Real Analysis Review Notes

D. Zack Garza

Monday 17^{th} August, 2020

Contents

1	Basics 2											
	1.1 Us	eful Techniques										
	1.2 De	$efinitions \dots \dots$										
	1.3 Th	neorems										
	1.3	B.1 Topology / Sets 4										
	1.3	$3.2 \text{Functions} \dots \dots \dots \dots \dots \dots \dots \dots \dots $										
	1.4 Ur	iform Convergence 5										
	1.4	4.1 Series										
2	Measur	e Theory 7										
	2.1 Us	eful Techniques										
	2.2 De	efinitions										
	2.3 Th	neorems										
3	Integrat	tion 10										
5	3.1 Us	eful Techniques 10										
	3.2 De	efinitions										
	3.3 Th	neorems										
	3.3	3.1 Some (Non)Integrable Functions										
	3.3	3.2 Convergence Theorems										
	3.4 L^1	Facts										
	3.5 L^p	Spaces										
4	Fourier	Transform and Convolution 19										
•	4.1 Th	ne Fourier Transform										
	4.2 Ap	pproximate Identities										
-												
5		nal Analysis 23										
	5.1 De	20 minutions										
	0.2 11	leorenis										
6	Extra P	Problems 27										
	6.1 Gr	reatest Hits										
	6.2 By	Topic $\dots \dots \dots$										
	6.2	$2.1 \text{Topology} \dots \dots \dots \dots \dots \dots \dots \dots \dots $										

		$6.2.2 \\ 6.2.3 \\ 6.2.4$	Conti Differ Adva	inuity rentiat nced l	 tion Limito	 ology	· · · ·	· · · ·	 	 	 	 	•	 	•	 	· ·		 	 		 	•		 	28 28 28
7	Prac	Practice Exam (November 2014) 30															30									
	7.1	1: Ful	bini-To	nelli			, 																•			30
		7.1.1	a																				•			30
		7.1.2	b																				•			30
	7.2	2: Co	nvoluti	ons ai	nd the	e Fou	rier	Tr	ansf	orn	ı.		•										•			31
		7.2.1	a										•										•			31
		7.2.2	b										•										•			31
		7.2.3	с										•										•			31
	7.3	3: Hil	bert Sp	paces									•										•			31
		7.3.1	a										•										•	•		31
		7.3.2	b										•										•			31
		7.3.3	с				• •						•		•			•					•			32
	7.4	4: L^p	Spaces										•		•						•		•	•		32
		7.4.1	а				• •						•		•			•					•			32
		7.4.2	b										•		•						•		•	•		32
		7.4.3	с										•		•						•		•	•		33
	7.5	5: Du	al Spac	ces .								• •	•		•						•		•	•		33
		7.5.1	a									• •	•		•						•		•	•		33
		7.5.2	b									• •	•		•						•		•	•		33
		7.5.3	с	• • •			• •		• •				•	•••	•	•••		·	• •		•		•	•		33
8	Mid	torm F	vam 2	(Nov	omho	r 20	18)																			33
U	8 1	1 (Int.	egratio	n hv l	Parts)	1 20	10)																			33
	8.2	2	egradio	n og i	(ar (5)	•••	• •	•••	•••	•••	• •	•••	•	•••	•	•••	•••	•	•••	•••	•	•••	•	•		34
	8.3	3				 				•••	•••				•	· ·			· ·		•			•		34
•	N 4 · 1			(5																						24
9		term E	xam 2	(Dec	embe	r 20	14)																			34
	9.1	1		•••			• •	• •	• •	• •	• •	• •	•	• •	·	• •	• •	•	•••	• •	·	• •	•	•	• •	34
	9.2	2					• •	• •	• •	• •	• •	• •	•	•••	·	• •	• •	·	• •	• •	·	• •	•	•	•••	34 25
	9.3 0.4	5 4 (Wa	· · · ·	· · ·		 +:-	 т	••••	•••	•••	• •	• •	•	• •	·	•••	• •	·		• •	·	• •	•	•		30 25
	9.4	4 (we	lerstra	ss Apj	proxin	uaulo	11 1	nec	леп	ı) .	• •	• •	•	• •	·	•••	• •	•	•••	• •	·	• •	•	•	•••	3 0
10 Inequalities and Equalities 35													35													
	10.1	Less I	Explicit	ly Us	ed Ine	equal	ities	з.					•										•	•		38

1 Basics

1.1 Useful Techniques

- General advice: try swapping the orders of limits, sums, integrals, etc.
- Limits:
 - Take the \limsup or $\liminf,$ which always exist, and \min for an inequality like

 $c \le \liminf a_n \le \limsup a_n \le c.$

 $-\lim f_n = \limsup f_n = \liminf f_n$ iff the limit exists, so to show some g is a limit, show

 $\limsup f_n \le g \le \liminf f_n \qquad (\implies g = \lim f).$

- A limit does *not* exist if $\liminf a_n > \limsup a_n$.
- Sequences and Series
 - If f_n has a global maximum (computed using f'_n and the first derivative test) $M_n \longrightarrow 0$, then $f_n \longrightarrow 0$ uniformly.
 - For a fixed x, if $f = \sum f_n$ converges uniformly on some $B_r(x)$ and each f_n is continuous at x, then f is also continuous at x.
- Equalities
 - Split into upper and lower bounds:

$$a = b \iff a \le b \text{ and } a \ge b.$$

- Use an epsilon of room:

$$a < b + \varepsilon \,\forall \varepsilon \implies a \le b.$$

- Showing something is zero:

$$|a| \le \varepsilon \,\forall \varepsilon \implies a = 0.$$

- Simplifications:
 - To show something for a measurable set, show it for bounded/compact/elementary sets/
 - To show something for a function, show it for continuous, bounded, compactly supported, simple, indicator functions, L^1 , etc
 - Replace a continuous sequence $(\varepsilon \longrightarrow 0)$ with an arbitrary countable sequence $(x_n \longrightarrow 0)$
 - Intersect with a ball $B_r(\mathbf{0}) \subset \mathbb{R}^n$.
- Integrals
 - Break up $\mathbb{R}^n = \{|x| \le 1\} \prod \{|x| > 1\}.$
 - Break up into $\{f > g\} \coprod \{f = g\} \coprod \{f < g\}.$
 - Tail estimates!

1.2 Definitions

Definition 1.0.1 (Uniform Continuity). *f* is uniformly continuous iff

$$\begin{aligned} \forall \varepsilon \quad \exists \delta(\varepsilon) & \forall x, y, \quad |x - y| < \delta \implies |f(x) - f(y)| < \varepsilon \\ \iff \forall \varepsilon \quad \exists \delta(\varepsilon) & \forall x, y, \quad |y| < \delta \implies |f(x - y) - f(y)| < \varepsilon. \end{aligned}$$

Definition (Nowhere Dense Sets) A set S is **nowhere dense** iff the closure of S has empty interior iff every interval contains a subinterval that does not intersect S.

Definition (Meager Sets) A set is meager if it is a *countable* union of nowhere dense sets.

Definition 1.0.2 (F_{σ} and G_{δ} Sets).

An F_{σ} set is a union of closed sets, and a G_{δ} set is an intersection of opens.

Mnemonic: "F" stands for *ferme*, which is "closed" in French, and σ corresponds to a "sum", i.e. a union.

Theorem (Heine-Cantor) Every continuous function on a compact space is uniformly continuous.

Definition 1.0.3 (Limsup/Liminf).

 $\limsup_{n} a_n = \lim_{n \to \infty} \sup_{j \ge n} a_j = \inf_{n \ge 0} \sup_{j \ge n} a_j$ $\liminf_{n} a_n = \lim_{n \to \infty} \inf_{j \ge n} a_j = \sup_{n > 0} \inf_{j \ge n} a_j.$

1.3 Theorems

1.3.1 Topology / Sets

Lemma Metric spaces are compact iff they are sequentially compact, (i.e. every sequence has a convergent subsequence).

Proposition The unit ball in C([0, 1]) with the sup norm is not compact.

Proof Take $f_k(x) = x^n$, which converges to a dirac delta at 1. The limit is not continuous, so no subsequence can converge.

Proposition A *finite* union of nowhere dense is again nowhere dense.

Lemma (Convergent Sums Have Small Tails)

$$\sum a_n < \infty \implies a_n \longrightarrow 0 \quad \text{and} \quad \sum_{k=N}^{\infty} a_n \stackrel{N \longrightarrow \infty}{\longrightarrow} 0$$

Theorem (Heine-Borel) $X \subseteq \mathbb{R}^n$ is compact $\iff X$ is closed and bounded.

Lemma (Geometric Series)

$$\sum_{k=0}^\infty x^k = \frac{1}{1-x} \iff |x| < 1.$$

Corollary:
$$\sum_{k=0}^{\infty} \frac{1}{2^k} = 1$$

Lemma The Cantor set is closed with empty interior.

Proof Its complement is a union of open intervals, and can't contain an interval since intervals have positive measure and $m(C_n)$ tends to zero.

Corollary The Cantor set is nowhere dense.

Lemma Singleton sets in \mathbb{R} are closed, and thus \mathbb{Q} is an F_{σ} set.

- **Theorem (Baire)** \mathbb{R} is a **Baire space** (countable intersections of open, dense sets are still dense). Thus \mathbb{R} can not be written as a countable union of nowhere dense sets.
- **Lemma** Any nonempty set which is bounded from above (resp. below) has a well-defined supremum (resp. infimum).

1.3.2 Functions

Proposition (Existence of Smooth Compactly Supported Functions) There exist smooth compactly supported functions, e.g. take

$$f(x) = e^{-\frac{1}{x^2}}\chi_{(0,\infty)}(x).$$

Lemma There is a function discontinuous precisely on \mathbb{Q} .

Proof $f(x) = \frac{1}{n}$ if $x = r_n \in \mathbb{Q}$ is an enumeration of the rationals, and zero otherwise. The limit at every point is 0.

Lemma There *do not* exist functions that are discontinuous precisely on $\mathbb{R} \setminus \mathbb{Q}$.

- **Proof** D_f is always an F_{σ} set, which follows by considering the oscillation ω_f . $\omega_f(x) = 0 \iff f$ is continuous at x, and $D_f = \bigcup A_{\frac{1}{n}}$ where $A_{\varepsilon} = \{\omega_f \ge \varepsilon\}$ is closed.
- **Proposition** A function $f:(a,b) \longrightarrow \mathbb{R}$ is Lipschitz $\iff f$ is differentiable and f' is bounded. In this case, $|f'(x)| \le C$, the Lipschitz constant.

1.4 Uniform Convergence

Definition 1.0.4 (Uniform Convergence).

$$(\forall \varepsilon > 0) (\exists n_0 = n_0(\varepsilon)) (\forall x \in S) (\forall n > n_0) (|f_n(x) - f(x)| < \varepsilon).$$

Negated:

$$(\exists \varepsilon > 0) (\forall n_0 = n_0(\varepsilon)) (\exists x = x(n_0) \in S) (\exists n > n_0) (|f_n(x) - f(x)| \ge \varepsilon).$$

Slogan: to negate, find bad xs depending on n_0 that are larger than some ε .

Compare this to the definition of pointwise convergence:

$$(\forall \varepsilon > 0)(\forall x \in S) (\exists n_0 = n_0(x, \varepsilon)) (\forall n > n_0) (|f_n(x) - f(x)| < \varepsilon).$$

Proposition 1.1(*Testing Uniform Convergence: The Sup Norm*). $f_n \longrightarrow f$ uniformly iff there exists an M_n such that $||f_n - f||_{\infty} \le M_n \longrightarrow 0$.

Negating: find an x which depends on n for which the norm is bounded *below*.

Proposition 1.2 (Testing Uniform Convergence: The Weierstrass M-Test).

If $\sup_{x \in A} |f_n(x)| \leq M_n$ for each *n* where $\sum M_n < \infty$, then $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly and absolutely on *A*.

Conversely, if $\sum f_n$ converges uniformly on A then $\sup_{x \in A} |f_n(x)| \longrightarrow 0$.

Theorem 1.3 (Weierstrass Approximation).

If $[a, b] \subset \mathbb{R}$ is a closed interval and f is continuous, then for every $\varepsilon > 0$ there exists a polynomial p_{ε} such that $\|f - p_{\varepsilon}\|_{L^{\infty}([a,b])} \xrightarrow{\varepsilon \longrightarrow 0} 0$. Equivalently, polynomials are dense in the Banach space $C([0,1], \|\cdot\|_{\infty})$.

Theorem 1.4 (Egorov).

Let $E \subseteq \mathbb{R}^n$ be measurable with m(E) > 0 and $\{f_k : E \longrightarrow \mathbb{R}\}$ be measurable functions such that

$$f(x) \coloneqq \lim_{k \to \infty} f_k(x) < \infty$$

exists almost everywhere.

Then $f_k \longrightarrow f$ almost uniformly, i.e.

 $\forall \varepsilon > 0, \exists F \subseteq E \text{ closed such that } m(E \setminus F) < \varepsilon \text{ and } f_k \longrightarrow f \text{ uniformly on } F.$

Proposition 1.5.

The space X = C([0,1]), continuous functions $f : [0,1] \longrightarrow \mathbb{R}$, equipped with the norm $||f|| = \sup_{x \in [0,1]} |f(x)|$, is a **complete** metric space.

Proof. 1. Let $\{f_k\}$ be Cauchy in X.

2. Define a candidate limit using pointwise convergence: Fix an x; since

$$|f_k(x) - f_j(x)| \le ||f_k - f_k|| \longrightarrow 0$$

the sequence $\{f_k(x)\}$ is Cauchy in \mathbb{R} . So define $f(x) \coloneqq \lim_{h \to \infty} f_k(x)$.

3. Show that $||f_k - f|| \longrightarrow 0$:

$$|f_k(x) - f_j(x)| < \varepsilon \ \forall x \implies \lim_j |f_k(x) - f_j(x)| < \varepsilon \ \forall x$$

Alternatively, $||f_k - f|| \le ||f_k - f_N|| + ||f_N - f_j||$, where N, j can be chosen large enough to bound each term by $\varepsilon/2$.

4. Show that $f \in X$:

The uniform limit of continuous functions is continuous.

Note: in other cases, you may need to show the limit is bounded, or has bounded derivative, or whatever other conditions define X.

Theorem 1.6 (Uniform Limit Theorem).

If $f_n \longrightarrow f$ pointwise and uniformly with each f_n continuous, then f is continuous. Slogan: "A uniform limit of continuous functions is continuous."

Proof. • Follows from an $\varepsilon/3$ argument:

 $|F(x) - F(y)| \le |F(x) - F_N(x)| + |F_N(x) - F_N(y)| + |F_N(y) - F(y)| \le \varepsilon \longrightarrow 0.$

- The first and last $\varepsilon/3$ come from uniform convergence of $F_N \longrightarrow F$.
- The middle $\varepsilon/3$ comes from continuity of each F_N .
- So just need to choose N large enough and δ small enough to make all 3 ε bounds hold.

Lemma (Uniform Limits Commute with Integrals) If $f_n \longrightarrow f$ uniformly, then $\int f_n = \int f$. Lemma (Uniform Convergence and Derivatives) If $f'_n \longrightarrow g$ uniformly for some g and $f_n \longrightarrow f$ pointwise (or at least at one point), then g = f'.

1.4.1 Series

Lemma (Pointwise Convergence for a Series of Functions) If $f_n(x) \le M_n$ for a fixed x where $\sum M_n < \infty$, then the series $f(x) = \sum f_n(x)$ converges pointwise.

Lemma (Small Tails for Series of Functions) If $\sum f_n$ converges then $f_n \longrightarrow 0$ uniformly.

Lemma (M-test for Series) If $|f_n(x)| \leq M_n$ which does not depend on x, then $\sum f_n$ converges uniformly.

Lemma (p-tests) Let *n* be a fixed dimension and set $B = \{x \in \mathbb{R}^n \mid ||x|| \le 1\}$.

$$\sum \frac{1}{n^p} < \infty \iff p > 1$$
$$\int_{\varepsilon}^{\infty} \frac{1}{x^p} < \infty \iff p > 1$$
$$\int_{0}^{1} \frac{1}{x^p} < \infty \iff p < 1$$
$$\int_{B} \frac{1}{|x|^p} < \infty \iff p < n$$
$$\int_{B^c} \frac{1}{|x|^p} < \infty \iff p > n$$

2 Measure Theory

2.1 Useful Techniques

- $s = \inf \{x \in X\} \implies$ for every ε there is an $x \in X$ such that $x \leq s + \varepsilon$.
- Always consider bounded sets, and if E is unbounded write $E = \bigcup_{n} B_n(0) \bigcap E$ and use countable subadditivity or continuity of measure.

2.2 Definitions

Definition (Outer Measure) The outer measure of a set is given by

$$m_*(E) \coloneqq \inf_{\substack{\{Q_i\} \rightrightarrows E \\ \text{closed cubes}}} \sum |Q_i|$$

Definition (Limsup and Liminf of Sets)

$$\limsup_{n} A_{n} \coloneqq \bigcap_{n} \bigcup_{j \ge n} A_{j} = \left\{ x \mid x \in A_{n} \text{ for inf. many } n \right\}$$
$$\liminf_{n} A_{n} \coloneqq \bigcup_{n} \bigcap_{j \ge n} A_{j} = \left\{ x \mid x \in A_{n} \text{ for all except fin. many } n \right\}$$

Definition (Lebesgue Measurable Set) A subset $E \subseteq \mathbb{R}^n$ is Lebesgue measurable iff for every $\varepsilon > 0$ there exists an open set $O \supseteq E$ such that $m_*(O \setminus E) < \varepsilon$. In this case, we define $m(E) \coloneqq m_*(E).$

2.3 Theorems

Lemma Every open subset of \mathbb{R} (resp \mathbb{R}^n) can be written as a unique countable union of disjoint (resp. almost disjoint) intervals (resp. cubes).

Lemma (Properties of Outer Measure)

- Montonicity: $E \subseteq F \implies m_*(E) \le m_*(F)$.
- Countable Subadditivity: $m_*(\bigcup E_i) \leq \sum m_*(E_i)$. Approximation: For all E there exists a $G \supseteq E$ such that $m_*(G) \leq m_*(E) + \varepsilon$. Disjoint¹ Additivity: $m_*(A \coprod B) = m_*(A) + m_*(B)$.

Lemma (Subtraction of Measure)

$$m(A) = m(B) + m(C)$$
 and $m(C) < \infty \implies m(A) - m(C) = m(B)$.

Lemma (Continuity of Measure)

$$E_i \nearrow E \implies m(E_i) \longrightarrow m(E)$$

$$m(E_1) < \infty \text{ and } E_i \searrow E \implies m(E_i) \longrightarrow m(E).$$

- **Proof** 1. Break into disjoint annuli $A_2 = E_2 \setminus E_1$, etc then apply countable disjoint additivity to $E = \prod A_i.$
 - 2. Use $E_1 = (\coprod E_j \setminus E_{j+1}) \coprod (\bigcap E_j)$, taking measures yields a telescoping sum, and use countable disjoint additivity.

¹This holds for outer measure **iff** dist(A, B) > 0.

Theorem Suppose *E* is measurable; then for every $\varepsilon > 0$,

- 1. There exists an open $O \supset E$ with $m(O \setminus E) < \varepsilon$
- 2. There exists a closed $F \subset E$ with $m(E \setminus F) < \varepsilon$
- 3. There exists a compact $K \subset E$ with $m(E \setminus K) < \varepsilon$.

Proof

- (1): Take $\{Q_i\} \rightrightarrows E$ and set $O = \bigcup Q_i$.
- (2): Since E^c is measurable, produce $O \supset E^c$ with $m(O \setminus E^c) < \varepsilon$.
 - Set $F = O^c$, so F is closed.
 - Then $F \subset E$ by taking complements of $O \supset E^c$
 - $-E \setminus F = O \setminus E^c$ and taking measures yields $m(E \setminus F) < \varepsilon$
- (3): Pick $F \subset E$ with $m(E \setminus F) < \varepsilon/2$.
 - Set $K_n = F \bigcap \mathbb{D}_n$, a ball of radius *n* about 0.
 - Then $E \setminus K_n \searrow E \setminus F$
 - Since $m(E) < \infty$, there is an N such that $n \ge N \implies m(E \setminus K_n) < \varepsilon$.

Lemma Lebesgue measure is translation and dilation invariant.

Proof Obvious for cubes; if $Q_i \rightrightarrows E$ then $Q_i + k \rightrightarrows E + k$, etc.

Flesh out this proof.

Theorem (Non-Measurable Sets) There is a non-measurable set.

Proof

- Use AOC to choose one representative from every coset of \mathbb{R}/\mathbb{Q} on [0,1), which is countable, and assemble them into a set N
- Enumerate the rationals in [0, 1] as q_j , and define $N_j = N + q_j$. These intersect trivially.
- Define $M := \prod N_j$, then $[0,1) \subseteq M \subseteq [-1,2)$, so the measure must be between 1 and 3. By translation invariance, $m(N_j) = m(N)$, and disjoint additivity forces m(M) = 0, a contradiction.

Proposition (Borel Characterization of Measurable Sets) If *E* is Lebesgue measurable, then $E = H \prod N$ where $H \in F_{\sigma}$ and *N* is null.

Useful technique: F_{σ} sets are Borel, so establish something for Borel sets and use this to extend it to Lebesgue.

Proof For every $\frac{1}{n}$ there exists a closed set $K_n \subset E$ such that $m(E \setminus K_n) \leq \frac{1}{n}$. Take $K = \bigcup K_n$, wlog $K_n \nearrow K$ so $m(K) = \lim m(K_n) = m(E)$. Take $N \coloneqq E \setminus K$, then m(N) = 0.

Lemma If A_n are all measurable, $\limsup A_n$ and $\liminf A_n$ are measurable.

Proof Measurable sets form a sigma algebra, and these are expressed as countable unions/intersections of measurable sets.

Theorem (Borel-Cantelli) Let $\{E_k\}$ be a countable collection of measurable sets. Then

$$\sum_{k} m(E_k) < \infty \implies \text{ almost every } x \in \mathbb{R} \text{ is in at most finitely many } E_k.$$

Proof

- If $E = \limsup_{i} E_j$ with $\sum_{i} m(E_j) < \infty$ then m(E) = 0.
- If E_j are measurable, then $\limsup E_j$ is measurable.

• If
$$\sum_{j} m(E_j) < \infty$$
, then $\sum_{j=N}^{\infty} m(E_j) \xrightarrow{N \to \infty} 0$ as the tail of a convergent sequence.

•
$$E = \limsup_{j} E_j = \bigcap_{k=1}^{\infty} \bigcup_{j=k}^{\infty} E_j \implies E \subseteq \bigcup_{j=k}^{\infty}$$
 for all k

•
$$E \subset \bigcup_{j=k} \implies m(E) \le \sum_{j=k} m(E_j) \stackrel{k \longrightarrow \infty}{\longrightarrow} 0.$$

Lemma

- Characteristic functions are measurable
- If f_n are measurable, so are $|f_n|$, $\limsup f_n$, $\limsup f_n$, $\limsup f_n$, $\limsup f_n$, $\lim f_n$,
- Sums and differences of measurable functions are measurable,
- Cones F(x, y) = f(x) are measurable,
- Compositions $f \circ T$ for T a linear transformation are measurable,
- "Convolution-ish" transformations $(x, y) \mapsto f(x y)$ are measurable

Proof (Convolution) Take the cone on f to get F(x, y) = f(x), then compose F with the linear transformation T = [1, -1; 1, 0].

3 Integration

Notation:

- "f vanishes at infinity" means f(x) → 0.
 "f has small tails" means ∫_{|x|>N} f → 0.

3.1 Useful Techniques

- Break integration domain up into disjoint annuli.
- Break integrals or sums into x < 1 and $x \ge 1$.
- Calculus techniques: Taylor series, IVT, ...
- Approximate by dense subsets of functions
- Useful facts about compactly supported continuous functions:
 - Uniformly continuous
 - Bounded

3.2 Definitions

Definition (\$L^+\$) $f \in L^+$ iff f is measurable and non-negative. **Definition (Integrable)** A measurable function is integrable iff $||f||_1 < \infty$. Definition 3.0.1 (The Infinity Norm).

$$\|f\|_{\infty}\coloneqq \inf_{\alpha\geq 0}\left\{\alpha\ \Big|\ m\left\{|f|\geq \alpha\right\}=0\right\}.$$

Definition (Essentially Bounded Functions) A function $f : X \longrightarrow \mathbb{C}$ is essentially bounded iff there exists a real number c such that $\mu(\{|f| > x\}) = 0$, i.e. $\|f\|_{\infty} < \infty$.

If $f \in L^{\infty}(X)$, then f is equal to some bounded function g almost everywhere.

Definition 3.0.2
$$(L^{\infty})$$
.
 $L^{\infty}(X) \coloneqq \left\{ f : X \longrightarrow \mathbb{C} \mid f \text{ is essentially bounded} \right\} \coloneqq \left\{ f : X \longrightarrow \mathbb{C} \mid \|f\|_{\infty} < \infty \right\},$

Example:

• $f(x) = x\chi_{\mathbb{Q}}(x)$ is essentially bounded but not bounded.

3.3 Theorems

Useful facts about C_c functions:

- Bounded almost everywhere
- Uniformly continuous

Theorem 3.1 (*p*-Test for Integrals).

$$\int_0^1 \frac{1}{x^p} < \infty \iff p < 1$$
$$\int_1^\infty \frac{1}{x^p} < \infty \iff p > 1.$$

Slogan: big powers of x help us in neighborhoods of infinity and hurt around zero

3.3.1 Some (Non)Integrable Functions

•
$$\int \frac{1}{1+x^2} = \arctan(x) \xrightarrow{x \to \infty} \pi/2 < \infty$$

• Any bounded function (or continuous on a compact set, by EVT)

•
$$\int_{0}^{1} \frac{1}{\sqrt{x}} < \infty$$

•
$$\int_{0}^{1} \frac{1}{x^{1-\varepsilon}} < \infty$$

•
$$\int_{1}^{\infty} \frac{1}{x^{1+\varepsilon}} < \infty$$

Some non-integrable functions:

•
$$\int_{0}^{1} \frac{1}{x} = \infty.$$

•
$$\int_{1}^{\infty} \frac{1}{x} = \infty.$$

•
$$\int_{1}^{\infty} \frac{1}{\sqrt{x}} = \infty$$

•
$$\int_{1}^{\infty} \frac{1}{x^{1-\varepsilon}} = \infty$$

•
$$\int_{0}^{1} \frac{1}{x^{1+\varepsilon}} = \infty$$

3.3.2 Convergence Theorems

Theorem 3.2(Monotone Convergence).

If $f_n \in L^+$ and $f_n \nearrow f$ almost everywhere, then

$$\lim \int f_n = \int \lim f_n = \int f \quad \text{i.e. } \int f_n \longrightarrow \int f.$$

Needs to be positive and increasing.

Theorem 3.3 (Dominated Convergence). If $f_n \in L^1$ and $f_n \longrightarrow f$ almost everywhere with $|f_n| \le g$ for some $g \in L^1$, then $f \in L^1$ and

$$\lim \int f_n = \int \lim f_n = \int f \quad \text{i.e. } \int f_n \longrightarrow \int f < \infty,$$

and more generally,

$$\int |f_n - f| \longrightarrow 0.$$

Positivity not needed.

Theorem 3.4 (Generalized DCT).

If

- f_n ∈ L¹ with f_n → f almost everywhere,
 There exist g_n ∈ L¹ with |f_n| ≤ g_n, g_n ≥ 0.
 g_n → g almost everywhere with g ∈ L¹, and

•
$$\lim \int g_n = \int g$$

then $f \in L^1$ and $\lim_{n \to \infty} \int f_n = \int f < \infty$.

Note that this is the DCT with $|f_n| < |g|$ relaxed to $|f_n| < g_n \longrightarrow g \in L^1$.

Proof

Proceed by showing
$$\limsup \int f_n \leq \int f \leq \liminf \int f_n$$
:

• $\int f \ge \limsup \int f_n$: $\int g - \int f = \int (g - f)$ $\leq \liminf \int (g_n - f_n)$ Fatou $= \lim \int g_n + \liminf \int (-f_n)$ $=\lim \int g_n - \limsup \int f_n$ $=\int g - \limsup \int f_n$ $\implies \int f \ge \limsup \int f_n.$ - Here we use $g_n - f_n \xrightarrow{n \to \infty} - f$ with $0 \le |f_n| - f_n \le g_n - f_n$, so $g_n - f_n$ are nonnegative (and measurable) and Fatou's lemma applies. • $\int f \leq \liminf \int f_n$: $\int g + \int f = \int (g + f)$ $\leq \liminf \int (g_n + f_n)$ $= \lim \int g_n + \liminf \int f_n$ $=\int g + \liminf f_n$ $\int f \leq \liminf \int f_n.$ - Here we use that $g_n + f_n \longrightarrow g + f$ with $0 \le |f_n| + f_n \le g_n + f_n$ so Fatou's lemma again applies.

Proposition 3.5 (Convergence in L^1 implies convergence of L^1 norm). If $f \in L^1$, then

$$\int |f_n - f| \longrightarrow 0 \iff \int |f_n| \longrightarrow \int |f|.$$

Proof. Let $g_n = |f_n| - |f_n - f|$, then $g_n \longrightarrow |f|$ and $|g_n| = ||f_n| - |f_n - f|| \le |f_n - (f_n - f)| = |f| \in L^1$,

so the DCT applies to g_n and

$$||f_n - f||_1 = \int |f_n - f| + |f_n| - |f_n| = \int |f_n| - g_n$$

 $\longrightarrow_{DCT} \lim \int |f_n| - \int |f|.$

Theorem 3.6 (Fatou).

If f_n is a sequence of nonnegative measurable functions, then

$$\int \liminf_{n} f_n \leq \liminf_{n} \int f_n$$
$$\limsup_{n} \int f_n \leq \int \limsup_{n} f_n.$$

Theorem 3.7 (Tonelli (Non-Negative, Measurable)).

For f(x, y) non-negative and measurable, for almost every $x \in \mathbb{R}^n$,

- $f_x(y)$ is a **measurable** function
- $F(x) = \int f(x, y) \, dy$ is a **measurable** function,
- For *E* measurable, the slices $E_x \coloneqq \{y \mid (x, y) \in E\}$ are measurable.
- $\int f = \int \int F$, i.e. any iterated integral is equal to the original.

Theorem 3.8(Fubini (Integrable)).

For f(x, y) integrable, for almost every $x \in \mathbb{R}^n$,

- $f_x(y)$ is an **integrable** function
- $F(x) \coloneqq \int f(x,y) \, dy$ is an **integrable** function,
- For E measurable, the slices $E_x \coloneqq \{y \mid (x, y) \in E\}$ are measurable.
- $\int f = \int \int f(x, y)$, i.e. any iterated integral is equal to the original

Theorem (Fubini/Tonelli) If any iterated integral is absolutely integrable, i.e. $\int \int |f(x,y)| < |f(x,y)| <$

 ∞ , then f is integrable and $\int f$ equals any iterated integral.

Proposition 3.9 (Measurable Slices).

- Let E be a measurable subset of \mathbb{R}^n . Then
 - For almost every $x \in \mathbb{R}^{n_1}$, the slice $E_x \coloneqq \left\{ y \in \mathbb{R}^{n_2} \mid (x, y) \in E \right\}$ is measurable in \mathbb{R}^{n_2} .
 - The function

$$F: \mathbb{R}^{n_1} \longrightarrow \mathbb{R}$$
$$x \mapsto m(E_x) = \int_{\mathbb{R}^{n_2}} \chi_{E_x} \, dy$$

is measurable and

$$m(E) = \int_{\mathbb{R}^{n_1}} m(E_x) \, dx = \int_{\mathbb{R}^{n_1}} \int_{\mathbb{R}^{n_2}} \chi_{E_x} \, dy \, dx.$$

Proof.

 \implies

- Let f be measurable on \mathbb{R}^n .
- Then the cylinders F(x, y) = f(x) and G(x, y) = f(y) are both measurable on \mathbb{R}^{n+1} .
- Write $\mathcal{A} = \{G \leq F\} \bigcap \{G \geq 0\}$; both are measurable.

 \Leftarrow :

- Let A be measurable in Rⁿ⁺¹.
 Define A_x = {y ∈ R | (x, y) ∈ A}, then m(A_x) = f(x).
 By the corollary, A_x is measurable set, x → A_x is a measurable function, and m(A) = $\int f(x) dx.$
- Then explicitly, $f(x) = \chi_A$, which makes f a measurable function.

Proposition 3.10 (Differentiating Under an Integral).
If
$$\left|\frac{\partial}{\partial t}f(x,t)\right| \leq g(x) \in L^1$$
, then letting $F(t) = \int f(x,t) dt$,
 $\frac{\partial}{\partial t}F(t) \coloneqq \lim_{h \to 0} \int \frac{f(x,t+h) - f(x,t)}{h} dx$
 $\stackrel{DCT}{=} \int \frac{\partial}{\partial t}f(x,t) dx.$

To justify passing the limit, let $h_k \longrightarrow 0$ be any sequence and define

$$f_k(x,t) = \frac{f(x,t+h_k) - f(x,t)}{h_k},$$

so $f_k \xrightarrow{\text{pointwise}} \frac{\partial}{\partial t} f$. Apply the MVT to f_k to get $f_k(x,t) = f_k(\xi,t)$ for some $\xi \in [0, h_k]$, and show that $f_k(\xi,t) \in L_1$.

Proposition 3.11 (Commuting Sums with Integrals (non-negative)). If f_n are non-negative and $\sum \int |f|_n < \infty$, then $\sum \int f_n = \int \sum f_n$.

Proof . • Idea: MCT.

- Let $F_N = \sum_{n=1}^{N} f_n$ be a finite partial sum; Then there are simple functions $\varphi_n \nearrow f_n$
- So $\sum_{n=1}^{N} \varphi_n \nearrow F_N$ and MCT applies

Theorem 3.12(Commuting Sums with Integrals (integrable)). If $\{f_n\}$ integrable with either $\sum \int |f_n| < \infty$ or $\int \sum |f_n| < \infty$, then

$$\int \sum f_n = \sum \int f_n$$

- *Proof*. By Tonelli, if $f_n(x) \ge 0$ for all n, taking the counting measure allows interchanging the order of "integration".
 - By Fubini on $|f_n|$, if either "iterated integral" is finite then the result follows.

Lemma If $f_k \in L^1$ and $\sum_N ||f_k||_1 < \infty$ then $\sum f_k$ converges almost everywhere and in L^1 . **Proof** Define $F_N = \sum_N f_k$ and $F = \lim_N F_N$, then $||F_N||_1 \leq \sum_N ||f_k|| < \infty$ so $F \in L^1$ and $||F_N - F||_1 \longrightarrow 0$ so the sum converges in L^1 . Almost everywhere convergence: ?

3.4 L^1 Facts

Proposition 3.13(Zero in L^1 iff zero almost everywhere). For $f \in L^+$,

$$\int f = 0 \quad \iff \quad f \equiv 0 \text{ almost everywhere.}$$

Proof.

•

• Obvious for simple functions:

- If
$$f(x) = \sum_{j=1}^{n} c_j \chi_{E_j}$$
, then $\int f = 0$ iff for each j , either $c_j = 0$ or $m(E_j) = 0$.

- Since nonzero c_j correspond to sets where $f \neq 0$, this says $m(\{f \neq 0\}) = 0$.

 \Leftarrow :

– If f = 0 almost everywhere and $\varphi \nearrow f$, then $\varphi = 0$ almost everywhere since $\varphi(x) \le f(x)$ -Then

$$\int f = \sup_{\varphi \leq f} \int \varphi = \sup_{\varphi \leq f} 0 = 0$$

- $\bullet \implies :$
 - Instead show negating "f = 0 almost everywhere" implies $\int f \neq 0$.

- Write
$$\{f \neq 0\} = \bigcup_{n \in \mathbb{N}} S_n$$
 where $S_n \coloneqq \left\{x \mid f(x) \ge \frac{1}{n}\right\}$.

- Since "not f = 0 almost everywhere", there exists an n such that $m(S_n) > 0$.
- Then

$$0 < \frac{1}{n}\chi_{E_n} \le f \implies 0 < \int \frac{1}{n}\chi_{E_n} \le \int f$$

Proposition 3.14(Translation Invariance).

The Lebesgue integral is translation invariant, i.e.

$$\int f(x) \, dx = \int f(x+h) \, dx \quad \text{for any} \quad h.$$

Proof .

• Let $E \subseteq X$; for characteristic functions,

$$\int_{X} \chi_{E}(x+h) = \int_{X} \chi_{E+h}(x) = m(E+h) = m(E) = \int_{X} \chi_{E}(x)$$

by translation invariance of measure.

- So this also holds for simple functions by linearity.
- For $f \in L^+$, choose $\varphi_n \nearrow f$ so $\int \varphi_n \longrightarrow \int f$.
- Similarly, $\tau_h \varphi_n \nearrow \tau_h f$ so $\int \tau_h f \longrightarrow \int f$
- Finally $\left\{ \int \tau_h \varphi \right\} = \left\{ \int \varphi \right\}$ by step 1, and the suprema are equal by uniqueness of limits.

Lemma (Integrals Distribute Over Disjoint Sets) If $X \subseteq A \bigcup B$, then $\int_X f \leq \int_A f + \int_{A^c} f$ with equality iff $X = A \coprod B$.

Lemma (Unif. Cts. L1 Functions Vanish at Infinity) If $f \in L^1$ and f is uniformly continuous, then $f(x) \xrightarrow{|x| \to \infty} 0$.

Doesn't hold for general L^1 functions, take any train of triangles with height 1 and summable areas.

Theorem 3.15 (Small Tails in L^1). If $f \in L^1$, then for every ε there exists a radius R such that if $A = B_R(0)^c$, then $\int_A |f| < \varepsilon$.

Proof .

- Approximate with compactly supported functions.
- Take $g \xrightarrow{L_1} f$ with $g \in C_c$
- Then choose N large enough so that g = 0 on $E := B_N(0)$
- Then

$$\int_E |f| \le \int_E |f-g| + \int_E |g|.$$

Lemma (\$L^1\$ Functions Have Absolutely Continuity) $m(E) \longrightarrow 0 \implies \int_E f \longrightarrow 0$. Proof Approximate with compactly supported functions. Take $g \xrightarrow{L_1} f$, then $g \leq M$ so $\int_E f \leq M$

$$\int_E f - g + \int_E g \longrightarrow 0 + M \cdot m(E) \longrightarrow 0.$$

Lemma (\$L^1\$ Functions Are Finite Almost Everywhere) If $f \in L^1$, then $m(\{f(x) = \infty\}) = 0$. Proof Idea: Split up domain Let $A = \{f(x) = \infty\}$, then $\infty > \int f = \int_A f + \int_{A^c} f = \infty \cdot m(A) + \int_A f = \int_A f + \int_{A^c} f = \infty \cdot m(A) + \int_A f = \int_A f + \int_A f + \int_A f = \int_A f + \int_A f = \int_A f + \int_A f + \int_A f = \int_A f + \int_A f + \int_A f = \int_A f + \int_A f +$

$$\int_{A^c} f \implies m(X) = 0$$

Theorem 3.16 (Continuity in L^1).

$$\|\tau_h f - f\|_1 \stackrel{h \longrightarrow 0}{\longrightarrow} 0$$

Proof .

Approximate with compactly supported functions. Take $g \xrightarrow{L_1} f$ with $g \in C_c$.

$$\begin{split} \int f(x+h) - f(x) &\leq \int f(x+h) - g(x+h) + \int g(x+h) - g(x) + \int g(x) - f(x) \\ &\stackrel{? \longrightarrow ?}{\longrightarrow} 2\varepsilon + \int g(x+h) - g(x) \\ &= \int_{K} g(x+h) - g(x) + \int_{K^{c}} g(x+h) - g(x) \\ &\stackrel{??}{\longrightarrow} 0, \end{split}$$

which follows because we can enlarge the support of g to K where the integrand is zero on K^c , then apply uniform continuity on K.

Proposition (Integration by Parts, Special Case)

$$F(x) := \int_0^x f(y) dy \quad \text{and} \quad G(x) := \int_0^x g(y) dy$$
$$\implies \int_0^1 F(x)g(x) dx = F(1)G(1) - \int_0^1 f(x)G(x) dx.$$

Proof Fubini-Tonelli, and sketch region to change integration bounds. **Theorem (Lebesgue Density)**

$$A_h(f)(x) := \frac{1}{2h} \int_{x-h}^{x+h} f(y) dy \implies ||A_h(f) - f|| \stackrel{h \longrightarrow 0}{\longrightarrow} 0.$$

Proof Fubini-Tonelli, and sketch region to change integration bounds, and continuity in L^1 .

3.5 L^p Spaces

Lemma The following are dense subspaces of $L^2([0,1])$:

- Simple functions
- Step functions
- $C_0([0,1])$

- Smoothly differentiable functions C₀[∞]([0, 1])
 Smooth compactly supported functions C_c[∞] Theorem :

$$m(X) < \infty \implies \lim_{p \longrightarrow \infty} \|f\|_p = \|f\|_{\infty}$$

Proof

- Let $M = ||f||_{\infty}$. For any L < M, let $S = \{|f| \ge L\}$.
- Then m(S) > 0 and

$$\|f\|_{p} = \left(\int_{X} |f|^{p}\right)^{\frac{1}{p}}$$

$$\geq \left(\int_{S} |f|^{p}\right)^{\frac{1}{p}}$$

$$\geq L \ m(S)^{\frac{1}{p}} \xrightarrow{p \longrightarrow \infty} L$$

$$\implies \liminf_{p} \|f\|_{p} \geq M.$$

We also have

$$\begin{split} \|f\|_{p} &= \left(\int_{X} |f|^{p}\right)^{\frac{1}{p}} \\ &\leq \left(\int_{X} M^{p}\right)^{\frac{1}{p}} \\ &= M \ m(X)^{\frac{1}{p}} \xrightarrow{p \to \infty} M \\ &\implies \limsup_{p} \|f\|_{p} \leq M \blacksquare. \end{split}$$

Theorem (Dual Lp Spaces) For $p \neq \infty$, $(L^p)^{\vee} \cong L^q$.

Proof (p=1) ?

Proof (p=2) Use Riesz Representation for Hilbert spaces.

Proof.

 $L^1 \subset (L^\infty)^{\vee}$, since the isometric mapping is always injective, but *never* surjective.

4 Fourier Transform and Convolution

4.1 The Fourier Transform

Definition (Convolution)

$$f * g(x) = \int f(x-y)g(y)dy.$$

Definition (The Fourier Transform)

$$\widehat{f}(\xi) = \int f(x) \ e^{2\pi i x \cdot \xi} \ dx.$$

Lemma If $\hat{f} = \hat{g}$ then f = g almost everywhere.

Lemma (Riemann-Lebesgue: Fourier transforms have small tails)

$$f \in L^1 \implies \widehat{f}(\xi) \to 0 \text{ as } |\xi| \to \infty,$$

if $f \in L^1$, then \hat{f} is continuous and bounded.

Proof

• Boundedness:

$$\left|\widehat{f}(\xi)\right| \leq \int |f| \cdot \left|e^{2\pi i x \cdot \xi}\right| = \|f\|_1.$$

• Continuity:

$$- \left| \widehat{f}(\xi_n) - \widehat{f}(\xi) \right|$$

- Apply DCT to show $a \xrightarrow{n \longrightarrow \infty} 0.$

Theorem (Fourier Inversion)

$$f(x) = \int_{\mathbb{R}^n} \widehat{f}(x) e^{2\pi i x \cdot \xi} d\xi.$$

- **Proof** Idea: Fubini-Tonelli doesn't work directly, so introduce a convergence factor, take limits, and use uniqueness of limits.
 - Take the modified integral:

$$\begin{split} I_t(x) &= \int \widehat{f}(\xi) \ e^{2\pi i x \cdot \xi} \ e^{-\pi t^2 |\xi|^2} \\ &= \int \widehat{f}(\xi) \varphi(\xi) \\ &= \int f(\xi) \widehat{\varphi}(\xi) \\ &= \int f(\xi) \widehat{g}(\xi - x) \\ &= \int f(\xi) g_t(x - \xi) \ d\xi \\ &= \int f(\xi) g_t(x - \xi) \ d\xi \\ &= \int f(y - x) g_t(y) \ dy \quad (\xi = y - x) \\ &= (f * g_t) \\ &\longrightarrow f \text{ in } L^1 \text{ as } t \longrightarrow 0. \end{split}$$

• We also have

$$\lim_{t \to 0} I_t(x) = \lim_{t \to 0} \int \widehat{f}(\xi) \ e^{2\pi i x \cdot \xi} \ e^{-\pi t^2 |\xi|^2}$$
$$= \lim_{t \to 0} \int \widehat{f}(\xi) \varphi(\xi)$$
$$=_{DCT} \int \widehat{f}(\xi) \lim_{t \to 0} \varphi(\xi)$$
$$= \int \widehat{f}(\xi) \ e^{2\pi i x \cdot \xi}$$

• So

$$I_t(x) \longrightarrow \int \widehat{f}(\xi) \ e^{2\pi i x \cdot \xi}$$
 pointwise and $\|I_t(x) - f(x)\|_1 \longrightarrow 0$

- So there is a subsequence I_{t_n} such that $I_{t_n}(x) \longrightarrow f(x)$ almost everywhere
- Thus $f(x) = \int \hat{f}(\xi) e^{2\pi i x \cdot \xi}$ almost everywhere by uniqueness of limits.

Proposition (Eigenfunction of the Fourier Transform)

$$g(x) \coloneqq e^{-\pi |t|^2} \implies \widehat{g}(\xi) = g(\xi) \text{ and } \widehat{g}_t(x) = g(tx) = e^{-\pi t^2 |x|^2}.$$

Proposition (Properties of the Fourier Transform)

?????.

4.2 Approximate Identities

Definition (Dilation)

$$\varphi_t(x) = t^{-n}\varphi\left(t^{-1}x\right).$$

Definition (Approximation to the Identity) For $\varphi \in L^1$, the dilations satisfy $\int \varphi_t = \int \varphi$, and if

 $\int \varphi = 1$ then φ is an *approximate identity*.

Example: $\varphi(x) = e^{-\pi x^2}$

Theorem (Convolution Against Approximate Identities Converge in \$L^1\$)

$$\|f * \varphi_t - f\|_1 \stackrel{t \longrightarrow 0}{\longrightarrow} 0.$$

.

Proof

$$\begin{split} \|f - f * \varphi_t\|_1 &= \int f(x) - \int f(x - y)\varphi_t(y) \ dydx \\ &= \int f(x) \int \varphi_t(y) \ dy - \int f(x - y)\varphi_t(y) \ dydx \\ &= \int \int \varphi_t(y)[f(x) - f(x - y)] \ dydx \\ &= FT \int \int \varphi_t(y)[f(x) - f(x - y)] \ dxdy \\ &= \int \varphi_t(y) \int f(x) - f(x - y) \ dxdy \\ &= \int \varphi_t(y) \|f - \tau_y f\|_1 dy \\ &= \int_{y < \delta} \varphi_t(y) \|f - \tau_y f\|_1 dy + \int_{y \ge \delta} \varphi_t(y) \|f - \tau_y f\|_1 dy \\ &\leq \int_{y < \delta} \varphi_t(y) \varepsilon + \int_{y \ge \delta} \varphi_t(y) (\|f\|_1 + \|\tau_y f\|_1) \ dy \quad \text{by continuity in } L^1 \\ &\leq \varepsilon + 2\|f\|_1 \int_{y \ge \delta} \varphi_t(y) dy \\ &\leq \varepsilon + 2\|f\|_1 \cdot \varepsilon \quad \text{since } \varphi_t \text{ has small tails} \\ \overset{\varepsilon \longrightarrow 0}{ \longrightarrow 0} 0. \end{split}$$

Theorem (Convolutions Vanish at Infinity)

$$f, g \in L^1$$
 and bounded $\implies \lim_{|x| \to \infty} (f * g)(x) = 0.$

Proof

• Choose $M \ge f, g$.

- By small tails, choose N such that $\int_{B_N^c} |f|, \int_{B_n^c} |g| < \varepsilon$

• Note

$$|f * g| \le \int |f(x - y)| \ |g(y)| \ dy \coloneqq I$$

• Use $|x| \le |x - y| + |y|$, take $|x| \ge 2N$ so either

$$|x-y| \ge N \implies I \le \int_{\{x-y\ge N\}} |f(x-y)| M \ dy \le \varepsilon M \longrightarrow 0$$

then

$$|y| \ge N \implies I \le \int_{\{y \ge N\}} M|g(y)| \ dy \le M \varepsilon \longrightarrow 0.$$

Proposition (Young's Inequality?) :

$$\frac{1}{r} := \frac{1}{p} + \frac{1}{q} - 1 \implies \|f * g\|_r \le \|f\|_p \|g\|q.$$

Corollary Take q = 1 to obtain

$$||f * g||_p \le ||f|| p ||g|| 1$$

Corollary If $f, g \in L^1$ then $f * g \in L^1$.

5 Functional Analysis

5.1 Definitions

Notation: H denotes a Hilbert space.

Definition (Orthonormal Sequence) ?

Definition (Basis) A set $\{u_n\}$ is a *basis* for a Hilbert space \mathcal{H} iff it is dense in \mathcal{H} .

Definition (Complete) A collection of vectors $\{u_n\} \subset H$ is *complete* iff $\langle x, u_n \rangle = 0$ for all $n \iff x = 0$ in H.

Definition (Dual Space)

$$X^{\vee} \coloneqq \left\{ L : X \longrightarrow \mathbb{C} \mid L \text{ is continuous } \right\}.$$

Definition A map $L: X \longrightarrow \mathbb{C}$ is a linear functional iff

$$L(\alpha \mathbf{x} + \mathbf{y}) = \alpha L(\mathbf{x}) + L(\mathbf{y})..$$

Definition (Operator Norm)

$$|L||_{X^{\vee}} \coloneqq \sup_{\substack{x \in X \\ ||x|| = 1}} |L(x)|.$$

Definition (Banach Space) A complete normed vector space.

Definition (Hilbert Space) An inner product space which is a Banach space under the induced norm.

5.2 Theorems

Theorem (Bessel's Inequality) For any orthonormal set $\{u_n\} \subseteq \mathcal{H}$ a Hilbert space (not necessarily a basis),

$$\left\| x - \sum_{n=1}^{N} \langle x, u_n \rangle \, u_n \right\|^2 = \|x\|^2 - \sum_{n=1}^{N} |\langle x, u_n \rangle|^2$$

and thus

$$\sum_{n=1}^{\infty} |\langle x, u_n \rangle|^2 \le ||x||^2.$$

Proof

• Let
$$S_N = \sum_{n=1}^N \langle x, u_n \rangle u_n$$

 $||x - S_N||^2 = \langle x - S_n, x - S_N \rangle$
 $= ||x||^2 + ||S_N||^2 - 2\Re \langle x, S_N \rangle$
 $= ||x||^2 + ||S_N||^2 - 2\Re \langle x, \sum_{n=1}^N \langle x, u_n \rangle u_n \rangle$
 $= ||x||^2 + ||S_N||^2 - 2\Re \sum_{n=1}^N \langle x, u_n \rangle u_n \rangle$
 $= ||x||^2 + ||S_N||^2 - 2\Re \sum_{n=1}^N \overline{\langle x, u_n \rangle} \langle x, u_n \rangle$
 $= ||x||^2 + ||\sum_{n=1}^N \langle x, u_n \rangle u_n ||^2 - 2\sum_{n=1}^N |\langle x, u_n \rangle|^2$
 $= ||x||^2 + \sum_{n=1}^N |\langle x, u_n \rangle|^2 - 2\sum_{n=1}^N |\langle x, u_n \rangle|^2$
 $= ||x||^2 - \sum_{n=1}^N |\langle x, u_n \rangle|^2.$

• By continuity of the norm and inner product, we have

$$\lim_{N \to \infty} \|x - S_N\|^2 = \lim_{N \to \infty} \|x\|^2 - \sum_{n=1}^N |\langle x, u_n \rangle|^2$$
$$\implies \left\|x - \lim_{N \to \infty} S_N\right\|^2 = \|x\|^2 - \lim_{N \to \infty} \sum_{n=1}^N |\langle x, u_n \rangle|^2$$
$$\implies \left\|x - \sum_{n=1}^\infty \langle x, u_n \rangle u_n\right\|^2 = \|x\|^2 - \sum_{n=1}^\infty |\langle x, u_n \rangle|^2.$$

• Then noting that $0 \le ||x - S_N||^2$,

$$0 \le \|x\|^2 - \sum_{n=1}^{\infty} |\langle x, u_n \rangle|^2$$
$$\implies \sum_{n=1}^{\infty} |\langle x, u_n \rangle|^2 \le \|x\|^2 \blacksquare.$$

Theorem (Riesz Representation for Hilbert Spaces) If Λ is a continuous linear functional on a Hilbert space H, then there exists a unique $y \in H$ such that

$$\forall x \in H, \quad \Lambda(x) = \langle x, y \rangle..$$

Proof

- Define $M \coloneqq \ker \Lambda$.
- Then M is a closed subspace and so $H=M\oplus M^\perp$
- There is some $z \in M^{\perp}$ such that ||z|| = 1.
- Set $u \coloneqq \Lambda(x)z \Lambda(z)x$
- Check

$$\Lambda(u) = \Lambda(\Lambda(x)z - \Lambda(z)x) = \Lambda(x)\Lambda(z) - \Lambda(z)\Lambda(x) = 0 \implies u \in M$$

• Compute

$$\begin{split} 0 &= \langle u, z \rangle \\ &= \langle \Lambda(x)z - \Lambda(z)x, z \rangle \\ &= \langle \Lambda(x)z, z \rangle - \langle \Lambda(z)x, z \rangle \\ &= \Lambda(x) \langle z, z \rangle - \Lambda(z) \langle x, z \rangle \\ &= \Lambda(x) \|z\|^2 - \Lambda(z) \langle x, z \rangle \\ &= \Lambda(x) - \Lambda(z) \langle x, z \rangle \\ &= \Lambda(x) - \langle x, \overline{\Lambda(z)}z \rangle, \end{split}$$

- Choose $y \coloneqq \overline{\Lambda(z)}z$.
- Check uniqueness:

$$\langle x, y \rangle = \langle x, y' \rangle \quad \forall x$$

$$\Longrightarrow \langle x, y - y' \rangle = 0 \quad \forall x$$

$$\Longrightarrow \langle y - y', y - y' \rangle = 0$$

$$\Longrightarrow ||y - y'|| = 0$$

$$\Longrightarrow y - y' = 0 \implies y = y'.$$

- **Theorem (Continuous iff Bounded)** Let $L : X \longrightarrow \mathbb{C}$ be a linear functional, then the following are equivalent:
 - 1. L is continuous
 - 2. L is continuous at zero
 - 3. L is bounded, i.e. $\exists c \ge 0 \mid |L(x)| \le c ||x||$ for all $x \in H$

Proof

2 \implies 3: Choose $\delta < 1$ such that

$$||x|| \le \delta \implies |L(x)| < 1$$

Then

$$\begin{split} |L(x)| &= \left| L\left(\frac{\|x\|}{\delta} \frac{\delta}{\|x\|} x\right) \right| \\ &= \frac{\|x\|}{\delta} \left| L\left(\delta \frac{x}{\|x\|}\right) \right| \\ &\leq \frac{\|x\|}{\delta} 1, \end{split}$$

so we can take $c = \frac{1}{\delta}$.

 $3 \implies 1:$

We have $|L(x-y)| \le c ||x-y||$, so given $\varepsilon \ge 0$ simply choose $\delta = \frac{\varepsilon}{c}$.

Theorem (Operator Norm is a Norm) If H is a Hilbert space, then $(H^{\vee}, \|\cdot\|_{op})$ is a normed space. **Proof** The only nontrivial property is the triangle inequality, but

$$||L_1 + L_2||_{\rm op} = \sup |L_1(x) + L_2(x)| \le \sup |L_1(x)| + |\sup L_2(x)| = ||L_1||_{\rm op} + ||L_2||_{\rm op}$$

Theorem (Completeness in Operator Norm) If X is a normed vector space, then $(X^{\vee}, \|\cdot\|_{op})$ is a Banach space.

.

- Proof
- Let $\{L_n\}$ be Cauchy in X^{\vee} .
- Then for all $x \in C$, $\{L_n(x)\} \subset \mathbb{C}$ is Cauchy and converges to something denoted L(x).
- Need to show L is continuous and $||L_n L|| \longrightarrow 0$.
- Since $\{L_n\}$ is Cauchy in X^{\vee} , choose N large enough so that

$$n, m \ge N \implies ||L_n - L_m|| < \varepsilon \implies |L_m(x) - L_n(x)| < \varepsilon \quad \forall x \mid ||x|| = 1.$$

• Take $n \longrightarrow \infty$ to obtain

$$m \ge N \implies |L_m(x) - L(x)| < \varepsilon \quad \forall x \mid ||x|| = 1$$

 $\implies ||L_m - L|| < \varepsilon \longrightarrow 0.$

• Continuity:

$$|L(x)| = |L(x) - L_n(x) + L_n(x)|$$

$$\leq |L(x) - L_n(x)| + |L_n(x)|$$

$$\leq \varepsilon ||x|| + c ||x||$$

$$= (\varepsilon + c) ||x|| \blacksquare.$$

Theorem (Riesz-Fischer) Let $U = \{u_n\}_{n=1}^{\infty}$ be an orthonormal set (not necessarily a basis), then 1. There is an isometric surjection

$$\begin{aligned} \mathcal{H} &\longrightarrow \ell^2(\mathbb{N}) \\ \mathbf{x} &\mapsto \{ \langle \mathbf{x}, \ \mathbf{u}_n \rangle \}_{n=1}^{\infty} \end{aligned}$$

i.e. if $\{a_n\} \in \ell^2(\mathbb{N})$, so $\sum |a_n|^2 < \infty$, then there exists a $\mathbf{x} \in \mathcal{H}$ such that

$$a_n = \langle \mathbf{x}, \mathbf{u}_n \rangle \quad \forall n.$$

2. \mathbf{x} can be chosen such that

$$\|\mathbf{x}\|^2 = \sum |a_n|^2$$

Note: the choice of **x** is unique $\iff \{u_n\}$ is complete, i.e. $\langle \mathbf{x}, \mathbf{u}_n \rangle = 0$ for all nimplies $\mathbf{x} = \mathbf{0}$.

Proof

- Given {a_n}, define S_N = ∑^N a_n**u**_n.
 S_N is Cauchy in H and so S_N → **x** for some **x** ∈ H.
 ⟨x, u_n⟩ = ⟨x S_N, u_n⟩ + ⟨S_N, u_n⟩ → a_n
- By construction, $||x S_N||^2 = ||x||^2 \sum_{n=1}^{N} |a_n|^2 \longrightarrow 0$, so $||x||^2 = \sum_{n=1}^{\infty} |a_n|^2$.

6 Extra Problems

6.1 Greatest Hits

- \star : Show that for $E \subseteq \mathbb{R}^n$, TFAE:
 - 1. E is measurable
 - 2. $E = H \bigcup Z$ here H is F_{σ} and Z is null
 - 3. $E = V \setminus Z'$ where $V \in G_{\delta}$ and Z' is null.
- \star : Show that if $E \subseteq \mathbb{R}^n$ is measurable then $m(E) = \sup \left\{ m(K) \mid K \subset E \text{ compact} \right\}$ iff for all $\varepsilon > 0$ there exists a compact $K \subseteq E$ such that $m(K) \ge m(E) - \varepsilon$.
- \star : Show that cylinder functions are measurable, i.e. if f is measurable on \mathbb{R}^s , then $F(x,y) \coloneqq$ f(x) is measurable on $\mathbb{R}^s \times \mathbb{R}^t$ for any t.
- *: Prove that the Lebesgue integral is translation invariant, i.e. if $\tau_h(x) = x + h$ then $\int \tau_h f = \int f.$

• \star : Prove that the Lebesgue integral is dilation invariant, i.e. if $f_{\delta}(x) = \frac{f(\frac{x}{\delta})}{\delta^n}$ then $\int f_{\delta} = \int f$.

• \star : Prove continuity in L^1 , i.e.

$$f \in L^1 \Longrightarrow \lim_{h \to 0} \int |f(x+h) - f(x)| = 0.$$

• *****: Show that

$$f, g \in L^1 \implies f * g \in L^1 \text{ and } \|f * g\|_1 \le \|f\|_1 \|g\|_1$$

• \star : Show that if $X \subseteq \mathbb{R}$ with $\mu(X) < \infty$ then

$$\|f\|_p \stackrel{p \longrightarrow \infty}{\longrightarrow} \|f\|_{\infty}.$$

6.2 By Topic

6.2.1 Topology

- Show that every compact set is closed and bounded.
- Show that if a subset of a metric space is complete and totally bounded, then it is compact.
- Show that if K is compact and F is closed with K, F disjoint then dist(K, F) > 0.

6.2.2 Continuity

• Show that a continuous function on a compact set is uniformly continuous.

6.2.3 Differentiation

• Show that if $f \in C^1(\mathbb{R})$ and both $\lim_{x \to \infty} f(x)$ and $\lim_{x \to \infty} f'(x)$ exist, then $\lim_{x \to \infty} f'(x)$ must be zero.

6.2.4 Advanced Limitology

- If f is continuous, is it necessarily the case that f' is continuous?
- If $f_n \longrightarrow f$, is it necessarily the case that f'_n converges to f' (or at all)?
- Is it true that the sum of differentiable functions is differentiable?
- Is it true that the limit of integrals equals the integral of the limit?
- Is it true that a limit of continuous functions is continuous?
- Show that a subset of a metric space is closed iff it is complete.
- Show that if $m(E) < \infty$ and $f_n \longrightarrow f$ uniformly, then $\lim_{E \to F} \int_E f_n = \int_E f$.

Uniform Convergence

- Show that a uniform limit of bounded functions is bounded.
- Show that a uniform limit of continuous function is continuous.
- I.e. if $f_n \longrightarrow f$ uniformly with each f_n continuous then f is continuous. Show that if $f_n \longrightarrow f$ pointwise, $f'_n \longrightarrow g$ uniformly for some f, g, then f is differentiable and q = f'.
- Prove that uniform convergence implies pointwise convergence implies a.e. convergence, but none of the implications may be reversed.
- Show that $\sum \frac{x^n}{n!}$ converges uniformly on any compact subset of \mathbb{R} .

Measure Theory

• Show that continuity of measure from above/below holds for outer measures.

• Show that a countable union of null sets is null.

Measurability

• Show that f = 0 a.e. iff $\int_E f = 0$ for every measurable set E.

Integrability

- Show that if f is a measurable function, then f = 0 a.e. iff $\int f = 0$.
- Show that a bounded function is Lebesgue integrable iff it is measurable.
- Show that simple functions are dense in L^1 .
- Show that step functions are dense in L^1 .
- Show that smooth compactly supported functions are dense in L^1 .

Convergence

- Prove Fatou's lemma using the Monotone Convergence Theorem.
- Show that if $\{f_n\}$ is in L^1 and $\sum \int |f_n| < \infty$ then $\sum f_n$ converges to an L^1 function and

$$\int \sum f_n = \sum \int f_n.$$

Convolution

- Show that if $f \in L^1$ and g is bounded, then f * g is bounded and uniformly continuous.
- If f, g are compactly supported, is it necessarily the case that f * g is compactly supported?
- Show that under any of the following assumptions, f * g vanishes at infinity:
 - $-f, g \in L^1$ are both bounded.
 - $-f, g \in L^1$ with just g bounded.
 - -f, g smooth and compactly supported (and in fact f * g is smooth)
 - $-f \in L^1$ and g smooth and compactly supported (and in fact f * g is smooth)
- Show that if $f \in L^1$ and g' exists with $\frac{\partial g}{\partial x_i}$ all bounded, then

$$\frac{\partial}{\partial x_i} \left(f \ast g \right) = f \ast \frac{\partial g}{\partial x_i}$$

Fourier Analysis

- Show that if $f \in L^1$ then \hat{f} is bounded and uniformly continuous.
- Is it the case that $f \in L^1$ implies $\hat{f} \in L^1$?
- Show that if $f, \hat{f} \in L^1$ then f is bounded, uniformly continuous, and vanishes at infinity. – Show that this is not true for arbitrary L^1 functions.
- Show that if $f \in L^1$ and $\hat{f} = 0$ almost everywhere then f = 0 almost everywhere. - Prove that $\hat{f} = \hat{g}$ implies that f = g a.e.
- Show that if $f, g \in L^1$ then

$$\int \widehat{f}g = \int f\widehat{g}.$$

– Give an example showing that this fails if g is not bounded.

• Show that if $f \in C^1$ then f is equal to its Fourier series.

Approximate Identities

• Show that if φ is an approximate identity, then

$$\|f \ast \varphi_t - f\|_1 \stackrel{t \longrightarrow 0}{\longrightarrow} 0.$$

- Show that if additionally $|\varphi(x)| \leq c(1+|x|)^{-n-\varepsilon}$ for some $c, \varepsilon > 0$, then this converges is almost everywhere.
- Show that is f is bounded and uniformly continuous and φ_t is an approximation to the identity, then $f * \varphi_t$ uniformly converges to f.

 L^p Spaces

• Show that if $E \subseteq \mathbb{R}^n$ is measurable with $\mu(E) < \infty$ and $f \in L^p(X)$ then

$$\|f\|_{L^p(X)} \stackrel{p \longrightarrow \infty}{\longrightarrow} \|f\|_{\infty}.$$

- Is it true that the converse to the DCT holds? I.e. if $\int f_n \longrightarrow \int f$, is there a $g \in L^p$ such that $f_n < g$ a.e. for every n?
- Prove continuity in L^p : If f is uniformly continuous then for all p,

$$\|\tau_h f - f\|_p \stackrel{h \longrightarrow 0}{\longrightarrow} 0.$$

• Prove the following inclusions of L^p spaces for $m(X) < \infty$:

$$\begin{split} L^\infty(X) \subset L^2(X) \subset L^1(X) \\ \ell^2(\mathbb{Z}) \subset \ell^1(\mathbb{Z}) \subset \ell^\infty(\mathbb{Z}). \end{split}$$

7 Practice Exam (November 2014)

7.1 1: Fubini-Tonelli

7.1.1 a

Carefully state Tonelli's theorem for a nonnegative function F(x,t) on $\mathbb{R}^n \times \mathbb{R}$.

7.1.2 b

Let $f : \mathbb{R}^n \longrightarrow [0, \infty]$ and define

$$\mathcal{A} \coloneqq \left\{ (x, t) \in \mathbb{R}^n \times \mathbb{R} \mid 0 \le t \le f(x) \right\}.$$

Prove the validity of the following two statements:

- 1. f is Lebesgue measurable on $\mathbb{R}^n \iff \mathcal{A}$ is a Lebesgue measurable subset of \mathbb{R}^{n+1} .
- 2. If f is Lebesgue measurable on \mathbb{R}^n then

$$m(\mathcal{A}) = \int_{\mathbb{R}^n} f(x) dx = \int_0^\infty m\left(\left\{x \in \mathbb{R}^n \mid f(x) \ge t\right\}\right) dt.$$

7.2 2: Convolutions and the Fourier Transform

7.2.1 a

Let $f, g \in L^1(\mathbb{R}^n)$ and give a definition of f * g.

7.2.2 b

Prove that if f, g are integrable and bounded, then

$$(f * g)(x) \stackrel{|x| \longrightarrow \infty}{\longrightarrow} 0.$$

7.2.3 с

- 1. Define the Fourier transform of an integrable function f on \mathbb{R}^n .
- 2. Give an outline of the proof of the Fourier inversion formula.
- 3. Give an example of a function $f \in L^1(\mathbb{R}^n)$ such that \widehat{f} is not in $L^1(\mathbb{R}^n)$.

7.3 3: Hilbert Spaces

Let $\{u_n\}_{n=1}^{\infty}$ be an orthonormal sequence in a Hilbert space H.

7.3.1 a

Let $x \in H$ and verify that

$$\left\| x - \sum_{n=1}^{N} \langle x, u_n \rangle \, u_n \right\|_{H}^{2} = \|x\|_{H}^{2} - \sum_{n=1}^{N} |\langle x, u_n \rangle|^{2} \, .$$

for any $N \in \mathbb{N}$ and deduce that

$$\sum_{n=1}^{\infty} |\langle x, u_n \rangle|^2 \le ||x||_H^2.$$

7.3.2 b

Let $\{a_n\}_{n\in\mathbb{N}}\in\ell^2(\mathbb{N})$ and prove that there exists an $x\in H$ such that $a_n=\langle x, u_n\rangle$ for all $n\in\mathbb{N}$, and moreover x may be chosen such that

$$||x||_{H} = \left(\sum_{n \in \mathbb{N}} |a_{n}|^{2}\right)^{\frac{1}{2}}.$$

Proof

- Take $\{a_n\} \in \ell^2$, then note that $\sum |a_n|^2 < \infty \implies$ the tails vanish.
- Define $x \coloneqq \lim_{N \to \infty} S_N$ where $S_N = \sum_{k=1}^N a_k u_k$

- $\{S_N\}$ is Cauchy and H is complete, so $x \in H$.
- By construction,

$$\langle x, u_n \rangle = \left\langle \sum_k a_k u_k, u_n \right\rangle = \sum_k a_k \langle u_k, u_n \rangle = a_n$$

since the u_k are all orthogonal.

• By Pythagoras since the u_k are normal,

$$||x||^{2} = \left\|\sum_{k} a_{k} u_{k}\right\|^{2} = \sum_{k} ||a_{k} u_{k}||^{2} = \sum_{k} |a_{k}|^{2}.$$

7.3.3 с

Prove that if $\{u_n\}$ is *complete*, Bessel's inequality becomes an equality.

Proof Let x and u_n be arbitrary.

$$\begin{split} \left\langle x - \sum_{k=1}^{\infty} \langle x, \ u_k \rangle u_k, \ u_n \right\rangle &= \langle x, \ u_n \rangle - \left\langle \sum_{k=1}^{\infty} \langle x, \ u_k \rangle u_k, \ u_n \right\rangle \\ &= \langle x, \ u_n \rangle - \sum_{k=1}^{\infty} \langle \langle x, \ u_k \rangle u_k, \ u_n \rangle \\ &= \langle x, \ u_n \rangle - \sum_{k=1}^{\infty} \langle x, \ u_k \rangle \langle u_k, \ u_n \rangle \\ &= \langle x, \ u_n \rangle - \langle x, \ u_n \rangle = 0 \\ \implies x - \sum_{k=1}^{\infty} \langle x, \ u_k \rangle u_k = 0 \quad \text{by completeness.} \end{split}$$

$$x = \sum_{k=1}^{\infty} \langle x, u_k \rangle u_k \implies ||x||^2 = \sum_{k=1}^{\infty} |\langle x, u_k \rangle|^2. \blacksquare.$$

7.4 4: *L*^{*p*} **Spaces**

7.4.1 a

Prove Holder's inequality: let $f \in L^p, g \in L^q$ with p, q conjugate, and show that

$$||fg||_p \le ||f||_p \cdot ||g||_q.$$

7.4.2 b

Prove Minkowski's Inequality:

$$1\leq p<\infty\implies \|f+g\|_p\leq \|f\|_p+\|g\|_p.$$

Conclude that if $f, g \in L^p(\mathbb{R}^n)$ then so is f + g.

7.4.3 с

Let $X = [0, 1] \subset \mathbb{R}$.

- 1. Give a definition of the Banach space $L^{\infty}(X)$ of essentially bounded functions of X.
- 2. Let f be non-negative and measurable on X, prove that

$$\int_X f(x)^p \, dx \stackrel{p \longrightarrow \infty}{\longrightarrow} \begin{cases} \infty & \text{or} \\ m\left(\left\{f^{-1}(1)\right\}\right) \end{cases},$$

and characterize the functions of each type

Proof

$$\begin{split} f^{p} &= \int_{x<1} f^{p} + \int_{x=1} f^{p} + \int_{x>1} f^{p} \\ &= \int_{x<1} f^{p} + \int_{x=1} 1 + \int_{x>1} f^{p} \\ &= \int_{x<1} f^{p} + m(\{f=1\}) + \int_{x>1} f^{p} \\ \stackrel{p \longrightarrow \infty}{\longrightarrow} 0 + m(\{f=1\}) + \begin{cases} 0 & m(\{x \ge 1\}) = 0 \\ \infty & m(\{x \ge 1\}) > 0. \end{cases} \end{split}$$

Justify passing limit into integrals

7.5 5: Dual Spaces

Let X be a normed vector space.

7.5.1 a

Give the definition of what it means for a map $L: X \longrightarrow \mathbb{C}$ to be a *linear functional*.

7.5.2 b

Define what it means for L to be *bounded* and show L is bounded $\iff L$ is continuous.

7.5.3 с

Prove that $(X^{\vee}, \|\cdot\|_{\text{op}})$ is a Banach space.

8 Midterm Exam 2 (November 2018)

8.1 1 (Integration by Parts)

Let
$$f, g \in L^1([0, 1])$$
, define $F(x) = \int_0^x f$ and $G(x) = \int_0^x g$, and show
 $\int_0^1 F(x)g(x) \, dx = F(1)G(1) - \int_0^1 f(x)G(x) \, dx$

8.2 2

Let $\varphi \in L^1(\mathbb{R}^n)$ such that $\int \varphi = 1$ and define $\varphi_t(x) = t^{-n}\varphi(t^{-1}x)$. Show that if f is bounded and uniformly continuous then $f * \varphi_t^t \xrightarrow{t \longrightarrow 0} 0$ uniformly.

8.3 3

Let $g \in L^{\infty}([0,1])$.

a. Prove

$$\|g\|_{L^p([0,1])} \xrightarrow{p \longrightarrow \infty} \|g\|_{L^\infty([0,1])}$$

b. Prove that the map

$$\Lambda_g: L^1([0,1]) \longrightarrow \mathbb{C}$$
$$f \mapsto \int_0^1 fg$$

defines an element of $L^{1}([0,1])^{\vee}$ with $\|\Lambda_{g}\|_{L^{1}([0,1])^{\vee}} = \|g\|_{L^{\infty}([0,1])}$.

Note: 4 is a repeat.

9 Midterm Exam 2 (December 2014)

9.1 1

Note: (a) is a repeat.

- Let $\Lambda \in L^2(X)^{\vee}$.
 - Show that $M := \left\{ f \in L^2(X) \mid \Lambda(f) = 0 \right\} \subseteq L^2(X)$ is a closed subspace, and $L^2(X) = M \oplus M \perp$.
 - Prove that there exists a unique $g \in L^2(X)$ such that $\Lambda(f) = \int_X g\overline{f}$.

9.2 2

a. In parts:

- Given a definition of $L^{\infty}(\mathbb{R}^n)$.
- Verify that $\|\cdot\|_{\infty}$ defines a norm on $L^{\infty}(\mathbb{R}^n)$.
- Carefully proved that $(L^{\infty}(\mathbb{R}^n), \|\cdot\|_{\infty})$ is a Banach space.
- b. Prove that for any measurable $f : \mathbb{R}^n \longrightarrow \mathbb{C}$,

$$L^{1}(\mathbb{R}^{n}) \bigcap L^{\infty}(\mathbb{R}^{n}) \subset L^{2}(\mathbb{R}^{n}) \text{ and } \|f\|_{2} \leq \|f\|_{1}^{\frac{1}{2}} \cdot \|f\|_{\infty}^{\frac{1}{2}}.$$

9.3 3

- a. Prove that if $f, g : \mathbb{R}^n \longrightarrow \mathbb{C}$ is both measurable then $F(x, y) \coloneqq f(x)$ and $h(x, y) \coloneqq f(x-y)g(y)$ is measurable on $\mathbb{R}^n \times \mathbb{R}^n$.
- b. Show that if $f \in L^1(\mathbb{R}^n) \bigcap L^{\infty}(\mathbb{R}^n)$ and $g \in L^1(\mathbb{R}^n)$, then $f * g \in L^1(\mathbb{R}^n) \bigcap L^{\infty}(\mathbb{R}^n)$ is well defined, and carefully show that it satisfies the following properties:

$$\|f * g\|_{\infty} \le \|g\|_{1} \|f\|_{\infty} \|f * g\|_{1} \qquad \qquad \le \|g\|_{1} \|f\|_{1} \|f * g\|_{2} \le \|g\|_{1} \|f\|_{2}.$$

Hint: first show $|f * g|^2 \le ||g||_1 (|f|^2 * |g|).$

9.4 4 (Weierstrass Approximation Theorem)

Note: (a) is a repeat.

Let $f: [0,1] \longrightarrow \mathbb{R}$ be continuous, and prove the Weierstrass approximation theorem: for any $\varepsilon > 0$ there exists a polynomial P such that $||f - P||_{\infty} < \varepsilon$.

10 Inequalities and Equalities

Proposition (Reverse Triangle Inequality)

$$|||x|| - ||y||| \le ||x - y||.$$

Proposition (Chebyshev's Inequality)

$$\mu(\{x: |f(x)| > \alpha\}) \le \left(\frac{\|f\|_p}{\alpha}\right)^p.$$

Proposition (Holder's Inequality When Surjective)

$$\frac{1}{p} + \frac{1}{q} = 1 \implies \|fg\|_1 \le \|f\|_p \|g\|_q.$$

Application: For finite measure spaces,

$$1 \le p < q \le \infty \implies L^q \subset L^p \quad (\text{ and } \ell^p \subset \ell^q).$$

Proof (Holder's Inequality) Fix p, q, let $r = \frac{q}{p}$ and $s = \frac{r}{r-1}$ so $r^{-1} + s^{-1} = 1$. Then let $h = |f|^p$:

$$\|f\|_{p}^{p} = \|h \cdot 1\|_{1} \le \|1\|_{s} \|h\|_{r} = \mu(X)^{\frac{1}{s}} \|f\|_{q}^{\frac{q}{r}} \implies \|f\|_{p} \le \mu(X)^{\frac{1}{p} - \frac{1}{q}} \|f\|_{q}.$$

Note: doesn't work for ℓ_p spaces, but just note that $\sum |x_n| < \infty \implies x_n < 1$ for large enough n, and thus $p < q \implies |x_n|^q \le |x_n|^q$.

Proof (Holder's Inequality) It suffices to show this when $||f||_p = ||g||_q = 1$, since

$$||fg||_1 \le ||f||_p ||f||_q \iff \int \frac{|f|}{||f||_p} \frac{|g|}{||g||_q} \le 1.$$

Using $AB \leq \frac{1}{p}A^p + \frac{1}{q}B^q$, we have

$$\int |f||g| \le \int \frac{|f|^p}{p} \frac{|g|^q}{q} = \frac{1}{p} + \frac{1}{q} = 1.$$

Proposition (Cauchy-Schwarz Inequality)

$$|\langle f, g \rangle| = \|fg\|_1 \le \|f\|_2 \|g\|_2 \quad \text{with equality} \quad \Longleftrightarrow \ f = \lambda g.$$

Note: Relates inner product to norm, and only happens to relate norms in L^1 .

Proof ?

Proposition (Minkowski's Inequality:)

$$1 \le p < \infty \implies \|f + g\|_p \le \|f\|_p + \|g\|_p.$$

Note: does not handle $p = \infty$ case. Use to prove L^p is a normed space.

Proof

• We first note

$$|f+g|^p = |f+g||f+g|^{p-1} \le (|f|+|g|)|f+g|^{p-1}.$$

• Note that if p, q are conjugate exponents then

$$\frac{1}{q} = 1 - \frac{1}{p} = \frac{p-1}{p}$$
$$q = \frac{p}{p-1}.$$

• Then taking integrals yields

$$\begin{split} \|f+g\|_{p}^{p} &= \int |f+g|^{p} \\ &\leq \int (|f|+|g|) |f+g|^{p-1} \\ &= \int |f||f+g|^{p-1} + \int |g||f+g|^{p-1} \\ &= \left\|f(f+g)^{p-1}\right\|_{1} + \left\|g(f+g)^{p-1}\right\|_{1} \\ &\leq \|f\|_{p} \left\|(f+g)^{p-1}\right)\right\|_{q} + \|g\|_{p} \left\|(f+g)^{p-1}\right)\right\|_{q} \\ &= \left(\|f\|_{p} + \|g\|_{p}\right) \left(\int |f+g|^{p-1}\right) \right\|_{q} \\ &= \left(\|f\|_{p} + \|g\|_{p}\right) \left(\int |f+g|^{p}\right)^{1-\frac{1}{p}} \\ &= \left(\|f\|_{p} + \|g\|_{p}\right) \frac{\int |f+g|^{p}}{(\int |f+g|^{p})^{\frac{1}{p}}} \\ &= \left(\|f\|_{p} + \|g\|_{p}\right) \frac{\int |f+g|^{p}}{(\int |f+g|^{p})^{\frac{1}{p}}} \\ &= \left(\|f\|_{p} + \|g\|_{p}\right) \frac{\|f+g\|_{p}^{p}}{\|f+g\|_{p}}. \end{split}$$

• Cancelling common terms yields

$$1 \le \left(\|f\|_p + \|g\|_p \right) \frac{1}{\|f + g\|_p} \\ \implies \|f + g\|_p \le \|f\|_p + \|g\|_p$$

Proposition (Young's Inequality*)

$$\frac{1}{p} + \frac{1}{q} = \frac{1}{r} + 1 \implies ||f * g||_r \le ||f||_p ||g||_q$$

Application: Some useful specific cases:

$$\begin{split} \|f * g\|_1 &\leq \|f\|_1 \|g\|_1 \\ \|f * g\|_p &\leq \|f\|_1 \|g\|_p, \\ \|f * g\|_\infty &\leq \|f\|_2 \|g\|_2 \\ \|f * g\|_\infty &\leq \|f\|_2 \|g\|_2. \end{split}$$

Proposition (Bessel's Inequality:)

For $x \in H$ a Hilbert space and $\{e_k\}$ an orthonormal sequence,

$$\sum_{k=1}^{\infty} \|\langle x, e_k \rangle\|^2 \le \|x\|^2.$$

Note: this does not need to be a basis.

Proposition (Parseval's Identity:) Equality in Bessel's inequality, attained when $\{e_k\}$ is a *basis*, i.e. it is complete, i.e. the span of its closure is all of H.

10.1 Less Explicitly Used Inequalities

Proposition (AM-GM Inequality)

$$\sqrt{ab} \le \frac{a+b}{2}.$$

Proposition (Jensen's Inequality)

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y).$$

Proposition (???) :

$$AB \le \frac{A^p}{p} + \frac{B^q}{q}.$$

Proposition (? Inequality)

$$(a+b)^p \le 2^p(a^p+b^p).$$

Proposition (Bernoulli's Inequality)

$$(1+x)^n \ge 1 + nx$$
 $x \ge -1$, or $n \in 2\mathbb{Z}$ and $\forall x$.

Proposition 10.1 (Exponential Inequality).

 $\forall t \in \mathbb{R}, \quad 1+t \le e^t.$

Proof.

• It's an equality when t = 0.

•
$$\frac{\partial}{\partial t} 1 + t < \frac{\partial t}{\partial e} \iff t < 0$$