in Hn are points in the interior of the cone and on the
hyperboloid. Moreover points on ∂Hn correspond to points on the surface of the
cone:

∂Hn ∼= {v = (v0, · · · , vn+1) ∈ LR | v0 > 0} ∩
{
v ∈ LR | v2 = 0

}
.

We interpret uv = − cos(∠(HuHv)), so uv = −1 means Hu ∩Hv ∈ ∂Hn, i.e. they
are ”parallel” planes. Hyperplanes in Hn correspond to branches of hyperbolas
obtained by slicing the hyperboloid by a plane in LR.

2

Remark 13.19. Define Minkowski space as E1,n, which is Rn with the form vw =
v0w0−

∑
viwi. Define Lobachevsky space Ln as the hyperboloid model of hyperbolic

space, a certain ”hyperbolic unit sphere”:

Ln :=
{
v ∈ E1,n | v2 = 1, v0 > 1

}
.

The geodesic curves are precisely intersections of the form H2 ∩ Ln where H2 ∈
Gr2(Rn+1) is a standard 2-plane passing through the origin in the ambient space.
The hyperbolic metric on Ln is gotten by computing the length in the standard
metric in Rn+1 of any geodesic curve between two points. The associated Poincare
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ball model is contained in the standard Euclidean ball Bn ⊂ Rn+1 and is the
projection of Ln onto the hyperplane {x0 = 0} ⊂ Rn+1 using rays passing through
(−1, 0, 0, · · · , 0). Explicitly, the projection is

ϕ : Ln → Bn

(v0, · · · , vn) 7→
1

1 + v0
(v1, · · · , vn)

Geodesics are now straight lines through the origin or arcs of Euclidean circles
intersecting ∂Bn orthogonally. Define the hyperbolic upper-half-space as

Hn := {x = (x1, · · · , xn) ∈ Rn | x1 > 0}
which is obtained by taking inversions through certain spheres centered on ∂Bn.
Geodesics are now straight lines orthogonal to ∂Hn or half-circles centered on ∂Hn.

13C. Root Systems.

Definition 13.20 (Primitive vectors). Let L be any lattice. A finite set S :=
{s1, · · · , sn} ⊆ L of elements in L is primitive if S is R−linearly independent and
L ∩ RS =

⊕n
i=1 Lsi, i.e. no si can be replaced with a small vector in the same

1-dimensional subspace which is also in L. A primitive set of size one is called a
primitive element, and we write Lprim for the set of such.

Definition 13.21 (Roots and k−roots in lattices). Let L be any lattice. For
k ∈ Z>0, define the set of k−roots in L as

Φk(L) :=
{
v ∈ Lprim | v2 = k, 2(v, L) ⊆ kZ

}
A root is by definition a 2−root. We write the set of roots in L as Φ2(L), and the
complete set of roots as

Φ∞(L) :=
⋃
k≥1

Φk(L).

Remark 13.22. In the theory of 2-elementary lattices, the roots consist of all
(−2)−vectors along with any (−4)−vector v with div(v) = 2.

Definition 13.23 (Reflections). Let L be any lattice and LR its associated R−module.
An element s ∈ GL(LR) is a reflection if there exists a vector v ∈ LR and an
R−linear functional f ∈ HomR(LR,R), both depending on s,

s(x) = x− f(x)v ∀x ∈ LR, f(v) = 2.

Concretely, s is an isometry of LR which pointwise fixes a hyperplane and is an
involution satisfying det(s) = −1. Every reflection can be written in the form

s(u) = sv(u) = u− uv

v2/2
v

for some v2 ̸= 0 in LR determined up to scaling. The reflection in v is only well-
defined when 2 div(v) ∈ v2Z where div(v) is the divisibility of v defined in Theo-
rem 17.11. The reflection hyperplane associated to s is the fixed subspace

Hv := ker(f) = ker(id− s) ∼= v⊥.

Definition 13.24 (Mirrors in hyperbolic lattices). Any root v ∈ Φ2(L) defines a
reflection sv through the mirror

Hv := v⊥ :=
{
x ∈ C+

L | xv = 0
}
.
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If Hv is the reflection hyperplane of a root, we say it is a mirror in L. Note that
Hv is nonempty if and only if v2 < 0.

Definition 13.25 (Weyl group). Let L be any lattice. The Weyl group of L is
defined as the group generated by reflections in 2−roots,

W (L) :=
{
sv | v ∈ Φ2(L)

}
≤ OL(R)

Definition 13.26 (The discriminant locus). For L a hyperbolic lattice, define the
discriminant locus of L as the union of all mirrors of 2−roots,

D(L) :=
⋃

v∈Φ2(L)

v⊥ :=
⋃

v∈Φ2(L)

Hv.

Definition 13.27 (Weyl chambers). The chamber decomposition of CL is de- Forgot to write down
what is CL.fined as

C◦
L := CL \D(L) = CL \

 ⋃
δ∈Φ2(L)

δ⊥

 ,

the complement of all mirrors. This further decomposes into connected components
called Weyl chambers: fixing a chamber P , there is a decomposition into orbits

C◦
L = ⨿sv∈W (L)sv(P ).

Remark 13.28. Any Weyl chamber P is a simplicial cone, so the orbit decompo-
sition yields a decomposition of C◦

L into simplicial cones. Since W acts on the set

of Weyl chambers π0C
◦
L simply transitively and the closure P of any chamber is a

fundamental domain for this action, there is a homeomorphism P ∼= C◦
L/W .

Definition 13.29 (Fundamental chamber???). Let P be a Weyl chamber of L,
define

Φ2(L)+ :=
{
v ∈ Φ2(L) | (v, P ) > 0

}
Φ2(L)− :=

{
v ∈ Φ2(L) | (v, P ) < 0

}
= −Φ2(L)+

which induces a decomposition

Φ2(L) = Φ2(L)+ ⨿ Φ2(L)−.

Remark 13.30. Thus P can be written as

P =
{
v ∈ CL | (v,Φ2(L)+) > 0

}
= {} .

This realizes P as an intersection of positive half-spaces and thus as a polytope.

Definition 13.31 (Walls). Let P be the closure in LR of P . We say a mirror
Hv ⊆ LR for v ∈ Φ2(L)+ is a wall of P if codimLR(Hv ∩ P ) = 1.

Definition 13.32 (Simple systems). Let P be a Weyl chamber of P and let

Π(L,P ) :=
{
v ∈ Φ2(L) | Hv is a wall of P

}
be the set of walls of P . We can more economically define P by

P = {v ∈ CL | (v,Π(L,P )) > 0} ,

where no inequality is redundant. Moreover, (P,Π(L,P )) forms a Coxeter system, Todo, messed up nota-
tion here a bit.

and P is a fundamental domain for W (L) ↷ LR.



76 Glossary

Definition 13.33 (Chambers and O+(L)). The connected components of

V +
L :=

{
x ∈ L± | (Φ2(L), x) ̸= 0

}
are called chambers of L. Any positive isometry preserves L+ and L− set-wise,
motivating the definition of the group of positive isometries of L

O+(L) :=
{
γ ∈ O(L) | γ(L+) = L+, γ(L−) = L−}

Definition 13.34 (Positive isometries). We say an isometry γ ∈ O(L) is positive
if it preserves a chamber (i.e. a connected component of V +

L )

Definition 13.35 (Roots, root systems, root lattices). A vector v ∈ L is a root
if v2 = −211, and we write Φ(L) for the set of roots in L. If L is negative definite
and L = ZΦ(L)12, we say L is a root lattice. Any root lattice decomposes as a
direct sum of root lattices of ADE type.

Definition 13.36 (Weyl group). The Weyl group of L is the maximal subgroup
of the orthogonal group of L generated by hyperplane reflections in roots,

W (L)2 := ⟨sv | v ∈ Φ(L)⟩Z ≤ O(L).

One can similarly define the group of reflections in all vectors,

W (L) := ⟨sv | v ∈ L⟩Z ⊴O(L).

Since conjugating a reflection by any automorphism is again a reflection, this is
a normal subgroup. If L is a hyperbolic lattice, we replace O(L) in the above
definition by O+(L), the isometries that preserve the future light cone.

Definition 13.37 (Mirrors/walls and chambers). The mirror or wall associated
with a root v ∈ Φ(L) is the hyperplane Hv := v⊥. As v ranges over Φ(L), these par-
tition LR into subsets called chambers. The Weyl group acts on LR by isometries
and acts simply transitively on chambers, and we often distinguish a fundamental
domain for this action called the fundamental chamber. We write DL for the
closure in LR of a fundamental chamber. A cusp of L is a primitive isotropic lattice
vector e ∈ DL ∩ L.

13D. General Period Domains.

Remark 13.38. Define GL := GL⊥ for G any algebraic group determined by L.Very useful convention:

ΩS involves S⊥, while
ΩS involves just S.

Let L ≤ II3,19 be a sublattice of signature (1, r− 1) so sgn(L⊥) = (2, 19− r+1).
One can always form the period domain corresponding to L−polarized K3 surfaces
as

ΩL := ΩL⊥ :=
{
x ∈ (L⊥)C | x2 = 0, xx > 0

}
,

The period domain can be described as a Hermitian symmetric space:

ΩL ∼=
SOL(R)

SO2(R)× SO20−r(R)

For any arithmetic subgroup Γ ≤ OL(R) there is a complex-analytic isomorphism

Γ\ΩL ∼=
(
Γ ∩ SOL(R)

)
\ΩL.

11One occasionally calls any time-like vector v2 < 0 a ”root”, in which case distinguishes
between e.g. (−2)−roots Φ2(L) and (−4)−roots Φ4(L).

12i.e. if the roots form a Z−generating set for L
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In particular, for L a primitive sublattice of II3,19, letting FL be the stack of
L−polarized K3 surfaces, the period map τL yields an open immersion

τL : FL(C) ↪→ S̃OL(Z)\ΩL

where S̃OL are isometries of L which extend to an isometry of II3,19 which fixes L.
For sgnL = (2, n) let GL := SOLQ be its associated rational isometry group and

let X := ΩL the associated Hermitian symmetric space as above, forming a Shimura
datum (X, G) := (ΩL,SOLQ). We can then realize

ShL(C) := ShKL
[GL,XL](C) ∼= S̃OL(Z)\XL

where KL := ker (GL → Aut(AL)) (Ẑ), the admissible morphism in GL(Af ); the
stack ShK[G,X] is a certain well-known quotient stack attached to a Shimura datum
(G,X) and a choice of a compact open subgroup K ≤ G(Af ) of the finite adeles.

Defining the compact dual:

ΩL,cd :=
{
x ∈ (L⊥)C | x2 = 0

}
.

14. Integral Affine Structures

14A. Integral affine geometry.

14A.1. Affine groups.

Definition 14.1 (Affine algebraic groups for vector spaces). When V is a vector
space and ρ : G ↪→ GL(V ) a group acting by linear transformations on G, define

AGV := G⋊ρ V.

In particular, if G = GL(V ) acts on V in the natural way, we define

AGLV = GL(V )⋊ V

where GL(V ) acts on on V by linear transformations. For W ≤ V a subspace, we
can refine a relative affine group

AGLV ;W := GL(V )⋊W

where one allows arbitrary linear transformations of V but only translations along
subspaces of W . Concretely, note that a choice of R−basis for V determines an
isomorphism AGLV ∼= GLn(R)⋊Rn.

Definition 14.2 (Affine algebraic groups for lattices). For L a lattice and S,R two
Z−modules, we similarly define

AOL(S) := OL(S)⋊ (L⊗Z S)

AOL(S;R) := OL(S)⋊ (L⊗Z R)

where OL(S) acts on L ⊗Z R by base change and linear transformations. More
generally, if GL is a group defined over Z acting on LR via a linear representation
ρ : GL → GL(LR) (e.g. if GL is a subgroup of GL(LR)) define the GL−affine
group of L as
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AGL(S) := GL(S)⋊ρ (L⊗Z S)

AGL(S;R) := GL(S)⋊ρ (L⊗Z R).

Example 14.3 (Explicit affine groups). Note that if L is a lattice, we have AOL(R) ∼=
OL(R) ⋊ LR. Concretely, if L is isometric to Zn with the standard bilinear form,
note that LR ∼= Rn and GL(LR) ∼= GLn(R). Elements of AGLL(R) can be con-
cretely written as affine−R−linear maps of the form x 7→ Ax+b with A ∈ GLn(R)
and b a real translation. This construction can be used to recover the following
standard groups:

AGLZn(Z) ∼= GLn(Z)⋊ Zn

AGLZn(R) ∼= GLn(R)⋊Rn

AGLZn(Z;R) ∼= GLn(Z)⋊Rn

AGLZn(R;Z) ∼= GLn(R)⋊ Zn

ASLZn(Z) ∼= SLn(Z)⋊ Zn

ASLZn(R) ∼= SLn(R)⋊Rn

ASLZn(Z;R) ∼= SLn(Z)⋊Rn

ASLZn(R;Z) ∼= SLn(R)⋊ Zn

AOZp,q (R) = Op,q(R)⋊Rp,q

Is the orthogonal group
of the standard lattice
Zn actually SLn(Z)? 14A.2. G−manifolds. For this section, let X be a connected real C∞ manifold of

real dimension n, and write Uij := Ui ∩ Uj for the intersection of two open sets.

Definition 14.4 (G−manifolds). Suppose X admits an action of a Lie group G ≤
Diff(X) by self-diffeomorphisms. We say X is a G−manifold if there exists a C∞

real atlas on X with transition functions valued in G. Thus there is a covering
X =

⋃
i Ui with open embeddings ϕi : Ui → Rn such that ϕi ◦ϕ−1

j ∈ G for all pairs

i, j, and for x ∈ Uij one has (ϕi ◦ ϕj)(x) = gij(x) for some gij ∈ G depending on i
and j.

14A.3. Integral affine manifolds and lattice manifolds.

Definition 14.5 (Affine and integral affine manifolds). We say X is an affine
manifold if X is equipped with the structure of G−manifold for G := AGLn(R),
and an integral affine manifold if one instead takes G := AGLn(Z). 13 For L a
Z−lattice, an L−lattice manifold is an integral affine manifold together with a
choice of a discrete 0-dimensional submanifold S ⊆ X which are preimages under
the charts ϕi of some collection of lattice points P ⊆ L ⊆ Rn.

Remark 14.6. In our situation, we’ll consider integral affine surfaces relative to
the standard lattice Zn, i.e. manifolds of real dimension two whose charts have
transition functions in R2 ⋊ SL2(Z).

13In the literature one typically takes an integral affine structure on a real oriented surface to

additionally preserve orientation and a volume form, so one takes G := ASL2(Z).
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14B. Lagrangian torus fibrations. For this section, let (M,ω) be a symplectic
manifold with dimRM = 2n and ω ∈ H0(Ω2

M ) a globally defined symplectic form.

Warning 14.7. In discussions of LTFs, a ”singularity” means a singularity of the
fibration π : (X,ω) → B and not necessarily a singularity of X itself. It is often
the case that X is a smooth symplectic manifold and π has nodal singularities.

Remark 14.8. The base B of a LFT describes a fibration in the following way:

• Fibers over interior points are smooth Lagrangian tori Fx ∼= (S2)2,
• Fibers over non-vertex edge points (except the origin) are isotropic circles
Fx ∼= S1.

• Fibers over toric vertices (vertices with no attached monodromy ray) are
points Fx ∼= pt

• Fibers over non-toric vertices (vertices with an attached monodromy ray)
are circles S1 of corank 1 elliptic singularities Fx ∼= S1.

• Fibers over a red x are singular Lagrangian tori with a single node, i.e. a
torus S1 × S1 with a cycle collapsed.

• Fibers over dotted lines encode branch cuts.

Definition 14.9. IfM is a symplectic manifold and µ : (M,ω) → B is a topological
fibration, we say µ is a regular Lagrangian (torus) fibration or regular LTF
if all fibers Fx of µ are Lagrangian14 submanifolds. It is simply a Lagrangian

fibration if µ restricts to a regular LTF on the open dense subset B̃ ⊆ B of regular
values in the base.

Remark 14.10. By the Liouville-Mineur-Arnold theorem, any fiber F of regular
LTF admits a neighborhood in M that is fiber-preserving symplectomorphic to a
projection (V × (S1)n, ωstd) → V for some V ⊆ Rn. Thus the regular fibers are
necessarily maximal-dimension tori.

Remark 14.11. Why Lagrangian fibrations are relevant to integral affine geome-
try: a consequence of the Liouville-Mineur-Arnold theorem on completely integrable
systems along with a result of Duistermaat shows that the base B and the fibers
Fx over regular points x ∈ B admit an IAS. In fact, more is true: every IA man-
ifold can be realized as the base of some Lagrangian fibration. Parallel transport
in B around the image of a nodal critical point yields a notion of monodromy for
any such IAS which is a shear with respect to some eigenline of the monodromy
operator associated with each node.

Definition 14.12. An almost toric fibration of a symplectic 3-manifold is a
Lagrangian fibration π : (X,ω) → B such that every point admits a Darboux
neighborhood (x1, y1, x2, y2) ∈ (B4, ωstd := dx1 ∧ dy1 + dx2 ∧ dy2) such that π is of
one of the following forms:

(1) Regular points: π(x, y) = (x1, x2),
(2) Elliptic of corank 1: π(x, y) = (x1, x

2
2 + y22),

(3) Elliptic of corank 2: π(x, y) = (x21 + y21 , x
2
2 + y22),

(4) Nodal or focus-focus: π(x, y) = (x1y1 + x2y2, x1y2 − x2y1), or in complex
coordinates π(x, y) = xy.

The fibers are Lagrangian, and singular fibers are either toric (corank 2 elliptic
singularities or an S1 of corank 1 elliptic singularities) or nodal.

14Maximally isotropic submanifolds with respect to the restriction of the symplectic form ω,
so ω|Fx

= 0 and dimF = 1
2
dimM .
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14C. Integral affine spheres.

Definition 14.13 (Pseudofans). Given an ACP (V,D), define the pseudofan of
the pair F(V,D) as ... [?, §6.10]Todo, AESsymp 6.10

Definition 14.14 (Corner blowup equivalence classes (cbecs)). Two pseudofans
F(V ′, D′) and F(V ′′, D′′) are in the same corner blowup equivalence class
(cbec) if, after potentially allowing for corner blowups, they correspond to dif-
ferent toric models of a single toric pair (V,D). Call this class C(V,D).

Definition 14.15 (Integral affine spheres). An integral affine sphere or IAS2

is an integral affine structure defined on X := S2 \ {p1, · · · , pn}, the complement
of finitely many (possibly singular) points of a 2-sphere, such that X is a lattice
manifold for L := ⟨n⟩ ∼= Zn, so the transition functions lie in Z2 ⋊ SL2(Z), and for
each singularity pi a choice of cbec C(Vi, Di) is fixed and there exists a neighborhood
Ui ∋ pi which is isomorphic to an open subset of a pseudofan F(Vi, Di) ∈ C(Vi, Di)
in this cbec. A triangulated IAS2 is a pair (B, T ) where B is an IAS2 as above
and T is a triangulation. The charge of a singularity pi on an IAS2 is Q(pi) := · · ·Not super sure about

this, I can’t find AE’s
definition of the pair
(B,T ). It’s used in [?,
§6.12]

By [?],
∑n
i=1Q(pi) = 24. An IAS2 is generic if there are precisely 24 singularities

Todo, define

of type I1.

14D. Type III Kulikov models ⇌ IAS2.

Remark 14.16. We follow the treatment in [?, §6].

X0 Type III → (IAS2, Q = 24) :

Let X0 be a d−semistable Type III Kulikov surface X0. One can construct
a triangulated IAS2 in the following way: write X0 =

⋃
i Vi, and define B :=∐

i F(Vi, Di). Most of the pairs (Vi, Di) are toric pairs, and the nontoric pairs will
be encoded in the singularities of the integral affine structure. One can further
triangulate B by letting T := Γ(X0).

{(Vi, Di}i∈I → X0 Type III

Given a collection of ACPS {(Vi, Di)}i∈I along with gluing maps ϕij : Dij
∼−→Dji,

one can form the pushout X0 :=
∐
ϕij

(Vi, Di). If the glued surface satisfies

• Γ(X0) ∼= S2,
• D2

ij +D2
ji = −2, and

• the gluing is d−semistable in the sense of Friedman,

then X0 is a Type III surface, which additionally admits a smoothing to a family
of K3 surfaces X .

Following [?], we standardize this choice of X by fixing the numerical types and
ordered toric models of all pairs (Vi, Di), performing all interior blowups in copies
of P1 at their origins, and each gluing morphism ϕij is chosen to match origins and
triple points.

14E. Integral Affine Surgeries.

Remark 14.17. There is a very easy formula for the self-intersection numbers on
a toric surface. Let Di be the divisor corresponding to a ray ρi and let w be a
primitive generator of ρi+1 and v of ρi−1, taken in counterclockwise order. Then

−D2
i = det

[
u1 w1

u2 w2

]
.
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Definition 14.18. A 2-dimensional shear is any matrix of the form

[
1 ∗
0 1

]
.

Remark 14.19 (Running example: P2). In this section, we will refer to the stan-
dard moment polytope and toric boundary divisor in Figure 28 for P2 as a running
example. The polytope P is a 10-fold dilate of the standard simplex in R2 with edges
ei corresponding to curves Ci on the toric boundary divisor D with di := −C2

i = −1
for i = 1, 2, 3; the Ci are thus rational and isomorphic to copies of P1 in P2 by clas-
sification of curves. The polytope has three lattice vertices pij := ei ∩ ej at their
intersections corresponding to three toric points qij := Ci ∩ Cj . We can compute
the charge as

Q(D) = 12− 3(−1− 3) = 0,

verifying that (P2, D) is a toric ACP.

−1

e1
−1

e2

−1
e3

p13

p12

p23

(a) The moment polytope.

C1 −1 C2−1

C3

−1q13 q23

q12

(b) The toric boundary.

Figure 28. The moment polytope and corresponding toric
boundary divisor D for P2. The numbers record di := −C2

i , noting
that each Ci is a line in P2 and thus satisfies C2

i = 1.

Remark 14.20. There are several surgeries on can perform on an IAS, following
Engel’s thesis. The most important ones are:

• Corner (toric) blowups. Changes cycle by

(. . . , di, di+1, . . .) 7→ (. . . , di + 1, 1, di+1 + 1, . . .) Q′ = Q+ 1

• Internal (nontoric/almost toric) blowups. Changes cycle by

(. . . , di, . . .) 7→ (. . . , di + 1, . . .) , Q′ = Q

• Node smoothing/nodal trades. Changes cycle by

(. . . , di, di+1, . . .) 7→ (. . . , di + di+1 − 2, . . .) , Q′ = Q+ 1

.
• Nodal slides. Leaves cycle and charge unchanged?

Nodal trades and slides modify the IAS B → B′ but correspond to symplectomor-
phisms X → X ′.

Loops around singular fibers have nontrivial monodromy which is a shear in a
direction (dual to) the vanishing cycle of the nodal fiber.
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For this section, let P be a Symington polytope in LR where ∂P =
⋃n
i=1 Pi

is decomposed as a union of straight line segments Pi of maximal length with
endpoints in L. Write vi,i+1 := Pi ∩ Pi+1 ∈ L for the integral vertices of P and let
(xi,yi) be a primitive integral ordered basis aligned with Pi+1 and Pi respectively.
By convention, we take dij = −D2

ij ≥ 0. Define P ◦ = P \ ∂P and Psing as the set
of singular points of an IAS. Define Psmooth := P \ Psing for the smooth locus.

Definition 14.21 (Self-intersection of an edge of a Symington polytope). For P a
Symington polytope and Pi an edge, define the negative self-intersection num-
ber of Pi to be di defined by the following equation:

diyi = yi−1 − xi = yi−1 + yi+1.

Note that in the toric case, di = −D2
i , generalizing the standard computation of

the self-intersection number of a toric curve.

Example 14.22 (Computing a self-intersection number of a polytope edge).

14E.1. Corner/toric blowups.

Definition 14.23 (Corner/toric blowups). A corner (or toric) blowup of a
Symington polytope at a vertex vi,i+1 = ei ∩ ei+1 is....

One inserts a new edge fi with self-intersection −1, intersecting ei and ei+1, and
then decreases the self-intersections of ei and ei+1 by 1.

Example 14.24 (Corner/toric blowups). Starting with Figure 28, we’ll perform
three toric blowups in sequence at the three toric points qij and compute the charge
at each step.

(1) We first blow up q12 = C1∩C2 by removing a basis triangle emanating from
the vertex p12 in the polytope. This introduces a new edge f12 correspond-
ing to an exceptional curve E12, as well as two new vertices p112 := f12 ∩ e1
and p212 := f12 ∩ e2, geometrically corresponding to two new points q112, q

2
12

on E12 ∩C1 and E12 ∩C2 respectively. Since E2
12 = −1, the edge f12 gets a

weight of 1 and the adjacent edges e1 and e2 have their weights increased
by 1. The charge is

Q = 12 + (1− 3) + (0− 3) + (−1− 3) + (0− 3) = 0.
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0e1
0

e2

−1
e3

1

f12

p13 p23

p112 p212

C1 0 C20

C3

−1

E12

1

q13 q23

q112 q212

Figure 29. P2 with a single toric blowup at q12.

(2) We now blow up q23 := C2∩C3 by performing a similar procedure at vertex
p23. This increases the weights of e2 and e3 by one and introduces a new
edge f23 of weight 1 with endpoints p223 := f23 ∩ e2 and p323 := f23 ∩ e3.
Geometrically, this similarly introduces an exceptional curve E23 and two
new points qi23 := E23 ∩ Ci for i = 2, 3. The charge is

Q = 12 + 3(1− 3) + 2(0− 3) = 0.
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0e1

1

f12

1
e2

1 f230
e3

p13

p112 p212

p223

p323

C1 0
C21

C3

0

E12

1

E231q13

q112 q212

q223

q323

Figure 30. P2 with two toric blowups at q12 and q23.

(3) Finally, we blow up q13, introducing a new edge f13 of weight 1 and in-
creasing the weights of e1 and e3 by 1. This introduces the exceptional
curve E13 and qi13 for i = 1, 2 in a similar way. The resulting polytope is a
non-regular hexagon with 3 short edges and 3 long edges, all of weight 1,
corresponding to a cycle of six (−1)−curves. The charge is

Q = 12 + 6(1− 3) = 0.

Remark 14.25. If (V,D) is an ACP with a deformation (Ṽ , D̃) where D̃ is an
internal blowup of D on edge Di, then the deformation is the result of a surgery
on the pseudofan of (V,D) by replacing the weight di on the edge ei with di − 1.
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1e1

1

f12

1
e2

1 f231
e3

1

f13

p113

p213

p112 p212

p223

p323

C1 1 C21

C3

1

E12

1

E231E13 1

q112 q212

q113

q313

q223

q323

Figure 31. P2 with all three toric points blown up, resulting in a
toric variety with an anticanonical cycle of six (−1)−curves whose
polytope is a non-regular hexagon.

14E.2. Edge/nontoric/internal blowups.

Example 14.26 (Internal blowup and self-intersection numbers). Starting with
Figure 28, we’ll perform three nontoric blowups in sequence and compute the charge
at each step. To blow up a nontoric point, we take the Symington polytope and cut
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an integer dilate n of a basis triangle; figure Figure 32a shows such one such surgery
of size n = 1. Recall that we define di := −D2

i and Q(D) := 12 +
∑n
i=1(di − 3)

when D is a cycle of n ≥ 2 rational curves.

(1) We first blow up a nontoric point C3 by performing a size 1 surgery, cutting
out a basis triangle as in Figure 32a. This leaves the self-intersection d3 =
C2

3 = −1 unchanged, and introduces an exceptional curve E1 with E
2
1 = −1.

Note that although the edge e3 appears to be broken into two parts in this
picture, the dotted edges are glued together such that e3 remains a single
contiguous edge. The boundary divisor is often represented in one of the two
equivalent ways, with either an additional orthogonal curve as in Figure 32b
or a single extra dot as in Figure 32c to record the exceptional divisor E1.
For simplicity, we adopt the latter convention.

Note that in these diagrams, the red numbers indicate the positive self-
intersection numbers E2

i directly, as opposed to the negative self-intersection
numbers for the di. This is because the red numbers do not contribute to
the charge. The charge of the resulting polytope and boundary divisor is
thus

Q = 12 + (0− 3) + 2(−1− 3) = 1.

−1e1

−1

e2

0
e3 e3

p13

p12

p23

(a) The Symington polytope: a (di-
lated) standard simplex with one nontoric
blowup.

−1

C1

−1

C2

0

C3

−1
E1

q12

q23 q13

(b) The boundary divisor.

−1

C1

−1

C2

0

C3E1

−1

q12

q23 q13

(c) Simplified notation for the
boundary divisor.

Figure 32. P2 with a single nontoric blowup at a point contained
in C3.

(2) We can continue by blowing up a nontoric point on C2 by cutting a basis
triangle out of e2, introducing an exceptional curve E2 intersecting C2.
The Symington polytope and corresponding boundary divisor are shown in
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Figure 33 and have charge

Q = 12 + 2(0− 3) + (−1− 3) = 2.

−1e1 0

e2

e2

0
e3 e3

p13

p12

p23

−1

C1

0

C2

0

C3E1

−1

E2

−1

q12

q23 q13

Figure 33. P2 with two nontoric blowups at points in the curves
C3 and C2.

(3) Finally, we blow up a nontoric point on C1 by cutting a basis triangle out
of e1, introducing an exceptional curve E3 intersecting C1. The Symington
polytope and boundary divisor are shown in Figure 34 and have charge

Q = 12 + 3(0− 3) = 3.

0e1

e1

0

e2

e2

0
e3 e3

p13

p12

p23

0

C1

0

C2

0

C3E1

−1

E2

−1

E3

−1

q12

q23 q13

Figure 34. P2 with three nontoric blowups at points in the curves
C2, C3, C1.

and

14E.3. Nodal slides.

Definition 14.27 (Nodal slides). Two Symington polytopes (B,Λ) and (B,Λ′)
with the same underlying polytope but different IASs are related by a nodal slide
if there is a curve γ ⊆ B such that (B \ γ,Λ) ∼= (B \ γ,Λ′), γ contains exactly
one node of (B,Λ) and one node of (B,Λ′), and γ ⊆ Li, the monodromy eigenline
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through the node ni. This operation literally slides a node along the monodromy
direction, changing the length of the corresponding slit. See Example 14.33 for an
explicit example.

Remark 14.28. Symington’s results and an application of Moser’s argument show
that if P1, P2 are related by a nodal slide or a nodal trade, the two corresponding
almost-toric manifolds are diffeomorphic and preserve the symplectic structure up
to isotopy, and are thus symplectomorphic.

14E.4. Node smoothing/nodal trades.

Definition 14.29 (Node smoothing/nodal trade). Two distinct Symington poly-
topes P1 := (B1,Λ1) and P2 := (B2,Λ2) are related by a node smoothing (or
nodal trade) if each polytope contains a curve γ1 and γ2 respectively such that
P1

∼= P2 and P1 contains precisely one less vertex than P2. A node smoothing
(or nodal trade) of size n on a Symington polytope P at the vertex vi,i+1 is
node smoothing P ′ of P obtained in the following way:

• Let Si(n) ⊆ P ◦ be a slit with endpoints vi,i+1 and v := vi,i+1+n(xi+yi).
• Let Li be the line containing Si(n) and let Mi be the unique shear which
fixes Li pointwise and satisfies Mi(xi) = −yi.

• Look along Si(n) from the perspective of vi,i+1 and glue the clockwise edge
of Si(n) to its counterclockwise edge by the shearing map Mi.

Remark 14.30. This introduces an I1 singularity into the fibration where the node
is in the interior of the polytope. The fiber over the node is a pinched torus.

Remark 14.31. This defines a new IAS P ′ such that

P ′
sing = Psing ∪ {v := vi,i+1 + n(xi + yi)}

which straightens Pi and Pi+1 into a single edge and deletes the vertex vi,i+1.
Crossing the slit imposes a nontrivial change-of-frame15: in the basis e1i := −xi−yi,
completed to an orthogonal, oriented lattice basis

{
e1i , e

2
i

}
, the change-of-frame

matrix is

[
1 1
0 1

]
. Thus a node smoothing introduces a new nodal singularity in

B marked with a red x and a slit marked by a dotted line into the polytope. The
fibration π : X → B acquires a nodal singular fiber: it replaces an elliptic corank 2
fiber with a nodal fiber in the neighborhood of an elliptic corank 1 fiber. This trades
a node on the boundary divisor (corresponding to a vertex of the moment polytope)
for a nodal singularity of an almost-toric fibration above the red x. Topologically,
this is a surgery that removes a small ball around a T−fixed point and glues in a
local model of a focus-focus singularity for the moment map.

Example 14.32 (Node smoothings of size 1). Consider the following sequence of
node-smoothing surgeries, with the base polytope B pictured on the left and the
boundary divisor on the right:

(1) Perform a node smoothing at p13 (corresponding to q13). This has the
effect of introducing a node into the interior of P , deletes vertex p13, and
merges edges e1 and e3 while increasing the self-intersection number by 1.
Geometrically, this smooths the intersection C1∩C3 = q13, produces a new

15I.e. for any paths crossing the slit, their tangent vectors undergo this transformation when
they pass through the slit.
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curve C1,3 of self-intersection 2, i.e. a conic in P2, while C2 still a line in
P2 of self-intersection 1, which now intersects C1,3 at two distinct points
q12, q13:

2

e1 = e3
1

e2

2
e3 = e1

p13

p12

p23

(a) The moment polytope.

1

C2

q12

2C1,3

q13

(b) The boundary divisor.

Figure 35. An almost-toric base B for P2 with one node smooth-
ing/nodal trade surgery of size n = 1 performed.

(2) Perform a node smoothing at p23 (corresponding to q23). This involves
merging edges e2 and e3 from the original diagram for P and deleting
vertex p23, yielding a polygon with a single edge of self-intersection 3 and
one vertex p12. One then puts a singularity in the interior of the polytope
emanating from where p23 was, with a dotted edge. Geometrically, this
smooths the node q13 = C2 ∩ C3, which became a node in C2 ∩ C1,3 in the
previous surgery. We thus get a nodal cubic curve of self-intersection 3,
with node q12:

3

e1 = e3 = e2
3

e2 = e1 = e3

3
e3 = e1 = e2

p13

p12

p23
⇌

q12

3

C1,2,3

(3) Perform a node smoothing at p12 (corresponding to q12). This involves
deleting p12, inserting a red singularity in the interior, and connecting it
with a slit to where p12 once was. Geometrically, this smooths the node
q12, yielding a smooth cubic curve:
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3

e1 = e3 = e2
3

e2 = e1 = e3

3
e3 = e1 = e2

p13

p12

p23
⇌

3

C1,2,3

Note that in all cases, all surgeries were of minimal size n = 1, taken in the
direction of the eigenline of the local monodromy about each vertex. One can
compute a primitive integral vector in the monodromy eigenline in the following
way: at pij , let e

1
ij , e

2
ij be the primitive integral positively-oriented basis of vectors

along the adjacent edges. LetMij be the matrix that transforms the standard basis
to this basis; the eigenline is then along

εij :=Mij · (1, 1).

Explicitly, the following calculations are used to determine the directions of the
shears in the above diagrams:

(1) At p13 we have e113 = (1, 0) and e213 = (0, 1), so

M13 =
[
e113, e

2
13

]
=

[
1 0
0 1

]
=⇒ ε13 =

[
1 0
0 1

][
1
1

]
= (1, 1).

(2) At p12, we have e112 = (0,−1) and e212 = (1,−1) so

M12 =
[
e112, e

2
12

]
=

[
0 1
−1 −1

]
=⇒ ε12 =

[
0 1
−1 −1

][
1
1

]
= (1,−2).

(3) At p23, we have e123 = (−1, 1) and e223 = (−1, 0) so

M23 =
[
e123, e

2
23

]
=

[
−1 −1
1 0

]
=⇒ ε23 =

[
−1 −1
1 0

][
1
1

]
= (−2, 1).

Example 14.33 (Node smoothings of larger sizes and nodal slides). Consider
again the moment polytope and toric boundary for P2 shown in Figure 28. The
first surgery shown in Figure 35 is a node smoothing at p13 of size n = 1; the
following are node smoothings of sizes n = 2 and n = 3 respectively:
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2

e1 = e3
1

e2

2
e3 = e1

p13

p12

p23

(a) Size n = 2 node smoothing.

2

e1 = e3
1

e2

2
e3 = e1

p13

p12

p23

(b) Size n = 3 node smoothing.

These two surgeries are related by a nodal slide along the indicated eigenline
associated to p13.

Remark 14.34. If (V,D) is an ACP with a deformation (Ṽ , D̃) where D̃ is a node
smoothing of D at vi,i+1, then the deformation is the result of a surgery on the
pseudofan of (V,D) where the triangular face with edges ei and ei+1 are collapsed
and replaced with a single edge of self-intersection di + di+1 + 2.

15. Toric geometry of degenerations and KPP models

Remark 15.1. One tends to say a pair (X,D) is maximal, e.g. the pair corre-
sponding to the central fiber of a degeneration if the intersections of irreducible
components of D are all 0-dimensional.

Definition 15.2. A curve F is exceptional if F is irreducible and F 2 < 0. By
[?, Lemma 4.2], for π : X → Y, exceptional curves on Y come in three types:
F 2 = −4,−2,−1.

Definition 15.3 (Anticanonical pairs). todo

15A. Toric vs. semitoric.

Example 15.4 (A nontoric blowup). An example of a toric anticanonical pair is

(V,D) =

P1 × P1,
0

0

0

0


The following figure depicts Blp1,...,p9(P1 × P1):

15B. Kulikov-Persson-Pinkham models.

Definition 15.5 (Modifications). A proper birational morphism f : X 99K Y of
algebraic varieties is called a modification.

Definition 15.6 (Semistability). A family π : X → ∆ is semistable if

(1) X is smooth,
(2) X0 =

⋃
i Vi is a union of RNC divisors,

(3) KX ∼∆ 0, or equivalently ωX/∆ ∼= OX is trivial.

Definition 15.7 (Smoothing). Let X be a singular surface. A smoothing of X
is a smooth proper family X → ∆ such that X0

∼= X and Xt is smooth for t ̸= 0.
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=

Figure 37. Nontoric blowups

Definition 15.8 (Recognizable divisors, [?]). Let F qS be the moduli stack of quasipo-
larized K3 surfaces. A canonical choice of polarizing divisor is a choice of ample
divisor R on the generic K3 surface in F qS . It is recognizable for FS if every
S−quasipolarized KPP surface X0 contains a divisor R0 ⊂ X0 which, for any
S−quasipolarized smoothing X → ∆ of X0 with ∆◦ ⊂ U has the property that
R0 is the flat limit of Rt ⊂ Xt for t ̸= 0 up to the action of Aut0(X0).

Remark 15.9. This captures the notion of a divisor on the generic fiber of a
family which can be extended to any choice of central fiber, or conversely, there is
a choice of divisor on any degenerate X0 ∈ ∂F2d which is independent of smoothing
directions by KPP models. [?] shows that any choice of recognizable divisor for
F2d produces (up to normalization) a semitoroidal compactification of the period
domain, and produces recognizable divisors for F2d for all d.

Definition 15.10 (Kulikov-Persson-Pinkham (KPP) models). Let π◦ : X ◦ → ∆◦

be a family of smooth complex K3 surfaces over ∆◦. A Kulikov-Persson-Pinkham
model or KPP model is a proper semistable threefold π : X → ∆. The central
fiber X0 of a KPP model is called a Kulikov surface, and X is by definition a
smoothing of X0.

A theorem of Kulikov and Persson-Pinkham says that for any punctured familyReference: see AET sym-
plectic involutions §6a –
they cite [Kul77, PP81] of algebraic K3 surfaces Y◦ → ∆◦, there is a finite ramified base change ∆̃◦ → ∆◦

with pullback Ỹ◦, a completed family π̃ : Y → ∆̃ extending over the origin, and a

modification X 99K Ỹ such that X → ∆̃ is a KPP model:

X Ỹ Ỹ◦ Y◦

∆̃ ∆̃◦ ∆◦

π◦

finite

π̃◦

⌟

π̃

modification
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Definition 15.11 (d−semistability). Let X → ∆ be a Type III KPP model. The
central fiber X0 is d−semistable if

T1
X0

:= (Ω1
X0

)∨ := Ext1OX0
(Ω1

X0
,OX0

) ∼= OX sing
0

.

This is an analytic condition.

15C. Type I/II/II surfaces.

Remark 15.12 (Classification of KPP models). Let X → ∆ be a KPP model
and consider the Picard-Lefschetz transformation on integral singular cohomology
induced by a simple closed loop γ generating π1(∆

∗, t):

Tγ : H2(Xt;Z) → H2(Xt;Z)
Since X0 is reduced normal crossings by definition, Tγ is unipotent, so let N :=
log Tγ be its logarithm. Then N is nilpotent of some minimal order k, i.e. Nk−1 ̸= 0
but Nk = 0, and by [?, ?] we have the following cases: Find + cite types of

curves that occur in each
type? E.g. type II with
rational ends

• k = 0: X is Type I with X0 smooth
• k = 1: X is Type II where X0 is a chain of elliptic ruled surfaces with
rational surfaces at each end, glued along intersections in smooth elliptic
double curves with no triple points,

• k = 2: X is Type III where X0 is a chain of rational surfaces whose inter-
sections are cycles of rational curves such that the dual complex Γ(X0) is
a triangulation of the sphere S2.

Furthermore, N is integral, and there exist explicit elements δ, λ ∈ H2(Xt;Z)
such that the log monodromy action is given by

Nx = (x ⌣ λ)δ − (x ⌣ δ)λ.

Remark 15.13. Importantly, the central fibers X0 of KPP models corresponding
to semistable degenerations of K3 surfaces admit a classification by monodromy.
The monodromy operator T is quasi-unipotent, so (T k − I)Tn = 0 for some n. By
semistability, we can take k = 1, and since T is an operator on H2 we can choose
n = 3.

15D. Charge.

Definition 15.14 (Charge). Let (V,D) be a rational anticanonical pair, so KV +
D ∼Q 0 and D =

∑
Dj is a chain of rational curves Dj in V . Note that (V,D) is

log Calabi-Yau pair. Call (V,D) a toric pair if V is a toric variety with D = ∂V
its toric boundary.

If D is reduced, one of three cases can occur:

(1) D is a smooth elliptic curve,
(2) D is a cycle of n smooth rational curves if n ≥ 2, or if n = 1 then D is a

single irreducible nodal curve,
(3) D is one of three exceptional cases.

The charge Q(V,D) is computed by the following formula:

Q(V,D) =

{
12 +

∑
j

(
−D2

j − 3
)

if D is nodal with ≥ 2 components

11−D2 if D is irreducible nodal

If we are in case (ii) and n ≥ 2, this formula simplifies to

Q(V,D) := 12−
∑
j

(
D2
j + 3

)
.
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Remark 15.15. A corner blowup does not change the charge, while an internal
blowup increases the charge by 1.

15E. Toric models.

Definition 15.16 (Toric models). A corner blowup is a pair (V ′, D′) where V ′ is
a blowup f : V ′ → V at a torus fixed point, and D′ is the anticanonical divisor of
V ′. An internal, or almost toric blowup V ′′ → V is a pair (V ′′, D′′) where V ′′ is
blowup at an interior point of a curve Dj , i.e. at a point P ∈ Dj\ ∪k ̸=j Dk, whose
anticanonical divisor D′′ is the strict transform of D.

Choosing an order for such blowups, we define an (ordered) toric model of V to
be a span of pairs

(V ′, D′)

(V,D) (V̄ , D̄)

Corner Internal

where V ′ → V is an ordered sequence of corner blowups and V ′ → V̄ an ordered
sequence of internal blowups.Do we get a map V 99K

V ?

Yes, V and V are bi-
rational to each other.
On the other hand, I am
confused about the map

V ′ → V . After interiors
blow ups, we do not get
a toric variety, but V ′ is
a toric variety.

Remark 15.17. [?] shows that any rational anticanonical pair admits a toric
model. One can show that the charge is an obstruction to (V,D) being a toric
pair, and measures the number of internal blowups in a toric model. Type III sur-
faces occurring as the central fibers X0 of Kulikov degenerations are 24 steps away
from being toric in the following sense: by a theorem of [?], if (V,D) = ∪i(Vi, Di)
is a rational anticanonical pair then∑

i

Q(Vi, Di) = 24.

16. KSBA compactifications

Remark 16.1. Recall the Deligne-Mumford compactification of Mg:

(1) Given a family of curves X → ∆, after a base change and a birational
transformation, we can assume this is a semistable family: X is smooth
and X0 is RNC.

(2) Consider the relatively minimal model, which here involves contracting
(−1)−curves. In this case, X → ∆ is still smooth.

(3) Take the relative canonical model where one contracts (−2)−curves, making
X → ∆ singular.

Note that in the first two steps, X0 is not unique, but in the third step it becomes
unique (at the cost of having a singular total space). As a result, one obtains Mg

by adding stable curves: X0 is at worst nodal, and every P1 component contains
3 distinguished points. This is equivalent to Aut(X0) < ∞ and also equivalent to
having an ample dualizing sheaf ωX0

> 0. The last characterization is the one that
generalizes to higher dimensional varieties and pairs.

Remark 16.2. A general question one can ask: given a moduli space M that
admits a KSBA and a Hodge-theoretic compactification, how do these compare? Is
there a lift of the period map?



Glossary 95

M
KSBA

Γ\Ω
bb
,Γ\Ω

tor
, · · ·

M Γ\Ωφ

∃? φ̃

This is generally hard: given a smooth family X → ∆ with X0 RNC one has
the Clemens-Schmidt exact sequence, but there is not a clear analog when X is
singular.

Remark 16.3. Since one can realize a K3 surface of degree 2 as ramified double
cover π : X → P2 over a sextic curve with branch divisor B, one can identify F2 as
moduli of pairs (P2, B) with B such a sextic. More generally, for X a surface and
B an effective Q−divisor, a pair (X,B) is a stable pair of degree 6 if (X, 1+ε2 B)

is slc and KX + 1+ε
2 B > 0 with 2KX + B ∼ 0 which smooths to X to a pair

Xt = (P2, Bt) with Bt a sextic. This ensures that the double cover is a K3 surface.
Hacking shows there is a coarse moduli space of such pairs which contains F2,
providing a compactification whose boundary has geometric significance but is not
explicitly described.

16A. Stable pairs and KSBA compactifications.

Definition 16.4 (RNC). todo, modern terminol-
ogy for simple normal
crossings seems to be re-
duced normal crossings

Definition 16.5 (dlt pairs). A log pair (X,D) is divisorial log terminal (dlt)
if there is a smooth open subset U ⊆ X for which the restriction D|U is RNC and
for any divisorial valuation E with center X \ U we have α(E,X,D) > −1.

Definition 16.6 (KSBA stable pairs). A pair (X,D) with X a variety and D a
Q− divisor with coefficients in [0, 1] is KSBA stable if

• ”Nodal/local”: (X,D) is a proper semi-log-canonical (slc) pair
• ”Stable/global”: KX +D > 0, i.e. the log canonical class is ample.

This generalizes the notion of a nodal curve to higher dimensions. The first is a
singularity condition, enforcing having at worst nodal singularities in codimension
1. The second condition generalizes a g = 0 curve having at least 3 marked points
and a g = 1 curve having at least 1 marked point, where nodes are counted as
points.

If (X, 0) is a stable pair, we say X is a stable variety.

Remark 16.7. A theorem of KSBA shows that if certain numerical invariants
are fixed, a projective coarse moduli space of stable pairs exists. An example
application: taking the closure in the space of stable pairs for Mg,n exactly recovers
the Deligne-Mumford compactification.

Definition 16.8 (Stable pairs). A stable pair is a pair (X, εR) where X is a
seminormal slc surface with trivial dualizing sheaf and R is an ample Cartier divisor
containing no log canonical centers of X. For 0 < ε≪ 1, this yields a KSBA stable
pair.

Remark 16.9. There is a well-formulated notion of taking the closure of KSBA

stable pairs for a moduli space M , yielding compactifications M
KSBA

. . Need to find a good
source for this material,
just general theory of
KSBA compactification.
Could also put here just
how the theory works for
FS , c/o [?]
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17. Lattice theory

17A. Definitions.

Definition 17.1 (Basic of lattices). For R an integral domain and k its field of
fractions, an R−lattice L is a finitely-generated projective R−module equipped
with a nondegenerate symmetric bilinear form

β : L⊗R L→ k

As a matter of notation, we write β(v, w) as (v, w) or vw or v.w or v · w, and
similarly v2 := β(v, v). The quadratic form associated to β is

Q : L→ k

v 7→ v2 := β(v, v)

Note that given Q, one can recover β by the standard formula

β(v, w) :=
1

2
(Q(v, w)−Q(v)−Q(w))

For a fixed set of R−module generators {v1, · · · , vn} of L, the Gram matrix
G(L) of L is the matrix G(L)ij := β(vi, vj) ∈ GLn(R), which is unique up to
conjugation by matrices in GLn(R) and is symmetric if β is. The discriminant of
L is disc(L) := det(G(L)). We say L is integral if β(L,L) ⊆ R. An integral lattice
is even if β(L,L) ⊆ 2R and odd otherwise.

Remark 17.2. In our applications, we take R := Z and k := Q, noting that since
Z is a PID, projective Z−modules are free and thus a Z−lattice is equivalently a
free Z−module equipped with a bilinear form.

Definition 17.3 (Morphisms of lattices). An embedding of R−lattices L1 in L2

is an injective morphism of R−modules ι : L1 → L2 which is equivariant with
respect to the bilinear forms, i.e.

ι(βL(l1, l2)) = βM (ι(l1), ι(l2)).

The embedding is primitive if coker ι is torsionfree. Any non-primitive embedding
can be promoted to a primitive embedding by taking the saturation of ι(L1) in
L2, the intersection of all primitive sublattices of L2 which contain ι(L1). For a
fixed primitive embedding L1 ↪→ L2, regarding L1 ≤ L2 as a sublattice, define the
orthogonal complement of L1 in L2 as

L⊥L2
1 := {x ∈ L2 | βL2(x, ι(L1)) = 0} .

The dual lattice16 of an integral lattice L is

L∨ := HomR(L,R) = {x ∈ Lk | βLk
(x, L) ⊆ R} ⊆ Lk.

Todo: orthogonal sums
of lattices.

Todo: genus of a lattice.

Smith-Minkowski-Siegal
mass formula, used in
Scattone.

Remark 17.4 (Numerical invariants). We now suppose R = Z and define LR :=
L⊗ZR and LC := L⊗ZC to be the real and complex vector spaces associated with L.
The rank of L is its rank as a free Z−module rank(L) := rankZ L, or equivalently
dimQ LQ. There is an induced bilinear form on LQ whose eigenvalues are ±1 or 0.
Write n+, n−, n0 for the multiplicities of the eigenvalues 1,−1, 0 respectively; we

16Note that the natural extension of the bilinear form βL on L to βLk
on Lk may no longer

be R−valued.
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say L is nondegenerate if n0 = 0, or equivalently if the following map sending
vectors to linear functionals defines an isomorphism of Q−modules

ϕ : LQ → HomR(LQ,Q)

x 7→ fx := (x,−)

Define the signature of L as sgn(L) := (n+, n−). A positive-rank lattice is positive
(resp. negative) definite if it is of signature (n+, 0), resp. (0, n−).

Remark 17.5 (Discriminant forms). The dual lattice L∨ admits a canonicalQ−valued
bilinear form extending the Z−valued bilinear form β on L,

β∨ : L∨ ⊗Z L
∨ → Q

fx ⊗ fy 7→ βL(x, y)

If L is integral, there is an injection L ↪→ L∨ realizing L as a finite index sub
Z−module of L∨, thus the cokernel

AL := coker(L ↪→ L∨) ∼= L∨/L

is a finite abelian group called the discriminant group. It is called this because
its order is the discriminant of L. The discriminant group is canonically equipped
with a well-defined quadratic form

qL : AL → Q/Z

ℓ+ L 7→ 1

2
ℓ2 + Z

If L is even, this takes values in Q/2Z. There is an associated bilinear form on AL
defined by the standard formula,

βAL
: AL ⊗Z AL → Q/Z.

We call the pair (AL, qL) the discriminant form of L. We define the length
ℓ(AL) of AL as the minimal number of Z−module generators of AL.

If AL = 0, or equivalently L ∼= L∨ or disc(L) = ±1, we say L is unimodular.
If L is unimodular and S ↪→ L is a primitive sublattice, then there is a canonical
isomorphism of discriminant forms

(AS , qS) ∼= (AS⊥L ,−qS⊥L)

where S⊥ is the orthogonal complement of ι(S) in L. If AL ∼= (Z/nZ)⊕m

decom-
poses as a sum of cyclic groups of the same order n, we say L is n−elementary.

Remark 17.6 (Overlattices). An overlattice L̃ of L is submodule of L∨ such that

L ⊆ L̃ ≤ L∨ which is integral, i.e. the restriction β∨|L̃ has image contained in Z.
Equivalently, their index [L̃ : L] as Z−modules is finite. Note that if L1 ↪→ L2 is
an embedding of lattices with rankL1 = rankL2, then L2 ↪→ L1

∨ is an overlattice
of L1 in L1

∨. For two lattices L and L′, we write L⊕ L′ for the direct sum which
is orthogonal with respect to the combined bilinear form βL ⊕ βL′ .

Remark 17.7 (Orthogonal group and reflections). The orthogonal group of L
is the set of isometric Z−linear operators on L:

O(L) := {γ ∈ AutZ(L) | γ(v).γ(w) = v.w ∀v, w ∈ L} .
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Similarly, we define the orthogonal group of AL as operators which preserve the
discriminant quadratic form:

O(AL) = {γ ∈ AutZ(AL) | qL(γ(v)) = qL(v)} .

There is a group homomorphism O(L) → O(AL).

Remark 17.8. For v ∈ L with v2 ̸= 0, define its spinor norm as ∥v∥spin := 1
2v

2,

its spinor normalization as v̂ := v/∥v∥spin, and its corresponding hyperplane
reflection as

sv(x) := x− (x, v)v̂.

Note that sv ∈ O(L) for any v ∈ L. If (V,Q) is a finite-dimensional nondegenerate
quadratic space over a characteristic zero field, every isometry of (V,Q) is a product
of such hyperplane reflections.

Remark 17.9 (Invariants and classification). We define an invariant δ ∈ F2 of AL
called the coparity by δ = 0 if qL(AL) = 0 mod Z and δ = 1 otherwise. By a
result of Nikulin, integral even indefinite 2−elementary lattices L are determined
up to isomorphism by sgn(L) and the tuple (r, a, δ) where r := rankZ L and a :=
rankF2

AL. Note that if L is hyperbolic, sgn(L) is uniquely determined by r, so the
triple (r, a, δ) suffices to uniquely classify 2-elementary hyperbolic lattices.

Remark 17.10. IfM is an even lattice of signature (s+, s−), one can always find a
primitive embedding into an even unimodular lattice of higher rank. In particular,
if L is such a lattice of signature (r+, r−), there is a unique primitive embedding
M ↪→ L if

• s+ < r+,
• s− < r−, and
• ℓ(AM ) ≤ rankL− rankM − 2.

Definition 17.11 (Divisibility). For v ̸= 0 in a lattice L, its divisibility is defined
by

vL = div(v)Z,
the dilation factor of the one-dimensional lattice generated by v, measuring how
far v is from generating a standard sublattice Z.

17B. Hyperbolic lattices.

Definition 17.12 (The future orthogonal group of a hyperbolic lattice). Let L be
a hyperbolic lattice of signature (1, n), define

O+(L) := O(L) ∩O+(LR).

17C. Constructions of specific lattices.

Remark 17.13 (Twists of a lattice). If L is a lattice with bilinear for βL, define
L(n) to be the twist of L by n, which has the same underlying Z−module but is
equipped with the scaled bilinear form

βL(n)(x, y) := nβL(x, y).

Remark 17.14 (The lattice ⟨n⟩). The lattice ⟨n⟩ is defined as the rank 1 lattice Z
with one generator f satisfying β(f, f) = n. The Gram matrix is the 1× 1 matrix
[n], and the associated quadratic form is Q(x) = nx2.
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Remark 17.15 (The lattices Ip,q and IIp,q). IIp,q when p − q ≡ 0 (mod 8): the
unique even indefinite integral lattice, determined uniquely by its rank and signa-
ture, with presentation

IIp,q :=

II1,1
⊕p ⊕ E8

⊕
−(p−q)

8 , p < q

II1,1
⊕q ⊕ E8(−1)⊕

p−q
8 , p > q.

DZG: I haven’t worked
out whether the origi-
nal source for this used
positive or negative def-
inite E8, so might need
to work this out later to
match everything up.

Definition 17.16. Let L be a lattice and let B = {e1, e−1, · · · , en, e−n} be an
ordered set of vectors in L. We say B is hyperbolic if eie−i = 1 and eiej = 0 for
i ̸= −j. If ZB = L, we say B is a hyperbolic basis of L.

Remark 17.17 (The hyperbolic lattice). In rank 2, there are two unimodular
hyperbolic lattices: the odd I1,1 := ⟨1⟩ ⊕ ⟨−1⟩, and the even U := II1,1. The latter
is what we call the hyperbolic lattice, and can be realized as II1,1 = Zf ⊕ Zg
with f, g a hyperbolic basis, i.e. f2 = g2 = 0 and fg = 1, with Gram matrix

G(II1,1) =

(
0 1
1 0

)
Remark 17.18 (Type An). The root lattice An can be constructed as

An :=
{
λ ∈ Zn+1;λ1 + . . .+ λn+1 = 0

}
,discAn = n+ 1

Choosing the standard basis {ei − ei−1 | 0 ≤ i ≤ n− 1}, the Gram matrix is

G(An) =


2 1 0 · · · 0
−1 2 −1 · · · 0
0 −1 2 · · · 0
...

...
...

...
0 0 0 · · · 2

 ∈ Matn×n(Z)

The discriminant group is cyclic of order n + 1: AAn
∼= Cn+1. The Weyl group is

the symmetric group Sn. The corresponding Dynkin diagram is the following:

An :
1 2 n− 1 n

Remark 17.19 (Type Dn). The root lattice Dn can be constructed as

Dn := {λ ∈ Zn;λ1 + . . .+ λn ≡ 0(mod2)} ,discDn = 4

In the basis {e1 − e2, e2 − e3, · · · , en−1 − en, en−1 + en}, the Gram matrix is

G(Dn) =



2 −1 · · · 0 0 0
−1 2 · · · 0 0 0
...

...
...

...
...

0 0 · · · 2 −1 −1
0 0 · · · −1 2 0
0 0 · · · −1 0 2


∈ Matn×n(Z)
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The discriminant group is C4 is n is even and C2
⊕2

if n is odd. The corresponding
Dynkin diagram is the following:

Dn :
1 2

n− 1

n

Remark 17.20 (The + and − constructions). Let v+ = 1
2 (1, 1, 1, · · · , 1) and v− =

1
2 (−1, 1, 1, · · · , 1), and define D+

n := Dn ⊕ Zv1 and D−
n := Dn ⊕ Zv2. If n is odd,

D+
n
∼= D−

n
∼= Dn

∨. If n is even, D+
n ̸∼= D−

n and both contain Dn with index 2 and
are thus unimodular and are even integral unimodular lattices if and only 8 divides
n.

Remark 17.21 (Types E8, E7, E6). The root lattice E8 can be constructed as
E8 = D8 ⊕ Zv+ = D+

∗
∼= II0,8. It is the rank 8 negative definite even unimodular

lattice defined by the Cartan matrix of the E8 Dynkin diagram:

E8 :
1

2

3 4 5 6 7 8

The lattice E7 = AnnE8(L1) for L1 ≤ E8 any sublattice isometric to A1, and
similarly E6 = AnnE8(L2) for any L2 isometric to A2. These have the following
Dynkin diagrams:

E7 :
1

2

3 4 5 6 7
, E6 :

1

2

3 4 5 6

17D. Neimeier lattices.

Definition 17.22. The Niemeier lattices are the definite unimodular lattices of
rank 24. We take them to be negative definite. These were classified by Niemeier
in his doctoral thesis and published in 1973. One of these is the Leech lattice Λ24,
discovered by Leech in 1967, the unique Niemeier lattice with no roots. So it cannot
be described as a unimodular overlattice of a rank 24 root lattice.

The following is a list of all such rank 24 lattices:

E⊕3
8 D⊕3

8 D⊕2
5 ⊕A⊕2

7 A⊕4
6

E8 ⊕D16 D9 ⊕A15 A⊕3
8 A⊕6

4

E⊕2
7 ⊕D10 E⊕4

6 A24 A⊕8
3

E7 ⊕A17 E6 ⊕D7 ⊕A11 A⊕2
12 A⊕12

2

D24 D⊕4
6 D⊕6

4 A⊕24
1

D⊕2
12 D6 ⊕A⊕2

9 D4 ⊕A⊕4
5 ∅

Conway studied Aut(Λ24) in order to produce three new sporadic simple groups,
the Conway groups Co1 , Co2 , Co3 .

17E. Lattices in K3 theory.

Remark 17.23. The following are sources of lattices that arise when studying
moduli of K3s and Enriques surfaces:
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• The K3 lattice II3,19 is defined by

II3,19 := II⊕3
1,1 ⊕ E⊕2

8

which satisfies rank(II3,19) = 22 and sgn(II3,19) = (3, 19). This is the lattice
structure on H2(X;Z) for X any K3 surface.

• The Enriques lattice II1,9 is defined by

II1,9 := II1,1 ⊕ E8

which satisfies rank(II1,9) = 10 and sgn(II1,9) = (1, 9).
• The degree d polarization lattice for K3 surfaces is

II3,19⟨d⟩ := II1,1
⊕2

⊕ E8
⊕2

⊕ ⟨−2d⟩

• The Borcherds lattice is

II2,26 = II1,1
⊕2

⊕ E8
⊕3

There is a primitive embedding II3,19 ↪→ II2,26.
• For S a K3 surface, the Néron-Severi lattice NS(S) is defined as

NS(S) := H1,1(S;R) ∩H2(S;Z).

• The transcendental lattice of S, T(S), is defined as

T(S) := NS(S)⊥,

where the orthogonal complement is taken in H2(S;Z).

Example 17.24. For d = 2,

II3,19⟨2⟩ := II1,1
⊕2

⊕ E8
⊕2

⊕ ⟨−4⟩

which seems to be isometric to II1,1
⊕2 ⊕D16.

Remark 17.25 (Some stuff maybe needed for automorphisms). For a free finitely-
generated Z−module A, write ℓ(A) for the minimal number of generators of A. For
G ≤ O(L), defined the invariant lattice LG := {v ∈ L | γ(v) = v ∀γ ∈ G} and the
coinvariant lattice as its orthogonal complement in L, LG := (LG)⊥.

Remark 17.26. There are several unexpected isometries of lattices worth noting:

• D1
∼= ⟨−4⟩

• D2
∼= A2

⊕2

17F. Orthogonal and automorphism groups of lattices.

Remark 17.27. In this section, we generalize the theory of orthogonal groups
with respect to quadratic forms to orthogonal groups of lattices, using the fact
that any symmetric bilinear form has an associated quadratic form when the char-
acteristic of the underlying field is not 2. These constructions recover the stan-
dard real forms of orthogonal groups, the real Lie groups that are usually written
O(n) and O(p, q), by tensoring the lattice up to R. This hopefully also clears up
some ambiguity in the literature, because many papers use the terms ’isometry
group’, ’orthogonal group’, and ’automorphism group’ of lattice interchangeably.
This is a slight issue when defining integral affine spheres, since it’s unclear which
of GL2(Z),O2(Z),SO2(Z),SL2(Z) one should use for the allowed group of transfor-
mations for the standard lattice Z2 that exists in the charts of the atlas.
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Definition 17.28 (General linear group of a k−vector space). For V a fixed
k−vector space, we define the general linear group of V by its functor of points:

GLV : k−Alg → Groups

R 7→ GLV (R) := AutR(V ⊗k R)

Fixing a k−basis for V , we make the following abuse of notation:

GL(V ) := GLV (k) = GLn(k)

Definition 17.29 (General linear group of a lattice). For L a fixed Z−lattice, we
define the general linear group of L by its functor of points: for a Z−algebra R, it
is

GLL(R) := StabGLLR (R)(L) = {γ ∈ GLLR(R) | γ(L) = L} .
Fixing a lattice basis for L, we make the following abuse of notation:

GL(L) := GLL(Z) := {γ ∈ GLn(Z) | γ(L) = L} = StabGLn(Z)(L)

Definition 17.30 (Orthogonal group of a quadratic k−module). Let (V,Q) be
a fixed quadratic k−module.17 We define the orthogonal group of (V,Q) by its
functor of points: on a k−algebra R, we set

O(V,Q)(R) := {γ ∈ GLV (R) | Q(γv) = Q(v)∀v ∈ V } .

If k = R, letting sgn(V,Q) = (p, q), fixing a R−basis for V we write V ∼= Rp,q, we
make the following abuse of notation:

O(V ) := O(V,Q)(R) = Op,q(R).

Remark 17.31. If V is definite, so wlog (p, q) = (n, 0), we write O(V ) = On(R).
Note that if k = R, V = Rn, and Qstd is the standard positive definite form
Qstd(x⃗) =

∑
x2i , the real points recover

ORn,Qstd
(R) = On(R)

the standard real orthogonal Lie group.

Definition 17.32 (Orthogonal/isometry group of a lattice). Let L be a lattice with
(LR, q) its associated quadratic space. The orthogonal group or group of isometries
of L is defined on R−algebras R as

OL(R) := O(LR,q)(R) = {γ ∈ GLLR(R) | (γv, γw) = (v, w)∀v, w,∈ L} .

If a lattice basis is fixed, we make the following identification/abuse of notation:

O(L) := OL(Z) = {γ ∈ GLn(Z) | (γv, γw) = (v, w)∀v, w ∈ L}

Remark 17.33. After choosing a basis, one can realize O(L) ≤ GLn(Z) as a
discrete compact (and thus finite) subgroup where n := rankZ L. Taking L := Zn
to be the standard lattice or any positive-definite lattice of signature (n, 0), we
have LR ∼= Rn,0 ∼= Rn and this construction yields OL(R) = On(R) recovering
the standard orthogonal group. If L is indefinite with signature (p, q) then this
construction recovers OL(R) = Op,q(R), the isometries of Rp,q.

17I.e. a k−vector space equipped with a quadratic form.
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Definition 17.34 (Automorphism groups of lattices). Let L be a Z−lattice, we
define

AutL(R) := StabOL(R)(L)

= {γ ∈ OL(R) | γ(L) = L}
= {γ ∈ GLLR(R) | γ(L) = L, (γv, γw) = (v, w)}
= GLL(R) ∩O(LR,q)(R).

If a lattice basis is fixed, we make the following identification/abuse of notation:

Aut(L) := AutL(R) = {γ ∈ On(R) | γ(L) = L, (γv, γw) = (v, w)} .

Definition 17.35 (Isotropic subspaces). Let L be a lattice with bilinear form βL
with βLR its natural extension to LR. An isotropic subspace associated to L is
any subspace W ≤ LR such that βLR |W = 0, or equivalently W ⊆ W⊥. A vector
e ∈ L is isotropic if e2 = 0.

Definition 17.36 (Isotropic Grassmannian). Let L be a lattice with bilinear form
βL, with βLR its natural extension to LR. The Grassmannian Grk(L) of L is
defined to be the algebraic variety of k−dimensional subspaces in LR generated by
vectors in L. The isotropic Grassmannian Grisok (L) of L 18 is defined as (an
irreducible component of) the subvariety of k−dimensional subspaces of LR which
are isotropic with respect to βLR .

Remark 17.37. Thus an isotropic line spanned by an isotropic vector e ∈ L
defines an element Ze ∈ Griso1 (L). Similarly, an isotropic plane spanned by e, f

yields Ze⊕ Zf ∈ Griso2 (L).

Remark 17.38.

17G. Discriminant quadratic forms.

Lemma 17.39. Let L be a lattice that decomposes as L ∼=
⊕

i Li. Then qL =∑
i qLi

, i.e. the discriminant form on L decomposes as a sum of the discriminant
forms on the Li.

Proof and example?

17G.1. For II1,1(2). The lattice II1,1(2) is generated by e, f such that e2 = f2 = 0
and e · f = 2. The elements e/2 and f/2 belong to the dual II1,1(2)

∨ and their
classes in AII1,1(2) = II1,1(2)

∨/II1,1(2) give a set of generators. Their intersection

matrix is
(

0 1/2
1/2 0

)
, which gives the discriminant quadratic form AII1,1(2) → Q/2Z.

17G.2. For D16. Let D16 = Ze1 ⊕ . . . ⊕ Ze16 as in Figure 38. The discriminant
group AD16

is known to be isomorphic to Z2
2, and two generators are given by

1

2
(e1 + e3 + e5 + e7 + e9 + e11 + e13 + e15),

1

2
(e1 + e3 + e5 + e7 + e9 + e11 + e13 + e16).

The intersection matrix of these two vectors is given by
(

−4 −7/2
−7/2 −4

)
, which de-

scribes the discriminant quadratic form q : AD16 → Q/2Z. Note that adding or

18OGrk is used when one has a nondegenerate symmetric bilinear form, and SGrk for an
alternating/skew-symmetric form.
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subtracting an even integer (resp. an integer) along the diagonal (resp. off the
diagonal) gives the same quadratic form. So the discriminant quadratic form of

D16 is
(

0 1/2
1/2 0

)
, which is the same as the one for II1,1(2).

e1 e2 e13
e14

e15

e16

Figure 38. D16 Dynkin diagram.

18. Valery’s notes

18A. Notes from Valery.

Remark 18.1. A K3 surface is a smooth projective surface X with KX = 0
and h1(OX) = 0. An Enriques surface Y is a smooth projective complex surface
satisfying h1(OX) = 0 and KX ̸= 0 but 2KX = 0. One can construct X :=
SpecOX

(OX ⊕ OX(KX)) to obtain a 2-to-1 ramified cover π : X → Y where Y ∼=
X/ι for ι a basepoint-free involution of X, often called the Enriques involution. It
can be shown that ι is anti-symplectic, so ι∗ΩY = −ΩY where ΩY =?. Since a K3
surface is simply-connected, this realizes X as the universal cover of Y , yielding
π1(Y ) ∼= Z/2Z.

Remark 18.2 (Lattices). If Y is Enriques with canonical K3 cover π : X → Y ,
note that Num(Y ) is isometric to II1,9 and the pullback π∗ : Pic(Y ) → Pic(X)
yields a sublattice isometric to II1,9(2) ≤ Pic(X) ≤ II3,19. Thus we obtain a lattice
polarized K3 surface, polarized by II1,9(2), and thus a bijection between marked
Enriques surfaces and II1,9(2)−polarized K3 surfaces.

A marked Enriques surface is a pair (Y, ϕ) where ϕ : Num(Y ) → II1,9 is an
isometry of lattices.

Remark 18.3 (Moduli). For K3 surfaces, it is well-known that there is a 20-
dimensional coarse moduli space of unpolarized surfaces X and a 19-dimensional
coarse moduli space F2d of polarized surfaces (X,L) with L2 := c1(L)

2 = 2d.
For Enriques surfaces, both the unpolarized and polarized moduli spaces are 10-
dimensional.

We review Horikawa’s construction: one can obtain a K3 surface X as a 2-to-1
cover ρ : X → P1 × P1 branched over a divisor D ∈ −2KP1×P1 of bidegree (4, 4). If
π : X → Y also covers an Enriques surface as above, it is known that the involutions
π, ρ commute.

X

Y P1 × P1

π ρ
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Defining L := ρ∗OP1×P1(1, 1), we have L2 = 2OP1×P1(1, 1)2 = 4, and so the pair
(X,L) ∈ F4 and yields what is called a hyperelliptic degree 4 K3 surface.
Generally, for polarized degree 4 K3 surfaces (X,L),

• A generic (X,L) yields ϕ|L| : X ↪→ P3, dimension of moduli = 19

• A hyperelliptic (X,L) yields ϕ|L| : X
2:1−−→ P1 × P1, dimension of moduli =

18
• A unigonal (X,L) has |L| = a section s plus an elliptic pencil |E|

Remark 18.4 (Cusps). Sterk described the Baily-Borel compactification of moduli

of Enriques surfaces with a degree 2 numerical polarization E2
bb
, which is 10-

dimensional with 5 0-cusps and 9 1-cusps. It is known that this maps to E∅
bb
,

which is dimension 10 and the map is finite, and to F4,h.e.
bb

which is dimension 18

and the map is finite-to-one onto its image. The Kulikov degenerations of E∅
bb

are

described in [?], and F4,h.e.
bb

is described in the same paper.

Question 18.5. The main question is, how do the cusps of E2
bb

map to the cusps

of E∅
bb

and F4,h.e.
bb

respectively?

E2
bb

E∅
bb

F4,h.e.
bb

Finite Finite-to-one

The answer to this question is lattice-theoretic and amounts to understanding
the following diagram:

Figure 39. A cusp correspondence
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Remark 18.6 (Main task). The main task is to describe an IAS2 with 2 involutions
π and ρ of Enriques type and degree 4 hyperelliptic type respectively. Each of these
is done individually in [?]. This amounts to finding a picture of an integral affine

structure for which both symmetries are present, for each 0-cusp of E2
bb
.

Todo: what are the IASs
for degree 4 hyperelliptic
and Enriques type indi-
vidually? 18B. Misc context.

Definition 18.7 (Elliptic pencils). An elliptic pencil |E| on a surface is a 1-
dimensional linear system whose generic element is an irreducible elliptic curve.

It is well-known that an elliptic pencil |E| on an Enriques surfaces Y is basepoint-
free, yielding an elliptic fibration ϕE : Y → P1. There are exactly two multiple
fibers, F and F ′, and one can realize |E| = |2F | = |2F ′|.

19. Mirror Symmetry

based on

Remark 19.1. Some ideas based on conference discussions and questions:

• Disambiguate the many different types of mirror symmetry to more ex-
plicitly say which type we use (SYZ, HMS, Batyrev, the one involving
superpotentials and Landau-Ginzberg models, etc)

• Can we produce specific examples of toric varieties and their mirrors? E.g.
what is the mirror of P2?

•

Remark 19.2. For X a family of K3 surfaces polarized by a lattice L. Then
we expect a mirror family X̌ polarized by Ľ such that rankL + rank Ľ = 20 and
L⊥ = Ľ⊕ nUTodo: figure out if this is

U(n) or U⊕n
.

20. Appendix

L AL ♯Φ2(L) W (L)

An, n ≥ 1 Cn+1 n2 + n Sn+1

Dn, n ≥ 4

{
C2

2 n even

C4 n odd
2(n2 − n) Cn−1

2 ⋊ Sn

E6 C3 72
E7 C2 126
E8 1 240

Table 8. Invariants of ADE lattices

20A. Lattices.
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20B. Coxeter-Vinberg diagrams.

Remark 20.1 (Diagram conventions). Diagram conventions are shown in Table 1.

Description Diagram Notation mij ∠(Hi, Hj) wij

Labeled simple edge
mijH1 H2

Hi ⋔ Hj mij π/mij cos
(

π
mij

)
No Edge

H1 H2

Hi ⊥ Hj 2 π/2 0

Simple Edge
H1 H2

Hi ⋔ Hj 3 π/3 1
2

Double Edge
H1 H2

Hi ⋔ Hj 4 π/4
√
2
2

Triple Edge
H1 H2

Hi ⋔ Hj 5 π/5 1+
√
5

4

Thick/bold edge
H1 H2

Hi ∥ Hj ∞ 0 1

Dotted Edge
wijH1 H2

Hi Hj 0 ∞ cosh(ρ(Hi, Hj))

Simple vertex h2i = −1 1
Black vertex h2i = −2 2
Double-circled vertex h2i = −4 4

Table 9. A summary of conventions for Coxeter-Vinberg dia-
grams

Cusp Type Type II, J Type III, I
Boundary Strata 1-cusps/curves Ci 0-cusps/points pj
Vertex type Ci pj

Sublattice Type Isotropic lines [Ze] ∈ Griso1 (L)/Γ Isotropic planes [Ze⊕ Zf ] ∈ Griso2 (L)/Γ
Subdiagram Type Maximal parabolic Elliptic

Table 10. Cusp types

20C. Boundary cusp correspondences.

20D. Cusp diagrams. The three relevant moduli spaces:

E2
bb
, E∅

bb
, F4,h.e.

bb

20D.1. Unpolarized Enriques surfaces E∅
bb
. Cusps for E∅

bb
, unpolarized Enriques

surfaces, are shown in Figure 3.

q1 Y12 q2 Y2

E∅
bb

Figure 40. Cusp diagram for O(N)\ΩN
bb

(unpolarized Enriques
surfaces).
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20D.2. Degree 2 polarized Enriques surfaces E2
bb
. Cusps for E2

bb
, unpolarized En-

riques surfaces, are shown in Figure 4.

p1

X12

X13

X14

X15

p2

p3

p4

p5

X3

X34

X45

X5

X245

M

Figure 41. Cusp diagram for Γ\ΩN
bb

(degree 2 polarized En-
riques surfaces).

20D.3. Numerically polarized Enriques surfaces F4,h.e.
bb
. Cusps for E2

bb
, numeri-

cally polarized Enriques surfaces, are shown in Figure 2.
Type

T = (20, 2, 0)2 = U ⊕ U(2)⊕ E8
⊕2

= U⊕2

⊕D16.

r1 : U ⊕ E8
⊕2 Z1

12 : E8
⊕2

Z2
12 : D16∗

r2 : U(2)⊕ E8
⊕2

Z1
2 : D2

8∗

Z2
2 : E7

⊕2 ⊕A1
⊕2∗

Z3
2 : E8 ⊕D8

Z4
2 : D12 ⊕D4∗

Z5
2 : D16

Z6
2 : A15 ⊕A1(2)∗

F4,h.e.
bb

Figure 42. Cusp diagram for O+(Λ)\ΩN
bb

(numerically polar-
ized Enriques surfaces).

20D.4. Degree 2 K3 surfaces F2. Cusps for F2, degree 2 K3 surfaces, are shown in
??.
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Figure 43. Cusp diagram for F2
bb
, degree 2 K3 surfaces

20E. Cusp correspondence diagrams. The correspondence we want to find:

E2
bb

E∅
bb

F4,h.e.
bb

Finite Finite-to-one

20E.1. Polarized to unpolarized correspondence. Polarized {Xi, pi} to unpolarized
{Yi, qi} is shown in ??.
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p1

X12

X13

X14

X15

p2

p3

p4

p5

X3

X34

X45

X5

X245

q1 q2 Y2Y12

E2
bb

E∅
bb

Figure 44. Goal 1

20E.2. Polarized to hyperelliptic. Polarized {Xi, pi} to hyperelliptic {Zi, ri} is shown
in ??.
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p1

X12

X13

X14

X15

p2

p3

p4

p5

X3

X34

X45

X5

X245
E2

bb

F4,h.e.
bb

r1 r2

Z1
12

Z2
12

Z1
2

Z2
2

Z3
2

Z4
2

Z5
2

Z6
2

Figure 45. Goal 2

20F. Classical and affine Dynkin diagrams. ?? is a table of (labeled) classical
and affine Dynkin diagrams.
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Classical Type Affine Type

An
1 2 n− 1 n

Ãn

0

1 2 n− 1 n

Bn
1 2 n− 1 n

B̃n

0

1

2 3 n− 2 n− 1 n

Cn
1 2 n− 1 n

C̃n
0 1 2 n− 2 n− 1 n

Dn
1 2

n− 1

n

D̃n

0

1

2 3

n− 1

n

E6
1

2

3 4 5 6
Ẽ6

1

2

3 4 5 6

0

E7
1

2

3 4 5 6 7
Ẽ7

1

2

3 4 5 6 70

E8
1

2

3 4 5 6 7 8
Ẽ8

1

2

3 4 5 6 7 8 0

F4
1 2 3 4

F̃4
1 2 3 40

G2
1 2

G̃2
1 20

Table 11. Classical and Affine Dynkin Diagrams
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Remark 20.2. The genera and number of cusps of the compactified modular curves
X1(e) for various e from Scattone:

e = 1 3 5 7 9 11 13 15 q > 3 prime
genus = 0 0 0 0 0 1 2 1 1

24 (q − 5)(q − 7)
# cusps = 1 2 4 6 8 10 12 16 q − 1

Remark 20.3. Scattone conventions for cusp incidence diagrams:

• One vertex for each Γ−equivalence class of primitive isotropic sublattices
of L.

• An edge

[Zv] [E]

if every sublattice L′ ≤ L with L ∼= Zv mod Γ is contained in some sub-
lattice E′ in the equivalence class [E]. We think of this as a weighted edge
of weight 1 (and thus don’t label the weight).

• A weighted edge

[Zv] [E]µ

of weight µ ≥ 2 where µ is the number of NΓ(E)−inequivalent sublattices
L′ ≤ L contained in E where L′ ∼= Zv mod Γ.

This describes ∂Γ\D, where an edge of the form

a b

represents a point p corresponding to a and a curve C corresponding to b with
p ∈ C, where C has a self-intersection at p if µ ≥ 2. Note that

NΓ(E) := im
(
StabΓ(E)

rΓ−→ GL(E)
)
⊆ GL(E).

Define In(L) for the isotropic rank n sublattice of L; then [E] ∈ Γ\I2(L) are BB
boundary curves CE realized as quotients of disks in P(EC) by NΓ(E). In many
reasonable examples, NΓ(E) ≤ SL2(Z) is a congruence subgroup, i.e. it contains a
principal congruence subgroup of the form Γ(n) for some n.

Remark 20.4. Scattone’s treatment of F2k for k = 1, 2: we first consider Γk\Ωk
bb
.

These are isomorphic to O−(Lk)\Ωk
bb

when k = 1, 2 by Corollary 5.6.10. By

results 4.0.1 and 5.0.2, ∂O−(Lk)\Ωk
bb

has one point p(0) and h(k) modular curves

isomorphic to a fixed curve C, where h(k) is the genus of ⟨−2k⟩ ⊕ E8
⊕2

. Scattone
computes h(1) = 4 and h(2) = 9 and continues to describe how to compute h(k)
in general for F2k. This seems to be shown in Figure 5.5.7 in the case N = 1, in
which case C ∼= SL2(Z)\H. For k = 1, in section 6.2.1 he picks another lattice in

the same genus, A1 ⊕E8
⊕2

and shows h(1) = 4 by producing 4 types distinguished
by their root systems:

Ã1 ⊕ Ẽ8
⊕2

, Ã1 ⊕ D̃16, Ẽ7 ⊕ D̃10, Ã17.

Why this bijection works: let G(1) be the iso classes of lattices of genus 1. Note

L1 := ⟨−2⟩ ⊕H⊕2 ⊕ E8
⊕2

is the polarized K3 lattice for F2; each isotropic plane
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E ≤ L1 determines a class E⊥/E ∈ G(1) and a boundary curve CE ∈ Γ1\Ω1
bb
. We

then set up a bijection between G(1) and boundary curves: send E⊥/E ∈ G(1) to
E mod Γ1, then send E mod Γ1 to CE . This geometrically corresponds to having
4 distinct possibilities for geometric configurations of the polarizing class.

Alternatively, one can compute h(2) = 4 using Vinberg’s method. Letting L :=

⟨−2⟩⊕H⊕E8
⊕2

, so sgnL = (1, 18), we have a hyperbolic lattice and a corresponding
Coxeter polytope P with Coxeter diagramD. We get 24 vertices inD corresponding
to 24 hyperplanes bounding P , which is diagram (19, 1, 1) in the new notation:

1

2

3

4

5

6

7

8

9

10

11

12

131415161718

19

20

21

22 23

24

Figure 46. Coxeter diagram for (19, 1, 1).

One then finds the 4 root systems by finding all parabolic subdiagrams:
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1

2

3

4

5

6

7

8

9

10

11

12

131415161718

19

20

21

22 23

24

(a) Ã1 ⊕ Ẽ8
⊕2

1

2

3

4

5

6

7

8

9

10

11

12

131415161718

19

20

21

22 23

24

(b) Ã1 ⊕ D̃16

1

2

3

4

5

6

7

8

9

10

11

12

131415161718

19

20

21

22 23

24

(c) Ẽ7 ⊕ D̃10

1

2

3

4

5

6

7

8

9

10

11

12

131415161718

19

20

21

22 23

24

(d) Ã17

Figure 47. 4 parabolic subdiagrams of (19, 1, 1) corresponding to
4 lattices in the genus G(1).

Remark 20.5. We can now carry out the same analysis for F4 where k = 2. In
this case N ∼= D7. The only lattices L ∈?24 that contain D7 are

Ẽ8
⊕3

, Ẽ8 ⊕ D̃16, Ẽ7
⊕2

⊕ D̃10, D̃12
⊕2

, D̃8
⊕3

, D̃9 ⊕ Ã15, Ẽ6 ⊕ D̃7 ⊕ Ã11

which have orthogonal complements

⟨−4⟩⊕Ẽ8
⊕2

, ⟨−4⟩⊕D̃16, Ẽ8⊕D̃9, Ẽ7
⊕2

⊕Ã3, D̃17, D̃12⊕D̃5, ⟨−4⟩⊕D̃8
⊕2

, Ã1
⊕2

⊕Ã15, Ẽ6⊕Ã11

so there are 9 distinct possibilities determined by the geometry. One could recover

these root systems by applying Vinberg’s algorithm to L := ⟨−4⟩⊕U ⊕E8
⊕2

. One
obtains the following Coxeter diagram as in [?, Figure 6.3.1]: Note: this is slightly

different to (18, 2, 0) in
AET19, very mysterious!
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Figure 48. Scattone’s diagram

20G. Singularities.

Definition 20.6 (In singularities).todo

Remark 20.7. We record the classification of singular fibres of elliptic fibrations
due to Kodaira. The type is listed along with A the local monodromy matrix and
the Cartan intersection matrix of irreducible components in such a fiber.

• I0, A =

[
1 0
0 1

]
, type Ã0.

• In, A =

[
1 n
0 1

]
, type Ãn−1.

• I∗0 , A =

[
−1 0
0 −1

]
, type D̃4.

• I∗n, A =

[
−1 −n
0 −1

]
, type D̃4+n.

• II, A =

[
1 1
−1 0

]
, type Ã0.

• II∗, A =

[
0 −1
1 1

]
, type Ẽ8.

• III, A =

[
0 1
−1 0

]
, type Ã1.

• III∗, A =

[
0 −1
1 0

]
, type Ẽ7

• IV , A =

[
0 1
−1 −1

]
, type Ã2.

• IV ∗, A =

[
−1 −1
1 0

]
, type Ẽ6.

Of particular importance to us:

I1 :

[
1 1
0 1

]
, Ã0 In :

[
1 n
0 1

]
, Ãn−1.
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Note I0 is a smooth elliptic curve, I1 is a nodal curve (ordinary double point), I2
is two curves intersecting at two points, and In is a cycle of curves.

21. Unsorted

21A. The main conversion processes/bijections we use.

Remark 21.1. Several conversion processes to spell out:

• d−semistable Type III X0 ⇝ triangulated IAS2. See [?, §6.12].
• Singular triangulated IAS2 with

∑
iQ(pi) = 24 ⇝ Type III X0. See [?,

§6.12].
• Certain Lagrangian torus fibrations (X,ω) → B ⇝ IAS2 (structure on B).
See [?, §6D].

• B = IAS2 with
∑
Q(pi) = 24 and only In singularities ⇝ (X,ω) → B with

X a K3. See [?, §6D].
• Type III KPP model ⇌ IAS2: unknown.
• Vinberg diagram at 0-cusp ⇌ Type III KPP model: unknown.

21B. Nikulin involutions.

Remark 21.2. A Nikulin involution on a K3 surface is a symplectic involution,
i.e., one leaving non-zero holomorphic two forms invariant. See Morrison, D.: On
K3 surfaces with large Picard number. Every Nikulin involution has eight fixed
points leading to a quotient surface with eight nodes; the blow-up of these nodes
yields a K3 surface.

21C. Importing work from AET.

Remark 21.3. Making explicit [?, Thm. 7.4] in our case: the general setup is

• Ŝ a lattice appearing as the target of a mirror move S → Ŝ := T̄ , which is
of the form

Ŝ = (r, a, δ) = (10 + k − (g − 1), 10− k − (g − 1), δ)

where
• X̂ → ∆ is a 1-parameter degeneration with central fiber X0 = Ŷ

∐
D Ŷ, two

copies of a surface Ŷ glued along a divisor D.

• X̂t is a surface with Ŝ = (Pic X̂t)+,
• L ∈ Ŝ ⊗Z Q an ample Q−line bundle on X̂t,
• The involution-equivariant Lagrangian torus fibration µ : (X̂t, ω) → B with
ω = [L] and base given by B = P

∐
∂P P

op, a pushout of Symington poly-
topes glued along their boundaries by the identity,

• For the Halphen case:
–

(r, a, δ) = (10, 10, 1), (g, k, δ) = (1, 0, 1)

yielding the following Coxeter diagram for Ŝ:
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Figure 49. Coxeter diagram Ẽ9′ for the Halphen case Ŝ =
(10, 10, 1).

– Ŷt = X̂t/ι̂
– B is an IAS2 with 12 I1 singularities in each hemisphere with locations

determined by length parameters ℓi for the Symington polytope P of

Ŷ,

– P is a Symington polytope for Ŷt:
– The degeneration X is given by colliding F0 a smooth elliptic fiber and
F a special fiber of X double covering a fiber in Y ,

– Ŷ is an elliptic fibration as described in [?, Lem. 7.1].
– The surfaces Vj corresponding to equatorial points in B are all toric

and of type E1 as described in [?, Lem. 8.2] corresponding to ”odd
equatorial behavior”: if (Vj , Dj) is one such torus pair, there is a
generically P1 fibration π : V → P1 with sections s1, s2 where the
fixed locus V ιj is a fiber of π plus two points, one on each section si.

• For the Enriques case:
–

(r, a, δ) = (10, 10, 0), (g, k, δ) = (1, 0, 0)

yielding the following Coxeter diagram for Ŝ:

Figure 50. Coxeter diagram E10 for the Enriques case Ŝ =
(10, 10, 0).

– The E10 Coxeter-Dynkin diagram is associated with the root lattice
Q(E10) = II1,9 and has the following Cartan matrix which defines an
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infinite-dimensional Kac-Moody algebra of hyperbolic type:

2 −1 0 0 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0 0 0
0 −1 2 −1 0 0 0 0 0 0
0 0 −1 2 −1 0 0 0 0 0
0 0 0 −1 2 −1 0 0 0 0
0 0 0 0 −1 2 −1 0 0 0
0 0 0 0 0 −1 2 −1 0 −1
0 0 0 0 0 0 −1 2 −1 0
0 0 0 0 0 0 0 −1 2 0
0 0 0 0 0 0 −1 0 0 2


.

– The degeneration X is given by colliding F and F0, the two double
fibers of the elliptic fibration, as described in [?, Lem. 7.1].

– X̂0 = Ŷ
∐
D Ŷ where Ŷ is the surface from the Halphen case above,

but the involution on X0 is basepoint-free.
– P is the Symington polytope from the Halphen case above,
– B = P

∐
τ P

op is two copies of P from the Halphen case, glued along
a half-twist τ of the boundaries.

– B/ι ∼= RP2

21D. Describing surfaces in degenerations using Coxeter diagrams. Inter-
preting this geometrically: consider the cycle of 2k̄ white vertices cycling between
plain and double-circled:

• See [?]
• Each edge on the outer cycle corresponds to P2

• Single circle vertices (with odd i) corresponds to a line in P2

• Double-circled vertices (with even i) correspond to conics on the P2

• Explicit example worked out in [?, §5].
• It seems like that from the Coxeter diagram, you draw the fan of a toric
surface, you compute the charge, and then, if this is not 24, you fix it by
blowing up some non-torus fixed points along the toric boundary.
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