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1 I: Varieties

Remark 1.0.1: Some useful basic properties:

• Properties of V :

– ∩i∈IV (ai) = V (
∑

i∈I ai).
♢ E.g. V (x) ∩ V (y) = V (⟨x⟩ + ⟨y⟩) = V (x, y) = {0}, the origin.

– ∪i≤nV (ai) = V
(∏

i≤n ai

)
.

♢ E.g. V (x) ∪ V (y) = V (⟨x⟩ ⟨y⟩) = V (xy), the union of coordinate axes.
– V (a)c = ∪f∈aD(f)
– V (a1) ⊆ V (a2) ⇐⇒ √

a1 ⊇ √
a2.

• Properties of I:

– I(V (a)) =
√
a and V (I(Y )) = clAn(Y ). The containment correspondence is contravariant

in both directions.
– I(∪iYi) = ∩iI(Yi).

• If F is a sheaf taking values in subsets of a giant ambient set, then F (∪Ui) = ∩F (Ui). For
An/C, take C(x1, · · · , xn), the field of rational functions, to be the ambient set.

• Distinguished open D(f) :=
{
p ∈ X

∣∣∣ f(p) ̸= 0
}

:

– OX(D(f)) = A(X)
[

1
f

]
=
{

g
fk

∣∣∣ g ∈ A(X), k ≥ 0
}

, and taking f = 1 shows OX(X) =
A(X), i.e. global regular functions are polynomial.

– Generally D(fg) = D(f) ∩D(g)
– For affines:

OSpec R(D(f)) = R
[

1
f

]
.

– For Cn,

OCn(D(f)) = k[x1, · · · , xn][1/f] =⇒ OCn(V (a)c) = ∩f∈aOCn(D(f)).

E 1.1 I.1: Affine Varieties ⋆ e

Remark 1.1.1: Summary:

• An
/k =

{
[a1, · · · , an]

∣∣∣ ai ∈ k
}

, and elements f ∈ A := k[x1, · · · , xn] are functions on it.

• Z(f) :=
{
p ∈ An

∣∣∣ f(p) = 0
}

, and for any T ⊆ A we set Z(T ) := ∩f∈TZ(f).

– Note that Z(T ) = Z(⟨T ⟩A) = Z(⟨f1, · · · , fr⟩) for some generators fi, using that A is a
Noetherian ring. So every Z(T ) is the set of common zeros of finitely many polynomials,
i.e. the intersection of finitely many hypersurfaces.

I: Varieties 4



1 I: Varieties

• Algebraic: Y ⊆ An is algebraic iff Y = Z(T ) for some T ⊆ A.
• The Zariski topology is generated by open sets of the form Z(T )c.
• A1 is a non-Hausdorff space with the cofinite topology.
• Irreducible: Y is reducible iff Y = Y1 ∪ Y2 with Y1, Y2 proper subsets of Y which are closed

in Y .

– Nonempty open subsets of irreducible spaces are both irreducible and dense.
– If Y ⊆ X is irreducible then clX(Y ) ⊆ X is again irreducible.

• Affine (algebraic) varieties: irreducible closed subsets of An.
• Quasi-affine varieties: open subsets of affine varieties.
• The ideal of a subset: I(Y ) :=

{
f ∈ A

∣∣∣ f(p) = 0 ∀p ∈ Y
}

.
• Nullstellensatz: if k = k, a ∈ Id(k[x1, · · · , xn]), and f ∈ k[x1, · · · , xn] with f(p) = 0 for all
p ∈ V (a), then f r ∈ a for some r > 0, so f ∈

√
a. Thus there is a contravariant correspondence

between radical ideals of k[x1, · · · , xn] and algebraic sets in An
/k.

• Irreducibility criterion: Y is irreducible iff I(Y ) ∈ Spec k[x1, · · · , xn] (i.e. it is prime).
• Affine curves: if f ∈ k[x, y]irr then ⟨f⟩ ∈ Spec k[x, y] (since this is a UFD) so Z(f) is

irreducible and defines an affine curve of degree d = deg(f).
• Affine surfaces: Z(f) for f ∈ k[x1, · · · , xn]irr defines a surface.
• Coordinate rings: A(Y ) := k[x1, · · · , xn]/I(Y ).
• Noetherian spaces: X ∈ Top is Noetherian iff the DCC on closed subsets holds.
• Unique decomposition into irreducible components: if X ∈ Top is Noetherian then

every closed nonempty Y ⊆ X is of the form Y = ∪r
i=1Yi with Yi a uniquely determined closed

irreducible with Yi ̸⊆ Yj for i ̸= j, the irreducible components of Y .
• Dimension: for X ∈ Top, the dimension is dimX := sup

{
n
∣∣∣ ∃Z0 ⊂ Z1 ⊂ · · · ⊂ Zn

}
with

Zi distinct irreducible closed subsets of X. Note that the dimension is the number of “links”
here, not the number of subsets in the chain.

• Height: for p ∈ SpecA define ht(p) := sup
{
n
∣∣∣ ∃p0 ⊂ p1 ⊂ · · · ⊂ pn = p

}
with pi ∈ SpecA

distinct prime ideals.
• Krull dimension: define krulldimA := supp∈Spec A ht(p), the supremum of heights of prime

ideals.

Exercise 1.1.2 (The Zariski topology)
Show that the class of algebraic sets form the closed sets of a topology, i.e. they are closed
under finite unions, arbitrary intersections, etc.

Exercise 1.1.3 (The affine line)

• Show that A1
/k has the cofinite topology when k = k: the closed (algebraic) sets are finite

sets and the whole space, so the opens are empty or complements of finite sets.a
• Show that this topology is not Hausdorff.
• Show that A1 is irreducible without using the Nullstellensatz.
• Show that An is irreducible.
• Show that maximal ideals m ∈ mSpec k[x1, · · · , xn] correspond to minimal irreducible

closed subsets Y ⊆ An, which must be points.
• Show that mSpec k[x1, · · · , xn] =

{
⟨x1 − a1, · · · , xn − an⟩

∣∣∣ a1, · · · , an ∈ k
}

for k = k,

1.1 I.1: Affine Varieties ⋆ 5



1 I: Varieties

and that this fails for k ̸= k.
• Show that An is Noetherian.
• Show dim A1 = 1.
• Show dim An = n.

aHint: k[x] is a PID and factor any f(x) into linear factors using that k = k to write Z(a) = Z(f) = {a1, · · · , ak}
for some k.

Exercise 1.1.4 (Commutative algebra)

• Show that if Y is affine then A(Y ) is an integral domain and in kAlgfg.
• Show that every B ∈ kAlgfg ∩ Domain is of the form B = A(Y ) for some Y ∈ AffVar/k.
• Show that if Y is an affine algebraic set then dimY = krulldimA(Y ).

Theorem 1.1.5(Results from commutative algebra).

• If k ∈ Field, B ∈ kAlgfg ∩ Domain,

– krulldimB = [K(B) : B]tr is the transcendence degree of the quotient field of B
over B.

– If p ∈ SpecB then ht p + krulldim(B/p) = krulldimB.

• Krull’s Hauptidealsatz:

– If A ∈ CRingNoeth and f ∈ A\A× is not a zero divisor, then every minimal p ∈ SpecA
with p ∋ f has height 1.

• If A ∈ CRingNoeth ∩ Domain, then A is a UFD iff every p ∈ Spec(A) with ht(p) = 1 is
principal.

Exercise 1.1.6 (1.10)
Show that if Y is quasi-affine then

dimY = dim clAnY.

Exercise 1.1.7 (1.13)
Show that if Y ⊆ An then codimAn(Y ) = 1 ⇐⇒ Y = Z(f) for a single nonconstant
f ∈ k[x1, · · · , xn]irr.

Exercise 1.1.8 (?)
Show that if p ∈ Spec(A) and ht(p) = 2 then p can not necessarily be generated by two
elements.

E 1.2 I.2: Projective Varieties ⋆ e
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Remark 1.2.1:
• Projective space:

{
a := [a0, · · · , an]

∣∣∣ ai ∈ k
}
/ ∼ where a ∼ λa for all λ ∈ k \ {0}, i.e. lines

in An+1 passing through 0.

• Graded rings: a ring S with a decomposition S = ⊕d≥0Sd with each Sd ∈ AbGrp and
SdSe ⊆ Sd+e; elements of Sd are homogeneous of degree d and any element in S is a finite
sum of homogeneous elements of various degrees.

• Homogeneous polynomials: f is homogeneous of degree d if f(λx0, · · · , λxn) = λdf(x0, · · · , xn).

• Homogeneous ideals: a ⊆ S is homogeneous when it’s of the form a =
⊕

d≥0(a ∩ Sd).

– a is homogeneous iff generated by homogeneous elements.
– The class of homogeneous ideals is closed under sums, products, intersections, and

radicals.
– Primality of homogeneous ideals can be tested on homogeneous elements, i.e. it STS
fg ∈ a =⇒ f, g ∈ a for f, g homogeneous.

• k[x1, · · · , xn] =
⊕

d≥0 k[x1, · · · , xn]d where the degree d part is generated by monomials of
total weight d.

– E.g.

k[x1, · · · , xn]1 = ⟨x1, x2, · · · , xn⟩

k[x1, · · · , xn]2 =
〈
x2

1, x1x
2, x1x3, · · · , x2

2, x2x3, x2x4, · · · , x2
n

〉
.

– Useful fact: by stars and bars, rankk k[x1, · · · , xn]d =
(d+n

n

)
. E.g. for (d, n) = (3, 2),

1.2 I.2: Projective Varieties ⋆ 7
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• Arbitrary polynomials f ∈ k[x0, · · · , xn] do not define functions on Pn because of non-
uniqueness of coordinates due to scaling, but homogeneous polynomials f being zero or not
is well-defined and there is a function

evf : Pn → {0, 1}

p 7→
{

0 f(p) = 0
1 f(p) ̸= 0.

.

So Z(f) :=
{
p ∈ Pn

∣∣∣ f(p) = 0
}

makes sense.

• Projective algebraic varieties: Y is projective iff it is an irreducible algebraic set in Pn.
Open subsets of Pn are quasi-projective varieties.

• Homogeneous ideals of varieties:

I(Y ) :=
{
f ∈ k[x0, · · · , xn]homog

∣∣∣ f(p) = 0 ∀p ∈ Y
}
.

• Homogeneous coordinate rings:

S(Y ) := k[x0, · · · , xn]/I(Y ).

• Z(f) for f a linear homogeneous polynomial defines a hyperplane.

Exercise 1.2.2 (Cor. 2.3)
Show Pn admits an open covering by copies of An by explicitly constructing open sets Ui and
well-defined homeomorphisms φi : Ui → An.

E 1.3 I.3: Morphisms e

E 1.4 I.4: Rational Maps e

E 1.5 I.5: Nonsingular Varieties e

E 1.6 I.6: Nonsingular Curves e

E 1.7 I.7: Intersections in Projective Space e

1.3 I.3: Morphisms 8
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2 II: Schemes

Note: there are many, many important notions tucked
away in the exercises in this section.

E 2.1 II.1: Sheaves ⋆ e

Remark 2.1.1:
• Presheaves F of abelian groups: contravariant functors F ∈ Fun(Open(X),AbGrp).

– Assigns every open U ⊆ X some F (U) ∈ AbGrp
– For ιV U : V ⊆ U , restriction morphisms φUV : F (U) → F (V ).
– F (∅) = 0, so F (∅↓) = 0↑.
– φUU = idF (U)
– W ⊆ V ⊆ U =⇒ φUW = φV W ◦ φUV .

• Sections: elements s ∈ F (U) are sections of F over U . Also notation Γ(U ;F ) and H0(U ;F ),
and the restrictions are written s|V := φUV (s) for s ∈ F (U).

• Sheaves: presheaves F which are completely determined by local data. Additional require-
ments on open covers V ⇒ U :

– If s ∈ F (U) with s|Vi
= 0 for all i then s ≡ 0 ∈ F (U).

– Given si ∈ F (Vi) where si|Vij
= sj |Vij

∈ F (Vij) then ∃s ∈ F (U) such that s|Vi
= si for

each i, which is unique by the previous condition.

• Constant sheaf : for A ∈ AbGrp, define the constant sheaf

A(U) := Top(U,Adisc).

• Stalks: Fp := colim−−−−−→U∋p F (U) along the system of restriction maps.

– These are represented by pairs (U, s) with U ∋ p an open neighborhood and s ∈ F (U),
modulo (U, s) ∼ (V, t) when ∃W ⊆ U ∩ V with s|w = t|w.

• Germs: a germ of a section of F at p is an elements of the stalk Fp.
• Morphisms of presheaves: natural transformations η ∈ MorFun(F,G), i.e. for every U, V ,

components ηU , ηV fitting into a diagram

Open(X) AbGrp

U F (U) G(U)

V F (V ) G(V )ηV

ηU

ResF (U,V ) ResG(U,V )
F,G

II: Schemes 9



2 II: Schemes

Link to Diagram

• A morphism of sheaves is exactly a morphism of the underlying presheaves.

• Morphisms of sheaves η : F → G induce morphisms of rings on the stalks ηp : Fp → Gp.

• Morphisms of sheaves are isomorphisms iff isomorphisms on all stalks, see exercise below.

• Kernels, cokernels, images: for φ : F → G, sheafify the assignments to kernels/cokernel-
s/images on open sets.

• Sheafification: for any F ∈ Sh
pre

(X), there is a unique F+ ∈ Sh(X) and a morphism θ : F →
F+ of presheaves such that any sheaf presheaf morphism F → G factors as F → F+ → G.

– The construction: F+(U) = Top(U,
∐

p∈UFp) are all functions s into the union of stalks,
subject to s(p) ∈ Fp for all p ∈ U and for each p ∈ U , there is a neighborhood V ⊇ U ∋ p
and t ∈ F (V ) such that for all q ∈ V , the germ tq is equal to s(q).

– Note that the stalks are the same: (F+)p = Fp, and if F is already a sheaf then θ is an
isomorphism.

• Subsheaves: F ′ ≤ F iff F ′(U) ≤ F (U) is a subgroup for every U and the restrictions on F ′

are induced by restrictions from F .

– If F ′ ≤ F then F ′
p ≤ Fp.

– Injectivity: φ : F → G is injective iff the sheaf kernel kerφ = 0 as a subsheaf of F .
♢ φ is injective iff injective on all sections.

– imφ ≤ G is a subsheaf.
– Surjectivity: φ : F → G is surjective iff imφ = G as a subsheaf.

• Exactness: a sequence of sheaves (Fi, φi : Fi → Fi+1) is exact iff kerφi = imφi−1 as
subsheaves of Fi.

– φ : F → G is injective iff 0 → F
φ−→ G is exact.

– φ : F → G is surjective iff F
φ−→ G → 0 is exact.

– Sequences of sheaves are exact iff exact on stalks.

• Quotient sheaves: F/F ′ is the sheafification of U 7→ F (U)/F ′(U).

• Cokernels: for φ : F → G, cokerφ is sheafification of U 7→ coker(F (U) φ(U)−−−→ G(U)).

• Direct images: for f ∈ Top(X,Y ), the sheaf defined on sections by (f∗F )(V ) := F (f−1(V ))
for any V ⊆ Y . Yields a functor f∗ : Sh(X) → Sh(Y ).

• Inverse images: denoted f−1G, the sheafification of U 7→ colim−−−−−→V ⊇f(U)G(V ), i.e. take
the limit from above of all open sets V of Y containing the image f(U). Yields a functor
f−1 : Sh(Y ) → Sh(X).

2.1 II.1: Sheaves ⋆ 10
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2 II: Schemes

• Restriction of a sheaf : for F ∈ Sh(X) and Z ⊆ X with ι : Z ↪→ X the inclusion, define
i−1F ∈ Sh(Z) to be the restriction. Also denoted F |Z . This has the same stalks: (F |Z)p = Fp.

• For any U ⊆ X, the global sections functor Γ(U ; −) : Sh(X) → AbGrp is left-exact (proved in
exercises).

• Limits of sheaves: for {Fi} a direct system of sheaves, colim−−−−−→i Fi has underlying presheaf
U 7→ colim−−−−−→i Fi(U). If X is Noetherian, then this is already a sheaf, and commutes with
sections: Γ(X; colim−−−−−→i Fi) = colim−−−−−→i Γ(X;Fi).

– Inverse limits exist and are defined similarly.

• The espace étalé: define Ét(F ) =
∐

p∈XFp and a projection π : Ét(F ) → X by sending
s ∈ Fp to p. For each U ⊆ X and s ∈ F (U), there is a local section s : U → Ét(F ) where
p 7→ sp, its germ at p; this satisfies π ◦ s = idU . Give Ét(F ) the strongest topology such that
the s are all continuous. Then F+(U) := Top(U,Ét(F )) is the set of continuous sections of
Ét(F ) over U .

• Support: for s ∈ F (U), supp(s) :=
{
p ∈ U

∣∣∣ sp ̸= 0
}

where sp is the germ of s in Fp. This
is closed.

– This extends to supp(F ) :=
{
p ∈ X

∣∣∣ Fp ̸= 0
}

, which need not be closed.

• Sheaf hom: U 7→ Hom(F |U , G|U ) forms a sheaf of local morphisms and is denoted Hom(F,G).

• Flasque sheaves: a sheaf is flasque iff V ↪→ U =⇒ F (U)↠ F (V ).

• Skyscraper sheaves: for A ∈ AbGrp and p ∈ X, define

ip(A)(U) =
{
A p ∈ U

0 otherwise.
.

Also denoted ι∗(A) where ι : clX({p}) ↪→ X is the inclusion.

– The stalks are

(ip(A))q =
{
A q ∈ clX({p})
0 otherwise.

.

• Extension by zero: if ι : Z ↪→ X is the inclusion of a closed set and U := X \ Z with
j : U → X, then for F ∈ Sh(Z), the sheaf ι∗F ∈ Sh(X) is the extension of F by zero outside
of Z. The stalks are

(ι∗F )p =
{
Fp p ∈ Z

0 otherwise.
.

2.1 II.1: Sheaves ⋆ 11
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– For the open U , extension by zero is j!F which has presheaf V 7→ F (V ) if V ⊆ U and 0
otherwise. The stalks are

(j!F )p =
{
Fp p ∈ U

0 otherwise.
.

• Sheaf of ideals: for Y ⊆ X closed and U ⊆ X open, IY (U) has presheaf U 7→ the ideal in
OX(U) of regular functions vanishing on all of Y ∩ U . This is a subsheaf of OX .

• Gluing sheaves: given U ⇒ X and sheaves Fi ∈ Sh(Ui), one can glue to a unique F ∈ Sh(X)
if one is given morphisms φij Fi|Uij

∼−→ Fj |Uij
where φii = id and φik = φjk ◦ φij on Uijk.

△! Warning 2.1.2
Some common mistakes:

• Kernel presheaves are already sheaves, but not cokernels or images. See exercise below.
• φ : F → G is injective iff injective on sections, but this is not true for surjectivity.
• The sheaves f−1G and f∗G are different! See III.5 for the latter.
• Global sections need not be right-exact.

Exercise 2.1.3 (Regular functions on varieties form a sheaf)
For X ∈ Var/k, define the ring OX(U) of literal regular functions fi : U → k where restriction
morphisms are induced by literal restrictions of functions. Show that OX is a sheaf of rings
on X.

Hint: Locally regular implies regular, and regular
+ locally zero implies zero.

Exercise 2.1.4 (?)
Show that for every connected open subset U ⊆ X, the constant sheaf satisfies A(U) = A, and
if U is open with open connected component so the A(U) = A×♯π0U .

Exercise 2.1.5 (?)
Show that if X ∈ Var/k and OX is its sheaf of regular functions, then the stalk OX,p is the
local ring of p on X as defined in Ch. I.

Exercise 2.1.6 (Prop 1.1)
Let φ : F → G be a morphism in Sh(X) and show that φ is an isomorphism iff φp is an
isomorphism on stalks for all p ∈ X. Show that this is false for presheaves.

Exercise 2.1.7 (?)
Show that for φ ∈ MorSh(X)(F,G), kerφ is a sheaf, but cokerφ, imφ are not in general.

2.1 II.1: Sheaves ⋆ 12
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Exercise 2.1.8 (?)
Show that if φ : F → G is surjective then the maps on sections φ(U) : F (U) → G(U) need not
all be surjective.

E 2.2 II.2: Schemes e

E 2.3 II.3: First Properties of Schemes e

E 2.4 II.4: Separated and Proper Morphisms e

E 2.5 II.5: Sheaves of Modules e

E 2.6 II.6: Divisors e

E 2.7 II.7: Projective Morphisms e

E 2.8 II.8: Differentials e

E 2.9 II.9: Formal Schemes e

2.2 II.2: Schemes 13



3 III: Cohomology

3 III: Cohomology

E 3.1 III.1: Derived Functors e

E 3.2 III.2: Cohomology of Sheaves e

E
3.3 III.3: Cohomology of a Noetherian

Affine Scheme
e

E 3.4 III.4: Čech Cohomology e

E
3.5 III.5: The Cohomology of Projective

Space e

E 3.6 III.6: Ext Groups and Sheaves e

E 3.7 III.7: Serre Duality e

E 3.8 III.8: Higher Direct Images of Sheaves e

E 3.9 III.9: Flat Morphisms e

E 3.10 III.10: Smooth Morphisms e

E
3.11 III.11: The Theorem on Formal

Functions
e

E 3.12 III.12: The Semicontinuity Theorem e

III: Cohomology 14



4 IV: Curves ⋆

4 IV: Curves ⋆

Remark 4.0.1: Summary of major results:

• pa(X) := 1 − PX(0) = (−1)r(1 − χ(OX)).

– Note: PX(ℓ) is defined as the Hilbert polynomial of the homogeneous coordinate ring
S(Y ), and then defined for graded S-modules M by setting φM (ℓ) = dimk Mℓ and
showing ∃!PM (z) ∈ Q[z] with φM (ℓ) = PM (ℓ) for ℓ ≫ 0.

• pg(X) := h0(ωX) = h0(L(KX)).

• Remembering these:

Link to Diagram

• For curves, pa(X) = pg(X) = h1(OX) by setting D := KC in RR.

– degKC = 2g − 2.

• D1 ∼ D2 ⇐⇒ D1 −D2 = (f) for f ∈ K(X) rational, |D| = {D′ ∼ D}, and this bijects with
points of H0(L(D))\{0}

Gm
.

– Thus dim |D| = h0(L(D)) − 1 := ℓ(D) − 1.

• X smooth =⇒ Cl(X) ∼−→ Pic(X) via D 7→ L(D).
• h0(L(D)) > 0 =⇒ deg(D) ≥ 0, and if degD = 0 then D ∼ 0 and L(D) ∼= OX .
• RR:

χ(L(D) = h0(L(D)) − h1(L(D))
= h0(L(D)) − h0(L(K −D))
= deg(D) + (1 − g).

– How to remember: note g = h1(OX) = h1(L(0)), and H0(OX) = k so h0(OX) = 1, thus

χ(OX) = h0(OX) − h1(OX) = 1 − g = deg L(0) + 1 − g.

– For C ⊆ Pn, deg(C) = d and D = C ∩H a hyperplane section defining L(D) = OX(1),

χ(L(D)) = deg(D) + (1 − g) = d+ (1 − pa(C))

IV: Curves ⋆ 15
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4 IV: Curves ⋆

• A curve is rational iff isomorphic to P1 iff g = 0.
• K ∼ 0 on an elliptic curve since degK = 2g − 2 = 0 and degD = 0 =⇒ D ∼ 0.
• For X elliptic, Pic0(X) :=

{
D ∈ Div(X)

∣∣∣ degD = 0
}

and |X| ∼−→
∣∣∣Pic0(X)

∣∣∣ via p 7→ L(p−p0)
for any fixed p0 ∈ X, inducing its group structure. (This is proved with RR.)

Remark 4.0.2: Comments from preface:

• The statement of Riemann-Roch is important; less so its proof.
• Representing curves:

– A branched covering of P1,
– More generally a branched covering of another curve,
– Nonsingular projective curves: admit embeddings into P3, maps to P2 birationally such

that the image is at worst a nodal curve.

• The central result regarding representing curves: Hurwitz’s theorem which compares KX ,KY

for a cover Y → X of curves.
• Curves of genus 1: elliptic curves.
• Later sections: the canonical embedding of a curve.

E 4.1 IV.1: Riemann-Roch e

Definition 4.1.1 (Curves)
A curve over k = k is a scheme over Spec k which is

• Integral
• Dimension 1
• Proper over k
• With regular local rings

In particular, a curve is smooth, complete, and necessary projective. A point on a curve is a
closed point.

Definition 4.1.2 (Arithmetic genus)
The arithmetic genus of a projective curve X is

pa(X) := 1 − PX(0)

where PX(t) is the Hilbert polynomial of X.

Definition 4.1.3 (Geometric genus)
The geometric genus of a curve is

p+ g(X) := dimk H
0(X;ωX)

4.1 IV.1: Riemann-Roch 16



4 IV: Curves ⋆

where ωX is the canonical sheaf.

Exercise 4.1.4 (?)
Show that if X is a curve, there is a single well-defined genus

g := pA(X) = pG(X) = dimk H
1(X; OX).

Hint: see Ch. III Ex. 5.3, and use Serre duality
for pg.

Exercise 4.1.5 (?)
Show that for any g ≥ 0 there exists a curve of genus g.

Hint: take a divisor of type (g + 1, 2) on a smooth
quadric which is irreducible and smooth with pa =
g.

Definition 4.1.6 (Divisors on a curve)
Reviewing divisors:

• The divisor group: Div(X) = Z [Xcl]
• Degrees: deg(

∑
niDi) :=

∑
ni, and

• Linear equivalence: D1 ∼ D2 ⇐⇒ D1 −D1 = Div(f) for some f ∈ k(X) a rational
function.

• D is effective if ni ≥ 0 for all i.
• |D| :=

{
D′ ∈ Div(X)

∣∣∣ D′ ∼ D
}

is the complete linear system of D.
• |D| ∼= PH0(X; L(D))
• Dimensions of linear systems: ℓ(D) := dimk H

0(X; L(D)) and dim |D| := ℓ(D) − 1.
• Relative differentials: ΩX := ΩX/k

is the sheaf of relative differentials on X.

– The technical definition: ΩX/S
:= ∆∗

X/Y
(I/I2) where I is the sheaf of ideals defining

the locally closed subscheme im(∆X/Y
) ⊆ XfpY X.

– On affine schemes: on the ring side, ΩB/A
∈ BMod

equipped with a differential d : B → ΩB/A, defined as〈
db
∣∣∣ b ∈ B

〉
B
/ ⟨d(b1 + b2) = db1 + db2, d(b1b2) = d(b1)b2 + b1d(b2), da = 0 ∀a ∈ A⟩B.

– On curves, ΩX/Y
measures the “difference” between KX and KY .

• Canonical sheaf : dimX = 1,ΩX/k
∼= ωX .

• Canonical divisor: KX 2is any divisor in the linear equivalence class corresponding to
ωX

• D is special iff its index of speciality ℓ(K −D) > 0, otherwise D is nonspecial.

Exercise 4.1.7 (?)
Show that D1 ∼ D2 =⇒ deg(D1) = deg(D2).

4.1 IV.1: Riemann-Roch 17
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Exercise 4.1.8 (?)
Show that

|D|⇌ PH0(X; L(D)),

so |D| has the structure of the closed points of some projective space.

Exercise 4.1.9 (Lemma 1.2)
Show that if D ∈ Div(X) for X a curve and ℓ(D) ̸= 0, then deg(D) ≥ 0.
Show that is ℓ(D) ̸= 0 and degD = 0 then D ∼ 0 and L(D) ∼= OX .

Theorem 4.1.10(Riemann-Roch).

ℓ(D) − ℓ(K −D) = deg(D) + (1 − g).

Exercise 4.1.11 (Ingredients for proof of RR)
Show the following:

• The divisor K −D corresponds to ωX ⊗ L(D)∨ ∈ Pic(X).

• H1(X; L(D))∨ ∼= H0(X;ωX ⊗ L(D)∨).

• If X is any projective variety,

H0(X; OX) = k.

Exercise 4.1.12 (?)
Show that if X ⊆ Pn is a curve with degX = d and D = X ∩H is a hyperplane section, then
L(D) = OX(1) and χ(L(D)) = d+ 1 − pa.

Exercise 4.1.13 (?)
Show that if g(X) = g then degKX = 2g − 2.

Hint: set D = K and use ℓ(K) = pg = g and
ℓ(0) = 1.

Remark 4.1.14: More definitions:

• X is rational iff birational to P1.
• X is elliptic if g = 1.

Exercise 4.1.15 (?)
Show that

4.1 IV.1: Riemann-Roch 18
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1. If degD > 2g − 2 then D is nonspecial.
2. pa(P1) = 0.
3. A complete nonsingular curve is rational iff X ∼= P1 iff g(X) = 0.
4. If X is elliptic then K ∼ 0

Hint: for (3) apply RR to D = p − q for points
p ̸= q, and use deg(K − D) = −2 and deg(D) =
0 =⇒ D ∼ 0 =⇒ p ∼ q. For (4), show
ℓ(K) = pg = 1.

Exercise 4.1.16 (?)
If X is elliptic and p ∈ X, then there is a bijection

mp : X ∼−→ Pic(X)
x 7→ L(x− p),

so Pic(X) ∈ Grp.
Hint: show that if deg(D) = 0 then there is some
x ∈ X such that D ∼ x−p and apply RR to D+p.

E 4.2 IV.2: Hurwitz ⋆ e

Remark 4.2.1: Summary of results:

• For curves, complete = projective.

• Riemann-Hurwitz: for f : X → Y finite separable,

KX ∼ f∗KY +R =⇒ deg(KX) = deg(f∗KY ) + deg(R) =⇒

χ(X) = deg(f) · χ(Y ) + degR, degR =
∑
p∈X

(ep − 1).

• deg f := [K(X) : K(Y )] for finite morphisms of curves.

• ep := vp(f ♯
∗t) where t is uniformizer in Of(p) and f ♯ : OY,f(p) → OX,p for f : X → Y .

– ep > 1 =⇒ ramification.
– Unramified everywhere implies etale (since automatically flat).
– p

∣∣ ex0 =⇒ wild ramification, otherwise tame.

• ∃f∗ : Div(Y ) → Div(X) where q 7→
∑

p 7→q epp.

4.2 IV.2: Hurwitz ⋆ 19
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• Pullback commutes with forming line bundles:

f∗L(D) ∼= L(f∗D)

where the LHS f∗ : Pic(Y ) → Pic(X).

• The fundamental SES for relative differentials: if f : X → Y is finite separable,

f∗ΩY ↪→ ΩX ↠ ΩX/Y .

• ∂t
∂u for t a uniformizer at f(p) and u a uniformizer at p is defined by noting ΩY, f(p) =
⟨ dt⟩ ,ΩX,p = ⟨ du⟩, and there is some g ∈ OX,p such that f∗ dt = g du; set g := ∂t

∂u .

• For finite separable morphisms of curves f : X → Y ,

– supp ΩX/Y = Ram(f) is the ramification locus, and ΩX/Y is torsion so Ram(f) is finite.
– length(ΩX,Y )p = vp

(
∂t
∂u

)
for any p ∈ X

– Tamely ramified =⇒ length(ΩX/Y )p = ep − 1, and wild ramification increases this
length. Recall that length is the largest size of chains of submodules.

• The ramification divisor:

R :=
∑
p∈X

length(ΩX/Y )pp.

• KX ∼ f∗KY +R

• P1 can’t admit an unramified cover: for n ≥ 1,

χ(X) = nχ(P1) + degR =⇒ χ(X) = −2n+ degR =⇒ χ(X) = −2n ≤ −2,

which forces g(X) = 0, n = 1, X = P1, f = id.

• The Frobenius morphism on schemes is defined by taking f ♯ : OX → OX to be the pth power
map; pullback yields a definition of Xp, the Frobenius twist of X.

– F : Xp → X is finite, degF = p, and corresponds to K(X) ↪→ K(X)
1
p

• If f : X → Y induces a purely inseparable extension K(X)/K(Y ), then X
∼−→Y as schemes,

g(X) = g(Y ), and f is a composition of Frobenii.

• Everywhere ramified extensions: f : Yp → Y , where eq = p for every q ∈ X. Induces
ΩX/Y

∼= ΩX .

• degR is always even.

4.2 IV.2: Hurwitz ⋆ 20
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• Finite implies proper: finite implies separated, of finite type, closed by “going up” and
universally closed by since finiteness is preserved under base change.

• P1 no nontrivial etale covers.

• If f : X → Y then g(X) ≥ g(Y ).

– Thus ∃P1 → Y finite =⇒ g(Y ) = 0.

Remark 4.2.2: Preface:

• Degree: for a finite morphism of curves X f−→ Y , set det(f) := [k(X) : k(Y )], the degree of
the extension of function fields.

• Ramification indices ep: for p ∈ X, let q = f(p) and t ∈ Oq a local coordinate. Pull back
to t ∈ Op via f ♯ and define ep := vp(t) using the valuation vp for the DVR Op.

• Ramified: ep > 1, and unramified if ep = 1.
• Branch points any q = f(p) where f is ramified.
• Tame ramification: for ch(k) = p, tame if p

∣∣∤ eP .
• Wild ramification: when p

∣∣ eP .
• Pullback maps on divisor groups:

f∗ : Div(Y ) → Div(X)
Q 7→

∑
P

f−→q

eP [P ].

– This commutes with taking line bundles (exercise), so induces a well-defined map f∗ :
Pic(X) → Pic(Y ).

• f is separable if k(X)/k(Y ) is a separable field extension.

Exercise 4.2.3 (?)
Misc:

• Show that if f is everywhere unramified then it is an étale morphism.
• Show that f∗L(D) = L(f∗D)

Exercise 4.2.4 (Prop 2.1)
Show that if X f−→ Y is a finite separable morphism of curves, there is a SES

f∗ΩY ↪→ ΩX ↠ ΩX/Y
.

Remark 4.2.5: Definitions:

• Derivatives: for f : X → Y , let t be a parameter at Q = f(P ) and u at P . Then
ΩY,Q = ⟨dt⟩OQ

and OX,P = ⟨du⟩OP
and ∃!g ∈ OP such that f∗dt = du so we write ∂t

∂u
:= g.

4.2 IV.2: Hurwitz ⋆ 21
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• Ramification divisor: R :=
∑

P ∈X length(ΩX/Y
)P [P ] ∈ Div(X)

Exercise 4.2.6 (Prop 2.2)
For X f−→ Y a finite separable morphism of curves,

a. ΩX/Y
is a torsion sheaf on X with support equal to the ramification locus of f . Thus f

is ramified at finitely many points.
b. The stalks (ΩX/Y

)P are principal OP -modules of finite length equal to vp

(
∂t
∂u

)
c.

length(ΩX/Y
)P

{
= ep − 1 f is tamely ramified at P
> ep − 1 f is wildly ramified at P.

.

Exercise 4.2.7 (Prop 2.3)
If X f−→ Y is a finite separable morphism of curves, then

KX ∼ f∗KY +R,

where R is the ramification divisor of f .

Theorem 4.2.8(Hurwitz).
If X f−→ Y is a finite separable morphism of curves, then

2g(X) − 2 = deg(f)(2g(Y ) − 2) + deg(R),

and if f has only tame ramification then deg(R) =
∑

P ∈X(eP − 1).

Remark 4.2.9(proof of Hurwitz): Take degrees of the divisor equation:

deg(KX) = deg(f∗KY +R)
=⇒ χTop(X) = deg(f∗KY ) + deg(R)

=⇒ 2g(X) − 2 = deg(f) deg(KY ) + deg(R)
=⇒ 2g(X) − 2 = deg(f)χTop(Y ) + deg(R)
=⇒ 2g(X) − 2 = deg(f)(2g(Y ) − 2) + deg(R)
=⇒ 2g(X) − 2 = deg(f)(2g(Y ) − 2) +

∑
P ∈X

(eP − 1)

,

using tame ramification in the last step which implies length(ΩX/Y
)P = (ep − 1).

Remark 4.2.10: Consider the purely inseparable case.

• Frobenius morphism: for X ∈ Sch where OP ⊇ Z/pZ for all P , define Frob : X → X by
F (|X|) = |X| on spaces and F ♯ : OX → OX is f 7→ fp. This is a morphism since F ♯ induces

4.2 IV.2: Hurwitz ⋆ 22
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a morphism on all local rings, which are all characteristic p.
• The k-linear Frobenius morphism: define Xp to be X with the structure morphism F ◦π,

so k ↷ OXp by pth powers and F becomes a k-linear morphism F ′ : Xp → X.

– Why this is necessary: F as before is not a morphism in Sch/k, and instead forms a
commuting square involving F : Spec k → Spec k and the structure maps X π−→ Spec k.

Exercise 4.2.11 (?)
Find examples where

• Xp
∼= X ∈ Sch/k, and

• Xp ̸∼= X ∈ Sch/k.

Hint: consider X = Spec k[t] for k perfect.

Exercise 4.2.12 (?)
Show that if X f−→ Y is separable then deg(R) is always even.

Skipped some stuff around Example 2.4.2, I don’t nec-
essarily need characteristic p things right now.

Remark 4.2.13: Definitions:

• Étale covers: X f−→ Y is an étale cover if f is a finite étale morphism„ i.e. f is flat and
Ω1

X/Y
= 0.

• Y is a trivial cover if X ∼=
∐

i∈IY a finite disjoint union of copies of Y ,
• Y is simply connected if there are no nontrivial étale covers.

Exercise 4.2.14 (?)

• Show that a connected regular curve is irreducible.
• Show that if f is etale then X is smooth over k.
• Show that if f is finite, X must be a curve.
• Show that if f is étale, then f must be separable.
• Show that πét

1 (P1) = 0.

Hint: use Hurwitz and that when f is unramified,
R = 0.

Exercise 4.2.15 (?)

• Show that the genus of a curve doesn’t change under purely inseparable extensions.
• Show that if f : X → Y is a finite morphism of curves then g(X) ≥ g(Y ).
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Exercise 4.2.16 (Lüroth)
Show that if L is a subfield of a purely transcendental extension k(t)/k where k = k, then L is
also purely transcendental.a

Hint: Assume [L : k]tr = 1, so L = k(X) for
Y a curve and L ⊆ k(t) corresponds to a finite
morphism f : P1 → Y . Conclude g(Y ) = 0 so
Y ∼= P1 and L ∼= k(u) for some u.

aThis is true over any field k in dimension 1, over k = k in dimension 2, and false in dimension 3 by the
existence of nonrational unirational threefolds.

E 4.3 IV.3: Embeddings in Projective Space ⋆ e

Remark 4.3.1: A summary of major results:

• For D ∈ Div(C) with g = g(C),

– D is ample iff degD > 0.
– D is BPF iff degD ≥ 2g.
– D is very ample iff degD ≥ 2g + 1.

• Being very ample is equivalent to being a hyperplane section under a projective embedding.
• Divisors D ∈ Div(Pn) are ample iff very ample iff degD ≥ 1.

– E.g. if E is elliptic then D is very ample if degD ≥ 3, and for hyperelliptic, very ample
if degD ≥ 5.

• If D is very ample then degφ(X) = degD.
• Curves C ⊆ Pn for n ≥ 4 can be projected away from a point p ̸∈ X to get a closed immersion

into Pm for some m ≤ n− 1. So any curve is birational to a nodal curve in P2.
• Genus of normalizations of nodal curves: g = 1

2(d− 1)(d− 2) − ♯ {nodes}.
• Any curve embeds into P3, and maps into P2 with at worst nodal singularities.

Remark 4.3.2: Main result: any curve can be embedded in P3, and is birational to a nodal curve
in P2. Some recollections:

• Very ample line bundles: L ∈ Pic(X) is very ample if L ∼= OX(1) for some immersion of
f : X ↪→ PN .

• Ample: L is ample when ∀F ∈ Coh(X), the twist F ⊗ Ln is globally generated for n ≫ 0.
• (Very) ample divisors: D ∈ Div(X) is (very) ample iff L(D) ∈ Pic(X) is (very) ample.
• Linear systems: a linear system is any set S ≤ |D| of effective divisors yielding a linear

subspace.
• Base points: P is a base point of S iff P ∈ suppD for all D ∈ S.
• Secant lines: the secant line of P,Q ∈ X is the line in PN joining them.
• Tangent lines: at P ∈ X, the unique line L ⊆ PN passing through p such that TP (L) =

TP (X) ⊆ TP (PN ).
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• Nodes: a singularity of multiplicity 2.

– y2 = x3 + x2 is a node.
– y2 = x3 is a cusp.
– y2 = x4 is a tacnode.

• Multisecant: for X ⊆ P3, a line meeting X in 3 or more distinct points.
• A secant with coplanar tangent lines is a secant through P,Q whose tangent lines LP , LQ

lie in a common plane, or equivalently LP intersects LQ.

Exercise 4.3.3 (II.8.20.2)
Show that by Bertini’s theorem there are irreducible smooth curves of degree d in P2 for any
d.

Exercise 4.3.4 (?)
Show that

• L is ample iff Ln is very ample for b ≫ 0.
• |D| is basepoint free iff L(D) is globally generated.
• If D is very ample, then |D| is basepoint free.
• If D is ample, nD ∼ H a hyperplane section for a projective embedding for some n.
• If g(X) = 0 then D is ample iff very ample iff degD > 0.
• If D is very ample and corresponds to a closed immersion φ : X ↪→ Pn then degφ(X) =

degD.
• If XS is elliptic, any D with degD = 3 is very ample and dim |D| = 2, and so can be

embedded into P2 as a cubic curve.
• Show that if g(X) = 1 then D is very ample iff degD ≥ 3.
• Show that if g(X) = 2 and degD = 5 then D is very ample, so any genus 2 curve embeds

in P3 as a curve of degree 5.

Exercise 4.3.5 (Prop 3.1: when a linear system yields a closed immersion into PN )
Let D ∈ Div(X) for X a curve and show

• |D| is basepoint free iff dim |D − P | = dim |D| − 1 for all points p ∈ X.
• D is very ample iff dim |D − P −Q| = dim |D| − 2 for all points P,Q ∈ X.

Hint: use the SES L(D − P ) ↪→ L(D) ↠ k(P )
where k(P ) is the skyscraper sheaf at P .

Exercise 4.3.6 (Cor 3.2)
Let D ∈ Div(X).

• If degD ≥ 2g(X) then |D| is basepoint free.
• If degD ≥ 2g(X) + 1 then D is very ample.
• D is ample iff degD > 0
• This bounds is not sharp.
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Hint: apply RR. For the bound, consider a plane
curve X of degree 4 and D = X.H.

Remark 4.3.7: Idea behind embedding in P3: embed into Pn and project away from a point in
the complement.

Exercise 4.3.8 (3.4, 3.5, 3.6)
Let X ⊆ PN be a curve and O ̸∈ X, let φ : X → Pn−1 be projection away from O. Then φ is
a closed immersion iff

• O is not on any secant line of X, and
• O is not on any tangent line of X.

Show that if N ≥ 4 then there exists such a point O yielding a closed immersion into PN−1.
Conclude that any curve can be embedded into P3.

Hint: dim Sec(X) ≤ 3 and dim Tan(X) ≤ 2.

Proposition 4.3.9(3.7).
Let X ⊆ P3, O ̸∈ X, and φ : X → P2 be the projection from O. Then X

∼
99K φ(X) iff φ(X)

is nodal iff the following hold:

• O is only on finitely many secants of X,
• O is on no tangents,
• O is on no multisecant,
• O is on no secant with coplanar tangent lines.

Skipped things around Prop 3.8. The hard part: show-
ing not every secant is a multisecant, and not every
secant has coplanar tangent lines. Skipped strange
curves.

Remark 4.3.10: Classifying all curves: any curve is birational to a nodal plane curve, so study the
family Fd,r of plane curves of degree d and r nodes. The family Fd of all plane curves is a linear
system of dimension

dim |Fd| = d(d+ 3)
2 .

For any such curve X, consider its normalization ν(X), then

g(ν(X)) = (d− 1)(d− 2)
2 − r.

Thus for Fd,r to be nonempty, one needs

0 ≤ r ≤ (d− 1)(d− 2)
2 .
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Both extremes can occur: r = 0 follows from Bertini, and r = (d−1)(d−2)
2 by embedding P1 ↪→ Pd

as a curve of degree d and projecting down to a nodal curve in P2 of genus zero. Severi states and
Harris proves that for every r in this range Fd,r is irreducible, nonempty, and dim Fd,r = d(d+3)

2 − r.

E 4.4 IV.4: Elliptic Curves ⋆ e

Remark 4.4.1: Curves E with g(E) = 1; we’ll assume ch k ̸= 2 throughout. Outline:

• Define the j-invariant, classifies isomorphism classes of elliptic curves.
• Group structure on the curve.
• E = Jac(E).
• Results about elliptic functions over C.
• The Hasse invariant of E/Fq in characteristic p.
• E(Q).

4.4.1 The j-invariant

Remark 4.4.2: The j-invariant:

• j(E) ∈ k, so A1
/k is a coarse moduli space for elliptic curves over K.

• Defining j(E):

– Let p0 ∈ X, consider the linear system L := |2p0|.
– Nonspecial, so RR shows dim(L) = 1.
– BPF, otherwise E is rational.
– Defines a morphism φL : E → P1

/k with degφL = 2.
– Up to change of coordinates, f(p0) = ∞.
– By Hurwitz, f is ramified at 4 branch points a, b, c, p0.
– Move a 7→ 0, b 7→ 1 by a Mobius transformation fixing ∞, so f is branched over 0, 1, λ,∞

where λ ∈ k \ {0, 1}.
– Use λ to define the invariant:

j(E) = j(λ) = 28
(

(λ2 − λ+ 1)3

λ2(λ− 1)2

)
.

• Theorem 4.1:

– j depends only on the curve E and not λ.
– E ∼= E′ ⇐⇒ j(E) = j(E′).
– Every element of k occurs as j(E) for some E.
– So this yields a bijection

{Elliptic curves over k} /∼ ⇌ A1
/k

E 7→ j(E).

4.4 IV.4: Elliptic Curves ⋆ 27



4 IV: Curves ⋆

• Some facts that go into proving this:

– ∀p, q ∈ X ∃σ ∈ Aut(X) such that σ2 = 1, σ(p) = q, for any r ∈ X, one has r + σ(r) ∼
p+ q.

– Aut(X) ↷ X transitively.
– Any two degree two maps f1, f2 : X → P1 fit into a commuting square.
– Under S3 ↷ A1

/k \ {0, 1}, the orbit of λ is

S3.λ =
{
λ, λ−1, s1 = 1 − λ, s−1

1 = (1 − λ)−1, s2 = λ(λ− 1)−1, s3 = λ−1(λ− 1)
}
.

– Fixing p ∈ X, there is a closed immersion X → P2 whose image is y2 = x(x− 1)(x− λ)
where p 7→ ∞ = [0 : 1 : 0] and this λ is either the λ from above or one of s±1

1 , s±1
2 .

♢ Idea of proof: embed X ↪→ P2 by L := |3p|, use RR to compute h0(O(np)) = n so
h0(O(6p)) = 6.

♢ So
{
1, x, y, x2, xy, y2, x3} has a linear dependence where x3, y2 have nonzero coeffi-

cients since they have poles at p.
♢ Rescale x3, y2 to coefficient 1 to get

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

– Do a change of variable to put in the desired form: complete the square on the LHS,
factor as y2 = (x− a)(x− b)(x− c), send a → 0, b → 1 by a Mobius transformation.

• Note that one can project from p to the x-axis to get a finite degree 2 morphism ramified at
0, 1, λ,∞.

Example 4.4.3(?): An elliptic curve that is smooth over every field of non-2 characteristic:

E : y2 = x3 − x, λ = −1, j(E) = 26 · 33 = 1728.

One that is smooth over every k with ch k ̸= 3: the Fermat curve

E : x3 + y3 = z3, λ = ±ζk
3 , j(E) = 0.
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Theorem 4.4.4(Orders of automorphism groups of elliptic curves).

♯Aut(X, p) =


2 j(E) ̸= 0, 1728
4 j(E) = 1728, ch k ̸= 3
6 j(E) = 0, ch k ̸= 3
12 j(E) = 0, 1728, ch k = 3

.

Remark 4.4.5(Proof idea): Idea: take the degree 2 morphism f : X → P1 with f(p) = ∞
branched over {0, 1, λ,∞}. Produce two elements in G: for σ ∈ G, find τ ∈ Aut(P1) so fσ = τf ;
then either τ ̸= id, so {σ, τ} ⊆ G, or τ = id and either σ = id or σ exchanges the sheets of f .

If τ ̸= id, it permutes {0, 1, λ} and sends λ 7→ λ−1, s±1
1 , s±1

2 from above. Cases:

1. j = 1728 : If λ = −1, 1/2, 2, ch k ̸= 3, then λ coincides with one other element of S3.λ, so
♯G = 4.

2. j = 0: If λ = −ζ3,−ζ2
3 , ch k ̸= 3 then λ coincides with two elements in S3.λ so ♯G = 6.

3. j = 0 = 1728: If λ = −1, ch k = 3 then S3.λ = {λ} and ♯G = 12.

4.4.2 The group structure

Remark 4.4.6: The group structure:

• Fixing po ∈ E, the map p 7→ L(p−p0) induces a bijection E ∼−→ Pic0(E), so the group structure
on E is the pullback along this with p0 = id and p+ q = r ⇐⇒ p+ q ∼ r + p0 ∈ Div(E).

• Under the embedding of |3p0|, points p, q, r are collinear iff p+ q + r ∼ 3p0, so p+ q + r = 0
in the group structure.

• E is a group variety, since p 7→ −p and (p, q) 7→ p + q are morphisms. Thus there is a
morphism [n] : E → E, multiplication by n, which is a finite morphism of degree n2 with
kernel ker[n] = C2

n if (n, ch k) = 1.and ker[n] = Cp, 0 if n = ch k, depending on the Hasse
invariant.

• If f : E1 → E2 is a morphism of curves with f(p1) = p2 then f induces a group morphism.
• End(E, p0) forms a ring under f + g = µ ◦ (f × g) and f · g := f ◦ g.
• The map n 7→ ([n] : E → E) defines a finite ring morphism Z → End(E, p0) for n ̸= 0.
• R := End(E, p0)× = Aut(E), and if j = 0, 1728 then R contains {±1} and is thus bigger than

Z.

Remark 4.4.7: The Jacobian: a variety that generalizes to make sense for any curve, a moduli
space of degree zero divisor classes.

• For X/k a curve and T ∈ Sch/k, define

Pic0(X × T ) :=
{

F ∈ Pic(X × T )
∣∣∣ deg F|Xt

= 0 ∀t ∈ T
}
, Pic(X/T ) := Pic0(X × T )/p∗ Pic(T )
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where p : X × T → T is the second projection. Regard this as families of sheaves of degree 0
on X parameterized by T .

• The Jacobian variety of a curve X: Jac(X) ∈ Schft
/k along with L ∈ Pic0(X/ Jac(X)) such

that for any T ∈ Schft
/k and any M ∈ Pic0(X/T ), ∃! f : T → Jac(X) such that f∗L = M.

Thus J represents the functor Pic0(X/−).

• For E elliptic, E = Jac(E).

– In general, |Jac(X)| ∼=
∣∣∣Pic0(X)

∣∣∣ on points, since points of Jac(X) are morphisms
Spec k → Jac(X), which correspond to elements in Pic0(X/k) = Pic0(X).

• Jac(X) ∈ GrpSch/k where e : Spec k → Jac(X) corresponds to 0 ∈ Pic0(X/k), ρ : Jac(X) →
Jac(X) is L 7→ L−1 ∈ Pic0(X/ Jac(X)), and µ : Jac(X)×2 → Jac(X) is L 7→ p∗

1L ⊗ p∗
2L ∈

Pic0(X/Pic(X)×2).

• T0 Jac(X) ∼= H1(X; OX): giving an element of TpX is the same as a morphism T :=
Spec k[ε]/ε2 → X sending Spec k → p. So T0 Jac(X), this means giving M ∈ Pic0(X/T )
whose restriction to Pic0(X/k) is zero. Use the SES H1(X; OX) ↪→ PicX[ε] → Pic(X).

• Jac(X) is proper over k by the valuative criterion. Just show that an invertible sheaf M on
X × SpecK lifts unique to M̃ on X × SpecR, but X × SpecR is regular, so apply II.6.5.

• For any n there is a morphism

φn : X×n → Jac(X)
(p1, · · · , pn) 7→ L(

∑
pi − np0).

This is surjective for n ≥ g(X) by RR since every divisor class of degree d ≥ g has an
effective representative. The fibers of φn are all tuples (p1, · · · , pn) such that D =

∑
pi forms

a complete linear system.

– Most fibers are finite, so Jac(X) is irreducible of dimension g.
– Smoothness: dim T0 Jac(X) = dimH1(X; OX) = g, so smooth at zero, and group

schemes are homogeneous so smooth everywhere.

4.4.3 Elliptic functions

Stopped at elliptic functions.

E 4.5 IV.5: The Canonical Embedding e

E 4.6 IV.6: Classification of Curves in P3 e
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6 Toric Varieties

5 V: Surfaces

E 5.1 V.1: Geometry on a Surface e

E 5.2 V.2: Ruled Surfaces e

E 5.3 V.3: Monoidal Transformations e

E 5.4 V.4: The Cubic Surface in P3 e

E 5.5 V.5: Birational Transformations e

E 5.6 V.6: Classification of Surfaces e

6 Toric Varieties

E 6.1 Summaries e

6.1.1 Quick Criteria

Remark 6.1.1: Quick criteria:

• Normal ⇐⇒ Saturated: For affines, X = Spec C[S] where S ⊆ M is a saturated
semigroup. This is true for S = Sσ = σ∨ ∩M where σ is any SCRPC.

• Complete/proper ⇐⇒ Full support: XΣ is complete iff supp Σ = NR.

• Smooth ⇐⇒ Lattice basis:

– For a cone σ = Cone(S) is smooth iff detS = ±1, the volume of the standard lattice
Zn.

♢ Consequences of smoothness:
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♢ CDiv(X) = Div(X)
♢ Cl(X) = Pic(X)

– Smooth implies simplicial, so non-simplicial cones are singular.
– For pσ the T -fixed point corresponding to σ, TpX ∼= H where H is a Hilbert basis for
Sσ.

• Simplicial ⇐⇒ Euclidean basis: For σ = Cone(S), σ is simplicial iff det(S) ̸= 0.

• Orbifold singularities ⇐⇒ Simplicial: XΣ has at worst finite quotient singularities iff Σ
is simplicial.

• Projectivity ⇐⇒ Admits a strictly upper convex support function: For h a
support function and Dh its associated divisor, the linear system |Dh| defines an embedding
X(∆) ↪→ PN iff h is strictly upper convex.

– Alternatively, XΣ is projective iff Σ arises as the normal fan of a polytope.

• Globally generated/basepoint free ⇐⇒ Upper convex support function: O(D) is
globally generated iff ψD is upper convex.

• Ample ⇐⇒ Strictly upper convex support function:
D ∈ CDivT (X) is ample iff ψD is strictly upper convex.

• Very ample ⇐⇒ ample and semigroup generation: for Σ complete, D is very ample iff
ψD is strictly upper convex and Sσ is generated by

{
u− u(σ)

∣∣∣ u ∈ PD ∩M
}

, or equivalently

the semigroup
{
u− u′

∣∣∣ u′ ∈ P ∩M
}

is saturated in M .

– For Pn: D =
∑
aiDi is globally generated iff

∑
ai ≥ 0 and ample ⇐⇒

∑
ai > 0.

– For Fm: D =
∑
aiDi is globally generated iff a2 + a4 ≥ 0, a1 + a3 ≥ ma1, Pic(Fn) =

⟨D1, D4⟩, and D = aD1 + bD4 is ample iff a, b > 0.
– For dimXΣ = 2 and X complete: ample ⇐⇒ very ample.

• Q-factorial ⇐⇒ simplicial: iff every cone is simplicial.

• Fundamental groups:

– For Uσ affine, Uσ
∼= Ak × Gn−k

m so π1Uσ
∼= Zn−k since Gn−k

m ≃ (S1)n−k.
– Can write π1Uσ = N/Nσ where Nσ is the sublattice generated by σ.
– By a Van Kampen argument, π1XΣ = N/N ′ where N ′ =

〈
σ ∩N

∣∣∣ σ ∈ Σ
〉
:

π1XΣ = π1 ∪ Uσ = colim−−−−−→π1Uσ = colim−−−−−→N/Nσ = N/
∑

Nσ = N/N ′.

• Euler characteristic: χXΣ = ♯Σ(n).
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– Why: H i(Uσ; Z) =
∧iM(σ) where M(σ) := σ∨ ∩M , so one gets a spectral sequence

Ep,q
1 =

⊕
Ip=i0<···<ip

Hq(UσIp ; Z) ⇒ Hp+q(XΣ; Z), σIp = σi0 ∩ · · ·σip , σij ∈ Σ(n)

⇝ Ep,q
1 =

⊕
Ip

∧q
M(σIp) ⇒ Hp+q(XΣ; Z)

=⇒ χXΣ =
∑

(−1)p+q rankZE
p,q
1 = ♯Σ(n),

using that

∑
(−1)q rankq

ZM(τ) =
{

0 dim τ < n

1 dim τ = n.
.

• Higher homology:

– If all maximal cones of Σ are n-dimensional, H2(XΣ; Z) ∼= Pic(XΣ).

• Global sections: for D ∈ DivT (X), PD its associated polyhedron,

H0(X; OX(D)) =
⊕

m∈PD∩M

Cχm.

• Betti numbers:

β2k =
n∑

i=k

(−1)i−k

(
i

k

)
♯Σ(n− i).

• Canonical bundles/divisors: ωXΣ := det ΩXΣ/k = O(KXΣ) where KXΣ = −
∑

ρi
Di.

– For a smooth complete surface with D2
i = −di,

K2 =
∑

D2
i + 2d = −

∑
di + 2d = −(3d− 12) + 2d = 12 − d.

• Degree = n! · (P ) (for XP projective)

Remark 6.1.2: Some common counterexamples:

• An ample divisor that is not very ample: P := ∗([0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 0]); then take
DP . XP is a double cover of P3 branched along the 4 boundary divisors.

• A Weil divisor that is not Cartier: ????
• A complete variety that is not projective: ???
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6.1.2 Cones and Lattices

Remark 6.1.3:
• Characters: for groups G, a map χ ∈ Grp(G,C×). For G = T = (C×)n, there is an

isomorphism

Zn ∼−→ Grp(T,C×)
m = [m1, · · · ,mn] 7→ χm : [t1, · · · , tn] 7→

∏
tmi
i .

Generally set M := Grp(T,C×), the character lattice.

– M is a lattice, MR := M ⊗Z R is its associated Euclidean space.

• Cocharacters / one-parameter subgroups: for groups G, a map λ ∈ Grp(C×, G). For
G = T = C×, there is again an isomorphism

Zn 7→ Grp(C×, T )
u = [u1, · · · , un] 7→ λu : t 7→ [tu1 , · · · , tun ].

Define N := Grp(C×, T ) the cocharacter lattice.

– N is a lattice, NR := N ⊗Z R its associated euclidean space.

• There is a perfect pairing

⟨−, −⟩ : M ×N → Z
,

defined using the fact that if m ∈ M,n ∈ N then χm ◦λn ∈ Grp(C×,C×) is of the form t 7→ tℓ,
so set ⟨m, n⟩ := ℓ.

– Thus M = Grp(M,Z) and N = Grp(N,Z).
– How to recover the torus:

N ⊗Z C× → T

u⊗ t 7→ λu(t).

• ∆ is a fan, a collection of strongly convex rational polyhedral cones:

– Cone: 0 ∈ σ and R≥0σ ⊆ σ.
– Strongly convex: contains no nonzero subspace, i.e. no line through 0 ∈ NR. Equiva-

lently, dim σ∨ = n.
– Rational: generated by {vi} ⊆ N , i.e. of the form Cone(S) for S ⊆ N .

• Dual cones:

σ∨ :=
{
u ∈ M

∣∣∣ ⟨u, v⟩ ≥ 0 ∀v ∈ MR
}
.

6.1 Summaries 35



6 Toric Varieties

– If σ∨ =
⋂s

i=1H
+
mi

for mi ⊆ σ∨ then σ∨ = Cone(m1, · · · ,ms).

• Hyperplanes and closed half-spaces:

Hm :=
{
u ∈ NR

∣∣∣ ⟨m, u⟩ = 0
}

⊆ NR

H+
m :=

{
u ∈ NR

∣∣∣ ⟨m, u⟩ ≥ 0
}

⊆ NR.

• Face: τ ≤ σ is a face iff τ is of the form τ = Hm ∩ σ for some m ∈ σ∨ ⊆ MR.

• Facet: codimension one faces, Σ(n− 1) where n := dimN .

• Ray: dimension 1 faces, Σ(1).

• The semigroup of a cone:

Sσ := σ∨ ∩M =
{
u ∈ M

∣∣∣ ⟨u, v⟩ ≥ 0 ∀v ∈ σ
}
.

• The semigroup algebra of a semigroup:

C[S] :=
{∑

s∈S

csχ
s
∣∣∣ cs ∈ C, cs = 0a.e.

}
, χm1 · χm2 := χm1+m2 .

• Simplicial: the generators can be extended to an R-basis of NR. E.g. not simplicial:

• Smooth: the minimal generators can be extended to a Z-basis of N .
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– Checking TpX: m is decomposable in Sσ iff m = m1 +m2 with mi ∈ Sσ; the maximal
ideal at p corresponding to σ is mp =

{
χm

∣∣∣ m ∈ Sσ

}
, and mp/m

2
p =

{
χm

∣∣∣ m is indecomposable in Sσ

}
.

This exactly corresponds to a Hilbert basis.

• Facet: face of codimension 1.

• Edge: face of dimension 1. Note that facets = edges in dimN = 2.

• Saturated: S is saturated if for all k ∈ N \ {0} and all m ∈ M , km ∈ S =⇒ m ∈ S. Any
SCRPC is saturated.

– E.g. S = {(4, 0), (3, 1), (1, 3), (0, 4)} is not saturated since 2 · (2, 2) = (4, 4) ∈ NS but
(2, 2) ̸∈ S.

• Normalization: in the affine case, write X = Spec C[S] with torus character lattice M = ZS,
take a finite generating set S′, and set σ = Cone(S′)∨. Then Spec C[σ∨ ∩ M ] → X is the
normalization.

• Distinguished points: each strongly convex σ ⇝ γσ ∈ Uσ a unique point corresponding to
the semigroup morphism m 7→ 1 [(]m ∈ σ∨ ∩M), which is T -fixed iff σ is full-dimensional.

• Orbits: Orb(σ) = T.γσ, and V (σ) := clOrb(σ).

• Orbit-Cone correspondence: there is a correspondence

{Cones σ ∈ Σ}⇌ {T -orbits in XΣ}

σ 7→ Orb(σ) := T.γσ =
{
γ : Sσ → C

∣∣∣ γ(m) ̸= 0 ⇐⇒ m ∈ σ∨ ∩M
}

∼= Grp(σ ∩M,C×),

where dim Orb(σ) = codimNR σ, and τ ≤ σ =⇒ clOrb(τ) ⊇ clOrb(σ) and in fact clOrb(σ) =∐
τ≤σclOrb(τ).

• Star: define Nτ := Z ⟨τ ∩N⟩ and N(τ)R := NR/(Nτ )R and σ for the image of σ under the
quotient map, then

Star(τ) :=
{
σ ⊆ N(τ)R

∣∣∣ σ ≤ τ
}

⊆ N(τ)R.

This is always a fan, and V (τ) = XStar(τ).

• Star subdivision: for σ = Cone(S) for S := {u1, · · · , un}, set u0 :=
∑
ui and take Σ′(σ)

defined as the cones generated by subsets of {u0, u1, · · · , un} not containing S. The star
subdivision of Σ along σ is Σ⋆(σ) := (Σ \ {σ}) ∪ Σ′(σ).

• Blowups: φ : XΣ⋆(σ) → XΣ is the blowup at γσ.

6.1.3 Divisors

Remark 6.1.4:
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• (Weil) divisor: Div(X) =
{∑

niVi

∣∣∣ Vi ⊆ X, codimVi = 1
}

.

– OX(D): the (coherent) sheaf associated to a Weil divisor D.

• Cartier divisor: CDiv(X) = H0(X; K×
X/O

×
X), the quotient of rational functions by regular

functions. For X normal, equivalently locally principal (Weil) divisors, so D ⇝ {(Ui, fi)}
where D|Ui

= Div(fi).

– Q-Cartier divisor: A Q-divisor D =
∑
niDi with ni ∈ Q is Q-Cartier when mD is

Cartier for some m ∈ Z≥0.
– Q-factorial: every prime divisor is Q-Cartier.

• Ray divisors: every ρ ∈ Σ(1) defines a divisor Dρ := V (ρ) := clOrb(ρ).

• Very Ample: L which defines a morphism into PH0(X; L) ∼= PN .

• Ample: L is basepoint free and some power Ln is very ample.

– D is (very) ample iff OX(D) is (very) ample, i.e. D is ample iff nD is very ample for
some n.

• Upper convex: f(n1 + n2) ≤ f(n1) + f(n2).

– Strictly upper convex: σ1 ̸= σ2 =⇒ fσ1 ̸= fσ2 .

• Linearly equivalent divisors: D1 ∼ D2 ⇐⇒ D1 −D2 = Div(f) for some f .

• Complete linear systems: |D| =
{
D′ ∈ Div(X)

∣∣∣ D′ ∼ D
}

.

• Support function: φ : supp Σ → R where φ|σ is linear for each cone σ.

– Integral with respect to N iff φ(supp Σ ∩ N) ⊆ Z. Defines a set of integral support
functions SF(Σ, N).

• The class group complement exact sequence: for D1, · · · , Dn ∈ Div(X) distinct,

Zn → Cl(X)↠ Cl(X \ ∪Di)
e1 7→ [Di].

• OX(D) is the sheaf

U 7→
{
f ∈ K(X)×(U)

∣∣∣ Div(f) + D|U ≥ 0 ∈ Cl(U)
}
.

Then D ∈ CDiv(X) ⇐⇒ OX(D) ∈ Pic(X).
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• The toric class group exact sequence:

M → DivT (X)↠ Cl(X)
m 7→ Div(χm) =

∑
ρ

⟨m, uρ⟩[Dρ]

where uρ are minimal ray generators.

6.1.4 Polytopes

Remark 6.1.5:
• Supporting hyperplanes: the positive side of an affine hyperplane

Hu,b :=
{
m ∈ MR

∣∣∣ ⟨m, u⟩ = b
}

H+
u,b :=

{
m ∈ MR

∣∣∣ ⟨m, u⟩ ≥ b
}
.

– If P is full dimensional and F ≤ P is a facet, then F = P ∩HuF ,−aF for a unique pair
(uF , aF ) ∈ NR × R.

• Polytope: the convex hull of a finite set S ⊆ NR or an intersection of half-spaces:

P =
{∑

v∈S

λvv
∣∣∣ ∑λv = 1

}
=

s⋂
i=1

H+
ui,bi

.

• Simplex dimP = d and there are exactly d+ 1 vertices.

• Simple: dimP = d and every vertex is the intersection of exactly d facets.

• Simplicial: all facets are simplices.

– E.g. simple but not simplicial: the cube in R3, since each vertex meets 3 edges but a
square is not a simplex. -E.g. Simplicial but not simple: the octahedron in R3, since
each vertex meets 4 edges but each face is a triangle.

• Combinatorial equivalence: P1 ∼ P2 iff there is a bijection P1 → P2 preserving intersec-
tions, inclusions, and dimensions of all faces.

• Polar dual: for P ⊆ MR,

P ◦ =
{
u ∈ NR

∣∣∣ ⟨m, u⟩ ≥ −1 ∀m ∈ P
}
.

– Trick: for P ⊆ MR with 0 ∈ P ,

P =
{
m ∈ MR

∣∣∣ ⟨m, uF ⟩ ≥ −aF , F ∈ Facets(P )
}

=⇒ P ◦ = ∗(
{
a−1

F uF

}
) ⊆ NR.
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E.g. write the square as {⟨m, ±ei⟩ ≥ −1}, then aF = 1 for all F :

• Cone on a polytope: C(P ) := Cone(P × {1}) ⊆ MR × R, the set of cones through all
proper faces of P .

• Normal: (kP ∩M) + (ℓP ∩M) ⊆ (k+ ℓ)P ∩M , or equivalently k · (P ∩M) = (kP ) ∩M , or
equivalently (P ∩M) × {1} generates C(P ) ∩ (M × Z) as a semigroup.

– If P ⊆ MR is a full-dimensional lattice polytope with dimP ≥ 2, then kP is normal for
all k ≥ dimP − 1.

– Normal implies very ample.
– P ⇝ LP ∈ Pic(XP )
– P ∩M ⇝ H0(XP ; LP ).

• Reflexive: a polytope P with facet presentation

P =
{
m ∈ MR

∣∣∣ ⟨m, µF ⟩ ≥ −1∀F ∈ Facets(P )
}
.

Implies that
∫

(P ) ∩M = {0}, and P ◦ = ∗(
{
uF

∣∣∣ F ∈ Facets(P )
}

).

• Polyhedron of a divisor PD: write D =
∑

ρ aρDρ, for any m ∈ M , Div(χm) +D ≥ 0 =⇒
⟨m, ρ⟩ ≥ aρ =⇒ ⟨m, ρ⟩ ≥ −aρ, so set

PD :=
{
m ∈ MR

∣∣∣ ⟨m, ρ⟩ ≥ aρ ∀ρ ∈ Σ(1)
}
.

• Divisor of a polytope: DP =
∑

F aFDF where P =
{
m
∣∣∣ ⟨m, uF ⟩ ≥ −aF

}
.

– DP is always the pullback of OPN (1) along the embedding.

• Very ample polytopes: for every vertex v, the semigroup
{
m′ − v

∣∣∣ m′ ∈ P ∩M
}

is satu-
rated in M .

– Gives an embedding X ↪→ PN where N = ♯(P ∩M) − 1.
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• The toric variety of a polytope: if P ∩M = {m1, · · · ,ms} and P is full dimensional very
ample, then writing TN for the torus of N ,

XP := cl imφ, φ : TN → Ps−1

t 7→ [χm1(t) : · · · : χms(t)].

– Vertices mi correspond to Uσi for σi = Cone(P ∩M −mi)∨:

• Smooth: P is smooth iff for all vertices v ∈ P ,
{
wE − v

∣∣∣ E is an edge containing v
}

can be
extended to a Z-basis of M , where wE is the first lattice point on E.

6.1.5 Singularities and Classification

Remark 6.1.6:
• Gorenstein: X normal where KX ∈ CDiv(X) is Cartier.
• Normal: all local rings are integrally closed domains.
• Complete: proper over k. E.g. for varieties, just universally closed.
• Factorial: all local rings are UFDs.
• Fano: −KX is ample.
• del Pezzo: a smooth Fano surface.

Remark 6.1.7: Classification of smooth complete toric varieties:

• dim Σ = 2, ♯Σ(1) = 3: without loss of generality ρ1 = e1, ρ2 = e2. Then ρ3 = ae1 + be2 with
a, b < 0 to ensure supp Σ = R2, and determinants for |a| = |b| = 1, so (−1, 1).

• dim Σ = 2, ♯Σ(1) = 4: without loss of generality ρ1 = e1, ρ2 = e2. Then determinant

conditions for ρ3 = (−1, b) and ρ4 = (a,−1), and det
[
−1 a
b −1

]
= 1 −ab = ±1 =⇒ ab = 0, 2,

so (a, b) = (2, 1), (1, 2), (−2,−1), (−1,−2).
• dim Σ = 2, ♯Σ(1) = d, smooth: Blp1,··· ,pℓ

X for X = P2 or Fa for some a and pi torus fixed
points.
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6.1.6 Examples

Question 6.1.8
Things you can figure out for every example:

• Given ∆, for σ ∈ ∆,

– What is σ∨?
– Generators for Sσ?
– Describe Uσ and X(∆).
– What are the transition functions for Uσ1 → Uσ2 when σ1 ∩σ2 = τ intersect in a common

face?

• What are the T -invariant points?

– What are the T -invariant divisors Dρi?
– What are all of the T -orbit closures of various dimensions?

• Is X(∆) smooth?

– Which cones σ ∈ ∆ are smooth?
– What is the canonical resolution of singularities?
– What is the tangent space at each T -invariant point?

• What is the associated polytope P∆? What is its polar dual P ◦
∆?

• What are the intersection numbers Dρi ·Dρj ?

– What are the self-intersection numbers D2
ρi

?

• What is DivT (X)? CDivT (X)?

– Which divisors are ample? Very ample? Globally generated?

• What is Cl(X)? Pic(X)?
• What is KX?

– Is KX ample?

• Is X(∆) projective?
• What is H0(X(∆); O(D)) for D ∈ DivT (X)?
• What is the Poincaré polynomial of X(∆)? (I.e. what are the Betti numbers?)

Example 6.1.9(of varieties): Some useful explicit varieties:

• V (x3 − y2) with torus T =
{[
t2, t3

] ∣∣∣ t ∈ C×
}

.

• V (xy − zw) with torus T =
{[
a, b, c, abc−1] ∣∣∣ a, b, c, d ∈ C×

}
.

• V (xz − y2), note V (x, y) ∈ Div(X) \ CDiv(X).
• im([x : y] 7→ [x3 : x2y : xy2 : y3]) the twisted cubic. Corresponds to σ∨ = {(3, 0), (2, 1), (1, 2), (0, 3)}.
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• The rational normal scroll: V
(

2 × 2 minors of
[
x0 x1 y0
x1 x2 y1

])
is the image of [s, t] 7→[

1 : s : s2 : t : st
]
.

• The Segre variety: Spec C[x1y1, x1y2, · · · , x1yn, x2y1, · · · , xmy1, · · ·xmyn].

Example 6.1.10(of fans):
• (C×)n: Take ∆ = {σ0 = N ⟨0⟩} ⊆ N with dimN = n yields Sσ0 = N ⟨±e1

∨, · · · ,±en
∨⟩ = M

for so X(∆) = Spec C[x±1
1 , · · · , x±1

n ] = (Gm)n.
• Cn: Take ∆ = Cone(σ0 = N ⟨e1, · · · , en⟩) yields the positive orthant Sσ0 = N ⟨e1

∨, · · · , en
∨⟩ ⊆

M , so X(∆) = Spec C[x1, · · · , xn] = An.
• The quadric cone: ∆ = Cone(σ1 = N ⟨e2, 2e1 − e2⟩) yields Sσ1 = N ⟨e1

∨, e1
∨ + e2

∨, e1
∨ + 2e2

∨⟩
so X(∆) = Spec C[x, xy, xy2] = Spec C[u, v, w]/(v2 − uw):

• P1: Take ∆ = {R≥0, 0,R≤0} and glue along overlaps to get X(∆) = P1 with gluing maps
x 7→ x−1:
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• Bl1 C2: Take σ0 = N ⟨e2, e1 + e2⟩ and σ1 = N ⟨e1 + e2, e1⟩ to get Uσ0 = Spec C[x, x−1y] and
Uσ1 = Spec C[y, xy−1], both copies of C2:

Why this is a blowup of C2: write Bl1 C2 = V (xt1 − yt0) ⊆ C2 × P1 for P1 = {[t0 : t1]}. Take
the open cover Ui = D(ti) ∼= C2, where coordinates on U0 are x, t1/t0 = x−1y and on U1 are
y, t0/t1 = xy−1 and glue.

• P2: take ∆ = Cone(e1, e2,−e1 − e2):

This has dual cone:
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Each Uσi
∼= C2 with coordinates (x, y), (x−1, x−1y), (y−1, xy−1) respectively for Ui. Glue to

obtain x = t1/t0, y = t2/t0.

• Fa the Hirzebruch surface: take Cone(e1,−e2,−e1,−e1 + ae2) to get

– Uσ1 = Spec C[x, y],
– Uσ2 = Spec C[x, y−1],
– Uσ3 = Spec C[x−1, x−ay−1],
– Uσ4 = Spec C[x−1, xay],

which patch in the following way:

Project to y = 0 to get the patching x 7→ x−1, so a copy of P1. Patching in the fiber direction,
e.g. Uσ1 and Uσ2 , gives a copy of C × P1. Thus this is a bundle P1 → E → P1.

• C × P1: todo.

• P1 × P1: todo.

• Ca × Pb: todo.
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• Pa × Pb: todo.

Example 6.1.11(of polytopes): • Hirzebruch surfaces:

• (P2,O(1)): take P = ∗(0, e1, e2), so XP = clΦP where

ΦP : (C×)2 → P2

(s, t) 7→ [1 : s : t],

which is the identity embedding corresponding to O(1) on P2.

– 2P yields

Φ2P : (C×)2 → P5

(s, t) 7→ [1 : s : t : s2 : st : t2],

the Veronese embedding corresponding to O(2) on P2.
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Example 6.1.12(Projective spaces): Some useful facts about Pn:

• The torus embedding is

(C×)n ↪→ Pn

[a1, · · · , an] 7→ [1 : a1 : · · · : an].

• The torus action is

(C×)n ↷ Pn

[t1, · · · , tn].[x0 : x1 : · · · : xn] = [x0 : t1x1 : · · · : tnxn].

Example 6.1.13(of class groups and Picard groups):

7 I: Definitions and Examples

E 7.1 1.1: Introduction e
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Remark 7.1.1: Machinery used to study varieties:

• Various cohomology theories
• Resolutions of singularities
• Intersection theory and cycles
• Riemann-Roch theorems
• Vanishing theorems
• Linear systems (via line bundles and projective embeddings)

Varieties that arise as examples

• Grassmannians
• Flag varieties
• Veronese embeddings
• Scrolls
• Quadrics
• Cubic surfaces
• Toric varieties (of course)
• Symmetric varieties and their compactifications

Misc notes:

• Toric varieties are always rational

Remark 7.1.2:
• Toric varieties: normal varieties X with T ↪→ X contained as a dense open subset where the

torus action T × T → T extends to T ×X → X.
• Any product of copies of An,Pm are toric.
• Sσ is a finitely-generated semigroup, so C[Sσ] ∈ AlgCfg corresponds to an affine variety
Uσ := Spec C[Sσ].

• If τ ≤ σ is a face then there is a map of affine varieties Uτ → Uσ where Uτ = D(uτ ) is a
principal open subset given by the function uτ picked such that τ = σ∩u⊥

τ , so uτ corresponds
to the orthogonal normal vector for the wall τ .

• These glue to a variety X(∆).
• Smaller cones correspond to smaller open subsets.
• The geometry in N is nicer than that in M , usually.
• Rays ρ correspond to curves Dρ.

Exercise 7.1.3 (?)

• Show Fa → P1 is isomorphic to P(O(a) ⊕ O(1)).
• Let τ be the ray through e2 in Fa and show D2

τ = −a.
• Show that the normal bundle to Dτ ↪→ Fa is O(−a).
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E 7.2 1.2: Convex Polyhedral Cones e

Remark 7.2.1:
• Convex polyhedral cones: generated by vectors σ = R≥0 ⟨v1, · · · , vn⟩. Can take minimal

vectors along these rays, say ρi.

• dim σ := dimR Rσ := dimR(−σ + σ)
• (σ∨)∨ = σ, which follows from a general theorem: for σ a convex polyhedral cone and v ̸∈ σ,

there is some support vector uv ∈ σ∨ such that ⟨u, v⟩ < 0. I.e. v is on the negative side of
some hyperplane defined in σ∨.

• Faces are again convex polyhedral cones, faces are closed under intersections and taking
further faces.

• If σ spans V and τ is a facet, there is a unique uτ ∈ σ∨ such that τ = σ ∩ u⊥
τ ; this defines an

equation for the hyperplane Hτ spanned by τ .
• If σ spans V and σ ̸= V , then σ = ∩τ∈∆H

+
τ , the intersection of positive half-spaces.

– An alternative presentation: picking u1, · · · , ut generators of σ∨, one has σ =
{
v ∈ N

∣∣∣ ⟨u1, v⟩ ≥ 0, · · · , ⟨ut, v⟩ ≥ 0
}

.

• If τ ≤ σ then σ∨ ∩ τ∨ ≤ σ∨ and dim τ = codim(σ∨ ∩ τ∨), so the faces of σ, σ∨ biject
contravariantly.

• If τ = σ ∩ u⊥
τ then Sτ = Sσ + N ⟨−uτ ⟩.

8 Singularities and Compactness

E 8.1 2.1 e

Remark 8.1.1: • Any cone σ ∈ Σ has a distinguished point xσ corresponding to Hom(Sσ,C)
where u 7→ χu∈σ⊥ .

– Note Sσ := σ∨ ∩M .
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• Define Aσ := C[Sσ].

• Finding singular points:

– Easy case: σ spans NR so σ⊥ = 0; consider m ∈ mSpecAσ be the maximal ideal at
xσ, then m =

〈
χu

∣∣∣ u ∈ Sσ

〉
and m2 =

〈
χu

∣∣∣ u ∈ Sσ \ {0} + Sσ \ {0}
〉
, so Txσ

∨Uσ =

m/m2 =
{
χu

∣∣∣ u ̸∈ Sσ \ {0} + Sσ \ {0}
}

, i.e. “primitive” elements u which are not the
sums of two other vectors in Sσ \ {0}.

– Nonsingular implies dimUσ = n, so σ∨ has ≤ n edges since each minimal ray generator
yields a primitive u above. Also implies minimal edge generators must generate Sσ, thus
must be a basis for M , so σ must be a basis for N and Uσ

∼= An.

• Characterization of smoothness: Uσ is smooth iff σ is generated by a subset of a lattice
basis for N , in which case Uσ

∼= Ak × Gn−k
m .

• All toric varieties are normal since each Aσ is integrally closed.

– If σ = ⟨v1, · · · , vr⟩ then σ∨ = ∩r
i=1τi

∨ where τi is the ray along vi. Thus Aσ = ∩Aτi ,
each of which is isomorphic to C[x1, x

±1
2 , · · · , x±1

n which is integrally closed.

• All toric varieties are Cohen-Macaulay: each local ring R has depth n, i.e. contains a regular
sequence of length n = dimR.

• All vector bundles on affine toric varieties are trivial, equivalently all projective modules over
Aσ are free.

E 8.2 2.2 e

Remark 8.2.1: • An example: Σ = Cone(me1 − e2, e2). Then Aσ = C[x, xy, xy2, · · · , xym] =
C[umum−1v, · · · , uvm−1, vm] and Uσ is the cone over the rational normal curve of degree m.

– Note Aσ = C[u, v]µm is the ring of invariants under the diagonal action ζ.[u, v] = [ζu, ζv].

• If Σ is simplicial, then XΣ is at worst an orbifold.

E 8.3 2.3 e

Remark 8.3.1: • HomAlgGrp(Gm,Gm) = Z using n 7→ (z 7→ zn).

• Cocharacters:

8.2 2.2 50
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– Pick a basis for N to get Hom(Gm, TN ) = Hom(Z, N) = N , then every cocharacter
λ ∈ Hom(Gm, TN ) is given by a unique v ∈ N , so denote it λv. Then λv(z) ∈ TN =
Hom(M,Gm) for any z ∈ C×, so

u ∈ M =⇒ λv(z)(u) = χu(λv(z)) = z⟨u, v⟩.

• Characters: χ ∈ Hom(Tn,Gm) = Hom(N,Z) = M is given by a unique u ∈ M and can be
identified with u ∈ C[M ] = H0(TN ,O×

TN
).

• limz→0 λv(z) = limz→0 [zm1 , · · · , zmn ] ∈ Uσ ⇐⇒ mi ≥ 0 for all i, and if Uσ = Ak × Gn−k
m ,

mi = 0 for i > k. This happens iff v ∈ σ, and the limit is [δ1, · · · , δn] where δi = 1 ⇐⇒ mi = 0
and δi = 0 ⇐⇒ mi > 0; each of which is a distinguished point xτ for some face τ of σ.

• Summary: v ∈ |Σ| and v ∈ τ◦ then limz→0 λv(z) = xτ , and the limit does not exist for v ̸∈ |Σ|.

E 8.4 2.4 e

Remark 8.4.1: • Recall X is compact in the Euclidean topology iff it is complete/proper in
the Zariski topology, i.e. the map to a point is proper.

• XΣ is compact iff |Σ| = NR, i.e. Σ is complete.

• Any morphism of lattices φ : N → N ′ inducing a map of fans Σ → Σ′ defines a morphism
XΣ → XΣ′ which is proper iff φ−1(|Σ′|) = |Σ|. Thus XΣ is compact iff φ : N → 0 is a proper
morphism.

• Blowing up at xσ: take a basis {vi}, set v0 :=
∑
vi, and replace σ by all subsets of

{v0, v1, · · · , vn} not containing {v1, · · · , vn}.
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