# Fall 2019 ## 1. Let $\{a_n\}_{n=1}^\infty$ be a sequence of real numbers. a. Prove that if $\displaystyle\lim_{n\to∞} a_n = 0$, then $\displaystyle\lim_{n\to∞} a_1 + \cdots + a_n = 0$. $$ \lim _{n \rightarrow \infty} \frac{a_{1}+\cdots+a_{n}}{n}=0 $$ b. Prove that if $\displaystyle\sum_{n=1}^{\infty} \frac{a_{n}}{n}$ converges, then $$ \lim _{n \rightarrow \infty} \frac{a_{1}+\cdots+a_{n}}{n}=0 $$ ## 2. Prove that $$ \left|\frac{d^{n}}{d x^{n}} \frac{\sin x}{x}\right| \leq \frac{1}{n} $$ for all $x \neq 0$ and positive integers $n$. > Hint: Consider $\displaystyle\int_0^1 \cos(tx) dt$ ## 3. Let $(X, \mathcal B, \mu)$ be a measure space with $\mu(X) = 1$ and $\{B_n\}_{n=1}^\infty$ be a sequence of $\mathcal B$-measurable subsets of $X$, and $$ B \definedas \theset{x\in X \suchthat x\in B_n \text{ for infinitely many } n}. $$ a. Argue that $B$ is also a $\mathcal{B} \dash$measurable subset of $X$. b. Prove that if $\sum_{n=1}^\infty \mu(B_n) < \infty$ then $\mu(B)= 0$. c. Prove that if $\sum_{n=1}^\infty \mu(B_n) = \infty$ **and** the sequence of set complements $\theset{B_n^c}_{n=1}^\infty$ satisfies $$ \mu\left(\bigcap_{n=k}^{K} B_{n}^{c}\right)=\prod_{n=k}^{K}\left(1-\mu\left(B_{n}\right)\right) $$ for all positive integers $k$ and $K$ with $k < K$, then $\mu(B) = 1$. > Hint: Use the fact that $1 - x \leq e^{-x}$ for all $x$. ## 4. Let $\{u_n\}_{n=1}^∞$ be an orthonormal sequence in a Hilbert space $\mathcal{H}$. a. Prove that for every $x ∈ \mathcal H$ one has $$ \displaystyle\sum_{n=1}^{\infty}\left|\left\langle x, u_{n}\right\rangle\right|^{2} \leq\|x\|^{2} $$ b. Prove that for any sequence $\{a_n\}_{n=1}^\infty \in \ell^2(\NN)$ there exists an element $x\in\mathcal H$ such that $$ a_n = \inner{x}{u_n} \text{ for all } n\in \NN $$ and $$ \norm{x}^2 = \sum_{n=1}^{\infty}\left|\left\langle x, u_{n}\right\rangle\right|^{2} $$ ## 5. a. Show that if $f$ is continuous with compact support on $\RR$, then $$ \lim _{y \rightarrow 0} \int_{\mathbb{R}}|f(x-y)-f(x)| d x=0 $$ b. Let $f\in L^1(\RR)$ and for each $h > 0$ let $$ \mathcal{A}_{h} f(x):=\frac{1}{2 h} \int_{|y| \leq h} f(x-y) d y $$ i. Prove that $\left\|\mathcal{A}_{h} f\right\|_{1} \leq\|f\|_{1}$ for all $h > 0$. ii. Prove that $\mathcal{A}_h f \to f$ in $L^1(\RR)$ as $h \to 0^+$.