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1. I: Varieties

Remark 1.0.1. Some useful basic properties:
• Properties of V :

– ∩i∈IV (ai) = V (
∑

i∈I ai).
♢ E.g. V (x) ∩ V (y) = V (⟨x⟩ + ⟨y⟩) = V (x, y) = {0}, the origin.

– ∪i≤nV (ai) = V
(∏

i≤n ai

)
.

♢ E.g. V (x) ∪ V (y) = V (⟨x⟩ ⟨y⟩) = V (xy), the union of coordinate axes.
– V (a)c = ∪f∈aD(f)
– V (a1) ⊆ V (a2) ⇐⇒ √

a1 ⊇ √
a2.

• Properties of I:
– I(V (a)) =

√
a and V (I(Y )) = clAn(Y ). The containment correspondence is contravari-

ant in both directions.
– I(∪iYi) = ∩iI(Yi).

• If F is a sheaf taking values in subsets of a giant ambient set, then F (∪Ui) = ∩F (Ui). For
An/C, take C(x1, · · · , xn), the field of rational functions, to be the ambient set.

• Distinguished open D(f) :=
{

p ∈ X
∣∣∣ f(p) ̸= 0

}
:

– OX(D(f)) = A(X)
[

1
f

]
=

{
g

fk

∣∣∣ g ∈ A(X), k ≥ 0
}

, and taking f = 1 shows OX(X) =
A(X), i.e. global regular functions are polynomial.

– Generally D(fg) = D(f) ∩ D(g)
– For affines:
– For Cn,

1.1. I.1: Affine Varieties ⋆.

Remark 1.1.1. Summary:
• An

/k =
{

[a1, · · · , an]
∣∣∣ ai ∈ k

}
, and elements f ∈ A := k[x1, · · · , xn] are functions on it.

• Z(f) :=
{

p ∈ An
∣∣∣ f(p) = 0

}
, and for any T ⊆ A we set Z(T ) := ∩f∈T Z(f).

– Note that Z(T ) = Z(⟨T ⟩A) = Z(⟨f1, · · · , fr⟩) for some generators fi, using that A
is a Noetherian ring. So every Z(T ) is the set of common zeros of finitely many
polynomials, i.e. the intersection of finitely many hypersurfaces.

• Algebraic: Y ⊆ An is algebraic iff Y = Z(T ) for some T ⊆ A.
• The Zariski topology is generated by open sets of the form Z(T )c.
• A1 is a non-Hausdorff space with the cofinite topology.
• Irreducible: Y is reducible iff Y = Y1 ∪Y2 with Y1, Y2 proper subsets of Y which are closed

in Y .
– Nonempty open subsets of irreducible spaces are both irreducible and dense.
– If Y ⊆ X is irreducible then clX(Y ) ⊆ X is again irreducible.

• Affine (algebraic) varieties: irreducible closed subsets of An.
• Quasi-affine varieties: open subsets of affine varieties.
• The ideal of a subset: I(Y ) :=

{
f ∈ A

∣∣∣ f(p) = 0 ∀p ∈ Y
}

.
• Nullstellensatz: if k = k, a ∈ Id(k[x1, · · · , xn]), and f ∈ k[x1, · · · , xn] with f(p) = 0

for all p ∈ V (a), then f r ∈ a for some r > 0, so f ∈
√
a. Thus there is a contravariant

correspondence between radical ideals of k[x1, · · · , xn] and algebraic sets in An
/k.

• Irreducibility criterion: Y is irreducible iff I(Y ) ∈ Spec k[x1, · · · , xn] (i.e. it is prime).
• Affine curves: if f ∈ k[x, y]irr then ⟨f⟩ ∈ Spec k[x, y] (since this is a UFD) so Z(f) is

irreducible and defines an affine curve of degree d = deg(f).
• Affine surfaces: Z(f) for f ∈ k[x1, · · · , xn]irr defines a surface.
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• Coordinate rings: A(Y ) := k[x1, · · · , xn]/I(Y ).
• Noetherian spaces: X ∈ Top is Noetherian iff the DCC on closed subsets holds.
• Unique decomposition into irreducible components: if X ∈ Top is Noetherian then

every closed nonempty Y ⊆ X is of the form Y = ∪r
i=1Yi with Yi a uniquely determined

closed irreducible with Yi ̸⊆ Yj for i ̸= j, the irreducible components of Y .
• Dimension: for X ∈ Top, the dimension is dim X := sup

{
n

∣∣∣ ∃Z0 ⊂ Z1 ⊂ · · · ⊂ Zn

}
with

Zi distinct irreducible closed subsets of X. Note that the dimension is the number of “links”
here, not the number of subsets in the chain.

• Height: for p ∈ Spec A define ht(p) := sup
{

n
∣∣∣ ∃p0 ⊂ p1 ⊂ · · · ⊂ pn = p

}
with pi ∈ Spec A

distinct prime ideals.
• Krull dimension: define krulldim A := supp∈Spec A ht(p), the supremum of heights of prime

ideals.

Exercise 1.1.2 (The Zariski topology). Show that the class of algebraic sets form the closed sets
of a topology, i.e. they are closed under finite unions, arbitrary intersections, etc.

Exercise 1.1.3 (The affine line).

• Show that A1
/k has the cofinite topology when k = k: the closed (algebraic) sets are finite

sets and the whole space, so the opens are empty or complements of finite sets.1
• Show that this topology is not Hausdorff.
• Show that A1 is irreducible without using the Nullstellensatz.
• Show that An is irreducible.
• Show that maximal ideals m ∈ mSpec k[x1, · · · , xn] correspond to minimal irreducible closed

subsets Y ⊆ An, which must be points.
• Show that mSpec k[x1, · · · , xn] =

{
⟨x1 − a1, · · · , xn − an⟩

∣∣∣ a1, · · · , an ∈ k
}

for k =
bark, and that this fails for k ̸=
bark.

• Show that An is Noetherian.
• Show dim A1 = 1.
• Show dim An = n.

Exercise 1.1.4 (Commutative algebra).

• Show that if Y is affine then A(Y ) is an integral domain and in kAlgfg.
• Show that every B ∈ kAlgfg ∩ Domain is of the form B = A(Y ) for some Y ∈ AffVar/k.
• Show that if Y is an affine algebraic set then dim Y = krulldim A(Y ).

Theorem 1.1.5 (Results from commutative algebra).

• If k ∈ Field, B ∈ kAlgfg ∩ Domain,
– krulldim B = [K(B) : B]tr is the transcendence degree of the quotient field of B over

B.
– If p ∈ Spec B then ht p + krulldim(B/p) = krulldim B.

• Krull’s Hauptidealsatz:
– If A ∈ CRingNoeth and f ∈ A\A× is not a zero divisor, then every minimal p ∈ Spec A

with p ∋ f has height 1.
• If A ∈ CRingNoeth ∩ Domain, then A is a UFD iff every p ∈ Spec(A) with ht(p) = 1 is

principal.

1Hint: k[x] is a PID and factor any f(x) into linear factors using that k =
bark to write Z(a) = Z(f) = {a1, · · · , ak} for some k.
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Exercise 1.1.6 (1.10). Show that if Y is quasi-affine then

Exercise 1.1.7 (1.13). Show that if Y ⊆ An then codimAn(Y ) = 1 ⇐⇒ Y = Z(f) for a single
nonconstant f ∈ k[x1, · · · , xn]irr.

Exercise 1.1.8 (?). Show that if p ∈ Spec(A) and ht(p) = 2 then p can not necessarily be generated
by two elements.

1.2. I.2: Projective Varieties ⋆.

Remark 1.2.1.

• Projective space:
{

a := [a0, · · · , an]
∣∣∣ ai ∈ k

}
/ ∼ where a ∼ λa for all λ ∈ k \ {0},

i.e. lines in An+1 passing through 0.
• Graded rings: a ring S with a decomposition S = ⊕d≥0Sd with each Sd ∈ AbGrp and

SdSe ⊆ Sd+e; elements of Sd are homogeneous of degree d and any element in S is a
finite sum of homogeneous elements of various degrees.

• Homogeneous polynomials: f is homogeneous of degree d if f(λx0, · · · , λxn) = λdf(x0, · · · , xn).
• Homogeneous ideals: a ⊆ S is homogeneous when it’s of the form a =

⊕
d≥0(a ∩ Sd).

– a is homogeneous iff generated by homogeneous elements.
– The class of homogeneous ideals is closed under sums, products, intersections, and

radicals.
– Primality of homogeneous ideals can be tested on homogeneous elements, i.e. it STS

fg ∈ a =⇒ f, g ∈ a for f, g homogeneous.
• k[x1, · · · , xn] =

⊕
d≥0 k[x1, · · · , xn]d where the degree d part is generated by monomials of

total weight d.
– E.g. k[x1, · · · , xn]1 = ⟨x1, x2, · · · , xn⟩, k[x1, · · · , xn]2 =

〈
x2

1, x1x2, x1x3, · · · , x2
2, x2x3, x2x4, · · · , x2

n

〉
.

– Useful fact: by stars and bars, rankk k[x1, · · · , xn]d =
(d+n

n

)
. E.g. for (d, n) = (3, 2),

• Arbitrary polynomials f ∈ k[x0, · · · , xn] do not define functions on Pn because of non-
uniqueness of coordinates due to scaling, but homogeneous polynomials f being zero or not
is well-defined and there is a function So Z(f) :=

{
p ∈ Pn

∣∣∣ f(p) = 0
}

makes sense.
• Projective algebraic varieties: Y is projective iff it is an irreducible algebraic set in Pn.

Open subsets of Pn are quasi-projective varieties.
• Homogeneous ideals of varieties:
• Homogeneous coordinate rings:
• Z(f) for f a linear homogeneous polynomial defines a hyperplane.
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Exercise 1.2.2 (Cor. 2.3). Show Pn admits an open covering by copies of An by explicitly
constructing open sets Ui and well-defined homeomorphisms φi : Ui → An.

1.3. I.3: Morphisms.

1.4. I.4: Rational Maps.

1.5. I.5: Nonsingular Varieties.

1.6. I.6: Nonsingular Curves.

1.7. I.7: Intersections in Projective Space.
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2. II: Schemes

Note: there are many, many important notions tucked away in the exercises in this
section.

2.1. II.1: Sheaves ⋆.

Remark 2.1.1.

• Presheaves F of abelian groups: contravariant functors F ∈ Fun(Open(X), AbGrp).
– Assigns every open U ⊆ X some F (U) ∈ AbGrp
– For ιV U : V ⊆ U , restriction morphisms φUV : F (U) → F (V ).
– F (∅) = 0, so F (∅↓) = ↑.
– φUU = idF (U)
– W ⊆ V ⊆ U =⇒ φUW = φV W ◦ φUV .

• Sections: elements s ∈ F (U) are sections of F over U . Also notation Γ(U ; F ) and
H0(U ; F ), and the restrictions are written s|V := φUV (s) for s ∈ F (U).

• Sheaves: presheaves F which are completely determined by local data. Additional require-
ments on open covers V ⇒ U :

– If s ∈ F (U) with s|Vi
= 0 for all i then s ≡ 0 ∈ F (U).

– Given si ∈ F (Vi) where si|Vij
= sj |Vij

∈ F (Vij) then ∃s ∈ F (U) such that s|Vi
= si for

each i, which is unique by the previous condition.
• Constant sheaf : for A ∈ AbGrp, define the constant sheaf
• Stalks: Fp := colim−−−−−→U∋p F (U) along the system of restriction maps.

– These are represented by pairs (U, s) with U ∋ p an open neighborhood and s ∈ F (U),
modulo (U, s) ∼ (V, t) when ∃W ⊆ U ∩ V with s|w = t|w.

• Germs: a germ of a section of F at p is an elements of the stalk Fp.
• Morphisms of presheaves: natural transformations η ∈ MorFun(F, G), i.e. for every U, V ,

components ηU , ηV fitting into a diagram
Link to Diagram

• A morphism of sheaves is exactly a morphism of the underlying presheaves.
• Morphisms of sheaves η : F → G induce morphisms of rings on the stalks ηp : Fp → Gp.
• Morphisms of sheaves are isomorphisms iff isomorphisms on all stalks, see exercise below.
• Kernels, cokernels, images: for φ : F → G, sheafify the assignments to kernels/cokernels/images

on open sets.
• Sheafification: for any F ∈ Sh

pre
(X), there is a unique F + ∈ Sh(X) and a morphism

θ : F → F + of presheaves such that any sheaf presheaf morphism F → G factors as
F → F + → G.

– The construction: F +(U) = Top(U,
∐

p∈U Fp) are all functions s into the union of
stalks, subject to s(p) ∈ Fp for all p ∈ U and for each p ∈ U , there is a neighborhood
V ⊇ U ∋ p and t ∈ F (V ) such that for all q ∈ V , the germ tq is equal to s(q).

– Note that the stalks are the same: (F +)p = Fp, and if F is already a sheaf then θ is
an isomorphism.

• Subsheaves: F ′ ≤ F iff F ′(U) ≤ F (U) is a subgroup for every U and the restrictions on
F ′ are induced by restrictions from F .

– If F ′ ≤ F then F ′
p ≤ Fp.

– Injectivity: φ : F → G is injective iff the sheaf kernel ker φ = 0 as a subsheaf of F .
♢ φ is injective iff injective on all sections.

– im φ ≤ G is a subsheaf.
– Surjectivity: φ : F → G is surjective iff im φ = G as a subsheaf.

https://q.uiver.app/?q=WzAsOCxbMCwxLCJVIl0sWzAsMywiViJdLFsyLDEsIkYoVSkiXSxbNCwxLCJHKFUpIl0sWzIsMywiRihWKSJdLFs0LDMsIkcoVikiXSxbMCwwLCJcXE9wZW4oWCkiXSxbMywwLCJcXEFiXFxHcnAiXSxbNCw1LCJcXGV0YV9WIl0sWzIsMywiXFxldGFfVSJdLFsyLDQsIlxcbWF0aHJte1Jlc31fRihVLCBWKSJdLFszLDUsIlxcbWF0aHJte1Jlc31fRyhVLCBWKSJdLFsxLDAsIiIsMSx7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Imhvb2siLCJzaWRlIjoidG9wIn19fV0sWzEyLDEwLCJGLCBHIiwwLHsic2hvcnRlbiI6eyJzb3VyY2UiOjIwLCJ0YXJnZXQiOjIwfX1dXQ==
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• Exactness: a sequence of sheaves (Fi, φi : Fi → Fi+1) is exact iff ker φi = im φi−1 as
subsheaves of Fi.

– φ : F → G is injective iff 0 → F
φ−→ G is exact.

– φ : F → G is surjective iff F
φ−→ G → 0 is exact.

– Sequences of sheaves are exact iff exact on stalks.
• Quotient sheaves: F/F ′ is the sheafification of U 7→ F (U)/F ′(U).
• Cokernels: for φ : F → G, coker φ is sheafification of U 7→ coker(F (U) φ(U)−−−→ G(U)).
• Direct images: for f ∈ Top(X, Y ), the sheaf defined on sections by (f∗F )(V ) := F (f−1(V ))

for any V ⊆ Y . Yields a functor f∗ : Sh(X) → Sh(Y ).
• Inverse images: denoted f−1G, the sheafification of U 7→ colim−−−−−→V ⊇f(U) G(V ), i.e. take

the limit from above of all open sets V of Y containing the image f(U). Yields a functor
f−1 : Sh(Y ) → Sh(X).

• Restriction of a sheaf : for F ∈ Sh(X) and Z ⊆ X with ι : Z ↪→ X the inclusion,
define i−1F ∈ Sh(Z) to be the restriction. Also denoted F |Z . This has the same stalks:
(F |Z)p = Fp.

• For any U ⊆ X, the global sections functor Γ(U ; −) : Sh(X) → AbGrp is left-exact (proved
in exercises).

• Limits of sheaves: for {Fi} a direct system of sheaves, colim−−−−−→i Fi has underlying presser
U 7→ colim−−−−−→i Fi(U). If X is Noetherian, then this is already a sheaf, and commutes with
sections: Γ(X; colim−−−−−→i Fi) = colim−−−−−→i Γ(X; Fi).

– Inverse limits exist and are defined similarly.
• The espace étalé: define Ét(F ) =

∐
p∈XFp and a projection π : Ét(F ) → X by sending

s ∈ Fp to p. For each U ⊆ X and s ∈ F (U), there is a local section s : U → Ét(F ) where
p 7→ sp, its germ at p; this satisfies π ◦s = idU . Give Ét(F ) the strongest topology such that
the s are all continuous. Then F +(U) := Top(U, Ét(F )) is the set of continuous sections of
Ét(F ) over U .

• Support: for s ∈ F (U), supp(s) :=
{

p ∈ U
∣∣∣ sp ̸= 0

}
where sp is the germ of s in Fp. This

is closed.
– This extends to supp(F ) :=

{
p ∈ X

∣∣∣ Fp ̸= 0
}

, which need not be closed.
• Sheaf hom: U 7→ Hom(F |U , G|U ) forms a sheaf of local morphisms and is denoted

Hom(F, G).
• Flasque sheaves: a sheaf is flasque iff V ↪→ U =⇒ F (U) ↠ F (V ).
• Skyscraper sheaves: for A ∈ AbGrp and p ∈ X, define ip(A) by U 7→ A if p ∈ U and 0

otherwise. Also denoted ι∗(A) where ι : clX({p}) ↪→ X is the inclusion.
– The stalks are (ip(A))q = A if q ∈ clX({p}) and 0 otherwise.

• Extension by zero: if ι : Z ↪→ X is the inclusion of a closed set and U := X \ Z with
j : U → X, then for F ∈ Sh(Z), the sheaf ι∗F ∈ Sh(X) is the extension of F by zero outside
of Z. The stalks (ι∗F )p are Fp is p ∈ Z and 0 otherwise.

– For the open U , extension by zero is j!F which has presheaf V 7→ F (V ) if V ⊆ U and
0 otherwise. The stalks (j!F )p are Fp if p ∈ U and 0 otherwise.

• Sheaf of ideals: for Y ⊆ X closed and U ⊆ X open, IY (U) has presheaf U 7→ the ideal
in OX(U) of regular functions vanishing on all of Y ∩ U . This is a subsheaf of OX .

• Gluing sheaves: given U ⇒ X and sheaves Fi ∈ Sh(Ui), one can glue to a unique F ∈
Sh(X) if one is given morphisms φij Fi|Uij

∼−→ Fj |Uij
where φii = id and φik = φjk ◦ φij on

Uijk.

Warning 2.1.2. Some common mistakes:
• Kernel presheaves are already sheaves, but not cokernels or images. See exercise below.
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• φ : F → G is injective iff injective on sections, but this is not true for surjectivity.
• The sheaves f−1G and f∗G are different! See III.5 for the latter.
• Global sections need not be right-exact.

Exercise 2.1.3 (Regular functions on varieties form a sheaf). For X ∈ Var/k, define the ring
OX(U) of literal regular functions fi : U → k where restriction morphisms are induced by literal
restrictions of functions. Show that OX is a sheaf of rings on X.

Hint: Locally regular implies regular, and regular + locally zero implies zero.

Exercise 2.1.4 (?). Show that for every connected open subset U ⊆ X, the constant sheaf satisfies
A(U) = A, and if U is open with open connected component so the A(U) = A×♯π0U .

Exercise 2.1.5 (?). Show that if X ∈ Var/k and OX is its sheaf of regular functions, then the stalk
OX,p is the local ring of p on X as defined in Ch. I.

Exercise 2.1.6 (Prop 1.1). Let φ : F → G be a morphism in Sh(X) and show that φ is an
isomorphism iff φp is an isomorphism on stalks for all p ∈ X. Show that this is false for presheaves.

Exercise 2.1.7 (?). Show that for φ ∈ MorSh(X)(F, G), ker φ is a sheaf, but coker φ, im φ are not
in general.

Exercise 2.1.8 (?). Show that if φ : F → G is surjective then the maps on sections φ(U) : F (U) →
G(U) need not all be surjective.

2.2. II.2: Schemes.

2.3. II.3: First Properties of Schemes.

2.4. II.4: Separated and Proper Morphisms.

2.5. II.5: Sheaves of Modules.

2.6. II.6: Divisors.

2.7. II.7: Projective Morphisms.

2.8. II.8: Differentials.

2.9. II.9: Formal Schemes.
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3. III: Cohomology

3.1. III.1: Derived Functors.

3.2. III.2: Cohomology of Sheaves.

3.3. III.3: Cohomology of a Noetherian Affine Scheme.

3.4. III.4: Čech Cohomology.

3.5. III.5: The Cohomology of Projective Space.

3.6. III.6: Ext Groups and Sheaves.

3.7. III.7: Serre Duality.

3.8. III.8: Higher Direct Images of Sheaves.

3.9. III.9: Flat Morphisms.

3.10. III.10: Smooth Morphisms.

3.11. III.11: The Theorem on Formal Functions.

3.12. III.12: The Semicontinuity Theorem.
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4. IV: Curves ⋆

Remark 4.0.1. Summary of major results:
• pa(X) := 1 − PX(0)
• pg(X) := h0(ωX) = h0(L(KX))
• For curves, pa(X) = pg(X) = h1(OX) by setting D := KC in RR.

– deg KC = 2g − 2.
• D1 ∼ D2 ⇐⇒ D1 − D2 = (f) for f ∈ K(X) rational, |D| = {D′ ∼ D}, and this bijects

with points of H0(L(D))\{0}
Gm

.
– Thus dim |D| = h0(L(D)) − 1 := ℓ(D) − 1.

• X smooth =⇒ Cl(X) ∼−→ Pic(X) via D 7→ L(D).
• h0(L(D)) > 0 =⇒ deg(D) ≥ 0, and if deg D = 0 then D ∼ 0 and L(D) ∼= OX .
• RR:

– How to remember: note g = h1(OX) = h1(L(0)), and H0(OX) = k so h0(OX) = 1,
thus

– For C ⊆ Pn, deg(C) = d and D = C ∩H a hyperplane section defining L(D) = OX(1),
• A curve is rational iff isomorphic to P1 iff g = 0.
• K ∼ 0 on an elliptic curve since deg K = 2g − 2 = 0 and deg D = 0 =⇒ D ∼ 0.
• For X elliptic, Pic0(X) :=

{
D ∈ Div(X)

∣∣∣ deg D = 0
}

and |X| ∼−→
∣∣∣Pic0(X)

∣∣∣ via p 7→ L(p −
p0) for any fixed p0 ∈ X, inducing its group structure. (This is proved with RR.)

Remark 4.0.2. Comments from preface:
• The statement of Riemann-Roch is important; less so its proof.
• Representing curves:

– A branched covering of P1,
– More generally a branched covering of another curve,
– Nonsingular projective curves: admit embeddings into P3, maps to P2 birationally

such that the image is at worst a nodal curve.
• The central result regarding representing curves: Hurwitz’s theorem which compares KX , KY

for a cover Y → X of curves.
• Curves of genus 1: elliptic curves.
• Later sections: the canonical embedding of a curve.

4.1. IV.1: Riemann-Roch.
Definition 4.1.1 (Curves). A curve over k = k is a scheme over Spec k which is

• Integral
• Dimension 1
• Proper over k
• With regular local rings

In particular, a curve is smooth, complete, and necessary projective. A point on a curve is a
closed point.
Definition 4.1.2 (Arithmetic genus). The arithmetic genus of a projective curve X is where
PX(t) is the Hilbert polynomial of X.
Definition 4.1.3 (Geometric genus). The geometric genus of a curve is where ωX is the canonical
sheaf.
Exercise 4.1.4 (?). Show that if X is a curve, there is a single well-defined genus

Hint: see Ch. III Ex. 5.3, and use Serre duality for pg.
Exercise 4.1.5 (?). Show that for any g ≥ 0 there exists a curve of genus g.
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Hint: take a divisor of type (g + 1, 2) on a smooth quadric which is irreducible and
smooth with pa = g.

Definition 4.1.6 (Divisors on a curve). Reviewing divisors:
• The divisor group: Div(X) = Z [Xcl]
• Degrees: deg(

∑
niDi) :=

∑
ni, and

• Linear equivalence: D1 ∼ D2 ⇐⇒ D1 − D1 = Div(f) for some f ∈ k(X) a rational
function.

• D is effective if ni ≥ 0 for all i.
• |D| :=

{
D′ ∈ Div(X)

∣∣∣ D′ ∼ D
}

is the complete linear system of D.
• |D| ∼= PH0(X; L(D))
• Dimensions of linear systems: ℓ(D) := dimk H0(X; L(D)) and dim |D| := ℓ(D) − 1.
• Relative differentials: ΩX := ΩX/k

is the sheaf of relative differentials on X.
– The technical definition: ΩX/S

:= ∆∗
X/Y

(I/I2) where I is the sheaf of ideals defining
the locally closed subscheme im(∆X/Y

) ⊆ XfpY X.
– On affine schemes: on the ring side, ΩB/A

∈ BMod equipped with a differential d : B →
ΩB/A, defined as

〈
db

∣∣∣ b ∈ B
〉

B
/ ⟨d(b1 + b2) = db1 + db2, d(b1b2) = d(b1)b2 + b1d(b2), da = 0 ∀a ∈ A⟩B.

– On curves, ΩX/Y
measures the “difference” between KX and KY .

• Canonical sheaf : dim X = 1, ΩX/k
∼= ωX .

• Canonical divisor: KX 2is any divisor in the linear equivalence class corresponding to
ωX

• D is special iff its index of speciality ℓ(K − D) > 0, otherwise D is nonspecial.

Exercise 4.1.7 (?). Show that D1 ∼ D2 =⇒ deg(D1) = deg(D2).

Exercise 4.1.8 (?). Show that so |D| has the structure of the closed points of some projective
space.

Exercise 4.1.9 (Lemma 1.2). Show that if D ∈ Div(X) for X a curve and ℓ(D) ̸= 0, then
deg(D) ≥ 0.

Show that is ℓ(D) ̸= 0 and deg D = 0 then D ∼ 0 and L(D) ∼= OX .

Theorem 4.1.10 (Riemann-Roch).

Exercise 4.1.11 (Ingredients for proof of RR). Show the following:
• The divisor K − D corresponds to ωX ⊗ L(D)∨ ∈ Pic(X).
• H1(X; L(D))∨ ∼= H0(X; ωX ⊗ L(D)∨).
• If X is any projective variety,

Exercise 4.1.12 (?). Show that if X ⊆ Pn is a curve with deg X = d and D = X ∩ H is a
hyperplane section, then L(D) = OX(1) and χ(L(D)) = d + 1 − pa.

Exercise 4.1.13 (?). Show that if g(X) = g then deg KX = 2g − 2.
Hint: set D = K and use ℓ(K) = pg = g and ℓ(0) = 1.

Remark 4.1.14. More definitions:
• X is rational iff birational to P1.
• X is elliptic if g = 1.

Exercise 4.1.15 (?). Show that
1. If deg D > 2g − 2 then D is nonspecial.
2. pa(P1) = 0.
3. A complete nonsingular curve is rational iff X ∼= P1 iff g(X) = 0.
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4. If X is elliptic then K ∼ 0
Hint: for (3) apply RR to D = p − q for points p ̸= q, and use deg(K − D) = −2
and deg(D) = 0 =⇒ D ∼ 0 =⇒ p ∼ q. For (4), show ℓ(K) = pg = 1.

Exercise 4.1.16 (?). If X is elliptic and p ∈ X, then there is a bijection so Pic(X) ∈ Grp.
Hint: show that if deg(D) = 0 then there is some x ∈ X such that D ∼ x − p and
apply RR to D + p.

4.2. IV.2: Hurwitz ⋆.

Remark 4.2.1. Summary of results:
• For curves, complete = projective.
• Riemann-Hurwitz: for f : X → Y finite separable,
• deg f := [K(X) : K(Y )] for finite morphisms of curves.
• ep := vp(f ♯

∗t) where t is uniformizer in Of(p) and f ♯ : OY,f(p) → OX,p for f : X → Y .
– ep > 1 =⇒ ramification.
– Unramified everywhere implies etale (since automatically flat).
– p

∣∣ ex0 =⇒ wild ramification, otherwise tame.
• ∃f∗ : Div(Y ) → Div(X) where q 7→

∑
p 7→q epp.

• Pullback commutes with forming line bundles: where the LHS f∗ : Pic(Y ) → Pic(X).
• The fundamental SES for relative differentials: if f : X → Y is finite separable,
• ∂t

∂u for t a uniformizer at f(p) and u a uniformizer at p is defined by noting ΩY, f(p) =
⟨ dt⟩ , ΩX,p = ⟨ du⟩, and there is some g ∈ OX,p such that f∗ dt = g du; set g := ∂t

∂u .
• For finite separable morphisms of curves f : X → Y ,

– supp ΩX/Y = Ram(f) is the ramification locus, and ΩX/Y is torsion so Ram(f) is finite.
– length(ΩX,Y )p = vp

(
∂t
∂u

)
for any p ∈ X

– Tamely ramified =⇒ length(ΩX/Y )p = ep − 1, and wild ramification increases this
length. Recall that length is the largest size of chains of submodules.

• The ramification divisor:
• KX ∼ f∗KY + R
• P1 can’t admit an unramified cover: for n ≥ 1, which forces g(X) = 0, n = 1, X = P1, f =

id.
• The Frobenius morphism on schemes is defined by taking f ♯ : OX → OX to be the pth

power map; pullback yields a definition of Xp, the Frobenius twist of X.
– F : Xp → X is finite, deg F = p, and corresponds to K(X) ↪→ K(X)

1
p

• If f : X → Y induces a purely inseparable extension K(X)/K(Y ), then X
∼−→ Y as schemes,

g(X) = g(Y ), and f is a composition of Frobenii.
• Everywhere ramified extensions: f : Yp → Y , where eq = p for every q ∈ X. Induces

ΩX/Y
∼= ΩX .

• deg R is always even.
• Finite implies proper: finite implies separated, of finite type, closed by “going up” and

universally closed by since finiteness is preserved under base change.
• P1 no nontrivial etale covers.
• If f : X → Y then g(X) ≥ g(Y ).

– Thus ∃P1 → Y finite =⇒ g(Y ) = 0.

Remark 4.2.2. Preface:
• Degree: for a finite morphism of curves X

f−→ Y , set det(f) := [k(X) : k(Y )], the degree of
the extension of function fields.
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• Ramification indices ep: for p ∈ X, let q = f(p) and t ∈ Oq a local coordinate. Pull
back to t ∈ Op via f ♯ and define ep := vp(t) using the valuation vp for the DVR Op.

• Ramified: ep > 1, and unramified if ep = 1.
• Branch points any q = f(p) where f is ramified.
• Tame ramification: for ch(k) = p, tame if p

∣∣∤ eP .
• Wild ramification: when p

∣∣ eP .
• Pullback maps on divisor groups:

– This commutes with taking line bundles (exercise), so induces a well-defined map
f∗ : Pic(X) → Pic(Y ).

• f is separable if k(X)/k(Y ) is a separable field extension.

Exercise 4.2.3 (?). Misc:
• Show that if f is everywhere unramified then it is an étale morphism.
• Show that f∗L(D) = L(f∗D)

Exercise 4.2.4 (Prop 2.1). Show that if X
f−→ Y is a finite separable morphism of curves, there is

a SES

Remark 4.2.5. Definitions:
• Derivatives: for f : X → Y , let t be a parameter at Q = f(P ) and u at P . Then

ΩY,Q = ⟨dt⟩OQ
and OX,P = ⟨du⟩OP

and ∃!g ∈ OP such that f∗dt = du so we write ∂t
∂u

:= g.
• Ramification divisor: R :=

∑
P ∈X length(ΩX/Y

)P [P ] ∈ Div(X)

Exercise 4.2.6 (Prop 2.2). For X
f−→ Y a finite separable morphism of curves,

a. ΩX/Y
is a torsion sheaf on X with support equal to the ramification locus of f . Thus f is

ramified at finitely many points.
b. The stalks (ΩX/Y

)P are principal OP -modules of finite length equal to vp

(
∂t
∂u

)
c.

Exercise 4.2.7 (Prop 2.3). If X
f−→ Y is a finite separable morphism of curves, then where R is

the ramification divisor of f .

Theorem 4.2.8 (Hurwitz). If X
f−→ Y is a finite separable morphism of curves, then and if f has

only tame ramification then deg(R) =
∑

P ∈X(eP − 1).

Remark 4.2.9 (proof of Hurwitz). Take degrees of the divisor equation: using tame ramification
in the last step which implies length(ΩX/Y

)P = (ep − 1).

Remark 4.2.10. Consider the purely inseparable case.
• Frobenius morphism: for X ∈ Sch where OP ⊇ Z/pZ for all P , define Frob : X → X

by F (|X|) = |X| on spaces and F ♯ : OX → OX is f 7→ fp. This is a morphism since F ♯

induces a morphism on all local rings, which are all characteristic p.
• The k-linear Frobenius morphism: define Xp to be X with the structure morphism

F ◦ π, so k ↷ OXp by pth powers and F becomes a k-linear morphism F ′ : Xp → X.
– Why this is necessary: F as before is not a morphism in Sch/k, and instead forms a

commuting square involving F : Spec k → Spec k and the structure maps X
π−→ Spec k.

Exercise 4.2.11 (?). Find examples where
• Xp

∼= X ∈ Sch/k, and
• Xp ̸∼= X ∈ Sch/k.

Hint: consider X = Spec k[t] for k perfect.
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Exercise 4.2.12 (?). Show that if X
f−→ Y is separable then deg(R) is always even.

Skipped some stuff around Example 2.4.2, I don’t necessarily need characteristic p
things right now.

Remark 4.2.13. Definitions:
• Étale covers: X

f−→ Y is an étale cover if f is a finite étale morphism„ i.e. f is flat and
Ω1

X/Y
= 0.

• Y is a trivial cover if X ∼=
∐

i∈IY a finite disjoint union of copies of Y ,
• Y is simply connected if there are no nontrivial étale covers.

Exercise 4.2.14 (?).
• Show that a connected regular curve is irreducible.
• Show that if f is etale then X is smooth over k.
• Show that if f is finite, X must be a curve.
• Show that if f is étale, then f must be separable.
• Show that πét

1 (P1) = 0.
Hint: use Hurwitz and that when f is unramified, R = 0.

Exercise 4.2.15 (?).
• Show that the genus of a curve doesn’t change under purely inseparable extensions.
• Show that if f : X → Y is a finite morphism of curves then g(X) ≥ g(Y ).

Exercise 4.2.16 (Lüroth). Show that if L is a subfield of a purely transcendental extension k(t)/k
where k = k, then L is also purely transcendental.2

Hint: Assume [L : k]tr = 1, so L = k(X) for Y a curve and L ⊆ k(t) corresponds
to a finite morphism f : P1 → Y . Conclude g(Y ) = 0 so Y ∼= P1 and L ∼= k(u) for
some u.

4.3. IV.3: Embeddings in Projective Space ⋆.
Remark 4.3.1. A summary of major results:

• For D ∈ Div(C) with g = g(C),
– D is ample iff deg D > 0.
– D is BPF iff deg D ≥ 2g.
– D is very ample iff deg D ≥ 2g + 1.

• Being very ample is equivalent to being a hyperplane section under a projective embedding.
• Divisors D ∈ Div(Pn) are ample iff very ample iff deg D ≥ 1.

– E.g. if E is elliptic then D is very ample if deg D ≥ 3, and for hyperelliptic, very ample
if deg D ≥ 5.

• If D is very ample then deg φ(X) = deg D.
• Curves C ⊆ Pn for n ≥ 4 can be projected away from a point p ̸∈ X to get a closed

immersion into Pm for some m ≤ n − 1. So any curve is birational to a nodal curve in P2.
• Genus of normalizations of nodal curves: g = 1

2(d − 1)(d − 2) − ♯ {nodes}.
• Any curve embeds into P3, and maps into P2 with at worst nodal singularities.

Remark 4.3.2. Main result: any curve can be embedded in P3, and is birational to a nodal curve
in P2. Some recollections:

• Very ample line bundles: L ∈ Pic(X) is very ample if L ∼= OX(1) for some immersion
of f : X ↪→ PN .

2This is true over any field k in dimension 1, over k = k in dimension 2, and false in dimension 3 by the existence
of nonrational unirational threefolds.
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• Ample: L is ample when ∀F ∈ Coh(X), the twist F ⊗ Ln is globally generated for n ≫ 0.
• (Very) ample divisors: D ∈ Div(X) is (very) ample iff L(D) ∈ Pic(X) is (very) ample.
• Linear systems: a linear system is any set S ≤ |D| of effective divisors yielding a linear

subspace.
• Base points: P is a base point of S iff P ∈ supp D for all D ∈ S.
• Secant lines: the secant line of P, Q ∈ X is the line in PN joining them.
• Tangent lines: at P ∈ X, the unique line L ⊆ PN passing through p such that TP (L) =

TP (X) ⊆ TP (PN ).
• Nodes: a singularity of multiplicity 2.

– y2 = x3 + x2 is a node.
– y2 = x3 is a cusp.
– y2 = x4 is a tacnode.

• Multisecant: for X ⊆ P3, a line meeting X in 3 or more distinct points.
• A secant with coplanar tangent lines is a secant through P, Q whose tangent lines

LP , LQ lie in a common plane, or equivalently LP intersects LQ.
Exercise 4.3.3 (II.8.20.2). Show that by Bertini’s theorem there are irreducible smooth curves of
degree d in P2 for any d.
Exercise 4.3.4 (?).

Show that
• L is ample iff Ln is very ample for b ≫ 0.
• |D| is basepoint free iff L(D) is globally generated.
• If D is very ample, then |D| is basepoint free.
• If D is ample, nD ∼ H a hyperplane section for a projective embedding for some n.
• If g(X) = 0 then D is ample iff very ample iff deg D > 0.
• If D is very ample and corresponds to a closed immersion φ : X ↪→ Pn then deg φ(X) =

deg D.
• If XS is elliptic, any D with deg D = 3 is very ample and dim |D| = 2, and so can be

embedded into P2 as a cubic curve.
• Show that if g(X) = 1 then D is very ample iff deg D ≥ 3.
• Show that if g(X) = 2 and deg D = 5 then D is very ample, so any genus 2 curve embeds

in P3 as a curve of degree 5.
Exercise 4.3.5 (Prop 3.1: when a linear system yields a closed immersion into PN ). Let D ∈
Div(X) for X a curve and show

• |D| is basepoint free iff dim |D − P | = dim |D| − 1 for all points p ∈ X.
• D is very ample iff dim |D − P − Q| = dim |D| − 2 for all points P, Q ∈ X.

Hint: use the SES L(D − P ) ↪→ L(D) ↠ k(P ) where k(P ) is the skyscraper sheaf
at P .

Exercise 4.3.6 (Cor 3.2). Let D ∈ Div(X).
• If deg D ≥ 2g(X) then |D| is basepoint free.
• If deg D ≥ 2g(X) + 1 then D is very ample.
• D is ample iff deg D > 0
• This bounds is not sharp.

Hint: apply RR. For the bound, consider a plane curve X of degree 4 and D = X.H.
Remark 4.3.7. Idea behind embedding in P3: embed into Pn and project away from a point in
the complement.
Exercise 4.3.8 (3.4, 3.5, 3.6). Let X ⊆ PN be a curve and O ̸∈ X, let φ : X → Pn−1 be projection
away from O. Then φ is a closed immersion iff
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• O is not on any secant line of X, and
• O is not on any tangent line of X.

Show that if N ≥ 4 then there exists such a point O yielding a closed immersion into PN−1.
Conclude that any curve can be embedded into P3.

Hint: dim Sec(X) ≤ 3 and dim Tan(X) ≤ 2.

Proposition 4.3.9 (3.7). Let X ⊆ P3, O ̸∈ X, and φ : X → P2 be the projection from O. Then
X

∼
99K φ(X) iff φ(X) is nodal iff the following hold:

• O is only on finitely many secants of X,
• O is on no tangents,
• O is on no multisecant,
• O is on no secant with coplanar tangent lines.

Skipped things around Prop 3.8. The hard part: showing not every secant is a mul-
tisecant, and not every secant has coplanar tangent lines. Skipped strange curves.

Remark 4.3.10. Classifying all curves: any curve is birational to a nodal plane curve, so study
the family Fd,r of plane curves of degree d and r nodes. The family Fd of all plane curves is a linear
system of dimension For any such curve X, consider its normalization ν(X), then Thus for Fd,r to
be nonempty, one needs Both extremes can occur: r = 0 follows from Bertini, and r = (d−1)(d−2)

2
by embedding P1 ↪→ Pd as a curve of degree d and projecting down to a nodal curve in P2 of genus
zero. Severi states and Harris proves that for every r in this range Fd,r is irreducible, nonempty,
and dim Fd,r = d(d+3)

2 − r.

4.4. IV.4: Elliptic Curves ⋆.

Remark 4.4.1. Curves E with g(E) = 1; we’ll assume ch k ̸= 2 throughout. Outline:
• Define the j-invariant, classifies isomorphism classes of elliptic curves.
• Group structure on the curve.
• E = Jac(E).
• Results about elliptic functions over C.
• The Hasse invariant of E/Fq in characteristic p.
• E(Q).

4.4.1. The j-invariant.

Remark 4.4.2. The j-invariant:
• j(E) ∈ k, so A1

/k is a coarse moduli space for elliptic curves over K.
• Defining j(E):

– Let p0 ∈ X, consider the linear system L := |2p0|.
– Nonspecial, so RR shows dim(L) = 1.
– BPF, otherwise E is rational.
– Defines a morphism φL : E → P1

/k with deg φL = 2.
– Up to change of coordinates, f(p0) = ∞.
– By Hurwitz, f is ramified at 4 branch points a, b, c, p0.
– Move a 7→ 0, b 7→ 1 by a Mobius transformation fixing ∞, so f is branched over

0, 1, λ, ∞ where λ ∈ k \ {0, 1}.
– Use λ to define the invariant:

• Theorem 4.1:
– j depends only on the curve E and not λ.
– E ∼= E′ ⇐⇒ j(E) = j(E′).
– Every element of k occurs as j(E) for some E.
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– So this yields a bijection
• Some facts that go into proving this:

– ∀p, q ∈ X ∃σ ∈ Aut(X) such that σ2 = 1, σ(p) = q, for any r ∈ X, one has r + σ(r) ∼
p + q.

– Aut(X) ↷ X transitively.
– Any two degree two maps f1, f2 : X → P1 fit into a commuting square.
– Under S3 ↷ A1

/k \ {0, 1}, the orbit of λ is
– Fixing p ∈ X, there is a closed immersion X → P2 whose image is y2 = x(x−1)(x−λ)

where p 7→ ∞ = [0 : 1 : 0] and this λ is either the λ from above or one of s±1
1 , s±1

2 .
♢ Idea of proof: embed X ↪→ P2 by L := |3p|, use RR to compute h0(O(np)) = n

so h0(O(6p)) = 6.
♢ So

{
1, x, y, x2, xy, y2, x3}

has a linear dependence where x3, y2 have nonzero co-
efficients since they have poles at p.

♢ Rescale x3, y2 to coefficient 1 to get
– Do a change of variable to put in the desired form: complete the square on the LHS,

factor as y2 = (x − a)(x − b)(x − c), send a → 0, b → 1 by a Mobius transformation.
• Note that one can project from p to the x-axis to get a finite degree 2 morphism ramified

at 0, 1, λ, ∞.

Example 4.4.3 (?). An elliptic curve that is smooth over every field of non-2 characteristic:

One that is smooth over every k with ch k ̸= 3: the Fermat curve

Theorem 4.4.4 (Orders of automorphism groups of elliptic curves).

Remark 4.4.5 (Proof idea). Idea: take the degree 2 morphism f : X → P1 with f(p) = ∞
branched over {0, 1, λ, ∞}. Produce two elements in G: for σ ∈ G, find τ ∈ Aut(P1) so fσ = τf ;
then either τ ̸= id, so {σ, τ} ⊆ G, or τ = id and either σ = id or σ exchanges the sheets of f .

If τ ̸= id, it permutes {0, 1, λ} and sends λ 7→ λ−1, s±1
1 , s±1

2 from above. Cases:
1. j = 1728 : If λ = −1, 1/2, 2, ch k ̸= 3, then λ coincides with one other element of S3.λ, so

♯G = 4.
2. j = 0: If λ = −ζ3, −ζ2

3 , ch k ̸= 3 then λ coincides with two elements in S3.λ so ♯G = 6.
3. j = 0 = 1728: If λ = −1, ch k = 3 then S3.λ = {λ} and ♯G = 12.

4.4.2. The group structure.

Remark 4.4.6. The group structure:
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• Fixing po ∈ E, the map p 7→ L(p − p0) induces a bijection E
∼−→ Pic0(E), so the group

structure on E is the pullback along this with p0 = id and p + q = r ⇐⇒ p + q ∼ r + p0 ∈
Div(E).

• Under the embedding of |3p0|, points p, q, r are collinear iff p + q + r ∼ 3p0, so p + q + r = 0
in the group structure.

• E is a group variety, since p 7→ −p and (p, q) 7→ p + q are morphisms. Thus there is a
morphism [n] : E → E, multiplication by n, which is a finite morphism of degree n2 with
kernel ker[n] = C2

n if (n, ch k) = 1.and ker[n] = Cp, 0 if n = ch k, depending on the Hasse
invariant.

• If f : E1 → E2 is a morphism of curves with f(p1) = p2 then f induces a group morphism.
• End(E, p0) forms a ring under f + g = µ ◦ (f × g) and f · g := f ◦ g.
• The map n 7→ ([n] : E → E) defines a finite ring morphism Z → End(E, p0) for n ̸= 0.
• R := End(E, p0)× = Aut(E), and if j = 0, 1728 then R contains {±1} and is thus bigger

than Z.

Remark 4.4.7. The Jacobian: a variety that generalizes to make sense for any curve, a moduli
space of degree zero divisor classes.

• For X/k a curve and T ∈ Sch/k, define where p : X × T → T is the second projection.
Regard this as families of sheaves of degree 0 on X parameterized by T .

• The Jacobian variety of a curve X: Jac(X) ∈ Schft
/k along with L ∈ Pic0(X/ Jac(X)) such

that for any T ∈ Schft
/k and any M ∈ Pic0(X/T ), ∃! f : T → Jac(X) such that f∗L = M.

Thus J represents the functor Pic0(X/−).
• For E elliptic, E = Jac(E).

– In general, |Jac(X)| ∼=
∣∣∣Pic0(X)

∣∣∣ on points, since points of Jac(X) are morphisms
Spec k → Jac(X), which correspond to elements in Pic0(X/k) = Pic0(X).

• Jac(X) ∈ GrpSch/k where e : Spec k → Jac(X) corresponds to 0 ∈ Pic0(X/k), ρ : Jac(X) →
Jac(X) is L 7→ L−1 ∈ Pic0(X/ Jac(X)), and µ : Jac(X)×2 → Jac(X) is L 7→ p∗

1L ⊗ p∗
2L ∈

Pic0(X/ Pic(X)×2).
• T0 Jac(X) ∼= H1(X; OX): giving an element of TpX is the same as a morphism T :=

Spec k[ε]/ε2 → X sending Spec k → p. So T0 Jac(X), this means giving M ∈ Pic0(X/T )
whose restriction to Pic0(X/k) is zero. Use the SES H1(X; OX) ↪→ Pic X[ε] → Pic(X).

• Jac(X) is proper over k by the valuative criterion. Just show that an invertible sheaf M
on X × Spec K lifts unique to M̃ on X × Spec R, but X × Spec R is regular, so apply II.6.5.

• For any n there is a morphism This is surjective for n ≥ g(X) by RR since every divisor class
of degree d ≥ g has an effective representative. The fibers of φn are all tuples (p1, · · · , pn)
such that D =

∑
pi forms a complete linear system.

– Most fibers are finite, so Jac(X) is irreducible of dimension g.
– Smoothness: dim T0 Jac(X) = dim H1(X; OX) = g, so smooth at zero, and group

schemes are homogeneous so smooth everywhere.

4.4.3. Elliptic functions.
Stopped at elliptic functions.

4.5. IV.5: The Canonical Embedding.

4.6. IV.6: Classification of Curves in P3.
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5. V: Surfaces

5.1. V.1: Geometry on a Surface.

5.2. V.2: Ruled Surfaces.

5.3. V.3: Monoidal Transformations.

5.4. V.4: The Cubic Surface in P3.

5.5. V.5: Birational Transformations.

5.6. V.6: Classification of Surfaces.
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