Real Analysis Qualifying Examination

Spring 2019

The five problems on this exam have equal weighting. To receive full credit give complete justification for all assertions by either citing known theorems or giving arguments from first principles.

- 1. Let C([0,1]) denote the space of all continuous real-valued functions on [0,1].
 - (a) Prove that C([0,1]) is complete under the uniform norm $||f||_u := \sup_{x \in [0,1]} |f(x)|$.
 - (b) Prove that C([0,1]) is <u>not</u> complete under the L^1 -norm $||f||_1 = \int_0^1 |f(x)| dx$
- 2. Let \mathcal{B} denote the set of all Borel subsets of \mathbb{R} and $\mu: \mathcal{B} \to [0, \infty)$ denote a finite Borel measure on \mathbb{R} .
 - (a) Prove that if $\{F_k\}$ is a sequence of Borel sets for which $F_k \supseteq F_{k+1}$ for all k, then

$$\lim_{k \to \infty} \mu(F_k) = \mu\left(\bigcap_{k=1}^{\infty} F_k\right).$$

- (b) Suppose μ has the property that $\mu(E) = 0$ for every $E \in \mathcal{B}$ with Lebesgue measure m(E) = 0. Prove that for every $\varepsilon > 0$ there exists $\delta > 0$ so that if $E \in \mathcal{B}$ with $m(E) < \delta$, then $\mu(E) < \varepsilon$.
- 3. Let $\{f_k\}$ be any sequence of functions in $L^2([0,1])$ satisfying $||f_k||_2 \leq M$ for all $k \in \mathbb{N}$. Prove that if $f_k \to f$ almost everywhere, then $f \in L^2([0,1])$ with $||f||_2 \leq M$ and

$$\lim_{k \to \infty} \int_0^1 f_k(x) \, dx = \int_0^1 f(x) \, dx.$$

Hint: Try using Fatou's Lemma to show that $||f||_2 \leq M$ and then try applying Egorov's Theorem.

- 4. Let f be a non-negative function on \mathbb{R}^n and $\mathcal{A} = \{(x,t) \in \mathbb{R}^n \times \mathbb{R} : 0 \le t \le f(x)\}$. Prove the validity of the following two statements:
 - (a) f is a Lebesgue measurable function on $\mathbb{R}^n \iff \mathcal{A}$ is a Lebesgue measurable subset of \mathbb{R}^{n+1}
 - (b) If f is a Lebesgue measurable function on \mathbb{R}^n , then

$$m(\mathcal{A}) = \int_{\mathbb{R}^n} f(x) dx = \int_0^\infty m(\{x \in \mathbb{R}^n : f(x) \ge t\}) dt$$

- 5. (a) Show that $L^2([0,1]) \subseteq L^1([0,1])$ and argue that $L^2([0,1])$ in fact forms a dense subset of $L^1([0,1])$.
 - (b) Let Λ be a continuous linear functional on $L^1([0,1])$.

Prove the Reisz Representation Theorem for $L^1([0,1])$ by following the steps below:

i. Establish the existence of a function $g \in L^2([0,1])$ which represents Λ in the sense that

$$\Lambda(f) = \int_0^1 f(x)\overline{g(x)} \, dx \quad \text{for all } f \in L^2([0,1]).$$

Hint: You may use, without proof, the Riesz Representation Theorem for $L^2([0,1])$.

ii. Argue that the g obtained above must in fact belong to $L^{\infty}([0,1])$ and represent Λ in the sense that

$$\Lambda(f) = \int_0^1 f(x)\overline{g(x)} dx \quad \text{for all } f \in L^1([0,1])$$

with

$$||g||_{L^{\infty}([0,1])} = ||\Lambda||_{L^{1}([0,1])^{*}}.$$

aves hau 1
(a) Let 5>0 & Efn3 be a Cauchy sequence in C((coi)).
This means that 3 N such that
n, m = N => sup fn(x) - fn(x) < E xe [0,1] Note that N is In particular, Evrevery xe [0,1] independent of x
In particular, Errevery xe [0,1] independent of
$ f_n(x) - f_m(x) < \varepsilon$ provided $n, m \ge N$ (*)
i.e. & fn(x)3 is a Cauchy sequence in TR and hence converges.
Let f(x):= fini fn(x) for each x ∈ [0,1].
We must show In -> f uniformly an Eo11]. Fixing n and
letting m -> 00 in (*) above we obtain that
Ifn(x)-f(x)) < & for every n > N and every xe[ai]
i.e. lini sup fn(x)-f(x) =0 (fn-)fmfan [0,1].
Finally, since each fre C([0.1]) & fin - f uniformly on [0,1]
it Ellows that I is continuous on [0:1] also!
(b) Let $f_n(x) = \begin{cases} 0 & \text{if } 0 \le x \le \frac{1}{2} \\ n(x - \frac{1}{2}) & \text{if } \frac{1}{2} \le x \le \frac{1}{2} + \frac{1}{n} \end{cases} = \begin{cases} 1 & \text{like-} f_m[l]_1 \le \max \left\{ \frac{1}{n}, \frac{1}{m} \right\} \\ 1 & \text{if } \frac{1}{2} + \frac{1}{n} \le x \le 1. \end{cases}$ So $\left\{ \frac{1}{n}, \frac{1}{n} \right\} = \left\{ \frac{1}{n}, \frac$
Then $f_n \stackrel{L'}{\Rightarrow} f$ where $f(x) = \begin{cases} 0 & \text{if } 0 \le x \le \frac{1}{2} \\ 1 & \text{if } \frac{1}{2} < x \le 1 \end{cases} \stackrel{\text{So } g \text{ his } Gauchy in } L$.

Question 2 (a) Let Gx = Fx \ Fx+1 for each k, so that F, = F U U GK where F = A FK is a disjoint union of Borel sets. pullows that $\mu(F_i) = \mu(F) + \lim_{N \to \infty} \sum_{K=i}^{N-1} \left(\mu(F_K) - \mu(F_{K+i}) \right)$ = \(\mu(F) + \(\mu(F,) - \lim \(\mu(F_N)\) Since $\mu(F_i) < \omega \implies \mu(F) = \lim_{N \to \infty} \mu(F_N)$. (b) Suppose not, the I Es >0 such that WhEN 3 Borel set En with m(En) < in, but u(En) > Eo Now let F= 1 Fx, where Fx= U En. $\Rightarrow m(F_k) \leq \sum_{n=k}^{\infty} m(E_n) < \sum_{n=k}^{\infty} \frac{1}{2^n} = \frac{1}{2^{k-1}}$ and have that m(F)=0. However M(Fx) > Eo for all k and lence, since M

is finite that $\mu(F) = \lim_{k \to \infty} \mu(F_k) \ge \varepsilon_0$ $\kappa \to \infty$ Since $F_k \ge F_{k+1} \ \forall k$.

i.e. μ is not absolutely combined with respect to m.

Question 3					
· Since fre-	> f a.e. =	> 19 12 -	>1f1 ² a	e.	
It Han GIlo	rus from Fa	tou's Lemma	that		
J limin's	2 1 Px 12 <	limind SIF	k)2		
= 51	£12	\leq M^2	9 nice	118211251	VR.
=> 11211	2 5 M.				
. Let 270.					ou that
	d set A wi	nitembry an	[o, i].	<i>A</i> .	
⇒ Solfu	(x) - f(x) \ dx	= [] [[x] -	-8(x) dx	+ S Ifre(x)	-f(x) dx
		→ O as	k →∞	< m(A)	1/2 Px- F 2 2 M
Therefore	lini S I She	(x)-f(x) dx	-0.	Cacedy.	

Questian 4 (a) (⇒): Since f=0 measurable on R" it fellows that F(x,y)=y-f(x) is miste an Rnr=RnxR [F(x,y)=G(x,y)-F(x,y) where G(x,y)=y & F(x,y)=f(x).] and hence that d= {y>03 n {F = 03 is m'ble. (Suppose of measurable in Rn+1 = Rx R For each x R" the stice dx = { y ∈ R: (x, y) ∈ d } = [0, f(x)] Inelli = Ax is a mible subset of R (for a.e x)
with m(Ax) a mible function of x in R" ⇒ f is m'ble on Rn. Moreover, $m(d) = \int m(dx) dx = \int g(x) dx$. (b) In light of the final consequence of Tonelli above we need only establish: Chim: m(d)= [m(\{x\in \mathbb{R}^n: f(x)\geque 3)dy. Proof As above we record that Tonelli implies that for a.e. yER the sike dy = {xeR": (x, v) & 3 = {xeR": f(x) > y > 03 is a measurable subset of R" with m(dy) a mible for of y and m(d) = \int m(ds) dy.

avestion 5 (a) Cauchy-Schwarz => [IFI = ([1]12) 2. => L2([4,1]) = L([4,1]) Since simple functions are dense in both L'&L2 it fellows
that L2([c.1]) is a dense subset of L'([c.1]) Lie. Given any fel I seg En Jin L' with fr -> fin L'. (b) · If ·feL2([0,1]), the fis also in L'([0,1]) so 1V(6) / = 11V11 = 11811 = 11V11 = 118115 Thus A is a conto hinear functional on L2(E0,13) & hence (by RRT for L2) I ge L2 (E0,13) such that $\Lambda(\mathcal{F}) = \int \mathcal{F}_{\overline{g}} \quad \forall \ \mathcal{F} \in L^{2}(\mathcal{E}_{G17}).$ · Clam: 11911 = 11/11/14 Proof 19 1191100 > 1111, the E:= {xe[ai]: 19(x) > 11113 has +ve If we let h:= 9 XE , the 11h1,=1 and $|\Lambda(h)| = \frac{1}{m(E)} \int_{E} |s| > ||\Lambda||$. $\int_{E} |s| |s| = \frac{1}{m(E)} \int_{E} |s| = \frac{1}{m(E)$ · Frially, if fel'(Eas) let Ehis be seg in L' with him fin L' $\Lambda(f_n) = \int f_n \overline{g} \quad \forall n$ $Cartinuib \qquad \downarrow e_2 \quad \text{since } g \in L^{20} \Rightarrow \quad \Lambda_g: f \mapsto \int f \overline{g}$ $A \cap (f) = \int f \overline{g} \quad \text{with } ||\Lambda_g|| \leq ||g||_{\infty} \quad b \in M^{\overline{g}} \text{Meller}.$