# Fall 2014 ## 1 Let $\theset{f_n}$ be a sequence of continuous functions such that $\sum f_n$ converges uniformly. Prove that $\sum f_n$ is also continuous. ## 2 Let $I$ be an index set and $\alpha: I \to (0, \infty)$. 1. Show that $$ \sum_{i \in I} a(i):=\sup _{\substack{ J \subset I \\ J \text { finite }}} \sum_{i \in J} a(i)<\infty \implies I \text{ is countable.} $$ 2. Suppose $I = \QQ$ and $\sum_{q \in \mathbb{Q}} a(q)<\infty$. Define $$ f(x):=\sum_{\substack{q \in \mathbb{Q}\\ q \leq x}} a(q). $$ Show that $f$ is continuous at $x \iff x\not\in \QQ$. ## 3 Let $f\in L^1(\RR)$. Show that $$ \forall\varepsilon > 0 ~~\exists \delta > 0 \text{ such that } m(E) < \delta \implies \int_{E}|f(x)| d x<\varepsilon $$ ## 4 Let $g\in L^\infty([0, 1])$ Prove that $$ \int_{[0,1]} f(x) g(x) d x=0 \quad\text{for all continuous } f:[0, 1] \to \RR \implies g(x) = 0 \text{ almost everywhere. } $$ ## 5 1. Let $f \in C_c^0(\RR^n)$, and show $$ \lim _{t \rightarrow 0} \int_{\mathbb{R}^{n}}|f(x+t)-f(x)| d x=0. $$ 2. Extend the above result to $f\in L^1(\RR^n)$ and show that $$ f\in L^1(\RR^n),~ g\in L^\infty(\RR^n) \implies f \ast g \text{ is bounded and uniformly continuous. } $$ ## 6 Let $1 \leq p,q \leq \infty$ be conjugate exponents, and show that $$ f \in L^p(\RR^n) \implies \|f\|_{p}=\sup _{\|g\|_{q}=1}\left|\int f(x) g(x) d x\right| $$