Preview

University of Georgia

D. Zack Garza University of Georgia dzackgarza@gmail.com

 $Last\ updated \hbox{:}\ 2022\hbox{-}12\hbox{-}07$

Table of Contents

Contents

Ta	Table of Contents					
1	I: Va	arieties	3			
	1.1	I.1: Affine Varieties *	3			
	1.2	I.2: Projective Varieties *	6			
	1.3	I.3: Morphisms	7			
	1.4	I.4: Rational Maps	7			
	1.5	I.5: Nonsingular Varieties	7			
	1.6	I.6: Nonsingular Curves	7			
	1.7	I.7: Intersections in Projective Space	7			
2	II: S	II: Schemes				
	2.1	II.1: Sheaves *	8			
	2.2	II.2: Schemes	12			
	2.3	II.3: First Properties of Schemes	12			
	2.4	II.4: Separated and Proper Morphisms	12			
	2.5	II.5: Sheaves of Modules				
	2.6	II.6: Divisors	12			
	2.7	II.7: Projective Morphisms	12			
	2.8	II.8: Differentials	12			
	2.9	II.9: Formal Schemes	12			
3	III: Cohomology					
	3.1		13			
	3.2		13			
	3.3		13			
	3.4		13			
	3.5	<u> </u>	13			
	3.6		13			
	3.7		13			
	3.8	III.8: Higher Direct Images of Sheaves	13			
	3.9	III.9: Flat Morphisms	13			
	3.10	III.10: Smooth Morphisms	13			
	3.11	III.11: The Theorem on Formal Functions	13			
	3.12	III.12: The Semicontinuity Theorem	13			
4	IV: (IV: Curves *				
	4.1	IV.1: Riemann-Roch	15			
	4.2	IV.2: Hurwitz *	18			
	4.3	IV.3: Embeddings in Projective Space *	23			
	4.4	IV.4: Elliptic Curves *	26			
		4.4.1 The <i>j</i> -invariant	26			

Table of Contents

Contents

		4.4.2 The group structure	28
		4.4.3 Elliptic functions	29
	4.5	IV.5: The Canonical Embedding	2 9
	4.6	IV.6: Classification of Curves in \mathbf{P}^3	30
5	V: 5	Surfaces	31
	5.1	V.1: Geometry on a Surface	31
	5.2	V.2: Ruled Surfaces	31
	5.3	V.3: Monoidal Transformations	31
	5.4	V.4: The Cubic Surface in \mathbf{P}^3	31
	5.5	V.5: Birational Transformations	31
	5.6	V.6: Classification of Surfaces	31
6	Tori	c Varieties	31
	6.1	Summaries	31
		6.1.1 Quick Criteria	31
		6.1.2 Cones and Lattices	34
		6.1.3 Divisors	36
		6.1.4 Polytopes	38
		6.1.5 Singularities and Classification	40
		6.1.6 Examples	41
7	I: D	efinitions and Examples	46
	7.1	1.1: Introduction	47
	7.2	1.2: Convex Polyhedral Cones	48
8	Sing	gularities and Compactness	48
	8.1		48
	8.2	2.2	49
	8.3	2.3	
	8 1		50

Contents 3

1: Varieties

$\mathbf{1}$ | I: Varieties

Remark 1.0.1: Some useful basic properties:

• Properties of V:

$$- \bigcap_{i \in I} V(\mathfrak{a}_i) = V\left(\sum_{i \in I} \mathfrak{a}_i\right).$$

$$\diamondsuit \text{ E.g. } V(x) \cap V(y) = V(\langle x \rangle + \langle y \rangle) = V(x,y) = \{0\}, \text{ the origin.}$$

$$- \bigcup_{i \leq n} V(\mathfrak{a}_i) = V\left(\prod_{i \leq n} \mathfrak{a}_i\right).$$

$$\diamondsuit \text{ E.g. } V(x) \cup V(y) = V(\langle x \rangle \langle y \rangle) = V(xy), \text{ the union of coordinate axes.}$$

$$- V(\mathfrak{a})^c = \bigcup_{f \in \mathfrak{a}} D(f)$$

$$- V(\mathfrak{a}_1) \subseteq V(\mathfrak{a}_2) \iff \sqrt{\mathfrak{a}_1} \supseteq \sqrt{\mathfrak{a}_2}.$$

- Properties of *I*:
 - $-I(V(\mathfrak{a})) = \sqrt{\mathfrak{a}}$ and $V(I(Y)) = \operatorname{cl}_{\mathbf{A}^n}(Y)$. The containment correspondence is contravariant in both directions.
 - $I(\cup_i Y_i) = \cap_i I(Y_i).$
- If F is a sheaf taking values in subsets of a giant ambient set, then $F(\cup U_i) = \cap F(U_i)$. For \mathbf{A}^n/\mathbf{C} , take $\mathbf{C}(x_1, \dots, x_n)$, the field of rational functions, to be the ambient set.
- Distinguished open $D(f) := \{ p \in X \mid f(p) \neq 0 \}$:
 - $-\mathcal{O}_X(D(f)) = A(X)\left[\frac{1}{f}\right] = \left\{\frac{g}{f^k} \mid g \in A(X), k \geq 0\right\}$, and taking f = 1 shows $\mathcal{O}_X(X) = A(X)$, i.e. global regular functions are polynomial.
 - Generally $D(fq) = D(f) \cap D(q)$
 - For affines:

$$\mathcal{O}_{\operatorname{Spec} R}(D(f)) = R\left[\frac{1}{f}\right].$$

- For \mathbf{C}^n ,

$$\mathcal{O}_{\mathbf{C}^n}(D(f)) = k[x_1, \cdots, x_n][1/f] \implies \mathcal{O}_{\mathbf{C}^n}(V(\mathfrak{a})^c) = \cap_{f \in \mathfrak{a}} \mathcal{O}_{\mathbf{C}^n}(D(f)).$$

1.1 I.1: Affine Varieties *

Remark 1.1.1: Summary:

- $\mathbf{A}_{/k}^n = \{[a_1, \cdots, a_n] \mid a_i \in k\}$, and elements $f \in A := k[x_1, \cdots, x_n]$ are functions on it.
- $Z(f) := \{ p \in \mathbf{A}^n \mid f(p) = 0 \}$, and for any $T \subseteq A$ we set $Z(T) := \bigcap_{f \in T} Z(f)$.
 - Note that $Z(T) = Z(\langle T \rangle_A) = Z(\langle f_1, \cdots, f_r \rangle)$ for some generators f_i , using that A is a Noetherian ring. So every Z(T) is the set of common zeros of finitely many polynomials, i.e. the intersection of finitely many hypersurfaces.

I: Varieties 4

1 I: Varieties

- Algebraic: $Y \subseteq \mathbf{A}^n$ is algebraic iff Y = Z(T) for some $T \subseteq A$.
- The Zariski topology is generated by open sets of the form $Z(T)^c$.
- A^1 is a non-Hausdorff space with the cofinite topology.
- Irreducible: Y is reducible iff $Y = Y_1 \cup Y_2$ with Y_1, Y_2 proper subsets of Y which are closed in Y.
 - Nonempty open subsets of irreducible spaces are both irreducible and dense.
 - If $Y \subseteq X$ is irreducible then $\operatorname{cl}_X(Y) \subseteq X$ is again irreducible.
- Affine (algebraic) varieties: irreducible closed subsets of A^n .
- Quasi-affine varieties: open subsets of affine varieties.
- The ideal of a subset: $I(Y) := \{ f \in A \mid f(p) = 0 \ \forall p \in Y \}.$
- Nullstellensatz: if $k = \overline{k}$, $\mathfrak{a} \in \mathrm{Id}(k[x_1, \dots, x_n])$, and $f \in k[x_1, \dots, x_n]$ with f(p) = 0 for all $p \in V(\mathfrak{a})$, then $f^r \in \mathfrak{a}$ for some r > 0, so $f \in \sqrt{\mathfrak{a}}$. Thus there is a contravariant correspondence between radical ideals of $k[x_1, \dots, x_n]$ and algebraic sets in $\mathbf{A}_{/k}^n$.
- Irreducibility criterion: Y is irreducible iff $I(Y) \in \operatorname{Spec} k[x_1, \dots, x_n]$ (i.e. it is prime).
- Affine curves: if $f \in k[x,y]^{irr}$ then $\langle f \rangle \in \operatorname{Spec} k[x,y]$ (since this is a UFD) so Z(f) is irreducible and defines an affine curve of degree $d = \deg(f)$.
- Affine surfaces: Z(f) for $f \in k[x_1, \dots, x_n]^{irr}$ defines a surface.
- Coordinate rings: $A(Y) := k[x_1, \dots, x_n]/I(Y)$.
- Noetherian spaces: $X \in \mathsf{Top}$ is Noetherian iff the DCC on closed subsets holds.
- Unique decomposition into irreducible components: if $X \in \mathsf{Top}$ is Noetherian then every closed nonempty $Y \subseteq X$ is of the form $Y = \bigcup_{i=1}^r Y_i$ with Y_i a uniquely determined closed irreducible with $Y_i \not\subseteq Y_j$ for $i \neq j$, the *irreducible components* of Y.
- **Dimension**: for $X \in \mathsf{Top}$, the dimension is $\dim X := \sup \{ n \mid \exists Z_0 \subset Z_1 \subset \cdots \subset Z_n \}$ with Z_i distinct irreducible closed subsets of X. Note that the dimension is the number of "links" here, not the number of subsets in the chain.
- **Height**: for $\mathfrak{p} \in \operatorname{Spec} A$ define $\operatorname{ht}(\mathfrak{p}) := \sup \{ n \mid \exists \mathfrak{p}_0 \subset \mathfrak{p}_1 \subset \cdots \subset \mathfrak{p}_n = \mathfrak{p} \}$ with $\mathfrak{p}_i \in \operatorname{Spec} A$ distinct prime ideals.
- Krull dimension: define krulldim $A := \sup_{\mathfrak{p} \in \operatorname{Spec} A} \operatorname{ht}(\mathfrak{p})$, the supremum of heights of prime ideals

Exercise 1.1.2 (The Zariski topology)

Show that the class of algebraic sets form the closed sets of a topology, i.e. they are closed under finite unions, arbitrary intersections, etc.

Exercise 1.1.3 (The affine line)

- Show that $\mathbf{A}_{/k}^1$ has the cofinite topology when $k = \overline{k}$: the closed (algebraic) sets are finite sets and the whole space, so the opens are empty or complements of finite sets. ^a
- Show that this topology is not Hausdorff.
- Show that A^1 is irreducible without using the Nullstellensatz.
- Show that \mathbf{A}^n is irreducible.
- Show that maximal ideals $\mathfrak{m} \in \mathrm{mSpec}\, k[x_1, \cdots, x_n]$ correspond to minimal irreducible closed subsets $Y \subseteq \mathbf{A}^n$, which must be points.
- Show that $\operatorname{mSpec} k[x_1, \dots, x_n] = \{\langle x_1 a_1, \dots, x_n a_n \rangle \mid a_1, \dots, a_n \in k \}$ for $k = \overline{k}$,

1.1 I.1: Affine Varieties ★ 5

1: Varieties

and that this fails for $k \neq \overline{k}$.

- Show that \mathbf{A}^n is Noetherian.
- Show dim $\mathbf{A}^1 = 1$.
- Show dim $\mathbf{A}^n = n$.

^aHint: k[x] is a PID and factor any f(x) into linear factors using that $k = \overline{k}$ to write $Z(\mathfrak{a}) = Z(f) = \{a_1, \dots, a_k\}$ for some k.

Exercise 1.1.4 (Commutative algebra)

- Show that if Y is affine then A(Y) is an integral domain and in ${}_k\mathsf{Alg}^{\mathrm{fg}}$.
- Show that every $B \in {}_k\mathsf{Alg}^{\mathrm{fg}} \cap \mathsf{Domain}$ is of the form B = A(Y) for some $Y \in \mathsf{AffVar}_{/k}$.
- Show that if Y is an affine algebraic set then $\dim Y = \operatorname{krulldim} A(Y)$.

Theorem 1.1.5 (Results from commutative algebra).

- If $k \in \mathsf{Field}, B \in {}_k\mathsf{Alg}^{\mathrm{fg}} \cap \mathsf{Domain}$,
 - krulldim $B = [K(B) : B]_{tr}$ is the transcendence degree of the quotient field of B over B.
 - If $\mathfrak{p} \in \operatorname{Spec} B$ then $\operatorname{ht} \mathfrak{p} + \operatorname{krulldim}(B/\mathfrak{p}) = \operatorname{krulldim} B$.
- Krull's Hauptidealsatz:
 - If $A \in \mathsf{CRing}^{\mathsf{Noeth}}$ and $f \in A \backslash A^{\times}$ is not a zero divisor, then every minimal $\mathfrak{p} \in \mathsf{Spec}\,A$ with $\mathfrak{p} \ni f$ has height 1.
- If $A \in \mathsf{CRing}^{\mathsf{Noeth}} \cap \mathsf{Domain}$, then A is a UFD iff every $\mathfrak{p} \in \mathsf{Spec}(A)$ with $\mathsf{ht}(\mathfrak{p}) = 1$ is principal.

Exercise 1.1.6 (1.10)

Show that if Y is quasi-affine then

 $\dim Y = \dim \operatorname{cl}_{\mathbf{A}^n} Y.$

Exercise 1.1.7 (1.13)

Show that if $Y \subseteq \mathbf{A}^n$ then $\operatorname{codim}_{\mathbf{A}^n}(Y) = 1 \iff Y = Z(f)$ for a single nonconstant $f \in k[x_1, \dots, x_n]^{\operatorname{irr}}$.

Exercise 1.1.8 (?)

Show that if $\mathfrak{p} \in \operatorname{Spec}(A)$ and $\operatorname{ht}(\mathfrak{p}) = 2$ then \mathfrak{p} can not necessarily be generated by two elements.

1.2 I.2: Projective Varieties *

1.1 I.1: Affine Varieties *

1: Varieties

Remark 1.2.1:

- Projective space: $\{\mathbf{a} := [a_0, \cdots, a_n] \mid a_i \in k \} / \sim \text{ where } \mathbf{a} \sim \lambda \mathbf{a} \text{ for all } \lambda \in k \setminus \{0\}, \text{ i.e. lines in } \mathbf{A}^{n+1} \text{ passing through } \mathbf{0}.$
- Graded rings: a ring S with a decomposition $S = \bigoplus_{d \geq 0} S_d$ with each $S_d \in \mathsf{AbGrp}$ and $S_d S_e \subseteq S_{d+e}$; elements of S_d are homogeneous of degree d and any element in S is a finite sum of homogeneous elements of various degrees.
- Homogeneous polynomials: f is homogeneous of degree d if $f(\lambda x_0, \dots, \lambda x_n) = \lambda^d f(x_0, \dots, x_n)$.
- Homogeneous ideals: $\mathfrak{a} \subseteq S$ is homogeneous when it's of the form $\mathfrak{a} = \bigoplus_{d \geq 0} (\mathfrak{a} \cap S_d)$.
 - $-\mathfrak{a}$ is homogeneous iff generated by homogeneous elements.
 - The class of homogeneous ideals is closed under sums, products, intersections, and radicals.
 - Primality of homogeneous ideals can be tested on homogeneous elements, i.e. it STS $fg \in \mathfrak{a} \implies f,g \in \mathfrak{a}$ for f,g homogeneous.
- $k[x_1, \dots, x_n] = \bigoplus_{d \geq 0} k[x_1, \dots, x_n]_d$ where the degree d part is generated by monomials of total weight d.
 - E.g.

$$k[x_1, \dots, x_n]_1 = \langle x_1, x_2, \dots, x_n \rangle$$

$$k[x_1, \dots, x_n]_2 = \langle x_1^2, x_1 x_1^2, x_1 x_2, \dots, x_2^2, x_2 x_3, x_2 x_4, \dots, x_n^2 \rangle.$$

– Useful fact: by stars and bars, $\operatorname{rank}_k k[x_1, \cdots, x_n]_d = \binom{d+n}{n}$. E.g. for (d, n) = (3, 2),

$$\begin{array}{c} x_1^3 \longleftrightarrow \star \star \star \mid \mid \\ x_1^2 x_2 \longleftrightarrow \star \star \mid \star \mid \\ x_1^2 x_3 \longleftrightarrow \star \star \mid \mid \star \\ x_1 x_2^2 \longleftrightarrow \star \mid \star \star \mid \\ x_1 x_2^2 \longleftrightarrow \star \mid \star \star \mid \\ x_1 x_2 x_3 \longleftrightarrow \star \mid \star \mid \star \\ x_1 x_2 x_3 \longleftrightarrow \star \mid \star \mid \star \\ x_2 x_3 \longleftrightarrow \mid \star \star \star \mid \\ x_2^3 \longleftrightarrow \mid \star \star \star \mid \\ x_2^2 x_3 \longleftrightarrow \mid \star \star \mid \star \\ x_2 x_3^2 \longleftrightarrow \mid \star \mid \star \star \\ x_3^3 \longleftrightarrow \mid \mid \star \star \star \\ x_3^3 \longleftrightarrow \mid \mid \star \star \star \end{array}$$

1 I: Varieties

• Arbitrary polynomials $f \in k[x_0, \dots, x_n]$ do not define functions on \mathbf{P}^n because of non-uniqueness of coordinates due to scaling, but homogeneous polynomials f being zero or not is well-defined and there is a function

$$\operatorname{ev}_f: \mathbf{P}^n \to \{0, 1\}$$

$$p \mapsto \begin{cases} 0 & f(p) = 0 \\ 1 & f(p) \neq 0. \end{cases}$$

So $Z(f) := \{ p \in \mathbf{P}^n \mid f(p) = 0 \}$ makes sense.

- Projective algebraic varieties: Y is projective iff it is an irreducible algebraic set in \mathbf{P}^n . Open subsets of \mathbf{P}^n are quasi-projective varieties.
- Homogeneous ideals of varieties:

$$I(Y) := \left\{ f \in k[x_0, \cdots, x_n]^{\text{homog}} \mid f(p) = 0 \,\forall p \in Y \right\}.$$

• Homogeneous coordinate rings:

$$S(Y) := k[x_0, \cdots, x_n]/I(Y).$$

• Z(f) for f a linear homogeneous polynomial defines a **hyperplane**.

Exercise 1.2.2 (Cor. 2.3)

Show \mathbf{P}^n admits an open covering by copies of \mathbf{A}^n by explicitly constructing open sets U_i and well-defined homeomorphisms $\varphi_i:U_i\to\mathbf{A}^n$.

✓	1.3 I.3: Morphisms	~
	1.4 I.4: Rational Maps	~
	1.5 I.5: Nonsingular Varieties	\sim
	1.6 I.6: Nonsingular Curves	\sim
	1.7 L7: Intersections in Projective Space	~

1.3 I.3: Morphisms

II: Schemes

Note: there are many, many important notions tucked away in the exercises in this section.

2.1 II.1: Sheaves \star

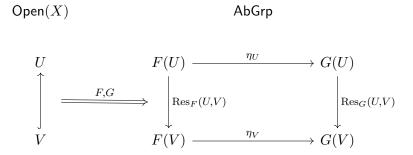
Remark 2.1.1:

- Presheaves F of abelian groups: contravariant functors $F \in \text{Fun}(\text{Open}(X), \text{AbGrp})$.
 - Assigns every open $U \subseteq X$ some $F(U) \in \mathsf{AbGrp}$
 - For $\iota_{VU}: V \subseteq U$, restriction morphisms $\varphi_{UV}: F(U) \to F(V)$.
 - $-F(\emptyset)=0$, so $F(\emptyset^{\downarrow})=0_{\uparrow}$.
 - $-\varphi_{UU}=\mathrm{id}_{F(U)}$
 - $-W \subseteq V \subseteq \dot{U} \implies \varphi_{UW} = \varphi_{VW} \circ \varphi_{UV}.$
- Sections: elements $s \in F(U)$ are sections of F over U. Also notation $\Gamma(U;F)$ and $H^0(U;F)$, and the restrictions are written $s|_{V} := \varphi_{UV}(s)$ for $s \in F(U)$.
- Sheaves: presheaves F which are completely determined by local data. Additional requirements on open covers $\mathcal{V} \rightrightarrows U$:

 - If $s \in F(U)$ with $s|_{V_i} = 0$ for all i then $s \equiv 0 \in F(U)$. Given $s_i \in F(V_i)$ where $s_i|_{V_{ij}} = s_j|_{V_{ij}} \in F(V_{ij})$ then $\exists s \in F(U)$ such that $s|_{V_i} = s_i$ for each i, which is unique by the previous condition.
- Constant sheaf: for $A \in \mathsf{AbGrp}$, define the constant sheaf

$$\underline{A}(U) := \mathsf{Top}(U, A^{\mathrm{disc}}).$$

- Stalks: $F_p := \underset{U \ni p}{\underline{\operatorname{colim}}} F(U)$ along the system of restriction maps.
 - These are represented by pairs (U, s) with $U \ni p$ an open neighborhood and $s \in F(U)$, modulo $(U, s) \sim (V, t)$ when $\exists W \subseteq U \cap V$ with $s|_{w} = t|_{w}$.
- Germs: a germ of a section of F at p is an elements of the stalk F_p .
- Morphisms of presheaves: natural transformations $\eta \in \text{Mor}_{\text{Fun}}(F,G)$, i.e. for every U,V, components η_U, η_V fitting into a diagram



II: Schemes 9

Link to Diagram

- A morphism of sheaves is exactly a morphism of the underlying presheaves.
- Morphisms of sheaves $\eta: F \to G$ induce morphisms of rings on the stalks $\eta_p: F_p \to G_p$.
- Morphisms of sheaves are isomorphisms iff isomorphisms on all stalks, see exercise below.
- Kernels, cokernels, images: for $\varphi : F \to G$, sheafify the assignments to kernels/cokernels/images on open sets.
- Sheafification: for any $F \in \operatorname{Sh}(X)$, there is a unique $F^+ \in \operatorname{Sh}(X)$ and a morphism $\theta : F \to F^+$ of presheaves such that any sheaf presheaf morphism $F \to G$ factors as $F \to F^+ \to G$.
 - The construction: $F^+(U) = \mathsf{Top}(U, \coprod_{p \in U} F_p)$ are all functions s into the union of stalks, subject to $s(p) \in F_p$ for all $p \in U$ and for each $p \in U$, there is a neighborhood $V \supseteq U \ni p$ and $t \in F(V)$ such that for all $q \in V$, the germ t_q is equal to s(q).
 - Note that the stalks are the same: $(F^+)_p = F_p$, and if F is already a sheaf then θ is an isomorphism.
- Subsheaves: $F' \leq F$ iff $F'(U) \leq F(U)$ is a subgroup for every U and the restrictions on F' are induced by restrictions from F.
 - If $F' \leq F$ then $F'_p \leq F_p$.
 - **Injectivity**: $\varphi : F \to G$ is injective iff the sheaf kernel ker $\varphi = 0$ as a subsheaf of F. $\diamondsuit \varphi$ is injective iff injective on all sections.
 - $-\operatorname{im}\varphi\leq G$ is a subsheaf.
 - Surjectivity: $\varphi: F \to G$ is surjective iff im $\varphi = G$ as a subsheaf.
- Exactness: a sequence of sheaves $(F_i, \varphi_i : F_i \to F_{i+1})$ is exact iff $\ker \varphi_i = \operatorname{im} \varphi^{i-1}$ as subsheaves of F_i .
 - $-\varphi: F \to G$ is injective iff $0 \to F \xrightarrow{\varphi} G$ is exact.
 - $-\varphi: F \to G$ is surjective iff $F \xrightarrow{\varphi} G \to 0$ is exact.
 - Sequences of sheaves are exact iff exact on stalks.
- Quotient sheaves: F/F' is the sheafification of $U \mapsto F(U)/F'(U)$.
- Cokernels: for $\varphi: F \to G$, coker φ is sheafification of $U \mapsto \operatorname{coker}(F(U) \xrightarrow{\varphi(U)} G(U))$.
- **Direct images**: for $f \in \mathsf{Top}(X,Y)$, the sheaf defined on sections by $(f_*F)(V) \coloneqq F(f^{-1}(V))$ for any $V \subseteq Y$. Yields a functor $f_* : \mathsf{Sh}(X) \to \mathsf{Sh}(Y)$.
- **Inverse images**: denoted $f^{-1}G$, the sheafification of $U \mapsto \underbrace{\operatorname{colim}}_{V \supseteq f(U)} G(V)$, i.e. take the limit from above of all open sets V of Y containing the image $f(\overline{U})$. Yields a functor $f^{-1}: \operatorname{Sh}(Y) \to \operatorname{Sh}(X)$.

2.1 II.1: Sheaves *

- Restriction of a sheaf: for $F \in \mathsf{Sh}(X)$ and $Z \subseteq X$ with $\iota : Z \hookrightarrow X$ the inclusion, define $i^{-1}F \in \mathsf{Sh}(Z)$ to be the restriction. Also denoted $F|_Z$. This has the same stalks: $(F|_Z)_p = F_p$.
- For any $U \subseteq X$, the global sections functor $\Gamma(U; -) : \mathsf{Sh}(X) \to \mathsf{AbGrp}$ is left-exact (proved in exercises).
- **Limits of sheaves**: for $\{F_i\}$ a direct system of sheaves, $\underline{\operatorname{colim}}_i F_i$ has underlying presheaf $U \mapsto \underline{\operatorname{colim}}_i F_i(U)$. If X is Noetherian, then this is already a sheaf, and commutes with sections: $\Gamma(X; \operatorname{colim}_i F_i) = \operatorname{colim}_i \Gamma(X; F_i)$.
 - Inverse limits exist and are defined similarly.
- The espace étalé: define $\operatorname{\acute{E}t}(F) = \coprod_{p \in X} F_p$ and a projection $\pi : \operatorname{\acute{E}t}(F) \to X$ by sending $s \in F_p$ to p. For each $U \subseteq X$ and $s \in F(U)$, there is a local section $\overline{s} : U \to \operatorname{\acute{E}t}(F)$ where $p \mapsto s_p$, its germ at p; this satisfies $\pi \circ \overline{s} = \operatorname{id}_U$. Give $\operatorname{\acute{E}t}(F)$ the strongest topology such that the \overline{s} are all continuous. Then $F^+(U) := \operatorname{Top}(U, \operatorname{\acute{E}t}(F))$ is the set of continuous sections of $\operatorname{\acute{E}t}(F)$ over U.
- Support: for $s \in F(U)$, supp $(s) := \{ p \in U \mid s_p \neq 0 \}$ where s_p is the germ of s in F_p . This is closed.
 - This extends to $supp(F) := \{ p \in X \mid F_p \neq 0 \}$, which need not be closed.
- Sheaf hom: $U \mapsto \operatorname{Hom}(F|_U, G|_U)$ forms a sheaf of local morphisms and is denoted $\operatorname{Hom}(F, G)$.
- Flasque sheaves: a sheaf is flasque iff $V \hookrightarrow U \implies F(U) \twoheadrightarrow F(V)$.
- Skyscraper sheaves: for $A \in \mathsf{AbGrp}$ and $p \in X$, define

$$i_p(A)(U) = \begin{cases} A & p \in U \\ 0 & \text{otherwise.} \end{cases}$$

Also denoted $\iota_*(A)$ where $\iota: \operatorname{cl}_X(\{p\}) \hookrightarrow X$ is the inclusion.

- The stalks are

$$(i_p(A))_q = \begin{cases} A & q \in \operatorname{cl}_X(\{p\}) \\ 0 & \text{otherwise.} \end{cases}$$

• Extension by zero: if $\iota: Z \hookrightarrow X$ is the inclusion of a closed set and $U := X \setminus Z$ with $j: U \to X$, then for $F \in \mathsf{Sh}(Z)$, the sheaf $\iota_* F \in \mathsf{Sh}(X)$ is the extension of F by zero outside of Z. The stalks are

$$(\iota_* F)_p = \begin{cases} F_p & p \in \mathbb{Z} \\ 0 & \text{otherwise.} \end{cases}$$

2.1 II.1: Sheaves *

– For the open U, extension by zero is $j_!F$ which has presheaf $V \mapsto F(V)$ if $V \subseteq U$ and 0 otherwise. The stalks are

$$(j_!F)_p = \begin{cases} F_p & p \in U \\ 0 & \text{otherwise.} \end{cases}$$

- Sheaf of ideals: for $Y \subseteq X$ closed and $U \subseteq X$ open, $\mathcal{I}_Y(U)$ has presheaf $U \mapsto$ the ideal in $\mathcal{O}_X(U)$ of regular functions vanishing on all of $Y \cap U$. This is a subsheaf of \mathcal{O}_X .
- Gluing sheaves: given $\mathcal{U} \rightrightarrows X$ and sheaves $F_i \in \mathsf{Sh}(U_i)$, one can glue to a unique $F \in \mathsf{Sh}(X)$ if one is given morphisms $\varphi_{ij} F_i|_{U_{ij}} \xrightarrow{\sim} F_j|_{U_{ij}}$ where $\varphi_{ii} = \mathrm{id}$ and $\varphi_{ik} = \varphi_{jk} \circ \varphi_{ij}$ on U_{ijk} .

⚠ Warning 2.1.2

Some common mistakes:

- Kernel presheaves are already sheaves, but not cokernels or images. See exercise below.
- $\varphi: F \to G$ is injective iff injective on sections, but this is not true for surjectivity.
- The sheaves $f^{-1}G$ and f^*G are different! See III.5 for the latter.
- Global sections need not be right-exact.

Exercise 2.1.3 (Regular functions on varieties form a sheaf)

For $X \in \mathsf{Var}_{/k}$, define the ring $\mathcal{O}_X(U)$ of literal regular functions $f_i : U \to k$ where restriction morphisms are induced by literal restrictions of functions. Show that \mathcal{O}_X is a sheaf of rings on X.

Hint: Locally regular implies regular, and regular + locally zero implies zero.

Exercise 2.1.4 (?)

Show that for every connected open subset $U\subseteq X$, the constant sheaf satisfies $\underline{A}(U)=A$, and if U is open with open connected component so the $\underline{A}(U)=A^{\times^{\sharp \pi_0 U}}$.

Exercise 2.1.5 (?)

Show that if $X \in \mathsf{Var}_{/k}$ and \mathcal{O}_X is its sheaf of regular functions, then the stalk $\mathcal{O}_{X,p}$ is the local ring of p on X as defined in Ch. I.

Exercise 2.1.6 (Prop 1.1)

Let $\varphi: F \to G$ be a morphism in $\mathsf{Sh}(X)$ and show that φ is an isomorphism iff φ_p is an isomorphism on stalks for all $p \in X$. Show that this is false for presheaves.

Exercise 2.1.7 (?)

Show that for $\varphi \in \operatorname{Mor}_{\mathsf{Sh}(X)}(F,G)$, $\ker \varphi$ is a sheaf, but $\operatorname{coker} \varphi, \operatorname{im} \varphi$ are not in general.

2.1 II.1: Sheaves *

Exercise 2.1.8 (?)

Show that if $\varphi: F \to G$ is surjective then the maps on sections $\varphi(U): F(U) \to G(U)$ need not all be surjective.

	2.2 II.2: Schemes	2
	2.3 II.3: First Properties of Schemes	\sim
<u> </u>	2.4 II.4: Separated and Proper Morphisms	~
	2.5 II.5: Sheaves of Modules	2
	2.6 II.6: Divisors	~
<u>~</u>	2.7 II.7: Projective Morphisms	~
	2.8 II.8: Differentials	~
	2.9 II.9: Formal Schemes	~

2.2 II.2: Schemes 13

3 | III: Cohomology

	3.1 III.1: Derived Functors	~
	3.2 III.2: Cohomology of Sheaves	~
	3.3 III.3: Cohomology of a Noetherian	
	Affine Scheme	~
	Anne Scheme	
	3.4 III.4: Čech Cohomology	
	3.5 III.5: The Cohomology of Projective	
	Space	~
	Opace	
_	2.6 III.6. For Charma and Charma	_
	3.6 III.6: Ext Groups and Sheaves	
	3.7 III.7: Serre Duality	~
	cir iiiii cone Daume,	
	3.8 III.8: Higher Direct Images of Sheaves	~
	3.9 III.9: Flat Morphisms	~
	2 10 III 10, Smooth Mornhisms	~
- ,	3.10 III.10: Smooth Morphisms	•
	3.11 III.11: The Theorem on Formal	
	Functions	~
	3.12 III.12: The Semicontinuity Theorem	~
_	3.12 III.12. The Schildentinuity Theorem	•

III: Cohomology

4 | IV: Curves *

Remark 4.0.1: Summary of major results:

- $p_a(X) := 1 P_X(0) = (-1)^r (1 \chi(\mathcal{O}_X)).$
 - Note: $P_X(\ell)$ is defined as the Hilbert polynomial of the homogeneous coordinate ring S(Y), and then defined for graded S-modules M by setting $\varphi_M(\ell) = \dim_k M_\ell$ and showing $\exists ! P_M(z) \in \mathbf{Q}[z]$ with $\varphi_M(\ell) = P_M(\ell)$ for $\ell \gg 0$.
- $p_q(X) := h^0(\omega_X) = h^0(\mathcal{L}(K_X)).$
- Remembering these:

$$h^{2,2} = h^2(\Omega^2) = h^2(K_X)$$

$$h^{2,1} = h^1(\Omega^2) = h^1(K_X)$$

$$h^{1,2} = h^2(\Omega^1)$$

$$\stackrel{\pm p_a = \chi(\mathcal{O}_X) - 1}{\longrightarrow}$$

$$h^{1,1} = h^1(\Omega^1)$$

$$h^{1,0} = h^0(\Omega^1)$$

$$h^{0,1} = h^1(\mathcal{O}_X)$$

Link to Diagram

- For curves, $p_a(X) = p_q(X) = h^1(\mathcal{O}_X)$ by setting $D := K_C$ in RR.
 - $\deg K_C = 2g 2.$
- $D_1 \sim D_2 \iff D_1 D_2 = (f)$ for $f \in K(X)$ rational, $|D| = \{D' \sim D\}$, and this bijects with points of $\frac{H^0(\mathcal{L}(D))\setminus\{0\}}{\mathbf{G}_m}$.
 - Thus dim $|D| = h^0(\mathcal{L}(D)) 1 := \ell(D) 1$.
- $X \text{ smooth } \Longrightarrow \operatorname{Cl}(X) \xrightarrow{\sim} \operatorname{Pic}(X) \text{ via } D \mapsto \mathcal{L}(D).$
- $h^0(\mathcal{L}(D)) > 0 \implies \deg(D) \ge 0$, and if $\deg D = 0$ then $D \sim 0$ and $\mathcal{L}(D) \cong \mathcal{O}_X$.
- RR:

$$\chi(\mathcal{L}(D) = h^0(\mathcal{L}(D)) - h^1(\mathcal{L}(D))$$
$$= h^0(\mathcal{L}(D)) - h^0(\mathcal{L}(K - D))$$
$$= \deg(D) + (1 - g).$$

- How to remember: note $g = h^1(\mathcal{O}_X) = h^1(\mathcal{L}(0))$, and $H^0(\mathcal{O}_X) = k$ so $h^0(\mathcal{O}_X) = 1$, thus

$$\chi(\mathcal{O}_X) = h^0(\mathcal{O}_X) - h^1(\mathcal{O}_X) = 1 - g = \deg \mathcal{L}(0) + 1 - g.$$

- For $C \subseteq \mathbf{P}^n$, $\deg(C) = d$ and $D = C \cap H$ a hyperplane section defining $\mathcal{L}(D) = \mathcal{O}_X(1)$,

$$\chi(\mathcal{L}(D)) = \deg(D) + (1 - g) = d + (1 - p_a(C))$$

IV: Curves ⋆

- A curve is rational iff isomorphic to \mathbf{P}^1 iff q=0.
- $K \sim 0$ on an elliptic curve since $\deg K = 2g 2 = 0$ and $\deg D = 0 \implies D \sim 0$.
- For X elliptic, $\operatorname{Pic}^0(X) := \{D \in \operatorname{Div}(X) \mid \deg D = 0\}$ and $|X| \xrightarrow{\sim} |\operatorname{Pic}^0(X)|$ via $p \mapsto \mathcal{L}(p p_0)$ for any fixed $p_0 \in X$, inducing its group structure. (This is proved with RR.)

Remark 4.0.2: Comments from preface:

- The statement of Riemann-Roch is important; less so its proof.
- Representing curves:
 - A branched covering of \mathbf{P}^1 ,
 - More generally a branched covering of another curve,
 - Nonsingular projective curves: admit embeddings into \mathbf{P}^3 , maps to \mathbf{P}^2 birationally such that the image is at worst a nodal curve.
- The central result regarding representing curves: Hurwitz's theorem which compares K_X, K_Y for a cover $Y \to X$ of curves.
- Curves of genus 1: elliptic curves.
- Later sections: the canonical embedding of a curve.

4.1 IV.1: Riemann-Roch

Definition 4.1.1 (Curves)

A **curve** over $k = \overline{k}$ is a scheme over Spec k which is

- Integral
- Dimension 1
- Proper over k
- With regular local rings

In particular, a curve is smooth, complete, and necessary projective. A **point** on a curve is a closed point.

Definition 4.1.2 (Arithmetic genus)

The **arithmetic genus** of a projective curve X is

$$p_a(X) := 1 - P_X(0)$$

where $P_X(t)$ is the **Hilbert polynomial** of X.

Definition 4.1.3 (Geometric genus)

The **geometric genus** of a curve is

$$p + g(X) := \dim_k H^0(X; \omega_X)$$

4.1 IV.1: Riemann-Roch

where ω_X is the canonical sheaf.

Exercise 4.1.4 (?)

Show that if X is a curve, there is a single well-defined **genus**

$$g := p_A(X) = p_G(X) = \dim_k H^1(X; \mathcal{O}_X).$$

Hint: see Ch. III Ex. 5.3, and use Serre duality for p_g .

Exercise 4.1.5 (?)

Show that for any $g \ge 0$ there exists a curve of genus g.

Hint: take a divisor of type (g+1,2) on a smooth quadric which is irreducible and smooth with $p_a = g$.

Definition 4.1.6 (Divisors on a curve)

Reviewing divisors:

- The divisor group: $Div(X) = \mathbf{Z}[X_{cl}]$
- **Degrees**: $deg(\sum n_i D_i) := \sum n_i$, and
- Linear equivalence: $D_1 \sim D_2 \iff D_1 D_1 = \text{Div}(f)$ for some $f \in k(X)$ a rational function.
- D is **effective** if $n_i \geq 0$ for all i.
- $|D| := \{D' \in \text{Div}(X) \mid D' \sim D\}$ is the **complete linear system** of D.
- $|D| \cong \mathbf{P}H^0(X; \mathcal{L}(D))$
- Dimensions of linear systems: $\ell(D) := \dim_k H^0(X; \mathcal{L}(D))$ and $\dim |D| := \ell(D) 1$.
- Relative differentials: $\Omega_X := \Omega_{X_{/k}}$ is the sheaf of relative differentials on X.
 - The technical definition: $\Omega_{X_{/S}} := \Delta_{X_{/Y}}^*(\mathcal{I}/\mathcal{I}^2)$ where \mathcal{I} is the sheaf of ideals defining the locally closed subscheme $\operatorname{im}(\Delta_{X_{/Y}}) \subseteq X\operatorname{fp} YX$.
 - On affine schemes: on the ring side, $\Omega_{B/A} \in {}_{B}\mathsf{Mod}$ equipped with a differential $d:B\to \Omega B/A$, defined as $\left\langle db \mid b\in B\right\rangle_{B}/\left\langle d(b_1+b_2)=db_1+db_2, d(b_1b_2)=d(b_1)b_2+b_1d(b_2), da=0 \,\forall a\in A\right\rangle_{B}.$
 - On curves, $\Omega_{X_{/Y}}$ measures the "difference" between K_X and K_Y .
- Canonical sheaf: $\dim X = 1, \Omega_{X_{/k}} \cong \omega_X$.
- Canonical divisor: K_X 2 is any divisor in the linear equivalence class corresponding to ω_X
- D is special iff its index of speciality $\ell(K-D) > 0$, otherwise D is nonspecial.

Exercise 4.1.7 (?) Show that $D_1 \sim D_2 \implies \deg(D_1) = \deg(D_2)$.

4.1 IV.1: Riemann-Roch

Exercise 4.1.8 (?)

Show that

$$|D| \rightleftharpoons \mathbf{P}H^0(X; \mathcal{L}(D)),$$

so |D| has the structure of the closed points of some projective space.

Exercise 4.1.9 (Lemma 1.2)

Show that if $D \in \operatorname{Div}(X)$ for X a curve and $\ell(D) \neq 0$, then $\deg(D) \geq 0$. Show that is $\ell(D) \neq 0$ and $\deg D = 0$ then $D \sim 0$ and $\mathcal{L}(D) \cong \mathcal{O}_X$.

Theorem 4.1.10 (Riemann-Roch).

$$\ell(D) - \ell(K - D) = \deg(D) + (1 - g).$$

Exercise 4.1.11 (Ingredients for proof of RR)

Show the following:

- The divisor K D corresponds to $\omega_X \otimes \mathcal{L}(D)^{\vee} \in \text{Pic}(X)$.
- $H^1(X; \mathcal{L}(D))^{\vee} \cong H^0(X; \omega_X \otimes \mathcal{L}(D)^{\vee}).$
- If X is any projective variety,

$$H^0(X; \mathcal{O}_X) = k.$$

Exercise 4.1.12 (?)

Show that if $X \subseteq \mathbf{P}^n$ is a curve with deg X = d and $D = X \cap H$ is a hyperplane section, then $\mathcal{L}(D) = \mathcal{O}_X(1)$ and $\chi(\mathcal{L}(D)) = d + 1 - p_a$.

Exercise 4.1.13 (?)

Show that if g(X) = g then $\deg K_X = 2g - 2$.

Hint: set D=K and use $\ell(K)=p_g=g$ and $\ell(0)=1$.

Remark 4.1.14: More definitions:

- X is **rational** iff birational to \mathbf{P}^1 .
- X is **elliptic** if g = 1.

Exercise 4.1.15 (?)

Show that

4.1 IV.1: Riemann-Roch

- 1. If $\deg D > 2g 2$ then D is nonspecial.
- 2. $p_a(\mathbf{P}^1) = 0$.
- 3. A complete nonsingular curve is rational iff $X \cong \mathbf{P}^1$ iff g(X) = 0.
- 4. If X is elliptic then $K \sim 0$

Hint: for (3) apply RR to D=p-q for points $p \neq q$, and use $\deg(K-D)=-2$ and $\deg(D)=0 \implies D \sim 0 \implies p \sim q$. For (4), show $\ell(K)=p_g=1$.

Exercise 4.1.16 (?)

If X is elliptic and $p \in X$, then there is a bijection

$$m_p: X \xrightarrow{\sim} \operatorname{Pic}(X)$$

 $x \mapsto \mathcal{L}(x-p),$

so $Pic(X) \in \mathsf{Grp}$.

Hint: show that if deg(D) = 0 then there is some $x \in X$ such that $D \sim x - p$ and apply RR to D + p.

4.2 IV.2: Hurwitz *

Remark 4.2.1: Summary of results:

- For curves, complete = projective.
- Riemann-Hurwitz: for $f: X \to Y$ finite separable,

$$K_X \sim f^* K_Y + R \implies \deg(K_X) = \deg(f^* K_Y) + \deg(R) \implies$$

$$\chi(X) = \deg(f) \cdot \chi(Y) + \deg R, \qquad \deg R = \sum_{p \in X} (e_p - 1).$$

- $\deg f := [K(X) : K(Y)]$ for finite morphisms of curves.
- $e_p := v_p(f_*^{\sharp}t)$ where t is uniformizer in $\mathcal{O}_{f(p)}$ and $f^{\sharp}: \mathcal{O}_{Y,f(p)} \to \mathcal{O}_{X,p}$ for $f: X \to Y$.
 - $-e_p > 1 \implies \text{ramification}.$
 - Unramified everywhere implies etale (since automatically flat).
 - $-p \mid e_{x_0} \implies$ wild ramification, otherwise tame.
- $\exists f^* : \text{Div}(Y) \to \text{Div}(X) \text{ where } q \mapsto \sum_{p \mapsto q} e_p p.$

• Pullback commutes with forming line bundles:

$$f^*\mathcal{L}(D) \cong \mathcal{L}(f^*D)$$

where the LHS $f^* : Pic(Y) \to Pic(X)$.

• The fundamental SES for relative differentials: if $f: X \to Y$ is finite separable,

$$f^*\Omega_Y \hookrightarrow \Omega_X \twoheadrightarrow \Omega_{X/Y}$$
.

- $\frac{\partial t}{\partial u}$ for t a uniformizer at f(p) and u a uniformizer at p is defined by noting $\Omega Y, f(p) = \langle dt \rangle, \Omega_{X,p} = \langle du \rangle$, and there is some $g \in \mathcal{O}_{X,p}$ such that $f^* dt = g du$; set $g := \frac{\partial t}{\partial u}$.
- For finite separable morphisms of curves $f: X \to Y$,
 - supp $\Omega_{X/Y} = \text{Ram}(f)$ is the ramification locus, and $\Omega_{X/Y}$ is torsion so Ram(f) is finite.
 - length $(\Omega_{X,Y})_p = v_p\left(\frac{\partial t}{\partial u}\right)$ for any $p \in X$
 - Tamely ramified \implies length $(\Omega_{X/Y})_p = e_p 1$, and wild ramification increases this length. Recall that length is the largest size of chains of submodules.
- The ramification divisor:

$$R := \sum_{p \in X} \operatorname{length}(\Omega_{X/Y})_p p.$$

- $K_X \sim f^*K_Y + R$
- \mathbf{P}^1 can't admit an unramified cover: for $n \geq 1$,

$$\chi(X) = n\chi(\mathbf{P}^1) + \deg R \implies \chi(X) = -2n + \deg R \implies \chi(X) = -2n \le -2,$$

which forces $q(X) = 0, n = 1, X = \mathbf{P}^1, f = \mathrm{id}$.

- The Frobenius morphism on schemes is defined by taking $f^{\sharp}: \mathcal{O}_X \to \mathcal{O}_X$ to be the pth power map; pullback yields a definition of X_p , the Frobenius twist of X.
 - $-F: X_p \to X$ is finite, deg F=p, and corresponds to $K(X) \hookrightarrow K(X)^{\frac{1}{p}}$
- If $f: X \to Y$ induces a purely inseparable extension K(X)/K(Y), then $X \xrightarrow{\sim} Y$ as schemes, g(X) = g(Y), and f is a composition of Frobenii.
- Everywhere ramified extensions: $f: Y_p \to Y$, where $e_q = p$ for every $q \in X$. Induces $\Omega_{X/Y} \cong \Omega_X$.
- $\deg R$ is always even.

- Finite implies proper: finite implies separated, of finite type, closed by "going up" and universally closed by since finiteness is preserved under base change.
- \mathbf{P}^1 no nontrivial etale covers.
- If $f: X \to Y$ then $g(X) \ge g(Y)$.
 - Thus $\exists \mathbf{P}^1 \to Y$ finite $\implies q(Y) = 0$.

Remark 4.2.2: Preface:

- **Degree**: for a finite morphism of curves $X \xrightarrow{f} Y$, set $\det(f) := [k(X) : k(Y)]$, the degree of the extension of function fields.
- Ramification indices e_p : for $p \in X$, let q = f(p) and $t \in \mathcal{O}_q$ a local coordinate. Pull back to $t \in \mathcal{O}_p$ via f^{\sharp} and define $e_p := v_p(t)$ using the valuation v_p for the DVR \mathcal{O}_p .
- Ramified: $e_p > 1$, and unramified if $e_p = 1$.
- Branch points any q = f(p) where f is ramified.
- Tame ramification: for ch(k) = p, tame if $p \nmid e_P$.
- Wild ramification: when $p \mid e_P$.
- Pullback maps on divisor groups:

$$f^* : \operatorname{Div}(Y) \to \operatorname{Div}(X)$$

$$Q \mapsto \sum_{P \xrightarrow{f} q} e_P[P].$$

- This commutes with taking line bundles (exercise), so induces a well-defined map f^* : $Pic(X) \to Pic(Y)$.
- f is **separable** if k(X)/k(Y) is a separable field extension.

Exercise 4.2.3 (?)

Misc:

- Show that if f is everywhere unramified then it is an étale morphism.
- Show that $f^*\mathcal{L}(D) = \mathcal{L}(f^*D)$

Exercise 4.2.4 (Prop 2.1)

Show that if $X \xrightarrow{f} Y$ is a finite separable morphism of curves, there is a SES

$$f^*\Omega_Y \hookrightarrow \Omega_X \twoheadrightarrow \Omega_{X_{/Y}}$$
.

Remark 4.2.5: Definitions:

• **Derivatives**: for $f: X \to Y$, let t be a parameter at Q = f(P) and u at P. Then $\Omega_{Y,Q} = \langle dt \rangle_{\mathcal{O}_Q}$ and $\mathcal{O}_{X,P} = \langle du \rangle_{\mathcal{O}_P}$ and $\exists ! g \in \mathcal{O}_P$ such that $f^*dt = du$ so we write $\frac{\partial t}{\partial u} := g$.

• Ramification divisor: $R := \sum_{P \in X} \operatorname{length}(\Omega_{X/Y})_P[P] \in \operatorname{Div}(X)$

Exercise 4.2.6 (Prop 2.2)

For $X \xrightarrow{f} Y$ a finite separable morphism of curves,

- a. $\Omega_{X_{/Y}}$ is a torsion sheaf on X with support equal to the ramification locus of f. Thus f is ramified at finitely many points.
- b. The stalks $(\Omega_{X/Y})_P$ are principal \mathcal{O}_P -modules of finite length equal to $v_p\left(\frac{\partial t}{\partial u}\right)$

$$\operatorname{length}(\Omega_{X_{/Y}})_{P} \begin{cases} = e_{p} - 1 & f \text{ is tamely ramified at } P \\ > e_{p} - 1 & f \text{ is wildly ramified at } P. \end{cases}$$

Exercise 4.2.7 (Prop 2.3)

If $X \xrightarrow{f} Y$ is a finite separable morphism of curves, then

$$K_X \sim f^* K_Y + R,$$

where R is the ramification divisor of f.

Theorem 4.2.8 (Hurwitz).

If $X \xrightarrow{f} Y$ is a finite separable morphism of curves, then

$$2g(X) - 2 = \deg(f)(2g(Y) - 2) + \deg(R),$$

and if f has only tame ramification then $deg(R) = \sum_{P \in X} (e_P - 1)$.

Remark 4.2.9 (proof of Hurwitz): Take degrees of the divisor equation:

$$\deg(K_X) = \deg(f^*K_Y + R)$$

$$\Rightarrow \chi_{\mathsf{Top}}(X) = \deg(f^*K_Y) + \deg(R)$$

$$\Rightarrow 2g(X) - 2 = \deg(f) \deg(K_Y) + \deg(R)$$

$$\Rightarrow 2g(X) - 2 = \deg(f)\chi_{\mathsf{Top}}(Y) + \deg(R)$$

$$\Rightarrow 2g(X) - 2 = \deg(f)(2g(Y) - 2) + \deg(R)$$

$$\Rightarrow 2g(X) - 2 = \deg(f)(2g(Y) - 2) + \sum_{P \in X} (e_P - 1)$$

using tame ramification in the last step which implies length ($\Omega_{X_{/Y}}$) $_P=(e_p-1).$

Remark 4.2.10: Consider the purely inseparable case.

• Frobenius morphism: for $X \in \mathsf{Sch}$ where $\mathcal{O}_P \supseteq \mathbf{Z}/p\mathbf{Z}$ for all P, define Frob : $X \to X$ by F(|X|) = |X| on spaces and $F^{\sharp} : \mathcal{O}_X \to \mathcal{O}_X$ is $f \mapsto f^p$. This is a morphism since F^{\sharp} induces

a morphism on all local rings, which are all characteristic p.

- The k-linear Frobenius morphism: define X_p to be X with the structure morphism $F \circ \pi$, so $k \curvearrowright \mathcal{O}_{X_p}$ by pth powers and F becomes a k-linear morphism $F': X_p \to X$.
 - Why this is necessary: F as before is not a morphism in $Sch_{/k}$, and instead forms a commuting square involving $F: \operatorname{Spec} k \to \operatorname{Spec} k$ and the structure maps $X \xrightarrow{\pi} \operatorname{Spec} k$.

Exercise 4.2.11 (?)

Find examples where

- $X_p \cong X \in \mathsf{Sch}_{/k}$, and $X_p \ncong X \in \mathsf{Sch}_{/k}$.

Hint: $consider X = \operatorname{Spec} k[t]$ for k perfect.

Exercise 4.2.12 (?)

Show that if $X \xrightarrow{f} Y$ is separable then $\deg(R)$ is always even.

Skipped some stuff around Example 2.4.2, I don't necessarily need characteristic p things right now.

Remark 4.2.13: Definitions:

- Étale covers: $X \xrightarrow{f} Y$ is an étale cover if f is a finite étale morphism, i.e. f is flat and
- Y is a **trivial** cover if $X \cong \coprod_{i \in I} Y$ a finite disjoint union of copies of Y,
- Y is simply connected if there are no nontrivial étale covers.

Exercise 4.2.14 (?)

- Show that a connected regular curve is irreducible.
- Show that if f is etale then X is smooth over k.
- Show that if f is finite, X must be a curve.
- Show that if f is étale, then f must be separable.
- Show that $\pi_1^{\text{\'et}}(\mathbf{P}^1) = 0$.

Hint: use Hurwitz and that when f is unramified, R=0.

Exercise 4.2.15 (?)

- Show that the genus of a curve doesn't change under purely inseparable extensions.
- Show that if $f: X \to Y$ is a finite morphism of curves then $g(X) \ge g(Y)$.

Exercise 4.2.16 (Lüroth)

Show that if L is a subfield of a purely transcendental extension k(t)/k where $k = \overline{k}$, then L is also purely transcendental.^a

Hint: Assume $[L:k]_{tr}=1$, so L=k(X) for Y a curve and $L\subseteq k(t)$ corresponds to a finite morphism $f:\mathbf{P}^1\to Y$. Conclude g(Y)=0 so $Y\cong \mathbf{P}^1$ and $L\cong k(u)$ for some u.

4.3 IV.3: Embeddings in Projective Space ★

~

Remark 4.3.1: A summary of major results:

- For $D \in Div(C)$ with g = g(C),
 - -D is ample iff $\deg D > 0$.
 - -D is BPF iff deg D > 2q.
 - D is very ample iff $\deg D \ge 2g + 1$.
- Being very ample is equivalent to being a hyperplane section under a projective embedding.
- Divisors $D \in \text{Div}(\mathbf{P}^n)$ are ample iff very ample iff deg $D \ge 1$.
 - E.g. if E is elliptic then D is very ample if deg $D \ge 3$, and for hyperelliptic, very ample if deg $D \ge 5$.
- If D is very ample then $\deg \varphi(X) = \deg D$.
- Curves $C \subseteq \mathbf{P}^n$ for $n \ge 4$ can be projected away from a point $p \notin X$ to get a closed immersion into \mathbf{P}^m for some $m \le n 1$. So any curve is birational to a nodal curve in \mathbf{P}^2 .
- Genus of normalizations of nodal curves: $g = \frac{1}{2}(d-1)(d-2) \sharp \{\text{nodes}\}.$
- Any curve embeds into \mathbf{P}^3 , and maps into \mathbf{P}^2 with at worst nodal singularities.

Remark 4.3.2: Main result: any curve can be embedded in \mathbf{P}^3 , and is birational to a nodal curve in \mathbf{P}^2 . Some recollections:

- Very ample line bundles: $\mathcal{L} \in \text{Pic}(X)$ is very ample if $\mathcal{L} \cong \mathcal{O}_X(1)$ for some immersion of $f \cdot X \hookrightarrow \mathbf{P}^N$
- Ample: \mathcal{L} is ample when $\forall \mathcal{F} \in \mathsf{Coh}(X)$, the twist $\mathcal{F} \otimes \mathcal{L}^n$ is globally generated for $n \gg 0$.
- (Very) ample divisors: $D \in Div(X)$ is (very) ample iff $\mathcal{L}(D) \in Pic(X)$ is (very) ample.
- Linear systems: a linear system is any set $S \leq |D|$ of effective divisors yielding a linear subspace.
- Base points: P is a base point of S iff $P \in \text{supp } D$ for all $D \in S$.
- Secant lines: the secant line of $P, Q \in X$ is the line in \mathbf{P}^N joining them.
- Tangent lines: at $P \in X$, the unique line $L \subseteq \mathbf{P}^N$ passing through p such that $\mathbf{T}_P(L) = \mathbf{T}_P(X) \subset \mathbf{T}_P(\mathbf{P}^N)$.

^aThis is true over any field k in dimension 1, over $k = \overline{k}$ in dimension 2, and false in dimension 3 by the existence of nonrational unirational threefolds.

- Nodes: a singularity of multiplicity 2.
 - $y^2 = x^3 + x^2$ is a **node**. $y^2 = x^3$ is a **cusp**. $y^2 = x^4$ is a **tacnode**.
- Multisecant: for $X \subseteq \mathbf{P}^3$, a line meeting X in 3 or more distinct points.
- A secant with coplanar tangent lines is a secant through P,Q whose tangent lines L_P,L_Q lie in a common plane, or equivalently L_P intersects L_Q .

Exercise 4.3.3 (II.8.20.2)

Show that by Bertini's theorem there are irreducible smooth curves of degree d in \mathbf{P}^2 for any

Exercise 4.3.4 (?)

Show that

- \mathcal{L} is ample iff \mathcal{L}^n is very ample for $b \gg 0$.
- |D| is basepoint free iff $\mathcal{L}(D)$ is globally generated.
- If D is very ample, then |D| is basepoint free.
- If D is ample, $nD \sim H$ a hyperplane section for a projective embedding for some n.
- If g(X) = 0 then D is ample iff very ample iff deg D > 0.
- If D is very ample and corresponds to a closed immersion $\varphi: X \hookrightarrow \mathbf{P}^n$ then $\deg \varphi(X) =$ $\deg D$.
- If XS is elliptic, any D with deg D=3 is very ample and dim |D|=2, and so can be embedded into \mathbf{P}^2 as a cubic curve.
- Show that if g(X) = 1 then D is very ample iff deg $D \ge 3$.
- Show that if g(X) = 2 and deg D = 5 then D is very ample, so any genus 2 curve embeds in \mathbf{P}^3 as a curve of degree 5.

Exercise 4.3.5 (Prop 3.1: when a linear system yields a closed immersion into \mathbf{P}^{N}) Let $D \in Div(X)$ for X a curve and show

- |D| is basepoint free iff dim $|D-P| = \dim |D| 1$ for all points $p \in X$.
- D is very ample iff dim $|D P Q| = \dim |D| 2$ for all points $P, Q \in X$.

Hint: use the SES $\mathcal{L}(D-P) \hookrightarrow \mathcal{L}(D) \twoheadrightarrow k(P)$ where k(P) is the skyscraper sheaf at P.

Exercise 4.3.6 (Cor 3.2)

Let $D \in \text{Div}(X)$.

- If deg $D \ge 2g(X)$ then |D| is basepoint free.
- If deg $D \ge 2g(X) + 1$ then D is very ample.
- D is ample iff $\deg D > 0$
- This bounds is not sharp.

Hint: apply RR. For the bound, consider a plane curve X of degree 4 and D = X.H.

Remark 4.3.7: Idea behind embedding in \mathbf{P}^3 : embed into \mathbf{P}^n and project away from a point in the complement.

Exercise 4.3.8 (3.4, 3.5, 3.6)

Let $X \subseteq \mathbf{P}^N$ be a curve and $O \notin X$, let $\varphi : X \to \mathbf{P}^{n-1}$ be projection away from O. Then φ is a closed immersion iff

- O is not on any secant line of X, and
- O is not on any tangent line of X.

Show that if $N \ge 4$ then there exists such a point O yielding a closed immersion into \mathbf{P}^{N-1} . Conclude that any curve can be embedded into \mathbf{P}^3 .

Hint: dim Sec $(X) \le 3$ and dim Tan $(X) \le 2$.

Proposition 4.3.9(3.7).

Let $X \subseteq \mathbf{P}^3$, $O \notin X$, and $\varphi : X \to \mathbf{P}^2$ be the projection from O. Then $X \stackrel{\sim}{\dashrightarrow} \varphi(X)$ iff $\varphi(X)$ is nodal iff the following hold:

- O is only on finitely many secants of X,
- O is on no tangents,
- O is on no multisecant,
- O is on no secant with coplanar tangent lines.

Skipped things around Prop 3.8. The hard part: showing not every secant is a multisecant, and not every secant has coplanar tangent lines. Skipped strange curves.

Remark 4.3.10: Classifying all curves: any curve is birational to a nodal plane curve, so study the family $\mathcal{F}_{d,r}$ of plane curves of degree d and r nodes. The family \mathcal{F}_d of all plane curves is a linear system of dimension

$$\dim |\mathcal{F}_d| = \frac{d(d+3)}{2}.$$

For any such curve X, consider its normalization $\nu(X)$, then

$$g(\nu(X)) = \frac{(d-1)(d-2)}{2} - r.$$

Thus for $\mathcal{F}_{d,r}$ to be nonempty, one needs

$$0 \le r \le \frac{(d-1)(d-2)}{2}.$$

Both extremes can occur: r=0 follows from Bertini, and $r=\frac{(d-1)(d-2)}{2}$ by embedding $\mathbf{P}^1\hookrightarrow\mathbf{P}^d$ as a curve of degree d and projecting down to a nodal curve in \mathbf{P}^2 of genus zero. Severi states and Harris proves that for every r in this range $\mathcal{F}_{d,r}$ is irreducible, nonempty, and dim $\mathcal{F}_{d,r}=\frac{d(d+3)}{2}-r$.

4.4 IV.4: Elliptic Curves *

Remark 4.4.1: Curves E with g(E) = 1; we'll assume $\operatorname{ch} k \neq 2$ throughout. Outline:

- Define the j-invariant, classifies isomorphism classes of elliptic curves.
- Group structure on the curve.
- $E = \operatorname{Jac}(E)$.
- Results about elliptic functions over C.
- The Hasse invariant of E/\mathbf{F}_q in characteristic p.
- $E(\mathbf{Q})$.

4.4.1 The j-invariant

Remark 4.4.2: The j-invariant:

- $j(E) \in k$, so $\mathbf{A}^1_{/k}$ is a coarse moduli space for elliptic curves over K.
- Defining j(E):
 - Let $p_0 \in X$, consider the linear system $L := |2p_0|$.
 - Nonspecial, so RR shows $\dim(L) = 1$.
 - BPF, otherwise E is rational.
 - Defines a morphism $\varphi_L : E \to \mathbf{P}^1_{/k}$ with $\deg \varphi_L = 2$.
 - Up to change of coordinates, $f(p_0) = \infty$.
 - By Hurwitz, f is ramified at 4 branch points a, b, c, p_0 .
 - Move $a \mapsto 0, b \mapsto 1$ by a Mobius transformation fixing ∞ , so f is branched over $0, 1, \lambda, \infty$ where $\lambda \in k \setminus \{0, 1\}$.
 - Use λ to define the invariant:

$$j(E) = j(\lambda) = 2^8 \left(\frac{(\lambda^2 - \lambda + 1)^3}{\lambda^2 (\lambda - 1)^2} \right).$$

- Theorem 4.1:
 - -j depends only on the curve E and not λ .
 - $-E \cong E' \iff j(E) = j(E').$
 - Every element of k occurs as j(E) for some E.
 - So this yields a bijection

$$\begin{aligned} \text{{\tt Elliptic curves over } k} \middle|_{\sim} & \rightleftharpoons \mathbf{A}^1_{/k} \\ E & \mapsto j(E). \end{aligned}$$

- Some facts that go into proving this:
 - $-\forall p, q \in X \; \exists \sigma \in \operatorname{Aut}(X) \text{ such that } \sigma^2 = 1, \sigma(p) = q, \text{ for any } r \in X, \text{ one has } r + \sigma(r) \sim p + q.$
 - $Aut(X) \curvearrowright X$ transitively.
 - Any two degree two maps $f_1, f_2: X \to \mathbf{P}^1$ fit into a commuting square.
 - Under $S_3 \curvearrowright \mathbf{A}_{/k}^1 \setminus \{0,1\}$, the orbit of λ is

$$S_3.\lambda = \left\{\lambda, \lambda^{-1}, s_1 = 1 - \lambda, s_1^{-1} = (1 - \lambda)^{-1}, s_2 = \lambda(\lambda - 1)^{-1}, s_3 = \lambda^{-1}(\lambda - 1)\right\}.$$

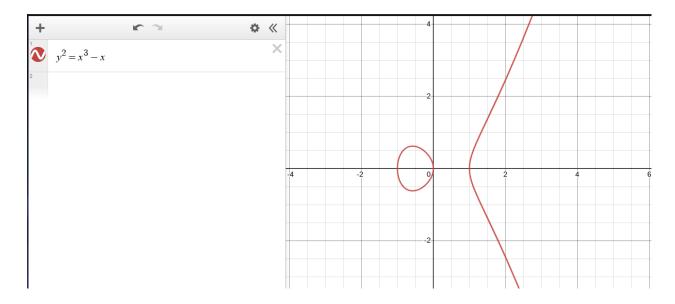
- Fixing $p \in X$, there is a closed immersion $X \to \mathbf{P}^2$ whose image is $y^2 = x(x-1)(x-\lambda)$ where $p \mapsto \infty = [0:1:0]$ and this λ is either the λ from above or one of $s_1^{\pm 1}, s_2^{\pm 1}$.
 - \diamondsuit Idea of proof: embed $X \hookrightarrow \mathbf{P}^2$ by L := |3p|, use RR to compute $h^0(\mathcal{O}(np)) = n$ so $h^0(\mathcal{O}(6p)) = 6$.
 - h (O(0p)) = 5. \diamondsuit So $\{1, x, y, x^2, xy, y^2, x^3\}$ has a linear dependence where x^3, y^2 have nonzero coefficients since they have poles at p.
 - \diamondsuit Rescale x^3, y^2 to coefficient 1 to get

$$y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6.$$

- Do a change of variable to put in the desired form: complete the square on the LHS, factor as $y^2 = (x a)(x b)(x c)$, send $a \to 0, b \to 1$ by a Mobius transformation.
- Note that one can project from p to the x-axis to get a finite degree 2 morphism ramified at $0, 1, \lambda, \infty$.

Example 4.4.3(?): An elliptic curve that is smooth over every field of non-2 characteristic:

$$E: y^2 = x^3 - x, \qquad \lambda = -1, \ j(E) = 2^6 \cdot 3^3 = 1728.$$



One that is smooth over every k with $\operatorname{ch} k \neq 3$: the Fermat curve

$$E: x^3 + y^3 = z^3, \qquad \lambda = \pm \zeta_3^k, j(E) = 0.$$

Theorem 4.4.4(Orders of automorphism groups of elliptic curves).

$$\sharp \operatorname{Aut}(X,p) = \begin{cases} 2 & j(E) \neq 0,1728 \\ 4 & j(E) = 1728, \operatorname{ch} k \neq 3 \\ 6 & j(E) = 0, \operatorname{ch} k \neq 3 \\ 12 & j(E) = 0,1728, \operatorname{ch} k = 3 \end{cases}.$$

Remark 4.4.5(*Proof idea*): Idea: take the degree 2 morphism $f: X \to \mathbf{P}^1$ with $f(p) = \infty$ branched over $\{0, 1, \lambda, \infty\}$. Produce two elements in G: for $\sigma \in G$, find $\tau \in \operatorname{Aut}(\mathbf{P}^1)$ so $f\sigma = \tau f$; then either $\tau \neq \operatorname{id}$, so $\{\sigma, \tau\} \subseteq G$, or $\tau = \operatorname{id}$ and either $\sigma = \operatorname{id}$ or σ exchanges the sheets of f.

If $\tau \neq id$, it permutes $\{0,1,\lambda\}$ and sends $\lambda \mapsto \lambda^{-1}, s_1^{\pm 1}, s_2^{\pm 1}$ from above. Cases:

- 1. j = 1728: If $\lambda = -1, 1/2, 2, \operatorname{ch} k \neq 3$, then λ coincides with *one* other element of $S_3.\lambda$, so $\sharp G = 4$.
- 2. j=0: If $\lambda=-\zeta_3,-\zeta_3^2$, ch $k\neq 3$ then λ coincides with two elements in $S_3.\lambda$ so $\sharp G=6$.
- 3. j = 0 = 1728: If $\lambda = -1$, ch k = 3 then $S_3 \cdot \lambda = {\lambda}$ and $\sharp G = 12$.

4.4.2 The group structure

Remark 4.4.6: The group structure:

- Fixing $p_o \in E$, the map $p \mapsto \mathcal{L}(p-p_0)$ induces a bijection $E \xrightarrow{\sim} \operatorname{Pic}^0(E)$, so the group structure on E is the pullback along this with $p_0 = \operatorname{id}$ and $p + q = r \iff p + q \sim r + p_0 \in \operatorname{Div}(E)$.
- Under the embedding of $|3p_0|$, points p, q, r are collinear iff $p + q + r \sim 3p_0$, so p + q + r = 0 in the group structure.
- E is a group variety, since $p \mapsto -p$ and $(p,q) \mapsto p+q$ are morphisms. Thus there is a morphism $[n]: E \to E$, multiplication by n, which is a finite morphism of degree n^2 with kernel $\ker[n] = C_n^2$ if $(n, \operatorname{ch} k) = 1$ and $\ker[n] = C_p$, 0 if $n = \operatorname{ch} k$, depending on the Hasse invariant.
- If $f: E_1 \to E_2$ is a morphism of curves with $f(p_1) = p_2$ then f induces a group morphism.
- End (E, p_0) forms a ring under $f + g = \mu \circ (f \times g)$ and $f \cdot g := f \circ g$.
- The map $n \mapsto ([n]: E \to E)$ defines a finite ring morphism $\mathbf{Z} \to \operatorname{End}(E, p_0)$ for $n \neq 0$.
- $R := \operatorname{End}(E, p_0)^{\times} = \operatorname{Aut}(E)$, and if j = 0, 1728 then R contains $\{\pm 1\}$ and is thus bigger than \mathbb{Z} .

Remark 4.4.7: The Jacobian: a variety that generalizes to make sense for any curve, a moduli space of degree zero divisor classes.

• For X/k a curve and $T \in \mathsf{Sch}_{/k}$, define

$$\operatorname{Pic}^0(X\times T)\coloneqq\left\{\mathcal{F}\in\operatorname{Pic}(X\times T)\ \middle|\ \operatorname{deg}\,\mathcal{F}|_{X_t}=0\,\forall t\in T\right\},\qquad \operatorname{Pic}(X/T)\coloneqq\operatorname{Pic}^0(X\times T)/p^*\operatorname{Pic}(T)$$

where $p: X \times T \to T$ is the second projection. Regard this as families of sheaves of degree 0 on X parameterized by T.

- The Jacobian variety of a curve X: $\operatorname{Jac}(X) \in \operatorname{Sch}^{\operatorname{ft}}_{/k}$ along with $\mathcal{L} \in \operatorname{Pic}^0(X/\operatorname{Jac}(X))$ such that for any $T \in \operatorname{Sch}^{\operatorname{ft}}_{/k}$ and any $\mathcal{M} \in \operatorname{Pic}^0(X/T)$, $\exists ! f : T \to \operatorname{Jac}(X)$ such that $f^*\mathcal{L} = \mathcal{M}$. Thus J represents the functor $\operatorname{Pic}^0(X/-)$.
- For E elliptic, $E = \operatorname{Jac}(E)$.
 - In general, $|\operatorname{Jac}(X)| \cong |\operatorname{Pic}^0(X)|$ on points, since points of $\operatorname{Jac}(X)$ are morphisms $\operatorname{Spec} k \to \operatorname{Jac}(X)$, which correspond to elements in $\operatorname{Pic}^0(X/k) = \operatorname{Pic}^0(X)$.
- $\operatorname{Jac}(X) \in \operatorname{\mathsf{GrpSch}}_{/k}$ where $e : \operatorname{Spec} k \to \operatorname{Jac}(X)$ corresponds to $0 \in \operatorname{Pic}^0(X/k)$, $\rho : \operatorname{Jac}(X) \to \operatorname{Jac}(X)$ is $\mathcal{L} \mapsto \mathcal{L}^{-1} \in \operatorname{Pic}^0(X/\operatorname{Jac}(X))$, and $\mu : \operatorname{Jac}(X)^{\times^2} \to \operatorname{Jac}(X)$ is $\mathcal{L} \mapsto p_1^*\mathcal{L} \otimes p_2^*\mathcal{L} \in \operatorname{Pic}^0(X/\operatorname{Pic}(X)^{\times^2})$.
- $\mathbf{T}_0 \operatorname{Jac}(X) \cong H^1(X; \mathcal{O}_X)$: giving an element of $\mathbf{T}_p X$ is the same as a morphism $T := \operatorname{Spec} k[\varepsilon]/\varepsilon^2 \to X$ sending $\operatorname{Spec} k \to p$. So $\mathbf{T}_0 \operatorname{Jac}(X)$, this means giving $\mathcal{M} \in \operatorname{Pic}^0(X/T)$ whose restriction to $\operatorname{Pic}^0(X/k)$ is zero. Use the SES $H^1(X; \mathcal{O}_X) \hookrightarrow \operatorname{Pic} X[\varepsilon] \to \operatorname{Pic}(X)$.
- Jac(X) is proper over k by the valuative criterion. Just show that an invertible sheaf \mathcal{M} on $X \times \operatorname{Spec} K$ lifts unique to $\tilde{\mathcal{M}}$ on $X \times \operatorname{Spec} R$, but $X \times \operatorname{Spec} R$ is regular, so apply II.6.5.
- For any n there is a morphism

$$\varphi^n: X^{\times^n} \to \operatorname{Jac}(X)$$

 $(p_1, \cdots, p_n) \mapsto \mathcal{L}(\sum p_i - np_0).$

This is surjective for $n \geq g(X)$ by RR since every divisor class of degree $d \geq g$ has an effective representative. The fibers of φ^n are all tuples (p_1, \dots, p_n) such that $D = \sum p_i$ forms a complete linear system.

- Most fibers are finite, so Jac(X) is irreducible of dimension g.
- Smoothness: $\dim \mathbf{T}_0 \operatorname{Jac}(X) = \dim H^1(X; \mathcal{O}_X) = g$, so smooth at zero, and group schemes are homogeneous so smooth everywhere.

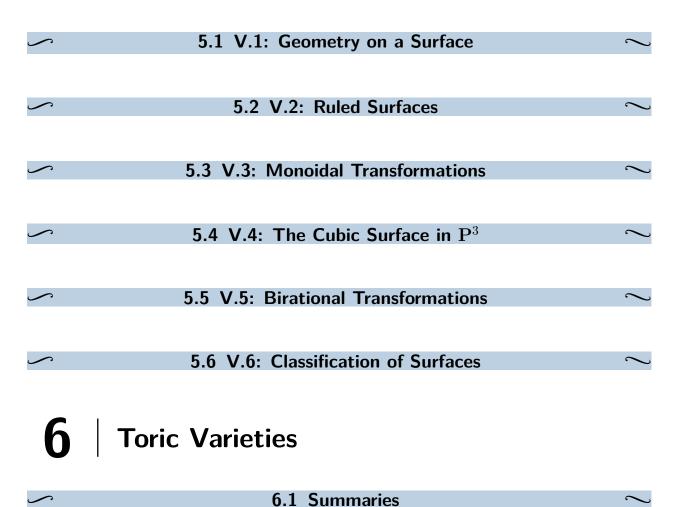
4.4.3 Elliptic functions

 $Stopped\ at\ elliptic\ functions.$

4.5 IV.5: The Canonical Embedding

4.6 IV.6: Classification of Curves in P^3

5 V: Surfaces



6.1.1 Quick Criteria

Remark 6.1.1: Quick criteria:

- Normal \iff Saturated: For affines, $X = \operatorname{Spec} \mathbf{C}[S]$ where $S \subseteq M$ is a saturated semigroup. This is true for $S = S_{\sigma} = \sigma^{\vee} \cap M$ where σ is any SCRPC.
- Complete/proper \iff Full support: X_{Σ} is complete iff supp $\Sigma = N_{\mathbf{R}}$.
- Smooth \iff Lattice basis:
 - For a **cone** $\sigma = \text{Cone}(S)$ is smooth iff det $S = \pm 1$, the volume of the standard lattice \mathbb{Z}^n .
 - ♦ Consequences of smoothness:

V: Surfaces 32

$$\diamondsuit$$
 CDiv (X) = Div (X) \diamondsuit Cl (X) = Pic (X)

- Smooth implies simplicial, so non-simplicial cones are singular.
- For p_{σ} the T-fixed point corresponding to σ , $T_pX \cong H$ where H is a Hilbert basis for S_{σ} .
- Simplicial \iff Euclidean basis: For $\sigma = \text{Cone}(S)$, σ is simplicial iff $\det(S) \neq 0$.
- Orbifold singularities \iff Simplicial: X_{Σ} has at worst finite quotient singularities iff Σ is simplicial.
- Projectivity \iff Admits a strictly upper convex support function: For h a support function and D_h its associated divisor, the linear system $|D_h|$ defines an embedding $X(\Delta) \hookrightarrow \mathbf{P}^N$ iff h is strictly upper convex.
 - Alternatively, X_{Σ} is projective iff Σ arises as the normal fan of a polytope.
- Globally generated/basepoint free \iff Upper convex support function: $\mathcal{O}(D)$ is globally generated iff ψ_D is upper convex.
- Ample \iff Strictly upper convex support function: $D \in \mathrm{CDiv}_T(X)$ is ample iff ψ_D is strictly upper convex.
- Very ample \iff ample and semigroup generation: for Σ complete, D is very ample iff ψ_D is strictly upper convex and S_σ is generated by $\left\{u-u(\sigma) \mid u \in P_D \cap M\right\}$, or equivalently the semigroup $\left\{u-u' \mid u' \in P \cap M\right\}$ is saturated in M.
 - For \mathbf{P}^n : $D = \sum a_i D_i$ is globally generated iff $\sum a_i \geq 0$ and ample $\iff \sum a_i > 0$.
 - For \mathbf{F}_m : $D = \sum a_i D_i$ is globally generated iff $a_2 + a_4 \ge 0$, $a_1 + a_3 \ge ma_1$, $\operatorname{Pic}(\mathbf{F}_n) = \langle D_1, D_4 \rangle$, and $D = aD_1 + bD_4$ is ample iff a, b > 0.
 - For dim $X_{\Sigma} = 2$ and X complete: ample \iff very ample.
- Q-factorial \iff simplicial: iff every cone is simplicial.
- Fundamental groups:
 - For U_{σ} affine, $U_{\sigma} \cong \mathbf{A}^k \times \mathbf{G}_m^{n-k}$ so $\pi_1 U_{\sigma} \cong \mathbf{Z}^{n-k}$ since $\mathbf{G}_m^{n-k} \simeq (S^1)^{n-k}$.
 - Can write $\pi_1 U_{\sigma} = N/N_{\sigma}$ where N_{σ} is the sublattice generated by σ .
 - By a Van Kampen argument, $\pi_1 X_{\Sigma} = N/N'$ where $N' = \langle \sigma \cap N \mid \sigma \in \Sigma \rangle$:

$$\pi_1 X_{\Sigma} = \pi_1 \cup U_{\sigma} = \underbrace{\operatorname{colim}}_{\sigma} \pi_1 U_{\sigma} = \underbrace{\operatorname{colim}}_{\sigma} N/N_{\sigma} = N/\sum N_{\sigma} = N/N'.$$

• Euler characteristic: $\chi X_{\Sigma} = \sharp \Sigma(n)$.

6.1 Summaries 33

- Why: $H^i(U_\sigma; \mathbf{Z}) = \bigwedge^i M(\sigma)$ where $M(\sigma) := \sigma^{\vee} \cap M$, so one gets a spectral sequence

$$E_1^{p,q} = \bigoplus_{I^p = i_0 < \dots < i_p} H^q(U_{\sigma_{I^p}}; \mathbf{Z}) \Rightarrow H^{p+q}(X_{\Sigma}; \mathbf{Z}), \qquad \sigma_{I^p} = \sigma_{i_0} \cap \dots \sigma_{i_p}, \sigma_{i_j} \in \Sigma(n)$$

$$\leadsto E_1^{p,q} = \bigoplus_{Ip} \bigwedge^q M(\sigma_{I^p}) \Rightarrow H^{p+q}(X_{\Sigma}; \mathbf{Z})$$

$$\implies \chi X_{\Sigma} = \sum (-1)^{p+q} \operatorname{rank}_{\mathbf{Z}} E_1^{p,q} = \sharp \Sigma(n),$$

using that

$$\sum (-1)^q \operatorname{rank}_{\mathbf{Z}}^q M(\tau) = \begin{cases} 0 & \dim \tau < n \\ 1 & \dim \tau = n. \end{cases}$$

- Higher homology:
 - If all maximal cones of Σ are *n*-dimensional, $H^2(X_{\Sigma}; \mathbf{Z}) \cong \operatorname{Pic}(X_{\Sigma})$.
- Global sections: for $D \in Div_T(X)$, P_D its associated polyhedron,

$$H^0(X; \mathcal{O}_X(D)) = \bigoplus_{m \in P_D \cap M} \mathbf{C} \, \chi^m.$$

• Betti numbers:

$$\beta_{2k} = \sum_{i=k}^{n} (-1)^{i-k} \binom{i}{k} \sharp \Sigma(n-i).$$

- Canonical bundles/divisors: $\omega_{X_{\Sigma}} := \det \Omega_{X_{\Sigma}/k} = \mathcal{O}(K_{X_{\Sigma}})$ where $K_{X_{\Sigma}} = -\sum_{\rho_i} D_i$.
 - For a smooth complete surface with $D_i^2 = -d_i$,

$$K^{2} = \sum D_{i}^{2} + 2d = -\sum d_{i} + 2d = -(3d - 12) + 2d = 12 - d.$$

• **Degree** = $n! \cdot (P)$ (for X_P projective)

Remark 6.1.2: Some common counterexamples:

- An ample divisor that is not very ample: P := *([0,0,0],[0,1,1],[1,0,1],[1,1,0]); then take D_P . X_P is a double cover of \mathbf{P}^3 branched along the 4 boundary divisors.
- A Weil divisor that is not Cartier: ????
- A complete variety that is not projective: ???

6.1.2 Cones and Lattices

Remark 6.1.3:

• Characters: for groups G, a map $\chi \in \mathsf{Grp}(G, \mathbf{C}^{\times})$. For $G = T = (\mathbf{C}^{\times})^n$, there is an isomorphism

$$\mathbf{Z}^n \xrightarrow{\sim} \mathsf{Grp}(T, \mathbf{C}^{\times})$$

$$m = [m_1, \cdots, m_n] \mapsto \chi_m : [t_1, \cdots, t_n] \mapsto \prod t_i^{m_i}.$$

Generally set $M := \mathsf{Grp}(T, \mathbf{C}^{\times})$, the character lattice.

- M is a lattice, $M_{\mathbf{R}} := M \otimes_{\mathbf{Z}} \mathbf{R}$ is its associated Euclidean space.
- Cocharacters / one-parameter subgroups: for groups G, a map $\lambda \in \mathsf{Grp}(\mathbf{C}^{\times}, G)$. For $G = T = \mathbf{C}^{\times}$, there is again an isomorphism

$$\mathbf{Z}^n \mapsto \mathsf{Grp}(\mathbf{C}^{\times}, T)$$
$$u = [u_1, \cdots, u_n] \mapsto \lambda^u : t \mapsto [t^{u_1}, \cdots, t^{u_n}].$$

Define $N := \mathsf{Grp}(\mathbf{C}^{\times}, T)$ the cocharacter lattice.

- -N is a lattice, $N_{\mathbf{R}} := N \otimes_{\mathbf{Z}} \mathbf{R}$ its associated euclidean space.
- There is a perfect pairing

$$\langle -, - \rangle : M \times N \to \mathbf{Z}$$

defined using the fact that if $m \in M, n \in N$ then $\chi^m \circ \lambda^n \in \mathsf{Grp}(\mathbf{C}^\times, \mathbf{C}^\times)$ is of the form $t \mapsto t^\ell$, so set $\langle m, n \rangle \coloneqq \ell$.

- Thus $M = \mathsf{Grp}(M, \mathbf{Z})$ and $N = \mathsf{Grp}(N, \mathbf{Z})$.
- How to recover the torus:

$$N \otimes_{\mathbf{Z}} \mathbf{C}^{\times} \to T$$

 $u \otimes t \mapsto \lambda^{u}(t).$

- Δ is a fan, a collection of strongly convex rational polyhedral cones:
 - Cone: $0 \in \sigma$ and $\mathbb{R}_{>0} \sigma \subseteq \sigma$.
 - Strongly convex: contains no nonzero subspace, i.e. no line through $\mathbf{0} \in N_{\mathbf{R}}$. Equivalently, dim $\sigma^{\vee} = n$.
 - **Rational**: generated by $\{v_i\} \subseteq N$, i.e. of the form Cone(S) for $S \subseteq N$.
- Dual cones:

$$\sigma^{\vee} := \left\{ u \in M \mid \langle u, v \rangle \ge 0 \ \forall v \in M_{\mathbf{R}} \right\}.$$

6.1 Summaries 35

- If
$$\sigma^{\vee} = \bigcap_{i=1}^{s} H_{m_i}^+$$
 for $m_i \subseteq \sigma^{\vee}$ then $\sigma^{\vee} = \operatorname{Cone}(m_1, \dots, m_s)$.

• Hyperplanes and closed half-spaces:

$$H_m := \left\{ u \in N_{\mathbf{R}} \mid \langle m, u \rangle = 0 \right\} \subseteq N_{\mathbf{R}}$$
$$H_m^+ := \left\{ u \in N_{\mathbf{R}} \mid \langle m, u \rangle \ge 0 \right\} \subseteq N_{\mathbf{R}}.$$

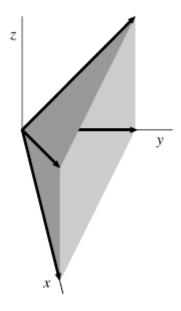
- Face: $\tau \leq \sigma$ is a face iff τ is of the form $\tau = H_m \cap \sigma$ for some $m \in \sigma^{\vee} \subseteq M_{\mathbf{R}}$.
- Facet: codimension one faces, $\Sigma(n-1)$ where $n := \dim N$.
- Ray: dimension 1 faces, $\Sigma(1)$.
- The **semigroup** of a cone:

$$S_{\sigma} := \sigma^{\vee} \cap M = \left\{ u \in M \mid \langle u, v \rangle \ge 0 \ \forall v \in \sigma \right\}.$$

• The **semigroup algebra** of a semigroup:

$$\mathbf{C}[S] \coloneqq \left\{ \sum_{s \in S} c_s \chi^s \mid c_s \in \mathbf{C}, c_s = 0 \text{a.e.} \right\}, \qquad \chi^{m_1} \cdot \chi^{m_2} \coloneqq \chi^{m_1 + m_2}.$$

• Simplicial: the generators can be extended to an R-basis of $N_{\mathbf{R}}$. E.g. not simplicial:



• Smooth: the minimal generators can be extended to a \mathbf{Z} -basis of N.

- Checking T_pX : m is **decomposable** in S_σ iff $m = m_1 + m_2$ with $m_i \in S_\sigma$; the maximal ideal at p corresponding to σ is $\mathfrak{m}_p = \left\{ \chi^m \mid m \in S_\sigma \right\}$, and $\mathfrak{m}_p/\mathfrak{m}_p^2 = \left\{ \chi^m \mid m \text{ is indecomposable in } S_\sigma \right\}$. This exactly corresponds to a Hilbert basis.
- Facet: face of codimension 1.
- Edge: face of dimension 1. Note that facets = edges in dim N=2.
- Saturated: S is saturated if for all $k \in \mathbb{N} \setminus \{0\}$ and all $m \in M$, $km \in S \implies m \in S$. Any SCRPC is saturated.
 - E.g. $S = \{(4,0), (3,1), (1,3), (0,4)\}$ is not saturated since $2 \cdot (2,2) = (4,4) \in \mathbb{N}S$ but $(2,2) \notin S$.
- Normalization: in the affine case, write $X = \operatorname{Spec} \mathbf{C}[S]$ with torus character lattice $M = \mathbf{Z}S$, take a finite generating set S', and set $\sigma = \operatorname{Cone}(S')^{\vee}$. Then $\operatorname{Spec} \mathbf{C}[\sigma^{\vee} \cap M] \to X$ is the normalization.
- **Distinguished points**: each strongly convex $\sigma \leadsto \gamma_{\sigma} \in U_{\sigma}$ a unique point corresponding to the semigroup morphism $m \mapsto \mathbb{1}[(m \in \sigma^{\vee} \cap M)]$, which is T-fixed iff σ is full-dimensional.
- Orbits: $Orb(\sigma) = T.\gamma_{\sigma}$, and $V(\sigma) := clOrb(\sigma)$.
- Orbit-Cone correspondence: there is a correspondence

 $\{\text{Cones } \sigma \in \Sigma\} \rightleftharpoons \{T\text{-orbits in } X_{\Sigma}\}$

$$\sigma \mapsto \operatorname{Orb}(\sigma) \coloneqq T.\gamma_{\sigma} = \left\{ \gamma : S_{\sigma} \to \mathbf{C} \, \middle| \, \gamma(m) \neq 0 \iff m \in \sigma^{\vee} \cap M \right\} \cong \operatorname{\mathsf{Grp}}(\sigma \cap M, \mathbf{C}^{\times}),$$

where dim $\operatorname{Orb}(\sigma) = \operatorname{codim}_{N_{\mathbf{R}}} \sigma$, and $\tau \leq \sigma \implies \operatorname{clOrb}(\tau) \supseteq \operatorname{clOrb}(\sigma)$ and in fact $\operatorname{clOrb}(\sigma) = \coprod_{\tau \leq \sigma} \operatorname{clOrb}(\tau)$.

• Star: define $N_{\tau} := \mathbf{Z} \langle \tau \cap N \rangle$ and $N(\tau)\mathbf{R} := N_{\mathbf{R}}/(N_{\tau})_{\mathbf{R}}$ and $\overline{\sigma}$ for the image of σ under the quotient map, then

$$\operatorname{Star}(\tau) := \left\{ \overline{\sigma} \subseteq N(\tau)_{\mathbf{R}} \mid \sigma \le \tau \right\} \subseteq N(\tau)_{\mathbf{R}}.$$

This is always a fan, and $V(\tau) = X_{\text{Star}(\tau)}$.

- Star subdivision: for $\sigma = \operatorname{Cone}(S)$ for $S := \{u_1, \dots, u_n\}$, set $u_0 := \sum u_i$ and take $\Sigma'(\sigma)$ defined as the cones generated by subsets of $\{u_0, u_1, \dots, u_n\}$ not containing S. The star subdivision of Σ along σ is $\Sigma^*(\sigma) := (\Sigma \setminus \{\sigma\}) \cup \Sigma'(\sigma)$.
- Blowups: $\varphi: X_{\Sigma^*(\sigma)} \to X_{\Sigma}$ is the blowup at γ_{σ} .

6.1.3 Divisors

Remark 6.1.4:

- (Weil) divisor: $Div(X) = \{ \sum n_i V_i \mid V_i \subseteq X, \operatorname{codim} V_i = 1 \}.$
 - $-\mathcal{O}_X(D)$: the (coherent) sheaf associated to a Weil divisor D.
- Cartier divisor: $CDiv(X) = H^0(X; \mathcal{K}_X^{\times}/\mathcal{O}_X^{\times})$, the quotient of rational functions by regular functions. For X normal, equivalently locally principal (Weil) divisors, so $D \leadsto \{(U_i, f_i)\}$ where $D|_{U_i} = Div(f_i)$.
 - **Q-Cartier divisor**: A **Q-**divisor $D = \sum n_i D_i$ with $n_i \in \mathbf{Q}$ is **Q-**Cartier when mD is Cartier for some $m \in \mathbf{Z}_{>0}$.
 - **Q-factorial**: every prime divisor is **Q**-Cartier.
- Ray divisors: every $\rho \in \Sigma(1)$ defines a divisor $D_{\rho} := V(\rho) := \operatorname{clOrb}(\rho)$.
- Very Ample: \mathcal{L} which defines a morphism into $\mathbf{P}H^0(X;\mathcal{L}) \cong \mathbf{P}^N$.
- Ample: \mathcal{L} is basepoint free and some power \mathcal{L}^n is very ample.
 - D is (very) ample iff $\mathcal{O}_X(D)$ is (very) ample, i.e. D is ample iff nD is very ample for some n.
- Upper convex: $f(n_1 + n_2) \le f(n_1) + f(n_2)$.
 - Strictly upper convex: $\sigma_1 \neq \sigma_2 \implies f_{\sigma_1} \neq f_{\sigma_2}$.
- Linearly equivalent divisors: $D_1 \sim D_2 \iff D_1 D_2 = \mathrm{Div}(f)$ for some f.
- Complete linear systems: $|D| = \{D' \in \text{Div}(X) \mid D' \sim D\}.$
- Support function: $\varphi : \operatorname{supp} \Sigma \to \mathbf{R}$ where $\varphi|_{\sigma}$ is linear for each cone σ .
 - **Integral** with respect to N iff $\varphi(\operatorname{supp} \Sigma \cap N) \subseteq \mathbf{Z}$. Defines a set of integral support functions $\operatorname{SF}(\Sigma, N)$.
- The class group complement exact sequence: for $D_1, \dots, D_n \in \text{Div}(X)$ distinct,

$$\mathbf{Z}^n \to \operatorname{Cl}(X) \twoheadrightarrow \operatorname{Cl}(X \setminus \cup D_i)$$

 $e_1 \mapsto [D_i].$

• $\mathcal{O}_X(D)$ is the sheaf

$$U \mapsto \left\{ f \in \mathcal{K}(X)^{\times}(U) \mid \operatorname{Div}(f) + D|_{U} \ge 0 \in \operatorname{Cl}(U) \right\}.$$

Then $D \in \mathrm{CDiv}(X) \iff \mathcal{O}_X(D) \in \mathrm{Pic}(X)$.

• The toric class group exact sequence:

$$M \to \operatorname{Div}_T(X) \twoheadrightarrow \operatorname{Cl}(X)$$

 $m \mapsto \operatorname{Div}(\chi^m) = \sum_{\rho} \langle m, u_{\rho} \rangle [D_{\rho}]$

where u_{ρ} are minimal ray generators.

6.1.4 Polytopes

Remark 6.1.5:

• Supporting hyperplanes: the positive side of an affine hyperplane

$$H_{u,b} := \left\{ m \in M_{\mathbf{R}} \mid \langle m, u \rangle = b \right\}$$

$$H_{u,b}^+ := \left\{ m \in M_{\mathbf{R}} \mid \langle m, u \rangle \ge b \right\}.$$

- If P is full dimensional and $F \leq P$ is a facet, then $F = P \cap H_{u_F, -a_F}$ for a unique pair $(u_F, a_F) \in N_{\mathbf{R}} \times \mathbf{R}$.
- Polytope: the convex hull of a finite set $S \subseteq N_{\mathbf{R}}$ or an intersection of half-spaces:

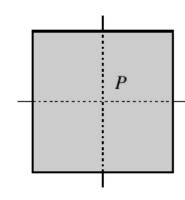
$$P = \left\{ \sum_{v \in S} \lambda_v v \mid \sum \lambda_v = 1 \right\} = \bigcap_{i=1}^s H_{u_i, b_i}^+.$$

- Simplex dim P = d and there are exactly d + 1 vertices.
- Simple: $\dim P = d$ and every vertex is the intersection of exactly d facets.
- Simplicial: all facets are simplices.
 - E.g. simple but not simplicial: the cube in \mathbb{R}^3 , since each vertex meets 3 edges but a square is not a simplex. -E.g. Simplicial but not simple: the octahedron in \mathbb{R}^3 , since each vertex meets 4 edges but each face is a triangle.
- Combinatorial equivalence: $P_1 \sim P_2$ iff there is a bijection $P_1 \to P_2$ preserving intersections, inclusions, and dimensions of all faces.
- Polar dual: for $P \subseteq M_{\mathbf{R}}$,

$$P^{\circ} = \left\{ u \in N_{\mathbf{R}} \mid \langle m, u \rangle \ge -1 \ \forall m \in P \right\}.$$

- Trick: for $P \subseteq M_{\mathbf{R}}$ with $0 \in P$,

$$P = \left\{ m \in M_{\mathbf{R}} \mid \langle m, u_F \rangle \ge -a_F, F \in \text{Facets}(P) \right\}$$
$$\implies P^{\circ} = *(\left\{ a_F^{-1} u_F \right\}) \subseteq N_{\mathbf{R}}.$$



E.g. write the square as $\{\langle m, \pm e_i \rangle \geq -1\}$, then $a_F = 1$ for all F:

- Cone on a polytope: $C(P) := \operatorname{Cone}(P \times \{1\}) \subseteq M_{\mathbf{R}} \times \mathbf{R}$, the set of cones through all proper faces of P.
- Normal: $(kP \cap M) + (\ell P \cap M) \subseteq (k+\ell)P \cap M$, or equivalently $k \cdot (P \cap M) = (kP) \cap M$, or equivalently $(P \cap M) \times \{1\}$ generates $C(P) \cap (M \times \mathbf{Z})$ as a semigroup.
 - If $P \subseteq M_{\mathbf{R}}$ is a full-dimensional lattice polytope with dim $P \ge 2$, then kP is normal for all $k \ge \dim P 1$.
 - Normal implies very ample.
 - $-P \rightsquigarrow \mathcal{L}_P \in \operatorname{Pic}(X_P)$
 - $-P\cap M\rightsquigarrow H^0(X_P;\mathcal{L}_P).$
- Reflexive: a polytope P with facet presentation

$$P = \left\{ m \in M_{\mathbf{R}} \; \middle| \; \langle m, \; \mu_F \rangle \ge -1 \forall F \in \operatorname{Facets}(P) \right\}.$$

Implies that $f(P) \cap M = \{0\}$, and $P^{\circ} = *(\{u_F \mid F \in \text{Facets}(P)\})$.

• Polyhedron of a divisor P_D : write $D = \sum_{\rho} a_{\rho} D_{\rho}$, for any $m \in M$, $\text{Div}(\chi^m) + D \ge 0 \implies \langle m, \rho \rangle \ge a_{\rho} \implies \langle m, \rho \rangle \ge -a_{\rho}$, so set

$$P_D := \left\{ m \in M_{\mathbf{R}} \mid \langle m, \rho \rangle \ge a_{\rho} \, \forall \rho \in \Sigma(1) \right\}.$$

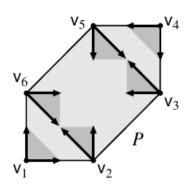
- Divisor of a polytope: $D_P = \sum_F a_F D_F$ where $P = \{ m \mid \langle m, u_F \rangle \ge -a_F \}$.
 - D_P is always the pullback of $\mathcal{O}_{\mathbf{P}^N}(1)$ along the embedding.
- Very ample polytopes: for every vertex v, the semigroup $\{m'-v \mid m' \in P \cap M\}$ is saturated in M.
 - Gives an embedding $X \hookrightarrow \mathbf{P}^N$ where $N = \sharp (P \cap M) 1$.

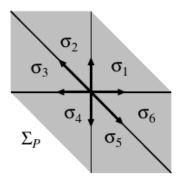
• The toric variety of a polytope: if $P \cap M = \{m_1, \dots, m_s\}$ and P is full dimensional very ample, then writing T_N for the torus of N,

$$X_P := \operatorname{clim} \varphi, \qquad \varphi : T_N \to \mathbf{P}^{s-1}$$

$$t \mapsto [\chi^{m_1}(t) : \dots : \chi^{m_s}(t)].$$

- Vertices m_i correspond to U_{σ_i} for $\sigma_i = \operatorname{Cone}(P \cap M - m_i)^{\vee}$:





• Smooth: P is smooth iff for all vertices $v \in P$, $\{w_E - v \mid E \text{ is an edge containing } v\}$ can be extended to a **Z**-basis of M, where w_E is the first lattice point on E.

6.1.5 Singularities and Classification

Remark 6.1.6:

- Gorenstein: X normal where $K_X \in CDiv(X)$ is Cartier.
- Normal: all local rings are integrally closed domains.
- Complete: proper over k. E.g. for varieties, just universally closed.
- Factorial: all local rings are UFDs.
- Fano: $-K_X$ is ample.
- del Pezzo: a smooth Fano surface.

Remark 6.1.7: Classification of smooth complete toric varieties:

- dim $\Sigma = 2, \sharp \Sigma(1) = 3$: without loss of generality $\rho_1 = e_1, \rho_2 = e_2$. Then $\rho_3 = ae_1 + be_2$ with a, b < 0 to ensure supp $\Sigma = \mathbf{R}^2$, and determinants for |a| = |b| = 1, so (-1, 1).
- dim $\Sigma = 2, \sharp \Sigma(1) = 4$: without loss of generality $\rho_1 = e_1, \rho_2 = e_2$. Then determinant conditions for $\rho_3 = (-1, b)$ and $\rho_4 = (a, -1)$, and det $\begin{bmatrix} -1 & a \\ b & -1 \end{bmatrix} = 1 ab = \pm 1 \implies ab = 0, 2,$ so (a, b) = (2, 1), (1, 2), (-2, -1), (-1, -2).
- dim $\Sigma = 2, \sharp \Sigma(1) = d$, smooth: Bl $_{p_1, \dots, p_\ell} X$ for $X = \mathbf{P}^2$ or \mathbf{F}_a for some a and p_i torus fixed points.

6.1.6 Examples

Question 6.1.8

Things you can figure out for every example:

- Given Δ , for $\sigma \in \Delta$,
 - What is σ^{\vee} ?
 - Generators for S_{σ} ?
 - Describe U_{σ} and $X(\Delta)$.
 - What are the transition functions for $U_{\sigma_1} \to U_{\sigma_2}$ when $\sigma_1 \cap \sigma_2 = \tau$ intersect in a common face?
- What are the *T*-invariant points?
 - What are the T-invariant divisors D_{ρ_i} ?
 - What are all of the *T*-orbit closures of various dimensions?
- Is $X(\Delta)$ smooth?
 - Which cones $\sigma \in \Delta$ are smooth?
 - What is the canonical resolution of singularities?
 - What is the tangent space at each T-invariant point?
- What is the associated polytope P_{Δ} ? What is its polar dual P_{Δ}° ?
- What are the intersection numbers $D_{\rho_i} \cdot D_{\rho_j}$?
 - What are the self-intersection numbers $D_{\rho_i}^2$?
- What is $Div_T(X)$? $CDiv_T(X)$?
 - Which divisors are ample? Very ample? Globally generated?
- What is Cl(X)? Pic(X)?
- What is K_X ?
 - Is K_X ample?
- Is $X(\Delta)$ projective?
- What is $H^0(X(\Delta); \mathcal{O}(D))$ for $D \in \text{Div}_T(X)$?
- What is the Poincaré polynomial of $X(\Delta)$? (I.e. what are the Betti numbers?)

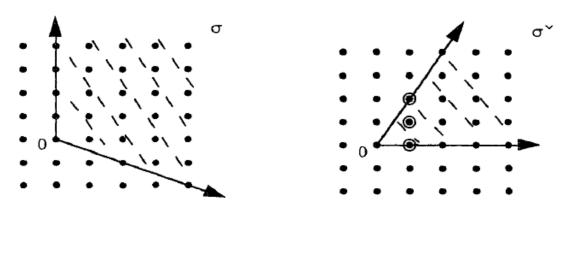
Example 6.1.9 (of varieties): Some useful explicit varieties:

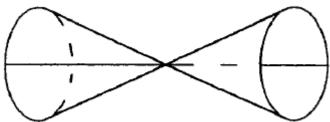
- $V(x^3 y^2)$ with torus $T = \{ [t^2, t^3] \mid t \in \mathbf{C}^{\times} \}$.
- V(xy-zw) with torus $T=\left\{\left[a,b,c,abc^{-1}\right]\ \middle|\ a,b,c,d\in\mathbf{C}^{\times}\right\}$.
- $V(xz-y^2)$, note $V(x,y) \in \text{Div}(X) \setminus \text{CDiv}(X)$.
- $\operatorname{im}([x:y] \mapsto [x^3:x^2y:xy^2:y^3])$ the twisted cubic. Corresponds to $\sigma^{\vee} = \{(3,0),(2,1),(1,2),(0,3)\}.$

- The **rational normal scroll**: $V\left(2\times 2 \text{ minors of } \begin{bmatrix} x_0 & x_1 & y_0 \\ x_1 & x_2 & y_1 \end{bmatrix}\right)$ is the image of $[s,t]\mapsto [1:s:s^2:t:st]$.
- The Segre variety: Spec $\mathbb{C}[x_1y_1, x_1y_2, \cdots, x_1y_n, x_2y_1, \cdots, x_my_1, \cdots x_my_n]$.

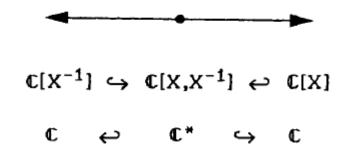
Example 6.1.10(of fans):

- $(\mathbf{C}^{\times})^n$: Take $\Delta = \{\sigma_0 = \mathbb{N} \langle 0 \rangle\} \subseteq N$ with dim N = n yields $S_{\sigma_0} = \mathbb{N} \langle \pm e_1^{\vee}, \cdots, \pm e_n^{\vee} \rangle = M$ for so $X(\Delta) = \operatorname{Spec} \mathbf{C}[x_1^{\pm 1}, \cdots, x_n^{\pm 1}] = (\mathbf{G}_m)^n$.
- \mathbf{C}^n : Take $\Delta = \operatorname{Cone}(\sigma_0 = \mathbb{N} \langle e_1, \cdots, e_n \rangle)$ yields the positive orthant $S_{\sigma_0} = \mathbb{N} \langle e_1^{\vee}, \cdots, e_n^{\vee} \rangle \subseteq M$, so $X(\Delta) = \operatorname{Spec} \mathbf{C}[x_1, \cdots, x_n] = \mathbf{A}^n$.
- The quadric cone: $\Delta = \operatorname{Cone}(\sigma_1 = \mathbb{N} \langle e_2, 2e_1 e_2 \rangle)$ yields $S_{\sigma_1} = \mathbb{N} \langle e_1^{\vee}, e_1^{\vee} + e_2^{\vee}, e_1^{\vee} + 2e_2^{\vee} \rangle$ so $X(\Delta) = \operatorname{Spec} \mathbf{C}[x, xy, xy^2] = \operatorname{Spec} \mathbf{C}[u, v, w]/(v^2 uw)$:

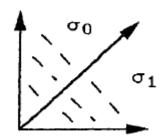




• \mathbf{P}^1 : Take $\Delta = {\mathbf{R}_{\geq 0}, 0, \mathbf{R}_{\leq 0}}$ and glue along overlaps to get $X(\Delta) = \mathbf{P}^1$ with gluing maps $x \mapsto x^{-1}$:

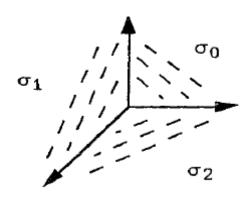


• Bl₁ \mathbf{C}^2 : Take $\sigma_0 = \mathbb{N} \langle e_2, e_1 + e_2 \rangle$ and $\sigma_1 = \mathbb{N} \langle e_1 + e_2, e_1 \rangle$ to get $U_{\sigma_0} = \operatorname{Spec} \mathbf{C}[x, x^{-1}y]$ and $U_{\sigma_1} = \operatorname{Spec} \mathbf{C}[y, xy^{-1}]$, both copies of \mathbf{C}^2 :

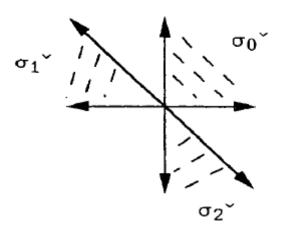


Why this is a blowup of \mathbb{C}^2 : write $\mathrm{Bl}_1 \mathbb{C}^2 = V(xt_1 - yt_0) \subseteq \mathbb{C}^2 \times \mathbb{P}^1$ for $\mathbb{P}^1 = \{[t_0 : t_1]\}$. Take the open cover $U_i = D(t_i) \cong \mathbb{C}^2$, where coordinates on U_0 are $x, t_1/t_0 = x^{-1}y$ and on U_1 are $y, t_0/t_1 = xy^{-1}$ and glue.

• \mathbf{P}^2 : take $\Delta = \text{Cone}(e_1, e_2, -e_1 - e_2)$:



This has dual cone:



Each $U_{\sigma_i} \cong \mathbb{C}^2$ with coordinates $(x, y), (x^{-1}, x^{-1}y), (y^{-1}, xy^{-1})$ respectively for U_i . Glue to obtain $x = t_1/t_0, y = t_2/t_0$.

• F_a the Hirzebruch surface: take $Cone(e_1, -e_2, -e_1, -e_1 + ae_2)$ to get

-
$$U_{\sigma_1} = \operatorname{Spec} \mathbf{C}[x, y],$$

- $U_{\sigma_2} = \operatorname{Spec} \mathbf{C}[x, y^{-1}],$
- $U_{\sigma_3} = \operatorname{Spec} \mathbf{C}[x^{-1}, x^{-a}y^{-1}],$
- $U_{\sigma_4} = \operatorname{Spec} \mathbf{C}[x^{-1}, x^a y],$

which patch in the following way:

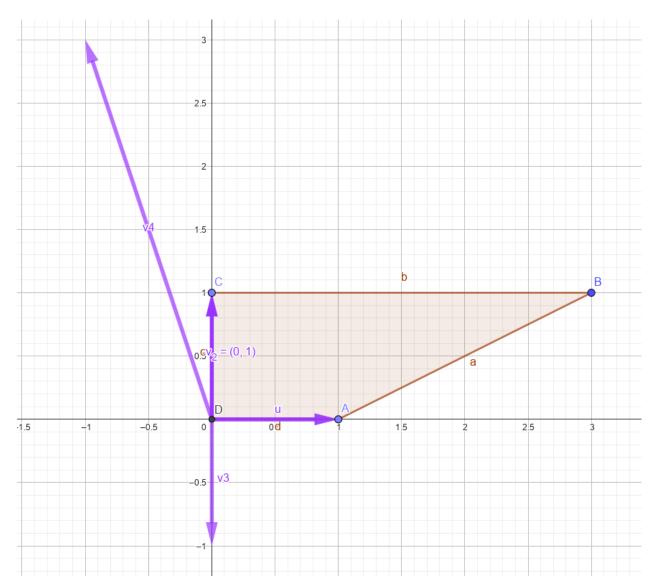
$$\begin{array}{cccc} U_{\sigma_4} & & (x^{-1}, x^a y) & \longleftrightarrow & (x, y) & & U_{\sigma_1} \\ & & & \uparrow & & \uparrow \\ & & U_{\sigma_3} & & (x^{-1}, x^{-a} y^{-1}) & \longleftrightarrow & (x, y^{-1}) & & U_{\sigma_2} \end{array}$$

Project to y=0 to get the patching $x\mapsto x^{-1}$, so a copy of \mathbf{P}^1 . Patching in the fiber direction, e.g. U_{σ_1} and U_{σ_2} , gives a copy of $\mathbf{C}\times\mathbf{P}^1$. Thus this is a bundle $\mathbf{P}^1\to\mathcal{E}\to\mathbf{P}^1$.

- $\mathbf{C} \times \mathbf{P}^1$: todo.
- $\mathbf{P}^1 \times \mathbf{P}^1$: todo.
- $\mathbf{C}^a \times \mathbf{P}^b$: todo.

• $\mathbf{P}^a \times \mathbf{P}^b$: todo.

Example 6.1.11 (of polytopes): • Hirzebruch surfaces:



• ($\mathbf{P}^2, \mathcal{O}(1)$): take $P = *(0, e_1, e_2)$, so $X_P = \mathrm{cl}\Phi_P$ where

$$\Phi_P : (\mathbf{C}^{\times})^2 \to \mathbf{P}^2$$

 $(s,t) \mapsto [1:s:t],$

which is the identity embedding corresponding to $\mathcal{O}(1)$ on \mathbf{P}^2 .

-2P yields

$$\Phi_{2P}: (\mathbf{C}^{\times})^2 \to \mathbf{P}^5$$

$$(s,t) \mapsto [1:s:t:s^2:st:t^2],$$

the Veronese embedding corresponding to $\mathcal{O}(2)$ on \mathbf{P}^2 .

Example 6.1.12 (Projective spaces): Some useful facts about \mathbf{P}^n :

• The torus embedding is

$$(\mathbf{C}^{\times})^n \hookrightarrow \mathbf{P}^n$$

 $[a_1, \cdots, a_n] \mapsto [1: a_1: \cdots: a_n].$

• The torus action is

$$(\mathbf{C}^{\times})^n \curvearrowright \mathbf{P}^n$$
$$[t_1, \dots, t_n].[x_0 : x_1 : \dots : x_n] = [x_0 : t_1 x_1 : \dots : t_n x_n].$$

Example IV.3.2. The fan of \mathbb{P}^2 has rays generate is

$$Cl(\mathbb{P}^2) = coker \left(\mathbb{Z}^2 \right)^{-1}$$

Example IV.3.3. The fan of a Hirzebruch surface has group is

Cl(Hirzebruch surface) = coker

Example IV.3.4. The fan with rays generated by $\mathbb{P}^1 \xrightarrow{|\mathcal{O}(d)|} \mathbb{P}^d$. Its class group is coker $\begin{bmatrix} d & -1 \\ 0 & 1 \end{bmatrix} =$

Example 6.1.13 (of class groups and Picard groups):

Example IV.3.11. Consider $X_{\Sigma} = \operatorname{Cone}(\mathbb{P}^1 \times \mathbb{P}^1) = V(xz - yw) \subseteq \mathbb{C}^4$, where Σ has rays $(e_1, e_2, e_1 + e_3, e_2 + e_3)$. Then

$$\operatorname{Cl}(X_{\Sigma}) = \operatorname{coker}\left(\mathbb{Z}^3 \xrightarrow{\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}} \mathbb{Z}^4\right) = \mathbb{Z}$$

is generated by D_{ρ} for any ray ρ . However, $Pic(X_{\Sigma}) = 0$; this is an exercise in the book.

7 I: Definitions and Examples

7.1 1.1: Introduction

Remark 7.1.1: Machinery used to study varieties:

- Various cohomology theories
- Resolutions of singularities
- Intersection theory and cycles
- Riemann-Roch theorems
- Vanishing theorems
- Linear systems (via line bundles and projective embeddings)

Varieties that arise as examples

- Grassmannians
- Flag varieties
- Veronese embeddings
- Scrolls
- Quadrics
- Cubic surfaces
- Toric varieties (of course)
- Symmetric varieties and their compactifications

Misc notes:

Toric varieties are always rational

Remark 7.1.2:

- Toric varieties: normal varieties X with $T \hookrightarrow X$ contained as a dense open subset where the torus action $T \times T \to T$ extends to $T \times X \to X$.
- Any product of copies of $\mathbf{A}^n, \mathbf{P}^m$ are toric.
- S_{σ} is a finitely-generated semigroup, so $\mathbf{C}[S_{\sigma}] \in \mathsf{Alg}\mathbf{C}^{\mathrm{fg}}$ corresponds to an affine variety $U_{\sigma} := \mathrm{Spec}\,\mathbf{C}[S_{\sigma}].$
- If $\tau \leq \sigma$ is a face then there is a map of affine varieties $U_{\tau} \to U_{\sigma}$ where $U_{\tau} = D(u_{\tau})$ is a principal open subset given by the function u_{τ} picked such that $\tau = \sigma \cap u_{\tau}^{\perp}$, so u_{τ} corresponds to the orthogonal normal vector for the wall τ .
- These glue to a variety $X(\Delta)$.
- Smaller cones correspond to smaller open subsets.
- The geometry in N is nicer than that in M, usually.
- Rays ρ correspond to curves D_{ρ} .

Exercise 7.1.3 (?)

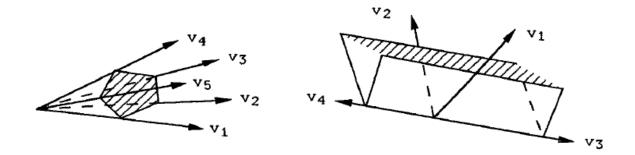
- Show $F_a \to \mathbf{P}^1$ is isomorphic to $\mathbf{P}(\mathcal{O}(a) \oplus \mathcal{O}(1))$.
- Let τ be the ray through e_2 in F_a and show $D_{\tau}^2 = -a$.
- Show that the normal bundle to $D_{\tau} \hookrightarrow F_a$ is $\mathcal{O}(-a)$.

7.1 1.1: Introduction 48

7.2 1.2: Convex Polyhedral Cones

Remark 7.2.1:

• Convex polyhedral cones: generated by vectors $\sigma = \mathbf{R}_{\geq 0} \langle v_1, \cdots, v_n \rangle$. Can take minimal vectors along these rays, say ρ_i .



- $\dim \sigma := \dim_{\mathbf{R}} \mathbf{R} \sigma := \dim_{\mathbf{R}} (-\sigma + \sigma)$
- $(\sigma^{\vee})^{\vee} = \sigma$, which follows from a general theorem: for σ a convex polyhedral cone and $v \notin \sigma$, there is some support vector $u_v \in \sigma^{\vee}$ such that $\langle u, v \rangle < 0$. I.e. v is on the negative side of some hyperplane defined in σ^{\vee} .
- Faces are again convex polyhedral cones, faces are closed under intersections and taking further faces.
- If σ spans V and τ is a facet, there is a unique $u_{\tau} \in \sigma^{\vee}$ such that $\tau = \sigma \cap u_{\tau}^{\perp}$; this defines an equation for the hyperplane H_{τ} spanned by τ .
- If σ spans V and $\sigma \neq V$, then $\sigma = \cap_{\tau \in \Delta} H_{\tau}^+$, the intersection of positive half-spaces.
 - An alternative presentation: picking u_1, \dots, u_t generators of σ^{\vee} , one has $\sigma = \{v \in N \mid \langle u_1, v \rangle \geq 0, \dots \}$
- If $\tau \leq \sigma$ then $\sigma^{\vee} \cap \tau^{\vee} \leq \sigma^{\vee}$ and $\dim \tau = \operatorname{codim}(\sigma^{\vee} \cap \tau^{\vee})$, so the faces of σ, σ^{\vee} biject contravariantly.
- If $\tau = \sigma \cap u_{\tau}^{\perp}$ then $S_{\tau} = S_{\sigma} + \mathbb{N} \langle -u_{\tau} \rangle$.

Singularities and Compactness

Remark 8.1.1: • Any cone $\sigma \in \Sigma$ has a distinguished point x_{σ} corresponding to $\operatorname{Hom}(S_{\sigma}, \mathbf{C})$ where $u \mapsto \chi_{u \in \sigma^{\perp}}$.

– Note $S_{\sigma} := \sigma^{\vee} \cap M$.

- Define $A_{\sigma} := \mathbf{C}[S_{\sigma}]$.
- Finding singular points:
 - Easy case: σ spans $N_{\mathbf{R}}$ so $\sigma^{\perp} = 0$; consider $\mathfrak{m} \in \mathrm{mSpec}\,A_{\sigma}$ be the maximal ideal at x_{σ} , then $\mathfrak{m} = \left\langle \chi^{u} \mid u \in S_{\sigma} \right\rangle$ and $\mathfrak{m}^{2} = \left\langle \chi^{u} \mid u \in S_{\sigma} \setminus \{0\} + S_{\sigma} \setminus \{0\} \right\rangle$, so $\mathbf{T}_{x_{\sigma}} \vee U_{\sigma} = \mathfrak{m}/\mathfrak{m}^{2} = \left\{ \chi^{u} \mid u \notin S_{\sigma} \setminus \{0\} + S_{\sigma} \setminus \{0\} \right\}$, i.e. "primitive" elements u which are not the sums of two other vectors in $S_{\sigma} \setminus \{0\}$.
 - Nonsingular implies dim $U_{\sigma} = n$, so σ^{\vee} has $\leq n$ edges since each minimal ray generator yields a primitive u above. Also implies minimal edge generators must generate S_{σ} , thus must be a basis for M, so σ must be a basis for N and $U_{\sigma} \cong \mathbf{A}^{n}$.
- Characterization of smoothness: U_{σ} is smooth iff σ is generated by a subset of a lattice basis for N, in which case $U_{\sigma} \cong \mathbf{A}^k \times \mathbf{G}_m^{n-k}$.
- All toric varieties are normal since each A_{σ} is integrally closed.
 - If $\sigma = \langle v_1, \cdots, v_r \rangle$ then $\sigma^{\vee} = \bigcap_{i=1}^r \tau_i^{\vee}$ where τ_i is the ray along v_i . Thus $A_{\sigma} = \bigcap A_{\tau_i}$, each of which is isomorphic to $\mathbf{C}[x_1, x_2^{\pm 1}, \cdots, x_n^{\pm 1}]$ which is integrally closed.
- All toric varieties are **Cohen-Macaulay**: each local ring R has depth n, i.e. contains a regular sequence of length $n = \dim R$.
- All vector bundles on affine toric varieties are trivial, equivalently all projective modules over A_{σ} are free.

Remark 8.2.1: • An example: $\Sigma = \text{Cone}(me_1 - e_2, e_2)$. Then $A_{\sigma} = \mathbf{C}[x, xy, xy^2, \dots, xy^m] = \mathbf{C}[u^m u^{m-1}v, \dots, uv^{m-1}, v^m]$ and U_{σ} is the cone over the rational normal curve of degree m.

- Note $A_{\sigma} = \mathbf{C}[u, v]^{\mu_m}$ is the ring of invariants under the diagonal action $\zeta.[u, v] = [\zeta u, \zeta v]$.
- If Σ is simplicial, then X_{Σ} is at worst an orbifold.

8.3 2.3

Remark 8.3.1: • $\operatorname{Hom}_{\mathsf{AlgGrp}}(\mathbf{G}_m, \mathbf{G}_m) = \mathbf{Z} \text{ using } n \mapsto (z \mapsto z^n).$

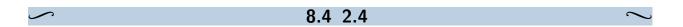
• Cocharacters:

8.2 2.2

– Pick a basis for N to get $\operatorname{Hom}(\mathbf{G}_m, T_N) = \operatorname{Hom}(\mathbf{Z}, N) = N$, then every cocharacter $\lambda \in \operatorname{Hom}(\mathbf{G}_m, T_N)$ is given by a unique $v \in N$, so denote it λ_v . Then $\lambda_v(z) \in T_N = \operatorname{Hom}(M, \mathbf{G}_m)$ for any $z \in \mathbf{C}^{\times}$, so

$$u \in M \implies \lambda_v(z)(u) = \chi^u(\lambda_v(z)) = z^{\langle u, v \rangle}.$$

- Characters: $\chi \in \text{Hom}(T_n, \mathbf{G}_m) = \text{Hom}(N, \mathbf{Z}) = M$ is given by a unique $u \in M$ and can be identified with $u \in \mathbf{C}[M] = H^0(T_N, \mathcal{O}_{T_N}^{\times})$.
- $\lim_{z\to 0} \lambda_v(z) = \lim_{z\to 0} [z^{m_1}, \cdots, z^{m_n}] \in U_{\sigma} \iff m_i \geq 0$ for all i, and if $U_{\sigma} = \mathbf{A}^k \times \mathbf{G}_m^{n-k}$, $m_i = 0$ for i > k. This happens iff $v \in \sigma$, and the limit is $[\delta_1, \cdots, \delta_n]$ where $\delta_i = 1 \iff m_i = 0$ and $\delta_i = 0 \iff m_i > 0$; each of which is a distinguished point x_{τ} for some face τ of σ .
- Summary: $v \in |\Sigma|$ and $v \in \tau^{\circ}$ then $\lim_{z \to 0} \lambda_v(z) = x_{\tau}$, and the limit does not exist for $v \notin |\Sigma|$.



Remark 8.4.1: • Recall X is compact in the Euclidean topology iff it is complete/proper in the Zariski topology, i.e. the map to a point is proper.

- X_{Σ} is compact iff $|\Sigma| = N_{\mathbf{R}}$, i.e. Σ is complete.
- Any morphism of lattices $\varphi: N \to N'$ inducing a map of fans $\Sigma \to \Sigma'$ defines a morphism $X_{\Sigma} \to X_{\Sigma'}$ which is proper iff $\varphi^{-1}(|\Sigma'|) = |\Sigma|$. Thus X_{Σ} is compact iff $\varphi: N \to 0$ is a proper morphism.
- Blowing up at x_{σ} : take a basis $\{v_i\}$, set $v_0 := \sum v_i$, and replace σ by all subsets of $\{v_0, v_1, \dots, v_n\}$ not containing $\{v_1, \dots, v_n\}$.

8.4 2.4