# Fall 2017 ## 1 Let $$ f(x) = s \sum_{n=0}^{\infty} \frac{x^{n}}{n !}. $$ Describe the intervals on which $f$ does and does not converge uniformly. ## 2 Let $f(x) = x^2$ and $E \subset [0, \infty) \definedas \RR^+$. 1. Show that $$ m^*(E) = 0 \iff m^*(f(E)) = 0. $$ 2. Deduce that the map \begin{align*} \phi: \mathcal{L}(\RR^+) &\to \mathcal{L}(\RR^+) \\ E &\mapsto f(E) \end{align*} is a bijection from the class of Lebesgue measurable sets of $[0, \infty)$ to itself. ## 3 Let $$ S = \spanof_\CC\theset{\chi_{(a, b)} \suchthat a, b \in \RR}, $$ the complex linear span of characteristic functions of intervals of the form $(a, b)$. Show that for every $f\in L^1(\RR)$, there exists a sequence of functions $\theset{f_n} \subset S$ such that $$ \lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{1}=0 $$ ## 4 Let $$ f_{n}(x)=n x(1-x)^{n}, \quad n \in \mathbb{N}. $$ 1. Show that $f_n \to 0$ pointwise but not uniformly on $[0, 1]$. > Hint: Consider the maximum of $f_n$. 2. $$ \lim _{n \rightarrow \infty} \int_{0}^{1} n(1-x)^{n} \sin x d x=0 $$ ## 5 Let $\phi$ be a compactly supported smooth function that vanishes outside of an interval $[-N, N]$ such that $\int_{\mathrm{R}} \phi(x) d x=1$. For $f\in L^1(\RR)$, define $$ K_{j}(x):=j \phi(j x), \quad \quad f \ast K_{j}(x):=\int_{\mathbb{R}} f(x-y) K_{j}(y) ~d y $$ and prove the following: 1. Each $f\ast K_j$ is smooth and compactly supported. 2. $$ \lim _{j \rightarrow \infty}\left\|f * K_{j}-f\right\|_{1}=0 $$ > Hint: $$ \lim _{y \rightarrow 0} \int_{\mathbb{R}}|f(x-y)-f(x)| d y=0 $$ ## 6 Let $X$ be a complete metric space and define a norm $$ \|f\|:=\max \{|f(x)|: x \in X\}. $$ Show that $(C^0(\RR), \norm{\wait} )$ (the space of continuous functions $f: X\to \RR$) is complete.