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1. I: VARIETIES

Remark 1.0.1. Some useful basic properties:

e Properties of V:
= NierV(ai) =V (Xies ai)-
O Eg V(x)nV(y) =V({{z)+ (y) = V(z,y) = {0}, the origin.
— UignV(ai) =V (ngn ai>.
O Eg V() UV(y) =V({z)(y)) = V(xy), the union of coordinate axes.
~ V(@) = UyeaD()
— V() CV(ag) <= /a1 2 /aa.
e Properties of I:
— I(V(a)) = vaand V(I(Y)) = clan(Y). The containment correspondence is contravari-
ant in both directions.
- I(U;Y;) = Ny I(Y).
e If F is a sheaf taking values in subsets of a giant ambient set, then F(UU;) = NF(U;). For
A"/C, take C(x1,- -+ ,x,), the field of rational functions, to be the ambient set.

e Distinguished open D(f) = {p eX ‘ f(p) # O}:
— Ox(D(f)) = AX) 3] = {4 | 9 € A(X),k > 0}, and taking f = 1 shows Ox(X) =

A(X), i.e. global regular functions are polynomial.
— Generally D(fg) = D(f) N D(g)
— For affines:
— For C",

1.1. I.1: Affine Varieties .

Remark 1.1.1. Summary:
° A7k = {[al, cee ] ’ a; € kz}, and elements f € A = k[xy,--- ,x,] are functions on it.

o Z(f) = {p e A" ’ flp) = O}, and for any T' C A we set Z(T) := Nyer Z(f).

— Note that Z(T) = Z((T),) = Z({f1, -, fr)) for some generators f;, using that A
is a Noetherian ring. So every Z(T') is the set of common zeros of finitely many
polynomials, i.e. the intersection of finitely many hypersurfaces.

Algebraic: Y C A" is algebraic iff Y = Z(T') for some T C A.

The Zariski topology is generated by open sets of the form Z(7T)¢.

A is a non-Hausdorff space with the cofinite topology.

Irreducible: Y is reducible iff Y = Y7 UY5 with Y7, Ys proper subsets of Y which are closed
inY.

— Nonempty open subsets of irreducible spaces are both irreducible and dense.

— If Y C X is irreducible then clx(Y) C X is again irreducible.

e Affine (algebraic) varieties: irreducible closed subsets of A™.
e Quasi-affine varieties: open subsets of affine varieties.

e The ideal of a subset: I(Y) := {f €A ‘ flp)=0Vpe Y}.
e Nullstellensatz: if k = k,a € Id(k[zy1, -+ ,z,]), and f € k[z1, -, 3, with f(p) = 0

for all p € V(a), then f" € a for some r > 0, so f € y/a. Thus there is a contravariant
correspondence between radical ideals of k[z1,--- ,z,] and algebraic sets in A7k.

e Irreducibility criterion: Y is irreducible iff I(Y) € Speck[z1, -+, x,] (i.e. it is prime).

e Affine curves: if f € k[z,y]'™ then (f) € Speck[z,y] (since this is a UFD) so Z(f) is
irreducible and defines an affine curve of degree d = deg(f).

e Affine surfaces: Z(f) for f € k[xy, - ,x,)"™ defines a surface.
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e Coordinate rings: A(Y) == k[z1, -+ ,x,]/I1(Y).

e Noetherian spaces: X € Top is Noetherian iff the DCC on closed subsets holds.

e Unique decomposition into irreducible components: if X € Top is Noetherian then
every closed nonempty ¥ C X is of the form Y = U]_;Y; with Y; a uniquely determined
closed irreducible with Y; Z Y} for @ # j, the irreducible components of Y.

e Dimension: for X € Top, the dimension is dim X = sup {n ’ dZyCcZyC - C Zn} with

Z; distinct irreducible closed subsets of X. Note that the dimension is the number of “links”
here, not the number of subsets in the chain.

e Height: for p € Spec A define ht(p) := sup {n ’ dpoCp1 C--- Cpp = p} with p; € Spec A
distinct prime ideals.

¢ Krull dimension: define krulldim A := sup,cgpec 4 ht(p), the supremum of heights of prime
ideals.

Exercise 1.1.2 (The Zariski topology). Show that the class of algebraic sets form the closed sets
of a topology, i.e. they are closed under finite unions, arbitrary intersections, etc.

Exercise 1.1.3 (The affine line).

e Show that A}k has the cofinite topology when k = k: the closed (algebraic) sets are finite

sets and the whole space, so the opens are empty or complements of finite sets.
Show that this topology is not Hausdorff.
Show that A! is irreducible without using the Nullstellensatz.
Show that A" is irreducible.
Show that maximal ideals m € mSpec k[x1, - - - , ;] correspond to minimal irreducible closed
subsets Y C A", which must be points.
e Show that mSpeck[zy, -+ ,x,] = {(a:l — a1, Ty — Ap) ‘ ay, - ,ap € k:} for k =
bark, and that this fails for k #
bark.
e Show that A™ is Noetherian.
e Show dim A! = 1.
e Show dim A™ = n.

Exercise 1.1.4 (Commutative algebra).

e Show that if Y is affine then A(Y) is an integral domain and in Alg®.
e Show that every B € ,Alg™ N Domain is of the form B = A(Y) for some Y € AffVar .
e Show that if Y is an affine algebraic set then dimY = krulldim A(Y).

Theorem 1.1.5 (Results from commutative algebra).

e If k € Field, B € ,,Alg™ N Domain,
— krulldim B = [K(B) : Bl is the transcendence degree of the quotient field of B over
B.
— If p € Spec B then ht p + krulldim(B/p) = krulldim B.
o Krull’s Hauptidealsatz:
— If A € CRingN°h and f € A\ AX is not a zero divisor, then every minimal p € Spec A
with p > f has height 1.
o If A € CRing™°®" N Domain, then A is a UFD iff every p € Spec(A) with ht(p) = 1 is
principal.

IHint: k[z] is a PID and factor any f(x) into linear factors using that k =
bark to write Z(a) = Z(f) = {a1,--- , ax} for some k.
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Exercise 1.1.6 (1.10). Show that if Y is quasi-affine then

Exercise 1.1.7 (1.13). Show that if Y C A" then codima~(Y) =1 <= Y = Z(f) for a single
nonconstant f € k[zy, -, x,]™.

Exercise 1.1.8 (7). Show that if p € Spec(A) and ht(p) = 2 then p can not necessarily be generated
by two elements.

1.2. 1.2: Projective Varieties *.
Remark 1.2.1.

e Projective space: {a = [ag, - ,an) ‘ a; € k}/ ~ where a ~ Aa for all A € k\ {0},

i.e. lines in A™*! passing through 0.

e Graded rings: a ring S with a decomposition S = @©4>0S5¢ with each S; € AbGrp and
SiSe C Sgte; elements of S; are homogeneous of degree d and any element in S is a
finite sum of homogeneous elements of various degrees.

e Homogeneous polynomials: f is homogeneous of degree d if f(Azg, -, Axp) = A f(zo, -+, xp).

e Homogeneous ideals: a C S is homogeneous when it’s of the form a = @ -q(a N Sy).
— a is homogeneous iff generated by homogeneous elements. -
— The class of homogeneous ideals is closed under sums, products, intersections, and
radicals.
— Primality of homogeneous ideals can be tested on homogeneous elements, i.e. it STS
fg€a = f,g € afor f, g homogeneous.
o klxy, - ,xn] = Bg>o k[71, - , Tn]a where the degree d part is generated by monomials of
total weight d. B

— E.g klz1, -, zn)1 = (x1,22, -+ yx0), k[z1, -, ne = (2}, 2122, 2123, - -+, 23, 2973, 214, - - -

— Useful fact: by stars and bars, ranky k[x1, -, 2p]q = (d+"). E.g. for (d,n) = (3,2),

n

3

Ty 4 *kok [ |
;I’%;I!g 3 kok | k|
;]3%;]33 ko | |
;rl;rg ok | x|

T oXg ¢ * | * |k
;rl;rg k|| Hx

.rg — | Heokok|
9:%9:3 | kx|
;rz;rg |k | kx

,;;:g | | HoHk

e Arbitrary polynomials f € k[xg,- - ,x,] do not define functions on P" because of non-

uniqueness of coordinates due to scaling, but homogeneous polynomials f being zero or not
is well-defined and there is a function So Z(f) = {p epn ’ flp) = O} makes sense.

e Projective algebraic varieties: Y is projective iff it is an irreducible algebraic set in P™.
Open subsets of P™ are quasi-projective varieties.

¢ Homogeneous ideals of varieties:

¢ Homogeneous coordinate rings:

e Z(f) for f a linear homogeneous polynomial defines a hyperplane.
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Exercise 1.2.2 (Cor. 2.3). Show P™ admits an open covering by copies of A™ by explicitly
constructing open sets U; and well-defined homeomorphisms ¢; : U; — A™.

1.3. 1.3: Morphisms.

1.4. 1.4: Rational Maps.

1.5. 1.5: Nonsingular Varieties.
1.6. I.6: Nonsingular Curves.

1.7. 1.7: Intersections in Projective Space.
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2. II: SCHEMES

Note: there are many, many important notions tucked away in the exercises in this
section.

2.1. I1.1: Sheaves *.

Remark 2.1.1.

Presheaves F' of abelian groups: contravariant functors F' € Fun(Open(X), AbGrp).

— Assigns every open U C X some F(U) € AbGrp

— For vy : V C U, restriction morphisms ¢py : F(U) — F(V).

— F(0)=0,so0 F(0*) = ,.

- (,OUU = ldF(U)

- WCVCU = vuw = pvw ° puv.
Sections: elements s € F(U) are sections of F' over U. Also notation I'(U; F') and
HO(U; F), and the restrictions are written s|,, := oy (s) for s € F(U).
Sheaves: presheaves I’ which are completely determined by local data. Additional require-
ments on open covers YV = U:

— If s € F(U) with sy, =0 for all i then s =0 € F(U).

— Given s; € F(V;) where 3i|v,~j = SJ"VZ-J- € F(Vi;) then 3s € F(U) such that s|y, = s; for

each 7, which is unique by the previous condition.

e Constant sheaf: for A € AbGrp, define the constant sheaf
e Stalks: F), := colimy,_, F(U) along the system of restriction maps.

— These are represented by pairs (U, s) with U 5 p an open neighborhood and s € F(U),
modulo (U, s) ~ (V,t) when 3W C U NV with s|, = t|,.

e Germs: a germ of a section of I at p is an elements of the stalk F),.
e Morphisms of presheaves: natural transformations € Morg,, (F, G), i.e. for every U, V|

components 1y, ny fitting into a diagram
Link to Diagram

A morphism of sheaves is exactly a morphism of the underlying presheaves.

Morphisms of sheaves 1 : F' — G induce morphisms of rings on the stalks 1, : Fj, — G,,.
Morphisms of sheaves are isomorphisms iff isomorphisms on all stalks, see exercise below.
Kernels, cokernels, images: for ¢ : ' — G, sheafify the assignments to kernels/cokernels/images
on open sets.

Sheafification: for any F' € %rlg(X ), there is a unique F* € Sh(X) and a morphism

f : F — FT of presheaves such that any sheaf presheaf morphism F — G factors as
F—Ft =G
— The construction: F*(U) = Top(U,[,erFp) are all functions s into the union of
stalks, subject to s(p) € F), for all p € U and for each p € U, there is a neighborhood
VDU >3 pandte F(V) such that for all ¢ € V, the germ ¢, is equal to s(q).
— Note that the stalks are the same: (F'"), = F,, and if F is already a sheaf then 6 is
an isomorphism.
Subsheaves: F’ < F iff F/(U) < F(U) is a subgroup for every U and the restrictions on
F' are induced by restrictions from F.
— If F" < F then F, < F,.
— Injectivity: ¢ : F — G is injective iff the sheaf kernel ker ¢ = 0 as a subsheaf of F.
& ¢ is injective iff injective on all sections.
— im p < G is a subsheaf.
— Surjectivity: ¢ : ' — G is surjective iff im ¢ = G as a subsheaf.


https://q.uiver.app/?q=WzAsOCxbMCwxLCJVIl0sWzAsMywiViJdLFsyLDEsIkYoVSkiXSxbNCwxLCJHKFUpIl0sWzIsMywiRihWKSJdLFs0LDMsIkcoVikiXSxbMCwwLCJcXE9wZW4oWCkiXSxbMywwLCJcXEFiXFxHcnAiXSxbNCw1LCJcXGV0YV9WIl0sWzIsMywiXFxldGFfVSJdLFsyLDQsIlxcbWF0aHJte1Jlc31fRihVLCBWKSJdLFszLDUsIlxcbWF0aHJte1Jlc31fRyhVLCBWKSJdLFsxLDAsIiIsMSx7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Imhvb2siLCJzaWRlIjoidG9wIn19fV0sWzEyLDEwLCJGLCBHIiwwLHsic2hvcnRlbiI6eyJzb3VyY2UiOjIwLCJ0YXJnZXQiOjIwfX1dXQ==
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e Exactness: a sequence of sheaves (Fj,p; : F; — Fiy1) is exact iff kerp; = im cpi_l as

subsheaves of F;.
— ¢ F — G is injective iff 0 = F %, G is exact.
— ¢ F — G is surjective iff ¥ % G — 0 is exact.
— Sequences of sheaves are exact iff exact on stalks.
e Quotient sheaves: F/F’ is the sheafification of U — F(U)/F'(U).

e Cokernels: for ¢ : ' — G, coker ¢ is sheafification of U +— coker(F(U) LAGIN (0)).

e Direct images: for f € Top(X,Y), the sheaf defined on sections by (f. F)(V) :== F(f~1(V))
for any V C Y. Yields a functor f, : Sh(X) — Sh(Y).

e Inverse images: denoted f~'G, the sheafification of U colimy, 5 ¢y G(V), ie. take
the limit from above of all open sets V' of Y containing the image f (f]) Yields a functor
F71:Sh(Y) = Sh(X).

e Restriction of a sheaf: for FF € Sh(X) and Z C X with ¢ : Z < X the inclusion,
define i ' F € Sh(Z) to be the restriction. Also denoted F|,. This has the same stalks:
(Flz)p = Fp.

e For any U C X, the global sections functor I'(U; —) : Sh(X) — AbGrp is left-exact (proved
in exercises).

e Limits of sheaves: for {F;} a direct system of sheaves, colim,; F; has underlying presser
U + colim; F;(U). If X is Noetherian, then this is already a sheaf, and commutes with
sections: I'(X; colim, F;) = colim, I'(X; F;).

— Inverse limits exist and are defined similarly.

e The espace étalé: define Et(F) = [I,exFp and a projection 7 : Et(F) — X by sending
s € F, to p. For each U C X and s € F(U), there is a local section 5 : U — Et(F) where
D > sp, its germ at p; this satisfies 705 = idy. Give Et(F ) the strongest topology such that
the 5 are all continuous. Then F+(U) := Top(U, Et(F)) is the set of continuous sections of
Et(F) over U.

e Support: for s € F(U), supp(s) = {p eU ‘ Sp # 0} where s, is the germ of s in F},. This
is closed.

— This extends to supp(F’) = {p eX ) F, # O}, which need not be closed.

e Sheaf hom: U +— Hom(F|;, G|;) forms a sheaf of local morphisms and is denoted
Hom(F, Q).

e Flasque sheaves: a sheaf is flasque it V. — U = F(U) » F(V).

e Skyscraper sheaves: for A € AbGrp and p € X, define i,(A) by U — A if p € U and 0
otherwise. Also denoted ¢, (A) where ¢ : clx({p}) — X is the inclusion.

— The stalks are (i,(A))q = A if ¢ € clx({p}) and 0 otherwise.

e Extension by zero: if ¢ : Z < X is the inclusion of a closed set and U := X \ Z with
j: U — X, then for F' € Sh(Z), the sheaf ¢, F' € Sh(X) is the extension of F' by zero outside
of Z. The stalks (L*F)p are I, is p € Z and 0 otherwise.

— For the open U, extension by zero is jiF' which has presheaf V — F(V) if V. C U and
0 otherwise. The stalks (jiF'), are F}, if p € U and 0 otherwise.

e Sheaf of ideals: for Y C X closed and U C X open, Zy (U) has presheaf U + the ideal
in Ox(U) of regular functions vanishing on all of Y N U. This is a subsheaf of Ox.

e Gluing sheaves: given Y = X and sheaves F; € Sh(U;), one can glue to a unique F €
Sh(X) if one is given morphisms ¢;; Fi’Uij = Fj‘Uij where ¢; = id and g, = @ji, © ;j on
Uijk'

Warning 2.1.2. Some common mistakes:

e Kernel presheaves are already sheaves, but not cokernels or images. See exercise below.
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e p: ' — @ is injective iff injective on sections, but this is not true for surjectivity.
e The sheaves f~'G and f*G are different! See IIL5 for the latter.
e Global sections need not be right-exact.

Exercise 2.1.3 (Regular functions on varieties form a sheaf). For X € Var,, define the ring
Ox (U) of literal regular functions f; : U — k where restriction morphisms are induced by literal
restrictions of functions. Show that Oy is a sheaf of rings on X.

Hint: Locally regular implies regular, and regular + locally zero implies zero.

Exercise 2.1.4 (7). Show that for every connected open subset U C X, the constant sheaf satisfies
A(U) = A, and if U is open with open connected component so the A(U) = AxFTY

Exercise 2.1.5 (7). Show that if X € Var/, and Ox is its sheaf of regular functions, then the stalk
Ox p is the local ring of p on X as defined in Ch. L.

Exercise 2.1.6 (Prop 1.1). Let ¢ : FF — G be a morphism in Sh(X) and show that ¢ is an
isomorphism iff ¢, is an isomorphism on stalks for all p € X. Show that this is false for presheaves.

Exercise 2.1.7 (7). Show that for ¢ € Morsy(x)(F, G), ker ¢ is a sheaf, but coker ¢, im ¢ are not
in general.

Exercise 2.1.8 (7). Show that if ¢ : F' — G is surjective then the maps on sections ¢(U) : F(U) —
G(U) need not all be surjective.

2.2. II.2: Schemes.

2.3. I1.3: First Properties of Schemes.

2.4. 11.4: Separated and Proper Morphisms.
2.5. I1.5: Sheaves of Modules.

2.6. II.6: Divisors.

2.7. I1.7: Projective Morphisms.

2.8. I1.8: Differentials.

2.9. I1.9: Formal Schemes.
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3. III: COHOMOLOGY
3.1. ITI1.1: Derived Functors.
3.2. I11.2: Cohomology of Sheaves.
3.3. II1.3: Cohomology of a Noetherian Affine Scheme.
3.4. I11.4: Cech Cohomology.
3.5. IT1.5: The Cohomology of Projective Space.
3.6. II1.6: Ext Groups and Sheaves.
3.7. I11.7: Serre Duality.
3.8. ITI1.8: Higher Direct Images of Sheaves.
3.9. I11.9: Flat Morphisms.
3.10. II1.10: Smooth Morphisms.
3.11. I11.11: The Theorem on Formal Functions.
3.12. I11.12: The Semicontinuity Theorem.
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4. IV: CURVES

Remark 4.0.1. Summary of major results:
e p,(X):=1-— Px(0)
o Dy(X) = WO(wx) = RO(L(Kx))
e For curves, p,(X) = py(X) = h'(Ox) by setting D := K¢ in RR.
- degKC = 2g — 2.
e Dy ~ Dy < Dy— Dy = (f) for f € K(X) rational, |[D| = {D" ~ D}, and this bijects
with points of HO(L(%W.
— Thus dim |[D| = h°(L(D)) — 1 == 4(D) — 1.
e X smooth = Cl(X) = Pic(X) via D — L(D).
e h9(L(D)) >0 = deg(D) >0, and if deg D = 0 then D ~ 0 and £(D) = Oy.
e RR:
— How to remember: note g = h'(Ox) = h'(L£(0)), and H°(Ox) = k so h°(Ox) = 1,
thus
— For C C P",deg(C) =d and D = CN H a hyperplane section defining £(D) = Ox (1),
e A curve is rational iff isomorphic to P! iff g = 0.
e K ~ 0 on an elliptic curve since deg K =2g—2=0and degD =0 = D ~ 0.

e For X elliptic, Pic®(X) := {D € Div(X) ‘ deg D = O} and | X| = ‘PicO(X)‘ via p— L(p—
po) for any fixed py € X, inducing its group structure. (This is proved with RR.)

Remark 4.0.2. Comments from preface:

e The statement of Riemann-Roch is important; less so its proof.
e Representing curves:
— A branched covering of P1,
— More generally a branched covering of another curve,
— Nonsingular projective curves: admit embeddings into P2, maps to P? birationally
such that the image is at worst a nodal curve.
The central result regarding representing curves: Hurwitz’s theorem which compares K x, Ky
for a cover Y — X of curves.
Curves of genus 1: elliptic curves.
e Later sections: the canonical embedding of a curve.

4.1. ITV.1: Riemann-Roch.

Definition 4.1.1 (Curves). A curve over k = k is a scheme over Spec k which is
Integral

Dimension 1

Proper over k

With regular local rings

In particular, a curve is smooth, complete, and necessary projective. A point on a curve is a
closed point.

Definition 4.1.2 (Arithmetic genus). The arithmetic genus of a projective curve X is where
Px(t) is the Hilbert polynomial of X.

Definition 4.1.3 (Geometric genus). The geometric genus of a curve is where wx is the canonical
sheaf.

Exercise 4.1.4 (7). Show that if X is a curve, there is a single well-defined genus
Hint: see Ch. III Ex. 5.3, and use Serre duality for p,.

Exercise 4.1.5 (7). Show that for any g > 0 there exists a curve of genus g.



12

D. ZACK GARZA

Hint: take a divisor of type (g + 1,2) on a smooth quadric which is irreducible and
smooth with p, = g.

Definition 4.1.6 (Divisors on a curve). Reviewing divisors:
e The divisor group: Div(X) = Z [X]
e Degrees: deg(> n;D;) = > n;, and
e Linear equivalence: Dy ~ Dy <= D; — D; = Div(f) for some f € k(X) a rational

function.
D is effective if n; > 0 for all 4.

|D| = {D’ € Div(X) ‘ D ~ D} is the complete linear system of D.

e |D|2PHYX;L(D))
e Dimensions of linear systems: /(D) := dimy H°(X; £(D)) and dim |D| := ¢(D) — 1.
o Relative differentials: Qx = Qx Ik is the sheaf of relative differentials on X.

— The technical definition: Qx ¢ = A}/Y(I /Z?) where T is the sheaf of ideals defining
the locally closed subscheme im(Ax /Y) C XfpY X.
— On affine schemes: on the ring side, 2p,, € pMod equipped with a differential d : B —
QB 4, defined as (db ’ be B>B /{d(by + by) = dby + dby, d(brba) = d(by )by + brd(bs), da = 0Ya € A)

— On curves, Qx /y Ineasures the “difference” between Kx and Ky .

e Canonical sheaf: dim X = LQX/k = wy.
e Canonical divisor: Ky 2is any divisor in the linear equivalence class corresponding to

wx
D is special iff its index of speciality ¢(K — D) > 0, otherwise D is nonspecial.

Exercise 4.1.7 (7). Show that D; ~ Dy = deg(D;) = deg(D2).

Exercise 4.1.8 (7). Show that so |D| has the structure of the closed points of some projective

space.

Exercise 4.1.9 (Lemma 1.2). Show that if D € Div(X) for X a curve and ¢(D) # 0, then
deg(D) > 0.
Show that is £(D) # 0 and deg D = 0 then D ~ 0 and £(D) = Ox.

Theorem 4.1.10 (Riemann-Roch).

Exercise 4.1.11 (Ingredients for proof of RR). Show the following:

The divisor K — D corresponds to wx ® £(D)" € Pic(X).
HY(X; £(D))" = HY(X;wy ® £(D)")

If X is any projective variety,

Exercise 4.1.12 (7). Show that if X C P" is a curve with degX = dand D = XN H is a
hyperplane section, then £(D) = Ox(1) and x(£(D)) =d+ 1 — pg.

Exercise 4.1.13 (7). Show that if g(X) = ¢g then deg Kx = 2g9 — 2.

Hint: set D = K and use {(K) = py = g and ¢(0) = 1.

Remark 4.1.14. More definitions:

X is rational iff birational to P!.
X is elliptic if g = 1.

Exercise 4.1.15 (7). Show that

1.

If deg D > 2g — 2 then D is nonspecial.

2. pa(Pl) =0.

3.

A complete nonsingular curve is rational iff X = P! iff g(X) = 0.
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4. If X is elliptic then K ~ 0

Hint: for (3) apply RR to D = p — ¢ for points p # ¢, and use deg(K — D) = —2
and deg(D) =0 = D ~0 = p~q. For (4), show {(K) =py = 1.

Exercise 4.1.16 (7). If X is elliptic and p € X, then there is a bijection so Pic(X) € Grp.

Hint: show that if deg(D) = 0 then there is some = € X such that D ~ z — p and
apply RR to D + p.

4.2. TV.2: Hurwitz *.

Remark 4.2.1. Summary of results:

For curves, complete = projective.
Riemann-Hurwitz: for f: X — Y finite separable,
deg f == [K(X) : K(Y)] for finite morphisms of curves.
ep = vp(fft) where ¢ is uniformizer in Oy, and 1t Oy fp) = Oxpfor f: X =Y.
— ep > 1 = ramification.
— Unramified everywhere implies etale (since automatically flat).
- p ] ez, = wild ramification, otherwise tame.
3f* : Div(Y) — Div(X) where g +— >, , epp.
Pullback commutes with forming line bundles: where the LHS f* : Pic(Y) — Pic(X).
The fundamental SES for relative differentials: if f: X — Y is finite separable,
% for ¢ a uniformizer at f(p) and u a uniformizer at p is defined by noting QY f(p) =
(dt),Qxp = (du), and there is some g € Ox  such that f*dt = gdu; set g = % .
e For finite separable morphisms of curves f : X — Y,
— supp 2x/y = Ram(f) is the ramification locus, and 2y is torsion so Ram(f) is finite.

— length(Qxy)p, = vp ((‘%) for any p € X
— Tamely ramified == length(Q2x/y), = €, — 1, and wild ramification increases this
length. Recall that length is the largest size of chains of submodules.
e The ramification divisor:
e Kx ~f*Ky +R
e P! can’t admit an unramified cover: for n > 1, which forces g(X) =0,n=1,X = P!, f =
id.
e The Frobenius morphism on schemes is defined by taking f* : Ox — Ox to be the pth
power map; pullback yields a definition of X, the Frobenius twist of X.
— F: X, = X is finite, deg F' = p, and corresponds to K(X) — K(X)%
o If f: X — Y induces a purely inseparable extension K(X)/K(Y), then X =Y as schemes,
9(X) =g(Y), and f is a composition of Frobenii.
e Everywhere ramified extensions: f : Y, — Y, where ¢, = p for every ¢ € X. Induces
QX/Y =~ 0x.
e deg R is always even.
e Finite implies proper: finite implies separated, of finite type, closed by “going up” and
universally closed by since finiteness is preserved under base change.
e P! no nontrivial etale covers.
o If f: X — Y then g(X) > g(Y).
— Thus IP! = Y finite = ¢(Y) = 0.

Remark 4.2.2. Preface:

e Degree: for a finite morphism of curves X ER Y, set det(f) = [k(X) : k(Y)], the degree of
the extension of function fields.
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Ramification indices e,: for p € X, let ¢ = f(p) and ¢t € O, a local coordinate. Pull
back to t € O, via f* and define e, := v,(t) using the valuation v, for the DVR O,.
Ramified: e, > 1, and unramified if ¢, = 1.
Branch points any ¢ = f(p) where f is ramified.
Tame ramification: for ch(k) = p, tame if p { ep.
Wild ramification: when p | ep.
Pullback maps on divisor groups:
— This commutes with taking line bundles (exercise), so induces a well-defined map
f* : Pic(X) — Pic(Y).
e f is separable if k(X)/k(Y) is a separable field extension.

Exercise 4.2.3 (7). Misc:

e Show that if f is everywhere unramified then it is an étale morphism.
e Show that f*L(D) = L(f*D)

Exercise 4.2.4 (Prop 2.1). Show that if X I ¥ is a finite separable morphism of curves, there is
a SES

Remark 4.2.5. Definitions:
e Derivatives: for f : X — Y, let t be a parameter at @ = f(P) and u at P. Then
Qyg = <dt)OQ and Ox p = (du) e, and 3lg € Op such that f*dt = du so we write (% =g.
e Ramification divisor: R :=}pcx length(Sx,, )p[P] € Div(X)

Exercise 4.2.6 (Prop 2.2). For X i> Y a finite separable morphism of curves,

a. Qx /v is a torsion sheaf on X with support equal to the ramification locus of f. Thus f is
ramified at finitely many points.

b. The stalks (Qx /Y) p are principal Op-modules of finite length equal to v, (%)

c.

Exercise 4.2.7 (Prop 2.3). If X 1y ¥ is a finite separable morphism of curves, then where R is
the ramification divisor of f.

Theorem 4.2.8 (Hurwitz). If X fvisa finite separable morphism of curves, then and if f has
only tame ramification then deg(R) = Y pex(ep —1).

Remark 4.2.9 (proof of Hurwitz). Take degrees of the divisor equation: using tame ramification
in the last step which implies length(Qx,,.)p = (e, — 1).

Remark 4.2.10. Consider the purely inseparable case.
e Frobenius morphism: for X € Sch where Op D Z/pZ for all P, define Frob : X — X
by F(|X|) = |X| on spaces and F* : Ox — Ox is f + fP. This is a morphism since F*
induces a morphism on all local rings, which are all characteristic p.
e The k-linear Frobenius morphism: define X, to be X with the structure morphism
Fom, sok~ Ox, by pth powers and F' becomes a k-linear morphism F': X, — X.
— Why this is necessary: I’ as before is not a morphism in Sch;, and instead forms a

commuting square involving F' : Spec k — Spec k and the structure maps X = Spec k.

Exercise 4.2.11 (7). Find examples where

e X, = X € 5ch, and
e X, # X € 5ch.

Hint: consider X = Spec k[t] for k perfect.
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Exercise 4.2.12 (7). Show that if X Ly s separable then deg(R) is always even.

Skipped some stuff around Example 2.4.2, I don’t necessarily need characteristic p
things right now.

Remark 4.2.13. Definitions:
e Etale covers: X i> Y is an étale cover if f is a finite étale morphism,, i.e. f is flat and
QL =o.
/Y
e Y is a trivial cover if X = [[;.;Y a finite disjoint union of copies of Y,
e Y is simply connected if there are no nontrivial étale covers.
Exercise 4.2.14 (7).

Show that a connected regular curve is irreducible.

Show that if f is etale then X is smooth over k.

Show that if f is finite, X must be a curve.

Show that if f is étale, then f must be separable.

Show that w$t'(P!) = 0.

Hint: use Hurwitz and that when f is unramified, R = 0.

Exercise 4.2.15 (7).

e Show that the genus of a curve doesn’t change under purely inseparable extensions.
e Show that if f: X — Y is a finite morphism of curves then g(X) > g(Y).

Exercise 4.2.16 (Liiroth). Show that if L is a subfield of a purely transcendental extension k(t)/k
where k = k, then L is also purely transcendental.’

Hint: Assume [L : k], = 1, so L = k(X) for Y a curve and L C k() corresponds
to a finite morphism f : P! — Y. Conclude g(Y) =0so Y = P! and L = k(u) for
some u.

4.3. IV.3: Embeddings in Projective Space *.

Remark 4.3.1. A summary of major results:
e For D € Div(C) with g = ¢(C),
— D is ample iff deg D > 0.
— D is BPF iff deg D > 2g.
— D is very ample iff deg D > 2g + 1.
e Being very ample is equivalent to being a hyperplane section under a projective embedding.
e Divisors D € Div(P"™) are ample iff very ample iff deg D > 1.
— E.g. if E is elliptic then D is very ample if deg D > 3, and for hyperelliptic, very ample
if deg D > 5.
e If D is very ample then deg p(X) = deg D.
e Curves C' C P" for n > 4 can be projected away from a point p ¢ X to get a closed
immersion into P™ for some m < n — 1. So any curve is birational to a nodal curve in P2,
e Genus of normalizations of nodal curves: g = 3(d — 1)(d — 2) — f {nodes}.
e Any curve embeds into P3, and maps into P? with at worst nodal singularities.
Remark 4.3.2. Main result: any curve can be embedded in P3, and is birational to a nodal curve
in P2. Some recollections:
e Very ample line bundles: £ € Pic(X) is very ample if £ = Ox(1) for some immersion
of f: X — PV,

2This is true over any field k in dimension 1, over k = k in dimension 2, and false in dimension 3 by the existence
of nonrational unirational threefolds.
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e Ample: £ is ample when VF € Coh(X), the twist F ® L™ is globally generated for n > 0.
e (Very) ample divisors: D € Div(X) is (very) ample iff £(D) € Pic(X) is (very) ample.
e Linear systems: a linear system is any set S < |D| of effective divisors yielding a linear
subspace.
e Base points: P is a base point of S iff P € supp D for all D € S.
e Secant lines: the secant line of P,Q € X is the line in PV joining them.
e Tangent lines: at P € X, the unique line L C PV passing through p such that Tp(L) =
Tp(X) C Tp(PV).
e Nodes: a singularity of multiplicity 2.
— y?2 =23+ 22 is a node.
— y?2 =23 is a cusp.
— y? = 2% is a tacnode.
e Multisecant: for X C P3, a line meeting X in 3 or more distinct points.
e A secant with coplanar tangent lines is a secant through P, whose tangent lines
Lp, Lg lie in a common plane, or equivalently Lp intersects L.

Exercise 4.3.3 (11.8.20.2). Show that by Bertini’s theorem there are irreducible smooth curves of
degree d in P? for any d.

Exercise 4.3.4 (7).
Show that

e [ is ample iff L™ is very ample for b > 0.

e |D| is basepoint free iff £(D) is globally generated.

e If D is very ample, then | D] is basepoint free.

e If D is ample, nD ~ H a hyperplane section for a projective embedding for some n.

e If g(X) =0 then D is ample iff very ample iff deg D > 0.

e If D is very ample and corresponds to a closed immersion ¢ : X < P then deg p(X) =
deg D.

o If XS is elliptic, any D with deg D = 3 is very ample and dim|D| = 2, and so can be
embedded into P? as a cubic curve.

e Show that if g(X) = 1 then D is very ample iff deg D > 3.

e Show that if g(X) = 2 and deg D = 5 then D is very ample, so any genus 2 curve embeds
in P3 as a curve of degree 5.

Exercise 4.3.5 (Prop 3.1: when a linear system yields a closed immersion into PV). Let D €
Div(X) for X a curve and show
e |D| is basepoint free iff dim |D — P| = dim |D| — 1 for all points p € X.
e D is very ample iff dim |D — P — Q| = dim |D| — 2 for all points P,Q € X.
Hint: use the SES L(D — P) < L(D) — k(P) where k(P) is the skyscraper sheaf
at P.

Exercise 4.3.6 (Cor 3.2). Let D € Div(X).

If deg D > 2¢(X) then |D]| is basepoint free.
e If deg D > 2¢g(X) + 1 then D is very ample.
e D is ample iff deg D > 0

e This bounds is not sharp.

Hint: apply RR. For the bound, consider a plane curve X of degree 4 and D = X.H.

Remark 4.3.7. Idea behind embedding in P3: embed into P" and project away from a point in
the complement.

Exercise 4.3.8 (3.4, 3.5, 3.6). Let X C P¥ beacurveand O € X, let ¢ : X — P! be projection
away from O. Then ¢ is a closed immersion iff
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e O is not on any secant line of X, and
e O is not on any tangent line of X.

Show that if N > 4 then there exists such a point O yielding a closed immersion into PV~
Conclude that any curve can be embedded into P3.

Hint: dim Sec(X) < 3 and dim Tan(X) < 2.

Proposition 4.3.9 (3.7). Let X C P3, O ¢ X, and ¢ : X — P2 be the projection from O. Then
X -5 o(X) iff (X)) is nodal iff the following hold:

e O is only on finitely many secants of X,

e O is on no tangents,

e O is on mo multisecant,

e O is on no secant with coplanar tangent lines.
Skipped things around Prop 3.8. The hard part: showing not every secant is a mul-
tisecant, and not every secant has coplanar tangent lines. Skipped strange curves.

Remark 4.3.10. Classifying all curves: any curve is birational to a nodal plane curve, so study
the family F;, of plane curves of degree d and r nodes. The family F; of all plane curves is a linear
system of dimension For any such curve X, consider its normalization v(X), then Thus for Fy, to
be nonempty, one needs Both extremes can occur: r = 0 follows from Bertini, and r = W%M
by embedding P! < P? as a curve of degree d and projecting down to a nodal curve in P? of genus

zero. Severi states and Harris proves that for every r in this range Fg, is irreducible, nonempty,

and dim Fy, = 7‘1(‘1;3) -7

4.4. IV.4: Elliptic Curves *.

Remark 4.4.1. Curves E with g(E) = 1; we’ll assume ch k # 2 throughout. Outline:

Define the j-invariant, classifies isomorphism classes of elliptic curves.
Group structure on the curve.

E = Jac(E).

Results about elliptic functions over C.

The Hasse invariant of E/F, in characteristic p.

E(Q).
4.4.1. The j-invariant.

Remark 4.4.2. The j-invariant:
e j(E) €k, so A}k is a coarse moduli space for elliptic curves over K.
e Defining j(FE):
— Let pg € X, consider the linear system L := |2py].
— Nonspecial, so RR shows dim(L) = 1.
— BPF, otherwise E is rational.
— Defines a morphism ¢y, : £ — P}k with deg ¢y = 2.
— Up to change of coordinates, f(pg) = co.
— By Hurwitz, f is ramified at 4 branch points a, b, ¢, po.
— Move a — 0,b — 1 by a Mobius transformation fixing oo, so f is branched over
0,1, A, 00 where A € k\ {0,1}.
— Use A to define the invariant:
e Theorem 4.1:
— j depends only on the curve E and not A.
“BEE e j(B) = j(F).
— Every element of k occurs as j(E) for some E.
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— So this yields a bijection
e Some facts that go into proving this:
— Vp,q € X Jo € Aut(X) such that 02 = 1,0(p) = ¢, for any r € X, one has r + o(r) ~
p+q.
— Aut(X) ~ X transitively.
— Any two degree two maps fi, fo : X — P! fit into a commuting square.
— Under S5 ~ A}k \ {0, 1}, the orbit of A is
— Fixing p € X, there is a closed immersion X — P? whose image is y? = z(z —1)(z— \)
where p + 00 = [0: 1: 0] and this A is either the A from above or one of s7™, s3.
¢ Idea of proof: embed X — P2 by L := |3p|, use RR to compute h’(O(np)) = n
so h?(O(6p)) = 6.
¢ So {1,z,y, 22, zy, y2, x3} has a linear dependence where x>, 42 have nonzero co-
efficients since they have poles at p.
¢ Rescale 23, 4% to coefficient 1 to get
— Do a change of variable to put in the desired form: complete the square on the LHS,
factor as y? = (z — a)(x — b)(x — ¢), send a — 0,b — 1 by a Mobius transformation.
e Note that one can project from p to the x-axis to get a finite degree 2 morphism ramified
at 0,1, A, oo.

Example 4.4.3 (7). An elliptic curve that is smooth over every field of non-2 characteristic:

+ Ce 8 & ‘ 4

~

One that is smooth over every k with ch k # 3: the Fermat curve
Theorem 4.4.4 (Orders of automorphism groups of elliptic curves).

Remark 4.4.5 (Proof idea). Idea: take the degree 2 morphism f : X — P! with f(p) = oo
branched over {0, 1, A, 00}. Produce two elements in G: for o € G, find 7 € Aut(P!) so fo = 7f;
then either 7 # id, so {0, 7} C G, or 7 = id and either 0 = id or ¢ exchanges the sheets of f.

If 7 # id, it permutes {0, 1, A} and sends A — A71, slﬂ, séﬂ from above. Cases:

1. 7 =1728 : If A = —1,1/2,2,chk # 3, then A coincides with one other element of S3.\, so
1G = 4.
2. j=0: If \=—(3,—(3,chk # 3 then \ coincides with two elements in S5.) so G = 6.
3. 7=0=1728: If A= —1,chk = 3 then S3.A\ = {\} and §G = 12.
4.4.2. The group structure.

Remark 4.4.6. The group structure:
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Fixing p, € F, the map p — L(p — po) induces a bijection E = Pic?(E), so the group
structure on F is the pullback along this with pg=idand p+q¢=r < p+q~r+py €
Div(E).

Under the embedding of |3pg|, points p, ¢, are collinear iff p+ ¢+ ~ 3pg, sop+q+r =0
in the group structure.

E is a group variety, since p — —p and (p,q) — p + ¢ are morphisms. Thus there is a
morphism [n] : E — E, multiplication by n, which is a finite morphism of degree n? with
kernel ker[n] = C2 if (n,chk) = l.and ker[n] = C,,0 if n = chk, depending on the Hasse
invariant.

If f: Fy — E5 is a morphism of curves with f(p1) = p2 then f induces a group morphism.
End(E, py) forms a ring under f+g=po(f xg)and f-g:= fog.

The map n — ([n] : E — E) defines a finite ring morphism Z — End(E, po) for n # 0.

R = End(E,pp)* = Aut(FE), and if j = 0,1728 then R contains {+1} and is thus bigger
than Z.

Remark 4.4.7. The Jacobian: a variety that generalizes to make sense for any curve, a moduli
space of degree zero divisor classes.

For X/k a curve and T € Sch/y, define where p : X x T" — T is the second projection.
Regard this as families of sheaves of degree 0 on X parameterized by T.
The Jacobian variety of a curve X: Jac(X) € Schﬁtk along with £ € Pic?(X/ Jac(X)) such
that for any T' € Schf/tk and any M € Pic®(X/T), 3 f : T — Jac(X) such that f*£ = M.
Thus J represents the functor Pic®(X/—).
For F elliptic, £ = Jac(FE).

— In general, |Jac(X)| = ’PicO(X)’ on points, since points of Jac(X) are morphisms

Spec k — Jac(X), which correspond to elements in Pic?(X/k) = Pic®(X).

Jac(X) € GrpSch/;, where e : Speck — Jac(X) corresponds to 0 € PicO(X/k:), p:Jac(X) —
Jac(X) is £ — L1 € Pic®(X/ Jac(X)), and p : Jac(X)** — Jac(X) is £ — piL @ piL €
Pic®(X/ Pic(X)*").
Ty Jac(X) = HY(X;Ox): giving an element of T, X is the same as a morphism T’ :=
Speckle]/e? — X sending Speck — p. So T Jac(X), this means giving M € Pic®(X/T)
whose restriction to Pic’(X/k) is zero. Use the SES H'(X;Ox) < Pic X[¢] — Pic(X).
Jac(X) is proper over k by the valuative criterion. Just show that an invertible sheaf M
on X x Spec K lifts unique to M on X x Spec R, but X x Spec R is regular, so apply 11.6.5.
For any n there is a morphism This is surjective for n > g(X) by RR since every divisor class
of degree d > g has an effective representative. The fibers of ¢™ are all tuples (p1,--- ,pn)
such that D = )" p; forms a complete linear system.

— Most fibers are finite, so Jac(X) is irreducible of dimension g.

— Smoothness: dim T Jac(X) = dim H}(X;Ox) = g, so smooth at zero, and group

schemes are homogeneous so smooth everywhere.

4.4.3. FElliptic functions.

Stopped at elliptic functions.

4.5. IV.5: The Canonical Embedding.
4.6. TV.6: Classification of Curves in P3.
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5. V: SURFACES
Geometry on a Surface.
Ruled Surfaces.
Monoidal Transformations.
The Cubic Surface in P3.
Birational Transformations.

Classification of Surfaces.
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