# Spring 2017 ## 1 Let $K$ be the set of numbers in $[0, 1]$ whose decimal expansions do not use the digit $4$. > We use the convention that when a decimal number ends with 4 but all other digits are different from 4, we replace the digit $4$ with $399\cdots$. For example, $0.8754 = 0.8753999\cdots$. Show that $K$ is a compact, nowhere dense set without isolated points, and find the Lebesgue measure $m(K)$. ## 2 a. Let $\mu$ be a measure on a measurable space $(X, \mathcal M)$ and $f$ a positive measurable function. Define a measure $\lambda$ by $$ \lambda(E):=\int_{E} f ~d \mu, \quad E \in \mathcal{M} $$ Show that for $g$ any positive measurable function, $$ \int_{X} g ~d \lambda=\int_{X} f g ~d \mu $$ b. Let $E \subset \RR$ be a measurable set such that $$ \int_{E} x^{2} ~d m=0. $$ Show that $m(E) = 0$. ## 3 Let $$ f_{n}(x)=a e^{-n a x}-b e^{-n b x} \quad \text{ where } 0 < a < b. $$ Show that a. $\sum_{n=1}^{\infty}\left|f_{n}\right| \text { is not in } L^{1}([0, \infty), m)$ > Hint: $f_n(x)$ has a root $x_n$. b. $$ \sum_{n=1}^{\infty} f_{n} \text { is in } L^{1}([0, \infty), m) \quad \text { and } \quad \int_{0}^{\infty} \sum_{n=1}^{\infty} f_{n}(x) ~d m=\ln \frac{b}{a} $$ ## 4 Let $f(x, y)$ on $[-1, 1]^2$ be defined by $$ f(x, y) = \begin{cases} \frac{x y}{\left(x^{2}+y^{2}\right)^{2}} & (x, y) \neq (0, 0) \\ 0 & (x, y) = (0, 0) \end{cases} $$ Determine if $f$ is integrable. ## 5 Let $f, g \in L^2(\RR)$. Prove that the formula $$ h(x):=\int_{-\infty}^{\infty} f(t) g(x-t) d t $$ defines a uniformly continuous function $h$ on $\RR$. ## 5 Show that the space $C^1([a, b])$ is a Banach space when equipped with the norm $$ \|f\|:=\sup _{x \in[a, b]}|f(x)|+\sup _{x \in[a, b]}\left|f^{\prime}(x)\right|. $$