Real Analysis Qualifying Examination

Spring 2019
The five problems on this exam have equal weighting. To receive full credit give complete justification for all assertions by either citing known theorems or giving arguments from first principles.

1. Let $C([0,1])$ denote the space of all continuous real-valued functions on $[0,1]$.
(a) Prove that $C([0,1])$ is complete under the uniform norm $\|f\|_{u}:=\sup _{x \in[0,1]}|f(x)|$.
(b) Prove that $C([0,1])$ is not complete under the L^{1}-norm $\|f\|_{1}=\int_{0}^{1}|f(x)| d x$
2. Let \mathcal{B} denote the set of all Borel subsets of \mathbb{R} and $\mu: \mathcal{B} \rightarrow[0, \infty)$ denote a finite Borel measure on \mathbb{R}.
(a) Prove that if $\left\{F_{k}\right\}$ is a sequence of Borel sets for which $F_{k} \supseteq F_{k+1}$ for all k, then

$$
\lim _{k \rightarrow \infty} \mu\left(F_{k}\right)=\mu\left(\bigcap_{k=1}^{\infty} F_{k}\right) .
$$

(b) Suppose μ has the property that $\mu(E)=0$ for every $E \in \mathcal{B}$ with Lebesgue measure $m(E)=0$. Prove that for every $\varepsilon>0$ there exists $\delta>0$ so that if $E \in \mathcal{B}$ with $m(E)<\delta$, then $\mu(E)<\varepsilon$.
3. Let $\left\{f_{k}\right\}$ be any sequence of functions in $L^{2}([0,1])$ satisfying $\left\|f_{k}\right\|_{2} \leq M$ for all $k \in \mathbb{N}$.

Prove that if $f_{k} \rightarrow f$ almost everywhere, then $f \in L^{2}([0,1])$ with $\|f\|_{2} \leq M$ and

$$
\lim _{k \rightarrow \infty} \int_{0}^{1} f_{k}(x) d x=\int_{0}^{1} f(x) d x
$$

Hint: Try using Fatou's Lemma to show that $\|f\|_{2} \leq M$ and then try applying Egorov's Theorem.
4. Let f be a non-negative function on \mathbb{R}^{n} and $\mathcal{A}=\left\{(x, t) \in \mathbb{R}^{n} \times \mathbb{R}: 0 \leq t \leq f(x)\right\}$.

Prove the validity of the following two statements:
(a) f is a Lebesgue measurable function on $\mathbb{R}^{n} \Longleftrightarrow \mathcal{A}$ is a Lebesgue measurable subset of \mathbb{R}^{n+1}
(b) If f is a Lebesgue measurable function on \mathbb{R}^{n}, then

$$
m(\mathcal{A})=\int_{\mathbb{R}^{n}} f(x) d x=\int_{0}^{\infty} m\left(\left\{x \in \mathbb{R}^{n}: f(x) \geq t\right\}\right) d t
$$

5. (a) Show that $L^{2}([0,1]) \subseteq L^{1}([0,1])$ and argue that $L^{2}([0,1])$ in fact forms a dense subset of $L^{1}([0,1])$.
(b) Let Λ be a continuous linear functional on $L^{1}([0,1])$.

Prove the Reisz Representation Theorem for $L^{1}([0,1])$ by following the steps below:
i. Establish the existence of a function $g \in L^{2}([0,1])$ which represents Λ in the sense that

$$
\Lambda(f)=\int_{0}^{1} f(x) \overline{g(x)} d x \quad \text { for all } f \in L^{2}([0,1])
$$

Hint: You may use, without proof, the Riesz Representation Theorem for $L^{2}([0,1])$.
ii. Argue that the g obtained above must in fact belong to $L^{\infty}([0,1])$ and represent Λ in the sense that

$$
\Lambda(f)=\int_{0}^{1} f(x) \overline{g(x)} d x \quad \text { for all } f \in L^{1}([0,1])
$$

with

$$
\|g\|_{L^{\infty}([0,1])}=\|\Lambda\|_{L^{1}([0,1])^{*}}
$$

Question 1
(a)

Let $\left\{>0\right.$ \& $\left\{f_{n}\right\}$ be a Cauchy sequence in $C([0,1])$.
This means that $\exists N$ such that

$$
n, m \geqslant N \Rightarrow \sup _{x \in[0,1]}\left|f_{n}(x)-f_{m}(x)\right|<\varepsilon
$$

In particular, for every $x \in[0,1]$

$$
\begin{equation*}
\left|f_{n}(x)-f_{m}(x)\right|<\varepsilon \text { provided } n, m \geqslant N \tag{*}
\end{equation*}
$$

ie. $\left\{f_{n}(x)\right\}$ is a Cauchy sequence in \mathbb{R} and hence converges.
Let $f(x):=\lim _{n \rightarrow \infty} f(x)$ for each $x \in[0,1]$.
We must show $f_{n} \rightarrow f$ umitomly on [0,1]. Fixing n and letting $m \rightarrow \infty$ in (*) above we obtain that
$\left|f_{n}(x)-f(x)\right| \leqslant \varepsilon$ for every $n \geqslant N$ and every $x \in[0,1]$.
ie. $\lim _{n \rightarrow \infty} \sup _{x \in[0,1]}\left|\ln _{n}(x)-f(x)\right|=0 \Leftrightarrow f_{n} \rightarrow f$ unit an $[0,1]$.
Finally, since each $f_{n} \in C([0,1])$ \& $f_{n} \rightarrow f$ unitarily on $[0, T]$ it bellows that f is cortivinons on $[0,1]$ also!
(b) Let $f_{n}(x)=\left\{\begin{array}{ccc}0 \text { if } 0 \leq x \leq \frac{1}{2} \\ n\left(x-\frac{1}{2}\right) & i f \frac{1}{2} \leq x \leq \frac{1}{2}+\frac{1}{n} \\ 1 & \text { if } \frac{1}{2}+\frac{1}{n} \leq x \leq 1 .\end{array} \quad\right.$ So $\left\|f_{n}-f_{m}\right\|_{1} \leq \max \left\{\frac{1}{n}, \frac{1}{m}\right\}$

Then $f \stackrel{L}{ } \rightarrow f$ where $f(x)=\left\{\begin{array}{lll}0 & 1 & 0 \leq x \leq \frac{1}{2} \\ 1 & \text { if } \frac{1}{2}<x \leq 1\end{array} \longleftrightarrow Z\right.$ not cartininous!

Question 2
(a) Let $G_{k}=F_{k}, F_{k+1}$ for each k, so that

$$
F_{1}=F \cup \bigcup_{k=1}^{\infty} G_{k} \quad \text { where } F=\bigcap_{k=1}^{\infty} F_{k}
$$

is a disjoint union of Bevel sets.
It fallows that

$$
\begin{aligned}
& \text { follows that } \\
& \begin{aligned}
\mu\left(F_{1}\right) & =\mu(F)+\lim _{N \rightarrow \infty} \sum_{k=1}^{N-1}\left(\mu\left(F_{k}\right)-\mu\left(F_{k+1}\right)\right) \\
& =\mu(F)+\mu\left(F_{1}\right)-\lim _{N \rightarrow \infty} \mu\left(F_{N}\right)
\end{aligned}
\end{aligned}
$$

Since $\mu\left(F_{1}\right)<\alpha \Rightarrow \mu(F)=\lim _{N \rightarrow \infty} \mu\left(F_{N}\right)$.
(b) Suppose nat, th $\exists \varepsilon_{0}>0$ such that $\forall n \in \mathbb{N}$ \exists Bore set E_{n} with $m\left(E_{n}\right)<\frac{1}{2^{n}}$, but $\mu\left(E_{n}\right) \geqslant \varepsilon_{0}$.
Now let $F=\bigcap_{k=1}^{\infty} F_{k}$, where $F_{k}=\bigcup_{n=k}^{\infty} E_{n}$.

$$
\Rightarrow m\left(F_{k}\right) \leqslant \sum_{n=k}^{\infty} m\left(E_{n}\right)<\sum_{n=k}^{\infty} \frac{1}{2^{n}}=\frac{1}{2^{k-1}}
$$

and luce that $m(F)=0$.
However $\mu\left(F_{k}\right) \geqslant \varepsilon_{0}$ for all k and lance, since μ is finite that $\begin{aligned} \mu(F)= & \lim _{k \rightarrow \infty} \mu\left(F_{k}\right) \geqslant \varepsilon_{0} \\ & \text { since } F_{k} \geqslant F_{k+1} \forall k .\end{aligned}$
i.e. μ is net absolutely continuous with respect to m.

Question 3

- Since $f_{k} \rightarrow f$ a.e. $\Rightarrow\left|f_{k}\right|^{2} \rightarrow|f|^{2}$ are.

It then follows from Fatou's Lemma that

$$
\begin{aligned}
& \underbrace{\int \liminf _{k \rightarrow \infty}\left|f_{k}\right|^{2}} \leqslant \underbrace{\liminf _{k \rightarrow \infty} \int\left|f_{k}\right|^{2}}_{\leqslant M^{2}} \text { snice }\left\|f_{k}\right\|_{2} \leqslant M \forall x . \\
&=\int|f|^{2} \\
& \Rightarrow\|f\|_{2} \leqslant M .
\end{aligned}
$$

- Let $\sum>0$. Since $f_{k} \rightarrow f$ a.e. it follows from Egorou that - closed set A with $m(A)<\varepsilon$ such that $f_{K} \rightarrow f$ unitaming on $[0,1] \backslash A$.

$$
\begin{aligned}
\Rightarrow \int_{0}^{1}\left|f_{k}(x)-f(x)\right| d x & =\underbrace{\int_{0}\left|f_{k}(x)-f(x)\right| d x}_{[0,1] A}+
\end{aligned} \underbrace{\int_{A}\left|f_{k e}(x)-f(x)\right| d x} \underbrace{\int_{A \rightarrow \infty}} \leqslant m(A)^{1 / 2}\left\|f_{k}-f\right\|_{2}
$$

Therefore

$$
\lim _{k \rightarrow \infty} \int\left|f_{k}(x)-f(x)\right| d x=0 \cdot \text { eacichy-Schwarz }
$$

Question 4
(a) (\Rightarrow) : Since $f \geqslant 0$ measurable on \mathbb{R}^{n} it follows that $\tilde{F}(x, y)=y-f(x)$ is m'ble an $\mathbb{R}^{n+1}=\mathbb{R}^{n} \times \mathbb{R}^{-}$.
$[\widetilde{F}(x, y)=G(x, y)-F(x, y)$ where $G(x, y)=y$ \& $F(x, y)=\ddot{f}(x)$.] and hence that $d=\{y \geqslant 0\} \cap\{\tilde{F} \leqslant 0\}$ is m'ble.
(\Leftrightarrow) : Suppose 1 measurable in $\mathbb{R}^{n+1}=\mathbb{R}^{n} \times \mathbb{R}$.
For each $x \in \mathbb{R}^{n}$ the slice $d_{x}=\{y \in \mathbb{R}:(x, y) \in \mathcal{A}\}=[0, f(x)]$
Tenelli $\Rightarrow A_{x}$ is a m'ble subset of \mathbb{R} (for are x) with $m\left(A_{x}\right)$ a m'ble function of x in \mathbb{R}^{n}

$$
\Rightarrow f \text { is mible on } \mathbb{R}^{n} \text {. }
$$

Moreover,

$$
m(\mathcal{A})=\int_{\mathbb{R}^{n}} m\left(\mathcal{A}_{x}\right) d x=\int_{\mathbb{R}^{n}} f(x) d x
$$

(b) In light of the final consequence of Tanelli above we need cull establish:

Claim: $m(\mathcal{A})=\int_{0}^{\infty} m\left(\left\{x \in \mathbb{R}^{n}: f(x) \geqslant y\right\}\right) d y$.
Proof As above we record that Tonclli implies that for a.e. $y \in \mathbb{R}$ the slice $\mathcal{A}_{y}=\left\{x \in \mathbb{R}^{n}:(x, y) \in \mathcal{A}\right\}=\left\{x \in \mathbb{R}^{n}: f(x) \geqslant y \geqslant 0\right\}$ is a measumble subset of \mathbb{R}^{n} with $m(d y)$ a mile fin of y and

$$
m(A)=\int_{\mathbb{R}} m\left(A_{y}\right) d y
$$

Question 5
(a) Cauchy-Schwarz $\Rightarrow \int_{0}^{1}|f| \leqslant\left(\int_{0}^{1}|f|^{2}\right)^{1 / 2} \Rightarrow L^{2}\left([a, B) \leqslant L^{1}([a, 1])\right.$

Since simple functions are dense in both $L^{\prime} \& L^{2}$ it billows that $L^{2}([a, 1])$ is a dense subset of $L^{\prime}([0,1])$
$\left[\right.$ i.e. Given any $f \in L^{\prime} \exists \operatorname{seq}\left\{f_{u}\right]$ in L^{2} with $f_{n} \rightarrow f_{\text {in }} L^{\prime}$.]
(b) • If $f \in L^{2}([a, i])$, the f is also in $L^{\prime}([a, 1])$ so

$$
|\Lambda(f)| \leqslant\|\Lambda\|_{L^{(*}}\|f\|_{1} \leq\|\Lambda\|_{L^{* *}}\|f\|_{2}
$$

Thus Λ is a cants linear functional on $L^{2}(\{0,1])$ \& hence (by RRT far L^{2}) $\exists g \in L^{2}([c, 1))$ such that

$$
\Lambda(f)=\int_{0}^{1} f \bar{g} \quad \forall f \in L^{2}(\{a,\rceil) .
$$

- Claim: $\|g\|_{\infty} \leqslant\|\Lambda\|_{L^{\prime} *}$

Proof If $\|s\|_{\infty}>\|\Lambda\|$, the $E:=\{x \in[a, 1]:|g(x)|>\|A\|\}$ has tee If we let $h:=\frac{9}{191} \frac{\chi_{E}}{m(E)}$, the $\|h\|_{1}=1$ and

$$
\begin{aligned}
& |\Lambda(h)|=\frac{1}{m(E)} \int_{E}|s|>\|\Lambda\| . \\
& \$ \\
& \text { IB } \\
& \text { A since } h \text { ado in } L^{2} \\
& \text { - Finally. of } f \in L^{\prime}(\{a,\rangle) \text { Let }\left\{f_{n}\right\} \text { be seq in } L^{2} \text { with } f_{n} \rightarrow f_{\text {in }} L^{\prime} \\
& \Rightarrow \quad \Lambda\left(f_{n}\right)=\int f_{n} \bar{g} \quad \forall n
\end{aligned}
$$

