JUST DO IT: A COLLECTION OF HARTSHORNE PROBLEMS

D. ZACK GARZA

Contents

1. I: Varieties	3
1.1. I.1: Affine Varieties \star	3
1.2. I.2: Projective Varieties \star	5
1.3. I.3: Morphisms	6
1.4. I.4: Rational Maps	6
1.5. I.5: Nonsingular Varieties	6
1.6. I.6: Nonsingular Curves	6
1.7. I.7: Intersections in Projective Space	6
2. II: Schemes	7
2.1. II.1: Sheaves \star	7
2.2. II.2: Schemes	9
2.3. II.3: First Properties of Schemes	9
2.4. II.4: Separated and Proper Morphisms	9
2.5. II.5: Sheaves of Modules	9
2.6. II.6: Divisors	9
2.7. II.7: Projective Morphisms	9
2.8. II.8: Differentials	9
2.9. II.9: Formal Schemes	9
3. III: Cohomology	10
3.1. III.1: Derived Functors	10
3.2. III.2: Cohomology of Sheaves	10
3.3. III.3: Cohomology of a Noetherian Affine Scheme	10
3.4. III.4: Čech Cohomology	10
3.5. III.5: The Cohomology of Projective Space	10
3.6. III.6: Ext Groups and Sheaves	10
3.7. III.7: Serre Duality	10
3.8. III.8: Higher Direct Images of Sheaves	10
3.9. III.9: Flat Morphisms	10
3.10. III.10: Smooth Morphisms	10
3.11. III.11: The Theorem on Formal Functions	10
3.12. III.12: The Semicontinuity Theorem	10
4. IV: Curves \star	11
4.1. IV.1: Riemann-Roch	11
4.2. IV.2: Hurwitz \star	13
4.3. IV.3: Embeddings in Projective Space \star	15
4.4. IV.4: Elliptic Curves \star	17
4.5. IV.5: The Canonical Embedding	19
4.6. IV.6: Classification of Curves in \mathbf{P}^3	19
5. V: Surfaces	20
5.1. V.1: Geometry on a Surface	20

5.2.	V.2: Ruled Surfaces	20
5.3.	V.3: Monoidal Transformations	20
5.4.	V.4: The Cubic Surface in \mathbf{P}^3	20
5.5.	V.5: Birational Transformations	20
5.6.	V.6: Classification of Surfaces	20

1. I: VARIETIES

Remark 1.0.1. Some useful basic properties:

- Properties of V: $- \bigcap_{i \in I} V(\mathfrak{a}_i) = V\left(\sum_{i \in I} \mathfrak{a}_i\right).$ $\diamond \text{ E.g. } V(x) \cap V(y) = V(\langle x \rangle + \langle y \rangle) = V(x, y) = \{0\}, \text{ the origin.}$ $- \bigcup_{i \leq n} V(\mathfrak{a}_i) = V\left(\prod_{i \leq n} \mathfrak{a}_i\right).$ $\diamond \text{ E.g. } V(x) \cup V(y) = V(\langle x \rangle \langle y \rangle) = V(xy), \text{ the union of coordinate axes.}$ $- V(\mathfrak{a})^c = \bigcup_{f \in \mathfrak{a}} D(f)$ $- V(\mathfrak{a}_1) \subseteq V(\mathfrak{a}_2) \iff \sqrt{\mathfrak{a}_1} \supseteq \sqrt{\mathfrak{a}_2}.$
- Properties of *I*:
 - $I(V(\mathfrak{a})) = \sqrt{\mathfrak{a}}$ and $V(I(Y)) = cl_{\mathbf{A}^n}(Y)$. The containment correspondence is contravariant in both directions.

$$-I(\cup_i Y_i) = \cap_i I(Y_i).$$

• If F is a sheaf taking values in subsets of a giant ambient set, then $F(\cup U_i) = \cap F(U_i)$. For \mathbf{A}^n/\mathbf{C} , take $\mathbf{C}(x_1, \cdots, x_n)$, the field of rational functions, to be the ambient set.

- For \mathbf{C}^n ,

1.1. I.1: Affine Varieties *.

Remark 1.1.1. Summary:

- $\mathbf{A}_{/k}^n = \left\{ [a_1, \cdots, a_n] \mid a_i \in k \right\}$, and elements $f \in A \coloneqq k[x_1, \cdots, x_n]$ are functions on it.
- $Z(f) \coloneqq \left\{ p \in \mathbf{A}^n \mid f(p) = 0 \right\}$, and for any $T \subseteq A$ we set $Z(T) \coloneqq \bigcap_{f \in T} Z(f)$.
 - Note that $Z(T) = Z(\langle T \rangle_A) = Z(\langle f_1, \dots, f_r \rangle)$ for some generators f_i , using that A is a Noetherian ring. So every Z(T) is the set of common zeros of finitely many polynomials, i.e. the intersection of finitely many hypersurfaces.
- Algebraic: $Y \subseteq \mathbf{A}^n$ is algebraic iff Y = Z(T) for some $T \subseteq A$.
- The Zariski topology is generated by open sets of the form $Z(T)^c$.
- **A**¹ is a non-Hausdorff space with the cofinite topology.
- Irreducible: Y is reducible iff $Y = Y_1 \cup Y_2$ with Y_1, Y_2 proper subsets of Y which are closed in Y.
 - Nonempty open subsets of irreducible spaces are both irreducible and dense.
 - If $Y \subseteq X$ is irreducible then $cl_X(Y) \subseteq X$ is again irreducible.
- Affine (algebraic) varieties: irreducible closed subsets of Aⁿ.
- Quasi-affine varieties: open subsets of affine varieties.
- The ideal of a subset: $I(Y) := \{ f \in A \mid f(p) = 0 \ \forall p \in Y \}.$
- Nullstellensatz: if $k = \overline{k}, \mathfrak{a} \in \mathrm{Id}(k[x_1, \cdots, x_n])$, and $f \in k[x_1, \cdots, x_n]$ with f(p) = 0 for all $p \in V(\mathfrak{a})$, then $f^r \in \mathfrak{a}$ for some r > 0, so $f \in \sqrt{\mathfrak{a}}$. Thus there is a contravariant correspondence between radical ideals of $k[x_1, \cdots, x_n]$ and algebraic sets in $\mathbf{A}^n_{/k}$.
- Irreducibility criterion: Y is irreducible iff $I(Y) \in \operatorname{Spec} k[x_1, \cdots, x_n]$ (i.e. it is prime).
- Affine curves: if $f \in k[x, y]^{\text{irr}}$ then $\langle f \rangle \in \text{Spec } k[x, y]$ (since this is a UFD) so Z(f) is irreducible and defines an affine curve of degree $d = \deg(f)$.
- Affine surfaces: Z(f) for $f \in k[x_1, \dots, x_n]^{\text{irr}}$ defines a surface.

D. ZACK GARZA

- Coordinate rings: $A(Y) \coloneqq k[x_1, \cdots, x_n]/I(Y)$.
- Noetherian spaces: $X \in \mathsf{Top}$ is Noetherian iff the DCC on closed subsets holds.
- Unique decomposition into irreducible components: if $X \in \mathsf{Top}$ is Noetherian then every closed nonempty $Y \subseteq X$ is of the form $Y = \bigcup_{i=1}^{r} Y_i$ with Y_i a uniquely determined closed irreducible with $Y_i \not\subseteq Y_j$ for $i \neq j$, the *irreducible components* of Y.
- **Dimension**: for $X \in \mathsf{Top}$, the dimension is dim $X \coloneqq \sup \{n \mid \exists Z_0 \subset Z_1 \subset \cdots \subset Z_n\}$ with Z_i distinct irreducible closed subsets of X. Note that the dimension is the number of "links" here, not the number of subsets in the chain.
- **Height**: for $\mathfrak{p} \in \operatorname{Spec} A$ define $\operatorname{ht}(\mathfrak{p}) \coloneqq \sup \left\{ n \mid \exists \mathfrak{p}_0 \subset \mathfrak{p}_1 \subset \cdots \subset \mathfrak{p}_n = \mathfrak{p} \right\}$ with $\mathfrak{p}_i \in \operatorname{Spec} A$ distinct prime ideals.
- Krull dimension: define krulldim A := sup_{p∈Spec A} ht(p), the supremum of heights of prime ideals.

Exercise 1.1.2 (The Zariski topology). Show that the class of algebraic sets form the closed sets of a topology, i.e. they are closed under finite unions, arbitrary intersections, etc.

Exercise 1.1.3 (The affine line).

- Show that $\mathbf{A}_{/k}^1$ has the cofinite topology when $k = \overline{k}$: the closed (algebraic) sets are finite sets and the whole space, so the opens are empty or complements of finite sets.¹
- Show that this topology is not Hausdorff.
- Show that \mathbf{A}^1 is irreducible without using the Nullstellensatz.
- Show that \mathbf{A}^n is irreducible.
- Show that maximal ideals $\mathfrak{m} \in \mathrm{mSpec} k[x_1, \cdots, x_n]$ correspond to minimal irreducible closed subsets $Y \subseteq \mathbf{A}^n$, which must be points.
- Show that mSpec $k[x_1, \dots, x_n] = \{ \langle x_1 a_1, \dots, x_n a_n \rangle \mid a_1, \dots, a_n \in k \}$ for k = bark, and that this fails for $k \neq bark$.
- Show that \mathbf{A}^n is Noetherian.
- Show dim $\mathbf{A}^1 = 1$.
- Show dim $\mathbf{A}^n = n$.

Exercise 1.1.4 (Commutative algebra).

- Show that if Y is affine then A(Y) is an integral domain and in ${}_{k}Alg^{fg}$.
- Show that every $B \in {}_{k}\mathsf{Alg}^{\mathrm{fg}} \cap \mathsf{Domain}$ is of the form B = A(Y) for some $Y \in \mathsf{AffVar}_{/k}$.
- Show that if Y is an affine algebraic set then $\dim Y = \operatorname{krulldim} A(Y)$.

Theorem 1.1.5 (Results from commutative algebra).

- If $k \in \mathsf{Field}, B \in {}_k\mathsf{Alg}^{\mathrm{fg}} \cap \mathsf{Domain}$,
 - krulldim $B = [K(B) : B]_{tr}$ is the transcendence degree of the quotient field of B over B.
 - $If \mathfrak{p} \in \operatorname{Spec} B \ then \ \operatorname{ht} \mathfrak{p} + \operatorname{krulldim}(B/\mathfrak{p}) = \operatorname{krulldim} B.$
- Krull's Hauptidealsatz:
 - If $A \in \mathsf{CRing}^{\mathsf{Noeth}}$ and $f \in A \setminus A^{\times}$ is not a zero divisor, then every minimal $\mathfrak{p} \in \operatorname{Spec} A$ with $\mathfrak{p} \ni f$ has height 1.
- If $A \in \mathsf{CRing}^{\mathsf{Noeth}} \cap \mathsf{Domain}$, then A is a UFD iff every $\mathfrak{p} \in \operatorname{Spec}(A)$ with $\operatorname{ht}(\mathfrak{p}) = 1$ is principal.

¹Hint: k[x] is a PID and factor any f(x) into linear factors using that k = bark to write $Z(\mathfrak{a}) = Z(f) = \{a_1, \dots, a_k\}$ for some k.

Exercise 1.1.6 (1.10). Show that if Y is quasi-affine then

Exercise 1.1.7 (1.13). Show that if $Y \subseteq \mathbf{A}^n$ then $\operatorname{codim}_{\mathbf{A}^n}(Y) = 1 \iff Y = Z(f)$ for a single nonconstant $f \in k[x_1, \cdots, x_n]^{\operatorname{irr}}$.

Exercise 1.1.8 (?). Show that if $\mathfrak{p} \in \text{Spec}(A)$ and $\text{ht}(\mathfrak{p}) = 2$ then \mathfrak{p} can not necessarily be generated by two elements.

1.2. I.2: Projective Varieties *.

Remark 1.2.1.

- **Projective space**: $\left\{ \mathbf{a} \coloneqq [a_0, \cdots, a_n] \mid a_i \in k \right\} / \sim$ where $\mathbf{a} \sim \lambda \mathbf{a}$ for all $\lambda \in k \setminus \{0\}$, i.e. lines in \mathbf{A}^{n+1} passing through $\mathbf{0}$.
- Graded rings: a ring S with a decomposition $S = \bigoplus_{d \ge 0} S_d$ with each $S_d \in \mathsf{AbGrp}$ and $S_d S_e \subseteq S_{d+e}$; elements of S_d are homogeneous of degree d and any element in S is a finite sum of homogeneous elements of various degrees.
- Homogeneous polynomials: f is homogeneous of degree d if $f(\lambda x_0, \dots, \lambda x_n) = \lambda^d f(x_0, \dots, x_n)$.
- Homogeneous ideals: $\mathfrak{a} \subseteq S$ is homogeneous when it's of the form $\mathfrak{a} = \bigoplus_{d>0} (\mathfrak{a} \cap S_d)$.
 - \mathfrak{a} is homogeneous iff generated by homogeneous elements.
 - The class of homogeneous ideals is closed under sums, products, intersections, and radicals.
 - Primality of homogeneous ideals can be tested on homogeneous elements, i.e. it STS $fg \in \mathfrak{a} \implies f, g \in \mathfrak{a}$ for f, g homogeneous.
- $k[x_1, \dots, x_n] = \bigoplus_{d \ge 0} k[x_1, \dots, x_n]_d$ where the degree d part is generated by monomials of total weight d.
 - $\text{ E.g. } k[x_1, \cdots, x_n]_1 = \langle x_1, x_2, \cdots, x_n \rangle, \ k[x_1, \cdots, x_n]_2 = \langle x_1^2, x_1 x^2, x_1 x_3, \cdots, x_2^2, x_2 x_3, x_2 x_4, \cdots, x_n^2 \rangle.$ - Useful fact: by stars and bars, $\operatorname{rank}_k k[x_1, \cdots, x_n]_d = \binom{d+n}{n}$. E.g. for (d, n) = (3, 2),

```
\begin{array}{c} x_1^3 \longleftrightarrow \star \star \star \mid \mid \\ x_1^2 x_2 \longleftrightarrow \star \star \mid \star \mid \\ x_1^2 x_3 \longleftrightarrow \star \star \mid \star \mid \\ x_1 x_2^2 \longleftrightarrow \star \mid \star \star \mid \\ x_1 x_2 x_3 \longleftrightarrow \star \mid \star \star \mid \\ x_1 x_2 x_3 \longleftrightarrow \star \mid \star \star \mid \\ x_1 x_2 x_3 \longleftrightarrow \star \mid \star \star \mid \\ x_2 x_3 \longleftrightarrow \star \mid \star \star \\ x_2^3 \longleftrightarrow \mid \star \star \star \mid \\ x_2^2 x_3 \longleftrightarrow \mid \star \star \mid \\ x_2 x_3^2 \longleftrightarrow \mid \star \star \star \\ x_3^3 \longleftrightarrow \mid \mid \star \star \star \\ \end{array}
```

- Arbitrary polynomials $f \in k[x_0, \dots, x_n]$ do not define functions on \mathbf{P}^n because of nonuniqueness of coordinates due to scaling, but homogeneous polynomials f being zero or not is well-defined and there is a function So $Z(f) \coloneqq \{p \in \mathbf{P}^n \mid f(p) = 0\}$ makes sense.
- **Projective algebraic varieties**: Y is projective iff it is an irreducible algebraic set in \mathbf{P}^n . Open subsets of \mathbf{P}^n are **quasi-projective varieties**.
- Homogeneous ideals of varieties:
- Homogeneous coordinate rings:
- Z(f) for f a linear homogeneous polynomial defines a hyperplane.

Exercise 1.2.2 (Cor. 2.3). Show \mathbf{P}^n admits an open covering by copies of \mathbf{A}^n by explicitly constructing open sets U_i and well-defined homeomorphisms $\varphi_i : U_i \to \mathbf{A}^n$.

- 1.3. I.3: Morphisms.
- 1.4. I.4: Rational Maps.
- 1.5. I.5: Nonsingular Varieties.
- 1.6. I.6: Nonsingular Curves.
- 1.7. I.7: Intersections in Projective Space.

2. II: Schemes

Note: there are many, many important notions tucked away in the exercises in this section.

2.1. II.1: Sheaves \star .

Remark 2.1.1.

- **Presheaves** F of abelian groups: contravariant functors $F \in Fun(Open(X), AbGrp)$.
 - Assigns every open $U \subseteq X$ some $F(U) \in \mathsf{AbGrp}$
 - For $\iota_{VU}: V \subseteq U$, restriction morphisms $\varphi_{UV}: F(U) \to F(V)$.
 - $F(\emptyset) = 0$, so $F(\emptyset^{\downarrow}) = {}_{\uparrow}$.
 - $-\varphi UU = \mathrm{id}_{F(U)}$
 - $W \subseteq V \subseteq U \implies \varphi_{UW} = \varphi_{VW} \circ \varphi_{UV}.$
- Sections: elements $s \in F(U)$ are sections of F over U. Also notation $\Gamma(U; F)$ and $H^0(U; F)$, and the restrictions are written $s|_V := \varphi_{UV}(s)$ for $s \in F(U)$.
- Sheaves: presheaves F which are completely determined by local data. Additional requirements on open covers $\mathcal{V} \rightrightarrows U$:
 - If $s \in F(U)$ with $s|_{V_i} = 0$ for all *i* then $s \equiv 0 \in F(U)$.
 - Given $s_i \in F(V_i)$ where $s_i|_{V_{ij}} = s_j|_{V_{ij}} \in F(V_{ij})$ then $\exists s \in F(U)$ such that $s|_{V_i} = s_i$ for each *i*, which is unique by the previous condition.
- Constant sheaf: for $A \in AbGrp$, define the constant sheaf
- Stalks: $F_p \coloneqq \underline{\operatorname{colim}}_{U \supseteq p} F(U)$ along the system of restriction maps.
 - These are represented by pairs (U, s) with $U \ni p$ an open neighborhood and $s \in F(U)$, modulo $(U, s) \sim (V, t)$ when $\exists W \subseteq U \cap V$ with $s|_w = t|_w$.
- Germs: a germ of a section of F at p is an elements of the stalk F_p .
- Morphisms of presheaves: natural transformations $\eta \in Mor_{Fun}(F, G)$, i.e. for every U, V, components η_U, η_V fitting into a diagram

Link to Diagram

- A morphism of sheaves is exactly a morphism of the underlying presheaves.
- Morphisms of sheaves $\eta: F \to G$ induce morphisms of rings on the stalks $\eta_p: F_p \to G_p$.
- Morphisms of sheaves are isomorphisms iff isomorphisms on all stalks, see exercise below.
- Kernels, cokernels, images: for $\varphi : F \to G$, sheafify the assignments to kernels/cokernels/images on open sets.
- Sheafification: for any $F \in Sh(X)$, there is a unique $F^+ \in Sh(X)$ and a morphism
 - $\theta: F \to F^+$ of presheaves such that any sheaf presheaf morphism $F \to G$ factors as $F \to F^+ \to G.$
 - The construction: $F^+(U) = \mathsf{Top}(U, \coprod_{p \in U} F_p)$ are all functions s into the union of stalks, subject to $s(p) \in F_p$ for all $p \in U$ and for each $p \in U$, there is a neighborhood $V \supseteq U \ni p$ and $t \in F(V)$ such that for all $q \in V$, the germ t_q is equal to s(q).
 - Note that the stalks are the same: $(F^+)_p = F_p$, and if F is already a sheaf then θ is an isomorphism.
- Subsheaves: $F' \leq F$ iff $F'(U) \leq F(U)$ is a subgroup for every U and the restrictions on F' are induced by restrictions from F.
 - If $F' \leq F$ then $F'_p \leq F_p$.
 - **Injectivity**: $\varphi : F \to G$ is injective iff the sheaf kernel ker $\varphi = 0$ as a subsheaf of F. $\Diamond \varphi$ is injective iff injective on all sections.
 - $-\operatorname{im}\varphi \leq G$ is a subsheaf.
 - Surjectivity: $\varphi: F \to G$ is surjective iff im $\varphi = G$ as a subsheaf.

- Exactness: a sequence of sheaves $(F_i, \varphi_i : F_i \to F_{i+1})$ is exact iff ker $\varphi_i = \operatorname{im} \varphi^{i-1}$ as subsheaves of F_i .
 - $-\varphi: F \to G$ is injective iff $0 \to F \xrightarrow{\varphi} G$ is exact.
 - $-\varphi: F \to G$ is surjective iff $F \xrightarrow{\varphi} G \to 0$ is exact.
 - Sequences of sheaves are exact iff exact on stalks.
- Quotient sheaves: F/F' is the sheafification of $U \mapsto F(U)/F'(U)$.
- Cokernels: for $\varphi: F \to G$, coker φ is sheafification of $U \mapsto \operatorname{coker}(F(U) \xrightarrow{\varphi(U)} G(U))$.
- Direct images: for $f \in \text{Top}(X, Y)$, the sheaf defined on sections by $(f_*F)(V) \coloneqq F(f^{-1}(V))$ for any $V \subseteq Y$. Yields a functor $f_* : \text{Sh}(X) \to \text{Sh}(Y)$.
- Inverse images: denoted $f^{-1}G$, the sheafification of $U \mapsto \underline{\operatorname{colim}}_{V \supseteq f(U)} G(V)$, i.e. take the limit from above of all open sets V of Y containing the image f(U). Yields a functor $f^{-1} : \operatorname{Sh}(Y) \to \operatorname{Sh}(X)$.
- Restriction of a sheaf: for $F \in Sh(X)$ and $Z \subseteq X$ with $\iota : Z \hookrightarrow X$ the inclusion, define $i^{-1}F \in Sh(Z)$ to be the restriction. Also denoted $F|_Z$. This has the same stalks: $(F|_Z)_p = F_p$.
- For any $U \subseteq X$, the global sections functor $\Gamma(U; -) : \mathsf{Sh}(X) \to \mathsf{AbGrp}$ is left-exact (proved in exercises).
- Limits of sheaves: for $\{F_i\}$ a direct system of sheaves, $\underline{\operatorname{colim}}_i F_i$ has underlying presser $U \mapsto \underline{\operatorname{colim}}_i F_i(U)$. If X is Noetherian, then this is already a sheaf, and commutes with sections: $\Gamma(X; \underline{\operatorname{colim}}_i F_i) = \underline{\operatorname{colim}}_i \Gamma(X; F_i)$.
 - Inverse limits exist and are defined similarly.
- The espace étalé: define $\operatorname{\acute{E}t}(F) = \coprod_{p \in X} F_p$ and a projection $\pi : \operatorname{\acute{E}t}(F) \to X$ by sending $s \in F_p$ to p. For each $U \subseteq X$ and $s \in F(U)$, there is a local section $\overline{s} : U \to \operatorname{\acute{E}t}(F)$ where $p \mapsto s_p$, its germ at p; this satisfies $\pi \circ \overline{s} = \operatorname{id}_U$. Give $\operatorname{\acute{E}t}(F)$ the strongest topology such that the \overline{s} are all continuous. Then $F^+(U) \coloneqq \operatorname{Top}(U, \operatorname{\acute{E}t}(F))$ is the set of continuous sections of $\operatorname{\acute{E}t}(F)$ over U.
- Support: for $s \in F(U)$, supp $(s) \coloneqq \{p \in U \mid s_p \neq 0\}$ where s_p is the germ of s in F_p . This is closed.

- This extends to $\operatorname{supp}(F) \coloneqq \{ p \in X \mid F_p \neq 0 \}$, which need not be closed.

- Sheaf hom: $U \mapsto \operatorname{Hom}(F|_U, G|_U)$ forms a sheaf of local morphisms and is denoted $\mathcal{H}om(F, G)$.
- Flasque sheaves: a sheaf is flasque iff $V \hookrightarrow U \implies F(U) \twoheadrightarrow F(V)$.
- Skyscraper sheaves: for $A \in \mathsf{AbGrp}$ and $p \in X$, define $i_p(A)$ by $U \mapsto A$ if $p \in U$ and 0 otherwise. Also denoted $\iota_*(A)$ where $\iota : \operatorname{cl}_X(\{p\}) \hookrightarrow X$ is the inclusion.
 - The stalks are $(i_p(A))_q = A$ if $q \in cl_X(\{p\})$ and 0 otherwise.
- Extension by zero: if $\iota : Z \hookrightarrow X$ is the inclusion of a closed set and $U \coloneqq X \setminus Z$ with $j : U \to X$, then for $F \in \mathsf{Sh}(Z)$, the sheaf $\iota_*F \in \mathsf{Sh}(X)$ is the extension of F by zero outside of Z. The stalks $(\iota_*F)_p$ are F_p is $p \in Z$ and 0 otherwise.
 - For the open U, extension by zero is $j_!F$ which has presheaf $V \mapsto F(V)$ if $V \subseteq U$ and 0 otherwise. The stalks $(j_!F)_p$ are F_p if $p \in U$ and 0 otherwise.
- Sheaf of ideals: for $Y \subseteq X$ closed and $U \subseteq X$ open, $\mathcal{I}_Y(U)$ has presheaf $U \mapsto$ the ideal in $\mathcal{O}_X(U)$ of regular functions vanishing on all of $Y \cap U$. This is a subsheaf of \mathcal{O}_X .
- Gluing sheaves: given $\mathcal{U} \rightrightarrows X$ and sheaves $F_i \in \mathsf{Sh}(U_i)$, one can glue to a unique $F \in \mathsf{Sh}(X)$ if one is given morphisms $\varphi_{ij} F_i|_{U_{ij}} \xrightarrow{\sim} F_j|_{U_{ij}}$ where $\varphi_{ii} = \mathrm{id}$ and $\varphi_{ik} = \varphi_{jk} \circ \varphi_{ij}$ on U_{ijk} .

Warning 2.1.2. Some common mistakes:

• Kernel presheaves are already sheaves, but not cokernels or images. See exercise below.

- $\varphi: F \to G$ is injective iff injective on sections, but this is not true for surjectivity.
- The sheaves $f^{-1}G$ and f^*G are different! See III.5 for the latter.
- Global sections need not be right-exact.

Exercise 2.1.3 (Regular functions on varieties form a sheaf). For $X \in Var_{k}$, define the ring $\mathcal{O}_X(U)$ of literal regular functions $f_i : U \to k$ where restriction morphisms are induced by literal restrictions of functions. Show that \mathcal{O}_X is a sheaf of rings on X.

Hint: Locally regular implies regular, and regular + locally zero implies zero.

Exercise 2.1.4 (?). Show that for every connected open subset $U \subseteq X$, the constant sheaf satisfies $\underline{A}(U) = A$, and if U is open with open connected component so the $\underline{A}(U) = A^{\times \sharp \pi_0 U}$.

Exercise 2.1.5 (?). Show that if $X \in Var_{/k}$ and \mathcal{O}_X is its sheaf of regular functions, then the stalk $\mathcal{O}_{X,p}$ is the *local ring of* p on X as defined in Ch. I.

Exercise 2.1.6 (Prop 1.1). Let $\varphi : F \to G$ be a morphism in Sh(X) and show that φ is an isomorphism iff φ_p is an isomorphism on stalks for all $p \in X$. Show that this is false for presheaves.

Exercise 2.1.7 (?). Show that for $\varphi \in Mor_{\mathsf{Sh}(X)}(F,G)$, ker φ is a sheaf, but coker φ , im φ are not in general.

Exercise 2.1.8 (?). Show that if $\varphi : F \to G$ is surjective then the maps on sections $\varphi(U) : F(U) \to G(U)$ need not all be surjective.

- 2.2. **II.2: Schemes.**
- 2.3. II.3: First Properties of Schemes.
- 2.4. II.4: Separated and Proper Morphisms.
- 2.5. II.5: Sheaves of Modules.
- 2.6. **II.6:** Divisors.
- 2.7. II.7: Projective Morphisms.
- 2.8. II.8: Differentials.
- 2.9. II.9: Formal Schemes.

- 3.1. III.1: Derived Functors.
- 3.2. III.2: Cohomology of Sheaves.
- 3.3. III.3: Cohomology of a Noetherian Affine Scheme.
- 3.4. III.4: Čech Cohomology.
- 3.5. III.5: The Cohomology of Projective Space.
- 3.6. III.6: Ext Groups and Sheaves.
- 3.7. III.7: Serre Duality.
- 3.8. III.8: Higher Direct Images of Sheaves.
- 3.9. III.9: Flat Morphisms.
- 3.10. III.10: Smooth Morphisms.
- 3.11. III.11: The Theorem on Formal Functions.
- 3.12. III.12: The Semicontinuity Theorem.

4. IV: CURVES \star

Remark 4.0.1. Summary of major results:

- $p_a(X) \coloneqq 1 P_X(0)$
- $p_q(X) \coloneqq h^0(\omega_X) = h^0(\mathcal{L}(K_X))$
- For curves, $p_a(X) = p_q(X) = h^1(\mathcal{O}_X)$ by setting $D \coloneqq K_C$ in RR. $- \deg K_C = 2g - 2.$
- $D_1 \sim D_2 \iff D_1 D_2 = (f)$ for $f \in K(X)$ rational, $|D| = \{D' \sim D\}$, and this bijects with points of $\frac{H^0(\mathcal{L}(D))\setminus\{0\}}{\mathbf{G}_m}$. - Thus dim $|D| = h^0(\mathcal{L}(D)) - 1 \coloneqq \ell(D) - 1$.

- X smooth \implies $\operatorname{Cl}(X) \xrightarrow{\sim} \operatorname{Pic}(X)$ via $D \mapsto \mathcal{L}(D)$.
- $h^0(\mathcal{L}(D)) > 0 \implies \deg(D) \ge 0$, and if $\deg D = 0$ then $D \sim 0$ and $\mathcal{L}(D) \cong \mathcal{O}_X$.
- RR:
 - How to remember: note $g = h^1(\mathcal{O}_X) = h^1(\mathcal{L}(0))$, and $H^0(\mathcal{O}_X) = k$ so $h^0(\mathcal{O}_X) = 1$, thus

- For
$$C \subseteq \mathbf{P}^n$$
, deg $(C) = d$ and $D = C \cap H$ a hyperplane section defining $\mathcal{L}(D) = \mathcal{O}_X(1)$,

- A curve is rational iff isomorphic to \mathbf{P}^1 iff g = 0.
- $K \sim 0$ on an elliptic curve since deg K = 2g 2 = 0 and deg $D = 0 \implies D \sim 0$.
- For X elliptic, $\operatorname{Pic}^{0}(X) \coloneqq \left\{ D \in \operatorname{Div}(X) \mid \deg D = 0 \right\}$ and $|X| \xrightarrow{\sim} |\operatorname{Pic}^{0}(X)|$ via $p \mapsto \mathcal{L}(p p)$ p_0) for any fixed $p_0 \in X$, inducing its group structure. (This is proved with RR.)

Remark 4.0.2. Comments from preface:

- The statement of Riemann-Roch is important; less so its proof.
- Representing curves:
 - A branched covering of \mathbf{P}^1 ,
 - More generally a branched covering of another curve,
 - Nonsingular projective curves: admit embeddings into \mathbf{P}^3 , maps to \mathbf{P}^2 birationally such that the image is at worst a nodal curve.
- The central result regarding representing curves: Hurwitz's theorem which compares K_X, K_Y for a cover $Y \to X$ of curves.
- Curves of genus 1: elliptic curves.
- Later sections: the canonical embedding of a curve.

4.1. IV.1: Riemann-Roch.

Definition 4.1.1 (Curves). A curve over $k = \overline{k}$ is a scheme over Spec k which is

- Integral
- Dimension 1
- Proper over k
- With regular local rings

In particular, a curve is smooth, complete, and necessary projective. A **point** on a curve is a closed point.

Definition 4.1.2 (Arithmetic genus). The arithmetic genus of a projective curve X is where $P_X(t)$ is the **Hilbert polynomial** of X.

Definition 4.1.3 (Geometric genus). The geometric genus of a curve is where ω_X is the canonical sheaf.

Exercise 4.1.4 (?). Show that if X is a curve, there is a single well-defined genus

Hint: see Ch. III Ex. 5.3, and use Serre duality for p_q .

Exercise 4.1.5 (?). Show that for any $g \ge 0$ there exists a curve of genus g.

Hint: take a divisor of type (g + 1, 2) on a smooth quadric which is irreducible and smooth with $p_a = g$.

Definition 4.1.6 (Divisors on a curve). Reviewing divisors:

- The divisor group: $Div(X) = \mathbf{Z}[X_{cl}]$
- **Degrees**: $deg(\sum n_i D_i) \coloneqq \sum n_i$, and
- Linear equivalence: $D_1 \sim D_2 \iff D_1 D_1 = \text{Div}(f)$ for some $f \in k(X)$ a rational function.
- D is effective if $n_i \ge 0$ for all i.
- $|D| \coloneqq \{D' \in \operatorname{Div}(X) \mid D' \sim D\}$ is the complete linear system of D.
- $|D| \cong \mathbf{P}H^0(X; \mathcal{L}(D))$
- Dimensions of linear systems: $\ell(D) \coloneqq \dim_k H^0(X; \mathcal{L}(D))$ and $\dim |D| \coloneqq \ell(D) 1$.
- Relative differentials: $\Omega_X := \Omega_{X_{/k}}$ is the sheaf of relative differentials on X.
 - The technical definition: $\Omega_{X_{/S}} \coloneqq \Delta^*_{X_{/Y}}(\mathcal{I}/\mathcal{I}^2)$ where \mathcal{I} is the sheaf of ideals defining the locally closed subscheme $\operatorname{im}(\Delta_{X_{/Y}}) \subseteq X \operatorname{fp} Y X$.
 - On affine schemes: on the ring side, $\Omega_{B_{/A}} \in {}_B\mathsf{Mod}$ equipped with a differential $d: B \to$

 ΩB_{A} , defined as $\langle db \mid b \in B \rangle_{B} / \langle d(b_{1} + b_{2}) = db_{1} + db_{2}, d(b_{1}b_{2}) = d(b_{1})b_{2} + b_{1}d(b_{2}), da = 0 \forall a \in A \rangle_{B}$ - On curves, $\Omega_{X/Y}$ measures the "difference" between K_{X} and K_{Y} .

- Canonical sheaf: dim $X = 1, \Omega_{X_{/k}} \cong \omega_X$.
- Canonical divisor: K_X 2is any divisor in the linear equivalence class corresponding to ω_X
- D is special iff its index of speciality $\ell(K D) > 0$, otherwise D is nonspecial.

Exercise 4.1.7 (?). Show that $D_1 \sim D_2 \implies \deg(D_1) = \deg(D_2)$.

Exercise 4.1.8 (?). Show that so |D| has the structure of the closed points of some projective space.

Exercise 4.1.9 (Lemma 1.2). Show that if $D \in \text{Div}(X)$ for X a curve and $\ell(D) \neq 0$, then $\deg(D) \geq 0$.

Show that is $\ell(D) \neq 0$ and deg D = 0 then $D \sim 0$ and $\mathcal{L}(D) \cong \mathcal{O}_X$.

Theorem 4.1.10 (Riemann-Roch).

Exercise 4.1.11 (Ingredients for proof of RR). Show the following:

- The divisor K D corresponds to $\omega_X \otimes \mathcal{L}(D)^{\vee} \in \operatorname{Pic}(X)$.
- $H^1(X; \mathcal{L}(D))^{\vee} \cong H^0(X; \omega_X \otimes \mathcal{L}(D)^{\vee}).$
- If X is any projective variety,

Exercise 4.1.12 (?). Show that if $X \subseteq \mathbf{P}^n$ is a curve with deg X = d and $D = X \cap H$ is a hyperplane section, then $\mathcal{L}(D) = \mathcal{O}_X(1)$ and $\chi(\mathcal{L}(D)) = d + 1 - p_a$.

Exercise 4.1.13 (?). Show that if g(X) = g then deg $K_X = 2g - 2$.

Hint: set D = K and use $\ell(K) = p_g = g$ and $\ell(0) = 1$.

Remark 4.1.14. More definitions:

- X is **rational** iff birational to \mathbf{P}^1 .
- X is elliptic if g = 1.

Exercise 4.1.15 (?). Show that

- 1. If deg D > 2g 2 then D is nonspecial.
- 2. $p_a(\mathbf{P}^1) = 0.$
- 3. A complete nonsingular curve is rational iff $X \cong \mathbf{P}^1$ iff g(X) = 0.

4. If X is elliptic then $K \sim 0$

Hint: for (3) apply RR to D = p - q for points $p \neq q$, and use $\deg(K - D) = -2$ and $\deg(D) = 0 \implies D \sim 0 \implies p \sim q$. For (4), show $\ell(K) = p_g = 1$.

Exercise 4.1.16 (?). If X is elliptic and $p \in X$, then there is a bijection so $Pic(X) \in Grp$.

Hint: show that if $\deg(D) = 0$ then there is some $x \in X$ such that $D \sim x - p$ and apply RR to D + p.

4.2. IV.2: Hurwitz *.

Remark 4.2.1. Summary of results:

- For curves, complete = projective.
- Riemann-Hurwitz: for $f: X \to Y$ finite separable,
- deg f := [K(X) : K(Y)] for finite morphisms of curves.
- $e_p \coloneqq v_p(f_*^{\sharp}t)$ where t is uniformizer in $\mathcal{O}_{f(p)}$ and $f^{\sharp} : \mathcal{O}_{Y,f(p)} \to \mathcal{O}_{X,p}$ for $f : X \to Y$. - $e_p > 1 \implies$ ramification.
 - Unramified everywhere implies etale (since automatically flat).
 - $-p \mid e_{x_0} \implies$ wild ramification, otherwise tame.
- $\exists f^* : \operatorname{Div}(Y) \to \operatorname{Div}(X)$ where $q \mapsto \sum_{p \mapsto q} e_p p$.
- Pullback commutes with forming line bundles: where the LHS $f^* : \operatorname{Pic}(Y) \to \operatorname{Pic}(X)$.
- The fundamental SES for relative differentials: if $f: X \to Y$ is finite separable,
- $\frac{\partial t}{\partial u}$ for t a uniformizer at f(p) and u a uniformizer at p is defined by noting $\Omega Y, f(p) = \langle dt \rangle, \Omega_{X,p} = \langle du \rangle$, and there is some $g \in \mathcal{O}_{X,p}$ such that $f^* dt = g du$; set $g \coloneqq \frac{\partial t}{\partial u}$.
- For finite separable morphisms of curves $f: X \to Y$,
 - supp $\Omega_{X/Y} = \operatorname{Ram}(f)$ is the ramification locus, and $\Omega_{X/Y}$ is torsion so $\operatorname{Ram}(f)$ is finite.
 - $\operatorname{length}(\Omega_{X,Y})_p = v_p\left(\frac{\partial t}{\partial u}\right)$ for any $p \in X$
 - Tamely ramified \implies length $(\Omega_{X/Y})_p = e_p 1$, and wild ramification increases this length. Recall that length is the largest size of chains of submodules.
- The ramification divisor:
- $K_X \sim f^* K_Y + R$
- \mathbf{P}^1 can't admit an unramified cover: for $n \ge 1$, which forces $g(X) = 0, n = 1, X = \mathbf{P}^1, f =$ id.
- The Frobenius morphism on schemes is defined by taking $f^{\sharp} : \mathcal{O}_X \to \mathcal{O}_X$ to be the *p*th power map; pullback yields a definition of X_p , the Frobenius twist of X.

 $-F: X_p \to X$ is finite, deg F = p, and corresponds to $K(X) \hookrightarrow K(X)^{\frac{1}{p}}$

- If $f: X \to Y$ induces a purely inseparable extension K(X)/K(Y), then $X \xrightarrow{\sim} Y$ as schemes, g(X) = g(Y), and f is a composition of Frobenii.
- Everywhere ramified extensions: $f: Y_p \to Y$, where $e_q = p$ for every $q \in X$. Induces $\Omega_{X/Y} \cong \Omega_X$.
- $\deg R$ is always even.
- Finite implies proper: finite implies separated, of finite type, closed by "going up" and universally closed by since finiteness is preserved under base change.
- \mathbf{P}^1 no nontrivial etale covers.
- If $f: X \to Y$ then $g(X) \ge g(Y)$. – Thus $\exists \mathbf{P}^1 \to Y$ finite $\implies g(Y) = 0$.

Remark 4.2.2. Preface:

• **Degree**: for a finite morphism of curves $X \xrightarrow{f} Y$, set det(f) := [k(X) : k(Y)], the degree of the extension of function fields.

D. ZACK GARZA

- Ramification indices e_p : for $p \in X$, let q = f(p) and $t \in \mathcal{O}_q$ a local coordinate. Pull back to $t \in \mathcal{O}_p$ via f^{\sharp} and define $e_p \coloneqq v_p(t)$ using the valuation v_p for the DVR \mathcal{O}_p .
- Ramified: $e_p > 1$, and unramified if $e_p = 1$.
- Branch points any q = f(p) where f is ramified.
- Tame ramification: for ch(k) = p, tame if $p \nmid e_P$.
- Wild ramification: when $p \mid e_P$.
- Pullback maps on divisor groups:
 - This commutes with taking line bundles (exercise), so induces a well-defined map $f^* : \operatorname{Pic}(X) \to \operatorname{Pic}(Y).$
- f is separable if k(X)/k(Y) is a separable field extension.

Exercise 4.2.3 (?). Misc:

- Show that if f is everywhere unramified then it is an étale morphism.
- Show that $f^*\mathcal{L}(D) = \mathcal{L}(f^*D)$

Exercise 4.2.4 (Prop 2.1). Show that if $X \xrightarrow{f} Y$ is a finite separable morphism of curves, there is a SES

Remark 4.2.5. Definitions:

- Derivatives: for $f: X \to Y$, let t be a parameter at Q = f(P) and u at P. Then $\Omega_{Y,Q} = \langle dt \rangle_{\mathcal{O}_Q}$ and $\mathcal{O}_{X,P} = \langle du \rangle_{\mathcal{O}_P}$ and $\exists ! g \in \mathcal{O}_P$ such that $f^* dt = du$ so we write $\frac{\partial t}{\partial u} \coloneqq g$.
- Ramification divisor: $R \coloneqq \sum_{P \in X} \operatorname{length}(\Omega_{X_{/Y}})_P[P] \in \operatorname{Div}(X)$

Exercise 4.2.6 (Prop 2.2). For $X \xrightarrow{f} Y$ a finite separable morphism of curves,

- a. $\Omega_{X_{/Y}}$ is a torsion sheaf on X with support equal to the ramification locus of f. Thus f is ramified at finitely many points.
- b. The stalks $(\Omega_{X/Y})_P$ are principal \mathcal{O}_P -modules of finite length equal to $v_p\left(\frac{\partial t}{\partial u}\right)$ c.

Exercise 4.2.7 (Prop 2.3). If $X \xrightarrow{f} Y$ is a finite separable morphism of curves, then where R is the ramification divisor of f.

Theorem 4.2.8 (Hurwitz). If $X \xrightarrow{f} Y$ is a finite separable morphism of curves, then and if f has only tame ramification then $\deg(R) = \sum_{P \in X} (e_P - 1)$.

Remark 4.2.9 (proof of Hurwitz). Take degrees of the divisor equation: using tame ramification in the last step which implies length $(\Omega_{X_{/Y}})_P = (e_p - 1)$.

Remark 4.2.10. Consider the purely inseparable case.

- Frobenius morphism: for $X \in Sch$ where $\mathcal{O}_P \supseteq \mathbf{Z}/p\mathbf{Z}$ for all P, define Frob : $X \to X$ by F(|X|) = |X| on spaces and $F^{\sharp} : \mathcal{O}_X \to \mathcal{O}_X$ is $f \mapsto f^p$. This is a morphism since F^{\sharp} induces a morphism on all local rings, which are all characteristic p.
- The k-linear Frobenius morphism: define X_p to be X with the structure morphism $F \circ \pi$, so $k \curvearrowright \mathcal{O}_{X_p}$ by *p*th powers and *F* becomes a *k*-linear morphism $F' : X_p \to X$.
 - Why this is necessary: F as before is not a morphism in $Sch_{/k}$, and instead forms a commuting square involving $F: \operatorname{Spec} k \to \operatorname{Spec} k$ and the structure maps $X \xrightarrow{\pi} \operatorname{Spec} k$.

Exercise 4.2.11 (?). Find examples where

- $X_p \cong X \in \mathsf{Sch}_{/k}$, and $X_p \not\cong X \in \mathsf{Sch}_{/k}$.

Hint: consider $X = \operatorname{Spec} k[t]$ for k perfect.

Exercise 4.2.12 (?). Show that if $X \xrightarrow{f} Y$ is separable then deg(R) is always even.

Skipped some stuff around Example 2.4.2, I don't necessarily need characteristic p things right now.

Remark 4.2.13. Definitions:

- Étale covers: $X \xrightarrow{f} Y$ is an étale cover if f is a finite étale morphism, i.e. f is flat and $\Omega^1_{X_{fY}} = 0.$
- Y is a **trivial** cover if $X \cong \prod_{i \in I} Y$ a finite disjoint union of copies of Y,
- Y is simply connected if there are no nontrivial étale covers.

Exercise 4.2.14 (?).

- Show that a connected regular curve is irreducible.
- Show that if f is etale then X is smooth over k.
- Show that if f is finite, X must be a curve.
- Show that if f is étale, then f must be separable.
- Show that $\pi_1^{\text{ét}}(\mathbf{P}^1) = 0$.

Hint: use Hurwitz and that when f is unramified, R = 0.

Exercise 4.2.15 (?).

- Show that the genus of a curve doesn't change under purely inseparable extensions.
- Show that if $f: X \to Y$ is a finite morphism of curves then $g(X) \ge g(Y)$.

Exercise 4.2.16 (Lüroth). Show that if L is a subfield of a purely transcendental extension k(t)/k where $k = \overline{k}$, then L is also purely transcendental.²

Hint: Assume $[L:k]_{tr} = 1$, so L = k(X) for Y a curve and $L \subseteq k(t)$ corresponds to a finite morphism $f: \mathbf{P}^1 \to Y$. Conclude g(Y) = 0 so $Y \cong \mathbf{P}^1$ and $L \cong k(u)$ for some u.

4.3. IV.3: Embeddings in Projective Space *.

Remark 4.3.1. A summary of major results:

- For $D \in \text{Div}(C)$ with g = g(C),
 - -D is ample iff deg D > 0.
 - -D is BPF iff deg $D \ge 2g$.
 - -D is very ample iff deg $D \ge 2g + 1$.
- Being very ample is equivalent to being a hyperplane section under a projective embedding.
- Divisors $D \in \text{Div}(\mathbf{P}^n)$ are ample iff very ample iff deg $D \ge 1$.
 - E.g. if E is elliptic then D is very ample if deg $D \ge 3$, and for hyperelliptic, very ample if deg $D \ge 5$.
- If D is very ample then $\deg \varphi(X) = \deg D$.
- Curves $C \subseteq \mathbf{P}^n$ for $n \ge 4$ can be projected away from a point $p \notin X$ to get a closed immersion into \mathbf{P}^m for some $m \le n-1$. So any curve is birational to a nodal curve in \mathbf{P}^2 .
- Genus of normalizations of nodal curves: $g = \frac{1}{2}(d-1)(d-2) \sharp \{\text{nodes}\}.$
- Any curve embeds into \mathbf{P}^3 , and maps into \mathbf{P}^2 with at worst nodal singularities.

Remark 4.3.2. Main result: any curve can be embedded in \mathbf{P}^3 , and is birational to a nodal curve in \mathbf{P}^2 . Some recollections:

• Very ample line bundles: $\mathcal{L} \in \operatorname{Pic}(X)$ is very ample if $\mathcal{L} \cong \mathcal{O}_X(1)$ for some immersion of $f: X \hookrightarrow \mathbf{P}^N$.

²This is true over any field k in dimension 1, over $k = \overline{k}$ in dimension 2, and false in dimension 3 by the existence of nonrational unirational threefolds.

D. ZACK GARZA

- Ample: \mathcal{L} is ample when $\forall \mathcal{F} \in \mathsf{Coh}(X)$, the twist $\mathcal{F} \otimes \mathcal{L}^n$ is globally generated for $n \gg 0$.
- (Very) ample divisors: $D \in Div(X)$ is (very) ample iff $\mathcal{L}(D) \in Pic(X)$ is (very) ample.
- Linear systems: a linear system is any set $S \leq |D|$ of effective divisors yielding a linear subspace.
- **Base points**: *P* is a base point of *S* iff $P \in \text{supp } D$ for all $D \in S$.
- Secant lines: the secant line of $P, Q \in X$ is the line in \mathbf{P}^N joining them.
- Tangent lines: at $P \in X$, the unique line $L \subseteq \mathbf{P}^N$ passing through p such that $\mathbf{T}_P(L) =$ $\mathbf{T}_P(X) \subseteq \mathbf{T}_P(\mathbf{P}^N).$
- Nodes: a singularity of multiplicity 2.
 - $-y^{2} = x^{3} + x^{2}$ is a node. $-y^{2} = x^{3}$ is a cusp.

 - $-y^2 = x^4$ is a **tacnode**.
- Multisecant: for $X \subseteq \mathbf{P}^3$, a line meeting X in 3 or more distinct points.
- A secant with coplanar tangent lines is a secant through P, Q whose tangent lines L_P, L_Q lie in a common plane, or equivalently L_P intersects L_Q .

Exercise 4.3.3 (II.8.20.2). Show that by Bertini's theorem there are irreducible smooth curves of degree d in \mathbf{P}^2 for any d.

Exercise 4.3.4 (?).

Show that

- \mathcal{L} is ample iff \mathcal{L}^n is very ample for $b \gg 0$.
- |D| is basepoint free iff $\mathcal{L}(D)$ is globally generated.
- If D is very ample, then |D| is basepoint free.
- If D is ample, $nD \sim H$ a hyperplane section for a projective embedding for some n.
- If q(X) = 0 then D is ample iff very ample iff deg D > 0.
- If D is very ample and corresponds to a closed immersion $\varphi : X \hookrightarrow \mathbf{P}^n$ then deg $\varphi(X) =$ $\deg D.$
- If XS is elliptic, any D with deg D = 3 is very ample and dim |D| = 2, and so can be embedded into \mathbf{P}^2 as a cubic curve.
- Show that if q(X) = 1 then D is very ample iff deg $D \ge 3$.
- Show that if q(X) = 2 and deg D = 5 then D is very ample, so any genus 2 curve embeds in \mathbf{P}^3 as a curve of degree 5.

Exercise 4.3.5 (Prop 3.1: when a linear system yields a closed immersion into \mathbf{P}^N). Let $D \in$ Div(X) for X a curve and show

- |D| is basepoint free iff dim $|D P| = \dim |D| 1$ for all points $p \in X$.
- D is very ample iff dim $|D P Q| = \dim |D| 2$ for all points $P, Q \in X$. Hint: use the SES $\mathcal{L}(D-P) \hookrightarrow \mathcal{L}(D) \twoheadrightarrow k(P)$ where k(P) is the skyscraper sheaf at P.

Exercise 4.3.6 (Cor 3.2). Let $D \in Div(X)$.

- If deg $D \ge 2q(X)$ then |D| is basepoint free.
- If deg D > 2q(X) + 1 then D is very ample.
- D is ample iff deg D > 0
- This bounds is not sharp.

Hint: apply RR. For the bound, consider a plane curve X of degree 4 and D = X.H.

Remark 4.3.7. Idea behind embedding in \mathbf{P}^3 : embed into \mathbf{P}^n and project away from a point in the complement.

Exercise 4.3.8 (3.4, 3.5, 3.6). Let $X \subseteq \mathbf{P}^N$ be a curve and $O \notin X$, let $\varphi : X \to \mathbf{P}^{n-1}$ be projection away from O. Then φ is a closed immersion iff

- O is not on any secant line of X, and
- O is not on any tangent line of X.

Show that if $N \ge 4$ then there exists such a point O yielding a closed immersion into \mathbf{P}^{N-1} . Conclude that any curve can be embedded into \mathbf{P}^3 .

Hint: dim $\text{Sec}(X) \leq 3$ and dim $\text{Tan}(X) \leq 2$.

Proposition 4.3.9 (3.7). Let $X \subseteq \mathbf{P}^3$, $O \notin X$, and $\varphi : X \to \mathbf{P}^2$ be the projection from O. Then $X \xrightarrow{\sim} \varphi(X)$ iff $\varphi(X)$ is nodal iff the following hold:

- O is only on finitely many secants of X,
- O is on no tangents,
- O is on no multisecant,
- O is on no secant with coplanar tangent lines.

Skipped things around Prop 3.8. The hard part: showing not every secant is a multisecant, and not every secant has coplanar tangent lines. Skipped strange curves.

Remark 4.3.10. Classifying all curves: any curve is birational to a nodal plane curve, so study the family $\mathcal{F}_{d,r}$ of plane curves of degree d and r nodes. The family \mathcal{F}_d of all plane curves is a linear system of dimension For any such curve X, consider its normalization $\nu(X)$, then Thus for $\mathcal{F}_{d,r}$ to be nonempty, one needs Both extremes can occur: r = 0 follows from Bertini, and $r = \frac{(d-1)(d-2)}{2}$ by embedding $\mathbf{P}^1 \hookrightarrow \mathbf{P}^d$ as a curve of degree d and projecting down to a nodal curve in \mathbf{P}^2 of genus zero. Severi states and Harris proves that for every r in this range $\mathcal{F}_{d,r}$ is irreducible, nonempty, and dim $\mathcal{F}_{d,r} = \frac{d(d+3)}{2} - r$.

4.4. IV.4: Elliptic Curves *.

Remark 4.4.1. Curves E with g(E) = 1; we'll assume ch $k \neq 2$ throughout. Outline:

- Define the *j*-invariant, classifies isomorphism classes of elliptic curves.
 - Group structure on the curve.
 - $E = \operatorname{Jac}(E)$.
 - Results about elliptic functions over **C**.
 - The Hasse invariant of E/\mathbf{F}_q in characteristic p.
 - $E(\mathbf{Q})$.

4.4.1. The *j*-invariant.

Remark 4.4.2. The *j*-invariant:

- $j(E) \in k$, so $\mathbf{A}^{1}_{/k}$ is a coarse moduli space for elliptic curves over K.
- Defining j(E):
 - Let $p_0 \in X$, consider the linear system $L \coloneqq |2p_0|$.
 - Nonspecial, so RR shows $\dim(L) = 1$.
 - BPF, otherwise E is rational.
 - Defines a morphism $\varphi_L : E \to \mathbf{P}^1_{/k}$ with deg $\varphi_L = 2$.
 - Up to change of coordinates, $f(p_0) = \infty$.
 - By Hurwitz, f is ramified at 4 branch points a, b, c, p_0 .
 - Move $a \mapsto 0, b \mapsto 1$ by a Mobius transformation fixing ∞ , so f is branched over $0, 1, \lambda, \infty$ where $\lambda \in k \setminus \{0, 1\}$.
 - Use λ to define the invariant:
- Theorem 4.1:
 - -j depends only on the curve E and not λ .
 - $E \cong E' \iff j(E) = j(E').$
 - Every element of k occurs as j(E) for some E.

- So this yields a bijection
- Some facts that go into proving this:

 $- \forall p, q \in X \exists \sigma \in \operatorname{Aut}(X) \text{ such that } \sigma^2 = 1, \sigma(p) = q, \text{ for any } r \in X, \text{ one has } r + \sigma(r) \sim p + q.$

- $-\operatorname{Aut}(X) \curvearrowright X$ transitively.
- Any two degree two maps $f_1, f_2: X \to \mathbf{P}^1$ fit into a commuting square.
- Under $S_3 \curvearrowright \mathbf{A}^1_{/k} \setminus \{0,1\}$, the orbit of λ is
- Fixing $p \in X$, there is a closed immersion $X \to \mathbf{P}^2$ whose image is $y^2 = x(x-1)(x-\lambda)$ where $p \mapsto \infty = [0:1:0]$ and this λ is either the λ from above or one of $s_1^{\pm 1}, s_2^{\pm 1}$.
 - ♦ Idea of proof: embed $X \hookrightarrow \mathbf{P}^2$ by L := |3p|, use RR to compute $h^0(\mathcal{O}(np)) = n$ so $h^0(\mathcal{O}(6p)) = 6$.
 - \diamond So $\{1, x, y, x^2, xy, y^2, x^3\}$ has a linear dependence where x^3, y^2 have nonzero coefficients since they have poles at p.
 - \diamond Rescale x^3, y^2 to coefficient 1 to get
- Do a change of variable to put in the desired form: complete the square on the LHS, factor as $y^2 = (x a)(x b)(x c)$, send $a \to 0, b \to 1$ by a Mobius transformation.
- Note that one can project from p to the x-axis to get a finite degree 2 morphism ramified at 0, 1, λ, ∞.

Example 4.4.3 (?). An elliptic curve that is smooth over every field of non-2 characteristic:

One that is smooth over every k with $ch k \neq 3$: the Fermat curve

Theorem 4.4.4 (Orders of automorphism groups of elliptic curves).

Remark 4.4.5 (Proof idea). Idea: take the degree 2 morphism $f : X \to \mathbf{P}^1$ with $f(p) = \infty$ branched over $\{0, 1, \lambda, \infty\}$. Produce two elements in G: for $\sigma \in G$, find $\tau \in \operatorname{Aut}(\mathbf{P}^1)$ so $f\sigma = \tau f$; then either $\tau \neq \operatorname{id}$, so $\{\sigma, \tau\} \subseteq G$, or $\tau = \operatorname{id}$ and either $\sigma = \operatorname{id}$ or σ exchanges the sheets of f. If $\tau \neq \operatorname{id}$, it permutes $\{0, 1, \lambda\}$ and sends $\lambda \mapsto \lambda^{-1}, s_1^{\pm 1}, s_2^{\pm 1}$ from above. Cases:

- 1. j = 1728: If $\lambda = -1, 1/2, 2, \text{ch } k \neq 3$, then λ coincides with *one* other element of $S_3.\lambda$, so $\sharp G = 4$.
- 2. j = 0: If $\lambda = -\zeta_3, -\zeta_3^2$, ch $k \neq 3$ then λ coincides with *two* elements in $S_3.\lambda$ so $\sharp G = 6$. 3. j = 0 = 1728: If $\lambda = -1$, ch k = 3 then $S_3.\lambda = \{\lambda\}$ and $\sharp G = 12$.

4.4.2. The group structure.

Remark 4.4.6. The group structure:

- Fixing $p_o \in E$, the map $p \mapsto \mathcal{L}(p p_0)$ induces a bijection $E \xrightarrow{\sim} \operatorname{Pic}^0(E)$, so the group structure on E is the pullback along this with $p_0 = \operatorname{id}$ and $p + q = r \iff p + q \sim r + p_0 \in \operatorname{Div}(E)$.
- Under the embedding of $|3p_0|$, points p, q, r are collinear iff $p + q + r \sim 3p_0$, so p + q + r = 0 in the group structure.
- *E* is a group variety, since $p \mapsto -p$ and $(p,q) \mapsto p+q$ are morphisms. Thus there is a morphism $[n] : E \to E$, multiplication by *n*, which is a finite morphism of degree n^2 with kernel ker $[n] = C_n^2$ if $(n, \operatorname{ch} k) = 1$ and ker $[n] = C_p, 0$ if $n = \operatorname{ch} k$, depending on the Hasse invariant.
- If $f: E_1 \to E_2$ is a morphism of curves with $f(p_1) = p_2$ then f induces a group morphism.
- End (E, p_0) forms a ring under $f + g = \mu \circ (f \times g)$ and $f \cdot g \coloneqq f \circ g$.
- The map $n \mapsto ([n]: E \to E)$ defines a finite ring morphism $\mathbf{Z} \to \text{End}(E, p_0)$ for $n \neq 0$.
- $R := \operatorname{End}(E, p_0)^{\times} = \operatorname{Aut}(E)$, and if j = 0,1728 then R contains $\{\pm 1\}$ and is thus bigger than \mathbb{Z} .

Remark 4.4.7. The Jacobian: a variety that generalizes to make sense for any curve, a moduli space of degree zero divisor classes.

- For X/k a curve and $T \in \mathsf{Sch}_{/k}$, define where $p: X \times T \to T$ is the second projection. Regard this as families of sheaves of degree 0 on X parameterized by T.
- The Jacobian variety of a curve X: $\operatorname{Jac}(X) \in \operatorname{Sch}_{/k}^{\operatorname{ft}}$ along with $\mathcal{L} \in \operatorname{Pic}^{0}(X/\operatorname{Jac}(X))$ such that for any $T \in \operatorname{Sch}_{/k}^{\operatorname{ft}}$ and any $\mathcal{M} \in \operatorname{Pic}^{0}(X/T)$, $\exists ! f : T \to \operatorname{Jac}(X)$ such that $f^{*}\mathcal{L} = \mathcal{M}$. Thus J represents the functor $\operatorname{Pic}^{0}(X/-)$.
- For E elliptic, $E = \operatorname{Jac}(E)$.
 - In general, $|\operatorname{Jac}(X)| \cong |\operatorname{Pic}^0(X)|$ on points, since points of $\operatorname{Jac}(X)$ are morphisms Spec $k \to \operatorname{Jac}(X)$, which correspond to elements in $\operatorname{Pic}^0(X/k) = \operatorname{Pic}^0(X)$.
- $\operatorname{Jac}(X) \in \operatorname{GrpSch}_{/k}$ where $e : \operatorname{Spec} k \to \operatorname{Jac}(X)$ corresponds to $0 \in \operatorname{Pic}^0(X/k)$, $\rho : \operatorname{Jac}(X) \to \operatorname{Jac}(X)$ is $\mathcal{L} \mapsto \mathcal{L}^{-1} \in \operatorname{Pic}^0(X/\operatorname{Jac}(X))$, and $\mu : \operatorname{Jac}(X)^{\times^2} \to \operatorname{Jac}(X)$ is $\mathcal{L} \mapsto p_1^* \mathcal{L} \otimes p_2^* \mathcal{L} \in \operatorname{Pic}^0(X/\operatorname{Pic}(X)^{\times^2})$.
- $\mathbf{T}_0 \operatorname{Jac}(X) \cong H^1(X; \mathcal{O}_X)$: giving an element of $\mathbf{T}_p X$ is the same as a morphism T :=Spec $k[\varepsilon]/\varepsilon^2 \to X$ sending Spec $k \to p$. So $\mathbf{T}_0 \operatorname{Jac}(X)$, this means giving $\mathcal{M} \in \operatorname{Pic}^0(X/T)$ whose restriction to $\operatorname{Pic}^0(X/k)$ is zero. Use the SES $H^1(X; \mathcal{O}_X) \hookrightarrow \operatorname{Pic} X[\varepsilon] \to \operatorname{Pic}(X)$.
- Jac(X) is proper over k by the valuative criterion. Just show that an invertible sheaf \mathcal{M} on $X \times \operatorname{Spec} K$ lifts unique to $\tilde{\mathcal{M}}$ on $X \times \operatorname{Spec} R$, but $X \times \operatorname{Spec} R$ is regular, so apply II.6.5.
- For any *n* there is a morphism This is surjective for $n \ge g(X)$ by RR since every divisor class of degree $d \ge g$ has an effective representative. The fibers of φ^n are all tuples (p_1, \dots, p_n) such that $D = \sum p_i$ forms a complete linear system.
 - Most fibers are finite, so Jac(X) is irreducible of dimension g.
 - Smoothness: dim $\mathbf{T}_0 \operatorname{Jac}(X) = \dim H^1(X; \mathcal{O}_X) = g$, so smooth at zero, and group schemes are homogeneous so smooth everywhere.
- 4.4.3. Elliptic functions.

Stopped at elliptic functions.

4.5. IV.5: The Canonical Embedding.

4.6. IV.6: Classification of Curves in \mathbf{P}^3 .

5. V: Surfaces

- 5.1. V.1: Geometry on a Surface.
- 5.2. V.2: Ruled Surfaces.
- 5.3. V.3: Monoidal Transformations.
- 5.4. V.4: The Cubic Surface in P^3 .
- 5.5. V.5: Birational Transformations.
- 5.6. V.6: Classification of Surfaces.