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e General advice: try swapping the orders of limits, sums, integrals, etc.
o Limits:
— Take the lim sup or liminf, which always exist, and aim for an inequality like

¢ < liminfa, <limsupa, < c.
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1.2 Definitions

— lim f,, = limsup f, = liminf f,, iff the limit exists, so to show some g is a limit, show
limsup f, < g < liminf f, (= g=limf).

— A limit does not exist if lim inf a,, > lim sup a,,.
e Sequences and Series
— If £, has a global maximum (computed using f/, and the first derivative test) M,, — 0,
then f,, — 0 uniformly.
— For a fixed z, if f = Z fn converges uniformly on some B, (x) and each f,, is continuous
at x, then f is also continuous at x .
o Equalities
— Split into upper and lower bounds:

a=b < a<banda>b.
— Use an epsilon of room:
a<b+eVe — a<b.
— Showing something is zero:
la| <eVe = a=0.

o Simplifications:
— To show something for a measurable set, show it for bounded/compact/elementary sets/
— To show something for a function, show it for continuous, bounded, compactly supported,

simple, indicator functions, L', etc

— Replace a continuous sequence (¢ — 0) with an arbitrary countable sequence (z,, — 0)
— Intersect with a ball B,.(0) C R".

o Integrals
— Break up R" = {|z| < 1}H{\:v| > 1}.

— Break up into {f > g} [[{f =g} [ {f < g}

— Tail estimates!

1.2 Definitions

Definition 1.0.1 (Uniform Continuity).
f is uniformly continuous iff

3(e) |
Ve ()| Ve Wl<d = |fe-y) - f@)l<e
Definition (Nowhere Dense Sets) A set S is nowhere dense iff the closure of S has empty interior

iff every interval contains a subinterval that does not intersect S.
Definition (Meager Sets) A set is meager if it is a countable union of nowhere dense sets.
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1.3 Theorems

Definition 1.0.2 (F, and Gj Sets).
An F, set is a union of closed sets, and a Gy set is an intersection of opens.

Mnemonic: “F” stands for ferme, which is “closed” in French, and o corresponds to a “sum?”,
i.e. a union.

Theorem (Heine-Cantor) Every continuous function on a compact space is uniformly continuous.

Definition 1.0.3 (Limsup/Liminf).

limsupa, = lim supa; = inf supa;
9 9
n N0 j>n n20 j>n
liminfa, = lim inf a; = sup inf a;.
i n—>00 j>n n>0J2n

1.3 Theorems
1.3.1 Topology / Sets

Lemma Metric spaces are compact iff they are sequentially compact, (i.e. every sequence has a
convergent subsequence).

Proposition The unit ball in C(]0,1]) with the sup norm is not compact.

Proof Take fi(xz) = 2", which converges to a dirac delta at 1. The limit is not continuous, so no
subsequence can converge.

Proposition A finite union of nowhere dense is again nowhere dense.

Lemma (Convergent Sums Have Small Tails)

o0
N
Zan<oo:>an—>0 and Zan )

k=N
Theorem (Heine-Borel) X C R" is compact <= X is closed and bounded.

Lemma (Geometric Series)

o0
k 1

Zx =1, = lz| < 1.

k=0 -t

<1
Corollary: Z oF = 1.
k=0

Lemma The Cantor set is closed with empty interior.

Proof Its complement is a union of open intervals, and can’t contain an interval since intervals have
positive measure and m(C,,) tends to zero.

Corollary The Cantor set is nowhere dense.

Lemma Singleton sets in R are closed, and thus Q is an F} set.
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1.4  Uniform Convergence

Theorem (Baire) R is a Baire space (countable intersections of open, dense sets are still dense).
Thus R can not be written as a countable union of nowhere dense sets.

Lemma Any nonempty set which is bounded from above (resp. below) has a well-defined supremum
(resp. infimum).

1.3.2 Functions

Proposition (Existence of Smooth Compactly Supported Functions) There exist smooth com-
pactly supported functions, e.g. take

1

f(x) = e #2X(0,00)(T)-

Lemma There is a function discontinuous precisely on Q.

Proof f(z)=— if z =r, € Q is an enumeration of the rationals, and zero otherwise. The limit at
every poiﬁt is 0.

Lemma There do not exist functions that are discontinuous precisely on R\ Q.

Proof Dy is always an F, set, which follows by considering the oscillation wy. wy(x) =0 < fis

continuous at x, and Dy = UA; where A, = {wy > €} is closed.
n n

Proposition A function f : (a,b) — R is Lipschitz <= f is differentiable and f’ is bounded. In
this case, |f'(z)| < C, the Lipschitz constant.

1.4 Uniform Convergence

Definition 1.0.4 (Uniform Convergence).

(Ve > 0) (3no = no(e)) (Vz € S) (v > no) (|fu(z) — f(z)| < &).
Negated:
(e > 0) (Ynp = no(e)) (Fz = z(no) € 5) (In > no) (|fulz) — f(z)| > €).
Slogan: to negate, find bad zs depending on ng that are larger than some e.
Compare this to the definition of pointwise convergence:

(Ve > 0)(Vz € S) (Fng = no(z,€)) (Vn > no) (|fulz) — f(x)] <e).

Proposition 1.1 (Testing Uniform Convergence: The Sup Norm).
fn — f uniformly iff there exists an M, such that || f, — f||.. < M, — 0.

Negating: find an x which depends on n for which the norm is bounded below.

Proposition 1.2(Testing Uniform Convergence: The Weierstrass M -Test).
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1.4  Uniform Convergence

o0
If sup|fn(z)| < M, for each n where ZM” < 00, then Z fn(x) converges uniformly and
xcA

n=1

absolutely on A.

Conversely, if Z fn converges uniformly on A then sup | f,(z)| — 0.
€A

Theorem 1.3 (Weierstrass Approzimation).
If [a,b] C R is a closed interval and f is continuous, then for every ¢ > 0 there exists a

polynomial p. such that ||f — pel| o (fo.b) =0
Equivalently, polynomials are dense in the Banach space C([0, 1], || - ||,.)-

Theorem 1.4(Egorov).

Let £ C R" be measurable with m(E) > 0 and {f; : E — R} be measurable functions such
that

f(@) = lim fi(z) <oo

k—o00

exists almost everywhere.
Then fr, — f almost uniformly, i.e.

Ve > 0, IF C FE closed such that m(E \ F) < e and fy — f uniformly on F.

Proposition 1.5.

The space X = C([0,1]), continuous functions f : [0,1] — R, equipped with the norm

Ifll = sup |f(x)|, is a complete metric space.
z€[0,1

Proof . 1. Let {fx} be Cauchy in X.
2. Define a candidate limit using pointwise convergence:
Fix an z; since

|[fe(x) = fi(2)] < | fk = full — 0

the sequence {fx(x)} is Cauchy in R. So define f(x) := liin fr(z).
3. Show that ||fz — f|| — O:

|fr(z) — fi(z)] <e Ve = hjm]fk(a:) — fi(z)] <eVez

Alternatively, || fx — fI| < ||fx — fnll+11f~ — f5ll, where N, j can be chosen large enough
to bound each term by /2.

4. Show that f € X:
The uniform limit of continuous functions is continuous.
Note: in other cases, you may need to show the limit is bounded, or has bounded
derivative, or whatever other conditions define X.
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Theorem 1.6 (Uniform Limit Theorem).
If f, — f pointwise and uniformly with each f, continuous, then f is continuous.
Slogan: “A uniform limit of continuous functions is continuous.”

Proof .« Follows from an €/3 argument:
|F(z) = F(y| < |F(z) = Fn(2)| + [Fn(z) = En ()] + [Fn(y) = F(y)] <€ — 0.

— The first and last £/3 come from uniform convergence of Fry — F.
— The middle £/3 comes from continuity of each Fly.
e So just need to choose N large enough and § small enough to make all 3 € bounds hold.
|

Lemma (Uniform Limits Commute with Integrals) If f,, — f uniformly, then /fn = /f

Lemma (Uniform Convergence and Derivatives) If f/ — g uniformly for some g and f,, — f
pointwise (or at least at one point), then g = f.

1.4.1 Series

Lemma (Pointwise Convergence for a Series of Functions) If f,(z) < M, for a fixed = where
Z M, < oo, then the series f(z) = Z fn(x) converges pointwise.

Lemma (Small Tails for Series of Functions) If an converges then f,, — 0 uniformly.

Lemma (M-test for Series) If |f,(x)| < M, which does not depend on z, then Z fn converges
uniformly.

Lemma (p-tests) Let n be a fixed dimension and set B = {CL‘ e R" ’ x| < 1}.

1

Y —<oo = p>1
np
> 1
/—<oo<:>p>1
e P
11
— <0 <= p<l1
o xP
1
/—p<oo<:>p<n
B |z
1
/—p<oo<:>p>n
Be ||

2 Measure Theory

2.1 Useful Techniques
o s=inf{zx € X} = for every ¢ there is an € X such that z < s + ¢.
o Always consider bounded sets, and if E' is unbounded write £ = UBn(O) ﬂE and use
n

countable subadditivity or continuity of measure.
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2.2 Definitions

2.2 Definitions

Definition (Outer Measure) The outer measure of a set is given by

my(E) PR > 1Ql

closed cubes

Definition (Limsup and Liminf of Sets)

limsup A, = ﬂ U Aj = {:U ‘ x € A, for inf. many n}

noj>n

limninf A, = U ﬂ Aj = {:z: ’ x € A, for all except fin. many n}

n jzn

Definition (Lebesgue Measurable Set) A subset £ C R" is Lebesgue measurable iff for every
e > 0 there exists an open set O O E such that m,(O \ E) < e. In this case, we define
m(E) == my(E).

2.3 Theorems

Lemma Every open subset of R (resp R™) can be written as a unique countable union of disjoint
(resp. almost disjoint) intervals (resp. cubes).

Lemma (Properties of Outer Measure)

o Montonicity: £ C F = m.(E) < my(F).

« Countable Subadditivity: m*(U E;) < Z ms(E;).

o Approximation: For all E there exists a G D E such that m.(G) < m.(E) + «.
. Disjoin Additivity: m*(AHB) = my(A4) + m.(B).

Lemma (Subtraction of Measure)

m(A) =m(B)+m(C) and m(C) < oo = m(A) —m(C) = m(B).

Lemma (Continuity of Measure)

E; /"E = m(E;)) — m(E)
m(E1) < oo and E; \\ E = m(E;) — m(FE).

Proof 1. Break into disjoint annuli Ay = Es \ Fj, etc then apply countable disjoint additivity to
E=]]A.

2. Use By = (]_[EJ \ EJ'H)H(H E;), taking measures yields a telescoping sum,and use
countable disjoint additivity.

!This holds for outer measure iff dist(A, B) > 0.
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2.3 Theorems

Theorem Suppose E is measurable; then for every € > 0,

[u—y

. There exists an open O D E with m(O\ F) < ¢
. There exists a closed F C F with m(E \ F) < ¢
. There exists a compact K C F with m(E \ K) < e.

w N

Proof

(1): Take {Q;} = E and set O = | J Qs
e (2): Since E° is measurable, produce O D E° with m(O \ E¢) < e.
— Set F' = 0¢, so F is closed.
— Then F C E by taking complements of O D E°
— E\ F =0\ E° and taking measures yields m(E \ F) < ¢
(3): Pick F C E with m(E \ F) < /2.
— Set K, = Fﬂ]D)n, a ball of radius n about 0.
— Then E\ K, \, E\ F
— Since m(E) < oo, there is an N such that n > N = m(E\ K,,) < ¢.

Lemma Lebesgue measure is translation and dilation invariant.
Proof Obvious for cubes; if @; = F then Q; +k = E + k, etc.
Theorem (Non-Measurable Sets) There is a non-measurable set.

Proof

o Use AOC to choose one representative from every coset of R/Q on [0,1), which is
countable, and assemble them into a set N

o Enumerate the rationals in [0, 1] as ¢;, and define N; = N + ¢;. These intersect trivially.

o Define M := HNj, then [0,1) € M C [—1,2), so the measure must be between 1 and 3.
By translation invariance, m(N;) = m(N), and disjoint additivity forces m(M) =0, a
contradiction.

Proposition (Borel Characterization of Measurable Sets) If F is Lebesgue measurable, then E =
HHN where H € F, and N is null.

Useful technique: F, sets are Borel, so establish something for Borel sets and use this to
extend it to Lebesgue.

1 1
Proof For every — there exists a closed set K, C E such that m(E \ K,) < —. Take K = UKm
n n
wlog K,, /* K so m(K) =limm(K,) = m(E). Take N := E \ K, then m(N) = 0.

Lemma If A, are all measurable, limsup A,, and lim inf A,, are measurable.

Proof Measurable sets form a sigma algebra, and these are expressed as countable unions/intersections
of measurable sets.

Theorem (Borel-Cantelli) Let {E} be a countable collection of measurable sets. Then

Zm(Ek) < oo = almost every x € R is in at most finitely many FE}.
k

Proof

2 MEASURE THEORY 9
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o If E =limsup E; with Zm(Ej) < 00 then m(E) = 0.
J

o If E; are measurable, then limsup E; is measurable.

J
oo
N— 00

o If Z m(FE;) < oo, then Z m(Ej) — 0 as the tail of a convergent sequence.
J

Jj=N
oo o0 o0

. E:limsupEj:ﬂUEj — EC for all k
Y k=1j=k =k
> k—00
« EC|J = m(E)<) m(E;)"—0.

j=k j=k
Lemma

e Characteristic functions are measurable

o If f,, are measurable, so are |f,|,limsup f,,liminf f,, lim f,,

e Sums and differences of measurable functions are measurable,

o Cones F(z,y) = f(z) are measurable,

e Compositions f o T for T a linear transformation are measurable,

o “Convolution-ish” transformations (z,y) — f(z —y) are measurable

Proof (Convolution) Take the cone on f to get F(x,y) = f(z), then compose F with the linear
transformation 7' = [1,—1; 1,0].

3 Integration

Notation:
o “f vanishes at infinity” means f(x) ‘x|:>oo 0.
e “f has small tails” means f N=00 .

|lz|=N

3.1 Useful Techniques
e Break integration domain up into disjoint annuli.
o Break integrals or sums into x < 1 and = > 1.
e Calculus techniques: Taylor series, IVT, ...
o Approximate by dense subsets of functions
e Useful facts about compactly supported continuous functions:

— Uniformly continuous
— Bounded

3.2 Definitions

Definition ($L"+$) f € LT iff f is measurable and non-negative.
Definition (Integrable) A measurable function is integrable iff || f||; < oc.
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3.3 Theorems

Definition 3.0.1 (The Infinity Norm).

1l = inf {a | m{|7] = a} =0}.

Definition (Essentially Bounded Functions) A function f : X — C is essentially bounded iff
there exists a real number ¢ such that p({|f| > z}) =0, i.e. || f|l < o0.

If f € L*(X), then f is equal to some bounded function g almost everywhere.

Definition 3.0.2 (L).

L™(X) = {f : X —C ‘ f is essentially bounded } = {f : X —C ) 1 fllo < oo},

Example:

o f(z) = xxq(z) is essentially bounded but not bounded.

3.3 Theorems
Useful facts about C,. functions:

e Bounded almost everywhere
o Uniformly continuous

Theorem 3.1 (p-Test for Integrals).

L
/—<oo<:>p<1
o xP

e 1
/—<oo<:>p>1.
1 aP

Slogan: big powers of x help us in neighborhoods of infinity and hurt around zero

3.3.1 Some (Non)Integrable Functions

1
. /m = arctan(z) “—° 1/2 < 00

e Any bounded function (or continuous on a compact set, by EVT)
L |
. — < 0
vz
L |
* / 1—¢ <
0
© 1
o | e

Some non-integrable functions:

3 INTEGRATION 11



3.3 Theorems

3.3.2 Convergence Theorems

Theorem 3.2 (Monotone Convergence).
If f, € L and f,, 7 f almost everywhere, then

lim/fn:/limfn:/f ‘e /fn—>/f.

Needs to be positive and increasing.

Theorem 3.3 (Dominated Convergence).
If f, € L' and f, — f almost everywhere with |f,| < g for some g € L', then f € L! and

lim/fn:/limfn:/f i.e./fn—>/f<oo,

and more generally,

Jita- 11—

Positivity not needed.

Theorem 3.4(Generalized DCT).
If
e f, € L' with f, —> f almost everywhere,
o There exist g, € L' with |f,| < gn, gn > 0.
e g, —> g almost everywhere with g € L', and

o lim [ gn= [y,

thenfELlandlim/fn:/f<oo.

Note that this is the DCT with |f,,| < |g| relaxed to |f,| < g. — g € L*.

Proof .
Proceed by showing lim sup / fn < / f < liminf / Tt
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3.3 Theorems

. /leimsup/fn:

< lim inf / (gn — fn) Fatou

= hm/gn + lim mf/ —fn)
:hm/gn —limsup/fn
:/g—limsup/fn

— /fZlimsup/fn.

— Here we use gn—fnn?m—f with 0 < |fn|— fn < gn— fn, SO gn — frn are nonnegative
(and measurable) and Fatou’s lemma applies.

. /fgliminf/fn:
/g+/f /g+f
gliminf/ (@ = )

= lim/gn—l—liminf/fn

= /g+liminffn

/fgliminf/fn.

— Here we use that g, + f, — g+ f with 0 < |f,| + fn < gn + fn so Fatou’s lemma
again applies.
|

Proposition 3.5 (Convergence in L' implies convergence of L' norm).
If f e L', then

Jita=t1—0 = [1tl— [111

Proof .
Let g, = |fn] — |fn — f|, then g, — |f] and

(9l = |fal = 1fo = fI < |fu = (fa = P = |f] € LY,
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3.3 Theorems

so the DCT applies to g, and

£ = £l = [ 10 = 41l =1l = [ 1fal = s
—spor tim [ 112~ [ If1

Theorem 3.6 (Fatou).
If f,, is a sequence of nonnegative measurable functions, then
/ lim inf £, < lim inf / £
n n
limsup/fn < /limsupfn.
n n

Theorem 3.7 (Tonelli (Non-Negative, Measurable)).
For f(z,y) non-negative and measurable, for almost every x € R",
o fz(y) is a measurable function

o F(z)= /f(x,y) dy is a measurable function,
o For E measurable, the slices E, = {y ) (z,y) € E } are measurable.

. / = / / F, i.e. any iterated integral is equal to the original.

Theorem 3.8 (Fubini (Integrable)).
For f(z,y) integrable, for almost every z € R",
e fz(y) is an integrable function

o F(z):= /f(:v,y) dy is an integrable function,
e For F measurable, the slices FE, = {y ) (z,y) € E } are measurable.

. /f = //f(a:,y), i.e. any iterated integral is equal to the original

Theorem (Fubini/Tonelli) If any iterated integral is absolutely integrable, i.e. / / |f(z,y)| <

00, then f is integrable and / f equals any iterated integral.

Proposition 3.9 (Measurable Slices).
Let E be a measurable subset of R". Then
e For almost every x € R™, the slice E, = {y € R™

e The function

(x,y) € E } is measurable in R™2.

F:R" ——R

x—=m(E,) = /Rn2 XE, dy
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3.3 Theorems

is measurable and

m(E) = m(E;) de = / / XE, dy dx.
R™1 R”1 JR"2

Proof .

e Let f be measurable on R".
o Then the cylinders F(z,y) = f(x) and G(z,y) = f(y) are both measurable on R" ",
o Write A={G < F} ﬂ {G > 0}; both are measurable.

o Let A be measurable in R™

o Define A, = {y eR ‘ (x,y) € A}, then m(A;) = f(x).

o By the corollary, A, is measurable set, z — A, is a measurable function, and m(A) =
/f(m) dz.

o Then explicitly, f(z) = x4, which makes f a measurable function.

Proposition 3.10 (Differentiating Under an Integral).

If gtf(a:,t)‘ < g(x) € L', then letting F(t) = /f(af,t) dt,
or T h w
0
pcr [ O
= | 5 f(x,t) da.

To justify passing the limit, let hy — 0 be any sequence and define

flx,t+ hi) — f(x,t)
hi ’

fk:(x’t) =

pointwise 0

so fr — af.

Apply the MVT to fi to get fir(z,t) = fr(&,t) for some £ € [0, hy|, and show that fi(£,t) € Ly.

Proposition 3.11 (Commuting Sums with Integrals (non-negative)).

If f,, are non-negative and Z/ | f|,, < oo, then Z/fn — /Z .

Proof . e Idea: MCT.

N
o Let Fiy = Z fn be a finite partial sum;
e Then there are simple functions ¢, 7 f,

N
e So Z wn / Fx and MCT applies

3 INTEGRATION
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3.4 L' Facts

Theorem 3.12 (Commuting Sums with Integrals (integrable)).
If {f,} integrable with either Z/ | fr| < oo or /Z | fn| < 0o, then

[Sh=5/n

Proof .« By Tonelli, if f,,(x) > 0 for all n, taking the counting measure allows interchanging
the order of “integration”.
o By Fubini on |f,], if either “iterated integral” is finite then the result follows.

Lemma If f, € L! and Z | frll; < oo then Z fr converges almost everywhere and in L.

Proof Define Fy = ka and F = hmFN, then ||Fy|, < Z||fk\| < 0o so F € L' and

|Fx — F||; — 0 so the sum converges in L'. Almost everywhere convergence: ?

3.4 L' Facts
Proposition 3.13(Zero in L' iff zero almost everywhere).
For f € L™,
/ f=0 <= f =0 almost everywhere.
Proof .

e Obvious for simple functions:

— If f(= ZC]XEJ, then /f = 0 iff for each j, either ¢; = 0 or m(E;) = 0.
=1
— Since nonzero ¢; correspond to sets where f # 0, this says m({f # 0}) = 0.
° <
— If f = 0 almost everywhere and ¢  f, then ¢ = 0 almost everywhere since
(%) < f(w) “Then

/f:sup/go:supO:O.
p<f p<f

e —
— Instead show negating “f = 0 almost everywhere” implies / f#0.

1
— Write {f # 0} = U Sp where S, = {x ‘ f(x) > }
n
neN
— Since “not f = 0 almost everywhere”, there exists an n such that m(S,) > 0.

— Then

1 1
O<—XEn§f:>0</fXEn§/f.
n n
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3.4 L' Facts

Proposition 3.14 (Translation Invariance).
The Lebesgue integral is translation invariant, i.e.

/f(ac) dacz/f(a:—kh) dx for any h.

Proof .

e Let ¥ C X; for characteristic functions,

/X Xz + h) = /X xein(@) = m(E + h) = m(E) = /X X ()

by translation invariance of measure.
e So this also holds for simple functions by linearity.

. Forf€L+,choosegon/‘fso/gon—>/f.
o Similarly, 70, A Thf SO /Thf — /f

e Finally { / Thgo} = { / gp} by step 1, and the suprema are equal by uniqueness of limits.
|

Lemma (Integrals Distribute Over Disjoint Sets) If X C AUB, then / f< / f +/ f with
X A Ac

equality iff X = AHB .
Lemma (Unif. Cts. L1 Functions Vanish at Infinity) If f € L' and f is uniformly continuous,
|z]—00
then f(z) "— 0.

Doesn’t hold for general L' functions, take any train of triangles with height 1 and summable
areas.

Theorem 3.15(Small Tails in L').
If f € L', then for every ¢ there exists a radius R such that if A = Bg(0)¢, then / |f] <e.
A

Proof .
o Approximate with compactly supported functions.

e Take g =% f with g € O,
o Then choose N large enough so that g =0 on E := By(0)

e Then
L fir=a+ [ 1ol

Lemma ($L"1$ Functions Have Absolutely Continuity) m(E) — 0 — / f—0.
E

Proof Approximate with compactly supported functions. Take g EZN f, then g < M so / f<
E

3 INTEGRATION 17



3.5 LP Spaces

/f—g+/ g— 04+ M -m(E) — 0.
E E
Lemma ($L"1$ Functions Are Finite Almost Everywhere) If f € L', then m({f(z) = co}) = 0.

Proof Idea: Split up domain Let A = {f(z) = oo}, then oo > / f= / f+ f=o00-m
A JA¢

f = m(X)=0.
Ac

Theorem 3.16 (Continuity in L').

h 0
Imnf = fll, = 0

Proof .
Approximate with compactly supported functions. Take ¢ — f with g € C,

/f:v+h g@+h)+ [ gla+n) = g@) + [ 9(a) - f(2)

[@+m-

= 9e 4 / e ) = ()

— [ s@+m-g@)+ [ g+h - g
K K¢

??
— 0,
which follows because we can enlarge the support of g to K where the integrand is zero on K¢,

|

then apply uniform continuity on K.

Proposition (Integration by Parts, Special Case)

:/xf(y)dy and  G(z) := /xg(y)dy
0 JO

F(x):
= /01 F(z)g(x)dr = F(1)G(1) — /01 f(2)G(z)dx

Proof Fubini-Tonelli, and sketch region to change integration bounds

Theorem (Lebesgue Density)
1 z+h .
D@ =55 [ F@dy = A - 11"

Proof Fubini-Tonelli, and sketch region to change integration bounds, and continuity in L

3.5 L? Spaces
Lemma The following are dense subspaces of L*([0, 1])

e Simple functions
e Step functions
« Co([0,1])

18
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« Smoothly differentiable functions C§°([0, 1])
e Smooth compactly supported functions C;° Theorem :

m(X) < oo = tim_ £, = /.

Proof

e Lot M= |f]l..
o Forany L < M, let S={|f| > L}.
o Then m(S) > 0 and

i, = ([ 1)’

1

> (/S!f\p)p

1 p—o0

>Lm(S)»"— L
= limpinf”fHPZM.

We also have

i~ ([ 1)’

1

()

p—>r 00

— M m(X)r T2 M
= limsup | f||, < MR
P

Theorem (Dual Lp Spaces) For p # oo, (LP)" = L9,
Proof (p=1) 7
Proof (p=2) Use Riesz Representation for Hilbert spaces.

Proof .
L' C (L)Y, since the isometric mapping is always injective, but never surjective.

4 Fourier Transform and Convolution

4.1 The Fourier Transform

Definition (Convolution)

frg@) = [ @ =)y
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4.1 The Fourier Transform

Definition (The Fourier Transform)

= /f(:v) 2T (.

Lemma If f: g then f = g almost everywhere.

Lemma (Riemann-Lebesgue: Fourier transforms have small tails)

fell = f(f)—>0&s|§]—>oo,

if f e L', then ]? is continuous and bounded.

Proof

e Boundedness:

o Continuity:
- )f(én) -

= I£1-

< [ 11 Jermine

7(©)

n——oo

— Apply DCT to show a —= 0.

Theorem (Fourier Inversion)

flx)= [ flz)e¥™=tae.
Rn

Proof Idea: Fubini-Tonelli doesn’t work directly, so introduce a convergence factor, take limits, and
use uniqueness of limits.

e Take the modified integral:

A(f) e2miz-§ e*ﬂ't2‘€|2

Iy(x)

)

Il
\\\\

s
NN
5 5
o &

F(©)3(& — 2)

/f Yorla — €) de

:/f (y—2)gi(y) dy (§=y—x)
= (f*gt)

— fin L' as t — 0.

4

FOURIER TRANSFORM AND CONVOLUTION
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4.2 Approximate Identities

e We also have
. — 1 Iy omiz-£ —wt2|€|?
Jim ) = Jiy [ Fe) e

= lim [ F©)e(©

:DC’T/A(f) dim (&)
= [ Fe) ermine

e So

Ii(z) — /f({) e?™8 pointwise and | I¢(x) — f(z)||; — O.

o So there is a subsequence I, such that I;, (x) — f(x) almost everywhere
o Thus f(z) = / f (€) ™€ almost everywhere by uniqueness of limits.

Proposition (Eigenfunction of the Fourier Transform)

g(z) = e‘ﬂtl2 — §(6) = g(6) and Gi(x) = g(tz) = e_mt2|x|2‘

Proposition (Properties of the Fourier Transform)

4.2 Approximate ldentities

Definition (Dilation)

or(x) =t " (t_1x> .

Definition (Approximation to the Identity) For ¢ € L', the dilations satisfy /got = /gp, and if
/90 =1 then @ is an approzimate identity.

7ﬂ'$2

Example: p(z) =e
Theorem (Convolution Against Approximate ldentities Converge in $L"1$)

t—0

1f * e = fll, —0.
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4.2 Approximate Identities

Proof
If = f+eilly :/f(f@ —/f(m—y)%(y) dydz

N /f(x)/‘pf(y) dy—/f(fv—y)%(y) dyda
= [ [l — fo =) dyds
=rr [ [o)lf@) — fo = y) dudy
= /@t(y)/f(a:) — flz —y) dzdy
= [e@lf = 7y
= [ el =yt [l =Sy
< [ et [ e (71 +ndll) dy by continiy in 2

<e+20fly [ ey
y>6

<e+2|f]l;-e since ¢; has small tails

—0
0.

Theorem (Convolutions Vanish at Infinity)

f,g € L' and bounded = lim (f * g)(z) = 0.

|z|—o0

Proof
e Choose M > f,g.

o By small tails, choose N such that / ]f|,/ lg| < e
BS, B

e Note

Fegl< [ 1@ =yl lglw)] dy=1.

o Use |z| < |z —y|+ |y, take |x| > 2N so either

|x—y|2N:>I§/ |f(x —y)|M dy <eM — 0
{z—y=N}
then
!yIZN:IS/ Mlg(y)| dy < Me — 0.
{y=N}

Proposition (Young’s Inequality?) :

1 1 1

—i= ot - =1 = [fxgl, <l l9llg:

r b q

4 FOURIER TRANSFORM AND CONVOLUTION
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Corollary Take ¢ = 1 to obtain

1+ gll, < I fllpllgllt-

Corollary If f,g € L! then f g e L'

5 Functional Analysis

5.1 Definitions
Notation: H denotes a Hilbert space.

Definition (Orthonormal Sequence) 7

Definition (Basis) A set {u,} is a basis for a Hilbert space H iff it is dense in H.

Definition (Complete) A collection of vectors {uy,} C H is complete iff (z, u,) =0 for all n <=
x=0in H.

Definition (Dual Space)

XV = {L X —C ‘ L is continuous }
Definition A map L : X — C is a linear functional iff
L(ax +y) = aL(x)+ L(y)..
Definition (Operator Norm)

Ll xv = sup |L(z)|.
€Xx

x
[[=f|=1

Definition (Banach Space) A complete normed vector space.
Definition (Hilbert Space) An inner product space which is a Banach space under the induced
norm.

5.2 Theorems

Theorem (Bessel’s Inequality) For any orthonormal set {u,,} C H a Hilbert space (not necessarily

a basis),
N 2 N
2
= (zun)ua| = llzl* =Y Kz, un)l
n=1 n=1
and thus
- 2
> N, ua)” < ).
n=1
Proof
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5.2 Theorems

N
e Let Sy = Z (x, up)up

n=1

lz — Sn|* = (@ — S, = — S)
= ||z +HSNH —2R(z, Sn)

N
=Hxll2+||SNH2—28%<:z:, S (o, ) >
n=1
= |ll” + 1S |* - 2%2 (@, (2, up)un)

= [|z|* + [[Sn |

(x, up)

2

N
Z T, Up)Up —22|<x, U )|?
n=1

N
:Hx\|2+2] (x, up)| —QZ] T, Up)|

n=1

N

2 2

= lzlI* = > [z, un)l

n=1

2
= =] +

e By continuity of the norm and inner product, we have

N
i B 2_ 2 2
Mz = Sy|F = Tim |z Z (@, un)|

2

— |lz— lim Sy

N—00

N

= Jlz|* = Jim 37 [, un)l?
n=1

2

o
x—g (x, up)u

—

[eS)

2 2

= fzl* = > Kz, wn)l
n=1

« Then noting that 0 < |2 — Sy|%,
oo
2 2
0 < [lz* = > [z, un)l
n=1

o
2 2
= >z, wa)|” < |2l

Theorem (Riesz Representation for Hilbert Spaces) If A is a continuous linear functional on a
Hilbert space H, then there exists a unique y € H such that

Vee H, Az)=(z, y)..

Proof
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5.2 Theorems

e Define M := ker A.

e Then M is a closed subspace and so H = M @& M+
o There is some z € M~ such that ||z|| = 1.

o Set u:=A(x)z—A(2)z

e Check

o Compute

0= (u, 2)
(AMx)z — A(2)x, 2)
= (A(2)z, 2) — (A(2)z, 2)
= Az)(z, 2) — A(2)(z, 2)
= A(2)|1z]* = A(=)(z, =)
=Az) — A(z)(z, 2)
= A(z) - (=, A(2)z),
+ Choose y = A(2)z.
e Check uniqueness:
(@, y) = (2, ) Va
= (z,y—y)=0 Vz

= vy =yl =
= y-y =0 = y=y.
Theorem (Continuous iff Bounded) Let L : X — C be a linear functional, then the following are
equivalent:

1. L is continuous
2. L is continuous at zero
3. L is bounded, i.e. I > 0 \ IL(z)| < c||z|| for all x € H

Proof

2 = 3: Choose § < 1 such that

|z|| <6 = |L(z)| < 1.
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5.2 Theorems

Then
zl| ¢
2@) = |p ()|
6 |zl
|zl ( T >'
(6=
J |z
|zl
< —1
= 6 M
1
SO we can takec:g. [ ]
3 = 1:

We have |L(z —y)| < c||lz — y||, so given € > 0 simply choose § = =
c

Theorem (Operator Norm is a Norm) If H is a Hilbert space, then (H", || - l[op) is & normed space.

Proof The only nontrivial property is the triangle inequality, but

L1 + Lellop = sup [L1(x) + La(2)] < sup [Li(2)] + [sup La(2)| = [[L1llop + [[L2flop-

Theorem (Completeness in Operator Norm) If X is a normed vector space, then (XY, || - llop) 18
a Banach space.

Proof
e Let {L,} be Cauchy in X".
o Then for all z € C, {L,(z)} C C is Cauchy and converges to something denoted L(z).
o Need to show L is continuous and ||L,, — L|| — 0.

e Since {L,} is Cauchy in X", choose N large enough so that

nm>N = Ly Ll <¢ = |Ln(@) - La(@)] <¢ Vo | o] = 1.

e Take n — oo to obtain

m>N = |Ln() - L(z)| <e Va|llzl| =1

= ||L,, — L|| <e — 0.

e Continuity:

|L(z)| = [L(x) = Ln(x) 4 Ln(z)|
< |L(z) = La(2)| + [Ln(2)]
< ellz|| + cl|=]]
= (e +c¢)||z|M.

Theorem (Riesz-Fischer) Let U = {u,},.; be an orthonormal set (not necessarily a basis), then

1. There is an isometric surjection
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H — 3(N)

x = {(x, un)},2,

i.e. if {a,} € £*(N), so Z |lan|* < 0o, then there exists a x € H such that
an = (x, up) Vn.

2. x can be chosen such that

2 2
Ix[l* = > lan|

Note: the choice of x is unique <= {u,} is complete, i.e. (x, u,) = 0 for all n
implies x = 0.

Proof
N
o Given {a,}, define Sy = Zanun.

e Sy is Cauchy in ‘H and so Sy — x for some x € H.
o (z, up) = (x— SN, un)+ (SN, un) — an

N o)
« By construction, ||z — Sy|* = [[«]> = " Jan > — 0, s0 [lz]> = ¥ |an|*.

6 Extra Problems

6.1 Greatest Hits
e *: Show that for ¥ C R", TFAE:

1. E is measurable
2. E=H|JZ here H is F, and Z is null
3. E=V\Z where V € G5 and Z’ is null.

o *: Show that if £ C R" is measurable then m(E) = sup {m(K) ‘ KCE compact} iff for all
e > 0 there exists a compact K C E such that m(K) > m(E) — e.

o *: Show that cylinder functions are measurable, i.e. if f is measurable on R® then F'(z,y) =
f(z) is measurable on R* x R’ for any ¢.

o x: Prove that the Lebesgue integral is translation invariant, i.e. if 7,(x) = x + h then
[mi=]r
| T 10 _
o x: Prove that the Lebesgue integral is dilation invariant, i.e. if f5(x) = 5 then [ fs5= [ f.

e *: Prove continuity in L', i.e.

fer = lim [|f@+h) - f@)] =0,
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6.2 By Topic

e x: Show that

frgeL' = fxgelL' and |fxgl; <|flilgl;.

o x: Show that if X C R with u(X) < co then

p—00
11, "= [ lloo-

6.2 By Topic
6.2.1 Topology

e Show that every compact set is closed and bounded.
e Show that if a subset of a metric space is complete and totally bounded, then it is compact.
o Show that if K is compact and F' is closed with K, F' disjoint then dist(K, F') > 0.

6.2.2 Continuity

» Show that a continuous function on a compact set is uniformly continuous.

6.2.3 Differentiation

. 1 . . / . : /
o Show that if f € C*(R) and both xh_r)noof(a:) and xh_r)noof (x) exist, then Ih_r}rloof () must be
Z€ro.

6.2.4 Advanced Limitology

« If f is continuous, is it necessarily the case that f’ is continuous?

o If f,, — f, is it necessarily the case that f; converges to f’ (or at all)?
e Is it true that the sum of differentiable functions is differentiable?

e Is it true that the limit of integrals equals the integral of the limit?

e Is it true that a limit of continuous functions is continuous?

o Show that a subset of a metric space is closed iff it is complete.

o Show that if m(FE) < oo and f,, — f uniformly, then lim/ fn = / f.
E E

Uniform Convergence

e Show that a uniform limit of bounded functions is bounded.
e Show that a uniform limit of continuous function is continuous.
— Le. if f, — f uniformly with each f, continuous then f is continuous.
 Show that if f,, — f pointwise, f, — ¢ uniformly for some f, g, then f is differentiable and
g=1f"
e Prove that uniform convergence implies pointwise convergence implies a.e. convergence, but

none of the implications may be reversed.
n

x
e Show that Z — converges uniformly on any compact subset of R.
n!

Measure Theory

o Show that continuity of measure from above/below holds for outer measures.
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6.2 By Topic

Show that a countable union of null sets is null.

Measurability

Show that f =0 a.e. iff / f =0 for every measurable set FE.
E

Integrability

Show that if f is a measurable function, then f =0 a.e. iff | f=0.

Show that a bounded function is Lebesgue integrable iff it is measurable.
Show that simple functions are dense in L.

Show that step functions are dense in L.

Show that smooth compactly supported functions are dense in L'.

Convergence

Prove Fatou’s lemma using the Monotone Convergence Theorem.

« Show that if {f,} is in L' and Z / | frn| < 0o then Z fn converges to an L' function and

[5h-5fn

Convolution

Show that if f € L' and g¢ is bounded, then f g is bounded and uniformly continuous.

If f, g are compactly supported, is it necessarily the case that f x g is compactly supported?

Show that under any of the following assumptions, f * g vanishes at infinity:
— f.g € L' are both bounded.
— f,g € L' with just g bounded.
— f,g smooth and compactly supported (and in fact f * g is smooth)
— f e L' and ¢ smooth and compactly supported (and in fact f * g is smooth)

Show that if f € L and ¢ exists with gj all bounded, then
0 dg
B (fxg)=[=x oz,

Fourier Analysis

Show that if f € L' then fis bounded and uniformly continuous.
Is it the case that f € L' implies f € L'?

Show that if f, fe L' then f is bounded, uniformly continuous, and vanishes at infinity.

— Show that this is not true for arbitrary L' functions.
Show that if f € ALI and f = 0 almost everywhere then f = 0 almost everywhere.
— Prove that f = g implies that f = g a.e.
Show that if f,g € L' then
[fo=[13

— Give an example showing that this fails if g is not bounded.
Show that if f € C! then f is equal to its Fourier series.

Approximate Identities
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e Show that if ¢ is an approximate identity, then

t—0
|f %ot — fll; — 0.

— Show that if additionally |p(x)| < ¢(1+ |z])”" "¢ for some ¢, > 0, then this converges is
almost everywhere.
e Show that is f is bounded and uniformly continuous and ¢y is an approximation to the identity,
then f * ¢y uniformly converges to f.

LP Spaces
o Show that if E C R" is measurable with u(E) < co and f € LP(X) then

11l o) = 11 lloo-

Is it true that the converse to the DCT holds? Le. if /fn — /f, is there a g € L” such

that f, < g a.e. for every n?
o Prove continuity in LP: If f is uniformly continuous then for all p,

h—s0
lmnf = £ll, =" 0.
o Prove the following inclusions of L spaces for m(X) < oo:

L®(X) c L*(X) c L}(X)
(7)) C 1M(Z) C 1°°(Z).

7 Practice Exam (November 2014)

7.1 1: Fubini-Tonelli
7.1.1 a

Carefully state Tonelli’s theorem for a nonnegative function F(x,t) on R" x R.

712 b
Let f: R"™ — [0, 00] and define

A::{(x,t)eR”xR’Ogtgf(x)}.

Prove the validity of the following two statements:

1. f is Lebesgue measurable on R” <= A is a Lebesgue measurable subset of R™".

2. If f is Lebesgue measurable on R" then

m(A) = e (x)dx = /Ooom ({x eR" ‘ f(x) > t}) dt.
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7.2 2: Convolutions and the Fourier Transform

7.2 2: Convolutions and the Fourier Transform
7.2.1 a
Let f,g € L'Y(R") and give a definition of f * g.

722 b
Prove that if f, g are integrable and bounded, then

|x|—ro0
—

(f *g9)(x) 0.

7.2.3 c

1. Define the Fourier transform of an integrable function f on R".
2. Give an outline of the proof of the Fourier inversion formula.
3. Give an example of a function f € L*(R™) such that f is not in L'(R™).

7.3 3: Hilbert Spaces

Let {uy}o-; be an orthonormal sequence in a Hilbert space H.

7.3.1 a
Let x € H and verify that

2

N

2

= zllf = D K, ua) [
n=1

N
T — Z (@, up) up
n=1

H

for any V € N and deduce that

2
[z, un)|* < |z ]|F-

R

n=1

732 b

Let {an},cy € £2(N) and prove that there exists an x € H such that a,, = (z, uy,) for all n € N,
and moreover x may be chosen such that

1
2
2
Il = > laal” ] -
neN

o Take {a,} € £%, then note that Z lan|* < 00 = the tails vanish.

Proof

N
e Define z := lim Sy where Sy = Z apUi
N—00 el
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7.4 4: LP Spaces

o {Sn} is Cauchy and H is complete, so x € H.
e By construction,

(z, up) = <Z agup, un> = ax(up, un) = an

k

since the uy are all orthogonal.

o By Pythagoras since the u; are normal,

2
= aguel =" lax|*.
K "

2
)" =

733 c
Prove that if {u,} is complete, Bessel’s inequality becomes an equality.

Proof Let x and u, be arbitrary.

oo
< Z (z, up)uy, un> = (z, un) — ( Y (@, up)us, Un>
k=1 k=1

[o.¢]
= (@, un) — Y_ {(z, up)ug, un)

/\

= T — Z (x, ug)ur =0 by completeness.
k=1
So
S T 2
T = Z(x, upyur, = lz||” = Z|<m, ug)|”. 1
k=1 k=1

7.4 4: [P Spaces
74.1 a

Prove Holder’s inequality: let f € LP, g € LY with p, ¢ conjugate, and show that
1fgll, < A1, - gl

742 b
Prove Minkowski’s Inequality:

1<p<oo = |If+gll, <Ifll,+ llgll,-
Conclude that if f,g € LP(R") then so is f + g.
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7.5 5: Dual Spaces

743 c
Let X =1[0,1] C R.
1. Give a definition of the Banach space L°(X) of essentially bounded functions of X.
2. Let f be non-negative and measurable on X, prove that
b g p—igo | OO OT
forora= Py
and characterize the functions of each type

Proof

Jor=lare e ),
:/:1:<1fp+/x.:11+/x>1fp

=/x<1f”+m({f=1})+/x>lf”

0 0
pi>°°0+m({f:1})+{ =1l
= olieztre
limit into integrals.

7.5 5: Dual Spaces

Let X be a normed vector space.

7.5.1 a

Give the definition of what it means for a map L : X — C to be a linear functional.

752 b

Define what it means for L to be bounded and show L is bounded <= L is continuous.

7.5.3 c

Prove that (X", -|lop) is a Banach space.

8 Midterm Exam 2 (November 2018)
8.1 1 (Integration by Parts)

Let f,g € L'([0,1]), define F(z) :/ fand G(z) = / g, and show
0 0

1 1
/ F(a)g(z) de = F()G(1) — / F(2)C() da.
0 0
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82 2

8.2 2
Let ¢ € L'(R™) such that /cp =1 and define ¢;(z) =t "p(t " z).
0

t—s
Show that if f is bounded and uniformly continuous then f * ¢; f uniformly.

833
Let g € L*([0,1)).
a. Prove

p1>00 |

HgHLP([O,l]) ’9||Loo([0,1])-

b. Prove that the map

Ay : LY([0,1]) — C

fH/Olfg

defines an element of L'([0,1])" with 1Al L1 0,17y = 191l £ o0,17)-

Note: 4 is a repeat.

9 Midterm Exam 2 (December 2014)
911

Note: (a) is a repeat.
o Let A€ L*(X)V.
— Show that M = {f € L*(X) ’ A(f) = 0} C L*(X) is a closed subspace, and L?(X) =
MeM 1.
— Prove that there exists a unique g € L?(X) such that A(f) = / qf.
X

9.2 2
a. In parts:

o Given a definition of L>(R").
o Verify that || - ||, defines a norm on L>(R").
o Carefully proved that (L>(R"),|-||,,) is a Banach space.

b. Prove that for any measurable f : R" — C,

LRY (L2 € L2®Y) and | f], < |17 - 1]
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93 3

9.3 3

a. Prove that if f, g : R" — Cis both measurable then F'(z,y) == f(x) and h(x,y) = f(z—y)g(y)
is measurable on R™ x R".

b. Show that if f € L'(R")(|L™(R") and g € L'(R"), then f * g € L'(R") (| L®(R") is well
defined, and carefully show that it satisfies the following properties:

1F * glloe < gl 1A llo 1+ gy < gl 111+ glly < Nglly LA

Hint: first show |/ +gI* < llgll (11 * gl ).

9.4 4 (Weierstrass Approximation Theorem)
Note: (a) is a repeat.

Let f :[0,1] — R be continuous, and prove the Weierstrass approximation theorem: for any € > 0
there exists a polynomial P such that ||f — Pl <e.

10 Inequalities and Equalities

Proposition (Reverse Triangle Inequality)

=l = [lylll < [l = yll.

Proposition (Chebyshev’s Inequality)

muwﬂw>ans<”“).

«

Proposition (Holder’s Inequality When Surjective)

1 1
L2 =1 = sl < W1l

Application: For finite measure spaces,

1<p<qg<oo = LICLP (and/® C).

r

Proof (Holder's Inequality) Fix p,q, let r = 9 and s = sor 14571 =1. Then let h = |f|":
p

r—1
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1 g 1_1
11y = -l < (ILGlAIL = w5 [1fll; = 1f1l, < m(X) 7|1 fl,-

Note: doesn’t work for ¢, spaces, but just note that Z |xn| < 00 = x, <1 for large enough
n, and thus p < ¢ = |z,|? < |z,|%

Proof (Holder’s Inequality) It suffices to show this when || f|[, = [|g][, = 1, since

Ifl gl <1
1£1lp 1gllq

79l < 15l le = [
) 1 1
Using AB < —AP 4+ —BY, we have
p q

p q 1 1
[istol< LR _2 0 0y
P 4q p g

Proposition (Cauchy-Schwarz Inequality)

[(F o)l =1fglly <N fll2llglly  with equality <= f = Ag.

Note: Relates inner product to norm, and only happens to relate norms in L'.
Proof 7

Proposition (Minkowski’s Inequality:)

1<p<oo = [If+4l, < Ifll, + llgll,-

Note: does not handle p = co case. Use to prove L is a normed space.

Proof

o We first note

[f gl =1f+gllf +gl" " < (f1 +1gD |f + 9"

e Note that if p, g are conjugate exponents then

1_1 1 p-1
q p p
q:i

p—1
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e Then taking integrals yields
£+l = [ 17 +P

< [Uf1+1gD 15+l
= [1515 + g7+ [1gllf + g

=L+ o9+ ot +
<1, ||(£ +97 D], + gl £ + 977,

= (11, +ligll,) |7 + 977,

171, + o) ([ 17+129)?
171, +lal,) ([ 17+97)
)
)

I+l
151, + gl
’ S gy
If + ol
1) 171,

,_.

(
(
(
(Il +

e Cancelling common terms yields

1
L< (1Al +lglly) 57—
( P ”) If +9l,
= [If +gll, <Ifll, + gl

Proposition (Young's Inequality*)
1 1

1
p g 1 1f*gllr < I fllpllgllq

Application: Some useful specific cases:

L glly < 11 llglly
LF* gll, < 1111 llgllp,
1+ glleo < NI fll2llgll
1+ glleo < IIfllllgllg-

Proposition (Bessel’s Inequality:)

For x € H a Hilbert space and {ej} an orthonormal sequence,

[e.o]

> e, ex)? < llz)l*.

k=1

Note: this does not need to be a basis.

Proposition (Parseval’s Identity:) Equality in Bessel’s inequality, attained when {ex} is a basis,
i.e. it is complete, i.e. the span of its closure is all of H.
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10.1 Less Explicitly Used Inequalities

10.1 Less Explicitly Used Inequalities
Proposition (AM-GM Inequality)

Proposition (Jensen’s Inequality)

fltr+ (1 —t)y) <tf(z)+ (1 —1t)f(y).

Proposition (777) :

Proposition (7 Inequality)

(a+ b < 2(aP + bP).

Proposition (Bernoulli’s Inequality)

(I+x2)">14+nx x>-1, orn€ 27 and V.

Proposition 10.1(Exponential Inequality).

VieR, 14+t<eé.

Proof .
o It’s an equality when t = 0.
9 1+t < ot t — t<0
ot Oe
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