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I I: Varieties

1 ‘ I: Varieties

Remark 1.0.1: Some useful basic properties:

e Properties of V:
= NierV(a) =V (Fics @)
O Eg V(z)nV(y) =V({(z)+ (y)) = V(x,y) = {0}, the origin.
— UignV(ai) =V (ngn 01').
O Eg V(z)UV(y) =V ({z)(y)) = V(xy), the union of coordinate axes.

- V(a)c = UfeaD(f>
V(Cll) C V(CIQ) <— \/ﬁ D) \/@

e Properties of I:

— I(V(a)) = yaand V(I(Y)) = clan(Y). The containment correspondence is contravariant
in both directions.
— 1(U;Y;) = NI (Y;).
o If F is a sheaf taking values in subsets of a giant ambient set, then F(UU;) = NF(U;). For
A"/C, take C(x1,- -+ ,x,), the field of rational functions, to be the ambient set.
o Distinguished open D(f) = {p eX ’ f(p) # 0}:

- Ox(D(f)) = A(X)[ﬂ = {fi’“ g€ AX), k> 0}, and taking f = 1 shows Ox(X) =
A(X), i.e. global regular functions are polynomial.

— Generally D(fg) = D(f) N D(g)
— For affines:

Ospec n(D(1)) = B|3].
— For C™,

Ocn(D(f)) = klz1, -+, 2n][/1] = Ocn(V(a)%) = NreaOcn (D(f))-

" 1.1 1.1: Affine Varieties * ~

Remark 1.1.1: Summary:

. A7k = {[al, cee )] ‘ a; € k}, and elements f € A :== k[zy,--- ,x,] are functions on it.
o Z(f) = {p €A ’ flp) = O}, and for any T' C A we set Z(T') = N¢er Z(f).
— Note that Z(T) = Z((T) 4) = Z({f1,-- - , fr)) for some generators f;, using that A is a

Noetherian ring. So every Z(T) is the set of common zeros of finitely many polynomials,
i.e. the intersection of finitely many hypersurfaces.

I: Varieties 4



I I: Varieties

o Algebraic: Y C A" is algebraic iff Y = Z(T') for some T' C A.

o The Zariski topology is generated by open sets of the form Z(T)¢.

« Al is a non-Hausdorff space with the cofinite topology.

e Irreducible: Y is reducible iff Y = Y; U Y5 with Y7, Y5 proper subsets of Y which are closed
inY.

— Nonempty open subsets of irreducible spaces are both irreducible and dense.
— If Y C X is irreducible then clx(Y) C X is again irreducible.

o Affine (algebraic) varieties: irreducible closed subsets of A".
¢ Quasi-affine varieties: open subsets of affine varieties.

o The ideal of a subset: I(Y) = {f €A ‘ flp)=0Vpe Y}.

o Nullstellensatz: if k = k,a € Id(k[z1,--- ,2,]), and f € k[x1,- -, 2,] with f(p) = 0 for all
p € V(a), then f7 € a for some r > 0, so f € y/a. Thus there is a contravariant correspondence
between radical ideals of k[z1,- -, z,] and algebraic sets in A7k.

o Irreducibility criterion: Y is irreducible iff I(Y') € Speck[x1,--- ,2,] (i.e. it is prime).

« Affine curves: if f € k[z,y]" then (f) € Speck[z,y] (since this is a UFD) so Z(f) is
irreducible and defines an affine curve of degree d = deg(f).

+ Affine surfaces: Z(f) for f € k[zy,--- ,x,]™ defines a surface.

o Coordinate rings: A(Y) = k[z1,--- ,x,]/I(Y).

e Noetherian spaces: X € Top is Noetherian iff the DCC on closed subsets holds.

¢ Unique decomposition into irreducible components: if X € Top is Noetherian then
every closed nonempty ¥ C X is of the form Y = U]_,Y; with ¥; a uniquely determined closed
irreducible with Y; € Y; for 7 # j, the irreducible components of Y.

¢ Dimension: for X € Top, the dimension is dim X = sup {n ’ ZyCczZyC---C Zn} with

Z; distinct irreducible closed subsets of X. Note that the dimension is the number of “links”
here, not the number of subsets in the chain.

o Height: for p € Spec A define ht(p) := sup {n ‘ IdpoCp C--Chpp= p} with p; € Spec A
distinct prime ideals.

 Krull dimension: define krulldim A := sup,cgpec 4 ht(p), the supremum of heights of prime
ideals.

Exercise 1.1.2 (The Zariski topology)
Show that the class of algebraic sets form the closed sets of a topology, i.e. they are closed
under finite unions, arbitrary intersections, etc.

Exercise 1.1.3 (The affine line)

« Show that A} i has the cofinite topology when k = k: the closed (algebraic) sets are finite
sets and the whole space, so the opens are empty or complements of finite sets.®

e Show that this topology is not Hausdorff.

« Show that A! is irreducible without using the Nullstellensatz.

e Show that A" is irreducible.

o Show that maximal ideals m € mSpeck[xy, - ,x,] correspond to minimal irreducible
closed subsets Y C A™, which must be points.

o Show that mSpeck[zi, -+ ,z,] = {(:131 — A1, Ty — ) ‘ a1, 0y € k:} for k = k,

1.1 I.1: Affine Varieties 5



I: Varieties

and that this fails for k& # k.
e Show that A™ is Noetherian.
e Show dimA! =1.
e Show dim A" = n.

“Hint: k[z] is a PID and factor any f(z) into linear factors using that k = k to write Z(a) = Z(f) = {a1,--- ,ax}
for some k.

Exercise 1.1.4 (Commutative algebra)

o Show that if Y is affine then A(Y) is an integral domain and in ,Alg®.
« Show that every B € ,Alg™ N Domain is of the form B = A(Y) for some Y € AffVar .
o Show that if Y is an affine algebraic set then dimY = krulldim A(Y").

Theorem 1.1.5(Results from commutative algebra).

o If k € Field, B € ;Alg®® N Domain,

— krulldim B = [K(B) : By, is the transcendence degree of the quotient field of B
over B.
— If p € Spec B then ht p + krulldim(B/p) = krulldim B.

o Krull’s Hauptidealsatz:

— If A € CRing™°°"! and f € A\ A is not a zero divisor, then every minimal p € Spec A
with p > f has height 1.

o If A € CRingN°**" N Domain, then A is a UFD iff every p € Spec(A) with ht(p) = 1 is
principal.

Exercise 1.1.6 (1.10)
Show that if Y is quasi-affine then

dimY = dimclanY.

Exercise 1.1.7 (1.13)
Show that if ¥ C A"™ then codimanr(Y) =1 <= Y = Z(f) for a single nonconstant
f € klay, -, zn)"

Exercise 1.1.8 (7)
Show that if p € Spec(A) and ht(p) = 2 then p can not necessarily be generated by two
elements.

" 1.2 1.2: Projective Varieties ~

1.1 I.1: Affine Varieties 6



I: Varieties

Remark 1.2.1:
o Projective space: {a = [ag, - ,an] ‘ a; € k‘} / ~ where a ~ Aa for all A\ € k\ {0}, i.e. lines
in A"t passing through 0.

o Graded rings: a ring S with a decomposition S = ®4>05; with each S; € AbGrp and
SiSe C Sgte; elements of Sy are homogeneous of degree d and any element in S is a finite
sum of homogeneous elements of various degrees.

« Homogeneous polynomials: f is homogeneous of degree d if f(Azg, - -+, Axy) = A f (20, -, Tn).

« Homogeneous ideals: a C S is homogeneous when it’s of the form a = @;>¢(a N Sq).

— a is homogeneous iff generated by homogeneous elements.

— The class of homogeneous ideals is closed under sums, products, intersections, and
radicals.

— Primality of homogeneous ideals can be tested on homogeneous elements, i.e. it STS
fgea = f,g € afor f,g homogeneous.

o k[z1, -+ 2] = @gsoklz1, -+ ,74]q where the degree d part is generated by monomials of
total weight d.

— E.g.

k
k

—_—

L1, al‘n]l - <$1a$27"' a$n>

—_—

2 2 2 2
L1y ,."L‘n]g = <:L‘1,l‘1$ sy L1L3, " y Loy T2L3, T2L4,y " ** ,l‘n> .

— Useful fact: by stars and bars, ranky k[x1, -+ ,zp]q = (d;"). E.g. for (d,n) = (3,2),

3
Ty

:I.‘%:t.‘z
.’1.‘21‘
1+3

:I.‘jlt.‘%

***||
*‘k|*|
**||*
*|**|
T{ToTa * |+ |*
*||**
|!k!k*|
|!k!k|*

|*|**

PITTITTTL

|| % %

1.2 1.2: Projective Varieties % 7



I I: Varieties

o Arbitrary polynomials f € k[zg,---,z,] do not define functions on P™ because of non-
uniqueness of coordinates due to scaling, but homogeneous polynomials f being zero or not
is well-defined and there is a function

evy: P" = {0,1}

pH{O fp)=0
L f(p) #0.

So Z(f) = {p epn ‘ flp) = 0} makes sense.

e Projective algebraic varieties: Y is projective iff it is an irreducible algebraic set in P™.
Open subsets of P™ are quasi-projective varieties.

« Homogeneous ideals of varieties:

I(Y) = {f € klxg, - -, x,|10M08 ‘ f(p)=0Vpe Y}.

e Homogeneous coordinate rings:

S(Y) = klzo, - ,z,]/I(Y).

o Z(f) for f a linear homogeneous polynomial defines a hyperplane.

Exercise 1.2.2 (Cor. 2.3)
Show P™ admits an open covering by copies of A™ by explicitly constructing open sets U; and
well-defined homeomorphisms @; : U; — A™.

) 1.3 1.3: Morphisms ~
) 1.4 1.4: Rational Maps ~
- 1.5 1.5: Nonsingular Varieties ~
— 1.6 1.6: Nonsingular Curves ~
— 1.7 L.7: Intersections in Projective Space ~

1.3 1.3: Morphisms 8



I II: Schemes

2 ‘ Il: Schemes

Note: there are many, many important notions tucked
away in the exercises in this section.

" 2.1 11.1: Sheaves « ~

Remark 2.1.1:
o Presheaves F' of abelian groups: contravariant functors F' € Fun(Open(X), AbGrp).

— Assigns every open U C X some F(U) € AbGrp

— For vy : V C U, restriction morphisms ¢gy : F(U) — F(V).
— F(0) =0, so F((*) = 0.

— puu = idp@)

- WCVCU = guw =¢vw o guv.

o Sections: elements s € F(U) are sections of F over U. Also notation I'(U; F) and H°(U; F),
and the restrictions are written sy, = @yy(s) for s € F(U).

e Sheaves: presheaves F' which are completely determined by local data. Additional require-
ments on open covers V = U:

— If s € F(U) with s[;, =0 for all i then s =0 € F(U).
— Given s; € F(V;) where Si‘Vij = SJ'|Vij € F(Vi;) then 3s € F(U) such that s|;, = s; for
each 7, which is unique by the previous condition.

e Constant sheaf: for A € AbGrp, define the constant sheaf
A(U) = Top(U, A™).
o Stalks: F), := colim,_ F’ (U) along the system of restriction maps.

— These are represented by pairs (U, s) with U > p an open neighborhood and s € F(U),
modulo (U, s) ~ (V,t) when 3IW C U NV with s|, = t|,.

» Germs: a germ of a section of F' at p is an elements of the stalk F,.
o Morphisms of presheaves: natural transformations n € Morg,,(F, G), i.e. for every U,V
components ny, ny fitting into a diagram

Open(X) AbGrp
U F(U) L G(U)
FG
= Resp(U,V) Resq(U,V)
1% F(V) n G(V)

II: Schemes 9



I II: Schemes

Link to Diagram

¢ A morphism of sheaves is exactly a morphism of the underlying presheaves.
e Morphisms of sheaves n : I — G induce morphisms of rings on the stalks n, : F,, = G,
e Morphisms of sheaves are isomorphisms iff isomorphisms on all stalks, see exercise below.

o Kernels, cokernels, images: for ¢ : F' — G, sheafify the assignments to kernels/cokernel-
s/images on open sets.

o Sheafification: for any F' € Sh(X), there is a unique F'* € Sh(X) and a morphism 6 : F —
pre

FT of presheaves such that any sheaf presheaf morphism F' — G factors as ' — F™ — G.

— The construction: F*(U) = Top(U, [, Fp) are all functions s into the union of stalks,
subject to s(p) € F), for all p € U and for each p € U, there is a neighborhood V-2 U 3 p
and t € F(V) such that for all ¢ € V, the germ ¢, is equal to s(q).

— Note that the stalks are the same: (F*), = F), and if F is already a sheaf then 6 is an
isomorphism.

o Subsheaves: F' < F iff F'(U) < F(U) is a subgroup for every U and the restrictions on F’
are induced by restrictions from F'.

If F/ < F then F) < F),.
— Injectivity: ¢ : F' — G is injective iff the sheaf kernel ker ¢ = 0 as a subsheaf of F'
& o is injective iff injective on all sections.

im e < G is a subsheaf.
Surjectivity: ¢ : F' — G is surjective iff im ¢ = G as a subsheaf.

« Exactness: a sequence of sheaves (Fj,p; : F; — Fj1) is exact iff kerp; = impi~! as

subsheaves of F;.

— ¢ : F — G is injective iff 0 —» F % G is exact.
— ¢ : F — G is surjective iff F % G — 0 is exact.
— Sequences of sheaves are exact iff exact on stalks.

« Quotient sheaves: F'/F’ is the sheafification of U — F(U)/F'(U).

o Cokernels: for ¢ : F — G, coker ¢ is sheafification of U + coker(F(U) LdCIN GU)).

 Direct images: for f € Top(X,Y), the sheaf defined on sections by (f.F)(V) = F(f~1(V))
for any V C Y. Yields a functor f. : Sh(X) — Sh(Y).

o Inverse images: denoted f~!'G, the sheafification of U colimy, 5 ¢z G(V), i.e. take
the limit from above of all open sets V of Y containing the image f(U). Yields a functor
f~1:Sh(Y) — Sh(X).

2.1 II.1: Sheaves % 10
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I II: Schemes

o Restriction of a sheaf: for F' € Sh(X) and Z C X with ¢ : Z — X the inclusion, define
i~1F € Sh(Z) to be the restriction. Also denoted F|,. This has the same stalks: (F|,), = F),.

o For any U C X, the global sections functor I'(U; —) : Sh(X) — AbGrp is left-exact (proved in
exercises).

« Limits of sheaves: for {F;} a direct system of sheaves, colim, F; has underlying presheaf
U +— colim, F;(U). If X is Noetherian, then this is already a sheaf, and commutes with
sections: I'(X; colim, F;) = colim, I'(X; ).

— Inverse limits exist and are defined similarly.

« The espace étalé: define Et(F) = [[,exFp and a projection  : Et(F) — X by sending
s € F, to p. For each U C X and s € F(U), there is a local section 5 : U — Et(F) where
D > Sp, its germ at p; this satisfies 7 05 = idy. Give Et(F) the strongest topology such that
the 5 are all continuous. Then F+(U) := Top(U, Et(F)) is the set of continuous sections of
Et(F) over U.

o Support: for s € F(U), supp(s) = {p eU ’ sp # O} where s, is the germ of s in F),. This
is closed.

— This extends to supp(F) = {p eX ‘ F, # O}, which need not be closed.

o Sheaf hom: U — Hom(F|;, G|;;) forms a sheaf of local morphisms and is denoted Hom(F, G).
» Flasque sheaves: a sheaf is flasque iff V. — U = F(U) —» F(V).

o Skyscraper sheaves: for A € AbGrp and p € X, define

A peU

0 otherwise.

ip(A)(U) = {
Also denoted ¢4 (A) where ¢ : clx({p}) < X is the inclusion.

— The stalks are

e

0 otherwise.

« Extension by zero: if ¢« : Z — X is the inclusion of a closed set and U = X \ Z with
j : U — X, then for F' € Sh(Z), the sheaf ¢, F' € Sh(X) is the extension of F' by zero outside
of Z. The stalks are

F, peZ

0 otherwise.

(e F)p = {

2.1 II.1: Sheaves % 11



II: Schemes

— For the open U, extension by zero is jiF' which has presheaf V +— F(V) if V C U and 0
otherwise. The stalks are

F, peU
WF)y=14" :
() {0 otherwise.
o Sheaf of ideals: for Y C X closed and U C X open, Zy (U) has presheaf U +— the ideal in
Ox(U) of regular functions vanishing on all of Y N U. This is a subsheaf of Ox.

o Gluing sheaves: given U = X and sheaves F; € Sh(U;), one can glue to a unique F' € Sh(X)
if one is given morphisms SOijFi|Uij = FJ"UZ-J- where @;; = id and @ = )i © @i on Usji.

AWarning 2.1.2
Some common mistakes:

e Kernel presheaves are already sheaves, but not cokernels or images. See exercise below.
e ¢ : F — G is injective iff injective on sections, but this is not true for surjectivity.

o The sheaves f~'G and f*G are different! See IIL.5 for the latter.

o Global sections need not be right-exact.

Exercise 2.1.3 (Regular functions on varieties form a sheaf)

For X € Var ;, define the ring Ox (U) of literal regular functions f; : U — k where restriction
morphisms are induced by literal restrictions of functions. Show that Ox is a sheaf of rings
on X.

Hint: Locally reqular implies regular, and reqular
+ locally zero implies zero.

Exercise 2.1.4 (7)
Show that for every connected open subset U C X, the constant sheaf satisfies A(U) = A, and
if U is open with open connected component so the A(U) = AxFTY

Exercise 2.1.5 (?)
Show that if X € Var/, and Ox is its sheaf of regular functions, then the stalk Ox,, is the
local ring of p on X as defined in Ch. I.

Exercise 2.1.6 (Prop 1.1)
Let ¢ : F — G be a morphism in Sh(X) and show that ¢ is an isomorphism iff ¢, is an
isomorphism on stalks for all p € X. Show that this is false for presheaves.

Exercise 2.1.7 (7)
Show that for ¢ € Morsy,(x)(F, G), ker ¢ is a sheaf, but coker ¢, im ¢ are not in general.

2.1 II.1: Sheaves % 12



I II: Schemes

Exercise 2.1.8 (7)
Show that if ¢ : FF — G is surjective then the maps on sections ¢(U) : F(U) — G(U) need not
all be surjective.

— 2.2 11.2: Schemes ~
— 2.3 11.3: First Properties of Schemes ~
s 2.4 11.4: Separated and Proper Morphisms ~
" 2.5 11.5: Sheaves of Modules ~
— 2.6 11.6: Divisors ~
— 2.7 11.7: Projective Morphisms ~
— 2.8 11.8: Differentials ~
" 2.9 11.9: Formal Schemes ~

2.2 I1.2: Schemes 13
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3 ‘ I11: Cohomology
" 3.1 111.1: Derived Functors
— 3.2 111.2: Cohomology of Sheaves

3.3 111.3: Cohomology of a Noetherian

1]
Affine Scheme
— 3.4 111.4: Cech Cohomology
3.5 l11.5: The Cohomology of Projective
1 ]
Space
— 3.6 111.6: Ext Groups and Sheaves
e 3.7 111.7: Serre Duality
o 3.8 111.8: Higher Direct Images of Sheaves
— 3.9 111.9: Flat Morphisms
— 3.10 11.10: Smooth Morphisms
P 3.11 111.11: The Theorem on Formal
Functions
— 3.12 111.12: The Semicontinuity Theorem

III: Cohomology



I IV: Curves %

4 ‘ IV: Curves *

Remark 4.0.1: Summary of major results:
* pa(X) =1=Px(0) = (=1)"(1 = x(Ox)).

— Note: Px(¥) is defined as the Hilbert polynomial of the homogeneous coordinate ring
S(Y), and then defined for graded S-modules M by setting ¢p(¢) = dimg M, and
showing 3!Py/(2) € Qlz] with par(¢) = Pas(€) for £>> 0.

o pg(X) = h(wx) = h°(L(Kx)).
e Remembering these:

h22 = h2(0?%) = h*(Kx)
W2 = RO = B (Kx) nt? = RO e
WP = HAP) : o 10— BO(07) - 1O R W= R A 20y
RO = B[O I T = h(Ox)
- .hU(O_\')

Link to Diagram

o For curves, p,(X) = py(X) = h'(Ox) by setting D := K¢ in RR.
— deg Ko =2g — 2.

e Dy~ Dy < Dy — Dy =(f) for f € K(X) rational, |D| = {D" ~ D}, and this bijects with
points of HULD)\{0}
G :

— Thus dim |D| = R%(L(D)) — 1 := ¢(D) — 1.

¢ X smooth = CI(X) = Pic(X) via D — L(D).
e WO(L(D)) >0 = deg(D) >0, and if deg. D = 0 then D ~ 0 and £(D) = Ox.
« RR:

— How to remember: note g = h'(Ox) = h'(L£(0)), and H*(Ox) = k so h°(Ox) = 1, thus
x(Ox) = h%(Ox) - h'(Ox) =1—-g=deg L(0) + 1 —g.
— For C C P",deg(C) =d and D = C N H a hyperplane section defining £(D) = Ox (1),

X(L£(D)) = deg(D) + (1 — g) = d+ (1 — pa(C))

IV: Curves * 15
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« A curve is rational iff isomorphic to P! iff g = 0.

e K ~ 0 on an elliptic curve since deg K =29 —2=0and degD =0 — D ~ 0.

» For X elliptic, Pic®(X) := { D € Div(X) | deg D =0} and [X| = |[Pic’(X)| via p — L(p—po)
for any fixed pg € X, inducing its group structure. (This is proved with RR.)

Remark 4.0.2: Comments from preface:

e The statement of Riemann-Roch is important; less so its proof.
e Representing curves:

— A branched covering of P!,

— More generally a branched covering of another curve,

— Nonsingular projective curves: admit embeddings into P3, maps to P? birationally such
that the image is at worst a nodal curve.

e The central result regarding representing curves: Hurwitz’s theorem which compares Kx, Ky
for a cover Y — X of curves.

e Curves of genus 1: elliptic curves.

o Later sections: the canonical embedding of a curve.

e 4.1 IV.1: Riemann-Roch ~

Definition 4.1.1 (Curves)
A curve over k = k is a scheme over Spec k which is

o Integral

e Dimension 1

e Proper over k

With regular local rings

In particular, a curve is smooth, complete, and necessary projective. A point on a curve is a
closed point.

Definition 4.1.2 (Arithmetic genus)
The arithmetic genus of a projective curve X is

pa(X) ==1— Px(0)
where Px(t) is the Hilbert polynomial of X.

Definition 4.1.3 (Geometric genus)
The geometric genus of a curve is

p+ g(X) = dimy, H(X;wx)

4.1 IV.1: Riemann-Roch 16
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where wyx is the canonical sheaf.

Exercise 4.1.4 (?)
Show that if X is a curve, there is a single well-defined genus

g9 =pa(X) = pa(X) = dimy H'(X; Ox).

Hint: see Ch. III Ex. 5.3, and use Serre duality
for pg.

Exercise 4.1.5 (7)
Show that for any g > 0 there exists a curve of genus g.

Hint: take a divisor of type (g + 1,2) on a smooth
quadric which is irreducible and smooth with p, =

g.

Definition 4.1.6 (Divisors on a curve)
Reviewing divisors:

o The divisor group: Div(X) = Z [X]

o Degrees: deg(> n;D;) :=> n;, and

o Linear equivalence: D) ~ Dy <= D; — D; = Div(f) for some f € k(X) a rational
function.

e D is effective if n; > 0 for all 3.

o |D| = {D’ € Div(X) ‘ D'~ D} is the complete linear system of D.

« |D| = PH(X;L(D))

« Dimensions of linear systems: ¢(D) := dim; H°(X; £(D)) and dim |D| := ¢(D) — 1.

o Relative differentials: Qx = Qx I 18 the sheaf of relative differentials on X.

— The technical definition: Q2x ¢ = A% Iy (Z/T?) where T is the sheaf of ideals defining
the locally closed subscheme im(Ax /Y) C XfpY X.

— On affine schemes: on the ring side, Qp A € BMod
equipped with a differential d : B — 2B/, defined as
(db ) be B>B / (d(by + by) = dby + dby, d(bybs) = d(b1)by + bid(by), da = 0Va € A) .

— On curves, Qx /y Ineasures the “difference” between Kx and Ky .

e Canonical sheaf: dim X = 1,Qx/k =~ wx.

e Canonical divisor: Kx 2is any divisor in the linear equivalence class corresponding to
wx

o D is special iff its index of speciality /(K — D) > 0, otherwise D is nonspecial.

Exercise 4.1.7 (7)
Show that Dy ~ Dy = deg(D;) = deg(D>).

4.1 IV.1: Riemann-Roch 17
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Exercise 4.1.8 (7)
Show that

|D| = PH°(X; L(D)),

so |D| has the structure of the closed points of some projective space.

Exercise 4.1.9 (Lemma 1.2)
Show that if D € Div(X) for X a curve and ¢(D) # 0, then deg(D) > 0.
Show that is £(D) # 0 and deg D = 0 then D ~ 0 and £(D) = Ox.

Theorem 4.1.10 (Riemann-Roch).
/(D) — (K — D) =deg(D) + (1 — g).

Exercise 4.1.11 (Ingredients for proof of RR)
Show the following;:

¢ The divisor K — D corresponds to wx ® £(D)" € Pic(X).
« HY(X;L(D))Y = H(X;wx ® L(D)Y).
o If X is any projective variety,

HY(X;0x) =k.

Exercise 4.1.12 (?)
Show that if X C P" is a curve with deg X = d and D = X N H is a hyperplane section, then
L(D) = Ox(1) and x(£(D)) = d+ 1 — p,.

Exercise 4.1.13 (7)

Show that if g(X) = g then deg Kx = 2g — 2.
Hint: set D = K and use {(K) = p;, = g and
£(0) = 1.

Remark 4.1.14: More definitions:

e X is rational iff birational to P!.
e X is elliptic if g = 1.

Exercise 4.1.15 (?)
Show that

4.1 IV.1: Riemann-Roch 18
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1. If deg D > 2g — 2 then D is nonspecial.

2. po(P) = 0.

3. A complete nonsingular curve is rational iff X = P! iff g(X) = 0.
4. If X is elliptic then K ~ 0

Hint: for (3) apply RR to D = p — q for points
p # q, and use deg(K — D) = —2 and deg(D) =
0 = D~0 = p~q. For (4), show
UK)=py=1.

Exercise 4.1.16 (?)
If X is elliptic and p € X, then there is a bijection

mp : X = Pic(X)
x+— L(x —p),
so Pic(X) € Grp.

Hint: show that if deg(D) = 0 then there is some
x € X such that D ~ x—p and apply RR to D +p.

e 4.2 1V.2: Hurwitz % ~

Remark 4.2.1: Summary of results:

e For curves, complete = projective.

e Riemann-Hurwitz: for f: X — Y finite separable,

Kx ~ ["Ky + R = deg(Kx) = deg(f*Ky) + deg(R) =

X(X) = deg(f) - x(Y) +deg R,  degR=) (e, —1).
peX

o deg f:=[K(X): K(Y)] for finite morphisms of curves.
¢ ey = vp(fft) where ¢ is uniformizer in Oy, and ft: Oy,fip) = Oxpfor f: X =Y.

— ep > 1 = ramification.
— Unramified everywhere implies etale (since automatically flat).
— p| ey, = wild ramification, otherwise tame.

o 3f*:Div(Y) — Div(X) where ¢ = >°,,, epp-

4.2 IV.2: Hurwitz x 19
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¢ Pullback commutes with forming line bundles:
fTL(D) = L(f*D)
where the LHS f* : Pic(Y') — Pic(X).
e The fundamental SES for relative differentials: if f: X — Y is finite separable,
[ Qy = Qx —» Qxy-
g—fé for ¢ a uniformizer at f(p) and w a uniformizer at p is defined by noting QY. f(p) =
(dt),Qxp = (du), and there is some g € Ox ;, such that f*dt = gdu; set g == (% :

e For finite separable morphisms of curves f: X — Y,

— supp {lx,;y = Ram(f) is the ramification locus, and {2x,y is torsion so Ram(f) is finite.

— length(Qxy ), = vp (%) for any p e X

— Tamely ramified == length({2x/y), = ¢, — 1, and wild ramification increases this
length. Recall that length is the largest size of chains of submodules.

e The ramification divisor:

R = Z length(Qx/y )pp-
peX

e Kx~ f"Ky+R
e P! can’t admit an unramified cover: for n > 1,
X(X)=nx(PY) +degR = x(X)= —2n+degR — x(X)=—-2n< -2,

which forces g(X) =0,n=1,X = P!, f =id.

« The Frobenius morphism on schemes is defined by taking f#: Ox — Ox to be the pth power
map; pullback yields a definition of X, the Frobenius twist of X.

— F: X, — X is finite, deg F' = p, and corresponds to K (X) — K(X)%

o If f: X — Y induces a purely inseparable extension K(X)/K(Y), then X =Y as schemes,
g(X) =g(Y), and f is a composition of Frobenii.

» Everywhere ramified extensions: f : Y, — Y, where ¢, = p for every ¢ € X. Induces
Qxy = Qx.

o deg R is always even.

4.2 IV.2: Hurwitz x 20
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o Finite implies proper: finite implies separated, of finite type, closed by “going up” and

universally closed by since finiteness is preserved under base change.
« P! no nontrivial etale covers.
o If f: X =Y then g(X) > g(Y).

— Thus IP! = Y finite = ¢(Y) = 0.

Remark 4.2.2: Preface:

o Degree: for a finite morphism of curves X ER Y, set det(f) := [k(X) : k(Y)], the degree of

the extension of function fields.

o Ramification indices e,: for p € X, let ¢ = f(p) and ¢t € O, a local coordinate. Pull back

to t € O, via f* and define e, = v,(t) using the valuation v, for the DVR O,.
« Ramified: ¢, > 1, and unramified if e, = 1.
« Branch points any ¢ = f(p) where f is ramified.
« Tame ramification: for ch(k) = p, tame if p t ep.
e Wild ramification: when p | ep.
e Pullback maps on divisor groups:

f*:Div(Y) — Div(X)
Qi—> Z BP[P].

f
P—q

— This commutes with taking line bundles (exercise), so induces a well-defined map f* :

Pic(X) — Pic(Y).
o f is separable if k(X)/k(Y) is a separable field extension.

Exercise 4.2.3 (7)
Misc:

e Show that if f is everywhere unramified then it is an étale morphism.
o Show that f*L(D) = L(f*D)

Exercise 4.2.4 (Prop 2.1)
Show that if X i> Y is a finite separable morphism of curves, there is a SES

f*QY = QX —» QX/Y'

Remark 4.2.5: Definitions:

o Derivatives: for f : X — Y, let t be a parameter at Q = f(P) and u at P.

Qvg = <dt)OQ and Ox p = (du)p, and g € Op such that f*dt = du so we write % :

Then

4.2 IV.2: Hurwitz x
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+ Ramification divisor: R =} pcx length(Sx,, )p[P] € Div(X)

Exercise 4.2.6 (Prop 2.2)

For X i> Y a finite separable morphism of curves,

a. Qx /v is a torsion sheaf on X with support equal to the ramification locus of f. Thus f
is ramified at finitely many points.

b. The stalks (Qx /Y) p are principal Op-modules of finite length equal to v, (%)
c.

length(Qx ., ) =ep, —1 [ is tamely ramified at P
en ‘
° > ep —1 fis wildly ramified at P.

It X L v is a finite separable morphism of curves, then
Kx ~ f*KY + R7

where R is the ramification divisor of f.

Theorem 4.2.8 (Hurwitz).

If X i> Y is a finite separable morphism of curves, then

29(X) — 2 = deg(f)(29(Y) — 2) + deg(R),

| Exercise 4.2.7 (Prop 2.3)

and if f has only tame ramification then deg(R) = Y pcx(ep — 1).

Remark 4.2.9 (proof of Hurwitz): Take degrees of the divisor equation:

deg(Kx) = deg(f" Ky + R)
= XTop(X) = deg(f*Ky) + deg(R)
= 29(X) — 2 = deg(f) deg(Ky) + deg(R)
= 2g(X) — 2 = deg(f)xTop(Y) + deg(R)
= 29(X) — 2 = deg(f)(2 ( ) — 2) + deg(R)
— 29(X) —2=deg(f)(29(Y)—2)+ > _ (ep —1)
PeX

Y

using tame ramification in the last step which implies length(Qx,,.)p = (e, — 1).

Remark 4.2.10: Consider the purely inseparable case.

o Frobenius morphism: for X € Sch where Op O Z/pZ for all P, define Frob : X — X by
F(|X|) = | X| on spaces and F*: Oy — Ox is f — fP. This is a morphism since F* induces
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a morphism on all local rings, which are all characteristic p.
o The k-linear Frobenius morphism: define X, to be X with the structure morphism F o,
so k ~ Ox, by pth powers and F' becomes a k-linear morphism F’ : X}, — X.
— Why this is necessary: F' as before is not a morphism in Sch;, and instead forms a

commuting square involving F : Spec k — Spec k and the structure maps X — Spec k.

Exercise 4.2.11 (?)
Find examples where

[ ngX S SCh/k, and
« X, % X € Schy.

Hint: consider X = Speck[t] for k perfect.

Exercise 4.2.12 (?)
Show that if X %5 YV is separable then deg(R) is always even.

Skipped some stuff around Example 2.4.2, I don’t nec-
essarily need characteristic p things right now.

Remark 4.2.13: Definitions:

« Etale covers: X i> Y is an étale cover if f is a finite étale morphism,, i.e. f is flat and
1

e Y is a trivial cover if X = [[,.;Y a finite disjoint union of copies of Y,

e Y is simply connected if there are no nontrivial étale covers.

Exercise 4.2.14 (?)

e Show that a connected regular curve is irreducible.
o Show that if f is etale then X is smooth over k.

e Show that if f is finite, X must be a curve.

e Show that if f is étale, then f must be separable.
o Show that 7{*(P!) = 0.

Hint: use Hurwitz and that when f is unramified,
R=0.

Exercise 4.2.15 (?)

e Show that the genus of a curve doesn’t change under purely inseparable extensions.
o Show that if f: X — Y is a finite morphism of curves then g(X) > g(Y).
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Exercise 4.2.16 (Liiroth)

Show that if L is a subfield of a purely transcendental extension k(t)/k where k = k, then L is

also purely transcendental.®
Hint: Assume [L : klyy = 1, so L = k(X) for
Y a curve and L C k(t) corresponds to a finite
morphism f : P — Y. Conclude g(Y) = 0 so
Y = P! and L = k(u) for some u.

9This is true over any field k in dimension 1, over k = k in dimension 2, and false in dimension 3 by the
existence of nonrational unirational threefolds.

— 4.3 1V.3: Embeddings in Projective Space * ~

Remark 4.3.1: A summary of major results:

o For D € Div(C) with g = ¢(C),

— D is ample iff deg D > 0.
— D is BPF iff deg D > 2g.
— D is very ample iff deg D > 2¢g + 1.

e Being very ample is equivalent to being a hyperplane section under a projective embedding.
 Divisors D € Div(P") are ample iff very ample iff deg D > 1.

— E.g. if E is elliptic then D is very ample if deg D > 3, and for hyperelliptic, very ample
if deg D > 5.

o If D is very ample then deg (X)) = deg D.

e Curves C' C P" for n > 4 can be projected away from a point p € X to get a closed immersion
into P™ for some m <mn — 1. So any curve is birational to a nodal curve in P2

« Genus of normalizations of nodal curves: g = 3(d — 1)(d — 2) — # {nodes}.

e Any curve embeds into P2, and maps into P? with at worst nodal singularities.

Remark 4.3.2: Main result: any curve can be embedded in P3, and is birational to a nodal curve
in P2. Some recollections:

o Very ample line bundles: £ € Pic(X) is very ample if £ = Ox(1) for some immersion of
f:X <PV,

o Ample: £ is ample when VF € Coh(X), the twist F ® L™ is globally generated for n > 0.

o (Very) ample divisors: D € Div(X) is (very) ample iff £(D) € Pic(X) is (very) ample.

o Linear systems: a linear system is any set S < |D| of effective divisors yielding a linear
subspace.

o Base points: P is a base point of S iff P € supp D for all D € S.

« Secant lines: the secant line of P,Q € X is the line in P? joining them.

« Tangent lines: at P € X, the unique line L C P passing through p such that Tp(L) =
Tp(X) C Tp(PV).

4.3 1V.3: Embeddings in Projective Space * 24
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e Nodes: a singularity of multiplicity 2.

— y? =23 + 22 is a node.
— y? =23 is a cusp.
— 9% = 2 is a tacnode.

e Multisecant: for X C P3, a line meeting X in 3 or more distinct points.
« A secant with coplanar tangent lines is a secant through P, ) whose tangent lines Lp, Lq
lie in a common plane, or equivalently Lp intersects L.

Exercise 4.3.3 (11.8.20.2)
Show that by Bertini’s theorem there are irreducible smooth curves of degree d in P? for any
d.

o If D is very ample, then |D| is basepoint free.

e If D is ample, nD ~ H a hyperplane section for a projective embedding for some n.

o If g(X) =0 then D is ample iff very ample iff deg D > 0.

o If D is very ample and corresponds to a closed immersion ¢ : X < P™ then deg¢(X) =
deg D.

o If XS is elliptic, any D with deg D = 3 is very ample and dim |D| = 2, and so can be
embedded into P? as a cubic curve.

o Show that if g(X) =1 then D is very ample iff deg D > 3.

o Show that if g(X) = 2 and deg D = 5 then D is very ample, so any genus 2 curve embeds
in P? as a curve of degree 5.

Exercise 4.3.5 (Prop 3.1: when a linear system yields a closed immersion into P)
Let D € Div(X) for X a curve and show

o |D] is basepoint free iff dim |D — P| = dim |D| — 1 for all points p € X.
o D is very ample iff dim |D — P — Q| = dim |D| — 2 for all points P,Q € X.

Hint: use the SES L(D — P) — L(D) — k(P)
where k(P) is the skyscraper sheaf at P.

Exercise 4.3.6 (Cor 3.2)
Let D € Div(X).

o If deg D > 2¢g(X) then |D| is basepoint free.
If deg D > 2g(X) + 1 then D is very ample.
e D is ample iff deg D > 0

e This bounds is not sharp.

Exercise 4.3.4 (7)
Show that
e L is ample iff L" is very ample for b > 0.
 |D| is basepoint free iff £(D) is globally generated.

4.3 1V.3: Embeddings in Projective Space * 25
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Hint: apply RR. For the bound, consider a plane
curve X of degree 4 and D = X.H.

Remark 4.3.7: Idea behind embedding in P3: embed into P™ and project away from a point in
the complement.

Exercise 4.3.8 (3.4, 3.5, 3.6)
Let X C PV bea curve and O € X, let ¢ : X — P"! be projection away from O. Then ¢ is
a closed immersion iff

e O is not on any secant line of X, and
e O is not on any tangent line of X.

Show that if N > 4 then there exists such a point O yielding a closed immersion into PV =1,
Conclude that any curve can be embedded into P3.
Hint: dim Sec(X) < 3 and dim Tan(X) < 2.

Proposition 4.3.9(3.7).
Let X CP3 O ¢ X, and ¢ : X — P2 be the projection from O. Then X -=» o(X) iff ¢(X)
is nodal iff the following hold:

e O is only on finitely many secants of X,

e O is on no tangents,

e O is on no multisecant,

e O is on no secant with coplanar tangent lines.

Skipped things around Prop 3.8. The hard part: show-
ing not every secant is a multisecant, and not every
secant has coplanar tangent lines. Skipped strange
curves.

Remark 4.3.10: Classifying all curves: any curve is birational to a nodal plane curve, so study the
family Fy, of plane curves of degree d and r nodes. The family F; of all plane curves is a linear
system of dimension

d(d+3)

dim | Fy| = 5

For any such curve X, consider its normalization v(X), then

d—1)(d—2
g(x) = ==
Thus for Fy, to be nonempty, one needs
0<r< (d,—l)z(d—2)'
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Both extremes can occur: r = 0 follows from Bertini, and r = (d_léﬁ by embedding P! — P¢
as a curve of degree d and projecting down to a nodal curve in P? of genus zero. Severi states and

Harris proves that for every r in this range Fg, is irreducible, nonempty, and dim Fg, = d(d; 5 .

— 4.4 1V.4: Elliptic Curves x ~

Remark 4.4.1: Curves F with g(E) = 1; we’ll assume ch k # 2 throughout. Outline:

e Define the j-invariant, classifies isomorphism classes of elliptic curves.
e Group structure on the curve.

o E=Jac(E).

¢ Results about elliptic functions over C.

o The Hasse invariant of E/F, in characteristic p.

¢ E(Q).

4.4.1 The j-invariant

Remark 4.4.2: The j-invariant:

o j(E) €k, so A}k is a coarse moduli space for elliptic curves over K.
o Defining j(E):

— Let pp € X, consider the linear system L := |2py].

— Nonspecial, so RR shows dim(L) = 1.

BPF, otherwise E is rational.

— Defines a morphism ¢y, : £ — P}k with deg ¢ = 2.

Up to change of coordinates, f(pg) = oc.

By Hurwitz, f is ramified at 4 branch points a, b, ¢, pg.

— Move a — 0,b — 1 by a Mobius transformation fixing oo, so f is branched over 0, 1, A, oo
where A € £\ {0,1}.

— Use A to define the invariant:

2 3
J(E) = G = 28 (W) -

e Theorem 4.1:

— j depends only on the curve E and not A.
~EBEEE — j(B) = j(F).

— Every element of k occurs as j(E) for some E.
— So this yields a bijection

{Elliptic curves over k} e~ - A}kz
E~ j(E).
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e Some facts that go into proving this:

— Vp,q € X 3o € Aut(X) such that 0 = 1,0(p) = ¢, for any r € X, one has r + o(r) ~
p+q.

— Aut(X) ~ X transitively.

— Any two degree two maps f1, fo : X — P! fit into a commuting square.

— Under S3 ~ A}k \ {0, 1}, the orbit of A is

SsA={A A s =1- A5 = (1= N = A1) s =2 -}

— Fixing p € X, there is a closed immersion X — P? whose image is y? = z(x — 1)(z — \)
where p + 0o = [0: 1: 0] and this A is either the \ from above or one of s7', s3°.
¢ Idea of proof: embed X < P2 by L = |3p|, use RR to compute h°(O(np)) = n so
R (O(6p)) = 6.
& So {1,z,y, z2, xy, y?, :c3} has a linear dependence where z3,y? have nonzero coeffi-
cients since they have poles at p.

¢ Rescale 22, y? to coefficient 1 to get
y2 +aixy + agy = 3+ a2x2 + a4 + ag.

— Do a change of variable to put in the desired form: complete the square on the LHS,
factor as y? = (z — a)(x — b)(x — ¢), send a — 0,b — 1 by a Mobius transformation.

e Note that one can project from p to the xz-axis to get a finite degree 2 morphism ramified at

O, 1, )\, oQ. Ve
Example 4.4.3(%): An elliptic curve that is smooth over every field of non-2 characteristic:
E vy =2z, A= —1, j(E)=20.3% =1728.
+ - & « !
Y S =its
2.
i K u 2 4 €
2
One that is smooth over every k with ch k # 3: the Fermat curve
E o’ 4y =23, A=+ck J(E)=0.
) (35 3(E) s
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Theorem 4.4.4(Orders of automorphism groups of elliptic curves).

f Aut(X,p) =

j
12 j

Remark 4.4.5(Proof idea): Idea: take the degree 2 morphism f : X — P! with f(p) = oo
branched over {0,1,\,0c}. Produce two elements in G: for o € G, find 7 € Aut(P!) so fo = 7f;
then either 7 # id, so {0, 7} C G, or 7 = id and either 0 = id or ¢ exchanges the sheets of f.

If 7 # id, it permutes {0, 1, A} and sends A — A~ 1, sicl, s%ﬂ from above. Cases:

1. j=1728 : If A = —1,1/2,2,chk # 3, then A coincides with one other element of S3.\, so
1G = 4.

2. j=0: If \ = —(3,—(3,chk # 3 then \ coincides with two elements in S3.\ so #G = 6.

3. j=0=1728 If A\ = —1,chk = 3 then S3.A = {\} and G = 12.

4.4.2 The group structure

Remark 4.4.6: The group structure:

« Fixing p, € E, the map p — L(p—po) induces a bijection E = Pic’(E), so the group structure
on F is the pullback along this with pp =id and p+q¢=71 <= p+q~1r+py € Div(E).

o Under the embedding of |3pg|, points p, g, are collinear iff p+ g+ r ~ 3pg, sop+q+r =20
in the group structure.

o E is a group variety, since p — —p and (p,q) — p + ¢ are morphisms. Thus there is a
morphism [n] : E — E, multiplication by n, which is a finite morphism of degree n? with
kernel ker[n] = C2 if (n,chk) = l.and ker[n] = C,,0 if n = chk, depending on the Hasse
invariant.

o If f: E1 — E5 is a morphism of curves with f(p1) = p2 then f induces a group morphism.

o End(F,pp) forms a ring under f +¢g=po(f xg)and f-g:= fog.

e The map n+— ([n] : E — E) defines a finite ring morphism Z — End(E, py) for n # 0.

R :=End(E,po)* = Aut(F), and if j = 0,1728 then R contains {£1} and is thus bigger than

Z.

Remark 4.4.7: The Jacobian: a variety that generalizes to make sense for any curve, a moduli
space of degree zero divisor classes.

o For X/k a curve and T' € Sch,, define

Pic® (X x T) = { F € Pic(X x T) ] deg Fly, =0Vt €T},  Pic(X/T) = Pic®(X x T)/p" Pie(T)
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where p: X x T'— T is the second projection. Regard this as families of sheaves of degree 0
on X parameterized by T.

o The Jacobian variety of a curve X: Jac(X) € Schﬁtk along with £ € Pic’(X/ Jac(X)) such
that for any T € Schﬁtk and any M € Pic®(X/T), 3 f : T — Jac(X) such that f*£ = M.
Thus J represents the functor Pic®(X/—).

o For E elliptic, E = Jac(FE).

— In general, |Jac(X)| = ’PiCO(X)’ on points, since points of Jac(X) are morphisms
Spec k — Jac(X), which correspond to elements in Pic®(X/k) = Pic®(X).

o Jac(X) € GrpSch /;, where e : Speck — Jac(X) corresponds to 0 € Pic®(X/k), p : Jac(X) —
Jac(X) is £ — L7 € Pic®(X/ Jac(X)), and p : Jac(X)* — Jac(X) is £ — piL @ piL €
Pic%(X/ Pic(X)*™).

o ToJac(X) & HY(X;Ox): giving an element of T,X is the same as a morphism T :=
Spec k[e]/e2 — X sending Speck — p. So TgJac(X), this means giving M € Pic®(X/T)
whose restriction to Pic’(X/k) is zero. Use the SES H'(X;Ox) < Pic X[¢] — Pic(X).

o Jac(X) is proper over k by the valuative criterion. Just show that an invertible sheaf M on
X x Spec K lifts unique to M on X x Spec R, but X x Spec R is regular, so apply I1.6.5.

e For any n there is a morphism
" X" = Jac(X)
(1, > pn) = LO pi — npo).

This is surjective for n > ¢(X) by RR since every divisor class of degree d > ¢ has an
effective representative. The fibers of ¢™ are all tuples (p1,--- ,pn) such that D =Y p; forms
a complete linear system.

— Most fibers are finite, so Jac(X) is irreducible of dimension g.
— Smoothness: dim TgJac(X) = dim H'(X;Ox) = g, so smooth at zero, and group
schemes are homogeneous so smooth everywhere.

4.4.3 Elliptic functions

Stopped at elliptic functions.

— 4.5 IV.5: The Canonical Embedding ~

" 4.6 IV.6: Classification of Curves in P? ~
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4.6 1V.6: Classification of Curves in P3
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5 ‘ V: Surfaces

— 5.1 V.1: Geometry on a Surface ~
" 5.2 V.2: Ruled Surfaces ~
" 5.3 V.3: Monoidal Transformations ~
— 5.4 V.4: The Cubic Surface in P3 ~
" 5.5 V.5: Birational Transformations ~
" 5.6 V.6: Classification of Surfaces ~

6 ‘ Toric Varieties

— 6.1 Summaries ~

6.1.1 Quick Criteria

Remark 6.1.1: Quick criteria:

o Normal <= Saturated: For affines, X = Spec C[S] where S C M is a saturated
semigroup. This is true for S = S, = 0¥ N M where o is any SCRPC.

o Complete/proper <= Full support: Xy is complete iff supp ¥ = Ngr.

e Smooth <= Lattice basis:

— For a cone o = Cone(S) is smooth iff det S = £1, the volume of the standard lattice
7",

{ Consequences of smoothness:

V: Surfaces 32
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& CDiv(X) = Div(X)
¢ Cl(X) = Pic(X)
— Smooth implies simplicial, so non-simplicial cones are singular.

— For p, the T-fixed point corresponding to o, T, X = H where H is a Hilbert basis for
Se.

« Simplicial <= Euclidean basis: For ¢ = Cone(S), ¢ is simplicial iff det(.S) # 0.

e Orbifold singularities <= Simplicial: X5, has at worst finite quotient singularities iff 3
is simplicial.

e Projectivity <= Admits a strictly upper convex support function: For h a

support function and Dy, its associated divisor, the linear system |Dj| defines an embedding
X(A) — PN iff h is strictly upper convex.

— Alternatively, Xy is projective iff ¥ arises as the normal fan of a polytope.

+ Globally generated/basepoint free <= Upper convex support function: O(D) is
globally generated iff ©p is upper convex.

e Ample <= Strictly upper convex support function:
D € CDivy(X) is ample iff ¢p is strictly upper convex.

e Very ample <= ample and semigroup generation: for ¥ complete, D is very ample iff
¥p is strictly upper convex and S, is generated by {u —u(o) ‘ ue PpbNM }, or equivalently

the semigroup {u —u |vePn M} is saturated in M.

— For P™: D =" a;D; is globally generated iff > a; > 0 and ample < > a; > 0.

— For F,,,: D =3 a;D; is globally generated iff ag + a4 > 0, a1 + a3 > may, Pic(F,) =
(D1, Dy4), and D = aDy 4 bDy is ample iff a,b > 0.

— For dim Xy, = 2 and X complete: ample <= very ample.

e Q-factorial <= simplicial: iff every cone is simplicial.
e« Fundamental groups:
— For U, affine, U, = A¥ x G"m*k so mU, =2 Z"k since G’,;;k ~ (SHyn=Fk,
— Can write m U, = N/N, where N, is the sublattice generated by o.
— By a Van Kampen argument, m; Xy, = N/N’ where N’ = <0 NN ‘ o€ E>:

m Xy = m UU, = colim m Uy = colim N/N, = N/ N, = N/N'.

o Euler characteristic: yXy = t3(n).
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— Why: H'(Uy;Z) = \' M(0) where M(c) := ¥ N M, so one gets a spectral sequence

EP = EB HY(U,,,;Z) = H""(Xx; Z), o =i, N--04,0; €X(n)
IP=ig<--<ip

~ Ef’q = @/\q M(U[p) = Hp+q(Xg; Z)
Ir

= xXyg = Z(fl)p‘m rankz, B = §3(n),
using that

0 dim7T<n

Z(—l)q ranky, M (1) = {

1 dim7=n.
e Higher homology:
— If all maximal cones of X are n-dimensional, H*(Xy; Z) = Pic(Xy).

» Global sections: for D € Divy(X), Pp its associated polyhedron,

HY(X;0x(D))= & Cx™
mePpnNM

¢ Betti numbers:

Por, = i(—l)ifk (;) 15 (n — i).

i=k

 Canonical bundles/divisors: wx,, = det Qy, , = O(Kx,) where Kx, = — >p; Di-
— For a smooth complete surface with Diz = —d;,
K*=Y Di+2d=-) di+2d=—(3d—12)+2d =12 —d.

o Degree = n!- (P) (for Xp projective)

Remark 6.1.2: Some common counterexamples:

o An ample divisor that is not very ample: P = %([0,0,0],[0,1,1],[1,0,1],[1,1,0]); then take
Dp. Xp is a double cover of P3 branched along the 4 boundary divisors.

e A Weil divisor that is not Cartier: 7777

e A complete variety that is not projective: 777
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6.1.2 Cones and Lattices

Remark 6.1.3:

o Characters: for groups G, a map x € Grp(G,C*). For G = T = (C*)", there is an
isomorphism

Z" = Grp(T, C*)
m = [ml)' te 7mn] — Xm - [t1>’ te 7tn] — Ht:nl
Generally set M := Grp(T, C*), the character lattice.
— M is a lattice, Mg = M ®z R is its associated Euclidean space.
o Cocharacters / one-parameter subgroups: for groups G, a map A € Grp(C*,G). For

G =T = C*, there is again an isomorphism

Z" — Grp(C*,T)
w=[ug, - up] = At [ ]

Define N := Grp(C*,T) the cocharacter lattice.
— N is a lattice, Nr .= N ®z R its associated euclidean space.

e There is a perfect pairing
(—, =) M xN—=Z

defined using the fact that if m € M,n € N then x™o\" € Grp(C*, C*) is of the form t + t¢,
so set (m, n) = L.

— Thus M = Grp(M,Z) and N = Grp(N, Z).
— How to recover the torus:
N ®z C* =T
u®t— \(t).

e A is a fan, a collection of strongly convex rational polyhedral cones:

— Cone: 0 € 0 and R>p0 C 0.

— Strongly convex: contains no nonzero subspace, i.e. no line through 0 € Nr. Equiva-
lently, dim oV = n.

— Rational: generated by {v;} C N, i.e. of the form Cone(S) for S C N.

¢ Dual cones:

UVIZ{UGM‘<’U,, U>ZOVUEMR}.
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— If 0¥ =i, H,, for m; C oV then 0¥ = Cone(my, - ,my).

« Hyperplanes and closed half-spaces:
Hm:z{ueNR ‘ (m, u)zO}QNR

Hg::{ueNR’(m, u)ZO}gNR.

e Face: 7 < ¢ is a face iff 7 is of the form 7 = H,,, N ¢ for some m € ¢V C MRg.
o Facet: codimension one faces, ¥(n — 1) where n = dim N.

o Ray: dimension 1 faces, X(1).

e The semigroup of a cone:

Sg::avﬂM:{ueMMu, U)ZOVUEJ}.

e The semigroup algebra of a semigroup:

C[S] = {Z csX’ ‘ cs € C, ey = Oa.e.} , X2 = e
seS

o Simplicial: the generators can be extended to an R-basis of Ng. E.g. not simplicial:

e Smooth: the minimal generators can be extended to a Z-basis of N.

6.1 Summaries
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— Checking T, X: m is decomposable in S, iff m = m; 4+ mo with m; € S,; the maximal
ideal at p corresponding to o ism, = { x™ ‘ m € SU}, and m,/ mg = { x™ ‘ m is indecomposable in S
This exactly corresponds to a Hilbert basis.

e Facet: face of codimension 1.
e Edge: face of dimension 1. Note that facets = edges in dim N = 2.

o Saturated: S is saturated if for all k € N\ {0} and allm e M, kme S = m e S. Any
SCRPC is saturated.

— E.g S ={(4,0),(3,1),(1,3),(0,4)} is not saturated since 2 - (2,2) = (4,4) € NS but
(2,2) &€ S.

o Normalization: in the affine case, write X = Spec C[S] with torus character lattice M = ZS,
take a finite generating set S’, and set o = Cone(S’)". Then Spec CleV N M| — X is the
normalization.

o Distinguished points: each strongly convex o ~~ v, € U, a unique point corresponding to
the semigroup morphism m — 1[(Jm € ¥ N M), which is T-fixed iff o is full-dimensional.

o Orbits: Orb(c) = T, and V(o) = clOrb(o).

e Orbit-Cone correspondence: there is a correspondence
{Cones o € ¥} = {T-orbits in X5}
o Orb(o) =T, = {’y 0S8, — C ) y(m) #0 < me€ UVﬂM} =~ Grp(c N M,C*),

where dim Orb(¢) = codimpg 0, and 7 < 0 = clOrb(7) D clOrb(o) and in fact clOrb(o) =
[1;<,clOrb(7).

o Star: define N; :=Z (r N N) and N(7)R := Ngr/(N;)r and 7 for the image of o under the

quotient map, then
Star(7) = {6 C N(T)r ’ o< 7‘} C N(T)r.
This is always a fan, and V(7) = Xgtar(r)-
o Star subdivision: for 0 = Cone(S) for S := {u1, - ,un}, set ug := > u; and take ¥'(0)
defined as the cones generated by subsets of {ug,u1,---,u,} not containing S. The star

subdivision of ¥ along o is ¥*(0) = (X \ {o}) U ¥ (o).

e Blowups: ¢ : X5+, — Xy is the blowup at .

6.1.3 Divisors

Remark 6.1.4:
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« (Weil) divisor: Div(X) = {¥n,V;

V; C X, codimV; = 1}.
— Ox(D): the (coherent) sheaf associated to a Weil divisor D.

+ Cartier divisor: CDiv(X) = H(X;K%/0%), the quotient of rational functions by regular
functions. For X normal, equivalently locally principal (Weil) divisors, so D ~ {(U;, fi)}
where D|;; = Div(f;).

— Q-Cartier divisor: A Q-divisor D = > n;D; with n; € Q is Q-Cartier when mD is

Cartier for some m € Zx>.
— Q-factorial: every prime divisor is Q-Cartier.

« Ray divisors: every p € 3(1) defines a divisor D, := V(p) := clOrb(p).
e Very Ample: £ which defines a morphism into PH?(X; L) = PV,

« Ample: L is basepoint free and some power L" is very ample.

— D is (very) ample iff Ox(D) is (very) ample, i.e. D is ample iff nD is very ample for
some n.

« Upper convex: f(ni +na) < f(n1) + f(na).
— Strictly upper convex: 01 # 02 = fo, # fo,-
o Linearly equivalent divisors: Dy ~ Dy <= D; — Dy = Div(f) for some f.
o Complete linear systems: |D| = {D’ € Div(X) ’ D'~ D}.
« Support function: ¢ : supp¥ — R where ¢|, is linear for each cone o.

— Integral with respect to N iff ¢(supp> N N) C Z. Defines a set of integral support
functions SF(X, N).

o The class group complement exact sequence: for Dy, ---, D, € Div(X) distinct,
Z" — Cl(X) — Cl(X \ UD;)
e] — [Dl]
o Ox(D) is the sheaf
U {f € KX)*(U) \ Div(f) + D|,; > 0 € CL(U)} .

Then D € CDiv(X) < Ox(D) € Pic(X).
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e The toric class group exact sequence:
M — DlvT( )—» ClI(X)

m — Div(y Zm up
p

where u, are minimal ray generators.

6.1.4 Polytopes

Remark 6.1.5:
e Supporting hyperplanes: the positive side of an affine hyperplane

Hu,b = {m € Mr ‘ (m, u> = b}
H:[,b:: {meMR ‘ (m, u) Zb}.

— If P is full dimensional and F < P is a facet, then FF = PN H

up,—ap fOr a unique pair
(uF,aF) € Nr x R.

« Polytope: the convex hull of a finite set S C Ngr or an intersection of half-spaces:

:{Zm\ Zszl} ﬂ b

veES

e Simplex dim P = d and there are exactly d + 1 vertices.
e Simple: dim P = d and every vertex is the intersection of exactly d facets.

e Simplicial: all facets are simplices.

— E.g. simple but not simplicial: the cube in R3, since each vertex meets 3 edges but a
square is not a simplex. -E.g. Simplicial but not simple: the octahedron in R?, since
each vertex meets 4 edges but each face is a triangle.

« Combinatorial equivalence: P; ~ P, iff there is a bijection P| — P, preserving intersec-
tions, inclusions, and dimensions of all faces.

e Polar dual: for P C Mg,

P° = {ueNR‘mw —IVmEP}

— Trick: for P C Mg with 0 € P,
P = {m € Mg ’ (m, up) > —ap, F € Facets(P)}

= P° = *({aF uF}) C NgR.
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E.g. write the square as {(m, +e;) > —1}, thenap = 1 forall F:

o Cone on a polytope: C(P) := Cone(P x {1}) C Mgr x R, the set of cones through all
proper faces of P.

e« Normal: (kPNM)+ (P NM)C (k+£¢)PNDM, or equivalently k- (PN M) = (kP)NM, or
equivalently (P N M) x {1} generates C(P) N (M x Z) as a semigroup.

— If P C My is a full-dimensional lattice polytope with dim P > 2, then kP is normal for
all k > dim P — 1.

Normal implies very ample.

P ~~ Lp € Pic(Xp)

PNM ~~ HO(XP;£p>.

e Reflexive: a polytope P with facet presentation
P = {m € Mg ‘ (m, pp) > —1VF € Facets(P)}.
Implies that [(P) N M = {0}, and P° = x({ur ‘ F € Facets(P)}).

o Polyhedron of a divisor Pp: write D =3 a,D,, for any m € M, Div(x"™) +D >0 =
<ma p> > ap, — <ma P> > —ap, SO set

Pp = {me Mg ‘ (m, p)y >a,Vpe E(l)}.

» Divisor of a polytope: Dp = parDp where P = {m ‘ (m, up) > —aF}.
— Dp is always the pullback of Opn~ (1) along the embedding.

e Very ample polytopes: for every vertex v, the semigroup {m’ —v ’ m' e PONM } is satu-
rated in M.

— Gives an embedding X < PY where N = (PN M) — 1.
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o The toric variety of a polytope: if PN M = {my,--- ,ms} and P is full dimensional very
ample, then writing T for the torus of N,

Xp = clim ey, o: Ty — P71
te X)X ()

— Vertices m; correspond to Uy, for o; = Cone(P N M —m;)Y:

Vs Va

v, Vs

e Smooth: P is smooth iff for all vertices v € P, {wE —v ‘ F is an edge containing v} can be
extended to a Z-basis of M, where wg is the first lattice point on F.

6.1.5 Singularities and Classification

Remark 6.1.6:

o Gorenstein: X normal where Kx € CDiv(X) is Cartier.

e Normal: all local rings are integrally closed domains.

e Complete: proper over k. E.g. for varieties, just universally closed.
o Factorial: all local rings are UFDs.

e Fano: —Kx is ample.

e del Pezzo: a smooth Fano surface.

Remark 6.1.7: Classification of smooth complete toric varieties:

o dim> = 2,¢3(1) = 3: without loss of generality p; = e1, p2 = e2. Then ps = ae; + bey with
a,b < 0 to ensure supp ¥ = R?, and determinants for |a| = |b| = 1, so (—1,1).
o dimX = 2,4%(1) = 4: without loss of generality p; = e1,p2 = ea. Then determinant
-1 a

b1 =1l—ab=41 = ab=0,2,

conditions for pg = (—1,b) and py = (a, —1), and det

so (a,b) = (2,1),(1,2),(-2,-1),(—1,-2).
o dimX = 2,#%(1) = d, smooth: Bl, .. ,, X for X = P? or F,, for some a and p; torus fixed
points.
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6.1.6 Examples

Question 6.1.8
Things you can figure out for every example:

e Given A, for o € A,

— What is oV?

— Generators for S,?

— Describe U, and X (A).

— What are the transition functions for U,, — U,, when o) Noy = 7 intersect in a common
face?

e What are the T-invariant points?

— What are the T-invariant divisors D),?
— What are all of the T-orbit closures of various dimensions?

o Is X(A) smooth?

— Which cones o € A are smooth?
— What is the canonical resolution of singularities?
— What is the tangent space at each T-invariant point?

o What is the associated polytope PA? What is its polar dual PR?
o What are the intersection numbers D, - D)7

— What are the self-intersection numbers D,%i?
e What is DIVT(X)7 CDIVT(X)?
— Which divisors are ample? Very ample? Globally generated?

o What is C1(X)? Pic(X)?
e What is KX?

— Is Kx ample?

o Is X(A) projective?
o What is H(X(A); O(D)) for D € Divy(X)?
o What is the Poincaré polynomial of X (A)? (I.e. what are the Betti numbers?)

Example 6.1.9 (of varieties): Some useful explicit varieties:

V(x3 — y?) with torus T = {[t2,t3] ‘ te CX}.
o V(zy — zw) with torus T = {[a,b, c,abc™] ‘ a,b,c,d € CX}.

e V(zz—1y?), note V(z,y) € Div(X) \ CDiv(X).
im([z : y] = [23: 2%y : 2y? : y3]) the twisted cubic. Correspondstoo” = {(3,0),(2,1),(1,2),(0,3)}.
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o 1 Yo

e The rational normal scroll: V' <2 X 2 minors of l
rr T2 Y1

]) is the image of [s, t] —

[1:8282:t28t].
o The Segre variety: Spec C[z1y1,T1Y2, " , T1Yn, T2Y1, " " * s TmY1,s ** * Tmln)-

Example 6.1.10(of fans):
o (C*)™ Take A = {o¢p =N(0)} C N with dim N = n yields S,, = N(£e;", -+ ,+e,’) = M
for so X(A) = Spec Clzf!, - 2] = (G,,)™
o C": Take A = Cone(og = N{ey,--- ,e,)) yields the positive orthant S,, = N{e1", -+ ,e,")
M, so X(A) =SpecClzy,- - ,z,] = A™
¢ The quadric cone: A = Cone(o1 = N (eg,2e1 — e3)) yields Sy, = N{e1V,e1V +e2”,e1V + 2e2")
so X (A) = Spec C[z, zy, ry?] = Spec C[u, v, w]/(v? — uw):

N

o P Take A = {R>(,0,R<o} and glue along overlaps to get X(A) = P! with gluing maps

3:»—)1‘_1:
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- - P

clx 1] o ¢x,x 1] & cx]

C &« c* o C

e Bl; C?: Take g = N(eg,e1 + ) and 01 = N (e + e2,e1) to get Uy, = Spec C[z,z~1y] and
Uy, = Spec C[y, zy~], both copies of C2:

Why this is a blowup of C?: write Bl; C? = V(at; — ytg) C C? x P! for P! = {[tg : t1]}. Take
the open cover U; = D(t;) & C2, where coordinates on Uy are z,t1/tg = 2~ 'y and on U; are
y,to/t1 = xy~! and glue.

o P2 take A = Cone(ey, e, —€1 — €2):

This has dual cone:
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Each U,, = C? with coordinates (z,y), (x71, 2 1y), (y =}, 2y~!) respectively for U;. Glue to
obtain x = t1 /tg,y = t2/to.

o F, the Hirzebruch surface: take Cone(ej, —eg2, —e1, —e1 + aez) to get

— Uy, = Spec C|z, y],
Uy, = Spec C[z,y~ 1],
Uyy = Spec Clz™!, 27 %],
Uy, = Spec C[z~1, 2%],

which patch in the following way:

U,,4 (x'l,xay} —r (3x,y) U,_,l
) 1
Ucr3 (x"1,x 2y 1) — (x,y° 1) Us,

Project to y = 0 to get the patching = + 7!, so a copy of P!. Patching in the fiber direction,
e.g. Uy, and U,,, gives a copy of C x PL. Thus this is a bundle P! — & — P1.

e C x P!: todo.
o P! x P! todo.

e C%x P’ todo.

6.1 Summaries 45



e P? x PP todo.

Example 6.1.11 (of polytopes): e« Hirzebruch surfaces:

25

15 -1

—osfVv3

« (P2,0(1)): take P = %(0,e1,€2), so Xp = cl®p where
®p: (C*)? — P?
(s,t) — [1:s:t],
which is the identity embedding corresponding to O(1) on P2.
— 2P yields
Dyp : (C*)2 = PP
(5,t) > [1:s:t:8%:st:t%,

the Veronese embedding corresponding to O(2) on P2.
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I: Definitions and Examples

Example 6.1.12(Projective spaces): Some useful facts about P™:

e The torus embedding is

(C)"—=P"
[a1, -+ yan] = [1iar: - ay).
o The torus action is
cCH"~P"
[t1, s tn).Jzo i@yt ot mp] = [mo  t1zy - 2 by e

.

i=1

Ezample TV.3.2. The fan of P2 has rays generate
is

Cl(P?) = coker | Z* —
Example TV.3.3. The fan of a Hirzebruch surface I
Its class group is

Cl(Hirzebruch surface) = coker

FExample TV.3.4. The fan with rays generated hy

pt 29N, pa_ g5 class group is coker [;’i _11] —
Example 6.1.13 (of class groups and Picard groups):

Erample IV.3.11. Consider Xy = Cone(P' x P') = V(zz — yw) C C*, where ¥ has rays
(e1,€9,€1 + €3,e3 + e3). Then

100

010

. [LO L]
Cl(Xy) = coker | Z2° =211 20 | = Z
is generated by D, for any ray p. However, Pic(Xx) = 0; this is an exercise in the book.
y

7 ‘ I: Definitions and Examples

e 7.1 1.1: Introduction ~
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Remark 7.1.1: Machinery used to study varieties:

e Various cohomology theories

e Resolutions of singularities

e Intersection theory and cycles

e Riemann-Roch theorems

e Vanishing theorems

o Linear systems (via line bundles and projective embeddings)

Varieties that arise as examples

e Grassmannians

e Flag varieties

e Veronese embeddings

e Scrolls

e Quadrics

o Cubic surfaces

o Toric varieties (of course)

e Symmetric varieties and their compactifications

Misc notes:

e Toric varieties are always rational

Remark 7.1.2:

e Toric varieties: normal varieties X with T'— X contained as a dense open subset where the
torus action T' x T' — T extends to T' x X — X.

e Any product of copies of A™ P™ are toric.

« S, is a finitely-generated semigroup, so C[S,] € AlgC'™ corresponds to an affine variety
U, = Spec C[S,].

o If 7 < o is a face then there is a map of affine varieties U, — U, where U, = D(u;) is a
principal open subset given by the function ., picked such that 7 = o Nuz, so u, corresponds
to the orthogonal normal vector for the wall 7.

o These glue to a variety X (A).

e Smaller cones correspond to smaller open subsets.

e The geometry in N is nicer than that in M, usually.

« Rays p correspond to curves D,,.

Exercise 7.1.3 (7)

o Show F, — P! is isomorphic to P(O(a) ® O(1)).
 Let 7 be the ray through ey in F, and show D? = —a.
o Show that the normal bundle to D, < F, is O(—a).
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Singularities and Compactness

— 7.2 1.2: Convex Polyhedral Cones ~
Remark 7.2.1:
« Convex polyhedral cones: generated by vectors o = R>¢ (v1,- -+ ,v,). Can take minimal

vectors along these rays, say p;.

o dimo = dimg Ro = dimg (-0 + o)

e (0v)Y = o, which follows from a general theorem: for o a convex polyhedral cone and v ¢ o,
there is some support vector u, € o" such that (u, v) < 0. Le. v is on the negative side of
some hyperplane defined in oV.

e Faces are again convex polyhedral cones, faces are closed under intersections and taking
further faces.

o If o spans V and 7 is a facet, there is a unique u, € ¢V such that 7 = o N ui
equation for the hyperplane H, spanned by 7.

o If o spans V and o # V, then 0 = N, ea H, the intersection of positive half-spaces.

; this defines an

— An alternative presentation: picking u,--- ,u; generators of o, one has o = {v eN ’ (uy, vy >0,--
o If 7 < o then 0¥ N7¥ < ¢V and dim7 = codim(c¥ N 7V), so the faces of 0,0 biject
contravariantly.
o If 7 =0Nut then S; =S, + N (—u,). s

8 ‘ Singularities and Compactness

__ 8.1 2.1 ~

Remark 8.1.1: e Any cone o € ¥ has a distinguished point x, corresponding to Hom(S,, C)
where u — X, cqL-

— Note S, =0V N M.
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o Define A, := C[S,].
e Finding singular points:

— Easy case: ¢ spans NR so o= = 0; consider m € mSpec A, be the maximal ideal at
Ty, then m = <X u € SU> and m? = <X“ u € Sy \ {0} + S5\ {0}>, so T, VU, =

m/m? = {X“ u & Sy \ {0} + S5\ {0}}, i.e. “primitive” elements v which are not the
sums of two other vectors in S, \ {0}.

— Nonsingular implies dim U, = n, so ¢" has < n edges since each minimal ray generator
yields a primitive u above. Also implies minimal edge generators must generate S, thus
must be a basis for M, so o must be a basis for NV and U, = A™.

u

Characterization of smoothness: U, is smooth iff ¢ is generated by a subset of a lattice
basis for N, in which case U, = AF x Gk,

All toric varieties are normal since each A, is integrally closed.

— If o = (v1, -+ ,v,) then ¢V = N_; ;¥ where 7; is the ray along v;. Thus 4, = NA,,,
each of which is isomorphic to C[zy, xéﬂ, S ,xffl which is integrally closed.

All toric varieties are Cohen-Macaulay: each local ring R has depth n, i.e. contains a regular
sequence of length n = dim R.

All vector bundles on affine toric varieties are trivial, equivalently all projective modules over
A, are free.

= 8.2 2.2 ~

Remark 8.2.1: e An example: ¥ = Cone(me; — ea,e3). Then A, = Clz, zy, zy?,--- ,2y™] =
Clu™u™ Yy, .-+ juv™ ! v™] and U, is the cone over the rational normal curve of degree m.

— Note A, = Clu, v]*™ is the ring of invariants under the diagonal action (.[u, v] = [Cu, (v].

o If ¥ is simplicial, then Xy is at worst an orbifold.

e 8.3 2.3 ~o

Remark 8.3.1: o HompigGrp(Gm, Gm) = Z using n — (2 — 2").

e Cocharacters:
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— Pick a basis for N to get Hom(G,,,Ty) = Hom(Z, N) = N, then every cocharacter
A € Hom(Gy,, Ty) is given by a unique v € N, so denote it A\,. Then \,(2) € Ty =
Hom(M, G,,) for any z € C*, so

weM = M(2)(u) = x*(\(2)) = 2% V.

o Characters: x € Hom(7,,G,,) = Hom(N,Z) = M is given by a unique u € M and can be
identified with “ € C[M] = H*(Ty, OF ).

o lim, 0 \y(2) = lim,—o [2™, -+ ,2™] € U, <= m; > 0 for all i, and if U, = AF x Gk,
m; = 0 for ¢ > k. This happens iff v € o, and the limit is [d1, - ,d,] where §; =1 <= m; =0

and 9; =0 < m,; > 0; each of which is a distinguished point z, for some face 7 of o.

o Summary: v € |¥| and v € 7° then lim,_,0 A, (2) = =, and the limit does not exist for v ¢ |X|.

el 8.4 2.4 ~

Remark 8.4.1: o Recall X is compact in the Euclidean topology iff it is complete/proper in
the Zariski topology, i.e. the map to a point is proper.

o Xy is compact iff |X| = Ng, i.e. ¥ is complete.

e Any morphism of lattices ¢ : N — N’ inducing a map of fans ¥ — ¥’ defines a morphism
Xy — Xy which is proper iff p=(|X']) = |%|. Thus Xy, is compact iff ¢ : N — 0 is a proper

morphism.
o Blowing up at z,: take a basis {v;}, set v9 = > v;, and replace o by all subsets of
{vo,v1, -+ ,v,} not containing {vy,--- ,v,}.
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