# Spring 2016 (Neil-ish) ## 1 For $n\in \NN$, define $$ e_{n}=\left(1+\frac{1}{n}\right)^{n} \quad \text { and } \quad E_{n}=\left(1+\frac{1}{n}\right)^{n+1} $$ Show that $e_n < E_n$, and prove Bernoulli's inequality: $$ (1+x)^{n} \geq 1+n x \text { for }-1 Hint: $$ \chi_{E \cap(E+x)}(y)=\chi_{E}(y) \chi_{E}(y-x) $$ ## 5 Let $(X, \mathcal M, \mu)$ be a measure space. For $f\in L^1(\mu)$ and $\lambda > 0$, define $$ \phi(\lambda)=\mu(\{x \in X | f(x)>\lambda\}) \quad \text { and } \quad \psi(\lambda)=\mu(\{x \in X | f(x)<-\lambda\}) $$ Show that $\phi, \psi$ are Borel measurable and $$ \int_{X}|f| ~d \mu=\int_{0}^{\infty}[\phi(\lambda)+\psi(\lambda)] ~d \lambda $$ ## 6 Without using the Riesz Representation Theorem, compute $$ \sup \left\{\left|\int_{0}^{1} f(x) e^{x} d x\right| \suchthat f \in L^{2}([0,1], m),~~ \|f\|_{2} \leq 1\right\} $$