# Fall 2018 ## 1 Let $f(x) = \frac 1 x$. Show that $f$ is uniformly continuous on $(1, \infty)$ but not on $(0,\infty)$. ## 2 Let $E\subset \RR$ be a Lebesgue measurable set. Show that there is a Borel set $B \subset E$ such that $m(E\setminus B) = 0$. ## 3 Suppose $f(x)$ and $xf(x)$ are integrable on $\RR$. Define $F$ by $$ F(t):=\int_{-\infty}^{\infty} f(x) \cos (x t) d x $$ Show that $$ F^{\prime}(t)=-\int_{-\infty}^{\infty} x f(x) \sin (x t) d x. $$ ## 4 Let $f\in L^1([0, 1])$. Prove that $$ \lim_{n \to \infty} \int_{0}^{1} f(x) \abs{\sin n x} ~d x= \frac{2}{\pi} \int_{0}^{1} f(x) ~d x $$ > Hint: Begin with the case that $f$ is the characteristic function of an interval. ## 5 Let $f \geq 0$ be a measurable function on $\RR$. Show that $$ \int_{\mathbb{R}} f=\int_{0}^{\infty} m(\{x: f(x)>t\}) d t $$ ## 6 Compute the following limit and justify your calculations: $$ \lim_{n \rightarrow \infty} \int_{1}^{n} \frac{d x}{\left(1+\frac{x}{n}\right)^{n} \sqrt[n]{x}} $$