\input{"preamble.tex"} \addbibresource{ReadingDoc.bib} \let\Begin\begin \let\End\end \newcommand\wrapenv[1]{#1} \makeatletter \def\ScaleWidthIfNeeded{% \ifdim\Gin@nat@width>\linewidth \linewidth \else \Gin@nat@width \fi } \def\ScaleHeightIfNeeded{% \ifdim\Gin@nat@height>0.9\textheight 0.9\textheight \else \Gin@nat@width \fi } \makeatother \setkeys{Gin}{width=\ScaleWidthIfNeeded,height=\ScaleHeightIfNeeded,keepaspectratio}% \title{ \textbf{ Preview } \\ {\normalsize University of Georgia} \\ } \begin{document} \date{} \maketitle \begin{flushleft} \textit{D. Zack Garza} \\ \textit{University of Georgia} \\ \textit{\href{mailto: dzackgarza@gmail.com}{dzackgarza@gmail.com}} \\ {\tiny \textit{Last updated:} 2022-12-07 } \end{flushleft} \newpage % Note: addsec only in KomaScript \addsec{Table of Contents} \tableofcontents \newpage \newpage \hypertarget{i-varieties}{% \section{I: Varieties}\label{i-varieties}} \begin{remark} Some useful basic properties: \begin{itemize} \tightlist \item Properties of \(V\): \begin{itemize} \tightlist \item \(\cap_{i\in I} V({\mathfrak{a}}_i) = V\qty{\sum_{i\in I} {\mathfrak{a}}_i}\). \begin{itemize} \tightlist \item E.g. \(V(x) \cap V(y) = V(\left\langle{x}\right\rangle + \left\langle{y}\right\rangle)= V(x, y) = \left\{{0}\right\}\), the origin. \end{itemize} \item \(\cup_{i\leq n} V({\mathfrak{a}}_i) = V\qty{\prod_{i\leq n} {\mathfrak{a}}_i}\). \begin{itemize} \tightlist \item E.g. \(V(x) \cup V(y) = V(\left\langle{x}\right\rangle\left\langle{y}\right\rangle) = V(xy)\), the union of coordinate axes. \end{itemize} \item \(V({\mathfrak{a}})^c = \cup_{f\in {\mathfrak{a}}} D(f)\) \item \(V({\mathfrak{a}}_1) \subseteq V({\mathfrak{a}}_2) \iff \sqrt{{\mathfrak{a}}_1}\supseteq\sqrt{{\mathfrak{a}}_2}\). \end{itemize} \item Properties of \(I\): \begin{itemize} \tightlist \item \(I(V({\mathfrak{a}})) = \sqrt{\mathfrak{a}}\) and \(V(I(Y)) = { \operatorname{cl}}_{{\mathbf{A}}^n}(Y)\). The containment correspondence is contravariant in both directions. \item \(I(\cup_i Y_i) = \cap_i I(Y_i)\). \end{itemize} \item If \(F\) is a sheaf taking values in subsets of a giant ambient set, then \(F(\cup U_i) = \cap F(U_i)\). For \({\mathbf{A}}^n/{\mathbf{C}}\), take \({\mathbf{C}}(x_1,\cdots, x_n)\), the field of rational functions, to be the ambient set. \item Distinguished open \(D(f) \coloneqq\left\{{p\in X {~\mathrel{\Big\vert}~}f(p) \neq 0}\right\}\): \begin{itemize} \tightlist \item \({\mathcal{O}}_X(D(f)) = A(X){ \left[ { \scriptstyle \frac{1}{f} } \right] } = \left\{{{g\over f^k} {~\mathrel{\Big\vert}~}g\in A(X), k\geq 0}\right\}\), and taking \(f=1\) shows \({\mathcal{O}}_X(X) = A(X)\), i.e.~global regular functions are polynomial. \item Generally \(D(fg) = D(f) \cap D(g)\) \item For affines: \begin{align*} {\mathcal{O}}_{\operatorname{Spec}R}(D(f)) = R{ \left[ { \scriptstyle \frac{1}{f} } \right] } .\end{align*} \item For \({\mathbf{C}}^n\), \begin{align*} {\mathcal{O}}_{{\mathbf{C}}^n}(D(f)) = k[x_1, \cdots, x_{n}] { \left[ \scriptstyle {1/f} \right] } \implies {\mathcal{O}}_{{\mathbf{C}}^n}(V({\mathfrak{a}})^c) = \cap_{f\in {\mathfrak{a}}} {\mathcal{O}}_{{\mathbf{C}}^n}(D(f)) .\end{align*} \end{itemize} \end{itemize} \end{remark} \hypertarget{i.1-affine-varieties-star}{% \subsection{\texorpdfstring{I.1: Affine Varieties \(\star\)}{I.1: Affine Varieties \textbackslash star}}\label{i.1-affine-varieties-star}} \begin{remark} Summary: \begin{itemize} \tightlist \item \({\mathbf{A}}^n_{/ {k}} = \left\{{{\left[ {a_1,\cdots, a_n} \right]} {~\mathrel{\Big\vert}~}a_i \in k}\right\}\), and elements \(f\in A \coloneqq k[x_1, \cdots, x_{n}]\) are functions on it. \item \(Z(f) \coloneqq\left\{{p\in {\mathbf{A}}^n {~\mathrel{\Big\vert}~}f(p) = 0}\right\}\), and for any \(T \subseteq A\) we set \(Z(T) \coloneqq\cap_{f\in T} Z(f)\). \begin{itemize} \tightlist \item Note that \(Z(T) = Z(\left\langle{T}\right\rangle_A) = Z(\left\langle{f_1,\cdots, f_r}\right\rangle)\) for some generators \(f_i\), using that \(A\) is a Noetherian ring. So every \(Z(T)\) is the set of common zeros of finitely many polynomials, i.e.~the intersection of finitely many hypersurfaces. \end{itemize} \item \textbf{Algebraic}: \(Y \subseteq {\mathbf{A}}^n\) is algebraic iff \(Y = Z(T)\) for some \(T \subseteq A\). \item The Zariski topology is generated by open sets of the form \(Z(T)^c\). \item \({\mathbf{A}}^1\) is a non-Hausdorff space with the cofinite topology. \item \textbf{Irreducible}: \(Y\) is reducible iff \(Y = Y_1 \cup Y_2\) with \(Y_1, Y_2\) proper subsets of \(Y\) which are closed in \(Y\). \begin{itemize} \tightlist \item Nonempty open subsets of irreducible spaces are both irreducible and dense. \item If \(Y \subseteq X\) is irreducible then \({ \operatorname{cl}}_X(Y) \subseteq X\) is again irreducible. \end{itemize} \item \textbf{Affine (algebraic) varieties}: irreducible closed subsets of \({\mathbf{A}}^n\). \item \textbf{Quasi-affine varieties}: open subsets of affine varieties. \item The ideal of a subset: \(I(Y) \coloneqq\left\{{f\in A {~\mathrel{\Big\vert}~}f(p) = 0 \,\, \forall p\in Y}\right\}\). \item \textbf{Nullstellensatz}: if \(k = \overline{k}, {\mathfrak{a}}\in \operatorname{Id}(k[x_1, \cdots, x_{n}])\), and \(f\in k[x_1, \cdots, x_{n}]\) with \(f(p) = 0\) for all \(p\in V({\mathfrak{a}})\), then \(f^r \in {\mathfrak{a}}\) for some \(r>0\), so \(f\in \sqrt{\mathfrak{a}}\). Thus there is a contravariant correspondence between radical ideals of \(k[x_1, \cdots, x_{n}]\) and algebraic sets in \({\mathbf{A}}^n_{/ {k}}\). \item \textbf{Irreducibility criterion}: \(Y\) is irreducible iff \(I(Y) \in \operatorname{Spec}k[x_1, \cdots, x_{n}]\) (i.e.~it is prime). \item \textbf{Affine curves}: if \(f\in k[x,y]^{\mathrm{irr}}\) then \(\left\langle{f}\right\rangle \in \operatorname{Spec}k[x,y]\) (since this is a UFD) so \(Z(f)\) is irreducible and defines an affine curve of degree \(d= \deg(f)\). \item \textbf{Affine surfaces}: \(Z(f)\) for \(f\in k[x_1, \cdots, x_{n}]^{\mathrm{irr}}\) defines a surface. \item \textbf{Coordinate rings}: \(A(Y) \coloneqq k[x_1, \cdots, x_{n}]/I(Y)\). \item \textbf{Noetherian spaces}: \(X\in {\mathsf{Top}}\) is Noetherian iff the DCC on closed subsets holds. \item \textbf{Unique decomposition into irreducible components}: if \(X\in {\mathsf{Top}}\) is Noetherian then every closed nonempty \(Y \subseteq X\) is of the form \(Y = \cup_{i=1}^r Y_i\) with \(Y_i\) a uniquely determined closed irreducible with \(Y_i \not\subseteq Y_j\) for \(i\neq j\), the \emph{irreducible components} of \(Y\). \item \textbf{Dimension}: for \(X\in {\mathsf{Top}}\), the dimension is \(\dim X \coloneqq\sup \left\{{n {~\mathrel{\Big\vert}~}\exists Z_0 \subset Z_1 \subset \cdots \subset Z_n}\right\}\) with \(Z_i\) distinct irreducible closed subsets of \(X\). Note that the dimension is the number of ``links'' here, not the number of subsets in the chain. \item \textbf{Height}: for \({\mathfrak{p}}\in\operatorname{Spec}A\) define \(\operatorname{ht}({\mathfrak{p}}) \coloneqq\sup\left\{{n{~\mathrel{\Big\vert}~}\exists {\mathfrak{p}}_0 \subset {\mathfrak{p}}_1 \subset \cdots \subset {\mathfrak{p}}_n = {\mathfrak{p}}}\right\}\) with \({\mathfrak{p}}_i \in \operatorname{Spec}A\) distinct prime ideals. \item \textbf{Krull dimension}: define \(\operatorname{krulldim}A \coloneqq\sup_{{\mathfrak{p}}\in \operatorname{Spec}A}\operatorname{ht}({\mathfrak{p}})\), the supremum of heights of prime ideals. \end{itemize} \end{remark} \begin{exercise}[The Zariski topology] Show that the class of algebraic sets form the closed sets of a topology, i.e.~they are closed under finite unions, arbitrary intersections, etc. \end{exercise} \begin{exercise}[The affine line] \envlist \begin{itemize} \tightlist \item Show that \({\mathbf{A}}^1_{/ {k}}\) has the cofinite topology when \(k=\overline{k}\): the closed (algebraic) sets are finite sets and the whole space, so the opens are empty or complements of finite sets.\footnote{Hint: \(k[x]\) is a PID and factor any \(f(x)\) into linear factors using that \(k = \overline{k}\) to write \(Z({\mathfrak{a}}) = Z(f) = \left\{{a_1,\cdots, a_k}\right\}\) for some \(k\).} \item Show that this topology is not Hausdorff. \item Show that \({\mathbf{A}}^1\) is irreducible without using the Nullstellensatz. \item Show that \({\mathbf{A}}^n\) is irreducible. \item Show that maximal ideals \({\mathfrak{m}}\in \operatorname{mSpec}k[x_1, \cdots, x_{n}]\) correspond to minimal irreducible closed subsets \(Y \subseteq {\mathbf{A}}^n\), which must be points. \item Show that \(\operatorname{mSpec}k[x_1, \cdots, x_{n}]= \left\{{\left\langle{x_1-a_1,\cdots, x_n-a_n}\right\rangle {~\mathrel{\Big\vert}~}a_1,\cdots, a_n\in k}\right\}\) for \(k=\overline{k}\), and that this fails for \(k\neq \overline{k}\). \item Show that \({\mathbf{A}}^n\) is Noetherian. \item Show \(\dim {\mathbf{A}}^1 = 1\). \item Show \(\dim {\mathbf{A}}^n = n\). \end{itemize} \end{exercise} \begin{exercise}[Commutative algebra] \envlist \begin{itemize} \tightlist \item Show that if \(Y\) is affine then \(A(Y)\) is an integral domain and in \({}_{k} \mathsf{Alg}^{\mathrm{fg}}\). \item Show that every \(B \in {}_{k} \mathsf{Alg}^{\mathrm{fg}}\cap\mathsf{Domain}\) is of the form \(B = A(Y)\) for some \(Y\in{\mathsf{Aff}}{\mathsf{Var}}_{/ {k}}\). \item Show that if \(Y\) is an affine algebraic set then \(\dim Y = \operatorname{krulldim}A(Y)\). \end{itemize} \end{exercise} \begin{theorem}[Results from commutative algebra] \envlist \begin{itemize} \tightlist \item If \(k\in \mathsf{Field}, B\in {}_{k} \mathsf{Alg}^{\mathrm{fg}}\cap\mathsf{Domain}\), \begin{itemize} \tightlist \item \(\operatorname{krulldim}B = [K(B) : B]_{\mathrm{tr}}\) is the transcendence degree of the quotient field of \(B\) over \(B\). \item If \({\mathfrak{p}}\in \operatorname{Spec}B\) then \(\operatorname{ht}{\mathfrak{p}}+ \operatorname{krulldim}(B/{\mathfrak{p}}) = \operatorname{krulldim}B\). \end{itemize} \item Krull's Hauptidealsatz: \begin{itemize} \tightlist \item If \(A \in \mathsf{CRing}^{ \mathrm{Noeth} }\) and \(f\in A\setminus A^{\times}\) is not a zero divisor, then every minimal \({\mathfrak{p}}\in \operatorname{Spec}A\) with \({\mathfrak{p}}\ni f\) has height 1. \end{itemize} \item If \(A \in \mathsf{CRing}^{ \mathrm{Noeth} }\cap\mathsf{Domain}\), then \(A\) is a UFD iff every \({\mathfrak{p}}\in \operatorname{Spec}(A)\) with \(\operatorname{ht}({\mathfrak{p}}) = 1\) is principal. \end{itemize} \end{theorem} \begin{exercise}[1.10] Show that if \(Y\) is quasi-affine then \begin{align*} \dim Y = \dim { \operatorname{cl}}_{{\mathbf{A}}^n} Y .\end{align*} \end{exercise} \begin{exercise}[1.13] Show that if \(Y \subseteq {\mathbf{A}}^n\) then \(\operatorname{codim}_{{\mathbf{A}}^n}(Y) = 1 \iff Y = Z(f)\) for a single nonconstant \(f\in k[x_1, \cdots, x_{n}]^{\mathrm{irr}}\). \end{exercise} \begin{exercise}[?] Show that if \({\mathfrak{p}}\in \operatorname{Spec}(A)\) and \(\operatorname{ht}({\mathfrak{p}}) = 2\) then \({\mathfrak{p}}\) can not necessarily be generated by two elements. \end{exercise} \hypertarget{i.2-projective-varieties-star}{% \subsection{\texorpdfstring{I.2: Projective Varieties \(\star\)}{I.2: Projective Varieties \textbackslash star}}\label{i.2-projective-varieties-star}} \begin{remark} \envlist \begin{itemize} \item \textbf{Projective space}: \(\left\{{\mathbf{a} \coloneqq{\left[ {a_0, \cdots, a_n} \right]} {~\mathrel{\Big\vert}~}a_i \in k}\right\}/\sim\) where \(\mathbf{a} \sim \lambda \mathbf{a}\) for all \(\lambda \in k\setminus\left\{{0}\right\}\), i.e.~lines in \({\mathbf{A}}^{n+1}\) passing through \(\mathbf{0}\). \item \textbf{Graded rings}: a ring \(S\) with a decomposition \(S = \oplus _{d\geq 0} S_d\) with each \(S_d\in {\mathsf{Ab}}{\mathsf{Grp}}\) and \(S_d S_e \subseteq S_{d+e}\); elements of \(S_d\) are \textbf{homogeneous of degree \(d\)} and any element in \(S\) is a finite sum of homogeneous elements of various degrees. \item \textbf{Homogeneous polynomials}: \(f\) is homogeneous of degree \(d\) if \(f(\lambda x_0, \cdots, \lambda x_n) = \lambda^d f(x_0, \cdots, x_n)\). \item \textbf{Homogeneous ideals}: \({\mathfrak{a}}\subseteq S\) is homogeneous when it's of the form \({\mathfrak{a}}= \bigoplus _{d\geq 0} ({\mathfrak{a}}\cap S_d)\). \begin{itemize} \tightlist \item \({\mathfrak{a}}\) is homogeneous iff generated by homogeneous elements. \item The class of homogeneous ideals is closed under sums, products, intersections, and radicals. \item Primality of homogeneous ideals can be tested on homogeneous elements, i.e.~it STS \(fg\in {\mathfrak{a}}\implies f,g\in {\mathfrak{a}}\) for \(f,g\) homogeneous. \end{itemize} \item \(k[x_1, \cdots, x_{n}]= \bigoplus _{d\geq 0} k[x_1, \cdots, x_{n}]_d\) where the degree \(d\) part is generated by monomials of total weight \(d\). \begin{itemize} \tightlist \item E.g. \begin{align*} k[x_1, \cdots, x_{n}]_1 &= \left\langle{x_1, x_2,\cdots, x_n}\right\rangle\\ k[x_1, \cdots, x_{n}]_2 &= \left\langle{x_1^2, x_1x^2, x_1x_3,\cdots, x_2^2,x_2x_3, x_2x_4,\cdots, x_n^2}\right\rangle .\end{align*} \item Useful fact: by stars and bars, \(\operatorname{rank}_k k[x_1, \cdots, x_{n}]_d = {d+n \choose n}\). E.g. for \((d, n) = (3, 2)\), \end{itemize} \includegraphics{figures/2022-10-08_18-48-17.png} \item Arbitrary polynomials \(f\in k[x_0, \cdots, x_{n}]\) do not define functions on \({\mathbf{P}}^n\) because of non-uniqueness of coordinates due to scaling, but homogeneous polynomials \(f\) being zero or not is well-defined and there is a function \begin{align*} \operatorname{ev}_f: {\mathbf{P}}^n &\to \left\{{0, 1}\right\} \\ p &\mapsto \begin{cases} 0 & f(p) = 0 \\ 1 & f(p) \neq 0. \end{cases} .\end{align*} So \(Z(f) \coloneqq\left\{{p\in {\mathbf{P}}^n {~\mathrel{\Big\vert}~}f(p) = 0}\right\}\) makes sense. \item \textbf{Projective algebraic varieties}: \(Y\) is projective iff it is an irreducible algebraic set in \({\mathbf{P}}^n\). Open subsets of \({\mathbf{P}}^n\) are \textbf{quasi-projective varieties}. \item \textbf{Homogeneous ideals of varieties}: \begin{align*} I(Y) \coloneqq\left\{{f\in k[x_0, \cdots, x_{n}]^ { \mathrm{homog} }{~\mathrel{\Big\vert}~}f(p) =0 \, \forall p\in Y}\right\} .\end{align*} \item \textbf{Homogeneous coordinate rings}: \begin{align*} S(Y) \coloneqq k[x_0, \cdots, x_{n}]/I(Y) .\end{align*} \item \(Z(f)\) for \(f\) a linear homogeneous polynomial defines a \textbf{hyperplane}. \end{itemize} \end{remark} \begin{exercise}[Cor. 2.3] Show \({\mathbf{P}}^n\) admits an open covering by copies of \({\mathbf{A}}^n\) by explicitly constructing open sets \(U_i\) and well-defined homeomorphisms \(\phi_i :U_i\to {\mathbf{A}}^n\). \end{exercise} \hypertarget{i.3-morphisms}{% \subsection{I.3: Morphisms}\label{i.3-morphisms}} \hypertarget{i.4-rational-maps}{% \subsection{I.4: Rational Maps}\label{i.4-rational-maps}} \hypertarget{i.5-nonsingular-varieties}{% \subsection{I.5: Nonsingular Varieties}\label{i.5-nonsingular-varieties}} \hypertarget{i.6-nonsingular-curves}{% \subsection{I.6: Nonsingular Curves}\label{i.6-nonsingular-curves}} \hypertarget{i.7-intersections-in-projective-space}{% \subsection{I.7: Intersections in Projective Space}\label{i.7-intersections-in-projective-space}} \newpage \hypertarget{ii-schemes}{% \section{II: Schemes}\label{ii-schemes}} \begin{quote} Note: there are many, many important notions tucked away in the exercises in this section. \end{quote} \hypertarget{ii.1-sheaves-star}{% \subsection{\texorpdfstring{II.1: Sheaves \(\star\)}{II.1: Sheaves \textbackslash star}}\label{ii.1-sheaves-star}} \begin{remark} \envlist \begin{itemize} \tightlist \item \textbf{Presheaves} \(F\) of abelian groups: contravariant functors \(F\in {\mathsf{Fun}}({\mathsf{Open}}(X), {\mathsf{Ab}}{\mathsf{Grp}})\). \begin{itemize} \tightlist \item Assigns every open \(U \subseteq X\) some \(F(U) \in {\mathsf{Ab}}{\mathsf{Grp}}\) \item For \(\iota_{VU}: V \subseteq U\), restriction morphisms \(\phi_{UV}: F(U) \to F(V)\). \item \(F(\emptyset) = 0\), so \(F({ \mathscr \emptyset^{\scriptscriptstyle \downarrow}}) = { 0_{\scriptscriptstyle \uparrow}}\). \item \(\phi_{UU} = \operatorname{id}_{F(U)}\) \item \(W \subseteq V \subseteq U \implies \phi_{UW} = \phi_{VW} \circ \phi_{UV}\). \end{itemize} \item \textbf{Sections}: elements \(s\in F(U)\) are sections of \(F\) over \(U\). Also notation \(\Gamma(U; F)\) and \(H^0(U; F)\), and the restrictions are written \({ \left.{{s}} \right|_{{V}} } \coloneqq\phi_{UV}(s)\) for \(s\in F(U)\). \item \textbf{Sheaves}: presheaves \(F\) which are completely determined by local data. Additional requirements on open covers \({\mathcal{V}}\rightrightarrows U\): \begin{itemize} \tightlist \item If \(s\in F(U)\) with \({ \left.{{s}} \right|_{{V_i}} } = 0\) for all \(i\) then \(s\equiv 0 \in F(U)\). \item Given \(s_i\in F(V_i)\) where \({ \left.{{s_i}} \right|_{{V_{ij}}} } = { \left.{{s_j}} \right|_{{V_{ij}}} } \in F(V_{ij})\) then \(\exists s\in F(U)\) such that \({ \left.{{s}} \right|_{{V_i}} } = s_i\) for each \(i\), which is unique by the previous condition. \end{itemize} \item \textbf{Constant sheaf}: for \(A\in {\mathsf{Ab}}{\mathsf{Grp}}\), define the constant sheaf \begin{align*} \underline{A}(U) \coloneqq{\mathsf{Top}}(U, A^{\operatorname{disc}}) .\end{align*} \item \textbf{Stalks}: \(F_p \coloneqq\colim_{U\ni p} F(U)\) along the system of restriction maps. \begin{itemize} \tightlist \item These are represented by pairs \((U, s)\) with \(U\ni p\) an open neighborhood and \(s\in F(U)\), modulo \((U, s)\sim (V, t)\) when \(\exists W \subseteq U \cap V\) with \({ \left.{{s}} \right|_{{w}} } = { \left.{{t}} \right|_{{w}} }\). \end{itemize} \item \textbf{Germs}: a germ of a section of \(F\) at \(p\) is an elements of the stalk \(F_p\). \item \textbf{Morphisms of presheaves}: natural transformations \(\eta\in \mathop{\mathrm{Mor}}_{{\mathsf{Fun}}}(F, G)\), i.e.~for every \(U, V\), components \(\eta_U, \eta_V\) fitting into a diagram \end{itemize} \begin{center} \begin{tikzcd} {{\mathsf{Open}}(X)} &&& {\mathsf{Ab}}{\mathsf{Grp}}\\ U && {F(U)} && {G(U)} \\ \\ V && {F(V)} && {G(V)} \arrow["{\eta_V}", from=4-3, to=4-5] \arrow["{\eta_U}", from=2-3, to=2-5] \arrow[""{name=0, anchor=center, inner sep=0}, "{\mathrm{Res}_F(U, V)}", from=2-3, to=4-3] \arrow["{\mathrm{Res}_G(U, V)}", from=2-5, to=4-5] \arrow[""{name=1, anchor=center, inner sep=0}, hook, from=4-1, to=2-1] \arrow["{F, G}", shorten <=15pt, shorten >=15pt, Rightarrow, from=1, to=0] \end{tikzcd} \end{center} \begin{quote} \href{https://q.uiver.app/?q=WzAsOCxbMCwxLCJVIl0sWzAsMywiViJdLFsyLDEsIkYoVSkiXSxbNCwxLCJHKFUpIl0sWzIsMywiRihWKSJdLFs0LDMsIkcoVikiXSxbMCwwLCJcXE9wZW4oWCkiXSxbMywwLCJcXEFiXFxHcnAiXSxbNCw1LCJcXGV0YV9WIl0sWzIsMywiXFxldGFfVSJdLFsyLDQsIlxcbWF0aHJte1Jlc31fRihVLCBWKSJdLFszLDUsIlxcbWF0aHJte1Jlc31fRyhVLCBWKSJdLFsxLDAsIiIsMSx7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Imhvb2siLCJzaWRlIjoidG9wIn19fV0sWzEyLDEwLCJGLCBHIiwwLHsic2hvcnRlbiI6eyJzb3VyY2UiOjIwLCJ0YXJnZXQiOjIwfX1dXQ==}{Link to Diagram} \end{quote} \begin{itemize} \item A morphism of sheaves is exactly a morphism of the underlying presheaves. \item Morphisms of sheaves \(\eta: F\to G\) induce morphisms of rings on the stalks \(\eta_p: F_p \to G_p\). \item Morphisms of sheaves are isomorphisms iff isomorphisms on all stalks, see exercise below. \item \textbf{Kernels, cokernels, images}: for \(\phi: F\to G\), sheafify the assignments to kernels/cokernels/images on open sets. \item \textbf{Sheafification}: for any \(F\in \underset{ \mathsf{pre}} {\mathsf{Sh}}(X)\), there is a unique \(F^+\in {\mathsf{Sh}}(X)\) and a morphism \(\theta: F\to F^+\) of presheaves such that any sheaf presheaf morphism \(F\to G\) factors as \(F\to F^+ \to G\). \begin{itemize} \tightlist \item The construction: \(F^+(U) = {\mathsf{Top}}(U, {\textstyle\coprod}_{p\in U} F_p)\) are all functions \(s\) into the union of stalks, subject to \(s(p) \in F_p\) for all \(p\in U\) and for each \(p\in U\), there is a neighborhood \(V\supseteq U \ni p\) and \(t\in F(V)\) such that for all \(q\in V\), the germ \(t_q\) is equal to \(s(q)\). \item Note that the stalks are the same: \((F^+)_p = F_p\), and if \(F\) is already a sheaf then \(\theta\) is an isomorphism. \end{itemize} \item \textbf{Subsheaves}: \(F'\leq F\) iff \(F'(U) \leq F(U)\) is a subgroup for every \(U\) and the restrictions on \(F'\) are induced by restrictions from \(F\). \begin{itemize} \tightlist \item If \(F'\leq F\) then \(F'_p \leq F_p\). \item \textbf{Injectivity}: \(\phi: F\to G\) is injective iff the sheaf kernel \(\ker \phi = 0\) as a subsheaf of \(F\). \begin{itemize} \tightlist \item \(\phi\) is injective iff injective on all sections. \end{itemize} \item \(\operatorname{im}\phi\leq G\) is a subsheaf. \item \textbf{Surjectivity}: \(\phi: F\to G\) is surjective iff \(\operatorname{im}\phi = G\) as a subsheaf. \end{itemize} \item \textbf{Exactness}: a sequence of sheaves \((F_i, \phi_i:F_i\to F_{i+1})\) is exact iff \(\ker \phi_i = \operatorname{im}\phi^{i-1}\) as subsheaves of \(F_i\). \begin{itemize} \tightlist \item \(\phi:F\to G\) is injective iff \(0\to F \xrightarrow{\phi} G\) is exact. \item \(\phi: F\to G\) is surjective iff \(F \xrightarrow{\phi} G \to 0\) is exact. \item Sequences of sheaves are exact iff exact on stalks. \end{itemize} \item \textbf{Quotient sheaves}: \(F/F'\) is the sheafification of \(U\mapsto F(U) / F'(U)\). \item \textbf{Cokernels}: for \(\phi: F\to G\), \(\operatorname{coker}\phi\) is sheafification of \(U\mapsto \operatorname{coker}( F(U) \xrightarrow{\phi(U)} G(U))\). \item \textbf{Direct images}: for \(f \in {\mathsf{Top}}(X, Y)\), the sheaf defined on sections by \((f_* F)(V) \coloneqq F(f^{-1}(V))\) for any \(V \subseteq Y\). Yields a functor \(f_*: {\mathsf{Sh}}(X) \to {\mathsf{Sh}}(Y)\). \item \textbf{Inverse images}: denoted \(f^{-1}G\), the sheafification of \(U \mapsto \colim_{V\supseteq f(U)} G(V)\), i.e.~take the limit from above of all open sets \(V\) of \(Y\) containing the image \(f(U)\). Yields a functor \(f^{-1}: {\mathsf{Sh}}(Y) \to {\mathsf{Sh}}(X)\). \item \textbf{Restriction of a sheaf}: for \(F\in {\mathsf{Sh}}(X)\) and \(Z \subseteq X\) with \(\iota:Z \hookrightarrow X\) the inclusion, define \(i^{-1}F\in {\mathsf{Sh}}(Z)\) to be the restriction. Also denoted \({ \left.{{F}} \right|_{{Z}} }\). This has the same stalks: \(({ \left.{{F}} \right|_{{Z}} })_p = F_p\). \item For any \(U \subseteq X\), the global sections functor \(\Gamma(U; {-}): {\mathsf{Sh}}(X)\to {\mathsf{Ab}}{\mathsf{Grp}}\) is left-exact (proved in exercises). \item \textbf{Limits of sheaves}: for \(\left\{{F_i}\right\}\) a direct system of sheaves, \(\colim_{i} F_i\) has underlying presheaf \(U\mapsto \colim_i F_i(U)\). If \(X\) is Noetherian, then this is already a sheaf, and commutes with sections: \(\Gamma(X; \colim_i F_i) = \colim_i \Gamma(X; F_i)\). \begin{itemize} \tightlist \item Inverse limits exist and are defined similarly. \end{itemize} \item \textbf{The espace étalé}: define \(\text{Ét}(F) = {\textstyle\coprod}_{p\in X} F_p\) and a projection \(\pi: \text{Ét}(F) \to X\) by sending \(s\in F_p\) to \(p\). For each \(U \subseteq X\) and \(s\in F(U)\), there is a local section \(\overline{s}: U\to \text{Ét}(F)\) where \(p\mapsto s_p\), its germ at \(p\); this satisfies \(\pi \circ \overline{s} = \operatorname{id}_U\). Give \(\text{Ét}(F)\) the strongest topology such that the \(\overline{s}\) are all continuous. Then \(F^+(U) \coloneqq{\mathsf{Top}}(U, \text{Ét}(F))\) is the set of continuous sections of \(\text{Ét}(F)\) over \(U\). \item \textbf{Support}: for \(s\in F(U)\), \(\mathop{\mathrm{supp}}(s) \coloneqq\left\{{p\in U {~\mathrel{\Big\vert}~}s_p \neq 0}\right\}\) where \(s_p\) is the germ of \(s\) in \(F_p\). This is closed. \begin{itemize} \tightlist \item This extends to \(\mathop{\mathrm{supp}}(F) \coloneqq\left\{{p\in X {~\mathrel{\Big\vert}~}F_p \neq 0}\right\}\), which need not be closed. \end{itemize} \item \textbf{Sheaf hom}: \(U\mapsto \mathop{\mathrm{Hom}}({ \left.{{F}} \right|_{{U}} }, { \left.{{G}} \right|_{{U}} })\) forms a sheaf of local morphisms and is denoted \(\mathop{\mathcal{H}\! \mathit{om}}(F, G)\). \item \textbf{Flasque sheaves}: a sheaf is flasque iff \(V\hookrightarrow U \implies F(U) \twoheadrightarrow F(V)\). \item \textbf{Skyscraper sheaves}: for \(A\in {\mathsf{Ab}}{\mathsf{Grp}}\) and \(p\in X\), define \begin{align*} i_p(A)(U) = \begin{cases} A & p\in U \\ 0 & \text{otherwise}. \end{cases} .\end{align*} Also denoted \(\iota_*(A)\) where \(\iota: { \operatorname{cl}}_X(\left\{{p}\right\}) \hookrightarrow X\) is the inclusion. \begin{itemize} \tightlist \item The stalks are \begin{align*} (i_p(A))_q = \begin{cases} A & q\in { \operatorname{cl}}_X(\left\{{p}\right\}) \\ 0 & \text{otherwise}. \end{cases} .\end{align*} \end{itemize} \item \textbf{Extension by zero}: if \(\iota: Z\hookrightarrow X\) is the inclusion of a closed set and \(U\coloneqq X\setminus Z\) with \(j: U\to X\), then for \(F\in {\mathsf{Sh}}(Z)\), the sheaf \(\iota_* F\in {\mathsf{Sh}}(X)\) is the extension of \(F\) by zero outside of \(Z\). The stalks are \begin{align*} (\iota_* F)_p = \begin{cases} F_p & p\in Z \\ 0 & \text{otherwise}. \end{cases} .\end{align*} \begin{itemize} \tightlist \item For the open \(U\), extension by zero is \(j_! F\) which has presheaf \(V \mapsto F(V)\) if \(V \subseteq U\) and 0 otherwise. The stalks are \begin{align*} (j_! F)_p = \begin{cases} F_p & p\in U \\ 0 & \text{otherwise}. \end{cases} .\end{align*} \end{itemize} \item \textbf{Sheaf of ideals}: for \(Y \subseteq X\) closed and \(U \subseteq X\) open, \({\mathcal{I}}_Y(U)\) has presheaf \(U \mapsto\) the ideal in \({\mathcal{O}}_X(U)\) of regular functions vanishing on all of \(Y \cap U\). This is a subsheaf of \({\mathcal{O}}_X\). \item \textbf{Gluing sheaves}: given \({\mathcal{U}}\rightrightarrows X\) and sheaves \(F_i\in {\mathsf{Sh}}(U_i)\), one can glue to a unique \(F\in {\mathsf{Sh}}(X)\) if one is given morphisms \(\phi_{ij}{ \left.{{F_i}} \right|_{{U_{ij}}} } { \, \xrightarrow{\sim}\, }{ \left.{{F_j}} \right|_{{U_{ij}}} }\) where \(\phi_{ii} = \operatorname{id}\) and \(\phi_{ik} = \phi_{jk} \circ \phi_{ij}\) on \(U_{ijk}\). \end{itemize} \end{remark} \begin{warnings} Some common mistakes: \begin{itemize} \tightlist \item Kernel presheaves are already sheaves, but not cokernels or images. See exercise below. \item \(\phi: F\to G\) is injective iff injective on sections, but this is not true for surjectivity. \item The sheaves \(f^{-1}G\) and \(f^* G\) are different! See III.5 for the latter. \item Global sections need not be right-exact. \end{itemize} \end{warnings} \begin{exercise}[Regular functions on varieties form a sheaf] For \(X\in {\mathsf{Var}}_{/ {k}}\), define the ring \({\mathcal{O}}_X(U)\) of literal regular functions \(f_i: U\to k\) where restriction morphisms are induced by literal restrictions of functions. Show that \({\mathcal{O}}_X\) is a sheaf of rings on \(X\). \begin{quote} Hint: Locally regular implies regular, and regular + locally zero implies zero. \end{quote} \end{exercise} \begin{exercise}[?] Show that for every connected open subset \(U \subseteq X\), the constant sheaf satisfies \(\underline{A}(U) = A\), and if \(U\) is open with open connected component so the \(\underline{A}(U) = A{ {}^{ \scriptscriptstyle\times^{{\sharp}\pi_0 U} } }\). \end{exercise} \begin{exercise}[?] Show that if \(X\in{\mathsf{Var}}_{/ {k}}\) and \({\mathcal{O}}_X\) is its sheaf of regular functions, then the stalk \({\mathcal{O}}_{X, p}\) is the \emph{local ring of \(p\)} on \(X\) as defined in Ch. I. \end{exercise} \begin{exercise}[Prop 1.1] Let \(\phi: F\to G\) be a morphism in \({\mathsf{Sh}}(X)\) and show that \(\phi\) is an isomorphism iff \(\phi_p\) is an isomorphism on stalks for all \(p\in X\). Show that this is false for presheaves. \end{exercise} \begin{exercise}[?] Show that for \(\phi\in \mathop{\mathrm{Mor}}_{{\mathsf{Sh}}(X)}(F, G)\), \(\ker \phi\) is a sheaf, but \(\operatorname{coker}\phi, \operatorname{im}\phi\) are not in general. \end{exercise} \begin{exercise}[?] Show that if \(\phi: F\to G\) is surjective then the maps on sections \(\phi(U): F(U) \to G(U)\) need not all be surjective. \end{exercise} \hypertarget{ii.2-schemes}{% \subsection{II.2: Schemes}\label{ii.2-schemes}} \hypertarget{ii.3-first-properties-of-schemes}{% \subsection{II.3: First Properties of Schemes}\label{ii.3-first-properties-of-schemes}} \hypertarget{ii.4-separated-and-proper-morphisms}{% \subsection{II.4: Separated and Proper Morphisms}\label{ii.4-separated-and-proper-morphisms}} \hypertarget{ii.5-sheaves-of-modules}{% \subsection{II.5: Sheaves of Modules}\label{ii.5-sheaves-of-modules}} \hypertarget{ii.6-divisors}{% \subsection{II.6: Divisors}\label{ii.6-divisors}} \hypertarget{ii.7-projective-morphisms}{% \subsection{II.7: Projective Morphisms}\label{ii.7-projective-morphisms}} \hypertarget{ii.8-differentials}{% \subsection{II.8: Differentials}\label{ii.8-differentials}} \hypertarget{ii.9-formal-schemes}{% \subsection{II.9: Formal Schemes}\label{ii.9-formal-schemes}} \newpage \hypertarget{iii-cohomology}{% \section{III: Cohomology}\label{iii-cohomology}} \hypertarget{iii.1-derived-functors}{% \subsection{III.1: Derived Functors}\label{iii.1-derived-functors}} \hypertarget{iii.2-cohomology-of-sheaves}{% \subsection{III.2: Cohomology of Sheaves}\label{iii.2-cohomology-of-sheaves}} \hypertarget{iii.3-cohomology-of-a-noetherian-affine-scheme}{% \subsection{III.3: Cohomology of a Noetherian Affine Scheme}\label{iii.3-cohomology-of-a-noetherian-affine-scheme}} \hypertarget{iii.4-ux10dech-cohomology}{% \subsection{III.4: Čech Cohomology}\label{iii.4-ux10dech-cohomology}} \hypertarget{iii.5-the-cohomology-of-projective-space}{% \subsection{III.5: The Cohomology of Projective Space}\label{iii.5-the-cohomology-of-projective-space}} \hypertarget{iii.6-ext-groups-and-sheaves}{% \subsection{III.6: Ext Groups and Sheaves}\label{iii.6-ext-groups-and-sheaves}} \hypertarget{iii.7-serre-duality}{% \subsection{III.7: Serre Duality}\label{iii.7-serre-duality}} \hypertarget{iii.8-higher-direct-images-of-sheaves}{% \subsection{III.8: Higher Direct Images of Sheaves}\label{iii.8-higher-direct-images-of-sheaves}} \hypertarget{iii.9-flat-morphisms}{% \subsection{III.9: Flat Morphisms}\label{iii.9-flat-morphisms}} \hypertarget{iii.10-smooth-morphisms}{% \subsection{III.10: Smooth Morphisms}\label{iii.10-smooth-morphisms}} \hypertarget{iii.11-the-theorem-on-formal-functions}{% \subsection{III.11: The Theorem on Formal Functions}\label{iii.11-the-theorem-on-formal-functions}} \hypertarget{iii.12-the-semicontinuity-theorem}{% \subsection{III.12: The Semicontinuity Theorem}\label{iii.12-the-semicontinuity-theorem}} \newpage \hypertarget{iv-curves-star}{% \section{\texorpdfstring{IV: Curves \(\star\)}{IV: Curves \textbackslash star}}\label{iv-curves-star}} \begin{remark} Summary of major results: \begin{itemize} \item \(p_a(X) \coloneqq 1 - P_X(0) = (-1)^r (1-\chi({\mathcal{O}}_X))\). \begin{itemize} \tightlist \item Note: \(P_X(\ell)\) is defined as the Hilbert polynomial of the homogeneous coordinate ring \(S(Y)\), and then defined for graded \(S{\hbox{-}}\)modules \(M\) by setting \(\phi_M(\ell) = \dim_k M_\ell\) and showing \(\exists ! P_M(z) \in {\mathbf{Q}}[z]\) with \(\phi_M(\ell) = P_M(\ell)\) for \(\ell \gg 0\). \end{itemize} \item \(p_g(X) \coloneqq h^0(\omega_X) = h^0({\mathcal{L}}(K_X))\). \item Remembering these: \includegraphics{figures/2022-12-04_20-08-00.png} \end{itemize} \begin{quote} \href{https://q.uiver.app/?q=WzAsMTIsWzUsNCwiaF57MCwwfSA9IGheMChcXE9PX1gpIl0sWzQsMywiaF57MSwwfSA9IGheMChcXE9tZWdhXjEpIl0sWzYsMywiaF57MCwxfSA9IGheMShcXE9PX1gpIl0sWzUsMiwiaF57MSwxfSA9IGheMShcXE9tZWdhXjEpIl0sWzMsMiwicF9nXFxkYSBoXnsyLDB9PWheMChcXE9tZWdhXjIpID0gaF4wKEtfWCkiLFszMzgsNDEsNjAsMV1dLFs3LDIsImheezAsMn0gPSBoXjIoXFxPT19YKSJdLFs0LDEsImheezIsMX0gPSBoXjEoXFxPbWVnYV4yKSA9IGheMShLX1gpIl0sWzYsMSwiaF57MSwyfSA9IGheMihcXE9tZWdhXjEpIl0sWzUsMCwiaF57MiwyfSA9IGheMihcXE9tZWdhXjIpID0gaF4yKEtfWCkiXSxbMCwyLCJoXntwLCBxfSA9IEhecShcXE9tZWdhXnApIl0sWzQsNSwiXFxidWxsZXQiXSxbOCwxLCJcXCwiXSxbMTAsMTEsIlxccG0gcF9hID0gXFxjaGkoXFxPT19YKSAtIDEiLDAseyJsYWJlbF9wb3NpdGlvbiI6MTAwLCJvZmZzZXQiOjQsImNvbG91ciI6WzI0MCw2MCw2MF0sInN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX0sWzI0MCw2MCw2MCwxXV1d}{Link to Diagram} \end{quote} \begin{itemize} \tightlist \item For curves, \(p_a(X) = p_g(X) = h^1({\mathcal{O}}_X)\) by setting \(D\coloneqq K_C\) in RR. \begin{itemize} \tightlist \item \(\deg K_C = 2g-2\). \end{itemize} \item \(D_1\sim D_2 \iff D_1-D_2 = (f)\) for \(f\in K(X)\) rational, \({\left\lvert {D} \right\rvert} = \left\{{D'\sim D}\right\}\), and this bijects with points of \(H^0({\mathcal{L}}(D))\setminus\left\{{0}\right\}\over {\mathbf{G}}_m\). \begin{itemize} \tightlist \item Thus \(\dim {\left\lvert {D} \right\rvert} = h^0({\mathcal{L}}(D)) - 1 \coloneqq\ell(D) - 1\). \end{itemize} \item \(X\) smooth \(\implies \operatorname{Cl}(X) { \, \xrightarrow{\sim}\, }\operatorname{Pic}(X)\) via \(D\mapsto {\mathcal{L}}(D)\). \item \(h^0({\mathcal{L}}(D)) >0 \implies \deg(D) \geq 0\), and if \(\deg D = 0\) then \(D\sim 0\) and \({\mathcal{L}}(D) \cong {\mathcal{O}}_X\). \item RR: \begin{align*} \chi({\mathcal{L}}(D) &= h^0({\mathcal{L}}(D)) - h^1({\mathcal{L}}(D)) \\ &= h^0({\mathcal{L}}(D)) - h^0({\mathcal{L}}(K-D)) \\ &= \deg(D) + (1-g) .\end{align*} \begin{itemize} \tightlist \item How to remember: note \(g= h^1({\mathcal{O}}_X) = h^1({\mathcal{L}}(0))\), and \(H^0({\mathcal{O}}_X) = k\) so \(h^0({\mathcal{O}}_X) = 1\), thus \begin{align*} \chi({\mathcal{O}}_X) = h^0({\mathcal{O}}_X) - h^1({\mathcal{O}}_X) = 1-g = \deg {\mathcal{L}}(0) + 1-g .\end{align*} \item For \(C \subseteq {\mathbf{P}}^n, \deg(C) = d\) and \(D = C \cap H\) a hyperplane section defining \({\mathcal{L}}(D) = {\mathcal{O}}_X(1)\), \begin{align*} \chi({\mathcal{L}}(D)) = \deg(D) + (1-g) = d + (1-p_a(C)) \end{align*} \end{itemize} \item A curve is rational iff isomorphic to \({\mathbf{P}}^1\) iff \(g=0\). \item \(K\sim 0\) on an elliptic curve since \(\deg K = 2g-2 = 0\) and \(\deg D = 0\implies D\sim 0\). \item For \(X\) elliptic, \(\operatorname{Pic}^0(X) \coloneqq\left\{{D\in \operatorname{Div}(X) {~\mathrel{\Big\vert}~}\deg D = 0}\right\}\) and \({\left\lvert {X} \right\rvert} { \, \xrightarrow{\sim}\, }{\left\lvert {\operatorname{Pic}^0(X)} \right\rvert}\) via \(p\mapsto {\mathcal{L}}(p-p_0)\) for any fixed \(p_0\in X\), inducing its group structure. (This is proved with RR.) \end{itemize} \end{remark} \begin{remark} Comments from preface: \begin{itemize} \tightlist \item The statement of Riemann-Roch is important; less so its proof. \item Representing curves: \begin{itemize} \tightlist \item A branched covering of \({\mathbf{P}}^1\), \item More generally a branched covering of another curve, \item Nonsingular projective curves: admit embeddings into \({\mathbf{P}}^3\), maps to \({\mathbf{P}}^2\) birationally such that the image is at worst a nodal curve. \end{itemize} \item The central result regarding representing curves: Hurwitz's theorem which compares \(K_X, K_Y\) for a cover \(Y\to X\) of curves. \item Curves of genus 1: elliptic curves. \item Later sections: the canonical embedding of a curve. \end{itemize} \end{remark} \hypertarget{iv.1-riemann-roch}{% \subsection{IV.1: Riemann-Roch}\label{iv.1-riemann-roch}} \begin{definition}[Curves] A \textbf{curve} over \(k={ \overline{k} }\) is a scheme over \(\operatorname{Spec}k\) which is \begin{itemize} \tightlist \item Integral \item Dimension 1 \item Proper over \(k\) \item With regular local rings \end{itemize} In particular, a curve is smooth, complete, and necessary projective. A \textbf{point} on a curve is a closed point. \end{definition} \begin{definition}[Arithmetic genus] The \textbf{arithmetic genus} of a projective curve \(X\) is \begin{align*} p_a(X) \coloneqq 1 - P_X(0) \end{align*} where \(P_X(t)\) is the \textbf{Hilbert polynomial} of \(X\). \end{definition} \begin{definition}[Geometric genus] The \textbf{geometric genus} of a curve is \begin{align*} p+g(X) \coloneqq\dim_k H^0(X; \omega_X) \end{align*} where \(\omega_X\) is the canonical sheaf. \end{definition} \begin{exercise}[?] Show that if \(X\) is a curve, there is a single well-defined \textbf{genus} \begin{align*} g \coloneqq p_A(X) = p_G(X) = \dim_k H^1(X; {\mathcal{O}}_X) .\end{align*} \begin{quote} Hint: see Ch. III Ex. 5.3, and use Serre duality for \(p_g\). \end{quote} \end{exercise} \begin{exercise}[?] Show that for any \(g\geq 0\) there exists a curve of genus \(g\). \begin{quote} Hint: take a divisor of type \((g+1, 2)\) on a smooth quadric which is irreducible and smooth with \(p_a = g\). \end{quote} \end{exercise} \begin{definition}[Divisors on a curve] Reviewing divisors: \begin{itemize} \tightlist \item The \textbf{divisor group}: \(\operatorname{Div}(X) = {\mathbf{Z}}\left[ {X_{ \operatorname{cl}}} \right]\) \item \textbf{Degrees}: \(\deg(\sum n_i D_i) \coloneqq\sum n_i\), and \item \textbf{Linear equivalence}: \(D_1\sim D_2 \iff D_1 - D_1 = \operatorname{Div}(f)\) for some \(f\in k(X)\) a rational function. \item \(D\) is \textbf{effective} if \(n_i \geq 0\) for all \(i\). \item \({\left\lvert {D} \right\rvert} \coloneqq\left\{{D'\in \operatorname{Div}(X) {~\mathrel{\Big\vert}~}D'\sim D}\right\}\) is the \textbf{complete linear system} of \(D\). \item \({\left\lvert {D} \right\rvert} \cong {\mathbf{P}}H^0(X; {\mathcal{L}}(D))\) \item \textbf{Dimensions of linear systems}: \(\ell(D) \coloneqq\dim_k H^0(X; {\mathcal{L}}(D))\) and \(\dim {\left\lvert {D} \right\rvert} \coloneqq\ell(D) - 1\). \item \textbf{Relative differentials}: \(\Omega_X \coloneqq\Omega_{X_{/ {k}}}\) is the sheaf of relative differentials on \(X\). \begin{itemize} \tightlist \item The technical definition: \(\Omega_{X_{/ {S}}} \coloneqq\Delta_{X_{/ {Y}}}^*({\mathcal{I}}/{\mathcal{I}}^2)\) where \({\mathcal{I}}\) is the sheaf of ideals defining the locally closed subscheme \(\operatorname{im}(\Delta_{X_{/ {Y}}}) \subseteq X{ \operatorname{fp} }{Y} X\). \item On affine schemes: on the ring side, \(\Omega_{B_{/ {A}}} \in {}_{B}{\mathsf{Mod}}\) equipped with a differential \(d: B\to \Omega{B_{/ {A}}}\), defined as \(\left\langle{db{~\mathrel{\Big\vert}~}b\in B}\right\rangle_B / \left\langle{d(b_1+b_2) =db_1 + db_2, d(b_1 b_2) = d(b_1)b_2 + b_1 d(b_2), da = 0\, \forall a\in A}\right\rangle_B\). \item On curves, \(\Omega_{X_{/ {Y}}}\) measures the ``difference'' between \(K_X\) and \(K_Y\). \end{itemize} \item \textbf{Canonical sheaf}: \(\dim X = 1, \Omega_{X_{/ {k}}} \cong \omega_X\). \item \textbf{Canonical divisor}: \(K_X\) 2is any divisor in the linear equivalence class corresponding to \(\omega_X\) \item \(D\) is \textbf{special} iff its \textbf{index of speciality} \(\ell(K-D) > 0\), otherwise \(D\) is \textbf{nonspecial}. \end{itemize} \end{definition} \begin{exercise}[?] Show that \(D_1\sim D_2\implies\deg(D_1) = \deg(D_2)\). \end{exercise} \begin{exercise}[?] Show that \begin{align*} {\left\lvert {D} \right\rvert} \rightleftharpoons{\mathbf{P}}H^0(X; {\mathcal{L}}(D)) ,\end{align*} so \({\left\lvert {D} \right\rvert}\) has the structure of the closed points of some projective space. \end{exercise} \begin{exercise}[Lemma 1.2] Show that if \(D\in \operatorname{Div}(X)\) for \(X\) a curve and \(\ell(D) \neq 0\), then \(\deg(D) \geq 0\). Show that is \(\ell(D) \neq 0\) and \(\deg D = 0\) then \(D\sim 0\) and \({\mathcal{L}}(D) \cong {\mathcal{O}}_X\). \end{exercise} \begin{theorem}[Riemann-Roch] \begin{align*} \ell(D) - \ell(K-D) = \deg(D) + (1-g) .\end{align*} \end{theorem} \begin{exercise}[Ingredients for proof of RR] Show the following: \begin{itemize} \item The divisor \(K-D\) corresponds to \(\omega_X \otimes{\mathcal{L}}(D) {}^{ \vee }\in \operatorname{Pic}(X)\). \item \(H^1(X; {\mathcal{L}}(D)) {}^{ \vee }\cong H^0(X; \omega_X \otimes{\mathcal{L}}(D) {}^{ \vee })\). \item If \(X\) is any projective variety, \begin{align*} H^0(X; {\mathcal{O}}_X) = k .\end{align*} \end{itemize} \end{exercise} \begin{exercise}[?] Show that if \(X \subseteq {\mathbf{P}}^n\) is a curve with \(\deg X = d\) and \(D = X \cap H\) is a hyperplane section, then \({\mathcal{L}}(D) = {\mathcal{O}}_X(1)\) and \(\chi({\mathcal{L}}(D)) = d + 1 - p_a\). \end{exercise} \begin{exercise}[?] Show that if \(g(X) = g\) then \(\deg K_X = 2g-2\). \begin{quote} Hint: set \(D = K\) and use \(\ell(K) = p_g = g\) and \(\ell(0) = 1\). \end{quote} \end{exercise} \begin{remark} More definitions: \begin{itemize} \tightlist \item \(X\) is \textbf{rational} iff birational to \({\mathbf{P}}^1\). \item \(X\) is \textbf{elliptic} if \(g=1\). \end{itemize} \end{remark} \begin{exercise}[?] Show that \begin{enumerate} \def\labelenumi{\arabic{enumi}.} \tightlist \item If \(\deg D > 2g-2\) then \(D\) is nonspecial. \item \(p_a({\mathbf{P}}^1) = 0\). \item A complete nonsingular curve is rational iff \(X\cong {\mathbf{P}}^1\) iff \(g(X) = 0\). \item If \(X\) is elliptic then \(K\sim 0\) \end{enumerate} \begin{quote} Hint: for (3) apply RR to \(D = p-q\) for points \(p\neq q\), and use \(\deg(K-D) = -2\) and \(\deg(D) = 0 \implies D\sim 0 \implies p\sim q\). For (4), show \(\ell(K) = p_g = 1\). \end{quote} \end{exercise} \begin{exercise}[?] If \(X\) is elliptic and \(p\in X\), then there is a bijection \begin{align*} m_p: X & { \, \xrightarrow{\sim}\, }\operatorname{Pic}(X) \\ x &\mapsto {\mathcal{L}}(x-p) ,\end{align*} so \(\operatorname{Pic}(X) \in {\mathsf{Grp}}\). \begin{quote} Hint: show that if \(\deg(D) = 0\) then there is some \(x\in X\) such that \(D\sim x-p\) and apply RR to \(D+p\). \end{quote} \end{exercise} \hypertarget{iv.2-hurwitz-star}{% \subsection{\texorpdfstring{IV.2: Hurwitz \(\star\)}{IV.2: Hurwitz \textbackslash star}}\label{iv.2-hurwitz-star}} \begin{remark} Summary of results: \begin{itemize} \item For curves, complete = projective. \item Riemann-Hurwitz: for \(f:X\to Y\) finite separable, \begin{align*} K_X \sim f^* K_Y + R \implies \deg(K_X) = \deg(f^*K_Y) + \deg(R) \implies \\ \\ \chi(X) = \deg (f)\cdot \chi(Y) + \deg R, \qquad \deg R = \sum_{p\in X} (e_p - 1) .\end{align*} \item \(\deg f \coloneqq[K(X): K(Y)]\) for finite morphisms of curves. \item \(e_p \coloneqq v_p(f^\sharp_* t)\) where \(t\) is uniformizer in \({\mathcal{O}}_{f(p)}\) and \(f^\sharp: {\mathcal{O}}_{Y, f(p)}\to {\mathcal{O}}_{X, p}\) for \(f:X\to Y\). \begin{itemize} \tightlist \item \(e_p > 1 \implies\) ramification. \item Unramified everywhere implies etale (since automatically flat). \item \(p\divides e_{x_0}\implies\) wild ramification, otherwise tame. \end{itemize} \item \(\exists f^*: \operatorname{Div}(Y)\to \operatorname{Div}(X)\) where \(q\mapsto \sum_{p\mapsto q} e_p p\). \item Pullback commutes with forming line bundles: \begin{align*} f^* {\mathcal{L}}(D) \cong {\mathcal{L}}(f^* D) \end{align*} where the LHS \(f^*: \operatorname{Pic}(Y) \to \operatorname{Pic}(X)\). \item The fundamental SES for relative differentials: if \(f:X\to Y\) is finite separable, \begin{align*} f^* \Omega_{Y} \hookrightarrow\Omega_{X} \twoheadrightarrow\Omega_{X/Y} .\end{align*} \item \({\frac{\partial t}{\partial u}\,}\) for \(t\) a uniformizer at \(f(p)\) and \(u\) a uniformizer at \(p\) is defined by noting \(\Omega{Y, f(p)} = \left\langle{\,dt}\right\rangle, \Omega_{X, p} = \left\langle{\,du}\right\rangle\), and there is some \(g\in {\mathcal{O}}_{X, p}\) such that \(f^* \,dt= g\,du\); set \(g \coloneqq{\frac{\partial t}{\partial u}\,}\). \item For finite separable morphisms of curves \(f:X\to Y\), \begin{itemize} \tightlist \item \(\mathop{\mathrm{supp}}\Omega_{X/Y} = \mathrm{Ram}(f)\) is the ramification locus, and \(\Omega_{X/Y}\) is torsion so \(\operatorname{Ram}(f)\) is finite. \item \(\mathop{\mathrm{length}}(\Omega_{X, Y})_p = v_p\qty{{\frac{\partial t}{\partial u}\,}}\) for any \(p\in X\) \item Tamely ramified \(\implies \mathop{\mathrm{length}}(\Omega_{X/Y})_p = e_p - 1\), and wild ramification increases this length. Recall that length is the largest size of chains of submodules. \end{itemize} \item The ramification divisor: \begin{align*} R \coloneqq\sum_{p\in X} \mathop{\mathrm{length}}(\Omega_{X/Y})_p p .\end{align*} \item \(K_X \sim f^*K_Y + R\) \item \({\mathbf{P}}^1\) can't admit an unramified cover: for \(n\geq 1\), \begin{align*} \chi(X) = n\chi({\mathbf{P}}^1) + \deg R \implies \chi(X) = -2n + \deg R \implies \chi(X) = -2n \leq -2 ,\end{align*} which forces \(g(X) = 0, n=1, X = {\mathbf{P}}^1, f=\operatorname{id}\). \item The Frobenius morphism on schemes is defined by taking \(f^\sharp: {\mathcal{O}}_X\to {\mathcal{O}}_X\) to be the \(p\)th power map; pullback yields a definition of \(X_p\), the Frobenius twist of \(X\). \begin{itemize} \tightlist \item \(F: X_p\to X\) is finite, \(\deg F = p\), and corresponds to \(K(X) \hookrightarrow K(X)^{1\over p}\) \end{itemize} \item If \(f:X\to Y\) induces a purely inseparable extension \(K(X)/K(Y)\), then \(X { \, \xrightarrow{\sim}\, }Y\) as schemes, \(g(X) = g(Y)\), and \(f\) is a composition of Frobenii. \item Everywhere ramified extensions: \(f:Y_p \to Y\), where \(e_{q} = p\) for every \(q\in X\). Induces \(\Omega_{X/Y}\cong \Omega_{X}\). \item \(\deg R\) is always even. \item Finite implies proper: finite implies separated, of finite type, closed by ``going up'' and universally closed by since finiteness is preserved under base change. \item \({\mathbf{P}}^1\) no nontrivial etale covers. \item If \(f:X\to Y\) then \(g(X) \geq g(Y)\). \begin{itemize} \tightlist \item Thus \(\exists {\mathbf{P}}^1\to Y\) finite \(\implies g(Y) = 0\). \end{itemize} \end{itemize} \end{remark} \begin{remark} Preface: \begin{itemize} \tightlist \item \textbf{Degree}: for a finite morphism of curves \(X \xrightarrow{f} Y\), set \(\operatorname{det}(f) \coloneqq[k(X): k(Y)]\), the degree of the extension of function fields. \item \textbf{Ramification indices \(e_p\)}: for \(p\in X\), let \(q=f(p)\) and \(t \in {\mathcal{O}}_q\) a local coordinate. Pull back to \(t\in {\mathcal{O}}_p\) via \(f^\sharp\) and define \(e_p \coloneqq v_p(t)\) using the valuation \(v_p\) for the DVR \({\mathcal{O}}_p\). \item \textbf{Ramified}: \(e_p > 1\), and \textbf{unramified} if \(e_p = 1\). \item \textbf{Branch points} any \(q = f(p)\) where \(f\) is ramified. \item \textbf{Tame ramification}: for \(\operatorname{ch}(k) = p\), tame if \(p\notdivides e_P\). \item \textbf{Wild ramification}: when \(p\divides e_P\). \item Pullback maps on divisor groups: \begin{align*} f^*: \operatorname{Div}(Y) &\to \operatorname{Div}(X) \\ Q &\mapsto \sum_{P \xrightarrow{f} q} e_P [P] .\end{align*} \begin{itemize} \tightlist \item This commutes with taking line bundles (exercise), so induces a well-defined map \(f^*: \operatorname{Pic}(X) \to \operatorname{Pic}(Y)\). \end{itemize} \item \(f\) is \textbf{separable} if \(k(X) / k(Y)\) is a separable field extension. \end{itemize} \end{remark} \begin{exercise}[?] Misc: \begin{itemize} \tightlist \item Show that if \(f\) is everywhere unramified then it is an étale morphism. \item Show that \(f^* {\mathcal{L}}(D) = {\mathcal{L}}(f^* D)\) \end{itemize} \end{exercise} \begin{exercise}[Prop 2.1] Show that if \(X \xrightarrow{f} Y\) is a finite separable morphism of curves, there is a SES \begin{align*} f^* \Omega_Y \hookrightarrow\Omega_X \twoheadrightarrow\Omega_{X_{/ {Y}}} .\end{align*} \end{exercise} \begin{remark} Definitions: \begin{itemize} \tightlist \item \textbf{Derivatives}: for \(f: X\to Y\), let \(t\) be a parameter at \(Q = f(P)\) and \(u\) at \(P\). Then \(\Omega_{Y, Q} = \left\langle{dt}\right\rangle_{{\mathcal{O}}_Q}\) and \({\mathcal{O}}_{X, P} = \left\langle{du}\right\rangle_{{\mathcal{O}}_P}\) and \(\exists ! g\in {\mathcal{O}}_P\) such that \(f^* dt = du\) so we write \({\frac{\partial t}{\partial u}\,} \coloneqq g\). \item \textbf{Ramification divisor}: \(R \coloneqq\sum_{P\in X} \mathop{\mathrm{length}}(\Omega_{X_{/ {Y}}})_P [P] \in \operatorname{Div}(X)\) \end{itemize} \end{remark} \begin{exercise}[Prop 2.2] For \(X \xrightarrow{f} Y\) a finite separable morphism of curves, \begin{enumerate} \def\labelenumi{\alph{enumi}.} \tightlist \item \(\Omega_{X_{/ {Y}}}\) is a torsion sheaf on \(X\) with support equal to the ramification locus of \(f\). Thus \(f\) is ramified at finitely many points. \item The stalks \((\Omega_{X_{/ {Y}}})_P\) are principal \({\mathcal{O}}_P{\hbox{-}}\)modules of finite length equal to \(v_p\qty{{\frac{\partial t}{\partial u}\,}}\) \item \begin{align*} \mathop{\mathrm{length}}(\Omega_{X_{/ {Y}}})_P \begin{cases} = e_p - 1 & f \text{ is tamely ramified at } P \\ > e_p -1 & f \text{ is wildly ramified at } P. \end{cases} .\end{align*} \end{enumerate} \end{exercise} \begin{exercise}[Prop 2.3] If \(X \xrightarrow{f} Y\) is a finite separable morphism of curves, then \begin{align*} K_X \sim f^* K_Y + R ,\end{align*} where \(R\) is the ramification divisor of \(f\). \end{exercise} \begin{theorem}[Hurwitz] If \(X \xrightarrow{f} Y\) is a finite separable morphism of curves, then \begin{align*} 2g(X) -2 = \deg(f)(2g(Y) - 2) + \deg(R) ,\end{align*} and if \(f\) has only tame ramification then \(\deg(R) = \sum_{P\in X}(e_P - 1)\). \end{theorem} \begin{remark}[proof of Hurwitz] Take degrees of the divisor equation: \begin{align*} \deg(K_X ) &= \deg(f^* K_Y + R) \\ \implies \chi_{\mathsf{Top}}(X) &= \deg(f^* K_Y) + \deg(R) \\ \implies 2g(X) - 2 &= \deg(f) \deg(K_Y) + \deg(R) \\ \implies 2g(X) - 2 &= \deg(f) \chi_{\mathsf{Top}}(Y) + \deg(R) \\ \implies 2g(X) - 2 &= \deg(f) (2g(Y) - 2) + \deg(R) \\ \implies 2g(X) - 2 &= \deg(f) (2g(Y) - 2) + \sum_{P\in X} (e_P - 1) \\ ,\end{align*} using tame ramification in the last step which implies \(\mathop{\mathrm{length}}(\Omega_{X_{/ {Y}}})_P = (e_p - 1)\). \end{remark} \begin{remark} Consider the purely inseparable case. \begin{itemize} \tightlist \item \textbf{Frobenius morphism}: for \(X \in{\mathsf{Sch}}\) where \({\mathcal{O}}_P \supseteq{\mathbf{Z}}/p{\mathbf{Z}}\) for all \(P\), define \(\operatorname{Frob}: X\to X\) by \(F({\left\lvert {X} \right\rvert}) = {\left\lvert {X} \right\rvert}\) on spaces and \(F^\sharp: {\mathcal{O}}_X \to {\mathcal{O}}_X\) is \(f\mapsto f^p\). This is a morphism since \(F^\sharp\) induces a morphism on all local rings, which are all characteristic \(p\). \item \textbf{The \(k{\hbox{-}}\)linear Frobenius morphism}: define \(X_p\) to be \(X\) with the structure morphism \(F\circ \pi\), so \(k\curvearrowright{\mathcal{O}}_{X_p}\) by \(p\)th powers and \(F\) becomes a \(k{\hbox{-}}\)linear morphism \(F': X_p\to X\). \begin{itemize} \tightlist \item Why this is necessary: \(F\) as before is not a morphism in \({\mathsf{Sch}}_{/ {k}}\), and instead forms a commuting square involving \(F: \operatorname{Spec}k\to \operatorname{Spec}k\) and the structure maps \(X \xrightarrow{\pi} \operatorname{Spec}k\). \end{itemize} \end{itemize} \end{remark} \begin{exercise}[?] Find examples where \begin{itemize} \tightlist \item \(X_p \cong X \in {\mathsf{Sch}}_{/ {k}}\), and \item \(X_p \not\cong X \in {\mathsf{Sch}}_{/ {k}}\). \end{itemize} \begin{quote} Hint: consider \(X = \operatorname{Spec}k[t]\) for \(k\) perfect. \end{quote} \end{exercise} \begin{exercise}[?] Show that if \(X \xrightarrow{f} Y\) is separable then \(\deg(R)\) is always even. \end{exercise} \begin{quote} Skipped some stuff around Example 2.4.2, I don't necessarily need characteristic \(p\) things right now. \end{quote} \begin{remark} Definitions: \begin{itemize} \tightlist \item \textbf{Étale covers}: \(X \xrightarrow{f} Y\) is an étale cover if \(f\) is a finite étale morphism,, i.e.~\(f\) is flat and \(\Omega^1_{X_{/ {Y}}} = 0\). \item \(Y\) is a \textbf{trivial} cover if \(X \cong {\textstyle\coprod}_{i\in I} Y\) a finite disjoint union of copies of \(Y\), \item \(Y\) is \textbf{simply connected} if there are no nontrivial étale covers. \end{itemize} \end{remark} \begin{exercise}[?] \envlist \begin{itemize} \tightlist \item Show that a connected regular curve is irreducible. \item Show that if \(f\) is etale then \(X\) is smooth over \(k\). \item Show that if \(f\) is finite, \(X\) must be a curve. \item Show that if \(f\) is étale, then \(f\) must be separable. \item Show that \(\pi_1^\text{ét}({\mathbf{P}}^1) = 0\). \end{itemize} \begin{quote} Hint: use Hurwitz and that when \(f\) is unramified, \(R = 0\). \end{quote} \end{exercise} \begin{exercise}[?] \envlist \begin{itemize} \tightlist \item Show that the genus of a curve doesn't change under purely inseparable extensions. \item Show that if \(f:X\to Y\) is a finite morphism of curves then \(g(X) \geq g(Y)\). \end{itemize} \end{exercise} \begin{exercise}[Lüroth] Show that if \(L\) is a subfield of a purely transcendental extension \(k(t) / k\) where \(k = { \overline{k} }\), then \(L\) is also purely transcendental.\footnote{This is true over any field \(k\) in dimension 1, over \(k={ \overline{k} }\) in dimension 2, and false in dimension 3 by the existence of nonrational unirational threefolds.} \begin{quote} Hint: Assume \([L: k]_{\mathrm{tr}}= 1\), so \(L = k(X)\) for \(Y\) a curve and \(L \subseteq k(t)\) corresponds to a finite morphism \(f: {\mathbf{P}}^1\to Y\). Conclude \(g(Y) = 0\) so \(Y\cong {\mathbf{P}}^1\) and \(L\cong k(u)\) for some \(u\). \end{quote} \end{exercise} \hypertarget{iv.3-embeddings-in-projective-space-star}{% \subsection{\texorpdfstring{IV.3: Embeddings in Projective Space \(\star\)}{IV.3: Embeddings in Projective Space \textbackslash star}}\label{iv.3-embeddings-in-projective-space-star}} \begin{remark} A summary of major results: \begin{itemize} \tightlist \item For \(D\in \operatorname{Div}(C)\) with \(g = g(C)\), \begin{itemize} \tightlist \item \(D\) is ample iff \(\deg D > 0\). \item \(D\) is BPF iff \(\deg D\geq 2g\). \item \(D\) is very ample iff \(\deg D \geq 2g+1\). \end{itemize} \item Being very ample is equivalent to being a hyperplane section under a projective embedding. \item Divisors \(D\in \operatorname{Div}({\mathbf{P}}^n)\) are ample iff very ample iff \(\deg D \geq 1\). \begin{itemize} \tightlist \item E.g. if \(E\) is elliptic then \(D\) is very ample if \(\deg D \geq 3\), and for hyperelliptic, very ample if \(\deg D\geq 5\). \end{itemize} \item If \(D\) is very ample then \(\deg \phi(X) = \deg D\). \item Curves \(C \subseteq {\mathbf{P}}^n\) for \(n\geq 4\) can be projected away from a point \(p\not \in X\) to get a closed immersion into \({\mathbf{P}}^m\) for some \(m\leq n-1\). So any curve is birational to a nodal curve in \({\mathbf{P}}^2\). \item Genus of normalizations of nodal curves: \(g = {1\over 2}(d-1)(d-2)-{\sharp}\left\{{\text{nodes}}\right\}\). \item Any curve embeds into \({\mathbf{P}}^3\), and maps into \({\mathbf{P}}^2\) with at worst nodal singularities. \end{itemize} \end{remark} \begin{remark} Main result: any curve can be embedded in \({\mathbf{P}}^3\), and is birational to a nodal curve in \({\mathbf{P}}^2\). Some recollections: \begin{itemize} \tightlist \item \textbf{Very ample line bundles}: \({\mathcal{L}}\in \operatorname{Pic}(X)\) is very ample if \({\mathcal{L}}\cong {\mathcal{O}}_X(1)\) for some immersion of \(f: X\hookrightarrow{\mathbf{P}}^N\). \item \textbf{Ample}: \({\mathcal{L}}\) is ample when \(\forall {\mathcal{F}}\in {\mathsf{Coh}}(X)\), the twist \({\mathcal{F}}\otimes{\mathcal{L}}^n\) is globally generated for \(n \gg 0\). \item \textbf{(Very) ample divisors}: \(D\in \operatorname{Div}(X)\) is (very) ample iff \({\mathcal{L}}(D)\in \operatorname{Pic}(X)\) is (very) ample. \item \textbf{Linear systems}: a linear system is any set \(S \leq {\left\lvert {D} \right\rvert}\) of effective divisors yielding a linear subspace. \item \textbf{Base points}: \(P\) is a base point of \(S\) iff \(P \in \mathop{\mathrm{supp}}D\) for all \(D\in S\). \item \textbf{Secant lines}: the secant line of \(P, Q\in X\) is the line in \({\mathbf{P}}^N\) joining them. \item \textbf{Tangent lines}: at \(P\in X\), the unique line \(L \subseteq {\mathbf{P}}^N\) passing through \(p\) such that \({\mathbf{T}}_P(L) = {\mathbf{T}}_P(X) \subseteq {\mathbf{T}}_P({\mathbf{P}}^N)\). \item \textbf{Nodes}: a singularity of multiplicity 2. \begin{itemize} \tightlist \item \(y^2 = x^3 + x^2\) is a \textbf{node}. \item \(y^2 = x^3\) is a \textbf{cusp}. \item \(y^2 = x^4\) is a \textbf{tacnode}. \end{itemize} \item \textbf{Multisecant}: for \(X \subseteq {\mathbf{P}}^3\), a line meeting \(X\) in 3 or more distinct points. \item A \textbf{secant with coplanar tangent lines} is a secant through \(P, Q\) whose tangent lines \(L_P, L_Q\) lie in a common plane, or equivalently \(L_P\) intersects \(L_Q\). \end{itemize} \end{remark} \begin{exercise}[II.8.20.2] Show that by Bertini's theorem there are irreducible smooth curves of degree \(d\) in \({\mathbf{P}}^2\) for any \(d\). \end{exercise} \begin{exercise}[?] \envlist Show that \begin{itemize} \tightlist \item \({\mathcal{L}}\) is ample iff \({\mathcal{L}}^n\) is very ample for \(b \gg 0\). \item \({\left\lvert {D} \right\rvert}\) is basepoint free iff \({\mathcal{L}}(D)\) is globally generated. \item If \(D\) is very ample, then \({\left\lvert {D} \right\rvert}\) is basepoint free. \item If \(D\) is ample, \(nD \sim H\) a hyperplane section for a projective embedding for some \(n\). \item If \(g(X) = 0\) then \(D\) is ample iff very ample iff \(\deg D > 0\). \item If \(D\) is very ample and corresponds to a closed immersion \(\phi: X\hookrightarrow{\mathbf{P}}^n\) then \(\deg \phi(X) = \deg D\). \item If \(XS\) is elliptic, any \(D\) with \(\deg D = 3\) is very ample and \(\dim {\left\lvert {D} \right\rvert} = 2\), and so can be embedded into \({\mathbf{P}}^2\) as a cubic curve. \item Show that if \(g(X) = 1\) then \(D\) is very ample iff \(\deg D \geq 3\). \item Show that if \(g(X) = 2\) and \(\deg D = 5\) then \(D\) is very ample, so any genus 2 curve embeds in \({\mathbf{P}}^3\) as a curve of degree 5. \end{itemize} \end{exercise} \begin{exercise}[Prop 3.1: when a linear system yields a closed immersion into $\PP^N$] Let \(D\in \operatorname{Div}(X)\) for \(X\) a curve and show \begin{itemize} \tightlist \item \({\left\lvert {D} \right\rvert}\) is basepoint free iff \(\dim{\left\lvert {D-P} \right\rvert} = \dim{\left\lvert {D} \right\rvert} - 1\) for all points \(p\in X\). \item \(D\) is very ample iff \(\dim{\left\lvert {D-P-Q} \right\rvert} = \dim{\left\lvert {D} \right\rvert} - 2\) for all points \(P, Q\in X\). \end{itemize} \begin{quote} Hint: use the SES \({\mathcal{L}}(D-P)\hookrightarrow{\mathcal{L}}(D) \twoheadrightarrow k(P)\) where \(k(P)\) is the skyscraper sheaf at \(P\). \end{quote} \end{exercise} \begin{exercise}[Cor 3.2] Let \(D\in \operatorname{Div}(X)\). \begin{itemize} \tightlist \item If \(\deg D \geq 2g(X)\) then \({\left\lvert {D} \right\rvert}\) is basepoint free. \item If \(\deg D \geq 2g(X) + 1\) then \(D\) is very ample. \item \(D\) is ample iff \(\deg D > 0\) \item This bounds is not sharp. \end{itemize} \begin{quote} Hint: apply RR. For the bound, consider a plane curve \(X\) of degree 4 and \(D = X.H\). \end{quote} \end{exercise} \begin{remark} Idea behind embedding in \({\mathbf{P}}^3\): embed into \({\mathbf{P}}^n\) and project away from a point in the complement. \end{remark} \begin{exercise}[3.4, 3.5, 3.6] Let \(X \subseteq {\mathbf{P}}^N\) be a curve and \(O\not\in X\), let \(\phi:X\to {\mathbf{P}}^{n-1}\) be projection away from \(O\). Then \(\phi\) is a closed immersion iff \begin{itemize} \tightlist \item \(O\) is not on any secant line of \(X\), and \item \(O\) is not on any tangent line of \(X\). \end{itemize} Show that if \(N\geq 4\) then there exists such a point \(O\) yielding a closed immersion into \({\mathbf{P}}^{N-1}\). Conclude that any curve can be embedded into \({\mathbf{P}}^3\). \begin{quote} Hint: \(\dim\mathrm{Sec}(X) \leq 3\) and \(\dim \mathrm{Tan}(X) \leq 2\). \end{quote} \end{exercise} \begin{proposition}[3.7] Let \(X \subseteq {\mathbf{P}}^3\), \(O\not\in X\), and \(\phi: X\to {\mathbf{P}}^2\) be the projection from \(O\). Then \(X\overset{\sim}{\dashrightarrow}\phi(X)\) iff \(\phi(X)\) is nodal iff the following hold: \begin{itemize} \tightlist \item \(O\) is only on finitely many secants of \(X\), \item \(O\) is on no tangents, \item \(O\) is on no multisecant, \item \(O\) is on no secant with coplanar tangent lines. \end{itemize} \end{proposition} \begin{quote} Skipped things around Prop 3.8. The hard part: showing not every secant is a multisecant, and not every secant has coplanar tangent lines. Skipped strange curves. \end{quote} \begin{remark} Classifying all curves: any curve is birational to a nodal plane curve, so study the family \({\mathcal{F}}_{d, r}\) of plane curves of degree \(d\) and \(r\) nodes. The family \({\mathcal{F}}_d\) of all plane curves is a linear system of dimension \begin{align*} \dim {\left\lvert {{\mathcal{F}}_d} \right\rvert} = {d(d+3)\over 2} .\end{align*} For any such curve \(X\), consider its normalization \(\nu(X)\), then \begin{align*} g(\nu(X)) = {(d-1)(d-2)\over 2} - r .\end{align*} Thus for \({\mathcal{F}}_{d, r}\) to be nonempty, one needs \begin{align*} 0 \leq r \leq {(d-1)(d-2) \over 2} .\end{align*} Both extremes can occur: \(r=0\) follows from Bertini, and \(r = {(d-1)(d-2)\over 2}\) by embedding \({\mathbf{P}}^1\hookrightarrow{\mathbf{P}}^d\) as a curve of degree \(d\) and projecting down to a nodal curve in \({\mathbf{P}}^2\) of genus zero. Severi states and Harris proves that for every \(r\) in this range \({\mathcal{F}}_{d, r}\) is irreducible, nonempty, and \(\dim {\mathcal{F}}_{d, r} = {d(d+3)\over 2} - r\). \end{remark} \hypertarget{iv.4-elliptic-curves-star}{% \subsection{\texorpdfstring{IV.4: Elliptic Curves \(\star\)}{IV.4: Elliptic Curves \textbackslash star}}\label{iv.4-elliptic-curves-star}} \begin{remark} Curves \(E\) with \(g(E) = 1\); we'll assume \(\operatorname{ch}k \neq 2\) throughout. Outline: \begin{itemize} \tightlist \item Define the \(j{\hbox{-}}\)invariant, classifies isomorphism classes of elliptic curves. \item Group structure on the curve. \item \(E = \operatorname{Jac}(E)\). \item Results about elliptic functions over \({\mathbf{C}}\). \item The Hasse invariant of \(E/{ \mathbf{F} }_q\) in characteristic \(p\). \item \(E({\mathbf{Q}})\). \end{itemize} \end{remark} \hypertarget{the-jhbox-invariant}{% \subsubsection{\texorpdfstring{The \(j{\hbox{-}}\)invariant}{The j\{\textbackslash hbox\{-\}\}invariant}}\label{the-jhbox-invariant}} \begin{remark} The \(j{\hbox{-}}\)invariant: \begin{itemize} \tightlist \item \(j(E) \in k\), so \({\mathbf{A}}^1_{/ {k}}\) is a coarse moduli space for elliptic curves over \(K\). \item Defining \(j(E)\): \begin{itemize} \tightlist \item Let \(p_0\in X\), consider the linear system \(L\coloneqq{\left\lvert {2p_0} \right\rvert}\). \item Nonspecial, so RR shows \(\dim(L) = 1\). \item BPF, otherwise \(E\) is rational. \item Defines a morphism \(\phi_L: E\to {\mathbf{P}}^1_{/ {k}}\) with \(\deg \phi_L = 2\). \item Up to change of coordinates, \(f(p_0) = \infty\). \item By Hurwitz, \(f\) is ramified at 4 branch points \(a,b,c,p_0\). \item Move \(a\mapsto 0, b\mapsto 1\) by a Mobius transformation fixing \(\infty\), so \(f\) is branched over \(0,1,\lambda,\infty\) where \(\lambda \in k\setminus\left\{{ 0,1 }\right\}\). \item Use \(\lambda\) to define the invariant: \begin{align*} j(E) = j( \lambda) = 2^8\qty{(\lambda^2 - \lambda+ 1)^3 \over \lambda^2 (\lambda- 1)^2} .\end{align*} \end{itemize} \item Theorem 4.1: \begin{itemize} \tightlist \item \(j\) depends only on the curve \(E\) and not \(\lambda\). \item \(E\cong E'\iff j(E) = j(E')\). \item Every element of \(k\) occurs as \(j(E)\) for some \(E\). \item So this yields a bijection \begin{align*} \left\{{\substack{ \text{Elliptic curves over }k }}\right\}{_{\scriptstyle / \sim} } &\rightleftharpoons {\mathbf{A}}^1_{/ {k}} \\ E &\mapsto j(E) .\end{align*} \end{itemize} \item Some facts that go into proving this: \begin{itemize} \tightlist \item \(\forall p,q\in X\,\,\exists \sigma\in \mathop{\mathrm{Aut}}(X)\) such that \(\sigma^2=1, \sigma(p) = q\), for any \(r\in X\), one has \(r + \sigma(r) \sim p + q\). \item \(\mathop{\mathrm{Aut}}(X)\curvearrowright X\) transitively. \item Any two degree two maps \(f_1,f_2: X\to {\mathbf{P}}^1\) fit into a commuting square. \item Under \(S_3\curvearrowright{\mathbf{A}}^1_{/ {k}}\setminus\left\{{ 0, 1 }\right\}\), the orbit of \(\lambda\) is \begin{align*} S_3 . \lambda= \left\{{ \lambda, \lambda^{-1}, s_1 = 1- \lambda, s_1^{-1}= (1- \lambda)^{-1}, s_2 = \lambda(\lambda-1)^{-1}, s_3 = \lambda^{-1}(\lambda- 1)}\right\} .\end{align*} \item Fixing \(p\in X\), there is a closed immersion \(X\to {\mathbf{P}}^2\) whose image is \(y^2=x(x-1)(x- \lambda)\) where \(p\mapsto \infty = {\left[ {0:1:0} \right]}\) and this \(\lambda\) is either the \(\lambda\) from above or one of \(s_1^{\pm 1}, s_2^{\pm 1}\). \begin{itemize} \tightlist \item Idea of proof: embed \(X\hookrightarrow{\mathbf{P}}^2\) by \(L\coloneqq{\left\lvert {3p} \right\rvert}\), use RR to compute \(h^0({\mathcal{O}}(np)) = n\) so \(h^0({\mathcal{O}}(6p)) = 6\). \item So \(\left\{{1,x,y,x^2,xy,y^2,x^3}\right\}\) has a linear dependence where \(x^3,y^2\) have nonzero coefficients since they have poles at \(p\). \item Rescale \(x^3, y^2\) to coefficient 1 to get \begin{align*} y^2+a_1 x y+a_3 y=x^3+a_2 x^2+a_4 x+a_6 .\end{align*} \end{itemize} \item Do a change of variable to put in the desired form: complete the square on the LHS, factor as \(y^2=(x-a)(x-b)(x-c)\), send \(a\to 0, b\to 1\) by a Mobius transformation. \end{itemize} \item Note that one can project from \(p\) to the \(x{\hbox{-}}\)axis to get a finite degree 2 morphism ramified at \(0,1, \lambda, \infty\). \end{itemize} \end{remark} \begin{example}[?] An elliptic curve that is smooth over every field of non-2 characteristic: \begin{align*} E: y^2 = x^3-x, \qquad \lambda=-1,\, j(E) = 2^6 \cdot 3^3 = 1728 .\end{align*} \includegraphics{figures/2022-12-03_23-36-23.png} One that is smooth over every \(k\) with \(\operatorname{ch}k \neq 3\): the Fermat curve \begin{align*} E: x^3 + y^3 = z^3,\qquad \lambda = \pm \zeta_3^{k},\, j(E) = 0 .\end{align*} \end{example} \begin{theorem}[Orders of automorphism groups of elliptic curves] \begin{align*} {\sharp}\mathop{\mathrm{Aut}}(X, p) = \begin{cases} 2 & j(E) \neq 0,1728\\ 4 & j(E) = 1728, \operatorname{ch}k \neq 3 \\ 6 & j(E) = 0,\operatorname{ch}k \neq 3 \\ 12 & j(E) = 0,1728, \operatorname{ch}k = 3 \end{cases} .\end{align*} \end{theorem} \begin{remark}[Proof idea] Idea: take the degree 2 morphism \(f:X\to {\mathbf{P}}^1\) with \(f(p) = \infty\) branched over \(\left\{{0,1, \lambda, \infty}\right\}\). Produce two elements in \(G\): for \(\sigma\in G\), find \(\tau\in \mathop{\mathrm{Aut}}({\mathbf{P}}^1)\) so \(f\sigma = \tau f\); then either \(\tau \neq \operatorname{id}\), so \(\left\{{\sigma, \tau}\right\} \subseteq G\), or \(\tau = id\) and either \(\sigma=\operatorname{id}\) or \(\sigma\) exchanges the sheets of \(f\). If \(\tau\neq \operatorname{id}\), it permutes \(\left\{{0, 1, \lambda}\right\}\) and sends \(\lambda\mapsto \lambda^{-1}, s_1^{\pm 1}, s_2^{\pm 1}\) from above. Cases: \begin{enumerate} \def\labelenumi{\arabic{enumi}.} \tightlist \item \(j=1728:\) If \(\lambda= -1, 1/2, 2, \operatorname{ch}k \neq 3\), then \(\lambda\) coincides with \emph{one} other element of \(S_3. \lambda\), so \({\sharp}G = 4\). \item \(j=0\): If \(\lambda= -\zeta_3, -\zeta_3^2, \operatorname{ch}k \neq 3\) then \(\lambda\) coincides with \emph{two} elements in \(S_3 . \lambda\) so \({\sharp}G = 6\). \item \(j=0=1728\): If \(\lambda= -1, \operatorname{ch}k = 3\) then \(S_3 . \lambda= \left\{{ \lambda}\right\}\) and \({\sharp}G = 12\). \end{enumerate} \end{remark} \hypertarget{the-group-structure}{% \subsubsection{The group structure}\label{the-group-structure}} \begin{remark} The group structure: \begin{itemize} \tightlist \item Fixing \(p_o\in E\), the map \(p\mapsto {\mathcal{L}}(p-p_0)\) induces a bijection \(E { \, \xrightarrow{\sim}\, }\operatorname{Pic}^0(E)\), so the group structure on \(E\) is the pullback along this with \(p_0 = \operatorname{id}\) and \(p+q=r\iff p+q \sim r+p_0 \in \operatorname{Div}(E)\). \item Under the embedding of \({\left\lvert {3p_0} \right\rvert}\), points \(p,q,r\) are collinear iff \(p+q+r \sim 3p_0\), so \(p+q+r=0\) in the group structure. \item \(E\) is a group variety, since \(p\mapsto -p\) and \((p, q)\mapsto p+q\) are morphisms. Thus there is a morphism \([n]: E\to E\), multiplication by \(n\), which is a finite morphism of degree \(n^2\) with kernel \(\ker [n] = C_n^2\) if \((n, \operatorname{ch}k) = 1\).and \(\ker [n] = C_p, 0\) if \(n=\operatorname{ch}k\), depending on the Hasse invariant. \item If \(f:E_1 \to E_2\) is a morphism of curves with \(f(p_1) = p_2\) then \(f\) induces a group morphism. \item \({ \operatorname{End} }(E, p_0)\) forms a ring under \(f+g = \mu\circ (f\times g)\) and \(f\cdot g \coloneqq f\circ g\). \item The map \(n \mapsto ([n]: E\to E)\) defines a finite ring morphism \({\mathbf{Z}}\to { \operatorname{End} }(E, p_0)\) for \(n\neq 0\). \item \(R \coloneqq{ \operatorname{End} }(E, p_0)^{\times}= \mathop{\mathrm{Aut}}(E)\), and if \(j=0,1728\) then \(R\) contains \(\left\{{\pm 1}\right\}\) and is thus bigger than \({\mathbf{Z}}\). \end{itemize} \end{remark} \begin{remark} The Jacobian: a variety that generalizes to make sense for any curve, a moduli space of degree zero divisor classes. \begin{itemize} \item For \(X/k\) a curve and \(T\in{\mathsf{Sch}}_{/ {k}}\), define \begin{align*} \operatorname{Pic}^0(X\times T) \coloneqq\left\{{{\mathcal{F}}\in \operatorname{Pic}(X\times T) {~\mathrel{\Big\vert}~}\deg { \left.{{{\mathcal{F}}}} \right|_{{X_t}} } = 0 \, \forall t\in T }\right\},\qquad \operatorname{Pic}(X/T) \coloneqq\operatorname{Pic}^0(X\times T)/ p^* \operatorname{Pic}(T) \end{align*} where \(p:X\times T\to T\) is the second projection. Regard this as \emph{families of sheaves of degree 0 on \(X\) parameterized by \(T\)}. \item The Jacobian variety of a curve \(X\): \(\operatorname{Jac}(X) \in {\mathsf{Sch}}^{\mathrm{ft}}_{/ {k}}\) along with \({\mathcal{L}}\in \operatorname{Pic}^0(X/\operatorname{Jac}(X))\) such that for any \(T\in{\mathsf{Sch}}^{\mathrm{ft}}_{/ {k}}\) and any \({\mathcal{M}}\in \operatorname{Pic}^0(X/T)\), \(\exists ! \, f: T\to \operatorname{Jac}(X)\) such that \(f^* {\mathcal{L}}= {\mathcal{M}}\). Thus \(J\) represents the functor \(\operatorname{Pic}^0(X/{-})\). \item For \(E\) elliptic, \(E = \operatorname{Jac}(E)\). \begin{itemize} \tightlist \item In general, \({\left\lvert {\operatorname{Jac}(X)} \right\rvert}\cong {\left\lvert {\operatorname{Pic}^0(X)} \right\rvert}\) on points, since points of \(\operatorname{Jac}(X)\) are morphisms \(\operatorname{Spec}k\to \operatorname{Jac}(X)\), which correspond to elements in \(\operatorname{Pic}^0(X/k) = \operatorname{Pic}^0(X)\). \end{itemize} \item \(\operatorname{Jac}(X) \in {\mathsf{Grp}}{\mathsf{Sch}}_{/ {k}}\) where \(e: \operatorname{Spec}k\to \operatorname{Jac}(X)\) corresponds to \(0\in \operatorname{Pic}^0(X/k)\), \(\rho: \operatorname{Jac}(X) \to \operatorname{Jac}(X)\) is \({\mathcal{L}}\mapsto {\mathcal{L}}^{-1}\in\operatorname{Pic}^0(X/\operatorname{Jac}(X))\), and \(\mu: \operatorname{Jac}(X){ {}^{ \scriptscriptstyle\times^{2} } }\to \operatorname{Jac}(X)\) is \({\mathcal{L}}\mapsto p_1^* {\mathcal{L}}\otimes p_2^*{\mathcal{L}}\in\operatorname{Pic}^0(X/\operatorname{Pic}(X){ {}^{ \scriptscriptstyle\times^{2} } })\). \item \({\mathbf{T}}_0 \operatorname{Jac}(X) \cong H^1(X; {\mathcal{O}}_X)\): giving an element of \({\mathbf{T}}_p X\) is the same as a morphism \(T\coloneqq\operatorname{Spec}k[{\varepsilon}]/{\varepsilon}^2\to X\) sending \(\operatorname{Spec}k \to p\). So \({\mathbf{T}}_0 \operatorname{Jac}(X)\), this means giving \({\mathcal{M}}\in \operatorname{Pic}^0(X/T)\) whose restriction to \(\operatorname{Pic}^0(X/k)\) is zero. Use the SES \(H^1(X;{\mathcal{O}}_X)\hookrightarrow\operatorname{Pic}X[{\varepsilon}] \to \operatorname{Pic}(X)\). \item \(\operatorname{Jac}(X)\) is proper over \(k\) by the valuative criterion. Just show that an invertible sheaf \({\mathcal{M}}\) on \(X\times \operatorname{Spec}K\) lifts unique to \(\tilde {\mathcal{M}}\) on \(X\times \operatorname{Spec}R\), but \(X\times \operatorname{Spec}R\) is regular, so apply \(\rm{II}.6.5\). \item For any \(n\) there is a morphism \begin{align*} \phi^n: X{ {}^{ \scriptscriptstyle\times^{n} } } &\to \operatorname{Jac}(X) \\ (p_1,\cdots, p_n) &\mapsto {\mathcal{L}}(\sum p_i - np_0) .\end{align*} This is surjective for \(n\geq g(X)\) by RR since every divisor class of degree \(d\geq g\) has an effective representative. The fibers of \(\phi^n\) are all tuples \((p_1,\cdots, p_n)\) such that \(D = \sum p_i\) forms a complete linear system. \begin{itemize} \tightlist \item Most fibers are finite, so \(\operatorname{Jac}(X)\) is irreducible of dimension \(g\). \item Smoothness: \(\dim {\mathbf{T}}_0 \operatorname{Jac}(X) = \dim H^1(X;{\mathcal{O}}_X) = g\), so smooth at zero, and group schemes are homogeneous so smooth everywhere. \end{itemize} \end{itemize} \end{remark} \hypertarget{elliptic-functions}{% \subsubsection{Elliptic functions}\label{elliptic-functions}} \begin{quote} Stopped at elliptic functions. \end{quote} \hypertarget{iv.5-the-canonical-embedding}{% \subsection{IV.5: The Canonical Embedding}\label{iv.5-the-canonical-embedding}} \hypertarget{iv.6-classification-of-curves-in-mathbfp3}{% \subsection{\texorpdfstring{IV.6: Classification of Curves in \({\mathbf{P}}^3\)}{IV.6: Classification of Curves in \{\textbackslash mathbf\{P\}\}\^{}3}}\label{iv.6-classification-of-curves-in-mathbfp3}} \newpage \hypertarget{v-surfaces}{% \section{V: Surfaces}\label{v-surfaces}} \hypertarget{v.1-geometry-on-a-surface}{% \subsection{V.1: Geometry on a Surface}\label{v.1-geometry-on-a-surface}} \hypertarget{v.2-ruled-surfaces}{% \subsection{V.2: Ruled Surfaces}\label{v.2-ruled-surfaces}} \hypertarget{v.3-monoidal-transformations}{% \subsection{V.3: Monoidal Transformations}\label{v.3-monoidal-transformations}} \hypertarget{v.4-the-cubic-surface-in-mathbfp3}{% \subsection{\texorpdfstring{V.4: The Cubic Surface in \({\mathbf{P}}^3\)}{V.4: The Cubic Surface in \{\textbackslash mathbf\{P\}\}\^{}3}}\label{v.4-the-cubic-surface-in-mathbfp3}} \hypertarget{v.5-birational-transformations}{% \subsection{V.5: Birational Transformations}\label{v.5-birational-transformations}} \hypertarget{v.6-classification-of-surfaces}{% \subsection{V.6: Classification of Surfaces}\label{v.6-classification-of-surfaces}} \hypertarget{toric-varieties}{% \section{Toric Varieties}\label{toric-varieties}} \hypertarget{summaries}{% \subsection{Summaries}\label{summaries}} \hypertarget{quick-criteria}{% \subsubsection{Quick Criteria}\label{quick-criteria}} \begin{remark} Quick criteria: \begin{itemize} \item \textbf{Normal} \(\iff\) \textbf{Saturated}: For affines, \(X = \operatorname{Spec}{\mathbf{C}}[S]\) where \(S \subseteq M\) is a \textbf{saturated} semigroup. This is true for \(S = S_\sigma = \sigma {}^{ \vee }\cap M\) where \(\sigma\) is any SCRPC. \item \textbf{Complete/proper} \(\iff\) \textbf{Full support}: \(X_\Sigma\) is complete iff \(\mathop{\mathrm{supp}}\Sigma = N_{\mathbf{R}}\). \item \textbf{Smooth} \(\iff\) \textbf{Lattice basis}: \begin{itemize} \tightlist \item For a \textbf{cone} \(\sigma = { \mathrm{Cone} }(S)\) is smooth iff \(\operatorname{det}S = \pm 1\), the volume of the standard lattice \({\mathbf{Z}}^n\). \begin{itemize} \tightlist \item Consequences of smoothness: \begin{itemize} \tightlist \item \(\operatorname{CDiv}(X) = \operatorname{Div}(X)\) \item \(\operatorname{Cl}(X) = \operatorname{Pic}(X)\) \end{itemize} \end{itemize} \item Smooth implies simplicial, so non-simplicial cones are singular. \item For \(p_\sigma\) the \(T{\hbox{-}}\)fixed point corresponding to \(\sigma\), \(T_p X \cong H\) where \(H\) is a Hilbert basis for \(S_\sigma\). \end{itemize} \item \textbf{Simplicial} \(\iff\) \textbf{Euclidean basis}: For \(\sigma = { \mathrm{Cone} }(S)\), \(\sigma\) is simplicial iff \(\operatorname{det}(S) \neq 0\). \item \textbf{Orbifold singularities} \(\iff\) \textbf{Simplicial}: \(X_\Sigma\) has at worst finite quotient singularities iff \(\Sigma\) is simplicial. \item \textbf{Projectivity} \(\iff\) \textbf{Admits a strictly upper convex support function}: For \(h\) a support function and \(D_h\) its associated divisor, the linear system \({\left\lvert {D_h} \right\rvert}\) defines an embedding \(X(\Delta) \hookrightarrow{\mathbf{P}}^N\) iff \(h\) is strictly upper convex. \begin{itemize} \tightlist \item Alternatively, \(X_\Sigma\) is projective iff \(\Sigma\) arises as the normal fan of a polytope. \end{itemize} \item \textbf{Globally generated/basepoint free} \(\iff\) \textbf{Upper convex support function}: \({\mathcal{O}}(D)\) is globally generated iff \(\psi_D\) is upper convex. \item \textbf{Ample \(\iff\) Strictly upper convex support function}:\\ \(D\in \operatorname{CDiv}_T(X)\) is ample iff \(\psi_D\) is strictly upper convex. \item \textbf{Very ample \(\iff\) ample and semigroup generation}: for \(\Sigma\) complete, \(D\) is very ample iff \(\psi_D\) is strictly upper convex \textbf{and} \(S_\sigma\) is generated by \(\left\{{u-u(\sigma) {~\mathrel{\Big\vert}~}u\in P_D \cap M}\right\}\), or equivalently the semigroup \(\left\{{u-u' {~\mathrel{\Big\vert}~}u'\in P \cap M}\right\}\) is saturated in \(M\). \begin{itemize} \tightlist \item For \({\mathbf{P}}^n\): \(D = \sum a_i D_i\) is globally generated iff \(\sum a_i \geq 0\) and ample \(\iff \sum a_i > 0\). \item For \({ \mathbf{F} }_m\): \(D = \sum a_i D_i\) is globally generated iff \(a_2 + a_4 \geq 0,\, a_1 + a_3 \geq m a_1\), \(\operatorname{Pic}({ \mathbf{F} }_n) = \left\langle{D_1, D_4}\right\rangle\), and \(D = aD_1 + bD_4\) is ample iff \(a,b > 0\). \item For \(\dim X_\Sigma = 2\) and \(X\) complete: ample \(\iff\) very ample. \end{itemize} \item \textbf{\({\mathbf{Q}}{\hbox{-}}\)factorial \(\iff\) simplicial}: iff every cone is simplicial. \item \textbf{Fundamental groups}: \begin{itemize} \tightlist \item For \(U_\sigma\) affine, \(U_\sigma \cong {\mathbf{A}}^k \times {\mathbf{G}}_m^{n-k}\) so \(\pi_1 U_\sigma \cong {\mathbf{Z}}^{n-k}\) since \({\mathbf{G}}_m^{n-k}\simeq(S^1)^{n-k}\). \item Can write \(\pi_1 U_\sigma = N/N_\sigma\) where \(N_\sigma\) is the sublattice generated by \(\sigma\). \item By a Van Kampen argument, \(\pi_1 X_\Sigma = N/N'\) where \(N' = \left\langle{\sigma \cap N {~\mathrel{\Big\vert}~}\sigma \in \Sigma}\right\rangle\): \begin{align*} \pi_1 X_\Sigma = \pi_1 \cup U_{\sigma} = \colim \pi_1 U_\sigma = \colim N/N_\sigma = N / \sum N_\sigma = N/N' .\end{align*} \end{itemize} \item \textbf{Euler characteristic}: \(\chi X_\Sigma = {\sharp}\Sigma(n)\). \begin{itemize} \tightlist \item Why: \(H^i(U_\sigma; {\mathbf{Z}}) = \bigwedge\nolimits^i M(\sigma)\) where \(M(\sigma ) \coloneqq\sigma {}^{ \vee }\cap M\), so one gets a spectral sequence \begin{align*} E_1^{p, q} = \bigoplus _{I^p = i_0< \cdots < i_p} H^q(U_{\sigma_{I^p}}; {\mathbf{Z}}) \Rightarrow H^{p+q}(X_\Sigma; {\mathbf{Z}}), \qquad \sigma_{I^p} = \sigma_{i_0} \cap\cdots \sigma_{i_p}, \sigma_{i_j}\in \Sigma(n) \\ \\ \leadsto E_1^{p, q} = \bigoplus _{I^p} \bigwedge\nolimits^q M(\sigma_{I^p}) \Rightarrow H^{p+q}(X_\Sigma; {\mathbf{Z}}) \\\\ \implies \chi X_\Sigma = \sum (-1)^{p+q} \operatorname{rank}_{\mathbf{Z}}E_1^{p, q} = {\sharp}\Sigma(n) ,\end{align*} using that \begin{align*} \sum (-1)^{q} \operatorname{rank}_{\mathbf{Z}}\extpower^q M(\tau) = \begin{cases} 0 & \dim \tau < n \\ 1 & \dim \tau = n. \end{cases} .\end{align*} \end{itemize} \item \textbf{Higher homology}: \begin{itemize} \tightlist \item If all maximal cones of \(\Sigma\) are \(n{\hbox{-}}\)dimensional, \(H^2(X_\Sigma; {\mathbf{Z}}) \cong \operatorname{Pic}(X_\Sigma)\). \end{itemize} \item \textbf{Global sections}: for \(D\in \operatorname{Div}_T(X)\), \(P_D\) its associated polyhedron, \begin{align*} H^0(X; {\mathcal{O}}_X(D)) = \bigoplus _{m\in P_D \cap M} {\mathbf{C}}\, \chi^m .\end{align*} \item \textbf{Betti numbers}: \begin{align*} \beta_{2k} = \sum_{i=k}^n (-1)^{i-k} {i\choose k} {\sharp}\Sigma(n-i) .\end{align*} \item \textbf{Canonical bundles/divisors}: \(\omega_{X_\Sigma} \coloneqq\operatorname{det}\Omega_{X_\Sigma/k} = {\mathcal{O}}(K_{X_\Sigma})\) where \(K_{X_\Sigma} = -\sum_{\rho_i} D_i\). \begin{itemize} \tightlist \item For a smooth complete surface with \(D_i^2 = -d_i\), \begin{align*} K^2 = \sum D_i^2 + 2d = -\sum d_i + 2d = -(3d-12) + 2d = 12-d .\end{align*} \end{itemize} \item \textbf{Degree = \(n! \cdot \Vol(P)\)} (for \(X_P\) projective) \end{itemize} \end{remark} \begin{remark} Some common counterexamples: \begin{itemize} \tightlist \item An ample divisor that is not very ample: \(P \coloneqq\Conv({\left[ {0,0,0} \right]}, {\left[ {0,1,1} \right]}, {\left[ {1,0,1} \right]}, {\left[ {1,1,0} \right]})\); then take \(D_P\). \(X_P\) is a double cover of \({\mathbf{P}}^3\) branched along the 4 boundary divisors. \item A Weil divisor that is not Cartier: ???? \item A complete variety that is not projective: ??? \end{itemize} \end{remark} \hypertarget{cones-and-lattices}{% \subsubsection{Cones and Lattices}\label{cones-and-lattices}} \begin{remark} \envlist \begin{itemize} \item \textbf{Characters}: for groups \(G\), a map \(\chi\in {\mathsf{Grp}}(G, {{\mathbf{C}}^{\times}})\). For \(G= T = ({{\mathbf{C}}^{\times}})^n\), there is an isomorphism \begin{align*} {\mathbf{Z}}^n & { \, \xrightarrow{\sim}\, }{\mathsf{Grp}}(T, {{\mathbf{C}}^{\times}}) \\ m = {\left[ {m_1,\cdots, m_n} \right]} &\mapsto \chi_m: {\left[ {t_1,\cdots, t_n} \right]} \mapsto \prod t_i^{m_i} .\end{align*} Generally set \(M \coloneqq{\mathsf{Grp}}(T, {{\mathbf{C}}^{\times}})\), the character lattice. \begin{itemize} \tightlist \item \(M\) is a lattice, \(M_{\mathbf{R}}\coloneqq M\otimes_{\mathbf{Z}}{\mathbf{R}}\) is its associated Euclidean space. \end{itemize} \item \textbf{Cocharacters / one-parameter subgroups}: for groups \(G\), a map \(\lambda \in {\mathsf{Grp}}({{\mathbf{C}}^{\times}}, G)\). For \(G = T = {{\mathbf{C}}^{\times}}\), there is again an isomorphism \begin{align*} {\mathbf{Z}}^n &\mapsto {\mathsf{Grp}}({{\mathbf{C}}^{\times}}, T) \\ u ={\left[ {u_1,\cdots, u_n} \right]} &\mapsto \lambda^u: t\mapsto {\left[ {t^{u_1}, \cdots, t^{u_n}} \right]} .\end{align*} Define \(N \coloneqq{\mathsf{Grp}}({{\mathbf{C}}^{\times}}, T)\) the cocharacter lattice. \begin{itemize} \tightlist \item \(N\) is a lattice, \(N_{\mathbf{R}}\coloneqq N\otimes_{\mathbf{Z}}{\mathbf{R}}\) its associated euclidean space. \end{itemize} \item There is a perfect pairing \begin{align*} {\left\langle {{-}},~{{-}} \right\rangle}: M\times N &\to {\mathbf{Z}}\\ ,\end{align*} defined using the fact that if \(m\in M, n\in N\) then \(\chi^m \circ \lambda^n \in {\mathsf{Grp}}({{\mathbf{C}}^{\times}}, {{\mathbf{C}}^{\times}})\) is of the form \(t\mapsto t^\ell\), so set \({\left\langle {m},~{n} \right\rangle} \coloneqq\ell\). \begin{itemize} \tightlist \item Thus \(M = {\mathsf{Grp}}(M, {\mathbf{Z}})\) and \(N = {\mathsf{Grp}}(N, {\mathbf{Z}})\). \item How to recover the torus: \begin{align*} N \otimes_{\mathbf{Z}}{{\mathbf{C}}^{\times}}&\to T \\ u\otimes t &\mapsto \lambda^u(t) .\end{align*} \end{itemize} \item \(\Delta\) is a \textbf{fan}, a collection of \textbf{strongly convex rational polyhedral cones}: \begin{itemize} \tightlist \item \textbf{Cone}: \(0\in \sigma\) and \({\mathbf{R}}_{\geq 0} \sigma \subseteq \sigma\). \item \textbf{Strongly convex}: contains no nonzero subspace, i.e.~no line through \(\mathbf{0} \in N_{\mathbf{R}}\). Equivalently, \(\dim \sigma {}^{ \vee }= n\). \item \textbf{Rational}: generated by \(\left\{{v_i}\right\} \subseteq N\), i.e.~of the form \({ \mathrm{Cone} }(S)\) for \(S \subseteq N\). \end{itemize} \item \textbf{Dual cones}: \begin{align*} \sigma {}^{ \vee }&\coloneqq\left\{{ u\in M {~\mathrel{\Big\vert}~}{\left\langle {u},~{v} \right\rangle} \geq 0 \,\,\forall v\in M_{\mathbf{R}}}\right\} .\end{align*} \begin{itemize} \tightlist \item If \(\sigma {}^{ \vee }= \bigcap_{i=1}^s H_{m_i}^+\) for \(m_i \subseteq \sigma {}^{ \vee }\) then \(\sigma {}^{ \vee }= { \mathrm{Cone} }(m_1,\cdots, m_s)\). \end{itemize} \item \textbf{Hyperplanes} and \textbf{closed half-spaces}: \begin{align*} H_m &\coloneqq\left\{{u\in N_{\mathbf{R}}{~\mathrel{\Big\vert}~}{\left\langle {m},~{u} \right\rangle} = 0}\right\} \subseteq N_{\mathbf{R}}\\ H_m^+ &\coloneqq\left\{{u\in N_{\mathbf{R}}{~\mathrel{\Big\vert}~}{\left\langle {m},~{u} \right\rangle} \geq 0}\right\} \subseteq N_{\mathbf{R}} .\end{align*} \item \textbf{Face}: \(\tau \leq \sigma\) is a face iff \(\tau\) is of the form \(\tau = H_m \cap\sigma\) for some \(m\in \sigma {}^{ \vee }\subseteq M_{\mathbf{R}}\). \item \textbf{Facet}: codimension one faces, \(\Sigma(n-1)\) where \(n\coloneqq\dim N\). \item \textbf{Ray}: dimension 1 faces, \(\Sigma(1)\). \item The \textbf{semigroup} of a cone: \begin{align*} S_\sigma &\coloneqq\sigma {}^{ \vee }\cap M = \left\{{ u\in M {~\mathrel{\Big\vert}~}{\left\langle {u},~{v} \right\rangle} \geq 0 \,\,\forall v\in \sigma }\right\} .\end{align*} \item The \textbf{semigroup algebra} of a semigroup: \begin{align*} {\mathbf{C}}[S] \coloneqq\left\{{\sum_{s\in S} c_s \chi^s {~\mathrel{\Big\vert}~}c_s \in {\mathbf{C}}, c_s = 0 { \text{a.e.} }}\right\}, \qquad \chi^{m_1}\cdot \chi^{m_2} \coloneqq\chi^{m_1 + m_2} .\end{align*} \item \textbf{Simplicial}: the generators can be extended to an \({\mathbf{R}}{\hbox{-}}\)basis of \(N_{\mathbf{R}}\). E.g. not simplicial: \end{itemize} \includegraphics{figures/2022-10-19_18-23-05.png} \begin{itemize} \item \textbf{Smooth}: the minimal generators can be extended to a \({\mathbf{Z}}{\hbox{-}}\)basis of \(N\). \begin{itemize} \tightlist \item Checking \(T_p X\): \(m\) is \textbf{decomposable} in \(S_ \sigma\) iff \(m = m_1 + m_2\) with \(m_i\in S_{ \sigma}\); the maximal ideal at \(p\) corresponding to \(\sigma\) is \({\mathfrak{m}}_p = \left\{{\chi^m {~\mathrel{\Big\vert}~}m\in S_ \sigma}\right\}\), and \({\mathfrak{m}}_p/{\mathfrak{m}}_p^2 = \left\{{\chi^m {~\mathrel{\Big\vert}~}m \text{ is indecomposable in } S_ \sigma}\right\}\). This exactly corresponds to a Hilbert basis. \end{itemize} \item \textbf{Facet}: face of codimension 1. \item \textbf{Edge}: face of dimension 1. Note that facets = edges in \(\dim N = 2\). \item \textbf{Saturated}: \(S\) is saturated if for all \(k\in {\mathbb{N}}\setminus\left\{{0}\right\}\) and all \(m\in M\), \(km\in S \implies m\in S\). Any SCRPC is saturated. \begin{itemize} \tightlist \item E.g. \(S = \left\{{(4,0), (3,1), (1,3), (0, 4)}\right\}\) is not saturated since \(2\cdot(2,2) = (4, 4) \in {\mathbb{N}}S\) but \((2,2)\not\in S\). \end{itemize} \item \textbf{Normalization}: in the affine case, write \(X = \operatorname{Spec}{\mathbf{C}}[S]\) with torus character lattice \(M = {\mathbf{Z}}S\), take a finite generating set \(S'\), and set \(\sigma = { \mathrm{Cone} }(S') {}^{ \vee }\). Then \(\operatorname{Spec}{\mathbf{C}}[\sigma {}^{ \vee }\cap M]\to X\) is the normalization. \item \textbf{Distinguished points}: each strongly convex \(\sigma \leadsto \gamma_\sigma \in U_\sigma\) a unique point corresponding to the semigroup morphism \(m\mapsto \indic(m\in \sigma {}^{ \vee }\cap M)\), which is \(T{\hbox{-}}\)fixed iff \(\sigma\) is full-dimensional. \item \textbf{Orbits}: \({\mathrm{Orb}}( \sigma) = T. \gamma_\sigma\), and \(V(\sigma)\coloneqq{ \operatorname{cl}}{\mathrm{Orb}}( \sigma)\). \item \textbf{Orbit-Cone correspondence}: there is a correspondence \begin{align*} \left\{{\text{Cones } \sigma \in \Sigma}\right\} &\rightleftharpoons\left\{{T{\hbox{-}}\text{orbits in } X_\Sigma}\right\} \\ \sigma &\mapsto {\mathrm{Orb}}(\sigma) \coloneqq T.\gamma_{\sigma} = \left\{{\gamma: S_\sigma \to {\mathbf{C}}{~\mathrel{\Big\vert}~}\gamma(m) \neq 0 \iff m\in \sigma {}^{ \vee }\cap M}\right\} \cong {\mathsf{Grp}}(\sigma \cap M, {{\mathbf{C}}^{\times}}) ,\end{align*} where \(\dim {\mathrm{Orb}}( \sigma) = \operatorname{codim}_{N_{\mathbf{R}}} \sigma\), and \(\tau \leq \sigma \implies { \operatorname{cl}}{\mathrm{Orb}}(\tau) \supseteq{ \operatorname{cl}}{\mathrm{Orb}}( \sigma)\) and in fact \({ \operatorname{cl}}{\mathrm{Orb}}(\sigma) = {\textstyle\coprod}_{\tau\leq \sigma} { \operatorname{cl}}{\mathrm{Orb}}( \tau)\). \item \textbf{Star}: define \(N_\tau \coloneqq{\mathbf{Z}}\left\langle{\tau \cap N}\right\rangle\) and \(N(\tau){\mathbf{R}}\coloneqq N_{\mathbf{R}}/ (N_\tau)_{\mathbf{R}}\) and \(\overline{\sigma}\) for the image of \(\sigma\) under the quotient map, then \begin{align*} \mathrm{Star}(\tau) \coloneqq\left\{{\overline{\sigma }\subseteq N(\tau)_{\mathbf{R}}{~\mathrel{\Big\vert}~}\sigma\leq \tau }\right\} \subseteq N(\tau)_{\mathbf{R}} .\end{align*} This is always a fan, and \(V(\tau) = X_{\mathrm{Star}(\tau)}\). \item \textbf{Star subdivision}: for \(\sigma = { \mathrm{Cone} }(S)\) for \(S \coloneqq\left\{{u_1,\cdots, u_n}\right\}\), set \(u_0 \coloneqq\sum u_i\) and take \(\Sigma'(\sigma)\) defined as the cones generated by subsets of \(\left\{{u_0, u_1, \cdots, u_n}\right\}\) not containing \(S\). The star subdivision of \(\Sigma\) along \(\sigma\) is \(\Sigma^\star(\sigma) \coloneqq(\Sigma \setminus\left\{{ \sigma }\right\}) \cup\Sigma'( \sigma)\). \item \textbf{Blowups}: \(\phi: X_{\Sigma^\star(\sigma)}\to X_{\Sigma}\) is the blowup at \(\gamma_ \sigma\). \end{itemize} \end{remark} \hypertarget{divisors}{% \subsubsection{Divisors}\label{divisors}} \begin{remark} \envlist \begin{itemize} \item \textbf{(Weil) divisor}: \(\operatorname{Div}(X) = \left\{{\sum n_i V_i {~\mathrel{\Big\vert}~}V_i \subseteq X, \operatorname{codim}V_i = 1}\right\}\). \begin{itemize} \tightlist \item \({\mathcal{O}}_X(D)\): the (coherent) sheaf associated to a Weil divisor \(D\). \end{itemize} \item \textbf{Cartier divisor}: \(\operatorname{CDiv}(X) = H^0(X; {\mathcal{K}}_X^{\times}/{\mathcal{O}}_X^{\times})\), the quotient of rational functions by regular functions. For \(X\) normal, equivalently locally principal (Weil) divisors, so \(D \leadsto \left\{{(U_i, f_i)}\right\}\) where \({ \left.{{D}} \right|_{{U_i}} } = \operatorname{Div}(f_i)\). \begin{itemize} \tightlist \item \textbf{\({\mathbf{Q}}{\hbox{-}}\)Cartier divisor}: A \({\mathbf{Q}}{\hbox{-}}\)divisor \(D =\sum n_i D_i\) with \(n_i\in {\mathbf{Q}}\) is \({\mathbf{Q}}{\hbox{-}}\)Cartier when \(mD\) is Cartier for some \(m\in {\mathbf{Z}}_{\geq 0}\). \item \textbf{\({\mathbf{Q}}{\hbox{-}}\)factorial}: every prime divisor is \({\mathbf{Q}}{\hbox{-}}\)Cartier. \end{itemize} \item \textbf{Ray divisors}: every \(\rho\in \Sigma(1)\) defines a divisor \(D_\rho \coloneqq V(\rho) \coloneqq{ \operatorname{cl}}{\mathrm{Orb}}( \rho)\). \item \textbf{Very Ample}: \({\mathcal{L}}\) which defines a morphism into \({\mathbf{P}}H^0(X; {\mathcal{L}}) \cong {\mathbf{P}}^N\). \item \textbf{Ample}: \({\mathcal{L}}\) is basepoint free and some power \({\mathcal{L}}^n\) is very ample. \begin{itemize} \tightlist \item \(D\) is (very) ample iff \({\mathcal{O}}_X(D)\) is (very) ample, i.e.~\(D\) is ample iff \(nD\) is very ample for some \(n\). \end{itemize} \item \textbf{Upper convex}: \(f(n_1 + n_2) \leq f(n_1) + f(n_2)\). \begin{itemize} \tightlist \item \textbf{Strictly upper convex}: \(\sigma_1\neq \sigma_2 \implies f_{\sigma_1} \neq f_{\sigma_2}\). \end{itemize} \item \textbf{Linearly equivalent divisors}: \(D_1\sim D_2 \iff D_1 - D_2 = \operatorname{Div}(f)\) for some \(f\). \item \textbf{Complete linear systems}: \({\left\lvert {D} \right\rvert} = \left\{{D'\in \operatorname{Div}(X) {~\mathrel{\Big\vert}~}D'\sim D}\right\}\). \item \textbf{Support function}: \(\phi: \mathop{\mathrm{supp}}\Sigma \to {\mathbf{R}}\) where \({ \left.{{\phi}} \right|_{{\sigma}} }\) is linear for each cone \(\sigma\). \begin{itemize} \tightlist \item \textbf{Integral} with respect to \(N\) iff \(\phi(\mathop{\mathrm{supp}}\Sigma \cap N) \subseteq {\mathbf{Z}}\). Defines a set of integral support functions \(\operatorname{SF}(\Sigma, N)\). \end{itemize} \item The class group complement exact sequence: for \(D_1,\cdots, D_n \in \operatorname{Div}(X)\) distinct, \begin{align*} {\mathbf{Z}}^n &\to \operatorname{Cl}(X) \twoheadrightarrow \operatorname{Cl}(X\setminus\cup D_i) \\ e_1 &\mapsto [D_i] .\end{align*} \item \({\mathcal{O}}_X(D)\) is the sheaf \begin{align*} U\mapsto \left\{{f\in {\mathcal{K}}(X)^{\times}(U) {~\mathrel{\Big\vert}~}\operatorname{Div}(f) + { \left.{{D}} \right|_{{U}} } \geq 0 \in \operatorname{Cl}(U) }\right\} .\end{align*} Then \(D\in \operatorname{CDiv}(X) \iff {\mathcal{O}}_X(D) \in \operatorname{Pic}(X)\). \item The toric class group exact sequence: \begin{align*} M &\to \operatorname{Div}_T(X) \twoheadrightarrow \operatorname{Cl}(X) \\ m &\mapsto \operatorname{Div}(\chi^m) = \sum_\rho {\left\langle {m},~{u_\rho} \right\rangle} [D_\rho] \end{align*} where \(u_\rho\) are minimal ray generators. \end{itemize} \end{remark} \hypertarget{polytopes}{% \subsubsection{Polytopes}\label{polytopes}} \begin{remark} \envlist \begin{itemize} \item \textbf{Supporting hyperplanes}: the positive side of an affine hyperplane \begin{align*} H_{u, b} &\coloneqq\left\{{m\in M_{\mathbf{R}}{~\mathrel{\Big\vert}~}{\left\langle {m},~{u} \right\rangle} = b}\right\} \\ H_{u, b}^+ &\coloneqq\left\{{m\in M_{\mathbf{R}}{~\mathrel{\Big\vert}~}{\left\langle {m},~{u} \right\rangle} \geq b}\right\} .\end{align*} \begin{itemize} \tightlist \item If \(P\) is full dimensional and \(F\leq P\) is a facet, then \(F = P \cap H_{u_F, -a_F}\) for a unique pair \((u_F, a_F) \in N_{\mathbf{R}}\times {\mathbf{R}}\). \end{itemize} \item \textbf{Polytope}: the convex hull of a finite set \(S \subseteq N_{\mathbf{R}}\) or an intersection of half-spaces: \begin{align*} P = \left\{{\sum_{v\in S} \lambda_v v {~\mathrel{\Big\vert}~}\sum \lambda_v = 1}\right\} = \bigcap_{i=1}^s H_{u_i, b_i}^+ .\end{align*} \item \textbf{Simplex} \(\dim P = d\) and there are exactly \(d+1\) vertices. \item \textbf{Simple}: \(\dim P = d\) and every vertex is the intersection of exactly \(d\) facets. \item \textbf{Simplicial}: all facets are simplices. \begin{itemize} \tightlist \item E.g. simple but not simplicial: the cube in \({\mathbf{R}}^3\), since each vertex meets 3 edges but a square is not a simplex. -E.g. Simplicial but not simple: the octahedron in \({\mathbf{R}}^3\), since each vertex meets 4 edges but each face is a triangle. \end{itemize} \item \textbf{Combinatorial equivalence}: \(P_1\sim P_2\) iff there is a bijection \(P_1\to P_2\) preserving intersections, inclusions, and dimensions of all faces. \item \textbf{Polar dual}: for \(P \subseteq M_{\mathbf{R}}\), \begin{align*} P^\circ = \left\{{u\in N_{\mathbf{R}}{~\mathrel{\Big\vert}~}{\left\langle {m},~{u} \right\rangle} \geq - 1\,\, \forall m\in P}\right\} .\end{align*} \begin{itemize} \tightlist \item Trick: for \(P \subseteq M_{\mathbf{R}}\) with \(0\in P\), \begin{align*} P = \left\{{m\in M_{\mathbf{R}}{~\mathrel{\Big\vert}~}{\left\langle {m},~{u_F} \right\rangle} \geq -a_F,\, F \in \mathrm{Facets}(P) }\right\} \\ \implies P^\circ = \Conv(\left\{{ a_F^{-1}u_F }\right\}) \subseteq N_{\mathbf{R}} .\end{align*} E.g. write the square as \(\left\{{{\left\langle {m},~{\pm e_i} \right\rangle}\geq -1}\right\}\), then \(a_F = 1\) for all \(F\): \includegraphics{figures/2022-10-19_18-35-59.png} \end{itemize} \item \textbf{Cone on a polytope}: \(C(P) \coloneqq{ \mathrm{Cone} }(P\times \left\{{1}\right\}) \subseteq M_{\mathbf{R}}\times {\mathbf{R}}\), the set of cones through all proper faces of \(P\). \item \textbf{Normal}: \(\qty{kP \cap M} + \qty{\ell P \cap M} \subseteq (k+\ell)P \cap M\), or equivalently \(k\cdot (P \cap M) = (kP) \cap M\), or equivalently \((P \cap M)\times\left\{{1}\right\}\) generates \(C(P) \cap(M\times {\mathbf{Z}})\) as a semigroup. \begin{itemize} \tightlist \item If \(P \subseteq M_{\mathbf{R}}\) is a full-dimensional lattice polytope with \(\dim P \geq 2\), then \(kP\) is normal for all \(k\geq \dim P - 1\). \item Normal implies very ample. \item \(P\leadsto {\mathcal{L}}_P \in \operatorname{Pic}(X_P)\) \item \(P \cap M \leadsto H^0(X_P; {\mathcal{L}}_P)\). \end{itemize} \item \textbf{Reflexive}: a polytope \(P\) with facet presentation \begin{align*} P = \left\{{m\in M_{\mathbf{R}}{~\mathrel{\Big\vert}~}{\left\langle {m},~{\mu_F} \right\rangle} \geq -1 \forall F\in \mathrm{Facets}(P)}\right\} .\end{align*} Implies that \(\int(P) \cap M = \left\{{\mathbf{0}}\right\}\), and \(P^\circ = \Conv(\left\{{u_F {~\mathrel{\Big\vert}~}F\in \mathrm{Facets}(P)}\right\})\). \item \textbf{Polyhedron of a divisor \(P_D\)}: write \(D = \sum_{\rho} a_{\rho} D_{\rho}\), for any \(m\in M\), \(\operatorname{Div}(\chi^m) + D \geq 0 \implies {\left\langle {m},~{\rho} \right\rangle} \geq a_{\rho} \implies {\left\langle {m},~{\rho} \right\rangle} \geq - a_\rho\), so set \begin{align*} P_D \coloneqq\left\{{ m\in M_{\mathbf{R}}{~\mathrel{\Big\vert}~}{\left\langle {m},~{\rho } \right\rangle}\geq a_\rho \, \forall \rho \in \Sigma(1)}\right\} .\end{align*} \item \textbf{Divisor of a polytope}: \(D_P = \sum_F a_F D_F\) where \(P = \left\{{m {~\mathrel{\Big\vert}~}{\left\langle {m},~{u_F} \right\rangle} \geq -a_F}\right\}\). \begin{itemize} \tightlist \item \(D_P\) is always the pullback of \({\mathcal{O}}_{{\mathbf{P}}^N}(1)\) along the embedding. \end{itemize} \item \textbf{Very ample polytopes}: for every vertex \(v\), the semigroup \(\left\{{m' - v {~\mathrel{\Big\vert}~}m'\in P \cap M}\right\}\) is saturated in \(M\). \begin{itemize} \tightlist \item Gives an embedding \(X \hookrightarrow{\mathbf{P}}^N\) where \(N = {\sharp}(P \cap M) - 1\). \end{itemize} \item The \textbf{toric variety of a polytope}: if \(P \cap M = \left\{{m_1,\cdots, m_s}\right\}\) and \(P\) is full dimensional very ample, then writing \(T_N\) for the torus of \(N\), \begin{align*} X_{P} \coloneqq{ \operatorname{cl}}\operatorname{im}\phi,\qquad \phi: T_N &\to {\mathbf{P}}^{s-1} \\ t &\mapsto {\left[ {\chi^{m_1}(t) : \cdots : \chi^{m_s}(t)} \right]} .\end{align*} \begin{itemize} \tightlist \item Vertices \(m_i\) correspond to \(U_{\sigma_i}\) for \(\sigma_i = { \mathrm{Cone} }(P \cap M - m_i) {}^{ \vee }\): \end{itemize} \includegraphics{figures/2022-10-19_19-08-06.png} \item \textbf{Smooth}: \(P\) is smooth iff for all vertices \(v\in P\), \(\left\{{w_E - v{~\mathrel{\Big\vert}~}E\text{ is an edge containing }v}\right\}\) can be extended to a \({\mathbf{Z}}{\hbox{-}}\)basis of \(M\), where \(w_E\) is the first lattice point on \(E\). \end{itemize} \end{remark} \hypertarget{singularities-and-classification}{% \subsubsection{Singularities and Classification}\label{singularities-and-classification}} \begin{remark} \envlist \begin{itemize} \tightlist \item \textbf{Gorenstein}: \(X\) normal where \(K_X \in \operatorname{CDiv}(X)\) is Cartier. \item \textbf{Normal}: all local rings are integrally closed domains. \item \textbf{Complete}: proper over \(k\). E.g. for varieties, just universally closed. \item \textbf{Factorial}: all local rings are UFDs. \item \textbf{Fano}: \(-K_X\) is ample. \item \textbf{del Pezzo}: a smooth Fano surface. \end{itemize} \end{remark} \begin{remark} Classification of smooth complete toric varieties: \begin{itemize} \tightlist \item \(\dim \Sigma = 2, {\sharp}\Sigma(1) = 3\): without loss of generality \(\rho_1 = e_1, \rho_2 = e_2\). Then \(\rho_3 = a e_1 + be_2\) with \(a,b< 0\) to ensure \(\mathop{\mathrm{supp}}\Sigma = {\mathbf{R}}^2\), and determinants for \({\left\lvert {a} \right\rvert} = {\left\lvert {b} \right\rvert} = 1\), so \((-1, 1)\). \item \(\dim \Sigma = 2, {\sharp}\Sigma(1) = 4\): without loss of generality \(\rho_1 = e_1, \rho_2 = e_2\). Then determinant conditions for \(\rho_3 = (-1, b)\) and \(\rho_4 = (a, -1)\), and \(\operatorname{det}{ \begin{bmatrix} {-1} & {a} \\ {b} & {-1} \end{bmatrix} } = 1-ab = \pm 1 \implies ab=0,2\), so \((a,b) = (2,1), (1,2), (-2, -1), (-1,-2)\). \item \(\dim \Sigma = 2, {\sharp}\Sigma(1) = d\), smooth: \(\operatorname{Bl}_{p_1,\cdots, p_\ell} X\) for \(X = {\mathbf{P}}^2\) or \({ \mathbf{F} }_a\) for some \(a\) and \(p_i\) torus fixed points. \end{itemize} \end{remark} \hypertarget{examples}{% \subsubsection{Examples}\label{examples}} \begin{question} Things you can figure out for every example: \begin{itemize} \tightlist \item Given \(\Delta\), for \(\sigma\in \Delta\), \begin{itemize} \tightlist \item What is \(\sigma {}^{ \vee }\)? \item Generators for \(S_\sigma\)? \item Describe \(U_\sigma\) and \(X(\Delta)\). \item What are the transition functions for \(U_{\sigma_1} \to U_{\sigma_2}\) when \(\sigma_1 \cap\sigma_2 = \tau\) intersect in a common face? \end{itemize} \item What are the \(T{\hbox{-}}\)invariant points? \begin{itemize} \tightlist \item What are the \(T{\hbox{-}}\)invariant divisors \(D_{\rho_i}\)? \item What are all of the \(T{\hbox{-}}\)orbit closures of various dimensions? \end{itemize} \item Is \(X(\Delta)\) smooth? \begin{itemize} \tightlist \item Which cones \(\sigma\in \Delta\) are smooth? \item What is the canonical resolution of singularities? \item What is the tangent space at each \(T{\hbox{-}}\)invariant point? \end{itemize} \item What is the associated polytope \(P_\Delta\)? What is its polar dual \(P_\Delta^\circ\)? \item What are the intersection numbers \(D_{\rho_i} \cdot D_{\rho_j}\)? \begin{itemize} \tightlist \item What are the self-intersection numbers \(D_{\rho_i}^2\)? \end{itemize} \item What is \(\operatorname{Div}_T(X)\)? \(\operatorname{CDiv}_T(X)\)? \begin{itemize} \tightlist \item Which divisors are ample? Very ample? Globally generated? \end{itemize} \item What is \(\operatorname{Cl}(X)\)? \(\operatorname{Pic}(X)\)? \item What is \(K_X\)? \begin{itemize} \tightlist \item Is \(K_X\) ample? \end{itemize} \item Is \(X(\Delta)\) projective? \item What is \(H^0(X(\Delta); {\mathcal{O}}(D) )\) for \(D\in \operatorname{Div}_T(X)\)? \item What is the Poincaré polynomial of \(X(\Delta)\)? (I.e. what are the Betti numbers?) \end{itemize} \end{question} \begin{example}[of varieties] Some useful explicit varieties: \begin{itemize} \tightlist \item \(V(x^3-y^2)\) with torus \(T = \left\{{{\left[ {t^2, t^3} \right]} {~\mathrel{\Big\vert}~}t\in {{\mathbf{C}}^{\times}}}\right\}\). \item \(V(xy-zw)\) with torus \(T = \left\{{{\left[ {a,b,c,abc^{-1}} \right]} {~\mathrel{\Big\vert}~}a,b,c,d\in {{\mathbf{C}}^{\times}}}\right\}\). \item \(V(xz-y^2)\), note \(V(x, y)\in \operatorname{Div}(X) \setminus\operatorname{CDiv}(X)\). \item \(\operatorname{im}([x:y] \mapsto [x^3: x^2y : xy^2 : y^3])\) the twisted cubic. Corresponds to \(\sigma {}^{ \vee }= \left\{{(3,0), (2,1), (1,2), (0, 3)}\right\}\). \item The \textbf{rational normal scroll}: \(V\qty{2\times 2\text{ minors of } \left[\begin{array}{lll} x_0 & x_1 & y_0 \\ x_1 & x_2 & y_1 \end{array}\right]}\) is the image of \({\left[ {s,t} \right]} \mapsto {\left[ {1:s:s^2:t:st} \right]}\). \item The Segre variety: \(\operatorname{Spec}{\mathbf{C}}[x_1y_1, x_1 y_2, \cdots, x_1 y_n, x_2 y_1, \cdots, x_m y_1, \cdots x_m y_n]\). \end{itemize} \end{example} \begin{example}[of fans] \envlist \begin{itemize} \tightlist \item \(({\mathbf{C}}^{\times})^n\): Take \(\Delta = \left\{{ \sigma_0 = {\mathbb{N}}\left\langle{0}\right\rangle}\right\} \subseteq N\) with \(\dim N = n\) yields \(S_{\sigma_0} = {\mathbb{N}}\left\langle{\pm e_1 {}^{ \vee },\cdots, \pm e_n {}^{ \vee }}\right\rangle = M\) for so \(X(\Delta) = \operatorname{Spec}{\mathbf{C}}[x_1^{\pm 1},\cdots, x_n^{\pm 1}] = ({\mathbf{G}}_m)^n\). \item \({\mathbf{C}}^n\): Take \(\Delta = { \mathrm{Cone} }(\sigma_0 = {\mathbb{N}}\left\langle{ e_1,\cdots, e_n}\right\rangle )\) yields the positive orthant \(S_{\sigma_0} = {\mathbb{N}}\left\langle{e_1 {}^{ \vee },\cdots, e_n {}^{ \vee }}\right\rangle \subseteq M\), so \(X(\Delta) = \operatorname{Spec}{\mathbf{C}}[x_1,\cdots, x_n] = {\mathbf{A}}^n\). \item The quadric cone: \(\Delta = { \mathrm{Cone} }(\sigma_1 = {\mathbb{N}}\left\langle{e_2, 2e_1 - e_2}\right\rangle)\) yields \(S_{\sigma_1} = {\mathbb{N}}\left\langle{e_1 {}^{ \vee }, e_1 {}^{ \vee }+ e_2 {}^{ \vee }, e_1 {}^{ \vee }+ 2e_2 {}^{ \vee }}\right\rangle\) so \(X(\Delta) = \operatorname{Spec}{\mathbf{C}}[x, xy, xy^2] = \operatorname{Spec}{\mathbf{C}}[u,v,w]/(v^2-uw)\): \end{itemize} \includegraphics{figures/2022-10-18_15-33-37.png} \includegraphics{figures/2022-10-18_15-33-47.png} \begin{itemize} \tightlist \item \({\mathbf{P}}^1\): Take \(\Delta = \left\{{{\mathbf{R}}_{\geq 0}, 0, {\mathbf{R}}_{\leq 0}}\right\}\) and glue along overlaps to get \(X(\Delta) = {\mathbf{P}}^1\) with gluing maps \(x\mapsto x^{-1}\): \end{itemize} \includegraphics{figures/2022-10-18_15-36-53.png} \begin{itemize} \tightlist \item \(\operatorname{Bl}_1 {\mathbf{C}}^2\): Take \(\sigma_0 = {\mathbb{N}}\left\langle{ e_2, e_1+e_2}\right\rangle\) and \(\sigma_1 = {\mathbb{N}}\left\langle{e_1+e_2, e_1}\right\rangle\) to get \(U_{ \sigma_0} = \operatorname{Spec}{\mathbf{C}}[x, x^{-1}y]\) and \(U_{ \sigma_1} = \operatorname{Spec}{\mathbf{C}}[y, xy^{-1}]\), both copies of \({\mathbf{C}}^2\): \end{itemize} \includegraphics{figures/2022-10-18_15-39-10.png} Why this is a blowup of \({\mathbf{C}}^2\): write \(\operatorname{Bl}_1 {\mathbf{C}}^2 = V(xt_1 - yt_0) \subseteq {\mathbf{C}}^2\times {\mathbf{P}}^1\) for \({\mathbf{P}}^1 = \left\{{{\left[ {t_0: t_1} \right]}}\right\}\). Take the open cover \(U_i = D(t_i) \cong {\mathbf{C}}^2\), where coordinates on \(U_0\) are \(x, t_1/t_0 = x^{-1}y\) and on \(U_1\) are \(y, t_0/t_1 = xy^{-1}\) and glue. \begin{itemize} \item \({\mathbf{P}}^2\): take \(\Delta = { \mathrm{Cone} }(e_1, e_2, -e_1-e_2)\): \includegraphics{figures/2022-10-18_15-42-04.png} This has dual cone: \includegraphics{figures/2022-10-18_15-42-18.png} Each \(U_{\sigma_i} \cong {\mathbf{C}}^2\) with coordinates \((x,y), (x^{-1}, x^{-1}y), (y^{-1}, xy^{-1})\) respectively for \(U_i\). Glue to obtain \(x=t_1/t_0, y=t_2/t_0\). \item \(F_a\) the Hirzebruch surface: take \({ \mathrm{Cone} }(e_1, -e_2, -e_1, -e_1 + ae_2)\) to get \begin{itemize} \tightlist \item \(U_{\sigma_1} = \operatorname{Spec}{\mathbf{C}}[x,y]\), \item \(U_{\sigma_2} = \operatorname{Spec}{\mathbf{C}}[x,y^{-1}]\), \item \(U_{\sigma_3} = \operatorname{Spec}{\mathbf{C}}[x^{-1},x^{-a} y^{-1}]\), \item \(U_{\sigma_4} = \operatorname{Spec}{\mathbf{C}}[x^{-1},x^a y]\), \end{itemize} which patch in the following way: \includegraphics{figures/2022-10-18_15-45-17.png} Project to \(y=0\) to get the patching \(x\mapsto x^{-1}\), so a copy of \({\mathbf{P}}^1\). Patching in the fiber direction, e.g.~\(U_{\sigma_1}\) and \(U_{\sigma_2}\), gives a copy of \({\mathbf{C}}\times {\mathbf{P}}^1\). Thus this is a bundle \({\mathbf{P}}^1\to {\mathcal{E}}\to {\mathbf{P}}^1\). \item \({\mathbf{C}}\times {\mathbf{P}}^1\): todo. \item \({\mathbf{P}}^1 \times {\mathbf{P}}^1\): todo. \item \({\mathbf{C}}^a \times {\mathbf{P}}^b\): todo. \item \({\mathbf{P}}^a \times {\mathbf{P}}^b\): todo. \end{itemize} \end{example} \begin{example}[of polytopes] \begin{itemize} \tightlist \item Hirzebruch surfaces: \end{itemize} \includegraphics{figures/2022-12-03_20-09-23.png} \begin{itemize} \tightlist \item \(({\mathbf{P}}^2, {\mathcal{O}}(1))\): take \(P = \Conv(0, e_1, e_2)\), so \(X_P = { \operatorname{cl}}\Phi_P\) where \begin{align*} \Phi_P: ({{\mathbf{C}}^{\times}})^2 &\to {\mathbf{P}}^2 \\ (s,t) &\mapsto [1: s: t] ,\end{align*} which is the identity embedding corresponding to \({\mathcal{O}}(1)\) on \({\mathbf{P}}^2\). \begin{itemize} \tightlist \item \(2P\) yields \begin{align*} \Phi_{2P}: ({{\mathbf{C}}^{\times}})^2 &\to {\mathbf{P}}^5 \\ (s,t) &\mapsto [1: s: t : s^2: st: t^2] ,\end{align*} the Veronese embedding corresponding to \({\mathcal{O}}(2)\) on \({\mathbf{P}}^2\). \end{itemize} \end{itemize} \end{example} \begin{example}[Projective spaces] Some useful facts about \({\mathbf{P}}^n\): \begin{itemize} \tightlist \item The torus embedding is \begin{align*} ({{\mathbf{C}}^{\times}})^n &\hookrightarrow{\mathbf{P}}^n \\ {\left[ {a_1,\cdots, a_n} \right]} &\mapsto {\left[ {1: a_1 : \cdots : a_n} \right]} .\end{align*} \item The torus action is \begin{align*} ({{\mathbf{C}}^{\times}})^n &\curvearrowright{\mathbf{P}}^n \\ {\left[ {t_1,\cdots, t_n} \right]} . {\left[ {x_0: x_1:\cdots:x_n} \right]} &= {\left[ {x_0: t_1 x_1:\cdots:t_n x_n} \right]} .\end{align*} \end{itemize} \end{example} \begin{example}[of class groups and Picard groups] \includegraphics{figures/2022-10-20_00-07-20.png} \includegraphics{figures/2022-10-20_00-10-35.png} \end{example} \hypertarget{i-definitions-and-examples}{% \section{I: Definitions and Examples}\label{i-definitions-and-examples}} \hypertarget{introduction}{% \subsection{1.1: Introduction}\label{introduction}} \begin{remark} Machinery used to study varieties: \begin{itemize} \tightlist \item Various cohomology theories \item Resolutions of singularities \item Intersection theory and cycles \item Riemann-Roch theorems \item Vanishing theorems \item Linear systems (via line bundles and projective embeddings) \end{itemize} Varieties that arise as examples \begin{itemize} \tightlist \item Grassmannians \item Flag varieties \item Veronese embeddings \item Scrolls \item Quadrics \item Cubic surfaces \item Toric varieties (of course) \item Symmetric varieties and their compactifications \end{itemize} Misc notes: \begin{itemize} \tightlist \item Toric varieties are always rational \end{itemize} \end{remark} \begin{remark} \envlist \begin{itemize} \tightlist \item Toric varieties: normal varieties \(X\) with \(T\hookrightarrow X\) contained as a dense open subset where the torus action \(T\times T\to T\) extends to \(T\times X\to X\). \item Any product of copies of \({\mathbf{A}}^n, {\mathbf{P}}^m\) are toric. \item \(S_\sigma\) is a finitely-generated semigroup, so \({\mathbf{C}}[S_\sigma] \in \mathsf{Alg}{{\mathbf{C}}}^{\mathrm{fg}}\) corresponds to an affine variety \(U_\sigma \coloneqq\operatorname{Spec}{\mathbf{C}}[S_\sigma]\). \item If \(\tau \leq \sigma\) is a face then there is a map of affine varieties \(U_\tau \to U_\sigma\) where \(U_\tau = D(u_\tau)\) is a principal open subset given by the function \(u_\tau\) picked such that \(\tau = \sigma \cap u_\tau^\perp\), so \(u_\tau\) corresponds to the orthogonal normal vector for the wall \(\tau\). \item These glue to a variety \(X(\Delta)\). \item Smaller cones correspond to smaller open subsets. \item The geometry in \(N\) is nicer than that in \(M\), usually. \item Rays \(\rho\) correspond to curves \(D_\rho\). \end{itemize} \end{remark} \begin{exercise}[?] \envlist \begin{itemize} \tightlist \item Show \(F_a\to {\mathbf{P}}^1\) is isomorphic to \({\mathbf{P}}({\mathcal{O}}(a) \oplus {\mathcal{O}}(1))\). \item Let \(\tau\) be the ray through \(e_2\) in \(F_a\) and show \(D_\tau^2 = -a\). \item Show that the normal bundle to \(D_\tau \hookrightarrow F_a\) is \({\mathcal{O}}(-a)\). \end{itemize} \end{exercise} \hypertarget{convex-polyhedral-cones}{% \subsection{1.2: Convex Polyhedral Cones}\label{convex-polyhedral-cones}} \begin{remark} \envlist \begin{itemize} \tightlist \item \textbf{Convex polyhedral cones}: generated by vectors \(\sigma = {\mathbf{R}}_{\geq 0}\left\langle{v_1,\cdots, v_n}\right\rangle\). Can take minimal vectors along these rays, say \(\rho_i\). \end{itemize} \includegraphics{figures/2022-10-18_20-35-45.png} \begin{itemize} \tightlist \item \(\dim \sigma \coloneqq\dim_{\mathbf{R}}{\mathbf{R}}\sigma \coloneqq\dim_{\mathbf{R}}(-\sigma + \sigma)\) \item \((\sigma {}^{ \vee }) {}^{ \vee }= \sigma\), which follows from a general theorem: for \(\sigma\) a convex polyhedral cone and \(v\not\in \sigma\), there is some support vector \(u_v\in \sigma {}^{ \vee }\) such that \({\left\langle {u},~{v} \right\rangle} < 0\). I.e. \(v\) is on the negative side of some hyperplane defined in \(\sigma {}^{ \vee }\). \item Faces are again convex polyhedral cones, faces are closed under intersections and taking further faces. \item If \(\sigma\) spans \(V\) and \(\tau\) is a facet, there is a unique \(u_\tau\in \sigma {}^{ \vee }\) such that \(\tau = \sigma \cap u_\tau^\perp\); this defines an equation for the hyperplane \(H_\tau\) spanned by \(\tau\). \item If \(\sigma\) spans \(V\) and \(\sigma\neq V\), then \(\sigma = \cap_{\tau\in \Delta} H_\tau^+\), the intersection of positive half-spaces. \begin{itemize} \tightlist \item An alternative presentation: picking \(u_1,\cdots, u_t\) generators of \(\sigma {}^{ \vee }\), one has \(\sigma = \left\{{v\in N {~\mathrel{\Big\vert}~}{\left\langle {u_1},~{v} \right\rangle} \geq 0, \cdots, {\left\langle {u_t},~{v} \right\rangle}\geq 0}\right\}\). \end{itemize} \item If \(\tau \leq \sigma\) then \(\sigma {}^{ \vee }\cap\tau {}^{ \vee }\leq \sigma {}^{ \vee }\) and \(\dim \tau = \operatorname{codim}(\sigma {}^{ \vee }\cap\tau {}^{ \vee })\), so the faces of \(\sigma, \sigma {}^{ \vee }\) biject contravariantly. \item If \(\tau = \sigma \cap u_\tau^\perp\) then \(S_\tau = S_\sigma + {\mathbb{N}}\left\langle{-u_\tau}\right\rangle\). \end{itemize} \end{remark} \hypertarget{singularities-and-compactness}{% \section{Singularities and Compactness}\label{singularities-and-compactness}} \hypertarget{section}{% \subsection{2.1}\label{section}} \begin{remark} \begin{itemize} \item Any cone \(\sigma\in \Sigma\) has a distinguished point \(x_\sigma\) corresponding to \(\mathop{\mathrm{Hom}}_{\semigroup}(S_\sigma, {\mathbf{C}})\) where \(u\mapsto \chi_{u\in \sigma^\perp}\). \begin{itemize} \tightlist \item Note \(S_\sigma \coloneqq\sigma {}^{ \vee }\cap M\). \end{itemize} \item Define \(A_\sigma \coloneqq{\mathbf{C}}[S_\sigma]\). \item Finding singular points: \begin{itemize} \tightlist \item Easy case: \(\sigma\) spans \(N_{\mathbf{R}}\) so \(\sigma^\perp = 0\); consider \({\mathfrak{m}}\in \operatorname{mSpec}A_\sigma\) be the maximal ideal at \(x_\sigma\), then \({\mathfrak{m}}= \left\langle{\chi^u {~\mathrel{\Big\vert}~}u\in S_ \sigma}\right\rangle\) and \({\mathfrak{m}}^2 = \left\langle{\chi^u {~\mathrel{\Big\vert}~}u \in S_\sigma\setminus\left\{{0}\right\}+ S_\sigma\setminus\left\{{0}\right\}}\right\rangle\), so \({\mathbf{T}}_{x_\sigma} {}^{ \vee }U_\sigma = {\mathfrak{m}}/{\mathfrak{m}}^2 = \left\{{\chi^u {~\mathrel{\Big\vert}~}u\not \in S_{\sigma}\setminus\left\{{0}\right\}+ S_\sigma\setminus\left\{{0}\right\}}\right\}\), i.e.~``primitive'' elements \(u\) which are not the sums of two other vectors in \(S_\sigma\setminus\left\{{0}\right\}\). \item Nonsingular implies \(\dim U_\sigma = n\), so \(\sigma {}^{ \vee }\) has \(\leq n\) edges since each minimal ray generator yields a primitive \(u\) above. Also implies minimal edge generators must generate \(S_\sigma\), thus must be a basis for \(M\), so \(\sigma\) must be a basis for \(N\) and \(U_\sigma \cong {\mathbf{A}}^n\). \end{itemize} \item \textbf{Characterization of smoothness}: \(U_\sigma\) is smooth iff \(\sigma\) is generated by a subset of a lattice basis for \(N\), in which case \(U_\sigma \cong {\mathbf{A}}^k \times {\mathbf{G}}_m^{n-k}\). \item All toric varieties are normal since each \(A_\sigma\) is integrally closed. \begin{itemize} \tightlist \item If \(\sigma = \left\langle{v_1,\cdots, v_r}\right\rangle\) then \(\sigma {}^{ \vee }= \cap_{i=1}^r \tau_i {}^{ \vee }\) where \(\tau_i\) is the ray along \(v_i\). Thus \(A_\sigma = \cap A_{\tau_i}\), each of which is isomorphic to \({\mathbf{C}}[x_1, x_2^{\pm 1}, \cdots, x_n^{\pm 1}\) which is integrally closed. \end{itemize} \item All toric varieties are \textbf{Cohen-Macaulay}: each local ring \(R\) has depth \(n\), i.e.~contains a regular sequence of length \(n = \dim R\). \item All vector bundles on affine toric varieties are trivial, equivalently all projective modules over \(A_\sigma\) are free. \end{itemize} \end{remark} \hypertarget{section-1}{% \subsection{2.2}\label{section-1}} \begin{remark} \begin{itemize} \tightlist \item An example: \(\Sigma = { \mathrm{Cone} }(me_1-e_2, e_2)\). Then \(A_\sigma = {\mathbf{C}}[x, xy, xy^2,\cdots,xy^m] = {\mathbf{C}}[u^m u^{m-1}v,\cdots, uv^{m-1}, v^m]\) and \(U_\sigma\) is the cone over the rational normal curve of degree \(m\). \begin{itemize} \tightlist \item Note \(A_\sigma = {\mathbf{C}}[u,v]^{\mu_m}\) is the ring of invariants under the diagonal action \(\zeta.{\left[ {u, v} \right]} = {\left[ {\zeta u, \zeta v} \right]}\). \end{itemize} \item If \(\Sigma\) is simplicial, then \(X_\Sigma\) is at worst an orbifold. \end{itemize} \end{remark} \hypertarget{section-2}{% \subsection{2.3}\label{section-2}} \begin{remark} \begin{itemize} \item \(\mathop{\mathrm{Hom}}_{ \mathsf{Alg}{\mathsf{Grp}}}({\mathbf{G}}_m, {\mathbf{G}}_m) = {\mathbf{Z}}\) using \(n\mapsto (z\mapsto z^n)\). \item Cocharacters: \begin{itemize} \tightlist \item Pick a basis for \(N\) to get \(\mathop{\mathrm{Hom}}({\mathbf{G}}_m, T_N) = \mathop{\mathrm{Hom}}({\mathbf{Z}}, N) = N\), then every cocharacter \(\lambda \in \mathop{\mathrm{Hom}}({\mathbf{G}}_m, T_N)\) is given by a unique \(v\in N\), so denote it \(\lambda_v\). Then \(\lambda_v(z)\in T_N = \mathop{\mathrm{Hom}}(M, {\mathbf{G}}_m)\) for any \(z\in {{\mathbf{C}}^{\times}}\), so \begin{align*} u\in M \implies \lambda_v(z)(u) = \chi^u(\lambda_v(z))= z^{{\left\langle {u},~{v} \right\rangle}} .\end{align*} \end{itemize} \item Characters: \(\chi \in \mathop{\mathrm{Hom}}(T_n, {\mathbf{G}}_m) = \mathop{\mathrm{Hom}}(N, {\mathbf{Z}}) = M\) is given by a unique \(u\in M\) and can be identified with \(\chii^u \in {\mathbf{C}}[M] = H^0(T_N, {\mathcal{O}}_{T_N}^{\times})\). \item \(\lim_{z\to 0}\lambda_v(z) = \lim_{z\to 0} {\left[ {z^{m_1},\cdots, z^{m_n}} \right]} \in U_\sigma \iff m_i \geq 0\) for all \(i\), and if \(U_\sigma = {\mathbf{A}}^k\times {\mathbf{G}}_m^{n-k}\), \(m_i = 0\) for \(i > k\). This happens iff \(v\in \sigma\), and the limit is \({\left[ {\delta_1,\cdots, \delta_n} \right]}\) where \(\delta_i = 1\iff m_i = 0\) and \(\delta_i = 0\iff m_i > 0\); each of which is a distinguished point \(x_\tau\) for some face \(\tau\) of \(\sigma\). \item Summary: \(v\in {\left\lvert {\Sigma} \right\rvert}\) and \(v\in \tau^\circ\) then \(\lim_{z\to 0} \lambda_v(z) = x_\tau\), and the limit does not exist for \(v\not\in{\left\lvert {\Sigma} \right\rvert}\). \end{itemize} \end{remark} \hypertarget{section-3}{% \subsection{2.4}\label{section-3}} \begin{remark} \begin{itemize} \item Recall \(X\) is compact in the Euclidean topology iff it is complete/proper in the Zariski topology, i.e.~the map to a point is proper. \item \(X_\Sigma\) is compact iff \({\left\lvert {\Sigma} \right\rvert} = N_{\mathbf{R}}\), i.e.~\(\Sigma\) is complete. \item Any morphism of lattices \(\phi:N\to N'\) inducing a map of fans \(\Sigma\to \Sigma'\) defines a morphism \(X_{\Sigma}\to X_{\Sigma'}\) which is proper iff \(\phi^{-1}({\left\lvert {\Sigma'} \right\rvert}) = {\left\lvert {\Sigma} \right\rvert}\). Thus \(X_\Sigma\) is compact iff \(\phi: N\to 0\) is a proper morphism. \item Blowing up at \(x_\sigma\): take a basis \(\left\{{v_i}\right\}\), set \(v_0\coloneqq\sum v_i\), and replace \(\sigma\) by all subsets of \(\left\{{v_0,v_1,\cdots, v_n}\right\}\) not containing \(\left\{{v_1, \cdots, v_n}\right\}\). \end{itemize} \end{remark} \newpage \printbibliography[title=Bibliography] \end{document}