# Spring 2014 ## 1 1. Give an example of a continuous $f\in L^1(\RR)$ such that $f(x) \not\to 0$ as$\abs x \to \infty$. 2. Show that if $f$ is *uniformly* continuous, then $$ \lim_{\abs x \to \infty} f(x) = 0. $$ ## 2 Let $\theset{a_n}$ be a sequence of real numbers such that $$ \theset{b_n} \in \ell^2(\NN) \implies \sum a_n b_n < \infty. $$ Show that $\sum a_n^2 < \infty$. > Note: Assume $a_n, b_n$ are all non-negative. ## 3 Let $f: \RR \to \RR$ and suppose $$ \forall x\in \RR,\quad f(x) \geq \limsup _{y \rightarrow x} f(y) $$ Prove that $f$ is Borel measurable. ## 4 Let $(X, \mathcal M, \mu)$ be a measure space and suppose $f$ is a measurable function on $X$. Show that $$ \lim _{n \rightarrow \infty} \int_{X} f^{n} ~d \mu = \begin{cases} \infty & \text{or} \\ \mu(f\inv(1)), \end{cases} $$ and characterize the collection of functions of each type. ## 5 Let $f, g \in L^1([0, 1])$ and for all $x\in [0, 1]$ define $$ F(x):=\int_{0}^{x} f(y) d y \quad \text { and } \quad G(x):=\int_{0}^{x} g(y) d y. $$ Prove that $$ \int_{0}^{1} F(x) g(x) d x=F(1) G(1)-\int_{0}^{1} f(x) G(x) d x $$