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1 Algebra (140 Questions)

1.1 Question 1

Let G be a finite group with n distinct conjugacy classes. Let g1 · · · gn be representatives of
the conjugacy classes of G.
Prove that if gigj = gjgi for all i, j then G is abelian.

1.2 Question 2

Let G be a group of order 105 and let P,Q,R be Sylow 3, 5, 7 subgroups respectively.

(a) Prove that at least one of Q and R is normal in G.

(b) Prove that G has a cyclic subgroup of order 35.

(c) Prove that both Q and R are normal in G.

(d) Prove that if P is normal in G then G is cyclic.

1.3 Question 3

Let R be a ring with the property that for every a ∈ R, a2 = a.

(a) Prove that R has characteristic 2.

(b) Prove that R is commutative.

1.4 Question 4

Let F be a finite field with q elements.
Let n be a positive integer relatively prime to q and let ω be a primitive nth root of unity
in an extension field of F .
Let E = F [ω] and let k = [E : F ].

(a) Prove that n divides qk − 1.

(b) Let m be the order of q in Z/nZ. Prove that m divides k.

(c) Prove that m = k.

1.5 Question 5

Let R be a ring and M an R-module.

Recall that the set of torsion elements in M is defined by

Tor(m) = {m ∈M
∣∣∣ ∃r ∈ R, r 6= 0, rm = 0}.
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(a) Prove that if R is an integral domain, then Tor(M) is a submodule of M .

(b) Give an example where Tor(M) is not a submodule of M .

(c) If R has zero-divisors, prove that every non-zero R-module has non-zero torsion ele-
ments.

1.6 Question 6

Let R be a commutative ring with multiplicative identity. Assume Zorn’s Lemma.

(a) Show that

N = {r ∈ R
∣∣∣ rn = 0 for some n > 0}

is an ideal which is contained in any prime ideal.

(b) Let r be an element of R not in N . Let S be the collection of all proper ideals of R not
containing any positive power of r. Use Zorn’s Lemma to prove that there is a prime
ideal in S.

(c) Suppose that R has exactly one prime ideal P . Prove that every element r of R is
either nilpotent or a unit.

1.7 Question 7

Let ζn denote a primitive nth root of 1 ∈ Q. You may assume the roots of the minimal
polynomial pn(x) of ζn are exactly the primitive nth roots of 1.
Show that the field extension Q(ζn) over Q is Galois and prove its Galois group is (Z/nZ)×.
How many subfields are there of Q(ζ20)?

1.8 Question 8

Let {e1, · · · , en} be a basis of a real vector space V and let

Λ :=
{∑

riei

∣∣∣ ri ∈ Z
}

Let · be a non-degenerate (v · w = 0 for all w ∈ V ⇐⇒ v = 0) symmetric bilinear form on
V such that the Gram matrix M = (ei · ej) has integer entries.
Define the dual of Λ to be

Λ∨ := {v ∈ V
∣∣∣ v · x ∈ Z for all x ∈ Λ}.

(a) Show that Λ ⊂ Λ∨.

(b) Prove that detM 6= 0 and that the rows of M−1 span Λ∨.

(c) Prove that detM = |Λ∨/Λ|.
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1.9 Question 9

Let A be a square matrix over the complex numbers. Suppose that A is nonsingular and
that A2019 is diagonalizable over C.
Show that A is also diagonalizable over C.

1.10 Question 10

Let F = Fp , where p is a prime number.

(a) Show that if π(x) ∈ F [x] is irreducible of degree d, then π(x) divides xp
d − x.

(b) Show that if π(x) ∈ F [x] is an irreducible polynomial that divides xp
n−x, then deg π(x)

divides n.

1.11 Question 11

How many isomorphism classes are there of groups of order 45?
Describe a representative from each class.

1.12 Question 12

For a finite group G, let c(G) denote the number of conjugacy classes of G.

(a) Prove that if two elements of G are chosen uniformly at random,then the probability
they commute is precisely

c(G)

|G|
.

(b) State the class equation for a finite group.

(c) Using the class equation (or otherwise) show that the probability in part (a) is at most

1

2
+

1

2[G : Z(G)]
.

Here, as usual, Z(G) denotes the center of G.

1.13 Question 13

Let R be an integral domain. Recall that if M is an R-module, the rank of M is defined to
be the maximum number of R-linearly independent elements of M .

(a) Prove that for any R-module M , the rank of Tor(M) is 0.

(b) Prove that the rank of M is equal to the rank of of M/Tor(M).

(c) Suppose that M is a non-principal ideal of R.

(d) Prove that M is torsion-free of rank 1 but not free.
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1.14 Question 14

Let R be a commutative ring with 1.

Recall that x ∈ R is nilpotent iff xn = 0 for some positive integer n.

(a) Show that every proper ideal of R is contained within a maximal ideal.

(b) Let J(R) denote the intersection of all maximal ideals of R.

Show that x ∈ J(R) ⇐⇒ 1 + rx is a unit for all r ∈ R.

(c) Suppose now that R is finite. Show that in this case J(R) consists precisely of the
nilpotent elements in R.

1.15 Question 15

Let p be a prime number. Let A be a p× p matrix over a field F with 1 in all entries except
0 on the main diagonal.
Determine the Jordan canonical form (JCF) of A

(a) When F = Q,

(b) When F = Fp.

Hint: In both cases, all eigenvalues lie in the ground field. In each case find a
matrix P such that P−1AP is in JCF.

1.16 Question 16

Let ζ = e2πi/8.

(a) What is the degree of Q(ζ)/Q?

(b) How many quadratic subfields of Q(ζ) are there?

(c) What is the degree of Q(ζ, 4
√

2) over Q?

1.17 Question 17

Let G be a finite group whose order is divisible by a prime number p. Let P be a normal
p-subgroup of G (so |P | = pc for some c).

(a) Show that P is contained in every Sylow p-subgroup of G.

(b) Let M be a maximal proper subgroup of G. Show that either P ⊆ M or |G/M | = pb

for some b ≤ c.
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1.18 Question 18

(a) Suppose the group G acts on the set X . Show that the stabilizers of elements in the
same orbit are conjugate.

(b) Let G be a finite group and let H be a proper subgroup. Show that the union of the
conjugates of H is strictly smaller than G, i.e.

∪g∈GgHg−1 ( G

(c) Suppose G is a finite group acting transitively on a set S with at least 2 elements.
Show that there is an element of G with no fixed points in S.

1.19 Question 19

Let F ⊂ K ⊂ L be finite degree field extensions. For each of the following assertions, give a
proof or a counterexample.

(a) If L/F is Galois, then so is K/F .

(b) If L/F is Galois, then so is L/K.

(c) If K/F and L/K are both Galois, then so is L/F .

1.20 Question 20

Let V be a finite dimensional vector space over a field (the field is not necessarily algebraically
closed).
Let φ : V → V be a linear transformation. Prove that there exists a decomposition of V as
V = U ⊕W , where U and W are φ-invariant subspaces of V , φ|U is nilpotent, and φ|W is
nonsingular.

1.21 Question 21

Let A be an n× n matrix.

(a) Suppose that v is a column vector such that the set {v,Av, ..., An−1v} is linearly inde-
pendent. Show that any matrix B that commutes with A is a polynomial in A.

(b) Show that there exists a column vector v such that the set {v,Av, ..., An−1v} is linearly
independent ⇐⇒ the characteristic polynomial of A equals the minimal polynomial
of A.
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1.22 Question 22

Let R be a commutative ring, and let M be an R-module. An R-submodule N of M is
maximal if there is no R-module P with N ( P (M .

(a) Show that an R-submodule N of M is maximal ⇐⇒ M/N is a simple R-module:
i.e., M/N is nonzero and has no proper, nonzero R-submodules.

(b) Let M be a Z-module. Show that a Z-submodule N of M is maximal ⇐⇒ #M/N is
a prime number.

(c) Let M be the Z-module of all roots of unity in C under multiplication. Show that
there is no maximal Z-submodule of M .

1.23 Question 23

Let R be a commutative ring.

(a) Let r ∈ R. Show that the map

r• : R→ R

x 7→ rx.

is an R-module endomorphism of R.

(b) We say that r is a zero-divisor if r• is not injective. Show that if r is a zero-divisor
and r 6= 0, then the kernel and image of R each consist of zero-divisors.

(c) Let n ≥ 2 be an integer. Show: if R has exactly n zero-divisors, then #R ≤ n2 .

(d) Show that up to isomorphism there are exactly two commutative rings R with precisely
2 zero-divisors.

You may use without proof the following fact: every ring of order 4 is isomorphic
to exactly one of the following:

Z
4Z
,

Z
2Z [t]

(t2 + t+ 1)
,

Z
2Z [t]

(t2 − t)
,

Z
2Z [t]

(t2)
.

1.24 Question 24

(a) Use the Class Equation (equivalently, the conjugation action of a group on itself) to
prove that any p-group (a group whose order is a positive power of a prime integer p)
has a nontrivial center.

(b) Prove that any group of order p2 (where p is prime) is abelian.

(c) Prove that any group of order 52 · 72 is abelian.

(d) Write down exactly one representative in each isomorphism class of groups of order
52 · 72.
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1.25 Question 25

Let f(x) = x4 − 4x2 + 2 ∈ Q[x].

(a) Find the splitting field K of f , and compute [K : Q].

(b) Find the Galois group G of f , both as an explicit group of automorphisms, and as a
familiar abstract group to which it is isomorphic.

(c) Exhibit explicitly the correspondence between subgroups of G and intermediate fields
between Q and k.

1.26 Question 26

Let K be a Galois extension of Q with Galois group G, and let E1, E2 be intermediate fields
of K which are the splitting fields of irreducible fi(x) ∈ Q[x].
Let E = E1E2 ⊂ K.
Let Hi = Gal(K/Ei) and H = Gal(K/E).

(a) Show that H = H1 ∩H2.

(b) Show that H1H2 is a subgroup of G.

(c) Show that
Gal(K/(E1 ∩ E2)) = H1H2.

1.27 Question 27

Let

A =

 0 1 −2
1 1 −3
1 2 −4

 ∈M3(C)

(a) Find the Jordan canonical form J of A.

(b) Find an invertible matrix P such that P−1AP = J .

You should not need to compute P−1.

1.28 Question 28

Let

M =

(
a b
c d

)
and N =

(
x u
−y −v

)
over a commutative ring R, where b and x are units of R. Prove that

MN =

(
0 0
0 ∗

)
=⇒ MN = 0.
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1.29 Question 29

Let
M = {(w, x, y, z) ∈ Z4

∣∣∣ w + x+ y + z ∈ 2Z},

and

N = {(w, x, y, z) ∈ Z4
∣∣∣ 4
∣∣∣ (w − x), 4

∣∣∣ (x− y), 4
∣∣∣ (y − z)}.

(a) Show that N is a Z-submodule of M .

(b) Find vectors u1, u2, u3, u4 ∈ Z4 and integers d1, d2, d3, d4 such that

{u1, u2, u3, u4}

is a free basis for M , and
{d1u1, d2u2, d3u3, d4u4}

is a free basis for N .

(c) Use the previous part to describe M/N as a direct sum of cyclic Z-modules.

1.30 Question 30

Let R be a PID and M be an R-module. Let p be a prime element of R. The module M is
called 〈p〉 -primary if for every m ∈M there exists k > 0 such that pkm = 0.

(a) Suppose M is 〈p〉 -primary. Show that if m ∈ M and t ∈ R, t 6∈ 〈p〉, then there exists
a ∈ R such that atm = m.

(b) A submodule S of M is said to be pure if S ∩ rM = rS for all r ∈ R. Show that if M
is 〈p〉 -primary, then S is pure if and only if S ∩ pkM = pkS for all k ≥ 0.

1.31 Question 31

Let R = C[0, 1] be the ring of continuous real-valued functions on the interval [0, 1]. Let I
be an ideal of R.

(a) Show that if f ∈ I, a ∈ [0, 1] are such that f(a) 6= 0, then there exists g ∈ I such that
g(x) ≥ 0 for all x ∈ [0, 1], and g(x) > 0 for all x in some open neighborhood of a.

(b) If I 6= R, show that the set Z(I) = {x ∈ [0, 1]
∣∣∣ f(x) = 0 for all f ∈ I} is nonempty.

(c) Show that if I is maximal, then there exists x0 ∈ [0, 1] such that I = {f ∈ R
∣∣∣ f(x0) =

0}.
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1.32 Question 32

Suppose the group G acts on the set A. Assume this action is faithful (recall that this means
that the kernel of the homomorphism from G to Sym(A) which gives the action is trivial)
and transitive (for all a, b in A, there exists g in G such that g · a = b.)

(a) For a ∈ A, let Ga denote the stabilizer of a in G. Prove that for any a ∈ A,

∩σ∈GσGaσ
−1 = {1} .

(b) Suppose that G is abelian. Prove that |G| = |A|. Deduce that every abelian transitive
subgroup of Sn has order n.

1.33 Question 33

(a) Classify the abelian groups of order 36.

For the rest of the problem, assume that G is a non-abelian group of order 36.

You may assume that the only subgroup of order 12 in S4 is A4 and that A4 has
no subgroup of order 6.

(b) Prove that if the 2-Sylow subgroup of G is normal, G has a normal subgroup N such
that G/N is isomorphic to A4.

(c) Show that if G has a normal subgroup N such that G/N is isomorphic to A4 and a
subgroup H isomorphic to A4 it must be the direct product of N and H.

(d) Show that the dihedral group of order 36 is a non-abelian group of order 36 whose
Sylow-2 subgroup is not normal.

1.34 Question 34

Let F be a field. Let f(x) be an irreducible polynomial in F [x] of degree n and let g(x) be
any polynomial in F [x]. Let p(x) be an irreducible factor (of degree m) of the polynomial
f(g(x)).
Prove that n divides m. Use this to prove that if r is an integer which is not a perfect square,
and n is a positive integer then every irreducible factor of x2n− r over Q[x] has even degree.

1.35 Question 35

(a) Let f(x) be an irreducible polynomial of degree 4 in Q[x] whose splitting field K over
Q has Galois group G = S4.

Let θ be a root of f(x). Prove that Q[θ] is an extension of Q of degree 4 and that there
are no intermediate fields between Q and Q[θ].

(b) Prove that if K is a Galois extension of Q of degree 4, then there is an intermediate
subfield between K and Q.
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1.36 Question 36

A ring R is called simple if its only two-sided ideals are 0 and R.

(a) Suppose R is a commutative ring with 1. Prove R is simple if and only if R is a field.

(b) Let k be a field. Show the ring Mn(k), n × n matrices with entries in k, is a simple
ring.

1.37 Question 37

For a ring R, let U(R) denote the multiplicative group of units in R. Recall that in an
integral domain R, r ∈ R is called irreducible if r is not a unit in R, and the only divisors of
r have the form ru with u a unit in R.
We call a non-zero, non-unit r ∈ R prime in R if r

∣∣∣ ab =⇒ r
∣∣∣ a or r

∣∣∣ b. Consider the ring

R = {a+ b
√
−5

∣∣∣ a, b ∈ Z}.
(a) Prove R is an integral domain.

(b) Show U(R) = {±1}.

(c) Show 3, 2 +
√
−5, and 2−

√
−5 are irreducible in R.

(d) Show 3 is not prime in R.

(e) Conclude R is not a PID.

1.38 Question 38

Let F be a field and let V and W be vector spaces over F .
Make V and W into F [x]-modules via linear operators T on V and S on W by defining
X · v = T (v) for all v ∈ V and X · w = S(w) for all w ∈ W .
Denote the resulting F [x]-modules by VT and WS respectively.

(a) Show that an F [x]-module homomorphism from VT to WS consists of an F -linear
transformation R : V → W such that RT = SR.

(b) Show that V T ∼= WS as F [x]-modules ⇐⇒ there is an F -linear isomorphism P :
V → W such that T = P−1SP .

(c) Recall that a module M is simple if M 6= 0 and any proper submodule of M must be
zero. Suppose that V has dimension 2. Give an example of F , T with VT simple.

(d) Assume F is algebraically closed. Prove that if V has dimension 2, then any VT is not
simple.

1.39 Question 39

Classify the groups of order 182 = 2 · 7 · 13.

10



1.40 Question 40

Let G be a finite group of order pnm where p is a prime and m is not divisible by p. Prove
that if H is a subgroup of G of order pk for some k < n, then the normalizer of H in G
properly contains H.

1.41 Question 41

Let H be a subgroup of Sn of index n. Prove:

1. There is an isomorphism f : Sn → Sn such that f(H) is the subgroup of Sn stabilizing
n. In particular, H is isomorphic to Sn−1.

2. The only subgroups of Sn containing H are Sn and H.

1.42 Question 42

• Prove that a group of order 351 = 33 · 13 cannot be simple.

• Prove that a group of order 33 must be cyclic.

1.43 Question 43

1. Let G be a group, and Z(G) the center of G. Prove that if G/Z(G) is cyclic, then G
is abelian.

2. Prove that a group of order pn, where p is a prime and n ≥ 1, has non-trivial center.

3. Prove that a group of order p2 must be abelian.

1.44 Question 44

Let G be a finite group.

1. Prove that if H < G is a proper subgroup, then G is not the union of conjugates of H.

2. Suppose that G acts transitively on a set X with |X| > 1. Prove that there exists an
element of G with no fixed points in X.

1.45 Question 45

Classify all groups of order 15 and of order 30.

1.46 Question 46

Count the number of p-Sylow subgroups of Sp.
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1.47 Question 47

1. Let G be a group of order n. Suppose that for every divisor d of n, G contains at most
one subgroup of order d. Show that G is clyclic.

2. Let F be a field. Show that every finite subgroup of the group of units F× is cyclic.

1.48 Question 48

Let K and L be finite fields. Show that K is contained in L if and only if #K = pr and
#L = ps for the same prime p, and r ≤ s.

1.49 Question 49

Let K and L be finite fields with K ⊆ L. Prove that L is Galois over K and that Gal(L/K)
is cyclic.

1.50 Question 50

Fix a field F , a separable polynomial f ∈ F [x] of degree n ≥ 3, and a splitting field L for f .
Prove that if [L : F ] = n! then:

1. f is irreducible.

2. For each root r of f , r is the unique root of f in F (r).

3. For every root r of f , there are no proper intermediate fields F ⊂ L ⊂ F (r).

1.51 Question 51

1. Show that
√

2 +
√

2 is a root of p(x) = x2 − 4x2 + 2 ∈ Q[x].

2. Prove that Q(
√

2 +
√

2) is a Galois extension of Q and find its Galois group. (Hint:

note that
√

2−
√

2 is another root of p(x)).

3. Let f(x) = x3−5. Determine the splitting field K of f(x) over Q and the Galois group
of f(x). Give an example of a proper sub-extension Q ⊂ L ⊂ K, such that L/Q is
Galois.

1.52 Question 52

An integral domain R is said to be an Euclidean domain if there is a function N : R →
{n ∈ Z

∣∣∣ n ≥ 0} such that N(0) = 0 and for each a, b ∈ R with b 6= 0, there exist elements

q, r ∈ R with

a = qb+ r, and r = 0 or N(r) < N(b).

Prove:
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1. The ring F [[x]] of power series over a field F is an Euclidean domain.

2. Every Euclidean domain is a PID.

1.53 Question 53

Let F be a field, and let R be the subring of F [X] of polynomials with X coefficient equal
to 0. Prove that R is not a UFD.

1.54 Question 54

R is a commutative ring with 1. Prove that if I is a maximal ideal in R, then R/I is a field.
Prove that if R is a PID, then every nonzero prime ideal in R is maximal. Conclude that if
R is a PID and p ∈ R is prime, then R/(p) is a field.

1.55 Question 55

Prove that any square matrix is conjugate to its transpose matrix. (You may prove it over
C).

1.56 Question 56

Determine the number of conjugacy classes of 16×16 matrices with entries in Q and minimal
polynomial (x2 + 1)2(x3 + 2)2.

1.57 Question 57

Let V be a vector space over a field F . The evaluation map e : V → (V ∨)∨ is defined by
e(v)(f) := f(v) for v ∈ V and f ∈ V ∨.

1. Prove that e is an injection.

2. Prove that e is an isomorphism if and only if V is finite dimensional.

1.58 Question 58

Let R be a principal ideal domain that is not a field, and write F for its field of fractions.
Prove that F is not a finitely generated R-module.

1.59 Question 59

Carefully state Zorn’s lemma and use it to prove that every vector space has a basis.

1.60 Question 60

Show that no finite group is the union of conjugates of a proper subgroup.
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1.61 Question 61

Classify all groups of order 18 up to isomorphism.

1.62 Question 62

Let α, β denote the unique positive real 5th root of 7 and 4th root of 5, respectively. Determine
the degree of Q(α, β) over Q.

1.63 Question 63

Show that the field extension Q ⊆ Q
(√

2 +
√

2
)

is Galois and determine its Galois group.

1.64 Question 64

Let M be a square matrix over a field K. Use a suitable canonical form to show that M is
similar to its transpose MT .

1.65 Question 65

Let G be a finite group and π0, π1 be two irreducible representations of G. Prove or disprove
the following assertion: π0 and π1 are equivalent if and only if detπ0(g) = det π1(g) for all
g ∈ G.

1.66 Question 66

Let R be a Noetherian ring. Prove that R[x] and R[[x]] are both Noetherian. (The first part
of the question is asking you to prove the Hilbert Basis Theorem, not to use it!)

1.67 Question 67

Classify (with proof) all fields with finitely many elements.

1.68 Question 68

Suppose A is a commutative ring and M is a finitely presented module. Given any surjection
φ : An →M from a finite free A-module, show that kerφ is finitely generated.

1.69 Question 69

Classify all groups of order 57.
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1.70 Question 70

Show that a finite simple group cannot have a 2-dimensional irreducible representation over
C.

Hint: the determinant might prove useful.

1.71 Question 71

Let G be a finite simple group. Assume that every proper subgroup of G is abelian. Prove
that then G is cyclic of prime order.

1.72 Question 72

Let a ∈ N, a > 0. Compute the Galois group of the splitting field of the polynomial
x5 − 5a4x+ a over Q.

1.73 Question 73

Recall that an inner automorphism of a group is an automorphism given by conjugation by
an element of the group. An outer automorphism is an automorphism that is not inner.

• Prove that S5 has a subgroup of order 20.
• Use the subgroup from (a) to construct a degree 6 permutation representation of S5

(i.e., an embedding S5 ↪→ S6 as a transitive permutation group on 6 letters).
• Conclude that S6 has an outer automorphism.

1.74 Question 74

Let A be a commutative ring and M a finitely generated A-module. Define

Ann(M) = {a ∈ A : am = 0 for all m ∈M}.

Show that for a prime ideal p ⊂ A, the following are equivalent:

• Ann(M) 6⊂ p

• The localization of M at the prime ideal p is 0.

• M ⊗A k(p) = 0, where k(p) = Ap/pAp is the residue field of A at p.

1.75 Question 75

Let A = C[x, y]/(y2 − (x− 1)3 − (x− 1)2).

• Show that A is an integral domain and sketch the R-points of SpecA.
• Find the integral closure of A. Recall that for an integral domain A with fraction field
K, the integral closure of A in K is the set of all elements of K integral over A.
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1.76 Question 76

Let R = k[x, y] where k is a field, and let I = (x, y)R.

• Show that

0→ R
φ−→ R⊕R ψ−→ R→ k → 0

where φ(a) = (−ya, xa), ψ((a, b)) = xa + yb for a, b ∈ R, is a projective resolution of
the R-module k ' R/I.

• Show that I is not a flat R-module by computing TorRi (I, k)

1.77 Question 77

• Find an irreducible polynomial of degree 5 over the field Z/2 of two elements and use
it to construct a field of order 32 as a quotient of the polynomial ring Z/2[x].

• Using the polynomial found in part (a), find a 5 × 5 matrix M over Z/2 of order 31,
so that M31 = I but M 6= I.

1.78 Question 78

Find the minimal polynomial of
√

2 +
√

3 over Q. Justify your answer.

1.79 Question 79

• Let R be a commutative ring with no nonzero nilpotent elements. Show that the only
units in the polynomial ring R[x] are the units of R, regarded as constant polynomials.

• Find all units in the polynomial ring Z4[x].

1.80 Question 80

Let p, q be two distinct primes. Prove that there is at most one non-abelian group of order
pq and describe the pairs (p, q) such that there is no non-abelian group of order pq.

1.81 Question 81

• Let L be a Galois extension of a field K of degree 4. What is the minimum number of
subfields there could be strictly between K and L? What is the maximum number of
such subfields? Give examples where these bounds are attained.

• How do these numbers change if we assume only that L is separable (but not necessarily
Galois) over K?
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1.82 Question 82

Let R be a commutative algebra over C. A derivation of R is a C-linear map D : R → R
such that (i) D(1) = 0 and (ii) D(ab) = D(a)b+ aD(b) for all a, b ∈ R.

• Describe all derivations of the polynomial ring C[x].

• Let A be the subring (or C-subalgebra) of EndC(C[x]) generated by all derivations of
C[x] and the left multiplications by x. Prove that C[x] is a simple left A-module. >
Note that the inclusion A→ EndC(C[x]) defines a natural left A-module structure on
C[x].

1.83 Question 83

Let G be a non-abelian group of order p3 with p a prime.

• Determine the order of the center Z of G.

• Determine the number of inequivalent complex 1-dimensional representations of G.

• Compute the dimensions of all the inequivalent irreducible representations of G and
verify that the number of such representations equals the number of conjugacy classes
of G.

1.84 Question 84

• Let G be a group (not necessarily finite) that contains a subgroup of index n. Show
that G contains a normal subgroup N such that n ≤ [G : N ] ≤ n!

• Use part (a) to show that there is no simple group of order 36.

1.85 Question 85

Let p be a prime, let Fp be the p-element field, and let K = Fp(t) be the field of rational
functions in t with coefficients in Fp. Consider the polynomial f(x) = xp − t ∈ K[x].

• Show that f does not have a root in K.

• Let E be the splitting field of f over K. Find the factorization of f over E.

• Conclude that f is irreducible over K.

1.86 Question 86

Recall that a ring A is called graded if it admits a direct sum decomposition A = ⊕∞n=0An
as abelian groups, with the property that AiAj ⊆ Ai+j for all i, j ≥ 0. Prove that a graded
commutative ring A = ⊕∞n=0An is Noetherian if and only if A0 is Noetherian and A is finitely
generated as an algebra over A0.
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1.87 Question 87

Let R be a ring with the property that a2 = a for all a ∈ R.

• Compute the Jacobson radical of R.

• What is the characteristic of R?

• Prove that R is commutative.

• Prove that if R is finite, then R is isomorphic (as a ring) to (Z/2Z)d for some d.

1.88 Question 88

Let Fp denote the algebraic closure of Fp. Show that the Galois group Gal(Fp/Fp) has no
non-trivial finite subgroups.

1.89 Question 89

Let Cp denote the cyclic group of order p.

• Show that Cp has two irreducible representations over Q (up to isomorphism), one of
dimension 1 and one of dimension p− 1.

• Let G be a finite group, and let ρ : G → GLn(Q) be a representation of G over Q.
Let ρC : G → GLn(C) denote ρ followed by the inclusion GLn(Q) → GLn(C). Thus
ρC is a representation of G over C, called the complexification of ρ. We say that an
irreducible representation ρ of G is absolutely irreducible if its complexification remains
irreducible over C.\ Now suppose G is abelian and that every representation of G over
Q is absolutely irreducible. Show that G ∼= (C2)k for some k (i.e., is a product of cyclic
groups of order 2).

1.90 Question 90

Let G be a finite group and Z[G] the internal group algebra. Let Z be the center of Z[G].
For each conjugacy class C ⊆ G, let PC =

∑
g∈C g.

• Show that the elements PC form a Z-basis for Z. Hence Z ∼= Zd as an abelian group,
where d is the number of conjugacy classes in G.

• Show that if a ring R is isomorphic to Zd as an abelian group, then every element in
R satisfies a monic integral polynomial.

Hint: Let {v1, . . . , vd} be a basis of R and for a fixed non-zero r ∈ R, write
rvi =

∑
j aijvj. Use the Hamilton-Cayley theorem.
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• Let π : G→ GL(V ) be an irreducible representation of G (over C). Show that π(PC)
acts on V as multiplication by the scalar

|C|χπ(C)

dimV
,

where χπ(C) is the value of the character χπ on any element of C.

• Conclude that |C|χπ(C)/ dimV is an algebraic integer.

1.91 Question 91

• Suppose that G is a finitely generated group. Let n be a positive integer. Prove that
G has only finitely many subgroups of index n

• Let p be a prime number. If G is any finitely-generated abelian group, let tp(G) denote
the number of subgroups of G of index p. Determine the possible values of tp(G) as G
varies over all finitely-generated abelian groups.

1.92 Question 92

Suppose that G is a finite group of order 2013. Prove that G has a normal subgroup N of
index 3 and that N is a cyclic group. Furthermore, prove that the center of G has order
divisible by 11. (You will need the factorization 2013 = 3 · 11 · 61.)

1.93 Question 93

This question concerns an extension K of Q such that [K : Q] = 8. Assume that K/Q is
Galois and let G = Gal(K/Q). Furthermore, assume that G is non-abelian.

• Prove that K has a unique subfield F such that F/Q is Galois and [F : Q] = 4.

• Prove that F has the form F = Q(
√
d1,
√
d2) where d1, d2 are non-zero integers.

• Suppose that G is the quaternionic group. Prove that d1 and d2 are positive integers.

1.94 Question 94

This question concerns the polynomial ring R = Z[x, y] and the ideal I = (5, x2 + 2) in R.

• Prove that I is a prime ideal of R and that R/I is a PID.

• Give an explicit example of a maximal ideal of R which contains I. (Give a set of
generators for such an ideal.)

• Show that there are infinitely many distinct maximal ideals in R which contain I.
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1.95 Question 95

Classify all groups of order 2012 up to isomorphism.

Hint: 503 is prime.

1.96 Question 96

For any positive integer n, let Gn be the group generated by a and b subject to the following
three relations:

a2 = 1, b2 = 1, and (ab)n = 1..

• Find the order of the group Gn

1.97 Question 97

Determine the Galois groups of the following polynomials over Q.

• f(x) = x4 + 4x2 + 1

• f(x) = x4 + 4x2 − 5.

1.98 Question 98

Let R be a (commutative) principal ideal domain, let M and N be finitely generated free
R-modules, and let ϕ : M → N be an R-module homomorphism.

• Let K be the kernel of ϕ. Prove that K is a direct summand of M .

• Let C be the image of ϕ. Show by example (specifying R, M , N , and ϕ) that C need
not be a direct summand of N .

1.99 Question 99

In this problem, as you apply Sylow’s Theorem, state precisely which portions you are using.

• Prove that there is no simple group of order 30.

• Suppose that G is a simple group of order 60. Determine the number of p-Sylow
subgroups of G for each prime p dividing 60, then prove that G is isomorphic to the
alternating group A5.

Note: in the second part, you needn’t show that A5 is simple. You need only
show that if there is a simple group of order 60, then it must be isomorphic to
A5.
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1.100 Question 100

Describe the Galois group and the intermediate fields of the cyclotomic extension Q(ζ12)/Q.

1.101 Question 101

Let

R = Z[x]/(x2 + x+ 1).

• Answer the following questions with suitable justification.

– Is R a Noetherian ring?
– Is R an Artinian ring?

• Prove that R is an integrally closed domain.

1.102 Question 102

Let R be a commutative ring. Recall that an element r of R is nilpotent if rn = 0 for some
positive integer n and that the nilradical of R is the set N(R) of nilpotent elements.

• Prove that

N(R) = ∩P primeP..

Hint: given a non-nilpotent element r of R, you may wish to construct a
prime ideal that does not contain r or its powers.

• Given a positive integer m, determine the nilradical of Z/(m).

• Determine the nilradical of C[x, y]/(y2 − x3).

• Let p(x, y) be a polynomial in C[x, y] such that for any complex number a, p(a, a3/2) =
0. Prove that p(x, y) is divisible by y2 − x3.

1.103 Question 103

Given a finite group G, recall that its regular representation is the representation on the
complex group algebra C[G] induced by left multiplication of G on itself and its adjoint rep-
resentation is the representation on the complex group algebra C[G] induced by conjugation
of G on itself.

• Let G = GL2(F2). Describe the number and dimensions of the irreducible representa-
tions of G. Then describe the decomposition of its regular representation as a direct
sum of irreducible representations.

• Let G be a group of order 12. Show that its adjoint representation is reducible; that
is, there is an H-invariant subspace of C[H] besides 0 and C[H].
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1.104 Question 104

Let R be a commutative integral domain. Show that the following are equivalent:

• R is a field;

• R is a semi-simple ring;

• Any R-module is projective.

1.105 Question 105

Let p be a positive prime number, Fp the field with p elements, and let G = GL2(Fp).

• Compute the order of G, |G|.

• Write down an explicit isomorphism from Z/pZ to

U =

{(
1 a
0 1

) ∣∣∣∣a ∈ Fp
}
.

• How many subgroups of order p does G have?

Hint: compute gug−1 for g ∈ G and u ∈ U ; use this to find the size of the
normalizer of U in G.

1.106 Question 106

• Give definitions of the following terms:

(i) a finite length (left) module, (ii) a composition series for a module, and (iii) the
length of a module,

• Let l(M) denote the length of a module M . Prove that if

0→M1 →M2 → · · · →Mn → 0.

is an exact sequence of modules of finite length, then

n∑
i=1

(−1)kl(Mi) = 0..
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1.107 Question 107

Let F be a field of characteristic p, and G a group of order pn. Let R = F[G] be the group
ring (group algebra) of G over F, and let u :=

∑
x∈G x (so u is an element of R).

• Prove that u lies in the center of R.

• Verify that Ru is a 2-sided ideal of R.

• Show there exists a positive integer k such that uk = 0. Conclude that for such a k,
(Ru)k = 0.

• Show that R is not a semi-simple ring.

Warning: Please use the definition of a semi-simple ring: do not use the
result that a finite length ring fails to be semisimple if and only if it has a
non-zero nilpotent ideal.

1.108 Question 108

Let f(x) = anx
n + an−1x

n−1 + · · · + a0 ∈ Z[x] (where an 6= 0) and let R = Z[x]/(f). Prove
that R is a finitely generated module over Z if and only if an = ±1.

1.109 Question 109

Consider the ring

S = C[0, 1] = {f : [0, 1]→ R : f is continuous}.

with the usual operations of addition and multiplication of functions.

• What are the invertible elements of S?

• For a ∈ [0, 1], define Ia = {f ∈ S : f(a) = 0}. Show that Ia is a maximal ideal of S.

• Show that the elements of any proper ideal of S have a common zero, i.e., if I is a
proper ideal of S, then there exists a ∈ [0, 1] such that f(a) = 0 for all f ∈ I. Conclude
that every maximal ideal of S is of the form Ia for some a ∈ [0, 1].

Hint: As [0, 1] is compact, every open cover of [0, 1] contains a finite sub-
cover.

1.110 Question 110

Let F be a field of characteristic zero, and let K be an algebraic extension of F that possesses
the following property: every polynomial f ∈ F [x] has a root in K. Show that K is
algebraically closed.\

Hint: if K(θ)/K is algebraic, consider F (θ)/F and its normal closure; primitive
elements might be of help.
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1.111 Question 111

Let G be the unique non-abelian group of order 21.

• Describe all 1-dimensional complex representations of G.

• How many (non-isomorphic) irreducible complex representations does G have and what
are their dimensions?

• Determine the character table of G.

1.112 Question 112

• Classify all groups of order 2009 = 72 × 41.

• Suppose that G is a group of order 2009. How many intermediate groups are there—
that is, how many groups H are there with 1 ( H ( G, where both inclusions are
proper? (There may be several cases to consider.)

1.113 Question 113

Let K be a field. A discrete valuation on K is a function ν : K \ {0} → Z such that

• ν(ab) = ν(a) + ν(b)

• ν is surjective

• ν(a+ b) ≥ min{(ν(a), ν(b)} for a, b ∈ K \ {0} with a+ b 6= 0.

Let R := {x ∈ K \ {0} : ν(x) ≥ 0} ∪ {0}. Then R is called the valuation ring of ν.
Prove the following:

• R is a subring of K containing the 1 in K.

• for all x ∈ K \ {0}, either x or x−1 is in R.

• x is a unit of R if and only if ν(x) = 0.

• Let p be a prime number, K = Q, and νp : Q \ {0} → Z be the function defined by
νp(

a
b
) = n where a

b
= pn c

d
and p does not divide c and d. Prove that the corresponding

valuation ring R is the ring of all rational numbers whose denominators are relatively
prime to p.

1.114 Question 114

Let F be a field of characteristic not equal to 2.

• Prove that any extension K of F of degree 2 is of the form F (
√
D) where D ∈ F is

not a square in F and, conversely, that each such extension has degree 2 over F .

• Let D1, D2 ∈ F neither of which is a square in F . Prove that [F (
√
D1,
√
D2) : F ] = 4

if D1D2 is not a square in F and is of degree 2 otherwise.
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1.115 Question 115

Let F be a field and p(x) ∈ F [x] an irreducible polynomial.

• Prove that there exists a field extension K of F in which p(x) has a root.

• Determine the dimension of K as a vector space over F and exhibit a vector space
basis for K.

• If θ ∈ K denotes a root of p(x), express θ−1 in terms of the basis found in part (b).

• Suppose p(x) = x3 + 9x + 6. Show p(x) is irreducible over Q. If θ is a root of p(x),
compute the inverse of (1 + θ) in Q(θ).

1.116 Question 116

Fix a ring R, an R-module M , and an R-module homomorphism f : M →M .

• If M satisfies the descending chain condition on submodules, show that if f is injective,
then f is surjective.

Hint: note that if f is injective, so are f ◦ f , f ◦ f ◦ f , etc.

• Give an example of a ring R, an R-module M , and an injective R-module homomor-
phism f : M →M which is not surjective.

• If M satisfies the ascending chain condition on submodules, show that if f is surjective,
then f is injective.

• Give an exampe of a ring R, and R-module M , and a surjective R-module homomor-
phism f : M →M which is not injective.

1.117 Question 117

Let G be a finite group, k an algebraically closed field, and V an irreducible k-linear repre-
sentation of G.

• Show that homkG(V, V ) is a division algebra with k in its center.

• Show that V is finite-dimensional over k, and conclude that homkG(V, V ) is also finite
dimensional.

• Show the inclusion k ↪→ homkG(V, V ) found in (a) is an isomorphism. (For f ∈
homkG(V, V ), view f as a linear transformation and consider f − αI, where α is an
eigenvalue of f).
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1.118 Question 118

Let f(x) be an irreducible polynomial of degree 5 over the field Q of rational numbers with
exactly 3 real roots.

• Show that f(x) is not solvable by radicals.

• Let E be the splitting field of f over Q. Construct a Galois extension K of degree 2
over Q lying in E such that no field F strictly between K and E is Galois over Q.

1.119 Question 119

Let F be a finite field. Show for any positive integer n that there are irreducible polynomials
of degree n in F [x].

1.120 Question 120

Show that the order of the group GLn(Fq) of invertible n× n matrices over the field Fq of q
elements is given by (qn − 1)(qn − q) . . . (qn − qn−1).

1.121 Question 121

• Let R be a commutative principal ideal domain. Show that any R-module M generated
by two elements takes the form R/(a)⊕R/(b) for some a, b ∈ R. What more can you
say about a and b?

• Give a necessary and sufficient condition for two direct sums as in part (a) to be
isomorphic as R-modules.

1.122 Question 122

Let G be the subgroup of GL3(C) generated by the three matrices

A =

0 0 1
0 1 0
1 0 0

 , B =

0 0 1
1 0 0
0 1 0

 , C =

i 0 0
0 1 0
0 0 1


where i2 = −1. Here C denotes the complex field.

• Compute the order of G.

• Find a matrix in G of largest possible order (as an element of G) and compute this
order.

• Compute the number of elements in G with this largest order.
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1.123 Question 123

• Let G be a group of (finite) order n. Show that any irreducible left module over the
group algebra CG has complex dimension at least

√
n.

• Give an example of a group G of order n ≥ 5 and an irreducible left module over CG
of complex dimension b

√
nc, the greatest integer to

√
n.

1.124 Question 124

Use the rational canonical form to show that any square matrix M over a field k is similar
to its transpose M t, recalling that p(M) = 0 for some p ∈ k[t] if and only if p(M t) = 0.

1.125 Question 125

Let K be a field of characteristic zero and L a Galois extension of K. Let f be an irreducible
polynomial in K[x] of degree 7 and suppose f has no zeroes in L. Show that f is irreducible
in L[x].

1.126 Question 126

Let K be a field of characteristic zero and f ∈ K[x] an irreducible polynomial of degree n.
Let L be a splitting field for f . Let G be the group of automorphisms of L which act trivially
on K.

• Show that G embeds in the symmetric group Sn.

• For each n, give an example of a field K and polynomial f such that G = Sn.

• What are the possible groups G when n = 3. Justify your answer.

1.127 Question 127

Show there are exactly two groups of order 21 up to isomorphism.

1.128 Question 128

Let K be the field Q(z) of rational functions in a variable z with coeffiecients in the rational
field Q. Let n be a positive integer. Consider the polynomial xn − z ∈ K[x].

• Show that the polynomial xn − z is irreducible over K.

• Describe the splitting field of xn − z over K.

• Determine the Galois group of the splitting field of x5 − z over the field K.
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1.129 Question 129

• Let p < q < r be prime integers. Show that a group of order pqr cannot be simple.

• Consider groups of orders 22 · 3 · p where p has the values 5, 7, and 11. For each of
those values of p, either display a simple group of order 22 · 3 · p, or show that there
cannot be a simple group of that order.

1.130 Question 130

Let K/F be a finite Galois extension and let n = [K : F ]. There is a theorem (often referred
to as the “normal basis theorem”) which states that there exists an irreducible polynomial
f(x) ∈ F [x] whose roots form a basis for K as a vector space over F . You may assume that
theorem in this problem.

• Let G = Gal(K/F ). The action of G on K makes K into a finite-dimensional repre-
sentation space for G over F . Prove that K is isomorphic to the regular representation
for G over F .

The regular representation is defined by letting G act on the group algebra
F [G] by multiplication on the left.

• Suppose that the Galois group G is cyclic and that F contains a primitive nth root of
unity. Show that there exists an injective homomorphism χ : G→ F×.

• Show that K contains a non-zero element a with the following property:

g(a) = χ(g) · a.

for all g ∈ G.

• If a has the property stated in (c), show that K = F (a) and that an ∈ F×.

1.131 Question 131

Let G be the group of matrices of the form1 a b
0 1 c
0 0 1

 .

with entries in the finite field Fp of p element, where p is a prime.

• Prove that G is non-abelian.

• Suppose p is odd. Prove that gp = I3 for all g ∈ G.

• Suppose that p = 2. It is known that there are exactly two non-abelian groups of order
8, up to isomorphism: the dihedral group D8 and the quaternionic group. Assuming
this fact without proof, determine which of these groups G is isomorphic to.
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1.132 Question 132

There are five nonisomorphic groups of order 8. For each of those groups G, find the smallest
positive integer n such that there is an injective homomorphism ϕ : G→ Sn.

1.133 Question 133

For any groupG we define Ω(G) to be the image of the group homomorphism ρ : G→ Aut(G)
where ρ maps g ∈ G to the conjugation automorphism x 7→ gxg−1. Starting with a group
G0, we define G1 = Ω(G0) and Gi+1 = Ω(Gi) for all i ≥ 0. If G0 is of order pe for a prime p
and integer e ≥ 2, prove that Ge−1 is the trivial group.

1.134 Question 134

Let F2 be the field with two elements.

• What is the order of GL3(F2)?

• Use the fact that GL3(F2) is a simple group (which you should not prove) to find the
number of elements of order 7 in GL3(F2).

1.135 Question 135

Let G be a finite abelian group. Let f : Zm → G be a surjection of abelian groups. We may
think of f as a homomorphism of Z-modules. Let K be the kernel of f .

• Prove that K is isomorphic to Zm.

• We can therefore write the inclusion map K → Zm as Zm → Zm and represent it by
an m×m integer matrix A. Prove that | detA| = |G|.

1.136 Question 136

Let R = C([0, 1]) be the ring of all continuous real-valued functions on the closed interval
[0, 1], and for each c ∈ [0, 1], denote by Mc the set of all functions f ∈ R such that f(c) = 0.

• Prove that g ∈ R is a unit if and only if g(c) 6= 0 for all c ∈ [0, 1].

• Prove that for each c ∈ [0, 1], Mc is a maximal ideal of R.

• Prove that if M is a maximal ideal of T , then M = Mc for some c ∈ [0, 1].

Hint: compactness of [0, 1] may be relevant.
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1.137 Question 137

Let R and S be commutative rings, and f : R→ S a ring homomorphism.

• Show that if I is a prime ideal of S, then

f−1(I) = {r ∈ R : f(r) ∈ I}

is a prime ideal of R.

• Let N be the set of nilpotent elements of R:

N = {r ∈ R : rm = 0 for some m ≥ 1}..

N is called the nilradical of R. Prove that it is an ideal which is contained in every
prime ideal.

• Part (a) lets us define a function

f ∗ : {prime ideals of S} → {prime ideals of R}.I 7→ f−1(I)..

Let N be the nilradical of R. Show that if S = R/N and f : R→ R/N is the quotient
map, then f ∗ is a bijection

1.138 Question 138

Consider the polynomial f(x) = x10 + x5 + 1 ∈ Q[x] with splitting field K over Q.

• Determine whether f(x) is irreducible over Q and find [K : Q].

• Determine the structure of the Galois group Gal(K/Q).

1.139 Question 139

For each prime number p and each positive integer n, how many elements α are there in Fpn
such that Fp(α) = Fp6?

1.140 Question 140

Assume that K is a cyclic group, H is an arbitrary group, and ϕ1 and ϕ2 are homomorphisms
from K into Aut(H) such that ϕ1(K) and ϕ2(K) are conjugate subgroups of Aut(H).
Prove by constructing an explicit isomorphism that H oϕ1 K

∼= H oϕ2 K.

Suppose σϕ1(K)σ−1 = ϕ2(K) so that for some a ∈ Z we have σϕ1(k)σ−1 =
ϕ2(k)a for all k ∈ K. Show that the map ψ : H oϕ1 K → H oϕ2 K defined by
ψ((h, k)) = (σ(h), ka) is a homomorphism. Show ψ is bijective by construcing a
2-sided inverse.
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2 Real Analysis (85 Questions)

2.1 Question 1

Let C([0, 1]) denote the space of all continuous real-valued functions on [0, 1].

a. Prove that C([0, 1]) is complete under the uniform norm ‖f‖u := sup
x∈[0,1]

|f(x)|.

b. Prove that C([0, 1]) is not complete under the L1-norm ‖f‖1 =

∫ 1

0

|f(x)| dx.

2.2 Question 2

Let B denote the set of all Borel subsets of R and µ : B → [0,∞) denote a finite Borel
measure on R.

a. Prove that if {Fk} is a sequence of Borel sets for which Fk ⊇ Fk+1 for all k, then

lim
k→∞

µ (Fk) = µ

(
∞⋂
k=1

Fk

)

b. Suppose mu has the property that mu(E) = 0 for every E ∈ B with Lebesgue measure
m(E) = 0. Prove that for every ε > 0 there exists δ > 0 so that if E ∈ B with
m(E) < δ, then mu(E) < ε.

2.3 Question 3

Let {fk} be any sequence of functions in L2([0, 1]) satisfying ‖fk‖2 ≤M for all k ∈ N.
Prove that if fk → f almost everywhere, then f ∈ L2([0, 1]) with ‖f‖2 ≤M and

lim
k→∞

∫ 1

0

fk(x)dx =

∫ 1

0

f(x)dx

Hint: Try using Fatou’s Lemma to show that ‖f‖2 ≤ M and then try applying
Egorov’s Theorem.

2.4 Question 4

Let f be a non-negative function on Rn and A = {(x, t) ∈ Rn × R : 0 ≤ t ≤ f(x)}.
Prove the validity of the following two statements:

a. f is a Lebesgue measurable function on Rn ⇐⇒ A is a Lebesgue measurable subset
of Rn+1

b. If f is a Lebesgue measurable function on Rn, then

m(A) =

∫
Rn
f(x)dx =

∫ ∞
0

m ({x ∈ Rn : f(x) ≥ t}) dt
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2.5 Question 5

a. Show that L2([0, 1]) ⊆ L1([0, 1]) and argue that L2([0, 1]) in fact forms a dense subset
of L1([0, 1]).

b. Let Λ be a continuous linear functional on L1([0, 1]).

Prove the Riesz Representation Theorem for L1([0, 1]) by following the steps below:

i. Establish the existence of a function g ∈ L2([0, 1]) which represents Λ in the sense
that

Λ(f) = f(x)g(x)dx for all f ∈ L2([0, 1]).

Hint: You may use, without proof, the Riesz Representation Theorem for
L2([0, 1]).

ii. Argue that the g obtained above must in fact belong to L∞([0, 1]) and represent
Λ in the sense that

Λ(f) =

∫ 1

0

f(x)g(x)dx for all f ∈ L1([0, 1])

with
‖g‖L∞([0,1]) = ‖Λ‖L1([0,1])∨

2.6 Question 6

Let {an}∞n=1 be a sequence of real numbers.

a. Prove that if lim
n→∞

an = 0, then lim
n→∞

a1 + · · ·+ an = 0.

lim
n→∞

a1 + · · ·+ an
n

= 0

b. Prove that if
∞∑
n=1

an
n

converges, then

lim
n→∞

a1 + · · ·+ an
n

= 0

2.7 Question 7

Prove that ∣∣∣∣ dndxn sinx

x

∣∣∣∣ ≤ 1

n

for all x 6= 0 and positive integers n.

Hint: Consider

∫ 1

0

cos(tx)dt
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2.8 Question 8

Let (X,B,mu) be a measure space with mu(X) = 1 and {Bn}∞n=1 be a sequence of B-
measurable subsets of X, and

B :=
{
x ∈ X

∣∣∣ x ∈ Bn for infinitely many n
}
.

a. Argue that B is also a B-measurable subset of X.

b. Prove that if
∑∞

n=1 µ(Bn) <∞ then µ(B) = 0.

c. Prove that if
∑∞

n=1 µ(Bn) =∞ and the sequence of set complements {Bc
n}
∞
n=1 satisfies

µ

(
K⋂
n=k

Bc
n

)
=

K∏
n=k

(1− µ (Bn))

for all positive integers k and K with k < K, then mu(B) = 1.

Hint: Use the fact that 1− x ≤ e−x for all x.

2.9 Question 9

Let {un}∞n=1 be an orthonormal sequence in a Hilbert space H.

a. Prove that for every x ∈ H one has

∞∑
n=1

|〈x, un〉|2 ≤ ‖x‖2

b. Prove that for any sequence {an}∞n=1 ∈ `2(N) there exists an element x ∈ H such that

an = 〈x, un〉 for all n ∈ N

and

‖x‖2 =
∞∑
n=1

|〈x, un〉|2

2.10 Question 10

a. Show that if f is continuous with compact support on R, then

lim
y→0

∫
R
|f(x− y)− f(x)|dx = 0

b. Let f ∈ L1(R) and for each h > 0 let

Ahf(x) :=
1

2h

∫
|y|≤h

f(x− y)dy

c. Prove that ‖Ahf‖1 ≤ ‖f‖1 for all h > 0.

ii. Prove that Ahf → f in L1(R) as h→ 0+.
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2.11 Question 11

Define

E :=

{
x ∈ R :

∣∣∣∣x− p

q

∣∣∣∣ < q−3 for infinitely many p, q ∈ N
}
.

Prove that m(E) = 0.

2.12 Question 12

Let
fn(x) :=

x

1 + xn
, x ≥ 0.

a. Show that this sequence converges pointwise and find its limit. Is the convergence
uniform on [0,∞)?

b. Compute

lim
n→∞

∫ ∞
0

fn(x)dx

2.13 Question 13

Let f be a non-negative measurable function on [0, 1].
Show that

lim
p→∞

(∫
[0,1]

f(x)pdx

) 1
p

= ‖f‖∞.

2.14 Question 14

Let f ∈ L2([0, 1]) and suppose∫
[0,1]

f(x)xndx = 0 for all integers n ≥ 0.

Show that f = 0 almost everywhere.

2.15 Question 15

Suppose that

• fn, f ∈ L1,
• fn → f almost everywhere, and
•
∫
|fn| →

∫
|f |.

Show that
∫
fn →

∫
f

2.16 Question 16

Let f(x) = 1
x
. Show that f is uniformly continuous on (1,∞) but not on (0,∞).
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2.17 Question 17

Let E ⊂ R be a Lebesgue measurable set. Show that there is a Borel set B ⊂ E such that
m(E \B) = 0.

2.18 Question 18

Suppose f(x) and xf(x) are integrable on R. Define F by

F (t) :=

∫ ∞
−∞

f(x) cos(xt)dx

Show that

F ′(t) = −
∫ ∞
−∞

xf(x) sin(xt)dx.

2.19 Question 19

Let f ∈ L1([0, 1]). Prove that

lim
n→∞

∫ 1

0

f(x)|sinnx| dx =
2

π

∫ 1

0

f(x) dx

Hint: Begin with the case that f is the characteristic function of an interval.

2.20 Question 20

Let f ≥ 0 be a measurable function on R. Show that∫
R
f =

∫ ∞
0

m({x : f(x) > t})dt

2.21 Question 21

Compute the following limit and justify your calculations:

lim
n→∞

∫ n

1

dx(
1 + x

n

)n n
√
x

2.22 Question 22

Let K be the set of numbers in [0, 1] whose decimal expansions do not use the digit 4.

We use the convention that when a decimal number ends with 4 but all other
digits are different from 4, we replace the digit 4 with 399 · · ·. For example,
0.8754 = 0.8753999 · · ·.

Show that K is a compact, nowhere dense set without isolated points, and find the Lebesgue
measure m(K).
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2.23 Question 23

a. Let µ be a measure on a measurable space (X,M) and f a positive measurable function.

Define a measure λ by

λ(E) :=

∫
E

f dµ, E ∈M

Show that for g any positive measurable function,∫
X

g dλ =

∫
X

fg dµ

b. Let E ⊂ R be a measurable set such that∫
E

x2 dm = 0.

Show that m(E) = 0.

2.24 Question 24

Let
fn(x) = ae−nax − be−nbx where 0 < a < b.

Show that

a.
∑∞

n=1 |fn| is not in L1([0,∞),m)

Hint: fn(x) has a root xn.

b.
∞∑
n=1

fn is in L1([0,∞),m) and

∫ ∞
0

∞∑
n=1

fn(x) dm = ln
b

a

2.25 Question 25

Let f(x, y) on [−1, 1]2 be defined by

f(x, y) =

{
xy

(x2+y2)2
(x, y) 6= (0, 0)

0 (x, y) = (0, 0)

Determine if f is integrable.

2.26 Question 26

Let f, g ∈ L2(R). Prove that the formula

h(x) :=

∫ ∞
−∞

f(t)g(x− t)dt

defines a uniformly continuous function h on R.
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2.27 Question 27

Show that the space C1([a, b]) is a Banach space when equipped with the norm

‖f‖ := sup
x∈[a,b]

|f(x)|+ sup
x∈[a,b]

|f ′(x)| .

2.28 Question 28

Let

f(x) = s
∞∑
n=0

xn

n!
.

Describe the intervals on which f does and does not converge uniformly.

2.29 Question 29

Let f(x) = x2 and E ⊂ [0,∞) := R+.

1. Show that
m∗(E) = 0 ⇐⇒ m∗(f(E)) = 0.

2. Deduce that the map

φ : L(R+)→ L(R+)

E 7→ f(E)

is a bijection from the class of Lebesgue measurable sets of [0,∞) to itself.

2.30 Question 30

Let
S = spanC

{
χ(a,b)

∣∣∣ a, b ∈ R
}
,

the complex linear span of characteristic functions of intervals of the form (a, b).
Show that for every f ∈ L1(R), there exists a sequence of functions {fn} ⊂ S such that

lim
n→∞

‖fn − f‖1 = 0

2.31 Question 31

Let
fn(x) = nx(1− x)n, n ∈ N.

1. Show that fn → 0 pointwise but not uniformly on [0, 1].

Hint: Consider the maximum of fn.

2.

lim
n→∞

∫ 1

0

n(1− x)n sinxdx = 0

37



2.32 Question 32

Let φ be a compactly supported smooth function that vanishes outside of an interval [−N,N ]
such that

∫
R
φ(x)dx = 1.

For f ∈ L1(R), define

Kj(x) := jφ(jx), f ∗Kj(x) :=

∫
R
f(x− y)Kj(y) dy

and prove the following:

1. Each f ∗Kj is smooth and compactly supported.

2.
lim
j→∞
‖f ∗Kj − f‖1 = 0

Hint:

lim
y→0

∫
R
|f(x− y)− f(x)|dy = 0

2.33 Question 33

Let X be a complete metric space and define a norm

‖f‖ := max{|f(x)| : x ∈ X}.

Show that (C0(R), ‖ · ‖) (the space of continuous functions f : X → R) is complete.

2.34 Question 34

For n ∈ N, define

en =

(
1 +

1

n

)n
and En =

(
1 +

1

n

)n+1

Show that en < En, and prove Bernoulli’s inequality:

(1 + x)n ≥ 1 + nx for − 1 < x <∞ and n ∈ N

Use this to show the following:

1. The sequence en is increasing.
2. The sequence En is decreasing.
3. 2 < en < En < 4.
4. limn→∞ en = limn→∞En.

2.35 Question 35

Let 0 < λ < 1 and construct a Cantor set Cλ by successively removing middle intervals of
length λ.
Prove that m(Cλ) = 0.
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2.36 Question 36

Let f be Lebesgue measurable on R and E ⊂ R be measurable such that

0 < A =

∫
E

f(x)dx <∞.

Show that for every 0 < t < 1, there exists a measurable set Et ⊂ E such that∫
Et

f(x)dx = tA.

2.37 Question 37

Let E ⊂ R be measurable with m(E) <∞. Define

f(x) = m(E ∩ (E + x)).

Show that

1. f ∈ L1(R).
2. f is uniformly continuous.
3. lim|x|→∞ f(x) = 0

Hint:
χE∩(E+x)(y) = χE(y)χE(y − x)

2.38 Question 38

Let (X,M, µ) be a measure space. For f ∈ L1(µ) and λ > 0, define

φ(λ) = µ({x ∈ X|f(x) > λ}) and ψ(λ) = µ({x ∈ X|f(x) < −λ})

Show that φ, ψ are Borel measurable and∫
X

|f | dµ =

∫ ∞
0

[φ(λ) + ψ(λ)] dλ

2.39 Question 39

Without using the Riesz Representation Theorem, compute

sup

{∣∣∣∣∫ 1

0

f(x)exdx

∣∣∣∣ ∣∣∣ f ∈ L2([0, 1],m), ‖f‖2 ≤ 1

}
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2.40 Question 40

Define

f(x) =
∞∑
n=1

1

nx
.

Show that f converges to a differentiable function on (1,∞) and that

f ′(x) =
∞∑
n=1

(
1

nx

)′
.

Hint: (
1

nx

)′
= − 1

nx
lnn

2.41 Question 41

Let f, g : [a, b]→ R be measurable with∫ b

a

f(x) dx =

∫ b

a

g(x) dx.

Show that either

1. f(x) = g(x) almost everywhere, or
2. There exists a measurable set E ⊂ [a, b] such that∫

E

f(x) dx >

∫
E

g(x) dx

2.42 Question 42

Let f ∈ L1(R). Show that

lim
x→0

∫
R
|f(y − x)− f(y)|dy = 0

2.43 Question 43

Let (X,M, µ) be a measure space and suppose {En} ⊂ M satisfies

lim
n→∞

µ (X\En) = 0.

Define
G :=

{
x ∈ X

∣∣∣ x ∈ En for only finitely many n
}
.

Show that G ∈M and µ(G) = 0.
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2.44 Question 44

Let φ ∈ L∞(R). Show that the following limit exists and satisfies the equality

lim
n→∞

(∫
R

|φ(x)|n

1 + x2
dx

) 1
n

= ‖φ‖∞.

2.45 Question 45

Let f, g ∈ L2(R). Show that

lim
n→∞

∫
R
f(x)g(x+ n)dx = 0

2.46 Question 46

Let (X, d) and (Y, ρ) be metric spaces, f : X → Y , and x0 ∈ X.
Prove that the following statements are equivalent:

1. For every ε > 0 ∃δ > 0 such that ρ(f(x), f(x0)) < ε whenever d(x, x0) < δ.
2. The sequence {f(xn)}∞n=1 → f(x0) for every sequence {xn} → x0 in X.

2.47 Question 47

Let f : R→ C be continuous with period 1. Prove that

lim
N→∞

1

N

N∑
n=1

f(nα) =

∫ 1

0

f(t)dt ∀α ∈ R \Q.

Hint: show this first for the functions f(t) = e2πikt for k ∈ Z.

2.48 Question 48

Let µ be a finite Borel measure on R and E ⊂ R Borel. Prove that the following statements
are equivalent:

1. ∀ε > 0 there exists G open and F closed such that

F ⊆ E ⊆ G and µ(G \ F ) < ε.

2. There exists a V ∈ Gδ and H ∈ Fσ such that

H ⊆ E ⊆ V and µ(V \H) = 0

2.49 Question 49

Define

f(x, y) :=

{
x1/3

(1+xy)3/2
if 0 ≤ x ≤ y

0 otherwise

Carefully show that f ∈ L1(R2).
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2.50 Question 50

Let H be a Hilbert space.

1. Let x ∈ H and {un}Nn=1 be an orthonormal set. Prove that the best approximation to
x in H by an element in spanC {un} is given by

x̂ :=
N∑
n=1

〈x, un〉un.

2. Conclude that finite dimensional subspaces of H are always closed.

2.51 Question 51

Let f ∈ L1(R) and g be a bounded measurable function on R.

1. Show that the convolution f ∗ g is well-defined, bounded, and uniformly continuous on
R.

2. Prove that one further assumes that g ∈ C1(R) with bounded derivative, then f ∗ g ∈
C1(R) and

d

dx
(f ∗ g) = f ∗

(
d

dx
g

)

2.52 Question 52

Define
f(x) = c0 + c1x

1 + c2x
2 + . . .+ cnx

n with n even and cn > 0.

Show that there is a number xm such that f(xm) ≤ f(x) for all x ∈ R.

2.53 Question 53

Let f : R→ R be Lebesgue measurable.

1. Show that there is a sequence of simple functions sn(x) such that sn(x)→ f(x) for all
x ∈ R.

2. Show that there is a Borel measurable function g such that g = f almost everywhere.

2.54 Question 54

Compute the following limit:

lim
n→∞

∫ n

1

ne−x

1 + nx2
sin
(x
n

)
dx
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2.55 Question 55

Let f : [1,∞)→ R such that f(1) = 1 and

f ′(x) =
1

x2 + f(x)2

Show that the following limit exists and satisfies the equality

lim
x→∞

f(x) ≤ 1 +
π

4

2.56 Question 56

Let f, g ∈ L1(R) be Borel measurable.

1. Show that

• The function
F (x, y) := f(x− y)g(y)

is Borel measurable on R2, and
• For almost every y ∈ R,

Fy(x) := f(x− y)g(y)

is integrable with respect to y.

2. Show that f ∗ g ∈ L1(R) and

‖f ∗ g‖1 ≤ ‖f‖1‖g‖1

2.57 Question 57

Let f : [0, 1]→ R be continuous. Show that

sup
{
‖fg‖1

∣∣∣ g ∈ L1[0, 1], ‖g‖1 ≤ 1
}

= ‖f‖∞

2.58 Question 58

1. Give an example of a continuous f ∈ L1(R) such that f(x) 6→ 0 as|x| → ∞.

2. Show that if f is uniformly continuous, then

lim
|x|→∞

f(x) = 0.

2.59 Question 59

Let {an} be a sequence of real numbers such that

{bn} ∈ `2(N) =⇒
∑

anbn <∞.

Show that
∑
a2
n <∞.

Note: Assume an, bn are all non-negative.
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2.60 Question 60

Let f : R→ R and suppose

∀x ∈ R, f(x) ≥ lim sup
y→x

f(y)

Prove that f is Borel measurable.

2.61 Question 61

Let (X,M, µ) be a measure space and suppose f is a measurable function on X. Show that

lim
n→∞

∫
X

fn dµ =

{
∞ or

µ(f−1(1)),

and characterize the collection of functions of each type.

2.62 Question 62

Let f, g ∈ L1([0, 1]) and for all x ∈ [0, 1] define

F (x) :=

∫ x

0

f(y)dy and G(x) :=

∫ x

0

g(y)dy.

Prove that ∫ 1

0

F (x)g(x)dx = F (1)G(1)−
∫ 1

0

f(x)G(x)dx

2.63 Question 63

Let {fn} be a sequence of continuous functions such that
∑
fn converges uniformly.

Prove that
∑
fn is also continuous.

2.64 Question 64

Let I be an index set and α : I → (0,∞).

1. Show that ∑
i∈I

a(i) := sup
J⊂I

J finite

∑
i∈J

a(i) <∞ =⇒ I is countable.

2. Suppose I = Q and
∑

q∈Q a(q) <∞. Define

f(x) :=
∑
q∈Q
q≤x

a(q).

Show that f is continuous at x ⇐⇒ x 6∈ Q.
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2.65 Question 65

Let f ∈ L1(R). Show that

∀ε > 0 ∃δ > 0 such that m(E) < δ =⇒
∫
E

|f(x)|dx < ε

2.66 Question 66

Let g ∈ L∞([0, 1]) Prove that∫
[0,1]

f(x)g(x)dx = 0 for all continuous f : [0, 1]→ R =⇒ g(x) = 0 almost everywhere.

2.67 Question 67

1. Let f ∈ C0
c (Rn), and show

lim
t→0

∫
Rn
|f(x+ t)− f(x)|dx = 0.

2. Extend the above result to f ∈ L1(Rn) and show that

f ∈ L1(Rn), g ∈ L∞(Rn) =⇒ f ∗ g is bounded and uniformly continuous.

2.68 Question 68

Let 1 ≤ p, q ≤ ∞ be conjugate exponents, and show that

f ∈ Lp(Rn) =⇒ ‖f‖p = sup
‖g‖q=1

∣∣∣∣∫ f(x)g(x)dx

∣∣∣∣
2.69 Question 69

Prove or disprove each of the following statements.

(a) If f is of bounded variation on [0, 1], then it is continuous on [0, 1].

(b) If f : [0, 1] → [0, 1] is a continuous function, then there exists x0 ∈ [0, 1] such that
f(x0) = x0.

(c) Let {fn} be a sequence of uniformly continuous functions on an interval I. If {fn}
converges uniformly to a function f on I, then f is also uniformly continuous on I.

(d) If f is differentiable on a connected set E ⊂ Rn, then for any x, y ∈ E, there exists
z ∈ E such that f(x)− f(y) = ∇f(z)(x− y).
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2.70 Question 70

Prove or disprove each of the following statements.

(d) If limn→∞ |an + 1/an| exists, then limn→∞ |an|1/n exists and the two limits are equal.

(e) If
∑∞

n=1 anx
n converges for all x ∈ [0, 1], then limx→1−

∑∞
n=1 anx

n =
∑∞

n=1 an

2.71 Question 71

Prove or disprove each of the following statements.

(f) If E ⊂ R and

µ(E) = inf{
∑

Ii∈S |Ii| : S = {Ii}ni=1 such that E ⊂ ∪ni=1Ii for some n ∈ N}
then µ coincides with the outer measure of E.

(g) If E is a Borel set and f is a measurable function, then f−1(E) is also measurable.

2.72 Question 72

If f is a finite real valued measurable function on a measurable set E ⊂ R, show that the
set {(x, f(x)) : x ∈ E} is measurable.

2.73 Question 73

Let g : [0, 1]× [0, 1]→ [0, 1] be a continuous function and let {fn} be a sequence of functions
such that

fn(x) =

{
0, 0 ≤ x ≤ 1/n,∫ x− 1

n

0
g(t, fn(t))dt, 1/n ≤ x ≤ 1.

With the help of the Arzela-Ascoli theorem or otherwise, show that there exists a continuous
function f : [0, 1]→ R such that
f(x) =

∫ x
0
g(t, f(t))dt

for all x ∈ [0, 1].

Hint: first show that |fn(x1)− fn(x2)| ≤ |x1 − x2|.

2.74 Question 74

If lim supn→∞ an ≤ l, show that lim supn→∞
∑n

i=1 ai/n ≤ l.

2.75 Question 75

If f is a nonnegative measurable function on R and p > 0, show that∫
fp dx =

∫ ∞
0

ptp−1|{x : f(x) > t}| dt

where |{x : f(x) > t}| is the Lebesgue measure of the set {x : f(x) > t}.
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2.76 Question 76

If f is a nonnegative measurable function on [0, π] and
∫ π

0
f(x)3 dx <∞, show that

lim
α→∞

∫
{x:f(x)>α}

f(x)2 dx = 0.

2.77 Question 77

Prove or disprove each of the following statements.

(a) If f : [0, 1]→ R is a measurable function, then given any ε > 0, there exists a compact
set K ⊂ [0, 1] such that f is continuous on K relative to K.

(b) If f is Borel measurable on R × R, then for any x ∈ R, the function g(y) = f(x, y) is
also Borel measurable on R.

(c) If E ⊂ R, then E is measurable if and only if given any ε > 0, there exist a closed set
F and an open set G such that F ⊂ E ⊂ G and the measure of G− F is less than ε.

2.78 Question 78

Prove or disprove each of the following statements.

(b) If fn is a sequence of measurable functions that converges uniformly to f on R, then∫
f = limk→∞

∫
fk

(c) If {fk} is a sequence of function in Lp[0,∞) that converges to a function f ∈ Lp[0,∞),
then {fk} has a subsequence that converges to f almost everywhere.

2.79 Question 79

Prove or disprove each of the following statements.

(f) If f is Riemann integrable on [ε, 1] for all 0 < ε < 1, then f is Lebesgue integrable on

[0, 1] if f is nonnegative and the following limit exists limε→0+
∫ 1

ε
fdx.

(g) If f is integrable on [0, 1], then limn→∞
∫ 1

0
f(x) sin(nπx)dx = 0.

(h) If f is continuous on [0, 1], then it is of bounded variation on [0, 1]$.

2.80 Question 80

(a) Let f : R → R be a differentiable function. If f ′(−1) < 2 and f ′(1) > 2, show that
there exists x0 ∈ (i1, 1) such that f ′(x0) = 2.

Hint: consider the function f(x)−2x and recall the proof of Rolle’s theorem.)

(b) Let f : (−1, 1)→ R be a differentiable function on (−1, 0)∪(0, 1) such that limx→0 f
′(x) =

L. If f is continuous on (−1, 1), show that f is indeed differentiable at 0 and f ′(0) = L.
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2.81 Question 81

Describe the process that extends a measure on an algebra A of subsets of X, to a complete
measure defined on a σ-algebra B containing A. State the corresponding definitions and
results (without proofs).

2.82 Question 82

State and prove Fatou’s Lemma on a general measurable space.

2.83 Question 83

1. State the Dominated Convergence Theorem for Lebesgue integrals.

2. Let {fn} be a sequence of measurable functions on a Lebesgue measurable set E which
converges in measure to a function f on E. Suppose that for every n, |fn| ≤ g with g
integrable on E. Using the above theorem show that∫

E

|fn − f | −→ 0 .

2.84 Question 84

Let f ∈ L1([0, 1]). Show that

1. The limit limp→0+ ‖f‖p exists.

2. If m{x : f(x) = 0} > 0, then the above limit is zero.

2.85 Question 85

Let f be a continuous function on [0, 1]. Show that the following statements are equivalent.

1. f is absolutely continuous.

2. For any ε > 0 there exists δ > 0 such that m(f(E)) < ε for any set E ⊆ [0, 1] with
m(E) < δ.

3. m(f(E)) = 0 for any set E ⊆ [0, 1] with m(E) = 0.

3 Complex Analysis (125 Questions)

3.1 Question 1

(1) Assume f(z) =
∞∑
n=0

cnz
n converges in |z| < R. Show that for r < R,

1

2π

∫ 2π

0

|f(reiθ)|2dθ =
∞∑
n=0

|cn|2r2n .
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(2) Deduce Liouville’s theorem from (1).

3.2 Question 2

Let f be a continuous function in the region

D = {z
∣∣∣ |z| > R, 0 ≤ arg z ≤ θ} where 1 ≤ θ ≤ 2π.

If there exists k such that lim
z→∞

zf(z) = k for z in the region D. Show that

lim
R′→∞

∫
L

f(z)dz = iθk,

where L is the part of the circle |z| = R′ which lies in the region D.

3.3 Question 3

Suppose that f is an analytic function in the region D which contains the point a. Let

F (z) = z − a− qf(z), where q is a complex parameter.

(1) Let K ⊂ D be a circle with the center at point a and also we assume that f(z) 6= 0
for z ∈ K. Prove that the function F has one and only one zero z = w on the closed

disc K whose boundary is the circle K if |q| < min
z∈K

|z − a|
|f(z)|

.

(2) Let G(z) be an analytic function on the disk K. Apply the residue theorem to prove

that
G(w)

F ′(w)
=

1

2πi

∫
K

G(z)

F (z)
dz, where w is the zero from (1).

(3) If z ∈ K, prove that the function
1

F (z)
can be represented as a convergent series with

respect to q:
1

F (z)
=
∞∑
n=0

(qf(z))n

(z − a)n+1
.

3.4 Question 4

Evaluate ∫ ∞
0

x sinx

x2 + a2
dx.

3.5 Question 5

Let f = u + iv be differentiable (i.e. f ′(z) exists) with continuous partial derivatives at a
point z = reiθ, r 6= 0. Show that

∂u

∂r
=

1

r

∂v

∂θ
,

∂v

∂r
= −1

r

∂u

∂θ
.
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3.6 Question 6

Show that

∫ ∞
0

xa−1

1 + xn
dx =

π

n sin aπ
n

using complex analysis, 0 < a < n. Here n is a positive

integer.

3.7 Question 7

For s > 0, the gamma function is defined by Γ(s) =

∫ ∞
0

e−tts−1dt.

1. Show that the gamma function is analytic in the half-plane <(s) > 0, and is still given
there by the integral formula above.

2. Apply the formula in the previous question to show that

Γ(s)Γ(1− s) =
π

sin πs
.

Hint: You may need Γ(1− s) = t

∫ ∞
0

e−vt(vt)−sdv for t > 0.

3.8 Question 8

Apply Rouché’s Theorem to prove the Fundamental Theorem of Algebra: If

Pn(z) = a0 + a1z + · · ·+ an−1z
n−1 + anz

n (an 6= 0)

is a polynomial of degree n, then it has n zeros in C.

3.9 Question 9

Suppose f is entire and there exist A,R > 0 and natural number N such that

|f(z)| ≥ A|z|N for |z| ≥ R.

Show that

(i) f is a polynomial and

(ii) the degree of f is at least N .

3.10 Question 10

Let f : C → C be an injective analytic (also called univalent) function. Show that there
exist complex numbers a 6= 0 and b such that f(z) = az + b.
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3.11 Question 11

Let g be analytic for |z| ≤ 1 and |g(z)| < 1 for |z| = 1.

1. Show that g has a unique fixed point in |z| < 1.

2. What happens if we replace |g(z)| < 1 with |g(z)| ≤ 1 for |z| = 1? Give an example if
(a) is not true or give an proof if (a) is still true.

3. What happens if we simply assume that f is analytic for |z| < 1 and |f(z)| < 1 for
|z| < 1? Suppose that f(z) 6≡ z. Can f have more than one fixed point in |z| < 1?

Hint: The map ψα(z) =
α− z
1− αz

may be useful.

3.12 Question 12

Find a conformal map from D = {z : |z| < 1, |z − 1/2| > 1/2} to the unit disk ∆ = {z :
|z| < 1}.

3.13 Question 13

Let f(z) be entire and assume values of f(z) lie outside a bounded open set Ω. Show without
using Picard’s theorems that f(z) is a constant.

3.14 Question 14

(1) Assume f(z) =
∞∑
n=0

cnz
n converges in |z| < R. Show that for r < R,

1

2π

∫ 2π

0

|f(reiθ)|2dθ =
∞∑
n=0

|cn|2r2n .

(2) Deduce Liouville’s theorem from (1).

3.15 Question 15

Let f(z) be entire and assume that f(z) ≤ M |z|2 outside some disk for some constant M .
Show that f(z) is a polynomial in z of degree ≤ 2.

3.16 Question 16

Let an(z) be an analytic sequence in a domain D such that
∞∑
n=0

|an(z)| converges uniformly on

bounded and closed sub-regions of D. Show that
∞∑
n=0

|a′n(z)| converges uniformly on bounded

and closed sub-regions of D.
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3.17 Question 17

Let f(z) be analytic in an open set Ω except possibly at a point z0 inside Ω. Show that if

f(z) is bounded in near z0, then

∫
∆

f(z)dz = 0 for all triangles ∆ in Ω.

3.18 Question 18

Assume f is continuous in the region: 0 < |z − a| ≤ R, 0 ≤ arg(z − a) ≤ β0 (0 < β0 ≤ 2π)
and the limit lim

z→a
(z − a)f(z) = A exists. Show that

lim
r→0

∫
γr

f(z)dz = iAβ0 ,

where
γr := {z | z = a+ reit, 0 ≤ t ≤ β0}.

3.19 Question 19

Show that f(z) = z2 is uniformly continuous in any open disk |z| < R, where R > 0 is fixed,
but it is not uniformly continuous on C.

3.20 Question 20

(1) Show that the function u = u(x, y) given by

u(x, y) =
eny − e−ny

2n2
sinnx for n ∈ N

is the solution on D = {(x, y) |x2 + y2 < 1} of the Cauchy problem for the Laplace
equation

∂2u

∂x2
+
∂2u

∂y2
= 0, u(x, 0) = 0,

∂u

∂y
(x, 0) =

sinnx

n
.

(2) Show that there exist points (x, y) ∈ D such that lim sup
n→∞

|u(x, y)| =∞.

3.21 Question 21

(1) Assume f(z) =
∞∑
n=0

cnz
n converges in |z| < R. Show that for r < R,

1

2π

∫ 2π

0

|f(reiθ)|2dθ =
∞∑
n=0

|cn|2r2n .

(2) Deduce Liouville’s theorem from (1).
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3.22 Question 22

Let f be a continuous function in the region

D = {z ||z| > R, 0 ≤ argZ ≤ θ} where 0 ≤ θ ≤ 2π.

If there exists k such that lim
z→∞

zf(z) = k for z in the region D. Show that

lim
R′→∞

∫
L

f(z)dz = iθk,

where L is the part of the circle |z| = R′ which lies in the region D.

3.23 Question 23

Evaluate

∫ ∞
0

x sinx

x2 + a2
dx.

3.24 Question 24

Let f = u + iv be differentiable (i.e. f ′(z) exists) with continuous partial derivatives at a
point z = reiθ, r 6= 0. Show that

∂u

∂r
=

1

r

∂v

∂θ
,

∂v

∂r
= −1

r

∂u

∂θ
.

3.25 Question 25

Show that

∫ ∞
0

xa−1

1 + xn
dx =

π

n sin aπ
n

using complex analysis, 0 < a < n. Here n is a positive

integer.

3.26 Question 26

For s > 0, the gamma function is defined by Γ(s) =

∫ ∞
0

e−tts−1dt.

1. Show that the gamma function is analytic in the half-plane <(s) > 0, and is still given
there by the integral formula above.

2. Apply the formula in the previous question to show that

Γ(s)Γ(1− s) =
π

sin πs
.

Hint: You may need Γ(1− s) = t

∫ ∞
0

e−vt(vt)−sdv for t > 0.
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3.27 Question 27

Suppose f is entire and there exist A,R > 0 and natural number N such that

|f(z)| ≥ A|z|N for |z| ≥ R.

Show that

(i) f is a polynomial and

(ii) the degree of f is at least N .

3.28 Question 28

Let f : C → C be an injective analytic (also called univalent) function. Show that there
exist complex numbers a 6= 0 and b such that f(z) = az + b.

3.29 Question 29

Let g be analytic for |z| ≤ 1 and |g(z)| < 1 for |z| = 1.

• Show that g has a unique fixed point in |z| < 1.

• What happens if we replace |g(z)| < 1 with |g(z)| ≤ 1 for |z| = 1? Give an example if
(a) is not true or give an proof if (a) is still true.

• What happens if we simply assume that f is analytic for |z| < 1 and |f(z)| < 1 for
|z| < 1? Suppose that f(z) 6≡ z. Can f have more than one fixed point in |z| < 1?

Hint: The map ψα(z) =
α− z
1− αz

may be useful.

3.30 Question 30

Find a conformal map from D = {z : |z| < 1, |z − 1/2| > 1/2} to the unit disk ∆ = {z :
|z| < 1}.

3.31 Question 31

Let f(z) be entire and assume values of f(z) lie outside a bounded open set Ω. Show without
using Picard’s theorems that f(z) is a constant.

3.32 Question 32

(1) Assume f(z) =
∞∑
n=0

cnz
n converges in |z| < R. Show that for r < R,

1

2π

∫ 2π

0

|f(reiθ)|2dθ =
∞∑
n=0

|cn|2r2n .

(2) Deduce Liouville’s theorem from (1).
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3.33 Question 33

Let f(z) be entire and assume that f(z) ≤ M |z|2 outside some disk for some constant M .
Show that f(z) is a polynomial in z of degree ≤ 2.

3.34 Question 34

Let an(z) be an analytic sequence in a domain D such that
∞∑
n=0

|an(z)| converges uniformly on

bounded and closed sub-regions of D. Show that
∞∑
n=0

|a′n(z)| converges uniformly on bounded

and closed sub-regions of D.

3.35 Question 35

Let f(z) be analytic in an open set Ω except possibly at a point z0 inside Ω. Show that if

f(z) is bounded in near z0, then

∫
∆

f(z)dz = 0 for all triangles ∆ in Ω.

3.36 Question 36

Assume f is continuous in the region: 0 < |z − a| ≤ R, 0 ≤ arg(z − a) ≤ β0 (0 < β0 ≤ 2π)
and the limit lim

z→a
(z − a)f(z) = A exists. Show that

lim
r→0

∫
γr

f(z)dz = iAβ0 ,

where
γr := {z | z = a+ reit, 0 ≤ t ≤ β0}.

3.37 Question 37

Show that f(z) = z2 is uniformly continuous in any open disk |z| < R, where R > 0 is fixed,
but it is not uniformly continuous on C.

(1) Show that the function u = u(x, y) given by

u(x, y) =
eny − e−ny

2n2
sinnx for n ∈ N

is the solution on D = {(x, y) |x2 + y2 < 1} of the Cauchy problem for the Laplace
equation

∂2u

∂x2
+
∂2u

∂y2
= 0, u(x, 0) = 0,

∂u

∂y
(x, 0) =

sinnx

n
.
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3.38 Question 38

This question provides some insight into Cauchy’s theorem. Solve the problem without using
Cauchy’s theorem.

1. Evaluate the integral

∫
γ

zndz for all integers n. Here γ is any circle centered at the

origin with the positive (counterclockwise) orientation.

2. Same question as (a), but with γ any circle not containing the origin.

3. Show that if |a| < r < |b|, then

∫
γ

dz

(z − a)(z − b)
dz =

2πi

a− b
. Here γ denotes the circle

centered at the origin, of radius r, with the positive orientation.

3.39 Question 39

(1) Assume the infinite series
∞∑
n=0

cnz
n converges in |z| < R and let f(z) be the limit. Show

that for r < R,
1

2π

∫ 2π

0

|f(reiθ)|2dθ =
∞∑
n=0

|cn|2r2n .

(2) Deduce Liouville’s theorem from (1).

Liouville’s theorem: If f(z) is entire and bounded, then f is constant.

3.40 Question 40

Let f be a continuous function in the region

D = {z ||z| > R, 0 ≤ argZ ≤ θ} where 0 ≤ θ ≤ 2π.

If there exists k such that lim
z→∞

zf(z) = k for z in the region D. Show that

lim
R′→∞

∫
L

f(z)dz = iθk,

where L is the part of the circle |z| = R′ which lies in the region D.

3.41 Question 41

Evaluate

∫ ∞
0

x sinx

x2 + a2
dx.
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3.42 Question 42

Let f = u + iv be differentiable (i.e. f ′(z) exists) with continuous partial derivatives at a
point z = reiθ, r 6= 0. Show that

∂u

∂r
=

1

r

∂v

∂θ
,

∂v

∂r
= −1

r

∂u

∂θ
.

3.43 Question 43

Show that

∫ ∞
0

xa−1

1 + xn
dx =

π

n sin aπ
n

using complex analysis, 0 < a < n. Here n is a positive

integer.

3.44 Question 44

For s > 0, the gamma function is defined by Γ(s) =

∫ ∞
0

e−tts−1dt.

• Show that the gamma function is analytic in the half-plane <(s) > 0, and is still given
there by the integral formula above.

• Apply the formula in the previous question to show that

Γ(s)Γ(1− s) =
π

sin πs
.

Hint: You may need Γ(1− s) = t

∫ ∞
0

e−vt(vt)−sdv for t > 0.

3.45 Question 45

Suppose f is entire and there exist A,R > 0 and natural number N such that

|f(z)| ≥ A|z|N for |z| ≥ R.

Show that

(i) f is a polynomial and

(ii) the degree of f is at least N .

3.46 Question 46

Let f : C → C be an injective analytic (also called univalent) function. Show that there
exist complex numbers a 6= 0 and b such that f(z) = az + b.
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3.47 Question 47

Let g be analytic for |z| ≤ 1 and |g(z)| < 1 for |z| = 1.

• Show that g has a unique fixed point in |z| < 1.

• What happens if we replace |g(z)| < 1 with |g(z)| ≤ 1 for |z| = 1? Give an example if
(a) is not true or give an proof if (a) is still true.

• What happens if we simply assume that f is analytic for |z| < 1 and |f(z)| < 1 for
|z| < 1? Suppose that f(z) 6≡ z. Can f have more than one fixed point in |z| < 1?

Hint: The map ψα(z) =
α− z
1− αz

may be useful.

3.48 Question 48

Find a conformal map from D = {z : |z| < 1, |z − 1/2| > 1/2} to the unit disk ∆ = {z :
|z| < 1}.

3.49 Question 49

Let an 6= 0 and assume that lim
n→∞

|an+1|
|an|

= L. Show that lim
n→∞

n
√
|an| = L. In particular, this

shows that when applicable, the ratio test can be used to calculate the radius of convergence
of a power series.

3.50 Question 50

(a) Let z, w be complex numbers, such that zw 6= 1. Prove that∣∣∣∣ w − z1− wz

∣∣∣∣ < 1 if |z| < 1 and |w| < 1,

and also that ∣∣∣∣ w − z1− wz

∣∣∣∣ = 1 if |z| = 1 or |w| = 1.

(b) Prove that for fixed w in the unit disk D, the mapping

F : z 7→ w − z
1− wz

satisfies the following conditions:

(c) F maps D to itself and is holomorphic.

(ii) F interchanges 0 and w, namely, F (0) = w and F (w) = 0.

(iii) |F (z)| = 1 if |z| = 1.

(iv) F : D 7→ D is bijective.

Hint: Calculate F ◦ F .
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3.51 Question 51

Use n-th roots of unity (i.e. solutions of zn − 1 = 0) to show that

2n−1 sin
π

n
sin

2π

n
· · · sin (n− 1)π

n
= n .

Hint: 1− cos 2θ = 2 sin2 θ, sin 2θ = 2 sin θ cos θ.

3.52 Question 52

(a) Show that in polar coordinates, the Cauchy-Riemann equations take the form

∂u

∂r
=

1

r

∂v

∂θ
and

∂v

∂r
= −1

r

∂u

∂θ

(b) Use these equations to show that the logarithm function defined by

log z = log r + iθ where z = reiθ with − π < θ < π

is a holomorphic function in the region r > 0, −π < θ < π. Also show that log z
defined above is not continuous in r > 0.

3.53 Question 53

Assume f is continuous in the region: x ≥ x0, 0 ≤ y ≤ b and the limit

lim
x→+∞

f(x+ iy) = A

exists uniformly with respect to y (independent of y).
Show that

lim
x→+∞

∫
γx

f(z)dz = iAb ,

where γx := {z | z = x+ it, 0 ≤ t ≤ b}.

3.54 Question 54

(Cauchy’s formula for “exterior” region) Let γ be piecewise smooth simple closed curve with
interior Ω1 and exterior Ω2. Assume f ′(z) exists in an open set containing γ and Ω2 and
limz→∞ f(z) = A. Show that

1

2πi

∫
γ

f(ξ)

ξ − z
dξ =

{
A, if z ∈ Ω1,

−f(z) + A, if z ∈ Ω2
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3.55 Question 55

Let f(z) be bounded and analytic in C. Let a 6= b be any fixed complex numbers. Show
that the following limit exists

lim
R→∞

∫
|z|=R

f(z)

(z − a)(z − b)
dz.

Use this to show that f(z) must be a constant (Liouville’s theorem).

3.56 Question 56

Prove by justifying all steps that for all ξ ∈ C we have e−πξ
2

=

∫ ∞
−∞

e−πx
2

e2πixξdx .

Hint: You may use that fact in Example 1 on p. 42 of the textbook without
proof, i.e., you may assume the above is true for real values of ξ.

3.57 Question 57

Suppose that f is holomorphic in an open set containing the closed unit disc, except for a
pole at z0 on the unit circle. Let f(z) =

∑∞
n=1 cnz

n denote the power series in the open disc.
Show that

(1) cn 6= 0 for all large enough n’s, and

(2) lim
n→∞

cn
cn+1

= z0.

3.58 Question 58

Let f(z) be a non-constant analytic function in |z| > 0 such that f(zn) = 0 for infinite many
points zn with limn→∞ zn = 0. Show that z = 0 is an essential singularity for f(z). (An
example of such a function is f(z) = sin(1/z).)

3.59 Question 59

Let f be entire and suppose that limz→∞ f(z) =∞. Show that f is a polynomial.

3.60 Question 60

Expand the following functions into Laurent series in the indicated regions:

(a) f(z) =
z2 − 1

(z + 2)(z + 3)
, 2 < |z| < 3, 3 < |z| < +∞.

(b) f(z) = sin
z

1− z
, 0 < |z − 1| < +∞
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3.61 Question 61

Assume f(z) is analytic in region D and Γ is a rectifiable curve in D with interior in D.
Prove that if f(z) is real for all z ∈ Γ, then f(z) is a constant.

3.62 Question 62

Find the number of roots of z4 − 6z + 3 = 0 in |z| < 1 and 1 < |z| < 2 respectively.

3.63 Question 63

Prove that z4 + 2z3 − 2z + 10 = 0 has exactly one root in each open quadrant.

3.64 Question 64

(1) Let f(z) ∈ H(D), Re(f(z)) > 0, f(0) = a > 0. Show that∣∣∣∣f(z)− a
f(z) + a

∣∣∣∣ ≤ |z|, |f ′(0)| ≤ 2a.

(2) Show that the above is still true if Re(f(z)) > 0 is replaced with Re(f(z)) ≥ 0.

3.65 Question 65

Assume f(z) is analytic in D and f(0) = 0 and is not a rotation (i.e. f(z) 6= eiθz). Show

that
∞∑
n=1

fn(z) converges uniformly to an analytic function on compact subsets of D, where

fn+1(z) = f(fn(z)).

3.66 Question 66

Let f(z) =
∑∞

n=0 cnz
n be analytic and one-to-one in |z| < 1. For 0 < r < 1, let Dr be the

disk |z| < r. Show that the area of f(Dr) is finite and is given by

S = π

∞∑
n=1

n|cn|2r2n.

(Note that in general the area of f(D1) is infinite.)

3.67 Question 67

Let f(z) =
∑∞

n=−∞ cnz
n be analytic and one-to-one in r0 < |z| < R0. For r0 < r < R < R0,

let D(r, R) be the annulus r < |z| < R. Show that the area of f(D(r, R)) is finite and is
given by

S = π
∞∑

n=−∞

n|cn|2(R2n − r2n).
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3.68 Question 68

Let an(z) be an analytic sequence in a domain D such that
∞∑
n=0

|an(z)| converges uniformly on

bounded and closed sub-regions of D. Show that
∞∑
n=0

|a′n(z)| converges uniformly on bounded

and closed sub-regions of D.

3.69 Question 69

Let fn, f be analytic functions on the unit disk D. Show that the following are equivalent.

(i) fn(z) converges to f(z) uniformly on compact subsets in D.

(ii)
∫
|z|=r |fn(z)− f(z)| |dz| converges to 0 if 0 < r < 1.

3.70 Question 70

Let f and g be non-zero analytic functions on a region Ω. Assume |f(z)| = |g(z)| for all z
in Ω. Show that f(z) = eiθg(z) in Ω for some 0 ≤ θ < 2π.

3.71 Question 71

Suppose f is analytic in an open set containing the unit disc D and |f(z)| = 1 when |z|=1.
Show that either f(z) = eiθ for some θ ∈ R or there are finite number of zk ∈ D, k ≤ n and

θ ∈ R such that f(z) = eiθ
n∏
k=1

z − zk
1− zkz

.

Also cf. Stein et al, 1.4.7, 3.8.17

3.72 Question 72

(1) Let p(z) be a polynomial, R > 0 any positive number, and m ≥ 1 an integer. Let

MR = sup{|zmp(z)− 1| : |z| = R}.

Show that MR > 1.

(2) Let m ≥ 1 be an integer and K = {z ∈ C : r ≤ |z| ≤ R} where r < R. Show (i) using
(1) as well as, (ii) without using (1) that there exists a positive number ε0 > 0 such
that for each polynomial p(z),

sup{|p(z)− z−m| : z ∈ K} ≥ ε0 .
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3.73 Question 73

Let f(z) =
1

z
+

1

z2 − 1
. Find all the Laurent series of f and describe the largest annuli in

which these series are valid.

3.74 Question 74

Suppose f is entire and there exist A,R > 0 and natural number N such that |f(z)| ≤ A|z|N
for |z| ≥ R. Show that

(i) f is a polynomial and

(ii) the degree of f is at most N .

3.75 Question 75

(1) Explicitly write down an example of a non-zero analytic function in |z| < 1 which has
infinitely zeros in |z| < 1.

(2) Why does not the phenomenon in (1) contradict the uniqueness theorem?

3.76 Question 76

(1) Assume u is harmonic on open set O and zn is a sequence in O such that u(zn) = 0
and lim zn ∈ O. Prove or disprove that u is identically zero. What if O is a region?

(2) Assume u is harmonic on open set O and u(z) = 0 on a disc in O. Prove or disprove
that u is identically zero. What if O is a region?

(3) Formulate and prove a Schwarz reflection principle for harmonic functions

cf. Theorem 5.6 on p.60 of Stein et al.

Hint: Verify the mean value property for your new function obtained by Schwarz
reflection principle.

3.77 Question 77

Let f be holomorphic in a neighborhood of Dr(z0). Show that for any s < r, there exists a
constant c > 0 such that

||f ||(∞,s) ≤ c||f ||(1,r),

where |f ||(∞,s) = supz∈Ds(z0)|f(z)| and ||f ||(1,r) =

∫
Dr(z0)

|f(z)|dxdy.

Note: Exercise 3.8.20 on p.107 in Stein et al is a straightforward consequence of
this stronger result using the integral form of the Cauchy-Schwarz inequality in
real analysis.
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3.78 Question 78

(1) Let f be analytic in Ω : 0 < |z − a| < r except at a sequence of poles an ∈ Ω with
limn→∞ an = a. Show that for any w ∈ C, there exists a sequence zn ∈ Ω such that
limn→∞ f(zn) = w.

(2) Explain the similarity and difference between the above assertion and the Weierstrass-
Casorati theorem.

3.79 Question 79

Compute the following integrals.

i

∫ ∞
0

1

(1 + xn)2
dx, n ≥ 1 (ii)

∫ ∞
0

cosx

(x2 + a2)2
dx, a ∈ R (iii)

∫ π

0

1

a+ sin θ
dθ, a > 1

iv

∫ π
2

0

dθ

a+ sin2 θ
, a > 0. (v)

∫
|z|=2

1

(z5 − 1)(z − 3)
dz (v)

∫ ∞
−∞

sin πa

cosh πx+ cos πa
e−ixξ dx, 0 <

a < 1, ξ ∈ R (vi)

∫
|z|=1

cot2 z dz.

3.80 Question 80

Compute the following integrals.

i

∫ ∞
0

sinx

x
dx (ii)

∫ ∞
0

(
sinx

x
)2 dx (iii)

∫ ∞
0

xa−1

(1 + x)2
dx, 0 < a < 2

i

∫ ∞
0

cos ax− cos bx

x2
dx, a, b > 0 (ii)

∫ ∞
0

xa−1

1 + xn
dx, 0 < a < n

iii

∫ ∞
0

log x

1 + xn
dx, n ≥ 2 (iv)

∫ ∞
0

log x

(1 + x2)2
dx (v)

∫ π

0

log |1− a sin θ|dθ, a ∈ C

3.81 Question 81

Let 0 < r < 1. Show that polynomials Pn(z) = 1 + 2z + 3z2 + · · · + nzn−1 have no zeros in
|z| < r for all sufficiently large n’s.

3.82 Question 82

Let f be an analytic function on a region Ω. Show that f is a constant if there is a simple
closed curve γ in Ω such that its image f(γ) is contained in the real axis.

3.83 Question 83

(1) Show that
π2

sin2 πz
and g(z) =

∞∑
n=−∞

1

(z − n)2
have the same principal part at each

integer point.
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(2) Show that h(z) =
π2

sin2 πz
− g(z) is bounded on C and conclude that

π2

sin2 πz
=

∞∑
n=−∞

1

(z − n)2
.

3.84 Question 84

Let f(z) be an analytic function on C\{z0}, where z0 is a fixed point. Assume that f(z) is
bijective from C\{z0} onto its image, and that f(z) is bounded outside Dr(z0), where r is
some fixed positive number. Show that there exist a, b, c, d ∈ C with ad− bc 6= 0, c 6= 0 such

that f(z) =
az + b

cz + d
.

3.85 Question 85

Assume f(z) is analytic in D : |z| < 1 and f(0) = 0 and is not a rotation (i.e. f(z) 6= eiθz).

Show that
∞∑
n=1

fn(z) converges uniformly to an analytic function on compact subsets of D,

where fn+1(z) = f(fn(z)).

3.86 Question 86

Let f be a non-constant analytic function on D with f(D) ⊆ D. Use ψa(f(z)) (where

a = f(0), ψa(z) =
a− z
1− az

) to prove that

|f(0)| − |z|
1 + |f(0)||z|

≤ |f(z)| ≤ |f(0)|+ |z|
1− |f(0)||z|

.

3.87 Question 87

Find a conformal map

1. From {z : |z − 1/2| > 1/2,Re(z) > 0} to H

2. From {z : |z − 1/2| > 1/2, |z| < 1} to D

3. From the intersection of the disk |z + i| <
√

2 with H to D.

4. From D\[a, 1) to D\[0, 1) (0 < a < 1).

Hint: Short solution possible using Blaschke factor

5. From {z : |z| < 1,Re(z) > 0}\(0, 1/2] to H.
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3.88 Question 88

Let C and C ′ be two circles and let z1 ∈ C, z2 /∈ C, z′1 ∈ C ′, z′2 /∈ C ′. Show that there is a
unique fractional linear transformation f with f(C) = C ′ and f(z1) = z′1, f(z2) = z′2.

3.89 Question 89

Assume fn ∈ H(Ω) is a sequence of holomorphic functions on the region Ω that are uniformly
bounded on compact subsets and f ∈ H(Ω) is such that the set {z ∈ Ω : lim

n→∞
fn(z) = f(z)}

has a limit point in Ω. Show that fn converges to f uniformly on compact subsets of Ω.

3.90 Question 90

Let ψα(z) =
α− z
1− αz

with |α| < 1 and D = {z : |z| < 1}. Prove that

•
1

π

∫∫
D
|ψ′α|2dxdy = 1.

•
1

π

∫∫
D
|ψ′α|dxdy =

1− |α|2

|α|2
log

1

1− |α|2
.

3.91 Question 91

Prove that f(z) = −1

2

(
z +

1

z

)
is a conformal map from half disc {z = x+ iy : |z| < 1, y >

0} to upper half plane H = {z = x+ iy : y > 0}.

3.92 Question 92

Let Ω be a simply connected open set and let γ be a simple closed contour in Ω and enclosing
a bounded region U anticlockwise. Let f : Ω→ C be a holomorphic function and |f(z)| ≤M
for all z ∈ γ. Prove that |f(z)| ≤M for all z ∈ U .

3.93 Question 93

Compute the following integrals.

(i)

∫ ∞
0

xa−1

1 + xn
dx, 0 < a < n

(ii)

∫ ∞
0

log x

(1 + x2)2
dx

3.94 Question 94

Let 0 < r < 1. Show that the polynomials Pn(z) = 1 + 2z + 3z2 + · · ·+ nzn−1 have no zeros
in |z| < r for all sufficiently large n’s.
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3.95 Question 95

Let f be holomorphic in a neighborhood of Dr(z0). Show that for any s < r, there exists a
constant c > 0 such that

‖f‖(∞,s) ≤ c‖f‖(1,r),

where ‖f‖(∞,s) = supz∈Ds(z0)|f(z)| and ‖f‖(1,r) =

∫
Dr(z0)

|f(z)|dxdy.

3.96 Question 96

Let ψα(z) =
α− z
1− αz

with |α| < 1 and D = {z : |z| < 1}. Prove that

•
1

π

∫∫
D
|ψ′α|2dxdy = 1.

•
1

π

∫∫
D
|ψ′α|dxdy =

1− |α|2

|α|2
log

1

1− |α|2
.

3.97 Question 97

Let Ω be a simply connected open set and let γ be a simple closed contour in Ω and enclosing
a bounded region U anticlockwise. Let f : Ω→ C be a holomorphic function and |f(z)| ≤M
for all z ∈ γ. Prove that |f(z)| ≤M for all z ∈ U .

3.98 Question 98

Compute the following integrals.

(i)

∫ ∞
0

xa−1

1 + xn
dx, 0 < a < n

(ii)

∫ ∞
0

log x

(1 + x2)2
dx

3.99 Question 99

Let f be holomorphic in a neighborhood of Dr(z0). Show that for any s < r, there exists a
constant c > 0 such that

‖f‖(∞,s) ≤ c‖f‖(1,r),

where ‖f‖(∞,s) = supz∈Ds(z0)|f(z)| and ‖f‖(1,r) =

∫
Dr(z0)

|f(z)|dxdy.
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3.100 Question 100

Let u(x, y) be harmonic and have continuous partial derivatives of order three in an open
disc of radius R > 0.

(a) Let two points (a, b), (x, y) in this disk be given. Show that the following integral is
independent of the path in this disk joining these points:

v(x, y) =

∫ x,y

a,b

(−∂u
∂y
dx+

∂u

∂x
dy).

(b)

(i) Prove that u(x, y) + iv(x, y) is an analytic function in this disc.

(ii) Prove that v(x, y) is harmonic in this disc.

3.101 Question 101

(a) f(z) = u(x, y) + iv(x, y) be analytic in a domain D ⊂ C. Let z0 = (x0, y0) be a point
in D which is in the intersection of the curves u(x, y) = c1 and v(x, y) = c2, where c1

and c2 are constants. Suppose that f ′(z0) 6= 0. Prove that the lines tangent to these
curves at z0 are perpendicular.

(b) Let f(z) = z2 be defined in C.

(c) Describe the level curves of Re(f) and of Im(f).

(ii) What are the angles of intersections between the level curves Re(f) = 0 and Im(f)?
Is your answer in agreement with part a) of this question?

3.102 Question 102

(a) Let f : D → C be a continuous function, where D ⊂ C is a domain. Let α : [a, b]→ D
be a smooth curve. Give a precise definition of the complex line integral∫

α

f.

(b) Assume that there exists a constant M such that |f(τ)| ≤ M for all τ ∈ Image(α).
Prove that ∣∣ ∫

α

f
∣∣ ≤M × length(α).

(c) Let CR be the circle |z| = R, described in the counterclockwise direction, where R > 1.

Provide an upper bound for

∣∣∣∣∫CR log (z)

z2

∣∣∣∣ which depends only on R and other constants.
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3.103 Question 103

(a) Let f : C → C be an entire function. Assume the existence of a non-negative integer
m, and of positive constants L and R, such that for all z with |z| > R the inequality

|f(z)| ≤ L|z|m

holds. Prove that f is a polynomial of degree ≤ m.

(b) Let f : C→ C be an entire function. Suppose that there exists a real number M such
that for all z ∈ C

Re(f) ≤M.

Prove that f must be a constant.

3.104 Question 104

Prove that all the roots of the complex polynomial

z7 − 5z3 + 12 = 0

lie between the circles |z| = 1 and |z| = 2.

3.105 Question 105

Let F be an analytic function inside and on a simple closed curve C, except for a pole of
order m ≥ 1 at z = a inside C. Prove that

1

2πi

∮
C

F (τ)dτ = lim
τ→a

dm−1

dτm−1

(
(τ − a)mF (τ))

)
.

3.106 Question 106

Find the conformal map that takes the upper half-plane comformally onto the half-strip
{w = x+ iy : −π/2 < x < π/2 y > 0}.

3.107 Question 107

Compute the integral

∫ ∞
−∞

e−2πixξ

cosh πx
dx where cosh z =

ez + e−z

2
.

3.108 Question 108

Find the number of zeroes, counting multiplicities, of the polynomial
f(z) = 2z5 − 6z2 − z + 1 = 0
in the annulus 1 ≤ |z| ≤ 2.
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3.109 Question 109

Find an analytic isomorphism from the open region between |z| = 1 and |z − 1
2
| = 1

2
to the

upper half plane =z > 0. (You may leave your result as a composition of functions).

3.110 Question 110

Use Green theorem or otherwise to prove the Cauchy theorem.

3.111 Question 111

State and prove the divergence theorem on any rectangle in R2.

3.112 Question 112

Find an analytic isomorphism from the open region between x = 1 and x = 3 to the upper
half unit disk {|z| < 1,=z > 0}. (You may leave your result as a composition of functions)

3.113 Question 113

Use Cauchy’s theorem to prove the argument principle.

3.114 Question 114

Evaluate the following by the method of residues:
∫ π/2

0
1

3+sin2 x
dx

3.115 Question 115

Evaluate the improper integral∫∞
0

x2 dx
(x2+1)(x2+4)

3.116 Question 116

Use residues to compute the integral ∫ ∞
0

cosx

(x2 + 1)2
dx

3.117 Question 117

State and prove the Cauchy integral formula for holomorphic functions.

3.118 Question 118

Let f be an entire function and suppose that |f(z)| ≤ A|z|2 for all z and some constant A.
Show that f is a polynomial of degree ≤ 2.
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3.119 Question 119

1. State the Schwarz lemma for analytic functions in the unit disc.

2. Let f : D → D be an analytic map from the unit disc D into itself. Use the Schwarz
lemma to show that for each a ∈ D we have

|f ′(a)|
1− |f(a)|2

≤ 1

1− |a|2

3.120 Question 120

State the Riemann mapping theorem and prove the uniqueness part.

3.121 Question 121

Compute the integrals ∫
|z−2|=1

ez

z(z − 1)2
dz,

∫ ∞
0

cos 2x

x2 + 2
dx

3.122 Question 122

Let (fn) be a sequence of holomorphic functions in a domain D. Suppose that fn → f
uniformly on each compact subset of D. Show that

• f is holomorphic on D.

• f ′n → f ′ uniformly on each compact subset of D.

3.123 Question 123

If f is a non-constant entire function, then f(C) is dense in the plane.

3.124 Question 124

1. State Rouche’s theorem.

2. Let f be analytic in a neighborhood of 0, and satisfying f ′(0) 6= 0. Use Rouche’s
theorem to show that there exists a neighborhood U of 0 such that f is a bijection in
U .

3.125 Question 125

Let f be a meromorphic function in the plane such that

lim
|z|→∞

|f(z)| =∞

1. Show that f has only finitely many poles.

2. Show that f is a rational function.
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4 Topology (158 Questions)

4.1 Question 1

Suppose (X, d) is a metric space. State criteria for continuity of a function f : X → X in
terms of:

i. open sets;

ii. ε’s and δ’s; and

iii. convergent sequences.

Then prove that (iii) implies (i).

4.2 Question 2

Let X be a topological space.

i. State what it means for X to be compact.

ii. Let X = {0} ∪
{

1
n

∣∣∣ n ∈ Z+
}

. Is X compact?

iii. Let X = (0, 1]. Is X compact?

4.3 Question 3

Let (X, d) be a compact metric space, and let f : X → X be an isometry:

∀ x, y ∈ X, d(f(x), f(y)) = d(x, y).

Prove that f is a bijection.

4.4 Question 4

Suppose (X, d) is a compact metric space and U is an open covering of X.
Prove that there is a number δ > 0 such that for every x ∈ X, the ball of radius δ centered
at x is contained in some element of U .

4.5 Question 5

Let X be a topological space, and B ⊂ A ⊂ X. Equip A with the subspace topology, and
write clX(B) or clA(B) for the closure of B as a subset of, respectively, X or A.
Determine, with proof, the general relationship between clX(B) ∩ A and clA(B)

I.e., are they always equal? Is one always contained in the other but not con-
versely? Neither?
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4.6 Question 6

Prove that the unit interval I is compact. Be sure to explicitly state any properties of R
that you use.

4.7 Question 7

A topological space is sequentially compact if every infinite sequence inX has a convergent
subsequence.
Prove that every compact metric space is sequentially compact.

4.8 Question 8

Show that for any two topological spaces X and Y , X × Y is compact if and only if both
X and Y are compact.

4.9 Question 9

Recall that a topological space is said to be connected if there does not exist a pair U, V
of disjoint nonempty subsets whose union is X.

i. Prove that X is connected if and only if the only subsets of X that are both open and
closed are X and the empty set.

ii. Suppose that X is connected and let f : X → R be a continuous map. If a and b are
two points of X and r is a point of R lying between f(a) and f(b) show that there
exists a point c of X such that f(c) = r.

4.10 Question 10

Let

X =
{

(0, y)
∣∣∣ −1 ≤ y ≤ 1

}
∪
{(

x, s = sin

(
1

x

)) ∣∣∣ 0 < x ≤ 1

}
.

Prove that X is connected but not path connected.

4.11 Question 11

Let

X =
{

(x, y) ∈ R2|x > 0, y ≥ 0, and
y

x
is rational

}
and equip X with the subspace topology induced by the usual topology on R2.
Prove or disprove that X is connected.
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4.12 Question 12

Write Y for the interval [0,∞), equipped with the usual topology.
Find, with proof, all subspaces Z of Y which are retracts of Y .

4.13 Question 13

a. Prove that if the space X is connected and locally path connected then X is path
connected.

b. Is the converse true? Prove or give a counterexample.

4.14 Question 14

Let
{
Xα

∣∣∣ α ∈ A} be a family of connected subspaces of a space X such that there is a point

p ∈ X which is in each of the Xα.
Show that the union of the Xα is connected.

4.15 Question 15

Let X be a topological space.

a. Prove that X is connected if and only if there is no continuous nonconstant map to
the discrete two-point space {0, 1}.

b. Suppose in addition that X is compact and Y is a connected Hausdorff space. Suppose
further that there is a continuous map f : X → Y such that every preimage f−1(y) for
y ∈ Y , is a connected subset of X.

Show that X is connected.

c. Give an example showing that the conclusion of (b) may be false if X is not compact.

4.16 Question 16

If X is a topological space and S ⊂ X, define in terms of open subsets of X what it means
for S not to be connected.
Show that if S is not connected there are nonempty subsets A,B ⊂ X such that

A ∪B = S and A ∩B = A ∩B = ∅

Here A and B denote closure with respect to the topology on the ambient space
X.

4.17 Question 17

A topological space is totally disconnected if its only connected subsets are one-point sets.
Is it true that if X has the discrete topology, it is totally disconnected?
Is the converse true? Justify your answers.
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4.18 Question 18

Prove that if (X, d) is a compact metric space, f : X → X is a continuous map, and C is a
constant with 0 < C < 1 such that

d(f(x), f(y)) ≤ C · d(x, y) ∀x, y,

then f has a fixed point.

4.19 Question 19

Prove that the product of two connected topological spaces is connected.

4.20 Question 20

a. Define what it means for a topological space to be:

i. Connected

ii. Locally connected

b. Give, with proof, an example of a space that is connected but not locally connected.

4.21 Question 21

Let X and Y be topological spaces and let f : X → Y be a function.

Suppose that X = A ∪ B where A and B are closed subsets, and that the restrictions f
∣∣∣
A

and f
∣∣∣
B

are continuous (where A and B have the subspace topology).

Prove that f is continuous.

4.22 Question 22

Let X be a compact space and let f : X × R → R be a continuous function such that
f(x, 0) > 0 for all x ∈ X.
Prove that there is ε > 0 such that f(x, t) > 0 whenever |t| < ε.
Moreover give an example showing that this conclusion may not hold if X is not assumed
compact.

4.23 Question 23

Define a family T of subsets of R by saying that A ∈ T is ⇐⇒ A = ∅ or R \ A is a finite
set.
Prove that T is a topology on R, and that R is compact with respect to this topology.
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4.24 Question 24

In each part of this problem X is a compact topological space.
Give a proof or a counterexample for each statement.

a. If {Fn}∞n=1 is a sequence of nonempty closed subsets of X such that Fn+1 ⊂ Fn for all
n then

∩∞n=1Fn 6= ∅.

b. If {On}∞n=1 is a sequence of nonempty open subsets of X such that On+1 ⊂ On for all
n then

∩∞n=1On 6= ∅.

4.25 Question 25

Let S, T be topologies on a set X. Show that S ∩ T is a topology on X.
Give an example to show that S ∪ T need not be a topology.

4.26 Question 26

Let f : X → Y be a continuous function between topological spaces.
Let A be a subset of X and let f(A) be its image in Y .
One of the following statements is true and one is false. Decide which is which, prove the
true statement, and provide a counterexample to the false statement:

1. If A is closed then f(A) is closed.

2. If A is compact then f(A) is compact.

4.27 Question 27

A metric space is said to be totally bounded if for every ε > 0 there exists a finite cover
of X by open balls of radius ε.

a. Show: a metric space X is totally bounded iff every sequence in X has a Cauchy
subsequence.

b. Exhibit a complete metric space X and a closed subset A of X that is bounded but
not totally bounded.

You are not required to prove that your example has the stated properties.

4.28 Question 28

Suppose that X is a Hausdorff topological space and that A ⊂ X.
Prove that if A is compact in the subspace topology then A is closed as a subset of X.
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4.29 Question 29

a. Show that a continuous bijection from a compact space to a Hausdorff space is a
homeomorphism.

b. Give an example that shows that the “Hausdorff” hypothesis in part (a) is necessary.

4.30 Question 30

Let X be a topological space and let

∆ =
{

(x, y) ∈ X ×X
∣∣∣ x = y

}
.

Show that X is a Hausdorff space if and only if ∆ is closed in X ×X.

4.31 Question 31

If f is a function from X to Y , consider the graph

G =
{

(x, y) ∈ X × Y
∣∣∣ f(x) = y

}
.

a. Prove that if f is continuous and Y is Hausdorff, then G is a closed subset of X × Y .

b. Prove that if G is closed and Y is compact, then f is continuous.

4.32 Question 32

Let X be a noncompact locally compact Hausdorff space, with topology T . Let X̃ = X∪{∞}
(X with one point adjoined), and consider the family B of subsets of X̃ defined by

B = T ∪
{
S ∪ {∞}

∣∣∣ S ⊂ X, X\S is compact
}
.

a. Prove that B is a topology on X̃, that the resulting space is compact, and that X is
dense in X̃.

b. Prove that if Y ⊃ X is a compact space such that X is dense in Y and Y \X is a
singleton, then Y is homeomorphic to X̃.

The space X̃ is called the one-point compactification of X.

c. Find familiar spaces that are homeomorphic to the one point compactifications of

i. X = (0, 1) and

4.33 Question 33

Prove that a metric space X is normal, i.e. if A,B ⊂ X are closed and disjoint then there
exist open sets A ⊂ U ⊂ X, B ⊂ V ⊂ X such that U ∩ V = ∅.

77



4.34 Question 34

Prove that every compact, Hausdorff topological space is normal.

4.35 Question 35

Show that a connected, normal topological space with more than a single point is uncount-
able.

4.36 Question 36

Give an example of a quotient map in which the domain is Hausdorff, but the quotient is
not.

4.37 Question 37

Let X be a compact Hausdorff space and suppose R ⊂ X×X is a closed equivalence relation.
Show that the quotient space X/R is Hausdorff.

4.38 Question 38

Let U ⊂ Rn be an open set which is bounded in the standard Euclidean metric.
Prove that the quotient space Rn/U is not Hausdorff.

4.39 Question 39

Let A be a closed subset of a normal topological space X.
Show that both A and the quotient X/A are normal.

4.40 Question 40

Define an equivalence relation ∼ on R by x ∼ y if and only if x− y ∈ Q. Let X be the set of
equivalence classes, endowed with the quotient topology induced by the canonical projection
π : R→ X.
Describe, with proof, all open subsets of X with respect to this topology.

4.41 Question 41

Let A denote a subset of points of S2 that looks exactly like the capital letter A. Let Q be
the quotient of S2 given by identifying all points of A to a single point.
Show that Q is homeomorphic to a familiar topological space and identify that space.
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4.42 Question 42

a. Prove that a topological space that has a countable base for its topology also contains
a countable dense subset.

b. Prove that the converse to (a) holds if the space is a metric space.

4.43 Question 43

Recall that a topological space is regular if for every point p ∈ X and for every closed subset
F ⊂ X not containing p, there exist disjoint open sets U, V ⊂ X with p ∈ U and F ⊂ V .
Let X be a regular space that has a countable basis for its topology, and let U be an open
subset of X.

a. Show that U is a countable union of closed subsets of X.

b. Show that there is a continuous function f : X → [0, 1] such that f(x) > 0 for x ∈ U
and f(x) = 0 for x ∈ U .

4.44 Question 44

Let S1 denote the unit circle in C, X be any topological space, x0 ∈ X, and

γ0, γ1 : S1 → X

be two continuous maps such that γ0(1) = γ1(1) = x0.
Prove that γ0 is homotopic to γ1 if and only if the elements represented by γ0 and γ1 in
π1(X, x0) are conjugate.

4.45 Question 45

a. State van Kampen’s theorem.

b. Calculate the fundamental group of the space obtained by taking two copies of the
torus T = S1 × S1 and gluing them along a circle S1 × p where p is a point in S1.

c. Calculate the fundamental group of the Klein bottle.

d. Calculate the fundamental group of the one-point union of S1 × S1 and S1.

e. Calculate the fundamental group of the one-point union of S1 × S1 and RP2.

Note: multiple appearances!!

4.46 Question 46

Prove the following portion of van Kampen’s theorem. If X = A ∪ B and A, B, and A ∩ B
are nonempty and path connected with {pt} ∈ A ∩B, then there is a surjection

π1(A, {pt}) ∗ π1(B, {pt})→ π1(X, {pt}).
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4.47 Question 47

Let X denote the quotient space formed from the sphere S2 by identifying two distinct
points.
Compute the fundamental group and the homology groups of X.

4.48 Question 48

Start with the unit disk D2 and identify points on the boundary if their angles, thought of
in polar coordinates, differ a multiple of π/2.
Let X be the resulting space. Use van Kampen’s theorem to compute π1(X, ∗).

4.49 Question 49

Let L be the union of the z-axis and the unit circle in the xy-plane. Compute π1(R3\L, ∗).

4.50 Question 50

Let A be the union of the unit sphere in R3 and the interval {(t, 0, 0) : −1 ≤ t ≤ 1} ⊂ R3.
Compute π1(A) and give an explicit description of the universal cover of X.

4.51 Question 51

a. Let S1 and S2 be disjoint surfaces. Give the definition of their connected sum S1#S2.

b. Compute the fundamental group of the connected sum of the projective plane and the
two-torus.

4.52 Question 52

Compute the fundamental group, using any technique you like, of RP2#RP2#RP2.

4.53 Question 53

Let
V = D2 × S1 =

{
(z, eit)

∣∣∣ ‖z‖ ≤ 1, 0 ≤ t < 2π
}

be the “solid torus” with boundary given by the torus T = S1 × S1 .
For n ∈ Z define

φn : T → T

(eis, eit) 7→ (eis, ei(ns+t)).

Find the fundamental group of the identification space

Vn =
V
∐
V

∼ n
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where the equivalence relation ∼n identifies a point x on the boundary T of the first copy of
V with the point φn(x) on the boundary of the second copy of V .

4.54 Question 54

Let Sk be the space obtained by removing k disjoint open disks from the sphere S2. Form
Xk by gluing k Möbius bands onto Sk , one for each circle boundary component of Sk (by
identifying the boundary circle of a Möbius band homeomorphically with a given boundary
component circle).
Use van Kampen’s theorem to calculate π1(Xk) for each k > 0 and identify Xk in terms of
the classification of surfaces.

4.55 Question 55

i. Let A be a subspace of a topological space X. Define what it means for A to be a
deformation retract of X.

ii. Consider X1 the “planar figure eight” and

X2 = S1 ∪ (0× [−1, 1])

(the “theta space”). Show that X1 and X2 have isomorphic fundamental groups.

iii. Prove that the fundamental group of X2 is a free group on two generators.

4.56 Question 56

a. Give the definition of a covering space X̂ (and covering map p : X̂ → X) for a
topological space X.

b. State the homotopy lifting property of covering spaces. Use it to show that a covering
map p : X̂ → X induces an injection

p∗ : π1(X̂, x̂)→ π1(X, p(x̂))

on fundamental groups.

c. Let p : X̂ → X be a covering map with Y and X path-connected. Suppose that the
induced map p∗ on π1 is an isomorphism. Prove that p is a homeomorphism.

4.57 Question 57

a. Give the definitions of covering space and deck transformation (or covering trans-
formation).

b. Describe the universal cover of the Klein bottle and its group of deck transformations.
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c. Explicitly give a collection of deck transformations on{
(x, y)

∣∣∣ −1 ≤ x ≤ 1,−∞ < y <∞
}

such that the quotient is a Möbius band.

d. Find the universal cover of RP2×S1 and explicitly describe its group of deck transfor-
mations.

4.58 Question 58

a. What is the definition of a regular (or Galois) covering space?

b. State, without proof, a criterion in terms of the fundamental group for a covering map
p : X̃ → X to be regular.

c. Let Θ be the topological space formed as the union of a circle and its diameter (so this
space looks exactly like the letter Θ). Give an example of a covering space of Θ that
is not regular.

4.59 Question 59

Let S be the closed orientable surface of genus 2 and let C be the commutator subgroup of
π1(S, ∗). Let S̃ be the cover corresponding to C. Is the covering map S̃ → S regular?

The term “normal” is sometimes used as a synonym for regular in this context.

What is the group of deck transformations?
Give an example of a nontrivial element of π1(S, ∗) which lifts to a trivial deck transformation.

4.60 Question 60

Describe the 3-fold connected covering spaces of S1 ∨ S1.

4.61 Question 61

Find all three-fold covers of the wedge of two copies of RP2 . Justify your answer.

4.62 Question 62

Describe, as explicitly as you can, two different (non-homeomorphic) connected two-sheeted
covering spaces of RP2 ∨ RP3, and prove that they are not homeomorphic.

4.63 Question 63

Is there a covering map from

X3 =
{
x2 + y2 = 1

}
∪
{

(x− 2)2 + y2 = 1
}
∪
{

(x+ 2)2 + y2 = 1
}
⊂ R2

to the wedge of two S1’s? If there is, give an example; if not, give a proof.
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4.64 Question 64

a. Suppose Y is an n-fold connected covering space of the torus S1 × S1. Up to homeo-
morphism, what is Y ? Justify your answer.

b. Let X be the topological space obtained by deleting a disk from a torus. Suppose Y
is a 3-fold covering space of X.

What surfaces could Y be? Justify your answer, but you need not exhibit the covering
maps explicitly.

4.65 Question 65

Let S be a connected surface, and let U be a connected open subset of S. Let p : S̃ → S be
the universal cover of S. Show that p−1(U) is connected if and only if the homeomorphism
i∗ : π1(U)→ π1(S) induced by the inclusion i : U → S is onto.

4.66 Question 66

Suppose that X has universal cover p : X̃ → X and let A ⊂ X be a subspace with p(ã) =
a ∈ A. Show that there is a group isomorphism

ker(π1(A, a)→ π1(X, a)) ∼= π1(p−1A, a).

4.67 Question 67

Prove that every continuous map f : RP2 → S1 is homotopic to a constant.

Hint: think about covering spaces.

4.68 Question 68

Prove that the free group on two generators contains a subgroup isomorphic to the free group
on five generators by constructing an appropriate covering space of S1 ∨ S1.

4.69 Question 69

Use covering space theory to show that Z2 ∗ Z (that is, the free product of Z2 and Z) has
two subgroups of index 2 which are not isomorphic to each other.

4.70 Question 70

a. Show that any finite index subgroup of a finitely generated free group is free. State
clearly any facts you use about the fundamental groups of graphs.

b. Prove that if N is a nontrivial normal subgroup of infinite index in a finitely generated
free group F , then N is not finitely generated.
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4.71 Question 71

Let p : X → Y be a covering space, where X is compact, path-connected, and locally
path-connected.
Prove that for each x ∈ X the set p−1({p(x)}) is finite, and has cardinality equal to the
index of p∗(π1(X, x)) in π1(Y, p(x)).

4.72 Question 72

Compute the homology of the one-point union of S1 × S1 and S1.

4.73 Question 73

a. State the Mayer-Vietoris theorem.

b. Use it to compute the homology of the space X obtained by gluing two solid tori along
their boundary as follows. Let D2 be the unit disk and let S1 be the unit circle in the
complex plane C. Let A = S1 × D2 and B = D2 × S1.

Then X is the quotient space of the disjoint union A
∐
B obtained by identifying

(z, w) ∈ A with (zw3, w) ∈ B for all (z, w) ∈ S1 × S1.

4.74 Question 74

Let A and B be circles bounding disjoint disks in the plane z = 0 in R3. Let X be the
subset of the upper half-space of R3 that is the union of the plane z = 0 and a (topological)
cylinder that intersects the plane in ∂C = A ∪B.
Compute H∗(X) using the Mayer–Vietoris sequence.

4.75 Question 75

Compute the integral homology groups of the space X = Y ∪ Z which is the union of the
sphere

Y =
{
x2 + y2 + z2 = 1

}
and the ellipsoid

Z =

{
x2 + y2 +

z2

4
= 1

}
.

4.76 Question 76

Let X consist of two copies of the solid torus D2 × S1, glued together by the identity map
along the boundary torus S1 × S1. Compute the homology groups of X.

4.77 Question 77

Use the circle along which the connected sum is performed and the Mayer-Vietoris long exact
sequence to compute the homology of RP2#RP2.
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4.78 Question 78

Express a Klein bottle as the union of two annuli.
Use the Mayer Vietoris sequence and this decomposition to compute its homology.

4.79 Question 79

Let X be the topological space obtained by identifying three distinct points on S2. Calculate
H∗(X;Z).

4.80 Question 80

Compute H0 and H1 of the complete graph K5 formed by taking five points and joining each
pair with an edge.

4.81 Question 81

Compute the homology of the subset X ⊂ R3 formed as the union of the unit sphere, the
z-axis, and the xy-plane.

4.82 Question 82

Let X be the topological space formed by filling in two circles S1 × {p1} and S1 × {p2} in
the torus S1 × S1 with disks.
Calculate the fundamental group and the homology groups of X.

4.83 Question 83

a. Consider the quotient space

T 2 = R2/ ∼ where (x, y) ∼ (x+m, y + n) for m,n ∈ Z,

and let A be any 2× 2 matrix whose entries are integers such that detA = 1.

Prove that the action of A on R2 descends via the quotient R2 → T 2 to induce a
homeomorphism T 2 → T 2.

b. Using this homeomorphism of T 2, we define a new quotient space

T 3
A :=

T 2 × R
∼

where ((x, y), t) ∼ (A(x, y), t+ 1)

Compute H1(T 3
A) if A =

(
1 1
0 1

)
.

4.84 Question 84

Give a self-contained proof that the zeroth homology H0(X) is isomorphic to Z for every
path-connected space X.
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4.85 Question 85

Give a self-contained proof that the zeroth homology H0(X) is isomorphic to Z for every
path-connected space X.

4.86 Question 86

It is a fact that if X is a single point then H1(X) = {0}.
One of the following is the correct justification of this fact in terms of the singular chain
complex.
Which one is correct and why is it correct?

a. C1(X) = {0}.

b. C1(X) 6= {0} but ker ∂1 = 0 with ∂1 : C1(X)→ C0(X).

c. ker ∂1 6= 0 but ker ∂1 = im ∂2 with ∂2 : C2(X)→ C1(X).

4.87 Question 87

Compute the homology groups of S2 × S2.

4.88 Question 88

Let Σ be a closed orientable surface of genus g. Compute Hi(S
1 × Σ;Z) for i = 0, 1, 2, 3.

4.89 Question 89

Prove that if A is a retract of the topological space X, then for all nonnegative integers n
there is a group Gn such that Hn(X) ∼= Hn(A)⊕Gn.

Here Hn denotes the nth singular homology group with integer coefficients.

4.90 Question 90

Does there exist a map of degree 2013 from S2 → S2.

4.91 Question 91

For each n ∈ Z give an example of a map fn : S2 → S2.
For which n must any such map have a fixed point?

4.92 Question 92

a. What is the degree of the antipodal map on the n-sphere? (No justification required)

b. Define a CW complex homeomorphic to the real projective n-space RPn.

c. Let π : RPn → X be a covering map. Show that if n is even, π is a homeomorphism.
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4.93 Question 93

Let A ⊂ X. Prove that the relative homology group H0(X,A) is trivial if and only if A
intersects every path component of X.

4.94 Question 94

Let D be a closed disk embedded in the torus T = S1 × S1 and let X be the result of
removing the interior of D from T . Let B be the boundary of X, i.e. the circle boundary of
the original closed disk D.

4.95 Question 95

Let D be a closed disk embedded in the torus T = S1 × S1 and let X be the result of
removing the interior of D from T . Let B be the boundary of X, i.e. the circle boundary of
the original closed disk D.
Compute Hi(T,B) for all i.

4.96 Question 96

For any n ≥ 1 let Sn =
{

(x0, · · · , xn)
∣∣∣ ∑x2

i = 1
}

denote the n dimensional unit sphere and

let
E =

{
(x0, ..., xn)

∣∣∣ xn = 0
}

denote the “equator”.
Find, for all k, the relative homology Hk(S

n, E).

4.97 Question 97

Suppose that U and V are open subsets of a space X, with X = U ∪ V . Find, with proof, a
general formula relating the Euler characteristics of X,U, V , and U ∩ V .

You may assume that the homologies of U, V, U ∩ V,X are finite-dimensional so
that their Euler characteristics are well defined.

4.98 Question 98

Describe a cell complex structure on the torus T = S1 × S1 and use this to compute the
homology groups of T .

To justify your answer you will need to consider the attaching maps in detail.

4.99 Question 99

Let X be the space formed by identifying the boundary of a Möbius band with a meridian
of the torus T 2.
Compute π1(X) and H∗(X).
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4.100 Question 100

Compute the homology of the space X obtained by attaching a Möbius band to RP2 via a
homeomorphism of its boundary circle to the standard RP1 in RP2.

4.101 Question 101

Let X be a space obtained by attaching two 2-cells to the torus S1× S1, one along a simple
closed curve {x} × S1 and the other along {y} × S1 for two points x 6= y in S1 .

a. Draw an embedding of X in R3 and calculate its fundamental group.

b. Calculate the homology groups of X.

4.102 Question 102

Let X be the space obtained as the quotient of a disjoint union of a 2-sphere S2 and a torus
T = S1 × S1 by identifying the equator in S2 with a circle S1 × {p} in T .
Compute the homology groups of X.

4.103 Question 103

Let X = S2/ {p1 = · · · = pk} be the topological space obtained from the 2-sphere by identi-
fying k distinct points on it (k ≥ 2).
Find:

a. The fundamental group of X.

b. The Euler characteristic of X.

c. The homology groups of X.

4.104 Question 104

LetX be the topological space obtained as the quotient of the sphere S2 =
{

x ∈ R3
∣∣∣ ‖x‖ = 1

}
under the equivalence relation x ∼ −x for x in the equatorial circle, i.e. for x = (x1, x2, 0).
Calculate H∗(X;Z) from a CW complex description of X.

4.105 Question 105

Compute, by any means available, the fundamental group and all the homology groups of
the space obtained by gluing one copy A of S2 to another copy B of S2 via a two-sheeted
covering space map from the equator of A onto the equator of B.

4.106 Question 106

Use cellular homology to calculate the homology groups of Sn × Sm.
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4.107 Question 107

Denote the points of S1 × I by (z, t) where z is a unit complex number and 0 ≤ t ≤ 1. Let
X denote the quotient of S1 × I given by identifying (z, 1) and (z2, 0) for all z ∈ S1.
Give a cell structure, with attaching maps, for X, and use it to compute π1(X, ∗) and H1(X).

4.108 Question 108

Let X = S1 ∪ S2 ⊂ R3 be the union of two spheres of radius 2, one about (1, 0, 0) and the
other about (−1, 0, 0), i.e.

S1 =
{

(x, y, z)
∣∣∣ (x− 1)2 + y2 + z2 = 4

}
S2 =

{
(x, y, z)

∣∣∣ (x+ 1)2 + y2 + z2 = 4
}
.

a. Give a description of X as a CW complex.

b. Write out the cellular chain complex of X.

c. Calculate H∗(X;Z).

4.109 Question 109

Let M and N be finite CW complexes.

a. Describe a cellular structure of M ×N in terms of the cellular structures of M and N .

b. Show that the Euler characteristic of M×N is the product of the Euler characteristics
of M and N .

4.110 Question 110

Suppose the space X is obtained by attaching a 2-cell to the torus S1 × S1.
In other words, X is the quotient space of the disjoint union of the closed disc D2 and the
torus S1 × S1 by the identification x ∼ f(x) where S1 is the boundary of the unit disc and
f : S1 → S1 × S1 is a continuous map.
What are the possible homology groups of X? Justify your answer.

4.111 Question 111

Let X be the topological space constructed by attaching a closed 2-disk D2 to the circle S1

by a continuous map ∂D2 → S1 of degree d > 0 on the boundary circle.

a. Show that every continuous map X → X has a fixed point.

b. Explain how to obtain all the connected covering spaces of X.
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4.112 Question 112

Let X be a topological space obtained by attaching a 2-cell to RP2 via some map f : S1 →
RP2 .
What are the possibilities for the homology H∗(X;Z)?

4.113 Question 113

For any integer n ≥ 2 let Xn denote the space formed by attaching a 2-cell to the circle S1

via the attaching map

an : S1 → S1

eiθ 7→ einθ.

a. Compute the fundamental group and the homology of Xn.

b. Exactly one of the Xn (for n ≥ 2) is homeomorphic to a surface. Identify, with
proof, both this value of n and the surface that Xn is homeomorphic to (including a
description of the homeomorphism).

4.114 Question 114

Let X be a CW complex and let π : Y → X be a covering space.

a. Show that Y is compact iff X is compact and π has finite degree.

b. Assume that π has finite degree d. Show show that χ(Y ) = dχ(X).

c. Let π : RPN → X be a covering map. Show that if N is even, π is a homeomorphism.

4.115 Question 115

For topological spaces X, Y the mapping cone C(f) of a map f : X → Y is defined to be
the quotient space

(X × [0, 1])
∐

Y/ ∼ where

(x, 0) ∼ (x′, 0) forall x, x′ ∈ X and

(x, 1) ∼ f(x) forall x ∈ X.

Let φk : Sn → Sn be a degree k map for some integer k.
Find Hi(C(φk)) for all i.

4.116 Question 116

Prove that a finite CW complex must be Hausdorff.
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4.117 Question 117

State the classification theorem for surfaces (compact, without boundary, but not necessarily
orientable). For each surface in the classification, indicate the structure of the first homology
group and the value of the Euler characteristic.
Also, explain briefly how the 2-holed torus and the connected sum RP2#RP2 fit into the
classification.

4.118 Question 118

Give a list without repetitions of all compact surfaces (orientable or non-orientable and with
or without boundary) that have Euler characteristic negative one.
Explain why there are no repetitions on your list.

4.119 Question 119

Describe the topological classification of all compact connected surfaces M without boundary
having Euler characteristic χ(M) ≥ −2.
No proof is required.

4.120 Question 120

How many surfaces are there, up to homeomorphism, which are:

• Connected,
• Compact,
• Possibly with boundary,
• Possibly nonorientable, and
• With Euler characteristic -3?

Describe one representative from each class.

4.121 Question 121

Prove that the Euler characteristic of a compact surface with boundary which has k boundary
components is less than or equal to 2− k.

4.122 Question 122

Let X be the topological space obtained as the quotient space of a regular 2n-gon (n ≥ 2)
in R2 by identifying opposite edges via translations in the plane.
First show that X is a compact, orientable surface without boundary, and then identify its
genus as a function of n.
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4.123 Question 123

a. Show that any compact connected surface with nonempty boundary is homotopy equiv-
alent to a wedge of circles

Hint: you may assume that any compact connected surface without bound-
ary is given by identifying edges of a polygon in pairs.

b. For each surface appearing in the classification of compact surfaces with nonempty
boundary, say how many circles are needed in the wedge from part (a).

Hint: you should be able to do this even if you have not done part (a).

4.124 Question 124

Let M2
g be the compact oriented surface of genus g.

Show that there exists a continuous map f : M2
g → S2 which is not homotopic to a constant

map.

4.125 Question 125

Show that RP2 ∨S1 is not homotopy equivalent to a compact surface (possibly with bound-
ary).

4.126 Question 126

Identify (with proof, but of course you can appeal to the classification of surfaces) all of the
compact surfaces without boundary that have a cell decomposition having exactly one 0-cell
and exactly two 1-cells (with no restriction on the number of cells of dimension larger than
1).

4.127 Question 127

For any natural number g let Σg denote the (compact, orientable) surface of genus g.
Determine, with proof, all valued of g with the property that there exists a covering space
π : Σ5 → Σg .

Hint: How does the Euler characteristic behave for covering spaces?

4.128 Question 128

Find all surfaces, orientable and non-orientable, which can be covered by a closed surface
(i.e. compact with empty boundary) of genus 2. Prove that your answer is correct.
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4.129 Question 129

a. Write down (without proof) a presentation for π1(Σ2, p) where Σ2 is a closed, connected,
orientable genus 2 surface and p is any point on Σ2 .

b. Show that π1(Σ2, p) is not abelian by showing that it surjects onto a free group of rank
2.

c. Show that there is no covering space map from Σ2 to S1 × S1 . You may use the fact
that π1(S1 × S1) ∼= Z2 together with the result in part (b) above.

4.130 Question 130

Give an example, with explanation, of a closed curve in a surfaces which is not nullhomotopic
but is nullhomologous.

4.131 Question 131

Let M be a compact orientable surface of genus 2 without boundary.
Give an example of a pair of loops

γ0, γ1 : S1 →M

with γ0(1) = γ1(1) such that there is a continuous map Γ : [0, 1]× S1 →M such that

Γ(0, t) = γ0(t), Γ(1, t) = γ1(t) forall t ∈ S1,

but such that there is no such map Γ with the additional property that Γs(1) = γ0(1) for all
s ∈ [0, 1].
(You are not required to prove that your example satisfies the stated property.)

4.132 Question 132

Let C be cylinder. Let I and J be disjoint closed intervals contained in ∂C.
What is the Euler characteristic of the surface S obtained by identifying I and J?
Can all surface with nonempty boundary and with this Euler characteristic be obtained from
this construction?

4.133 Question 133

Let Σ be a compact connected surface and let p1, · · · , pk ∈ Σ.
Prove that H2

(
Σ \ ∪ki=1pi

)
= 0.

4.134 Question 134

Prove or disprove:
Every continuous map from S2 to S2 has a fixed point.
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4.135 Question 135

a. State the Lefschetz Fixed Point Theorem for a finite simplicial complex X.

b. Use degree theory to prove this theorem in case X = Sn.

4.136 Question 136

a. Prove that for every continuous map f : S2 → S2 there is some x such that either
f(x) = x or f(x) = −x.

Hint: Where A : S2 → S2 is the antipodal map, you are being asked to prove
that either f or A ◦ f has a fixed point.

b. Exhibit a continuous map f : S3 → S3 such that for every x ∈ S3, f(x) is equal to
neither x nor −x.

Hint: It might help to first think about how you could do this for a map from S1

to S1.

4.137 Question 137

Show that a map Sn → Sn has a fixed point unless its degree is equal to the degree of the
antipodal map a : x→ −x.

4.138 Question 138

Give an example of a homotopy class of maps of S1 ∨ S1 each member of which must have
a fixed point, and also an example of a map of S1 ∨ S1 which doesn’t have a fixed point.

4.139 Question 139

Prove or disprove:
Every map from RP2 ∨ RP2 to itself has a fixed point.

4.140 Question 140

Find all homotopy classes of maps from S1 × D2 to itself such that every element of the
homotopy class has a fixed point.

4.141 Question 141

Let X and Y be finite connected simplicial complexes and let f : X → Y and g : Y → X be
basepoint-preserving maps.
Show that no matter how you homotope f ∨ g : X ∨Y → X ∨Y , there will always be a fixed
point.
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4.142 Question 142

Let f = idRP2 ∨∗ and g = ∗ ∨ idS1 be two maps of RP2 ∨ S1 to itself where ∗ denotes the
constant map of a space to its basepoint.
Show that one map is homotopic to a map with no fixed points, while the other is not.

4.143 Question 143

View the torus T as the quotient space R2/Z2.
Let A be a 2× 2 matrix with Z coefficients.

a. Show that the linear map A : R2 → R2 descends to a continuous map A : T → T .

b. Show that, with respect to a suitable basis for H1(T ;Z), the matrix A represents the
map induced on H1 by A.

c. Find a necessary and sufficient condition on A for A to be homotopic to the identity.

d. Find a necessary and sufficient condition on A for A to be homotopic to a map with
no fixed points.

4.144 Question 144

a. Use the Lefschetz fixed point theorem to show that any degree-one map f : S2 → S2

has at least one fixed point.

b. Give an example of a map f : R2 → R2 having no fixed points.

c. Give an example of a degree-one map f : S2 → S2 having exactly one fixed point.

4.145 Question 145

For which compact connected surfaces Σ (with or without boundary) does there exist a
continuous map f : Σ→ Σ that is homotopic to the identity and has no fixed point?
Explain your answer fully.

4.146 Question 146

Use the Brouwer fixed point theorem to show that an n×n matrix with nonnegative entries
has a real eigenvalue.

4.147 Question 147

Prove that R2 is not homeomorphic to Rn for n > 2.
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4.148 Question 148

Prove that any finite tree is contractible, where a tree is a connected graph that contains
no closed edge paths.

4.149 Question 149

Show that any continuous map f : RP2 → S1 × S1 is necessarily null-homotopic.

4.150 Question 150

Prove that, for n ≥ 2, every continuous map f : RPn → S1 is null-homotopic.

4.151 Question 151

Let S2 → RP2 be the universal covering map.
Is this map null-homotopic? Give a proof of your answer.

4.152 Question 152

Suppose that a map f : S3 × S3 → RP3 is not surjective.
Prove that f is homotopic to a constant function.

4.153 Question 153

Prove that there does not exist a continuous map f : S2 → S2 from the unit sphere in R3 to
itself such that f(x) ⊥ x (as vectors in R3 for all x ∈ S2).

4.154 Question 154

Let f be the map of S1 × [0, 1] to itself defined by

f(eiθ, s) = (ei(θ+2πs), s),

so that f restricts to the identity on the two boundary circles of S1 × [0, 1].
Show that f is homotopic to the identity by a homotopy ft that is stationary on one of the
boundary circles, but not by any homotopy that is stationary on both boundary circles.

Hint: Consider what f does to the path s 7→ (eiθ0 , s) for fixed eiθ0 ∈ S1.

4.155 Question 155

Show that S1×S1 is not the union of two disks (where there is no assumption that the disks
intersect along their boundaries).
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4.156 Question 156

Suppose that X ⊂ Y and X is a deformation retract of Y .
Show that if X is a path connected space, then Y is path connected.

4.157 Question 157

Do one of the following:

a. Give (with justification) a contractible subset X ⊂ R2 which is not a retract of R2 .

b. Give (with justification) two topological spaces that have the same homology groups
but that are not homotopy equivalent.

4.158 Question 158

Recall that the suspension of a topological space, denoted SX, is the quotient space formed
from X× [−1, 1] by identifying (x, 1) with (y, 1) for all x, y ∈ X, and also identifying (x,−1)
with (y,−1) for all x, y ∈ X.

a. Show that SX is the union of two contractible subspaces.

b. Prove that if X is path-connected then π1(SX) = {0}.

c. For all n ≥ 1, prove that Hn(X) ∼= Hn+1(SX).
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